
US 20020049786A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2002/004978.6 A1

Bibliowicz et al. (43) Pub. Date: Apr. 25, 2002

(54) COLLABORATION FRAMEWORK Publication Classification

(75) Inventors: Jacobo Bibliowicz, Ithaca, NY (US); (51) Int. Cl. ... G06F 17/00
Kreisel E. Carolyn, Ithaca, NY (US);
Robert Lipari, Alpine, NY (US); Ryan (52) U.S. C. ... 707/511
P. Rogers, Newfield, NY (US)

Correspondence Address:
GATES & COOPER LLP (57) ABSTRACT
HOWARD HUGHES CENTER
6701 CENTER DRIVE WEST, SUITE 1050
LOS ANGELES, CA 90045 (US) One or more embodiments of the invention provide a

collaboration framework for collaborating access to a draw
ing document on a network. A drawing document is Stored

(73) Assignee: Autodesk, Inc on a Server. Thereafter, a collaboration Session comprised of
(21) Appl. No.: 09/982,224 two or more collaborators on a network is established.

During the collaboration Session, the Server permits the two
(22) Filed: Oct. 18, 2001 or more collaborators to work Simultaneously across the

network on the drawing document Stored on the Server. A
Related U.S. Application Data command to modify the drawing document from a first

collaborator is received by the server. The server then
(63) Non-provisional of provisional application No. distributes the command to modify the drawing document to

60/177,988, filed on Jan. 25, 2000. other collaborators in the Session.

204 2O6

Citi aboration Request

sts permission to joir Lir
'iyarkspace as a collaborator,

it in

200

US 2002/00497.86A1 Patent Application Publication Apr. 25, 2002 Sheet 1 of 3

Patent Application Publication Apr. 25, 2002 Sheet 2 of 3 US 2002/004978.6 A1

Usef #2 ?egliests permission to join your
$orkspace as a collaborator,

Grant any
2O2

Patent Application Publication Apr. 25, 2002 Sheet 3 of 3 US 2002/004978.6 A1

FIG. 4

STORE 402
DOCUMENT
ON SERVER

ESTABLISH
SESSION

RECEIVE 4O6
COMMAND TO

MODIFY

DISTRIBUTE 408
COMMAND

US 2002/0049786 A1

COLLABORATION FRAMEWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is related to the following co
pending and commonly-assigned patent applications, which
applications ate incorporated by reference herein:
0002 Patent Cooperation Treaty Patent Application
Serial No. PCT/USO1 /02310, entitled “METHOD AND
APPARATUS FOR PROVIDING ACCESS TO AND
WORKING WITH ARCHITECTURAL DRAWINGS ON

THE INTERNET", by Douglas G. Look, et. al., Attorney
Docket No. 30566.101-WO-U1, filed on Jan. 24, 2001,
which application claims priority to United States Provi
sional Patent Application Serial No. 60/177,988, entitled
“METHOD AND APPARATUS FOR PROVIDING
ACCESS TO AND WORKING WITH ARCHITECTURAL

DRAWINGS ON THE INTERNET, filed on Jan. 25, 2000,
by Douglas G. Look, et. al., attorney's docket number
30566.101 USP1.

BACKGROUND OF THE INVENTION

0003) 1. Field of the Invention
0004. The present invention relates generally to com
puter-implemented drawing programs, and in particular, to a
method, apparatus, and article of manufacture for multiple
collaborators to Simultaneously work on a drawing.
0005 2. Description of the Related Art
0006 The use of Computer Aided Design (CAD) appli
cation programs is well known in the art. CAD application
programs are often expensive, complex, and difficult to learn
how to use. Additionally, architects, contractors, engineers,
owners, and other patties involved with a project (referred to
as project participants or collaborators) are often mobile or
at different locations. With new technology and the
increased use of the Internet, project participants often have
computers, Internet access, and personal digital assistants
(PDAs). Further, the coordination and exchange of infor
mation between project participants can be increasingly
complex.
0007 Existing prior art applications allow a user to
download a drawing, edit the drawing, and upload the
drawing after completing the edits. Alternatively, prior art
applications/features may allow the creation of a two-di
mensional in-memory document where graphic information
is transmitted from one client to another client during a
Session. However, in Such prior art applications, to refer to
a document in the future (i.e., to Store the document), the
document must be saved locally by a client and then
uploaded later. Further, Since only an in-memory document
is used, there is no capability to undo a modification or to
restore the document in the event of a network or computer
failure. Further, only a primitive set of two-dimensional
graphic manipulation tools is often provided.
0008 Accordingly, existing prior art applications do not
provide the ability for multiple users to collaborate on an
actual Stored document with a full set of modeling tools (in
two and three dimensions).

Apr. 25, 2002

SUMMARY OF THE INVENTION

0009. One or more embodiments of the invention provide
a method, apparatus, and article of manufacture for a col
laboration framework that permits multiple users to Simul
taneously modify a document/WorkSpace that is Stored on a
Server acroSS a network. Collaboration applications on mul
tiple clients/collaborators communicate with a Server appli
cation on a Server.

0010. The collaboration application provides a full set of
three-dimensional drawing tools to manipulate a drawing
and transmit Such manipulations to the Server application.
The Server application maintains a history of the manipula
tions and the collaborators in a Session. Once a manipulation
command is received by the Server application from one
collaborator, the server distributes the command to the
remaining collaborators. Thereafter, the collaboration appli
cations modify the local version of the drawing space in
accordance with the command. The history maintained by
the server may then be used by any one of the collaborators
to rollback a modification (e.g., a modification made by
another collaborator or themselves) or to rebuild a drawing
Space in the event of a network failure.

BRIEF DESCRIPTION OF THE DRAWINGS

0011 Referring now to the drawings in which like ref
erence numbers represent corresponding parts throughout:

0012 FIG. 1 schematically illustrates a hardware and
Software environment in accordance with one or more
embodiments of the invention;

0013 FIG. 2 illustrates a collaboration palette displayed
in accordance with one or more embodiments of the inven
tion;

0014 FIG. 3 illustrates a dialog window and collabora
tion palette in accordance with one or more embodiments of
the invention; and

0.015 FIG. 4 is a flow chart illustrating the use of the
collaboration framework in accordance with one or more
embodiments of the invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

0016. In the following description, reference is made to
the accompanying drawings which form a part hereof, and
which is shown, by way of illustration, several embodiments
of the present invention. It is understood that other embodi
ments may be utilized and Structural changes may be made
without departing from the Scope of the present invention.

0.017. Overview
0018. A collaboration framework provides the ability for
multiple users to Simultaneously modify a document acroSS
a network using a full Set of tools. Client based applications
generate specific messages (e.g., XML messages) which are
communicated across a network to a server (e.g., via TCP/IP
transmission control protocol/internet protocol). Once
received by the Server, the Server manages the collaboration

US 2002/0049786 A1

Session by Storing document changes and distributing the
command to other collaborators. The Server maintains a
history of document changes So these can be recommuni
cated in the event of a network failure or temporary Internet
outage. Additionally, the Server may manage a record of the
collaboration Session including the name, number and Status
of collaborators, and Similar information for the WorkSpace
being collaborated on.

0019 Hardware Environment
0020 FIG. 1 schematically illustrates a hardware and
Software environment in accordance with one or mote
embodiments of the invention, and more particularly, illus
trates a typical distributed computer System 100 using a
network 102 to connect client computers/collaborators 104
to Server computerS 106. A typical combination of resources
may include a network 102 comprising the Internet, LANs
(local area networks), WANs (wide area networks), or the
like, clients/collaborators 104 that are personal computers,
personal digital assistants (PDAS), or workStations, and
ServerS 106 that are personal computers, WorkStations, mini
computers, or mainframes.

0021. In accordance with one or more embodiments of
the invention, the network 102 connects collaborators 104
executing a collaboration application 108 to Server comput
ers 106 executing server applications 110. The collaboration
application 108 enables collaborators 104 to communicate
with other collaborators 104 and work on a document stored
on/by server 106. The server application 110 may be a server
106 collaboration application that provides for storage of a
commonly used document and enables the ability for mul
tiple collaborators 104 to simultaneously work on the same
document. Server application 110 may also be configured to
manipulate data (e.g., a document) in database 114 through
a database management system (OBMS) 112.
0022 Generally, these components 108, 110, 112, and
114 all comprise logic and/or data that is embodied in or
retrievable from device, medium, Signal, or carrier, e.g., a
data Storage device, a data communications device, a remote
computer or device coupled to the computer acroSS a net
work or via another data communications device, etc. More
over, this logic and/or data, when read, executed, and/or
interpreted, results in the Steps necessary to implement
and/or use the present invention being performed.

0023 Thus, embodiments of the invention may be imple
mented as a method, apparatus, or article of manufacture
using Standard programming and/or engineering techniques
to produce Software, firmware, hardware, or any combina
tion thereof. The term “article of manufacture” (or alterna
tively, “computer program product”) as used herein is
intended to encompass logic and/or data accessible from any
computer-readable device, carrier, or media.

0024. Those skilled in the art will recognize many modi
fications may be made to this exemplary environment with
out departing from the Scope of the present invention. For
example, those skilled in the art will recognize that any
combination of the above components, or any number of

Apr. 25, 2002

different components, including different logic, data, differ
ent peripherals, and different devices, may be used to
implement the present invention, So long as Similar func
tions are performed thereby.

0025) Collaboration Framework
0026 Collaboration application 108 and server applica
tion 110 executing on client 104 and server 106 respectively,
provide a collaboration framework that enables modifica
tions to drawings to be shared in real time among a set of
collaborators 104 (i.e., two or more users working simulta
neously on the same document from different computers or
other network 102 devices).
0027. The collaboration framework provides the ability
for all collaborators 104 to modify a document at the same
time, with no need for permission to modify to be passed
around among the collaborators 104. Once a collaborator
104 has joined a session, the collaborator 104 is likely on
equal footing with all other collaborators 104. Thus, by
default, anyone may join a collaboration Session and begin
collaborating with others that may already be working in the
session. Alternatively, while multiple collaborators 104 may
edit the document, another collaborator 104 may not have
write acceSS and may only have read capability to watch the
modifications of other collaborators 104.

0028 Collaboration Process
0029. The initial user in a collaboration session opens a
WorkSpace or document to work on. Once opened, a col
laboration palette may be displayed on the computer 104 by
collaboration application 108. For example, the palette may
be placed in the lower-right corner of the window repre
senting collaboration application 108. Alternatively, when
not in use, the palette may roll-up or be hidden from the user.

0030 The collaboration palette provides information on
the current collaborators/users 104 in the collaboration ses
Sion. Thus, when a document is opened by a user, the user's
name is added to the collaboration palette. Further, an access
level may be assigned to the user. For example, a user's
access level may default to “write-access”. Beyond this
general information, the palette may not open or show any
additional feedback when the initial user opens a WorkSpace.

0031 FIG. 2 illustrates a collaboration palette displayed
in accordance with one or more embodiments of the inven

tion. As illustrated, elements of the collaboration palette 200
may include a user image/icon 202. The icon 202 used for
the user may be a standard 32x32 GIF (graphic image
format) for all users.
0032. In addition, the top line 204 of a data area of palette
200 may contain the user's name. Further, the second line
206 of the data area may contain the user's status. Each
Status type 206 may have an associated color. For example,
the Status types 206 and colors a user may have are joining
(green), write-access (black), accidental disconnect (red),
intentional disconnect (yellow), and working offline (blue).
In order to show a status change, all of the Status labels,
except "joining, may blink then disappear after a short

US 2002/0049786 A1

duration. The joining Status may remain until the user either
connects or cannot connect to the WorkSpace.

0033. A user's status 206 may also reflect a controlled
environment wherein a Single user may be a moderator that
has the ability to grant or deny access to new and existing
users. FIG. 3 illustrates a dialog window in such a controlled
environment. As illustrated, the status field 206 may identify
the first user as a moderator. Further, when a new user
attempts to join a Session, the Status field 206 may display
a message Such as “request write' to indicate that a user is
requesting write access. Additionally, a dialog window 302
may be presented to the moderator that allows the moderator
to grant or deny the new user permission to join the
WorkSpace as a collaborator 104. Advanced options may
also be available Such as allowing a user to join the Session
but with read-only capability.

0034. A scroll bar may be activated on the palette if
necessary to display additional information. Further, a pal
ette titlebar 208 includes the title of the palette 200 and may
flash for a short duration when the status of any collaborator
104 changes. The color the titlebar 208 flashes may depend
on the new status of the collaborator.

0035. When a second user opens a document or work
Space, the WorkSpace opens as usual on the user's computer
104, along with opening the collaboration palette 200 to
Signal the beginning of a collaboration Session. However, the
collaboration palette 200 automatically indicates that
another user has the WorkSpace open already.

0.036 The palette 200 also provides a mechanism for
displaying the Status 206 of the Second user's connection to
the WorkSpace. When initially opened, the Second user's
status 206 likely reads “joining.” When the second user
Successfully joins the collaboration Session, the Status line
206 changes to “write-access.” Thereafter, if current users of
the workspace have closed the collaboration palette 200, the
titlebar 208 may flash to signify the addition of a user to the
WorkSpace.

0037 As the workspace is being opened for a second
user, a "glass plane' may be placed over the WorkSpace,
palettes 200, and menu. Further, in some embodiments, a
user may not be able to cancel the open, or Start to open
another WorkSpace until the current one is fully opened. AS
illustrated in FIG. 2, the palette 200 indicates that a first user
(i.e., "Joe User') has write-access and a second user (i.e.,
“User #2) is joining the session.
0.038 Accordingly, as users join the session, each user's
collaboration palette 200 indicates the addition of a user,
with a status 206 of “joining.” When a user leaves the
workspace on purpose, the user's status 206 (e.g., "left
workspace') may be shown in a specific color (e.g., yellow),
and after Some amount of time, the user's name 204 will be
removed from the palette 200. Similarly, if a user leaves the
workspace accidentally, the user's status 206 (e.g., "discon
nected') may be shown in a different color (e.g., red), and
after Some amount of time, the user's name 204 will be
removed from the palette 200.

Apr. 25, 2002

0039. Once a session has begun, modifications to the
drawing may be seen by any users in the Session. For
example, a pan or Zoom operation performed on the work
space by a user will be reflected in other users’ view of the
WorkSpace. Accordingly, the pan and Zoom State of the
WorkSpace may be Stored with the document. Thereafter, the
next time the WorkSpace is opened, the view will be the same
as when it was last closed. Similarly, if the view of a 3D
model is changed by a user, the other users’ view of the
model will be changed. Additionally, any action that causes
data to be saved to the workspace will be seen by all of the
users in the collaboration Session. For example, creating new
documents, moving documents, minimizing documents, and
using tools on documents, are all actions that will be seen by
everyone.

0040 Additionally, the collaboration framework may
provide communication capabilities Such as chat and instant
messaging to collaborators 104 in the Session.

0041. However, to preserve individual user's preferences,
certain actions performed by a user may not be seen by other
users in the Session. For example, a user's palette 200 may
not be part of the collaboration Session. Thus, if a user moves
his or her palette 200 or drawing tools from the upper left to
the lower right, the collaborators 104 will not see a change
in their view of the WorkSpace. Further, any object Selected
by a collaborator 104 may not be seen in the other collabo
rator's 104 view of the workspace. However, any action
done to the object that changes its data (e.g., color or size
change) will be seen by the other users. Additionally, the
activation of documents may not be seen by collaboration
users. For example, if a user has “Drawing 1' active, and is
actively placing Strokes into it (which is seen by the other
users), he or she will not see that another user may have a
model document active. However, if the Second user begins
to rotate the model in the document, the result will be seen
by all of the collaborators 104.

0042. The loss of a network 102 connection by a user
affects the way the user continues. When a Single user of a
workspace (i.e., no other collaborators 104 are members of
the session) loses his or her network 102 connection, the
user may be automatically Switched to an offline mode
during which the user may keep write-access while offline,
and the server 106 marks the workspace as offline so it may
not be edited by online users. When a user in a collaborative
environment loses a connection, the remaining users will be
notified that the user has timed-out with the disconnected

status in the data field 106 of the palette. The disconnected
user may also receive a dialog notice that the connection to
the WorkSpace has been lost, and the user has therefore been
Switched to read-only mode.

0043 Collaboration Details

0044 As described above, collaborators 104 participat
ing in a Session may all modify a drawing document that is
stored in the server 106 wherein the drawing modifications
are then reflected in the other collaborators 104 views. To
enable Such capabilities, the collaboration framework pro

US 2002/0049786 A1

vides for the transmission of commands to the client 104 and
server 106 sides of the framework. The description below
provides information regarding Some of the commands that
may be used including background information, implemen
tation information, and formatting information, It should be
noted that while the formatting information is described in
terms of extensible markup language (XML), any acceptable
format or formatting language may be used and the inven
tion is not intended to be limited to XML formatted mes
SageS.

004.5 There are two types of command communication
between clients 104 and server 106 in the framework 100:
Synchronous and asynchronous.

0046) Synchronous commands are sent from the client
104 to the server 106, and processed immediately. The
Server's 106 response is a command response containing the
processing results.

0047 Asynchronous commands ate sent from the client
104 to the server 106, but are not necessarily processed
immediately. The server 106 response to the client 104 may
contain multiple command responses to earlier client 104
requests, collaboration State changes, collaboration user
information, and other data waiting in the client's 104
outgoing message queue. AS described below, a command
referred to herein as “heartbeat' is an example of Such an
asynchronous command.

Apr. 25, 2002

There is typically a one to one correspondence for a response
to a specific command. For example, a “Version' command
likely has a corresponding “Version” response command
which is returned to the client 104 and contains data per
taining to the current version of the framework. Responses
typically contain a <Success\> Sub-node, a <rspMsg\> Sub
node, and one or more <return\> Sub-nodes.

0051 Heartbeats are asynchronous commands that can
contain other commands, responses, or collaboration data.

0052 AS described above, messages may be imple
mented in any format. In one or more embodiments of the
invention, messages are simple XML Structures. Using a
login command message from the client 104 as an example,
the basic structure is shown below:

<msg msgID="1" sessID="1" resID="23058” retry="0">
<cmd name="Login'>

<param name="username val="joe Smith' f>
<param name="password val="JoesPswd fs

</cmde
</msgs

0053. The outermost node, <msg\>, wraps the entire
message. A message tag may be required to contain the
following attributes in Table 1.

TABLE 1.

Attribute Name Values Meaning

MsgID Any positive integer. Client 104 generated numeric identifier of the
message. When the message is sent from the server
106 to the client 104, the server 106 echoes the
msg.ID number it is responding to. This pairs the
client 104 request and server 106 response message
with the same ID.

Sess) A valid session ID. the sessionID.
ResD A valid resource ID. the resourceD.
Retry A positive integer, or Zero. number of times client has sent this message.

0.048 While strictly speaking, there may only be a single
command type, there are three distinct types of command
messages: Commands, Responses, and Heartbeats.
0049 Commands initiate a request or an action. Com
mands may typically contain one or more <param\> Sub
nodes. Usually, commands are a request from the client 104
to the Server 106 to initiate an action or request data.
0050 Responses are commands containing processing
results and return data from previously issued commands.

0054 The first and only sub-node, <cmd\>, contains a
Single command. This single command may be a heartbeat
command, which itself may contain Sub-commands. The
command node may contain multiple attributes including a
name that specifies a unique command name for the com
mand being Sent.
0055 Additionally, each <cmd\a node may contain one
or more of the Sub nodes described in Table 2, depending on
it's type:

TABLE 2

Sub Node
Name Contains Attributes

Param A parameter for the Name - the parameter name.
command. Val - the parameter's value.

Filedata An XML file of a non- NONE.
specific type. Currently used
for user data, workspace files
and Workspace Trees.

US 2002/0049786 A1

TABLE 2-continued

Apr. 25, 2002

Sub Node
Name Contains Attributes

Success Found only in response Val - return value. The constant names and values:
commands, this contains a
flag indicating whether the
command was executed
successfully. If it was not,
the attribute contains a

RESPONSE SUCCESS = Ox O
RESPONSE LOGIN REOUIRED = Ox 1
RESPONSE FAILURE = 0 x 2.
RESPONSE RESOURCE NOT FOUND = Ox 3
RESPONSE INSUFFICIENT PERMISSION = 0 x 4

constant indicating the nature RESPONSE DUPLICATE NAME = 0 x 5
of the failure.

Return Found only in response
commands, this contains
return values for the previous
commands. There may be
more than one return node
per response message.
Found only in response
commands, this contains text
corresponding to the result.
It may be used for providing
error description text to be
displayed to the user, for
example.

RspMsg

0056 Accordingly, for each command, whether issued by
a client 104 or a server 106, the command name is specified
along with optional parameters. The following XML illus
trates an example of a version command in accordance with
one or more embodiments of the invention:

<!-- Client request command -->
<cmd name="Versions

<param name="major val="1" />
<param name="minor val="1" />
<param name="revision val="2" />

</cmde
<!-- Server response command -->

<cmd name="VersionResp''>
<success vall="1 f>
<rspMsg val="a resp mesage' f>
<return name="VersionResp''>

<param name="major val="1" />
<param name="minor val="1" />
<param name="revision val="1" />

</returne
</cmde

0057. As illustrated, the client 104 request command
name is “Version' and various parameters are specified. In
response, the Server 106 Specifies the command name along
with information described in Table 2 (i.e., a success with a
value of 1, a response message with a value of “a resp
message”, a return name with a value of “VersionResp”, and
various parameters with values).
0.058 Synchronous Commands: Client Sent, Server Pro
cessed

0059 Various synchronous commands may be processed
in the framework 100 of the invention. The synchronous
commands described below are commands Sent by a client
104 and processed by a server 106.
0060 Version Command
0061 The “version” command results in a return of the
current version number of the framework. The syntax for the
command is:

RESPONSE BAD TOKEN = 0 x 6
RESPONSE UNKNOWN FILETYPE = 0 x 7
RESPONSE SYSTEM FAILURE = 0 x 80
Name - the return parameter's name.
Val - the value of the return parameter.

Val - the text of the response message.

version (localmajor, localminor, localrevision : major,
minor, revision, upgradeFlag, ChangesXML : success,
message)

0062) The “version” command is sent by the client 104 at
Startup, before attempting a login or displaying the main
application window. Even if the client 104 has a stored
Session id, it should issue this command first.

0063. The upgradeflag indicates the result of the version
check and can be VersionsIdentical (0), ServerUpgraded (1),
ClientUpgrade Available (2), ClientUpgradeRequired (4). If
the upgradeFlag has a VersionsIdentical value, no code in
the framework 100 has been updated since the last time the
client 104 collaboration application 108 was run. If the
upgradeFlag has a ServerUpgraded value, the Server 106 has
new code that may affect the clients 104 perception of how
the framework 100 works (faster save times, fixes, etc.), but
there are no client 104 binary changes.

0064.) A value of ClientUpgrade Available means that
there is a newer version of the client 104 available, but the
client 104 is not required to get the newer version in order
to work with the current version of the server 106 (i.e. no file
formats or interfaces have changed). A value of ClientUp
gradeRequited means that Significant changes have occurred
in the client 104 and file formats or interfaces with the server
106 have changed. Accordingly, the client 104 must upgrade
before the client 104 can go online. Note that this does not
necessarily mean the client 104 is forced to upgrade imme
diately. Instead, the client 104 may be able to work offline
using the local cache until the user is ready to upgrade.
However, if the client 104 desires to obtain data from the
site/server 106, the client 104 must upgrade.

0065. Also, any new features and/or noteworthy fixes that
have been implemented since the version of the client 104

US 2002/0049786 A1

passed in will be returned in the ChangesXML parameters,
and these changes can be displayed in the client 104. It may
be possible to have Some updates and not require an
upgrade. For example, there may have been Server-only
changes that would be nice to let the user know about (e.g.,
a bug fix or improved performance). The ChangesXML may
be useful to users when the value of upgrade Elag is Clien
tUpgrade Available, since the ChangesXML content is what
provides the basis upon which the client 104 decides if the
upgrade should be made (new features and fixes VS. risk
assessment). Further, the ChangesXML value does not need
to be overly verbose. For example, the ChangesXML value
may comprise a short bulleted list containing only changes
that the average user would care about, or possibly a
hyperlink pointing to a page on a web site that may be
accessed for more detailed information.

0.066. In response to the version command, an object is
returned with the current version numbers that may be read
from a local versions XML file. Alternatively, a data cache
product may be used Such that the version numbers are
stored in a database 114 and read from the cache. Thereafter,
collaboration application Stores the returned major/minor/
revision numbers and ensures that the returned numbers are
used in the next version command.

0067. The versions XML file may contain all changes
over time (occasionally pruned manually) and will be read
by the application server 110 at start time and stored globally
into an efficiently Searched data structure that may be keyed
by major minor-revision. Each one of the database 114
entries may have an upgrade Flag that will be set to one of
the levels defined above. The upgrade Flag's values may be
binary to ease in the use of a bitwise OR operation. Each
entry may also contain any number of new feature/fiX nodes,
and each node might Specify an attribute classifying the type
(new feature VS. enhancement VS. fix, etc). When processing
a version command, if the major/minor/revision passed in is
lower than the current maximum parsed from the file, then
an update has occurred and an upgrade may be required.

0068 The upgrade Flag is determined by a simple bitwise
OR operation of all upgradeFlags of the versions greater
than the version passed in. The ChangesXML is built in a
Similar way, by combining all of the change nodes for the
versions greater than the one passed in. If the provided
version is not found, then the version has been pruned, and
the earliest version in the data Structure is used to determine
the upgrade Flag and the ChangesXML.

0069. The version command likely executes quickly and
efficiently and avoids a Denial of Service attack, Since no
login is required. Accordingly, the version command does
not perform any database 114 read operations, database 114
write operations, and only performs a Single remote method
invocation (RMI) call.
0070 Login Command

0071. The login command is executed by the client 104
at Startup to logon to a Session. In one or more embodiments,
the login command is used when the user does not have a
Session id, or when the user determines that the Sessionid
that the user has is invalid. Such a login may be required in
when the server 106 requires the client 104 to logon (e.g.,
during the processing of a loginrequired command from the

Apr. 25, 2002

server 106 see below). The syntax for the login command
is:

login (username, password : success, message, sessionID,
userID, imageURL)

0072. In response to a login command, the server 106
returns a new sessionID and the userlD to the client 104. The
Same user can be logged on multiple times and have multiple
active sessionID's.

0073) Open User Data Command
0074. Once logged in pursuant to the login command, the
client 104 will next transmit the Open User Data command.
More particularly, if the client 104 has a cached sessionID
from a previous instance, the client 104 will first try this
sessionID. If the prior sessionID fails, the client 104 will
receive a loginrequired command from the server 106 in
response. The Subsequent login (i.e., using the login com
mand) provides a sessionid to be used with the Open User
Data command. The Open User Data command opens
specified user data for the client 104.
0075 New Workspace Command
0076. This command is used by a client 104 whenever the
user Selects an option to create a new WorkSpace/document.
The new WorkSpace command is executed before the close
workSpace command of an open workspace (if there is one
open) is executed. If the new workspace command is Suc
cessful, the resourcelD of the new workSpace is returned,
and the workspace should be considered to be in a Sol
oPending State for the Specified user.
0.077 Copy Workspace Command
0078. The copy workspace command is issued by the
client 104 whenever the user Selects an option to copy a
WorkSpace.
0079 Delete Workspace Command
0080. The delete workspace command is issued by the
client 104 whenever the user tries to delete a workspace that
the user has opened. The delete WorkSpace command is
executed before the closing an open WorkSpace. If Success
ful, the deleted WorkSpace will be gone and the user will
have to Select a WorkSpace to work on or create a new
WorkSpace. The use of the delete WorkSpace command may
be restricted. For example, the delete WorkSpace command
may not execute if the WorkSpace is in CollabPending or
Collab State. Accordingly, in order to delete a WorkSpace, the
user must be the only perSon in the WorkSpace. The Syntax
for the delete WorkSpace command is:

deleteworkspace(userID, resourceID:Success, mes
sage)

0081. To enable the delete workspace command, the
server 106 may ensure that the workspace is either open by
nobody, or open by exactly the user trying to delete it. The
user must also have the appropriate permissions. If all of
these conditions have been complied with, then the delete
WorkSpace command will delete the WorkSpace and remove
the WorkSpace from a ResourceSession. Once deleted, the
WorkSpace cannot be opened at a later time.
0082) Open Workspace Command
0083. The open workspace command is the backbone of
collaboration, and occurs whenever the client 104 opens a

US 2002/0049786 A1

new workspace. The command is issued by the client 104
before the closeworkSpace command when Switching work
Spaces. If the WorkSpace is already open by two or more
users (i.e., the workspace is in Collab state), then this user
joins the collaboration Session. If the WorkSpace is open by
only one person (i.e., the workSpace is in Solo State), then a
collaboration Session is started (CollabPending State) and
both clients 104 are synchronized. Once synchronized, the
State changes to Collab. If the WorkSpace is not open, the
user (that is in Solopending State) marks the workSpace as
Open.

0084. A workspace session and user's workspace session
may be in one of the following states: 0-Solo Pending;
1-Solo; 2-Collab Pending, 3-Collab; or 4-Disconnected.
When a WorkSpace is not open, the WorkSpace has no State.
When the WorkSpace is opened, the WorkSpace transitions
into Solo Pending, as does the WorkSpace's user.
0085. Upon the new user's/client's 104 heartbeat, the
state is transitioned from Solo Pending to Solo. If another
user opens the document, the State is transitioned to Collab
Pending. Once the original client 104 confirms synchroni
zation of the document, the state is transitioned to Collab. If
another user joins, the WorkSpace remains in Collab State,
but the user is in Collab Pending until the first heartbeat is
received, at which time the client 104 is transitioned into full
Collab.

0.086 If at any point enough users close the workspace
such that there is only one client 104 left, the state is
transitioned into Solo Pending for that user and the work
space. Once this client 104 confirms synchronization of the
document and Started creating deltas, the State is transitioned
into Solo for the WorkSpace and the user. If at anytime a user
is determined to have gone link dead, the user's State is
changed to Disconnected. If at any time all users left in a
WorkSpace Session are Disconnected, then the State of the
document is changed to Disconnected. Once users have been
disconnected for a Sufficient time without returning, the
disconnected users are removed from the Session. If all users
are removed from a Session, the Session is closed.
0087 Close Workspace Command
0088. The close workspace command is executed when a
user closes a WorkSpace. If the user is closing the WorkSpace
due to opening an existing or creating a new WorkSpace, then
the open or create commands are executed first, and the
close executing after their Success. If the user closes the
application, closeworkSpace is Sent after the final Save.

0089 While processing this command, if the state is
Collab then a collabuserinfo command may be placed in the
CommandOut queues of the remaining WorkSpace Session
users. If there is only one other WorkSpace Session user, then
the State of the WorkSpace Session may be changed from
Collab to Solo Pending.

0090 Get Object IDs Command
0091. The Get Object IDs command is issued by a client
104 to obtain a range of unique Object IDs the client 104 can
use when creating application objects. A GetObjectIDS com
mand with no parameters is requesting a default number of
IDs. The default should be sufficient for typical online work,
yet large enough to allow for Sufficient IDS in the case of
Subsequent connection failures So the client 104 can keep

Apr. 25, 2002

working. A "quantity' parameter may be specified to request
a specific quantity of Object ID's. Clients 104 can use
numeric constants for typical quantities or simply Specify a
number for the quantity. The syntax for the Get Object IDs
command is:

getObjectIDs(userID: Success, message, Object ID
start, Object ID end)

0092. In response to the command, the server 106 returns
a range of object IDs that can be used by the client 104. In
other words, a first/start object ID and a last/end object ID
are returned by the server 106 for use by the client 104.

0093. The GetObjectIDs command may or may not be
utilized depending on the implementation. For example, if
the GetObjectIDs command is not utilized, the server 106
may map object IDS as using a Mapped Objects command
described in detail below.

0094 Synchronous Responses Server Sent, Client Pro
cessed

0095 The commands described below are synchronous
commands/responses that are transmitted by a server 106
and processed by a client 104.

0096 Login Required Response

0097. The server 106 generates the login required com
mand whenever processing a message or command and it is
determined that the Specified SessionID is missing or invalid
(timed out). Upon receipt and execution, the client 104 sends
a login command to the server 106 (see above).
0.098 System Failure Response

0099] The server 106 generates the system failure
response/command whenever an internal System failure
occurs processing a message or command. Upon receipt of
the System failure command, the client 104 takes appropriate
measures to retry the command it received the System failure
response message for.

0100 Heartbeat Commands

0101 Heartbeat messages are different from other com
mands, as they may contain Sub commands and collabora
tion data. The heartbeat message uses two Sub-nodes to
contain the different types of data. These are the <tran
Sientcmd\Z node, which contains Zero or more commands
and responses, and the <persistentcmd\D node, which con
tains actual collaboration data, i.e., the actions performed in
the client 104 by the collaborators 104.

0102) As an example, a heartbeat command demonstrat
ing the full Structure is shown below, although any indi
vidual heartbeat command may or may not have all the
components shown below the <cmd\Z node. The example
shows a heartbeat command with a single SaveUserData
Sub-command, and a comment in the <persistentcmds\>
Section where a real message would have one or more client
104 collaboration commands:

US 2002/0049786 A1

&cmd name="Heartbeat deltalevel="45 beat="1
strong="O'>

<transientcmds.>
<cmd name="SaveUserData's

<param name="file'
vall="woof tools.xml>

<filedata
<!-- user data file xml -->
<filedata

<?params
</cmde

</transientcmds.>
<persistentcmds deltalevel="45>

<!-- client collaboration commands -->
<?persistentcmds>

</cmde

0103) The heartbeat </cmdD node may be required to
contain the attributes identified in Table 3.

TABLE 3

Attribute Name Values Meaning

DeltaLevel The current delta level. In solo See text.
mode, this value is determined
by the client 104 and echoed by
the server 106 in the response.
In collaboration mode, these
are temporary IDs when sent
from the client 104, and actual
IDS when sent from the server
106.

Beat BEAT TYPE COLLAB = 1
BEAT TYPE SOLO = 2
BEAT STRONG = 1
BEAT WEAK = 0

Strong

is sent.

0104. The heartbeat command is executed by the client
104 with a delay between heartbeats of N seconds, where N
varies depending if the client 104 is collaborating or not.
Tentatively heartbeats may beat execute every 10 seconds
when Solo and every 2 Seconds when collaborating. Occa
Sionally heartbeats will be strong. A Strong heartbeat Signi
fies that even if no data modification commands (referred to
as delta commands) are sent in the heartbeat, the users
WorkSpace Session should be marked as active So that it does
not timeout. For example, if a client 104 does not perform
any modifications or is away from the keyboard for 20
minutes while in a collaborative session, the client 104
won't be generating any data but the Strong heartbeats will
keep the client's 104 workspace session alive.

0105 The syntax for the heartbeat command is:

heartbeat(userID, resourceID, deltaLevel, strongflag :
transientcmds, persistentcmds deltalevel)

0106 The heartbeat may contain either transient com
mands, persistent commands (i.e., delta commands), or both.
Transient commands are executed immediately and persis

A collaboration or solo beat.

Apr. 25, 2002

tent commands are Stored for asynchronous processing by a
Separate Server-Side process. Some transient heartbeat com
mands are described below.

0.107) If the heartbeat comes from a solo user of the
workspace, then the DeltaID's will already be present, and
the specified DeltaLevel will represent the new DeltaLevel
of the workspace. If the heartbeat comes from a collaborator
104, then none of the delta commands will have a Delta D,
and the server 106 is responsible for numbering them. In
either case, the DeltaLevel of the WorkSpace Session needs
to be updated. If the heartbeat comes from a collaborator
104, then the heartbeat response will contain any delta
commands that the server 106 has received that are higher
than the clients 104 specified DeltaLevel, and this will
include new delta commands that the client 104 just sent.
Accordingly, the heartbeat command enables the client 104
to receive the work done by another client 104 during a
Session.

The server 106 updates the client 104 last contacted
time on Strong beats, whether or not any other data

0108). If the client 104 is collaborating, then any new
ObjectID's specified in the delta commands will be tempo
rary and will be marked as such. Temporary ObjectIDs are
mapped to real Server-generated ObjectIDs, and a persistent
map is maintained for each user mapping the user's tempo
rary ObjectID to the real ObjectID. When collaborating, the
response to a user's heartbeat command will contain the
Same persistent commands that came up in the command,
but with DeltaID's and real ObjectID's set in them, so that
the client 104 can update itself.

0109 Part of the persistent commands node is the delta
level that the client 104 is currently at. In the collaborative
case, there may be delta commands that a client 104 has
received from other users that have been given DeltaID's
that this client 104 may not yet have. Therefore, the response
message may contain not only the updated Delta D's that
this client 104 generated, but it may also contain those
DeltaDS specified by other clients 104, all in the correct
Delta ID order.

0110 Depending on the implementation, the heartbeat
processing may utilize a beat flag for the Status of a
particular client 104. The beat flag is utilized to maintain the
appropriate state between clients 104 and to facilitate the
collaboration between clients 104. Such heartbeat process
ing utilizing a beat flag is described in detail below.

US 2002/0049786 A1

0111 Alternatively, instead of using a flag to maintain the
State of a client 104, the heartbeat processing may result in
the generation of Several different collaboration transient
commands that are sent to the client 104. If the client's 104
state is Solo but the sessions state is Collab Pending, then the
client 104 may receive a collabstart command. If the client's
104 state is Collab but the sessions state is Solo Pending,
then the client 104 may receive a collabstop command. If the
client's 104 state is Joining but the sessions state is Collab,
then the client 104 may receive a collabjoined command.

0112 The user may also have other transient commands
that have been queued up in a queue of outgoing commands
for a particular user (referred to as a user's CommandOut
queue) waiting for this heartbeat (for example, Somebody
may have joined the collaborative Session, left the collabo
rative Session, etc). These transient commands in the Com
mandOut queue ate sent from the server 106 to the client 104
in the response message, and marked in a record of the
Session as having been Sent in this particular message ID.
0113 A retry count for each message may also be main
tained. During heartbeat processing, the retry count of the
message may be checked. When the message is not a retry,
message responses to all previous messages have been
received and processed by the client. Therefore, if there are
any transient commands in the Command Out queue which
are marked as Sent in a previous message, Such transient
commands can be removed from the queue.
0114. The following transient heartbeat commands are
transmitted by a client 104 and processed by the server 106.
0115 Save User Data
0116. The save user data command is executed by the
client 104 when a Session is closed and optionally during
Sessions as user preferences/options change. The Save user
data command may execute based on an interval and a dirty
flag. If the time interval has passed and the flag/preferences
are dirty, then the preferences are Saved.

0117 The save user data command uses a user ID,
filename, and file data as parameters. The filename should be
a valid System file type, otherwise the operation to Store/Save
the data may fail. If a failure occurs, a SaveuSerdatafailed
command will likely be generated and returned in the
response meSSage.

0118 Save Workspace Command
0119) The save workspace command is generated by any
client 104 that has a non-read-only workspace open. When
Solo, the client 104 is responsible for sending up all delta
commands in the persistent Section of a heartbeat command
that will update the server 106 from the previous delta level
to the new delta level specified. If any of the delta commands
are missing, the Save will fail.

0120 In collaborative mode, the detaLevel is the latest
Server-approved delta level of the WorkSpace that the client
104 is aware of. Therefore, the client 104 does not need to
transmit persistent commands to update the WorkSpace,
since the server already has the delta levels. All clients 104
in a collaboration Session may issue the SaveworkSpace
command. Further, Saves may occur at a regular interval
(e.g., every 1 minute). Accordingly, Solo SaveworkSpace
commands come up pursuant to regular heartbeat intervals

Apr. 25, 2002

(e.g., 6 heartbeats), and when collaborating SaveworkSpace
commands are likely issued at greater heartbeat intervals
(e.g., every 30 heartbeats).
0121 Collaboration Start Confirmation Command
0.122 AS described above, various transient collaboration
commands may or may not be utilized depending on the
implementation. The collaboration Start confirmation com
mand may be generated by a client 104 upon receiving and
executing a collabStart command. The command occurs only
when going from the Solo to collaborative mode (i.e., from
1 document viewer to 2). When the server 106 receives this
command, the client 104 is signaling that the client 104 has
Stopped generating delta commands that have Delta D’s,
and that it is now the servers 106 responsibility to generate
the delta commands. The collaboration Start confirmation
command typically arrives in the same message as the
clients 104 final Solo SaveworkSpace. Subsequent to execu
tion, heartbeats contain delta commands without Delta D’s,
and all new ObjectIDs are temporary.

0123. Once the server 106 receives the start collaboration
confirmation command, the user or users that are in the
Joining state can be migrated to the Joined State (they are
issued collabjoined commands), as well as placing collabu
Serinfo commands into the CommandOut queues of all users
in the WorkSpace Session for all of the users that just Joined.
The WorkSpace Session State may also be updated from
CollabPending to Collab.

0124 Collaboration Stop Confirmation Command
0.125 The collaboration stop confirmation command is
generated by a client 104 upon receiving and executing a
collabstop command from the server 106. This command is
only executed when going from the collaborative mode to
the Solo mode (i.e., from 2 or more document viewers to 1).
When the server 106 receives this command, the client 104
is signaling that the client 104 has started generating delta
commands that have DeltaID's, and that it is no longer the
servers 106 responsibility to generate delta commands.
Subsequently, heartbeats executed by the client 104 contain
delta commands with client 104 generated DeltaID's, and all
new ObjectIDs are real and not temporary.

0.126 Once the server 106 receives the collaboration stop
confirmation command, the user or user may be migrated
from the Pending Solo state to the Solo state. Additionally,
the WorkSpace Session State may be updated from Solopend
ing to Solo.

0127 Collaboration Joined Formation Command
0128. The collaboration joined formation command
(referred to as collabjoinedconfirm) is generated by a client
104 upon receiving and executing a collabjoined command.
A collabjoined command is only received when the user's
State transitions from the collaborative pending State to the
collaborative mode state. When the server 106 receives the
collaboration joined formation command, the client 104 is
signaling that the client 104 has received the collabjoined
command and is now generating delta commands (unnum
bered).
0129. Once the server 106 receives the collaboration
joined formation command, the user is likely migrated from
the Pending Collab state to the Collab state.

US 2002/0049786 A1

0130 Mopped Objects Command
0131 Depending on the implementation, a mapped
objects command may or may not be provided. For example,
if a Get Object IDs command (as described above) are
implemented, the Mapped Objects Command may not be
utilized. As described above, the Get ObjectIDs provides the
client 104 with a pool of valid IDs which are guaranteed
unique. Accordingly, there is no need for the Server 106 to
map the objects to IDs. However, without the GetObjectIDs
command, Such mapping may be necessary.
0132) The purpose of the mapped objects command is so
that the server 106 can truncate the real-to-temp ObjectID
maps for each client's 104 WorkSpace Session once the client
104 has acknowledged that the real ID's have been received.
Accordingly, the mapped objects command may only be
used when in a collaborative mode. Further, the command is
originally server 106 generated and simply forwarded back
up to the server 106 by the client 104. By making a trip
through the clients 104 queues, once received by the server
106, any temporary ObjectIDs in the command are no
longer in use by the client 104. Accordingly, temporary
ObjectIDs may be removed from a state map of the server
106.

0133. The removal of a temporary ObjectIDs causes
object mapping to run considerably faster when processing
commands from active clients 104 who are generating
numerous delta commands. Without the mapped objects
command, the mapping table may continue to grow
unchecked.

0134) The execution of the mapped objects command
may contain a Series of elements, with a tempD and realID
attribute/value pair. The elements are parsed and the tem
pIDS are placed into a String. The String may then be
transmitted to a single server 106 processor (along with the
userlD and resourceID) that can efficiently delete all of the
temporary objects efficiently.

0135) In addition to transient commands sent by a client
104 and processed by a server 106, the following transient
commands are transmitted by the server 106 and processed
by a client 104.

0136 Collaboration Start Command
0.137 The server 106 generates the collaboration start
command while processing a heartbeat if the heartbeat
originated from a solo client 104 and the state of the
WorkSpace Session has been changed to Pending Collab. The
collaboration start command Signals that a collaborative
Session is beginning So that the client 104 can begin the
transition from the Solo State to the pending collaboration
state. Once the client 104 has finished this transition, die
client 104 will issue a collabstartconfirm command to the
server 106 as described above.

0138 Collaboration User Information Command
0.139. The server 106 generates the collaboration user
information command in response to every heartbeat for a
user in a collaborative Session. This command contains all of
the data regarding users currently in the Session including
disconnected (link dead) users. It is the client's 104 respon
Sibility to compare the data Structure to previously received
data Structures to figure out what users are new, what users

Apr. 25, 2002

are gone, what users had State changes, what users had icon
changes, etc., and then render appropriately.
0140 Collaboration Joined Command
0.141. The server 106 generates the collaboration joined
command while processing a heartbeat command. If the
heartbeat comes from a joining client 104 and the state of the
WorkSpace Session is Collaborating, then this command is
generated and returned on the heartbeat.
0.142 Collaboration Stop Command
0143. The server 106 generates the collaboration stop
command while processing a heartbeat command if the
Specified userID is the only user left in the WorkSpace
Session. The command Signals that the collaborative mode
should stop, and that the client 104 should enter the pending
solo mode and signal to the server 106 that the client 104 has
sent up all of the client's 104 un-numbered delta commands.
0144 Beat Flag
0145 The various transient collaboration commands
described above (e.g., Collaboration Start Confirmation
Command, Collaboration Stop Confirmation Command,
Collaboration joined Formation Command, Collaboration
Start Command, Collaboration User Information Command,
Collaboration joined Command, and Collaboration Stop
Command) may not be utilized in one or more embodiments
of the invention. Instead, a flag may be used in the Heartbeat
command that maintains state information for clients 104.

0146). At the server 106 level, the state of the workspace
itself as well as the state of the client 104 may be considered.
However, each client 104 only needs to keep track of their
own State. The State may be described using the following
values: 0=closed, 1=disconnected, 2=Solo pending, 3=Solo,
4=collab pending, and 5=collab.
0147 Upon executing an open workspace command, the
client 104 is placed in one of two States: Solo pending or
collab pending. The heartbeat command always echoes this
state to the server 106. In turn, the server 106 will update the
value of this flag after examining the State of the WorkSpace
and the State of the users in the Session.

0.148. An example of three clients collaborating using the
various flags are illustrated in Table 4.

TABLE 4

Server
Work

Command Client1 Client2 Client3 space C1 C2 C3

1. Client1 exe- 2 2 2
cutes open work
space
2. Client1 3 3 3
heartbeats
3. Client2 3 4 4 3 4
executes open
workspace
4. Client1 4 4 4 4 4
heartbeats
5. Client2 4 (no 4 4 4
heartbeats changes)

4
6. Client1 5 4 5 5 4
heartbeats
7. Client2 5 5 5 5 5

US 2002/0049786 A1

TABLE 4-continued

Server
Work

Command Client1 Client2 Client3 space C1 C2 C3

heartbeats
8. Client3 5 5 4 5 5 5 4
executes open
workspace
9. Client3 5 5 5 5 5 5 5
heartbeats
10. Client2 5 O 5 5 5 O 5
executes

close workspace
11. Client3 5 O O 2 5 O O
executes

close workspace
12. Client1 2 O O 2 2 O O
heartbeats
13. Client1 3 O O 3 3 O O
heartbeats

0149. As illustrated in Table 4, the values in each row are
the final values after Successful execution of each command
indicated. The first user in a WorkSpace Session must confirm
(e.g., by issuing a heartbeat command with a collab pending
flag) to Synchronize all deltas and start a collaboration
session. The client 104 always checks the flag returned from
the Server to determine whether it should change its current
State Or not.

0150. The command executed in Table 4 and the actions
taken may resemble the transient collaboration commands
described above in the following manner:

0151 Step 3 (Client2 executes open workspace) is
the equivalent of the collab joined command (sent by
the server 106).

0152 Step 4 (Client1 heartbeats) is the equivalent of
the collab start command (set by the server 106).

0153 Step 6 (Client 1 heartbeats) is the equivalent
of the collab start confirm command (sent by client
104).

0154 Step 7 (Client2 heartbeats) is the equivalent of
the collab joined confirm command (sent by client
104).

0155 Step 12 (Client1 heartbeats) is the equivalent
of the collab stop command (sent by server 106).

0156 Step 13 (Client1 heartbeats) is the equivalent
of the collab Stop confirm command (sent by client
104).

O157 By using the beat flag in this manner, transient
collaboration commands are not needed between a client
104 and a server 106. Further, the beat flag provides a
mechanism to maintain state information for each client 104
in a collaboration Session without the use of extraneous
communications between the client 104 and server 106.

0158 Save User Data Failed Command
0159. The server 106 generates the save user data failed
command when the processing of a SaveuSerdata command
fails for reasons other than System failure (System failures
are handled Separately and consistently for all commands/

Apr. 25, 2002

messages). For example, Some causes for the Saveuserdata
command failing may include invalid filename Specified or
invalid userlD specified.
0160 Save Workspace Failed Command
0.161 The server 106 generates the save workspace com
mand when the processing of a SaveworkSpace command
fails for reasons other than System failure. Failed commands
due to System failures are handled Separately and consis
tently for all commands/messages. For example, Some of the
causes for the failure of the SaveworkSpace command may
include: invalid userlD Specified, invalid resourcelD Speci
fied, no access, and possibly workSpace not open.

0162 Collaboration Flow
0163 AS described above, numerous commands may be
used as part of the collaboration framework to enable
multiple users to Simultaneously acceSS and modify an
actual document that is stored on a server 106. Further, the
collaboration application 108 and server application 110
enable the use of a full set of three-dimensional tools to
modify a drawing while in a collaboration Session.
0164. The server 106 also maintains a history of all
modifications to the document. Using the history, a client
104 may undo any client's 104 modification to a drawing
document/WorkSpace. Further, in the event of a network or
System failure, the history can be used to rebuild/regenerate
a document including all modifications on any client 104 by
recommunicating commands received from a client 104 to
collaborators 104 in a session. To provide Such functionality,
in addition to the history, the server 106 may maintain a
record of the collaboration Session including the name,
numbers, and statuses of collaborators 104 in the session.

0.165 FIG. 4 is a flow chart illustrating the use of the
collaboration framework in accordance with one or more
embodiments of the invention. At step 402, a document/
workspace is stored on a server 106. At step 404, a collabo
ration Session is established. During a Session, the Server 106
permits two or more collaborators 104 on a network 102 to
work Simultaneously across the network on the drawing
document stored on the server 106 (e.g., all of the collabo
rators 104 have write-access for the drawing document
during the Session). A collaboration palette may be displayed
to collaborators 104 in the session that provides information
relating to the collaborators 104 in the Session (e.g., the
name of each collaborator 104, status of each collaborator
104, an icon for each collaborator 104, etc.).
0166 At step 406, the server 106 receives a command
(e.g., an XML formatted command) to modify the drawing
document from a collaborator 104 in the session. Such a
command may be invoked pursuant to the collaborator's 104
use of a tool Selected from a full Set of drawing modification
tools. The command may identify an object in the drawing
document that the collaborator 104 has modified.

0167 At step 408, the server 106 distributes the com
mand to modify the drawing document to the other collabo
rators 104 in the session. Such a distribution may be
pursuant to regularly transmitted commands (e.g., heartbeat
commands as described above) received from collaborators
104 in the session. Further, as part of the command's
distribution, an identifier may be assigned to the command
and distributed with the command to the collaborators 104.

US 2002/0049786 A1

The client 104 then uses the identifier to determine whether
the command has already been reflected in its display or not.
0168 Conclusion
0169. This concludes the description of the preferred
embodiment of the invention. The following describes some
alternative embodiments for accomplishing the present
invention. For example, any type of computer, Such as a
mainframe, minicomputer, or personal computer, or com
puter configuration, Such as a timesharing mainframe, local
area network, or Standalone personal computer, could be
used with the present invention.
0170 The foregoing description of one or more embodi
ments of the invention has been presented for the purposes
of illustration and description. It is not intended to be
exhaustive or to limit the invention to the precise form
disclosed. Many modifications and variations are possible in
light of the above teaching. It is intended that the Scope of
the invention be limited not by this detailed description, but
rather by the claims appended hereto.

What is claimed is:
1. A method for collaborating access to a drawing docu

ment on a network, comprising:
Storing a drawing document on a Server,
receiving, in the Server, a request to open the drawing

document;

in response to the request, the Server establishing a
collaboration Session, wherein during the collaboration
Session, the Server permits two or more collaborators to
work Simultaneously acroSS the network on the drawing
document Stored on the Server;

receiving, in the Server, a command to modify the drawing
document from a first one of the collaborators in the
collaboration Session; and

the server distributing the command to modify the draw
ing document to other ones of the collaborators in the
collaboration Session.

2. The method of claim 1, further comprising the server
maintaining a history of modifications to the drawing docu
ment.

3. The method of claim 2, wherein the history is used to
Support an undo command.

4. The method of claim 2, wherein the history is used to
recommunicate modifications to the two or mote collabora
torS.

5. The method of claim 1, further comprising the server
maintaining a record of the collaboration Session including
name, numbers, and Statuses of the two or more collabora
torS.

6. The method of claim 1, wherein the command com
prises an extensible markup language (XML) command.

7. The method of claim 1, wherein the two or more
collaborators all have write-access for the drawing docu
ment during the collaboration Session.

8. The method of claim 1, wherein the command is
received in the Server from a first collaborator pursuant to a
regularly transmitted command.

Apr. 25, 2002

9. The method of claim 1, further comprising:
generating an identifier for the command;
distributing the identifier with the command to the other

collaborators in the collaboration Session.
10. The method of claim 1, wherein the command speci

fies an object identifier for an object in the drawing docu
ment that is modified.

11. The method of claim 1, wherein an extensible set of
three dimensional modeling tools for modifying the drawing
document is Supported.

12. A method for accessing a drawing document on a
network, comprising:

joining an existing collaboration Session comprised of a
collaborator on a network, wherein during the collabo
ration Session, collaborators in the collaboration Ses
Sion can work Simultaneously across the network on a
drawing document Stored on a Server; and

transmitting, to the Server, a first command to modify the
drawing document.

13. The method of claim 12, further comprising receiving
a Second command to modify the document from the Server
wherein the command was originally transmitted from
another collaborator.

14. The method of claim 12, wherein the command
comprises an undo command.

15. The method of claim 12, wherein the command
comprises an extensible markup language (XML) command.

16. The method of claim 12, further comprising display
ing a collaboration palette that provides information relating
to the collaborators in the collaboration Session.

17. The method of claim 12, wherein the command is
transmitted pursuant to a regularly transmitted command.

18. The method of claim 12, wherein the command
Specifies an object identifier for an object in the drawing
document that is modified.

19. The method of claim 12, wherein an extensible set of
three dimensional modeling tools for modifying the drawing
document is Supported.

20. An System for collaborating access to a drawing
document on a network comprising:

(a) a server connected to a network and having a memory
and a data Storage device coupled thereto;

(b) a drawing document Stored on the Server; and
(c) a computer program, performed by the Server, the

computer program configured to:

(i) receive a request to open the drawing document;
(ii) in response to the request, establishing a collabo

ration Session, wherein during the collaboration Ses
Sion, the computer program permits two or more
collaborators to work Simultaneously acroSS the net
work on the drawing document;

(iii) receive a command to modify the drawing docu
ment from a first one of the collaborators in the
collaboration Session; and

(iv) distribute the command to modify the drawing
document to other ones of the collaborators in the
collaboration Session.

US 2002/0049786 A1

21. The system of claim 20, wherein the computer pro
gram is further configured to maintain a history of modifi
cations to the drawing document.

22. The system of claim 21, wherein the history is used to
Support an undo command.

23. The system of claim 21, wherein the history is used to
recommunicate modifications to the two or more collabo
ratorS.

24. The system of claim 20, wherein the computer pro
gram is further configured to maintain a record of the
collaboration Session including name, numbers, and Statuses
of the two or more collaborators.

25. The system of claim 20, wherein the command
comprises an extensible markup language (XML) command.

26. The system of claim 20, wherein the two or more
collaborators all have write-access for the drawing docu
ment during the collaboration Session.

27. The system of claim 20, wherein the command is
received in the Server from a first collaborator pursuant to a
regularly transmitted command.

28. The system of claim 20, wherein the computer pro
gram is further configured to:

generate an identifier for the command;
distribute the identifier with the command to the other

collaborators in the collaboration Session.
29. The system of claim 20, wherein the command

Specifies an object identifier for an object in the drawing
document that is modified.

30. The system of claim 20, wherein the computer pro
gram Supports an extensible Set of three dimensional mod
eling tools for modifying the drawing document.

31. A System for accessing a drawing document on a
network, comprising:

(a) a collaborator connected to a network and having a
memory and a data Storage device coupled thereto, and

(b) a computer program, performed by the collaborator,
the computer program configured to:

(i) join an existing collaboration Session comprised of
a collaborator on a network, wherein during the
collaboration Session, collaborators in the collabora
tion Session work Simultaneously across the network
on a drawing document Stored on a Server; and

(ii) transmit, to the server, a first command to modify
the drawing document.

32. The system of claim 31, the computer program further
configured to receive a Second command to modify the
document from the Server wherein the command was origi
nally transmitted from another collaborator.

33. The system of claim 31, wherein the command
comprises an undo command.

34. The system of claim 31, wherein the command
comprises an extensible markup language (XML) command.

35. The system of claim 31, further, wherein the computer
program is further configured to display a collaboration
palette that provides information relating to the collaborators
in the collaboration Session.

36. The system of claim 31, wherein the command is
transmitted pursuant to a regularly transmitted command.

Apr. 25, 2002

37. The system of claim 31, wherein the command
Specifies an object identifier for an object in the drawing
document that is modified.

38. The system of claim 31, wherein the computer pro
gram Supports an extensible Set of three dimensional mod
eling tools for modifying the drawing document.

39. An article of manufacture comprising a program
Storage medium readable by a computer and embodying one
or more instructions executable by the computer to perform
a method for collaborating access to a drawing document on
a network, the method comprising:

Storing a drawing document on a Server;
receiving, in the Server, a request to open the drawing

document;
in response to the request, the Server establishing a

collaboration Session, wherein during the collaboration
Session, the Server permits two or more collaborators to
work Simultaneously acroSS the network on the drawing
document Stored on the Server;

receiving, in the Server, a command to modify the drawing
document from a first one of the collaborators in the
collaboration Session; and

the server distributing the command to modify the draw
ing document to other ones of the collaborators in the
collaboration Session.

40. The article of manufacture of claim 39, wherein the
method further comprises the server maintaining a history of
modifications to the drawing document.

41. The article of manufacture of claim 40, wherein the
history is used to Support an undo command.

42. The article of manufacture of claim 40, wherein the
history is used to recommunicate modifications to the two or
more collaborators.

43. The article of manufacture of claim 39, wherein the
method further comprises the Server maintaining a record of
the collaboration Session including name, numbers, and
Statuses of the two or more collaborators.

44. The article of manufacture of claim 39, wherein the
command comprises an extensible markup language (XML)
command.

45. The article of manufacture of claim 39, wherein the
two or more collaborators all have write-access for the
drawing document during the collaboration Session.

46. The article of manufacture of claim 39, wherein the
command is received in the Server from a first collaborator
pursuant to a regularly transmitted command.

47. The article of manufacture of claim 39, wherein the
method further comprises:

generating an identifier for the command;
distributing the identifier with the command to the other

collaborators in the collaboration Session.
48. The article of manufacture of claim 39, wherein the

command Specifies an object identifier for an object in the
drawing document that is modified.

49. The article of manufacture of claim 39, wherein the
method further comprises providing an extensible Set of
three dimensional modeling tools for modifying the drawing
document.

US 2002/0049786 A1

50. An article of manufacture comprising a program
Storage medium readable by a computer and embodying one
or more instructions executable by the computer to perform
a method for accessing a drawing document on a network,
the method comprising:

joining an existing collaboration Session comprised of a
collaborator on a network, wherein during the collabo
ration Session, collaborators in the collaboration Ses
Sion work Simultaneously acroSS the network on a
drawing document Stored on a Server; and

transmitting, to the Server, a first command to modify the
drawing document.

51. The article of manufacture of claim 50, wherein the
method further comprises receiving a Second command to
modify the document from the server wherein the command
was originally transmitted from another collaborator.

52. The article of manufacture of claim 50, wherein the
command comprises an undo command.

Apr. 25, 2002

53. The article of manufacture of claim 50, wherein the
command comprises an extensible markup language (XML)
command.

54. The article of manufacture of claim 50, wherein the
method further comprises displaying a collaboration palette
that provides information relating to the collaborators in the
collaboration Session.

55. The article of manufacture of claim 50, wherein the
command is transmitted pursuant to a regularly transmitted
command.

56. The article of manufacture of claim 50, wherein the
command Specifies an object identifier for an object in the
drawing document that is modified.

57. The article of manufacture of claim 50, wherein the
method further comprises providing an extensible Set of
three dimensional modeling tools for modifying the drawing
document.

