Abstract: Disclosed is a data transfer method comprising: performing a refuelling process including receiving, by an aircraft (104), aircraft fuel from a first entity (for example, a tanker aircraft (102)), the first entity being remote from the aircraft (104); and, during the refuelling process, sending data between the aircraft (104) and a second entity (for example, the tanker aircraft (102)), the second entity being remote from the aircraft (104). The data is sent as a radio frequency signal having a frequency in the range 50GHz to 70GHz. Preferably, the data is sent as a radio frequency signal having a frequency in the range 57GHz to 66GHz, for example 60GHz.

Published:
— with international search report (Art. 21(3))

Declarations under Rule 4.17:
— as to applicant’s entitlement to apply for and be granted a patent (Rule 4.17(H))
FIELD OF THE INVENTION

The present invention relates to method of transferring data between an aircraft and an entity remote from the aircraft, for example, during refuelling of the aircraft.

BACKGROUND

Air-to-air refuelling, also known as aerial refuelling and in-flight refuelling, is the process of transferring fuel from one aircraft (a tanker) to another aircraft during flight.

Typically, the use of radio frequency (RF) communications during air-to-air refuelling operations is not permitted due to the risk of fuel ignition.

For manned aircraft, communication via lights and hand signals is implemented. However, such methods of communication tend not to be usable for unmanned aircraft.

In a separate field to the field of aircraft refuelling, it is often desirable to transfer data, for example mission data, from an unmanned aircraft to a different entity (e.g. a different aircraft).

SUMMARY OF THE INVENTION

The present inventors have realised that, for the air-to-air refuelling of aircraft, it is desirable to have one or more operational data links between a tanker and the receiver aircraft for the purposes of navigation, maintenance of flight formation, and/or control of the refuelling process.

The present inventors have realised that as communications frequency increases, the risk of fuel ignition tends to decrease. Also, the present inventors have realised that communication frequencies in the range 57GHz to 66GHz, e.g. around 60GHz, provide decreased risk of fuel ignition, for example, due to
increased oxygen absorption of those communication signals. Also, the present inventors have realised that communication frequencies in the range 57GHz to 66GHz tend to be relatively covert, for example, due to increased oxygen absorption of those communication signals. The inventors have further realised that narrow beam width antennas may be used to further enhance the covertness of the communications.

The present inventors have realised that properties of communication frequencies in the range 57GHz to 66GHz that are typically regarded as disadvantageous (for example, the relatively high absorption by oxygen of those signals) provide a number of advantages when implemented during aircraft refuelling operations.

The present inventors have realised that air-to-air refuelling operations provide an opportunity to implement short-range, high bandwidth communication links for data transfer between a tanker and receiver aircraft.

In a first aspect, a present invention provides a data transfer method. The method comprises: performing a refuelling process including receiving, by an aircraft, aircraft fuel from a first entity, the first entity being remote from the aircraft, and, during the refuelling process, sending data between the aircraft and a second entity, the second entity being remote from the aircraft. The data is sent as a radio frequency signal having a frequency in the range 50GHz to 70GHz.

The first entity and the second entity may be the same entity, i.e. during refuelling, data may be sent between the aircraft and the entity providing the aircraft fuel.

The aircraft may be an unmanned aircraft.

The data may be sent as an electromagnetic signal, for example a radio frequency signal or an optical signal.

Preferably, the data is sent as a radio frequency signal having a frequency in the range 57GHz to 66GHz. More preferably, the data is sent as a radio frequency signal having a frequency in the range 60GHz to 61GHz. The
data may be sent as a radio frequency signal having a frequency of 60GHz or
60.5GHz.

Sending or transmitting the data from the aircraft to the second entity may be performed responsive to the aircraft being within a predetermined
5 separation distance of the second entity. The predetermined separation
distance may, for example be 1km, 400m, 300m, 100m, or some function of a
wing span of the aircraft (for example, 2 x the wing span of then aircraft).

The aircraft may be in flight. The first entity may be a tanker aircraft. The
tanker aircraft may be in flight. Thus the refuelling process may be an air-to-air
10 refuelling process. The tanker aircraft may comprise a refuelling system for
refuelling the aircraft. The aircraft may be physically coupled to the refuelling
system of the tanker aircraft.

The second entity may be a transmitter and/or receiver located on a
refuelling drogue of the refuelling system of the tanker aircraft. The aircraft may
15 be coupled to the refuelling drogue.

The method may further comprise, using the data, controlling the aircraft
such that the position of the aircraft relative to the tanker aircraft is maintained.

The method may further comprise, using the data, controlling a flow of
aircraft fuel from the tanker aircraft to the aircraft.

The step of sending data may comprise sending data, from the aircraft to
20 the tanker aircraft. The method may further comprise relaying, from the tanker
aircraft to a third entity, via a satellite communication link, the data. The third
entity may be different to the aircraft and the tanker aircraft.

The aircraft may comprise: a probe that protrudes from a body of the
25 aircraft, the probe being a device via which the aircraft receives the aircraft fuel. The
craft may further comprise a transmitter and/or receiver located on the
probe. The step of sending data may include the transmitter transmitting the
data and/or the receiver receiving the data. The probe may be retractable into
an external skin of the aircraft. The aircraft may be a low observable (LO)
30 aircraft.
The method may further comprise, prior to the refuelling process, coupling together the aircraft and the first entity. The step of coupling may comprise: sending, between the aircraft and the first entity, a one or more signals; and, using one or more signals that have been sent between the aircraft and the first entity, controlling at least one of the aircraft and the first entity such that the aircraft and the first entity are in a predetermined configuration in which the aircraft and the first entity are coupled together. The one or more signals may be radio frequency signals having a frequency in the range 50GHz to 70GHz. The one or more signals may be sent according to an ultra-wideband modulation scheme.

In a further aspect, the present invention provides a data transfer system comprising a refuelling system configured to transfer aircraft fuel to an aircraft from a first entity, the first entity being remote from the aircraft, and one or more transceivers configured to, while aircraft fuel is being transferred to the aircraft from the first entity, transfer data between the aircraft and a second entity, the second entity being remote from the aircraft. The data is sent as a radio frequency signal having a frequency in the range 50GHz to 70GHz.

In a further aspect, the present invention provides an aircraft comprising: an aircraft refuelling device configured to receive aircraft fuel from a first entity, the first entity being remote from the aircraft; and a transmitter and/or a receiver configured to, while the aircraft is receiving fuel from the first entity, send data from the aircraft to a second entity and/or receive data sent from the second entity, the second entity being remote from the aircraft. The data may be sent as a radio frequency signal having a frequency in the range 50GHz to 70GHz.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic illustration (not to scale) showing a scenario in which an embodiment of an aircraft positioning and data transfer system is implemented;

Figure 2 is a process flow chart showing certain steps of an autonomous refuelling process; and
Figure 3 is a process flow chart showing certain steps of a process of determining a position and the orientation of one aircraft relative to a different aircraft, as performed during the process of Figure 2.

DETAILED DESCRIPTION

Figure 1 is a schematic illustration (not to scale) showing a scenario 101 in which an embodiment of an aircraft positioning and data transfer system is implemented.

The scenario 101 comprises a fuel tanker aircraft 102, hereinafter referred to as "the tanker", and an unmanned air vehicle (UAV) 104. In this embodiment, the aircraft positioning and data transfer system is implemented to enable autonomous air-to-air refuelling of the UAV 104 from the tanker 102.

In this embodiment, the tanker 102 is a manned fuel-transporting aircraft. The tanker 102 comprises an under-wing refuelling pod 106, a refuelling hose 108, a drogue 110, a first transceiver 112, a second transceiver 114, and a third transceiver 116.

The refuelling pod 106 is an external pod attached to a hardpoint of the tanker 102. The refuelling pod 106 contains aircraft fuel which, as described in more detail later below with reference to Figure 2, is to be transferred to the UAV 104 during a refuelling operation. The refuelling pod 106 may include a pump for pumping aircraft fuel stored on the refuelling pod 106 to the UAV 104.

The refuelling hose 108 is a flexible hose that is connected to the refuelling pod 106 such that, in operation, aircraft fuel may be transferred from the refuelling pod 106 through the hose 108. In operation, as shown in Figure 1, the hose 108 trails behind the tanker 102.

The drogue 110 is attached to the free end of the hose 108, i.e. the opposite end of the hose 108 to the end of the hose 108 that is attached to the refuelling pod 106. In this embodiment, the drogue 110 is a funnel-like, or cone-shaped, device that in operation, as described in more detail later below, attaches to the UAV 104 such that refuelling of the UAV 104 can take place. The drogue 110 tends to stabilise the hose 108 in flight. In this embodiment, the
drogue 110 includes a valve to prevent aircraft fuel flowing out of the hose 108 until the UAV 104 is correctly docked with the hose 108 and drogue 110. In this embodiment, the diameter of the drogue 110 at its free end is approximately 1m.

The tanker 102 further comprises a Hose Drum Unit (not shown in the Figures) that is coupled to the hose 108 and drogue 110 and is operable to reel in the hose 108 completely into the tanker 102 when the hose 108 and drogue 110 are not in use.

Each of the first, second, and third transceivers 112, 114, 116 is independently switchable between two modes of operation, namely a "ranging mode" and a "data link mode".

When operating in ranging mode, the first, second, and third transceivers 112, 114, 116 use an ultra-wideband (UWB) modulation. The ultra-wideband modulation may have the following characteristics: a pulse bandwidth of 2.7GHz; a centre frequency within the range 57GHz to 66 GHz; and a maximum range of 100m.

Advantageously, the 57GHz to 66GHz spectrum tends to support three 2.7GHz channels with guard bands.

When operating in data link mode, the first, second, and third transceivers 112, 114, 116 use a variable bandwidth and data rate Quadrature Phase Shift Keying (QPSK) digital modulation. In this embodiment, the data link mode has a variable data rate that is inversely related to the distance between the tanker 102 and the UAV 104 and operates over a range up to 1km. In other words, the variable rate QPSK modem increases the data rate as the range between the UAV 104 and the tanker 102 reduces. At a 1km range between the UAV 104 and the tanker 104, the data link may be used for exchanging, e.g., GPS position data between the UAV 104 and the tanker 102. Once the UAV 104 is docked with the tanker 102, the data link could be used to exchange, for example, mission data at higher data rate.

As described in more detail later below, the first, second, and third transceivers 112, 114, 116 are each configured to receive a signal broadcast
from the UAV 104. Also, the first, second, and third transceivers 112, 114, 116 are configured to send respective signals to the UAV 104 responsive to receiving a signal broadcast from the UAV 104. In this embodiment, the signals transmitted by the first, second, and third transceivers 112, 114, 116 include respective identifiers identifying the transceiver from which that transmitted signal originated, i.e., a signal transmitted by the first transceiver 112 includes an identifier for the first transceiver 112, and so on.

In this embodiment, the first and second transceivers 112, 114 are mounted to respective wings of the tanker 102. In particular, the first transceiver 112 is located at or proximate to a free end of the left-hand wing of the tanker 102 (when viewed from above as shown in Figure 1). Also, the second transceiver 114 is located at or proximate to a free end of the right-hand wing of the tanker 102 (when viewed from above as shown in Figure 1). Locating the first and second transceivers 112, 114 at respective tanker wing tips tends to provide substantially maximum spacing between the first and second transceivers 112, 114 on-board the tanker 102. The third transceiver 116 is located on the tail of the aircraft.

The first, second and third transceivers 112, 114, 116 are radio frequency (RF) transceivers configured to send and receive signals over a 60GHz RF link. As described in more detail later below, the first, second, and third transceivers 112, 114, 116 are configured to transmit 60GHz RF signals to the UAV 104. Also, the first, second, and third transceivers 112, 114, 116 are configured to receive 60GHz RF signals broadcast from the UAV 104.

In this embodiment, the first, second, and third transceivers 112, 114, 116 are configured to, when operating in the ranging mode, have beam widths of approximately 90°. More preferably, the first, second, and third transceivers 112, 114, 116 have beam widths larger than 90° e.g. 180°. Also, these beams of the first, second, and third transceivers 112, 114, 116 are directed behind the tanker 102 along the longitudinal axis of the tanker 102.

In this embodiment, the first, second, and third transceivers 112, 114, 116 comprise respective phased array antennas configured to, when operating in the data link mode, provide a beam width of approximately 15° that can be
scanned +/- 60° in both azimuth and elevation. When operated in the data link mode, the antennas tend to provide a higher gain that will support a longer range data link operation. Also, the electronically steered beams of the first, second, and third transceivers 112, 114, 116 are steered behind the tanker 102 in the direction of the UAV 104.

In some embodiments, the beam widths of the first, second, and/or third transceivers 112, 114, 116 are the same in both ranging and data link modes.

In this embodiment, the UAV 104 comprises a fourth transceiver 118, a processor 120, a UAV controller 122, a global positioning system (GPS) transceiver 126, and a probe 128.

The fourth transceiver 118 has substantially the same characteristics as the first, second, and third transceivers 112, 114, 116 described in more detail earlier above. The fourth transceiver 118 may be switched between operating in the ranging mode and the data link mode.

The fourth transceiver 118 is a radio frequency (RF) transceiver configured to send and receive signals over a 60GHz RF link. As described in more detail later below, the fourth transceiver 118 is configured to transmit 60GHz RF signals to one or more of the transceivers 112, 114, 116 on-board the tanker 102. Also, the fourth transceiver 118 is configured to receive 60GHz RF signals broadcast from the first, second, and/or third transceiver 112, 114, 116.

In this embodiment, when operating in ranging mode, the fourth transceiver 118 has a beam width of approximately 90°. More preferably, the fourth transceiver 118 has a beam width larger than 90° e.g. 180°. Also, this beam of the fourth transceiver 118 is directed forward from the UAV 104 along the longitudinal axis of the UAV 104 towards the tanker 102.

As described in more detail later below, the fourth transceiver 118 is configured to, when operating in ranging mode, transmit a signal (hereinafter referred to as a "positioning signal") from the UAV 104 that is received by each of the first, second, and third transceivers 112, 114, 116. Also, the fourth transceiver 118 is configured to, when operating in ranging mode, receive
"response signals" sent from the first, second, and third transceivers 112, 114, 116 (i.e. signals sent from the first, second, and third transceivers 112, 114, 116 responsive to those transceivers 112, 114, 116 receiving the signal transmitted by the fourth transceiver 118). The signals sent between the fourth transceiver 118 and the first transceiver 112 are indicated in Figure 1 by a dotted double-headed arrow and the reference numeral 130. The signals sent between the fourth transceiver 118 and the second transceiver 114 are indicated in Figure 1 by a dotted double-headed arrow and the reference numeral 132. The signals sent between the fourth transceiver 118 and the third transceiver 116 are indicated in Figure 1 by a dotted double-headed arrow and the reference numeral 133.

In this embodiment, the fourth transceiver 118 comprises a phased array antenna configured to, when operating in the data link mode, provide a beam width of approximately 15° that can be scanned +/- 60° in both azimuth and elevation. When operated in the data link mode, the antenna of the fourth transceiver 118 tends to provide a higher gain that will support a longer range data link operation. Also, the electronically steered beam of the fourth transceiver 118 is steered in front of the UAV 104 in the direction of the tanker 102.

The fourth transceiver 118 is connected to the processor 120 such that the processor 120 may receive information from the fourth transceiver 118. Operation of the fourth transceiver 118 may be controlled by the processor 120.

The GPS receiver 126 is configured to receive GPS signals from a plurality of GPS satellites. The GPS receiver 126 is connected to the processor 120 such that the processor 120 may receive information from the GPS receiver 126. Operation of the GPS receiver 126 may be controlled by the processor 120.

As described in more detail later below with reference to Figure 2, the processor 120 is configured to process information received by it from the fourth transceiver 118, and the GPS receiver 126.

In addition to being connected to the fourth transceiver 118 and the GPS receiver 126, the processor 120 is also connected to the UAV controller 122.
such that information, such as a control signal, may be sent from the processor 120 to the UAV controller 122.

The UAV controller 122 is configured to receive information from the processor 120 and control the UAV 104 in accordance with that received information.

In this embodiment, the probe 128 on-board the UAV 104 is a rigid, protruding arm located at or proximate to the nose of the UAV 104. Preferably, the probe 128 is retractable, and is retracted when not in use. The probe 128 is a hollow pipe which includes a valve. The valve of the probe 128 remains closed until the probe mates with (i.e. connects or attaches to) a forward internal receptacle of the drogue 110. Upon attachment of the probe 128 to the drogue 110, the valve of the probe 128 (and the valve of the drogue 110) open to allow aircraft fuel to pass from the tanker 102 to the UAV 104.

Preferably, the valves in the probe 128 and the drogue 110 conform to an appropriate standard.

Figure 2 is a process flow chart showing certain steps of a refuelling process performed by the entities shown in Figure 1 and described in more detail above.

At step s2, the tanker 102 flies a straight and level course. In some embodiments, the tanker 102 may adopt a racetrack holding pattern.

At step s4, the processor 120 processes GPS signals received by the GPS receiver 126 from a plurality of GPS satellites. Using the processed GPS signals, the processor 120 controls, via the UAV controller 122, the UAV 104 to approach the tanker 102 from behind the tanker 102.

The processor 120 may also use a GPS location of the tanker 102 to position the UAV 104. Such a GPS position of the tanker 102 may be sent to the processor 120 from the tanker 102, for example, using any appropriate communication link between the tanker 102 and the UAV 104, e.g. a conventional RF communication link such as a Link-16 communication link, a Satcomms link, a UHF link, or an RF communication link operating within a 1.5 to 5 GHz frequency band. In some embodiments, the GPS position of the tanker
102 may be sent to the processor 120 via the 60GHz data link between a
transceiver 112, 114, 116 on-board the tanker 102 and the fourth transceiver
118.

In this embodiment, the UAV 104 is controlled to approach the rear of the
tanker 102 at a constant speed and altitude.

In this embodiment, the UAV 104 is controlled by the processor 120
using the GPS signals until the UAV 104 is a predetermined distance from the
tanker 102. This predetermined distance may be, for example, 100m or a
different appropriate distance.

In some embodiments, once the UAV 104 is within the predetermined
distance of the tanker 102 (or a different appropriate criterion or criteria is/are
met), the RF communication links by which the tanker 102 and the UAV 104
may communicate in normal operations over relatively large distances, e.g. a
Link-16 communication link or an RF communication link operating within a 1.5
to 5 GHz frequency band, may be switched off. This switching-off or non-use of
the "normal" RF communication links tends to reduce or eliminate a likelihood of
fuel ignition caused by RF communication between the tanker 102 and the UAV
104.

At step s6, once the UAV 104 is within the predetermined distance (e.g.
100m from the tanker 102, the fourth transceiver 118, operating in ranging
mode, transmits a positioning signal from the UAV 104. In this embodiment, the
positioning signal transmitted by the fourth transceiver 118 has a frequency of
60GHz. In other embodiments, the positioning signal transmitted by the fourth
transceiver 118 has a different frequency. Preferably, the positioning signal has
a frequency within a frequency band of 57GHz to 66GHz.

Thus, in this embodiment, GPS signals exchanged between the UAV 104
and the tanker 102 allow the UAV 104 to navigation to within, for example,
100m separation of the tanker 102. When the UAV 104 is within 100m of the
tanker 102, the transceivers 112-118 operate in ranging mode, i.e. UWB
positioning takes over from GPS positioning. In ranging mode, the transmitted
signals between the transceivers 112-118 may be both wide bandwidth and
wide beam width, thus signal range tends to be limited. For example, increasing
the navigation beam width to 90° or 180° may reduce the range of the 60GHz signals to, for example, approximately 100m.

At step s8, the first, second, and third transceivers 112, 114, 116 each receive the positioning signal transmitted by the fourth transceiver 118.

At step s10, in response to receiving the positioning signal, the first, second, and third transceivers 112, 114, 116 each transmit a respective response signal to the fourth transceiver 118. In this embodiment, the response signals transmitted by the transceivers 112, 114, 116 include respective identifiers that identify from which transceiver 112, 114, 116 that signal was transmitted.

In some embodiments, the ranging process is performed sequentially, with the fourth (UAV) transceiver 118 interrogating and determining a range to each of the first, second, and third (tanker) transceivers 112, 114, 116 in turn. Nevertheless, in some embodiments, the fourth transceiver 118 broadcasts a single common signal which is responded to by all recipient transceivers 112, 114, 116.

In some embodiments, spread spectrum modulation where a different respective code is allocated to each of the three tanker transceivers 112, 114, 116 may be implemented. Three matched filters on the UAV 104 may be used to facilitate the simultaneous processing of the three signals received by the fourth transceiver 118.

At step s12, the fourth transceiver 118 receives the response signals transmitted by the first, second, and third transceivers 112, 114, 116. The received response signals are relayed from the fourth transceiver 118 to the processor 120.

At step s14, the processor 120 processes the response signals received by the fourth transceiver 118 to determine a position and orientation of the UAV 104 with respect to the tanker 102.

Figure 3 is a process flow chart showing certain steps of a process of determining the position and the orientation of the UAV 104 with respect to the tanker 102, as performed at step s14. Steps s16 to s24 of the process of Figure
2 will be described in more detail later below after the description of the process of Figure 3.

At step s26, the processor 120 determines the length of time between transmitting the positioning signal from the fourth transceiver 118 (performed at step s6) and receiving a response signal at the fourth transceiver 118 from the first transceiver 112. In other words, the processor 120 determines a time taken (or "time-of-flight") for a signal travelling from the fourth transceiver 118 to the first transceiver 112 and back (along communication link 130). This determined length of time is hereafter referred to as the "first duration".

At step s28, the processor 120 determines the length of time between transmitting the positioning signal from the fourth transceiver 118 (performed at step s6) and receiving a response signal at the fourth transceiver 118 from the second transceiver 114. In other words, the processor 120 determines a time taken (or "time-of-flight") for a signal travelling from the fourth transceiver 118 to the second transceiver 114 and back (along communication link 132). This determined length of time is hereafter referred to as the "second duration".

At step s30, the processor 120 determines the length of time between transmitting the positioning signal from the fourth transceiver 118 (performed at step s6) and receiving a response signal at the fourth transceiver 118 from the third transceiver 116. In other words, the processor 120 determines a time taken (or "time-of-flight") for a signal travelling from the fourth transceiver 118 to the third transceiver 116 and back (along communication link 133). This determined length of time is hereafter referred to as the "third duration".

At step s32, using the determined first, second, and third durations, the speed of light, and the known positions of the transceivers 112, 114, 116 in a coordinate frame fixed on the tanker 102, the processor 120 determines the ranges from the first, second, and third transceivers 112, 114, 116 to the fourth transceiver 118, and subsequently the position of the fourth transceiver 118 in the coordinate frame fixed on the tanker 102.

In this embodiment, the processor 120 then determines the position of the UAV 104 relative to the tanker 102, for example using additional data (i.e. in addition to the determined durations, and the known positions of the
transceivers 112, 114, 116 in the coordinate frame fixed on the tanker 102). For example, the processor 120 may use data acquired from an inertial navigation system (INS) of the UAV 104 (e.g. roll, pitch, and yaw measurements of the UAV 104). Also for example, the processor 120 may use data acquired from the tanker 102, e.g. from an INS on the tanker 102 and/or GPS measurements of the tanker 102. Such data may be sent from the tanker 102 to the processor 120 on-board the UAV 104 via the 60GHz communication link established between the transceivers 112, 114, 116, 118. Also for example, the processor 120 may use GPS measurements of the UAV 104. Also for example, the processor 120 may use measurements of an angle in which the signal was transmitted by the fourth transceiver 118 to the tanker at step $s6$. Also for example, the processor 120 may use measurements of the angles in which one or more of the response signals were transmitted by the first, second, and/or third transceivers 112, 114, 116 to the UAV 104 at step $s10$.

In some embodiments, the processor 120 uses a trilateration process to determine the relative positions of the transceivers 112-118. In some embodiments, the processor 120 uses a triangulation process to determine the relative positions of the transceivers 112-118.

In some embodiments, orientation of the UAV 104 is determined, for example, by tracking the motion of the UAV in the coordinate frame fixed on the tanker 102 to determine the time averaged heading of the UAV 104, and hence its orientation.

In some embodiments, the relative positions of the transceivers mounted on the wings of the tanker 102 (i.e. the first and second transceivers 112, 114) are dynamically determined. This advantageously tends to account for wing flexion. In some embodiments, a larger number of transceivers are mounted to the tanker 102 to facilitate such a process. In some embodiments, strain gauges are embedded in the tanker wings and may be used to determine a degree of wing flexion. Using such strain gauge measurements, the position of the wing mounted transceivers in the tanker-centric coordinate frame may be determined.
Returning now to the description of Figure 2, at step s16, using the determined position and orientation of the UAV 104 relative to the tanker 102 determined by the processor 120, the UAV controller 122 controls the UAV 104 to fly in such a way that the probe 128 attaches to the forward internal receptacle of the drogue 110.

In this embodiment, the processor 120 sends control signals to the UAV controller 122 specifying how the UAV 104 should be moved, and the UAV controller 122 controls the UAV 104 in accordance with those received control signals.

In this embodiment, the processor 120 uses the known size/shape of the tanker 102, including the location of the drogue 110 relative to the first, second and third transceivers 112, 114, 116 to control the UAV 104 so as to connect the probe 128 to the drogue 110.

In this embodiment, during the controlling of the UAV 104 to dock with the drogue 110, measurements of the position and orientation of the UAV 104 relative to the tanker 102 are updated, i.e. further positioning and response signals are sent between the transceivers 112-118 in the same way as that described above to provide updated position/orientation measurements. In this embodiment, the update rate in which the measurements of the position and orientation of the UAV 104 relative to the tanker 102 are updated is 4Hz, which tends to be greater than the update rate achievable using GPS which may be around 1Hz. The updated measurements of the position and orientation of the UAV 104 relative to the tanker 102 are used to navigate the UAV 104 to dock with the drogue 110.

A 4Hz update rate tends to be useful at relatively large ranges (~1 km) between the tanker 102 and the UAV 104. A 4Hz update rate tends to be useful when the UAV's speed of approach to the tanker 102 is relatively slow. Larger update rates (>100Hz) may be implemented at smaller ranges between the tanker 102 and the UAV 104, for example, during a refuelling process. This advantageously tends to enable rapid response of the autonomous control system to any changes in relative positions of the tanker 102 and UAV 104.
At step s18, once the probe 128 is attached to the drogue 110, the valves of the probe 128 and the drogue 110 open, and fuel is caused to flow from the refuelling pod 106, along the hose 108 and the probe 128, and into a fuel tank of the UAV 104. Thus, the UAV 104 is refuelled.

At step s20, during the refuelling of the UAV 104, the UAV controller 122 maintains the position and orientation of the UAV 104 relative to the tanker 102 such that the probe 128 remains connected to the drogue 110.

In this embodiment, the maintaining of the position and orientation of the UAV 104 relative to the tanker 102 includes continuously updating measurements of the position and orientation of the UAV 104 relative to the tanker 102, and using those updated measurements to control the UAV 104. The measurements of the position and orientation of the UAV 104 relative to the tanker 102 are updated as described above, i.e. by transferring positioning/response signals between the transceivers located on the UAV 104 and the tanker 102, and processing those signals to determine updated position/orientation measurements.

At step s22, during the refuelling of the UAV 104 while the UAV 104 and the tanker 102 are maintained in relatively close proximity, mission data is uploaded from the UAV 104 to the tanker 102. In this embodiment, mission data is sent from the fourth transceiver 118 on the UAV 104 to one or more of the transceivers 112, 114, 116 on the tanker 102 via one or more of the 60GHz communication links 130, 132, 133 established between the fourth transceiver 118 and each of the first, second, and third transceivers 112, 114, 116. Thus, in this embodiment, mission data is transferred from the UAV 104 to the tanker 102 as a 60GHz RF signal.

In some embodiments, mission data is downloaded from the tanker 102 to the UAV 104 via one or more of the 60GHz data communication links established between the UAV 104 and the tanker 102 instead of or in addition to mission data being uploaded to the tanker 102.

In this embodiment, the 60GHz data communication links are restricted to a maximum RF bandwidth of 900MHz per channel. This tends to yield a raw data rate of 1.5Gbits/s. In some embodiments, full bandwidth is only used when
the UAV 104 and the tanker 102 are sufficiently close. At longer distances between the UAV 104 and the tanker 102, a relatively narrower filter may be used to achieve improved signal-to-noise characteristics.

At step s24, after the UAV 104 has been refuelled, the UAV controller 122 controls the UAV 104 to disengage from the drogue 110 and move away from the tanker 102.

Thus a refuelling process is provided.

The above described system and method advantageously tend to provide for autonomous air-to-air refuelling of a UAV.

The above described RF positioning system advantageously tends to allow for the accurate positioning of the UAV relative to the tanker. For example, an error range less than ±0.44m (e.g. ±0.17m) on the position of the UAV relative to the tanker tends to be possible when the UAV is within 20m of the refuelling drogue. This tends to compare favourably to conventional GPS-based navigation systems which may give typical accuracies of ±3m on the position of an aircraft, and thus, an accuracy range of ±6m on the position of the UAV relative to the tanker.

Furthermore, the update rate of the above described RF positioning system is advantageously high compared to that of conventional systems, for example, the update rate of the above described RF positioning system may be around 4Hz (or larger, e.g. >100Hz) compared to a 1Hz updated rate of a GPS-based positioning system.

The above described system and method advantageously tend to facilitate the docking of an aircraft that is to be refuelled with the refuelling system of a different aircraft.

Advantageously, the spacing between the first and second transceivers on the tanker is substantially maximal. This tends to increase the accuracy of the determined position and orientation of the UAV relative to the tanker.

Advantageously, the above described 60GHz communication links established between UAV and the tanker tend to allow for opportunistic mission data transfer to be performed while the UAV and tanker are relatively close
together, e.g. during the refuelling process. Furthermore, mission system data may be uploaded from the UAV to the tanker, and the tanker may then relay that information to a third party, for example, via a satellite communication link. Thus, a satellite communication system may advantageously be omitted from the UAV, thereby reducing the weight of the UAV.

Use of a relatively high frequency (i.e. 60GHz) for the positioning system and the mission data transfer system advantageously tends to reduce the risk of fuel ignition compared to if lower frequencies were used. Furthermore, the absorption by oxygen of RF frequencies at 60GHz tends to be relatively high compared to the absorption by oxygen of RF signals having higher or lower frequencies. Thus, the above described 60GHz communication links between the UAV and the tanker tends to be relatively covert.

Advantageously, during the final approach of the UAV to the tanker, while the UAV is attached to the refuelling drogue, and during initial departure of the UAV from the vicinity of the tanker, the range of the 60GHz communication link tends to be sufficiently short to support a high data rate. In particular, at short range (e.g. less than 300m), full duplex data transfer rates of 1134Mbit/s tend to be supported. Thus, the above described 60GHz communication link advantageously tends to provide for short-range, rapid, non-contact data transfer. Furthermore, at relatively longer ranges between the UAV and the tanker (e.g. between 300m and 1km), data rates of at least 10Mbit/s tend to be achievable.

Advantageously, the 60GHz communication link established between the tanker and UAV may be used to control fuel transfer.

Advantageously, the 60GHz communication link established between the tanker and UAV may use a variable rate QPSK modem. This tends to increase the data rate as the range between UAV and tanker reduced. Hence at relatively large distances, for example 1km, the communication/data link may be used for exchanging data, such as GPS position data, between the UAV and tanker at a low data rate. A relatively small distances, for example when the UAV is docked with the tanker, the communication/data link may be used to exchange data, for example mission data etc., at a higher data rate.
Apparatus, including the processor, for implementing the above arrangement, and performing the method steps to be described later below, may be provided by configuring or adapting any suitable apparatus, for example one or more computers or other processing apparatus or processors, and/or providing additional modules. The apparatus may comprise a computer, a network of computers, or one or more processors, for implementing instructions and using data, including instructions and data in the form of a computer program or plurality of computer programs stored in or on a machine readable storage medium such as computer memory, a computer disk, ROM, PROM etc., or any combination of these or other storage media.

It should be noted that certain of the process steps depicted in the flowcharts of Figures 2 and 3 and described above may be omitted or such process steps may be performed in differing order to that presented above and shown in Figures 2 and 3. Furthermore, although all the process steps have, for convenience and ease of understanding, been depicted as discrete temporally-sequential steps, nevertheless some of the process steps may in fact be performed simultaneously or at least overlapping to some extent temporally.

In the above embodiments, a single UAV is refuelled by a single tanker aircraft. However, in other embodiments there is a different number of aircraft to be refuelled (receiver aircraft) e.g. multiple UAVs. In some embodiments, multiple receiver aircraft are refuelled by a single tanker aircraft, for example, a tanker aircraft comprising multiple refuelling pods and hose/drogue assemblies. In some embodiments, there are multiple tanker aircraft. In some embodiments in which there are multiple receiver aircraft, each receiver aircraft may comprise a respective mission data transfer system transceiver and a communication link (e.g. a 60GHz link) may be established between the tanker and each of the receiver aircraft. These multiple communication links may be used to control the receiver aircraft such that they maintain a desired formation while queuing for refuelling. Such a formation may reduce drag experienced by a number of the receiver aircraft while queuing to be refuelled. The communication links between the tanker and the receiver aircraft may be established using a time division multiple access (TDMA) process. Communication links (e.g. 60GHz
links) may also be established between the receiver aircraft, which communication links may facilitate colocation of those aircraft.

In the above embodiments, a UAV is refuelled by a manned tanker aircraft. However, in other embodiments the aircraft being refuelled may be a manned aircraft. In such embodiments, the RF positioning system may be used as a guide by a pilot of an aircraft to facilitate docking of that aircraft with the refuelling drogue of the tanker. In some embodiments, the tanker aircraft is an unmanned aircraft.

In the above embodiments, common transceivers are used by the positioning system (i.e. the system for positioning the UAV to attach to the drogue) and the mission system (i.e. the system for transferring mission data between the UAV and the tanker). However, in other embodiments, the transceivers of the positioning system may be separate to, and may operate independently from, those of the mission system.

In the above embodiments, aircraft fuel is transferred from the tanker to the UAV. However, in other embodiments, a different resource is transferred from the tanker to the UAV, for example, water or coolant. In some embodiments, aircraft fuel or another different resource is transferred from the UAV to the tanker.

In the above embodiments, the refuelling system of the tanker includes an under-wing refuelling pod, a hose, and a drogue. However, in other embodiments, the tanker includes a different type of refuelling system. For example, the tanker may include a Fuselage Refuelling Unit (FRU), or an Aerial Refuelling Boom System (ARBS). Similarly, in some embodiments, the UAV includes a different type of refuelling system to that described above with reference to Figures 1 to 3. In some embodiments, the tanker may comprise multiple refuelling systems such that multiple receiver aircraft may be refuelled from the tanker simultaneously.

In the above embodiments, the RF positioning system is used to perform a re-fuelling process. However, in other embodiments the RF positioning system is used to perform a different type of operation for physically coupling together two or more different aircraft. In some embodiments, the positioning
system is used to attach together two or more aircraft, whereas in other embodiments, the aircraft are physically coupled in a different way (e.g. touching, but not attached). For example, a docking operation in which a smaller aircraft (e.g. a relatively small UAV) lands in or on a larger transport aircraft may be implemented using the positioning system.

In the above embodiments, the aircraft are positioned relative to one another by sending RF signals between those aircraft. In other words, the positioning system implemented in the above embodiments is an RF positioning system. However, in other embodiments a different type of positioning system may be used. For example, in some embodiments an optical positioning system in which optical signals are sent between the aircraft is used.

In the above embodiments, the position and orientation of an aircraft relative to a different aircraft is determined using the time delay between transmitting a signal and receiving a corresponding response signal. However, in other embodiments, one or more other parameters instead of or in addition to the aforementioned time delay may be used.

In the above embodiments, a signal sent from the fourth transceiver is received by the first, second, and third transceivers, and response signals are transmitted in return. However, in other embodiments, response signals are generated in a different way, for example, the signal transmitted from the UAV may be reflected by reflectors on-board the tanker. In some embodiments, a signal transmitted from one aircraft to another may include a time-stamp specifying a time at which that signal was transmitted and/or a time at which a signal was received by a particular transceiver. Such time-stamps may be used to compute the relative positions and/or orientations of the aircraft.

In some embodiments, no response signal is sent in response to receiving an RF signal. For example, in some embodiments a signal may be sent from the fourth transceiver on the UAV to the transceivers on the tanker. The respective "time of flights" of the signal received at the tanker transceivers (which may be determined from a time-stamp included in the transmitted signal) may then be used to calculate the position of the UAV relative to the tanker.
In the above embodiments, the determination of the position and orientation of the UAV relative to the tanker is determined by a processor on-board the UAV. However, in other embodiments, the determination of the position and/or orientation of the UAV relative to the tanker is determined in a different location instead of or in addition to on the UAV. For example, in some embodiments, the position and orientation of the UAV relative to the tanker is determined by one or more processors on-board the tanker. In some embodiments, positions and/or orientation determined on the tanker, and/or corresponding control signals for navigating the UAV relative to the tanker, may be sent from the tanker to the UAV via a communication link established between a tanker transceiver and the fourth transceiver.

In the above embodiments, a positioning signal is sent from the UAV to the tanker and, in response, response signals are sent from the tanker to the UAV. However, in other embodiments, a positioning signal is sent from the tanker to the UAV and, in response, response signals are sent from the UAV to the tanker.

In the above embodiments, the tanker comprises three positioning system transceivers (namely, the first, second, and third transceivers). Also, the UAV comprises a single positioning system transceiver (namely, the fourth transceiver). However, in other embodiments, the tanker comprises a different number of positioning system transceivers, for example, more than three.

Preferably, multiple positioning system transceivers are attached to each wing of the tanker. This tends to allow for the mitigation of wing flexion.

Preferably, a positioning system transceiver is fitted to the refuelling drogue. This tends to allow for the mitigation of any movement of the drogue relative to the fuselage of the tanker during flight, e.g. as a result of turbulence etc. In some embodiments, a patterned ring of LEDs is disposed on the drogue (e.g. around the edge of the drogue), and a CCD detector in implemented in the UAV to determine orientation.

Preferably, one or more positioning system transceivers are attached to a tail portion of the tanker. For example, a respective positioning system transceiver may be placed at or proximate to the tip of each horizontal stabiliser
of the tanker empennage. In some embodiments, a positioning system transceiver is fixed to the tip of the vertical stabiliser of the tanker empennage. The use of such a vertical stabiliser positioning system transceiver tends to provide improved z-axis positioning of the system.

Also, in other embodiments, the UAV comprises a different number of positioning system transceivers, for example, more than one. Preferably, the UAV comprises multiple positioning system transceiver located at respective extremities of the UAV such that the spacing between the positioning system transceivers on the UAV is substantially maximised.

Preferably, at least one aircraft comprises at least three positioning system transceivers.

Use of an increased number of positioning system transceivers advantageously tends to increase accuracy, and make the system robust to transceiver failure and loss of line-of-sight between two different position system transceivers.

In the above embodiments, the transceivers have properties and attributes described in more detail earlier above with reference to Figure 1. However, in other embodiments, one or more of the transceivers is a different type of transceiver that may have different operational properties and characteristics to those described above. In some embodiments, one or more of the transceivers has a different pulse bandwidth. In some embodiments, one or more of the transceivers has a different centre frequency. Preferably, the transceivers operate within the frequency band of 50GHz to 70GHz. More preferably, the transceivers operate within the frequency band of 57GHz to 66GHz, and more preferably within the frequency band of 60GHz to 61GHz. Oxygen absorption of the RF signals tend to peak within this range of frequencies, for example at 60.5GHz. Thus fuel ignition tends to be reduced and the communication tends to be advantageously short-range and covert. In some embodiments, one or more of the transceivers may include a 60GHz antenna comprising 52 elements in a 15mm by 15mm array.

In the above embodiments, the positions of the transceivers on-board the aircraft are as described in more detail above with reference to Figure 1.
However, in other embodiments, one or more of the transceivers has a different location on an aircraft to that described above.

In some embodiments, a tanker transceiver is located in or on the refuelling system of the tanker, e.g. on the hose or the drogue. Preferably, a transceiver is located at or proximate to the drogue. This location for a tanker transceiver tends to provide that the distance between that transceiver and the UAV is reduced or minimised so as to facilitate data transfer, e.g. during refuelling. Also this location for a tanker transceiver tends to provide that optimum antenna orientation during operation is achieved. Also this location for a tanker transceiver tends to provide, when that tanker transceiver is not in use, e.g. when the hose and drogue are reeled in to the HDU, the radar cross section (RCS) of that tanker transceiver is reduced or minimised.

In some embodiments the fourth transceiver is located in or on the refuelling system of the UAV, e.g. on the probe. Preferably, the fourth transceiver is located at or proximate to the probe. This location for the fourth transceiver tends to provide that the distance between the fourth transceiver and the tanker is reduced or minimised so as to facilitate data transfer, e.g. during refuelling. This tends to allow for transmit power to be reduced. Also this location for the fourth transceiver tends to provide that optimum antenna orientation during operation is achieved. Also this location for the fourth transceiver tends to provide, when the fourth transceiver is not in use, e.g. when the probe is retracted or enclosed in the body of the UAV, the radar cross section (RCS) of the fourth transceiver is reduced or minimised. Thus, the above described system and method is particularly useful when the UAV is a low-observable UAV.

In the above embodiments, the positioning system transceivers have fixed beam width of approximately 90° and the mission system transceivers have a beam width of approximately 15° that can be scanned +/- 60° in both azimuth and elevation. Also, the beams of the first, second, and third transceivers are directed behind the tanker along the longitudinal axis of the tanker. Also, the beam of the fourth transceiver is directed in front of the UAV along the longitudinal axis of the UAV. However, in other embodiments, one or
more of the transceivers may have a different beam width, for example a beam width of 90° or 180°, or a beam width of less than or equal to 60°. In some embodiments, one or more of the transceivers is an unsteered beam transceiver. In some embodiments, one or more of the transceivers is a steered beam transceiver. Advantageously, steered beam transceivers tend to provide reduced transmission power as they can be directed as required. In some embodiments, one or more of the transceivers is an omnidirectional transceiver, for example a steered beam transceiver that may operate in an omnidirectional mode. Thus, for example, a transceiver may switch between operating in an omnidirectional mode in which it may act as a positional system transceiver, and a steered-beam mode in which it may act as a mission system transceiver.

In the above embodiments, the vehicles with which the system and method are implemented are aircraft. However, in other embodiments, one or more of the vehicles is a different type of entity, for example, a different type of vehicle, e.g., a land-based vehicle or a water-based vehicle.

In the above embodiments, the system includes a plurality of positioning system communication links which are in addition to and independent from the mission system data link. However, in other embodiments, the positioning system data links are omitted. For example, in some embodiments, the mission system data link may be implemented while the UAV is on the ground and may be used to transfer data to and/or from the UAV while the UAV is being refuelled.

In alternative methods there is provided a method of physically coupling together a first aircraft and a second aircraft. The first aircraft may be an aircraft in flight. The second aircraft may be an aircraft in flight. The method comprises: sending, from a transmitter located on the first aircraft, an electromagnetic signal (e.g. a radio frequency or optical signal); receiving, by a receiver located on the second aircraft, the signal; and controlling, by one or more processors, using the signal received by the second aircraft, at least one of the first and second aircraft such that the first and second aircraft are in a predetermined configuration in which the first and second aircraft are physically coupled together.
Such alternative methods may comprise providing that the transmitter and receiver are configurable to operate in a ranging mode whereby the electromagnetic signal is communicated according to a first modulation scheme, the first modulation scheme being suitable for ranging. The first modulation scheme may be an ultra-wideband modulation scheme.

Such alternative methods may comprise providing that the transmitter and receiver are configurable to operate in a data link mode whereby the electromagnetic signal is communicated according to a second modulation scheme, the second modulation scheme being suitable for data transfer and different to the first modulation scheme.

Such alternative methods may comprise switching at least once between operating in the ranging mode and operating in the datalink mode. In particular, the transmitter and receiver may be configured for operation in the ranging mode as the aircraft are manoeuvred into the predetermined configuration, and switch to being configured in the datalink mode once the predetermined configuration is established.

Such alternative methods may further comprise: sending, from the first aircraft, at least one further signal, and receiving, by the second aircraft, each further signal. The step of controlling may be performed using each of the further signals received by the second aircraft. The signal and each of the further signals may be sent from a respective transmitter on the first aircraft. Each of the transmitters may have a different position on the first aircraft. The signal and each of the further signals may include a respective identifier that indicates from which transmitter that signal was sent.
CLAIMS

1. A data transfer method comprising:
 performing a refuelling process including receiving, by an aircraft, aircraft fuel from a first entity, the first entity being remote from the aircraft; and
during the refuelling process, sending data between the aircraft and a second entity, the second entity being remote from the aircraft; wherein
 the data is sent as a radio frequency signal having a frequency in the range 50GHz to 70GHz.

2. A data transfer method according to claim 1, wherein the first entity and the second entity are the same entity.

3. A method according to claim 1 or 2, wherein the aircraft is an unmanned aircraft.

4. A method according to any of claims 1 to 3, wherein the data is sent as a radio frequency signal having a frequency in the range 57GHz to 66GHz.

5. A method according to claim 4, wherein the data is sent as a radio frequency signal having a frequency of 60GHz.

6. A data transfer method according to any of claims 1 to 5, wherein:
 the aircraft is in flight; and
 the first entity is a tanker aircraft;
 the tanker aircraft is in flight;
 the tanker aircraft comprises a refuelling system for refuelling the aircraft; and
 the aircraft is coupled to the refuelling system of the tanker aircraft.
7. A method according to claim 6, wherein the second entity is a transmitter and/or receiver located on a refuelling drogue of the refuelling system of the tanker aircraft, the aircraft being coupled to the refuelling drogue.

8. A method according to claim 6 or 7, the method further comprising, using the data, controlling the aircraft such that the position of the aircraft relative to the tanker aircraft is maintained.

9. A method according to any of claims 6 to 8, the method further comprising, using the data, controlling a flow of aircraft fuel from the tanker aircraft to the aircraft.

10. A method according to any of claims 6 to 9, wherein the step of sending data comprises sending data, from the aircraft to the tanker aircraft; and

 the method further comprises relaying, from the tanker aircraft to a third entity, via a satellite communication link, the data, the third entity being remote from the aircraft and the tanker aircraft.

11. A method according to any of claims 1 to 10, wherein the aircraft comprises:

 a probe that protrudes from a body of the aircraft, the probe being a device via which the aircraft receives the aircraft fuel; and

 a transmitter and/or receiver located on the probe; and

 the step of sending data includes the transmitter transmitting the data and/or the receiver receiving the data.
12. A method according to claim 11, wherein the probe is retractable and the aircraft is a low observable aircraft.

13. A method according to any of claims 1 to 12, the method further comprising, prior to the refuelling process, physically coupling together the aircraft and the first entity, the step of physically coupling comprising:

 sending, between the aircraft and the first entity, a one or more signals; and

 using one or more signals that have been sent between the aircraft and the first entity, controlling at least one of the aircraft and the first entity such that the aircraft and the first entity are in a predetermined configuration in which the aircraft and the first entity are physically coupled together; wherein

 the one or more signals are radio frequency signals having a frequency in the range 50GHz to 70GHz.

14. A method according to claim 13 wherein the one or more signals are sent according to an ultra-wideband modulation scheme.

15. A data transfer system comprising:

 a refuelling system configured to transfer aircraft fuel to an aircraft from a first entity, the first entity being remote from the aircraft; and

 one or more transceivers configured to, while aircraft fuel is being transferred to the aircraft from the first entity, transfer data between the aircraft and a second entity, the second entity being remote from the aircraft; wherein

 the data is sent as a radio frequency signal having a frequency in the range 50GHz to 70GHz.

16. An aircraft comprising:
an aircraft refuelling device configured to receive aircraft fuel from a first entity, the first entity being remote from the aircraft; and

a transmitter and/or a receiver configured to, while the aircraft is receiving fuel from the first entity via the aircraft refuelling device, send data from the aircraft to a second entity and/or receive data sent from the second entity, the second entity being remote from the aircraft; wherein

the data is sent as a radio frequency signal having a frequency in the range 50GHz to 70GHz.
Fig. 2

Start

Tanker flies in straight and level state

Processor uses GPS signals to position UAV behind tanker

Fourth transceiver transmits positioning signal to tanker

First, second and third transceivers receive positioning signal

First, second and third transceivers transmit respective response signals to UAV

Fourth transceiver receives response signals

Processor determines position of UAV relative to tanker

UAV controller uses determined relative position to dock UAV with refuelling drogue

Tanker refuels UAV

During refuelling, UAV controller maintains UAV position relative to tanker

During refuelling, mission data sent between fourth transceiver and the first, second, and/or third transceiver

After refuelling, UAV controller controls UAV to disengage refuelling drogue and move away from tanker

End
Fig. 3

Processor determines first duration

Processor determines second duration

Processor determines third duration

Processor determines position of UAV relative to tanker
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. B64D39/00 H04B7/185 B64C39/02
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
B64D H04B G08C B64C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>EP 1 424 283 Al (BOEING CO [US]) 2 June 2004 (2004-06-02) the whole document</td>
<td>1-6, 8-16</td>
</tr>
<tr>
<td>Y</td>
<td>US 2012/200454 Al (HADINGER PETER J [US]) 9 August 2012 (2012-08-09) abstract</td>
<td>1-16</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C. [X] See patent family annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 B earlier application or patent but published on or after the international filing date
 L document which may throw doubts on priority claim(s) on which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed

* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
* A* document member of the same patent family

Date of the actual completion of the international search: 7 July 2016

Date of mailing of the international search report: 15/07/2016

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer: Pedersen, Kenneth
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 2006/178142 Al (LOVBERG JOHN [US] ET AL) 10 August 2006 (2006-08-10) abstract</td>
<td>I-3, 6-9, II-16</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>EP 1424283 A1</td>
<td>02-06-2004</td>
<td>DE 60318540 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1424283 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004102876 A1</td>
</tr>
<tr>
<td>US 2014353429 A1</td>
<td>04-12-2014</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2012200454 A1</td>
<td>09-08-2012</td>
<td>NONE</td>
</tr>
<tr>
<td>US 6025795 A</td>
<td>15-02-2000</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2006178142 A1</td>
<td>10-08-2006</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2004175173 A1</td>
<td>09-09-2004</td>
<td>CA 2514192 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1602183 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2006520167 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20050107770 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA05009136 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004175173 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2004082301 A2</td>
</tr>
<tr>
<td>US 2009125653 A1</td>
<td>14-05-2009</td>
<td>NONE</td>
</tr>
</tbody>
</table>