Office de la Propriété Intellectuelle du Canada

Un organisme d'Industrie Canada Canadian Intellectual Property Office

An agency of Industry Canada

CA 2073446 C 2001/11/27

(11)(21) 2 073 446

(12) BREVET CANADIEN CANADIAN PATENT

(13) **C**

(86) Date de dépôt PCT/PCT Filing Date: 1990/12/24

(87) Date publication PCT/PCT Publication Date: 1991/07/25

(45) Date de délivrance/Issue Date: 2001/11/27

(85) Entrée phase nationale/National Entry: 1992/07/09

(86) N° demande PCT/PCT Application No.: EP 90/02308

(87) N° publication PCT/PCT Publication No.: WO 91/10660

(30) Priorités/Priorities: 1990/01/10 (P 40 00 503.8) DE; 1990/09/27 (P 40 30 577.5) DE

(51) CI.Int.⁵/Int.CI.⁵ C07D 401/12, A01N 47/36, C07D 213/71, C07D 401/14, C07D 491/048, C07D 417/04, C07D 413/02

(72) Inventeurs/Inventors:

Bieringer, Hermann, DE;

Bauer, Klaus, DE;

Kehne, Heinz, DE;

Ort, Oswald, DE;

Willms, Lothar, DE

(73) Propriétaire/Owner:

AVENTIS CROPSCIENCE GMBH, DE

(74) Agent: FETHERSTONHAUGH & CO.

(54) Titre: PYRIDYLSULFONYLUREES UTILISEES COMME HERBICIDES ET REGULATEURS DE LA CROISSANCE DES PLANTES, PROCEDES POUR LES PREPARER ET LEUR UTILISATION

(54) Title: PYRIDYLSULFONYLUREAS AS HERBICIDES AND PLANT GROWTH REGULATORS, PROCESSES FOR THEIR PREPARATION AND THEIR USE

$$R^{2} \xrightarrow{\mathbb{N}} SO_{2}-NH-C-N-A \qquad (I) \qquad R^{2} \xrightarrow{\mathbb{N}} SO_{2}NH_{2} \qquad (II)$$

(57) Abrégé/Abstract:

Compounds of formula (I), where R¹, R², n, W, R³ and A are as defined in claim 1, are suitable for use as herbicides and plant growth regulators. They can be produced by a process similar to known processes. To produce them, new compounds of formula (II) are reacted with a carbamate of formula R*-O-CO-NR³A, where R³ stands for phenyl or alkyl. The compounds of formula (II) can be obtained from the corresponding sulphochlorides.

Internationales Büro INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 5:

C07D 401/12, 401/14, 417/14) 73 4 5A1 C07D 213/71, A01N 47/36

(11) Internationale Veröffentlichungsnummer:

WO 91/10660

(43) Internationales

Veröffentlichungsdatum:

25. Juli 1991 (25.07.91)

(21) Internationales Aktenzeichen:

PCT/EP90/02308

(22) Internationales Anmeldedatum:

24. Dezember 1990 (24.12.90)

(30) Prioritätsdaten:

P 40 00 503.8 P 40 30 577.5 10. Januar 1990 (10.01.90) DE 27. September 1990 (27.09.90) DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): HO-ECHST AKTIENGESELLSCHAFT [DE/DE]; Postfach 80 03 20, D-6230 Frankfurt am Main 80 (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): KEHNE, Heinz [DE/DE];
Berliner Straße 10, D-6238 Hofheim am Taunus (DE).
WILLMS, Lothar [DE/DE]; Lindenstraße 17, D-5416
Hillscheid (DE). ORT, Oswald [DE/DE]; Gundelhardtstraße 2, D-6233 Kelkheim (Taunus) (DE). BAUER,
Klaus [DE/DE]; Doorner Straße 53d, D-6470 Hanau
(DE). BIERINGER, Hermann [DE/DE]; Eichenweg 26,
D-6239 Eppstein/Taunus (DE).

(74) Gemeinsamer Vertreter: HOECHST AKTIENGESELL-SCHAFT; Zentrale Patentabteilung, Postfach 80 03 20, D-6230 Frankfurt am Main 80 (DE).

(81) Bestimmungsstaaten: AT, AT (europäisches Patent), AU, BB, BE (europäisches Patent), BF (OAPI Patent), BG, BJ (OAPI Patent), BR, CA, CF (OAPI Patent), CG (OAPI Patent), CH, CH (europäisches Patent), CM (OAPI Patent), DE, DE (europäisches Patent), DK, DK (europäisches Patent), ES, ES (europäisches Patent), FI, FR (europäisches Patent), GA (OAPI Patent), GB, GB (europäisches Patent), GR (europäisches Patent), HU, IT (europäisches Patent), JP, KP, KR, LK, LU, LU (europäisches Patent), MC, MG, ML (OAPI Patent), MR (OAPI Patent), MW, NL, NL (europäisches Patent), NO, RO, SD, SE, SE (europäisches Patent), SN (OAPI Patent), SU, TD (OAPI Patent), TG (OAPI Patent), US.

Veröffentlicht

Mit internationalem Recherchenbericht.

(54) Title: USE OF PYRIDYL SULPHONYL UREAS AS HERBICIDES AND PLANT GROWTH REGULATORS, PROCESS FOR PRODUCING THEM AND THEIR USE

(54) Bezeichnung: PYRIDYLSULFONYLHARNSTOFFE ALS HERBIZIDE UND PFLANZENWACHSTUMSREGULA-TOREN, VERFAHREN ZU IHRER HERSTELLUNG UND IHRE VERWENDUNG

$$R^{2} \xrightarrow{\mathbb{N}} SO_{2}-NH-C-N-A \qquad (I)$$

$$(O)_{n} \qquad \qquad R^{3}$$

$$\mathbb{R}^{2} \longrightarrow \mathbb{So}_{2}\mathbb{NH}_{2}$$

(57) Abstract

Compounds of formula (I), where R¹, R², n, W, R³ and A are as defined in claim 1, are suitable for use as herbicides and plant growth regulators. They can be produced by a process similar to known processes. To produce them, new compounds of formula (II) are reacted with a carbamate of formula R*-O-CO-NR³A, where R³ stands for phenyl or alkyl. The compounds of formula (II) can be obtained from the corresponding sulphochlorides.

(57) Zusammenfassung

Verbindungen der Formel (I), worin R¹, R², n, W, R³ und A wie in Anspruch 1 definiert sind, sind als Herbizide und Pflanzenwachstumsregulatoren geeignet. Sie können analog bekannten Verfahren hergestellt werden. Zur Herstellung werden die neuen Verbindungen der Formel (II) mit einem Carbamat der Formel R* -O-CO-NR³A, worin R³ Phenyl oder Alkyl bedeutet, umgesetzt. Die Verbindungen der Formel (II) können über die entsprechenden Sulfochloride hergestellt werden.

HOECHST AKTIENGESELLSCHAFT HOE 90/F 006K Dr. WE/St

Description

Pyridylsulfonylureas as herbicides and plant growth regulators, processes for their preparation and their use

- It is known that some 2-pyridylsulfonylureas have herbicidal and plant growth-regulating properties; cf. EP-A-13,480, EP-A-272,855, EP-A-84,224, US-PS 4,421,550, EP-A-103,543 (US-A-4,579,583), US-PS 4,487,626, 626, EP-A-125,864, WO 88/04297.
- It has now been found that 2-pyridylsulfonylureas having specific radicals in the 3-position of the pyridyl radical are particularly highly suitable as herbicides and growth regulators.

The present invention relates to compounds of the formula (I) or their salts

$$R^{2} \longrightarrow R^{1}$$

$$SO_{2}-NH-C-N-A$$

$$(I)$$

in which

R¹ is -OSO₂NR⁴R⁵, -NR⁵R⁷ or iodine,

R² is H, (C₁-C₄)alkyl, preferably (C₁-C₃)alkyl, (C₁-C₃)haloalkyl, halogen, NO₂, CN, (C₁-C₃)alkoxy,
(C₁-C₃)haloalkoxy, (C₁-C₃)alkylthio, (C₁-C₃)alkoxy(C₁-C₃)alkyl, (C₁-C₃)alkoxycarbonyl, (C₁-C₃)alkylamino, di-[(C₁-C₃)alkyl]amino, (C₁-C₃)alkylsulfinyl, (C₁-C₃)alkylsulfonyl, SO₂NR^aR^b or
C(O)NR^aR^b,

P^a and R^b independently of one another are H-

 R^a and R^b independently of one another are H, (C_1-C_3) alkyl, (C_3-C_4) alkenyl, propargyl, or

together are -(CH₂)₄-, -(CH₂)₅- or -CH₂CH₂OCH₂CH₂-,

 R^3 is H or CH_3 ,

10

15

20

25

- R' is H, (C_1-C_3) alkyl, (C_3-C_4) alkenyl, (C_1-C_3) alkoxy or (C_3-C_4) alkynyl, preferably propargyl, and
- R^5 is H, (C_1-C_3) alkyl, (C_3-C_4) alkenyl or (C_3-C_4) alkynyl, preferably propargyl, or
 - R^4 and R^5 together are -(CH₂)₄-, -(CH₂)₅- or -CH₂CH₂OCH₂CH₂-,
 - R⁵ is H, (C_1-C_8) alkyl, which is unsubstituted or substituted by one or more radicals from the group comprising halogen, (C_1-C_4) alkoxy, (C_1-C_4) alkyl-thio, (C_1-C_4) alkylsulfinyl, (C_1-C_4) alkylsulfonyl, (C_1-C_4-a) alkoxy) carbonyl and CN, (C_3-C_6) alkenyl which is unsubstituted or substituted by one or more halogen atoms, (C_3-C_6) alkynyl which is unsubstituted or substituted by one or more halogen atoms, (C_1-C_4) alkylsulfonyl which is unsubstituted or substituted by one or more halogen atoms, phenylsulfonyl where the phenyl radical is unsubstituted or substituted by one or more radicals from the group comprising halogen, (C_1-C_4) alkyl and (C_1-C_4) alkoxy, (C_1-C_4) alkoxy or (C_1-C_4-a) alkyl carbonyl which is unsubstituted or substituted by
 - R^7 is (C_1-C_4) alkylsulfonyl which is unsubstituted or substituted by one or more halogen atoms, phenylsulfonyl where the phenyl radical is unsubstituted or substituted by one or more radicals from the group comprising halogen, (C_1-C_4) alkyl and (C_1-C_4) alkoxy, or di- $[(C_1-C_4)$ alkyl] aminosulfonyl or
- R^6 and R^7 together are a chain of the formula $-(CH_2)_m-SO_2-$, where the chain can additionally be substituted by 1 to 4 (C_1-C_3) alkyl radicals and m is 3 or 4,

one or more halogen atoms,

- n is zero or 1,
- Wis Oor S,
- 35 A is a radical of the formula

X is H, halogen, (C_1-C_3) alkyl, (C_1-C_3) alkoxy, where the two last-mentioned radicals are unsubstituted or monosubstituted or polysubstituted by halogen or monosubstituted by (C_1-C_3) alkoxy,

Y is H, (C_1-C_3) alkyl, (C_1-C_3) alkoxy or (C_1-C_3) alkylthio, where the abovementioned alkyl-containing radicals are unsubstituted or monosubstituted or polysubstituted by halogen or monosubstituted or disubstituted by (C_1-C_3) alkoxy or (C_1-C_3) alkylthio, and also a radical of the formula NR^8R^9 , (C_3-C_6) -cycloalkyl, (C_2-C_4) alkenyl, (C_2-C_4) alkynyl, (C_3-C_4) alkenyloxy or (C_3-C_4) alkynyloxy,

Z is CH or N,

10

15 R^8 and R^9 independently of one another are H, (C_1-C_3) alkyl or (C_3-C_4) alkenyl,

X¹ is CH₃, OCH₃, OC₂H₅ or OCF₂H,

 Y^1 is -0- or $-CH_2-$,

 X^2 is CH_3 , C_2H_5 or CH_2CF_3 ,

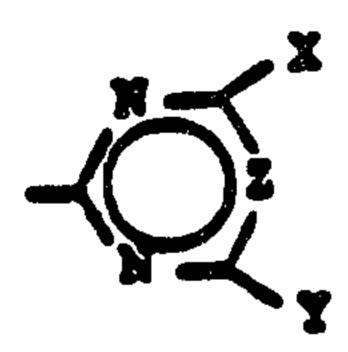
20 Y^2 is OCH₃, OC₂H₅, SCH₅, SC₂H₅, CH₃ or C₂H₅,

 X^3 is CH_3 or OCH_3 ,

 Y^3 is H or CH_3 ,

X4 is CH3, OCH3, OC2H5, CH2OCH3 or Cl,

Y' is CH₃, OCH₃, OC₂H₅ or Cl, Y' is CH₃, C₂H₅, OCH₃ or Cl.


15

20

In the formula (I), alkyl, alkoxy, haloalkyl, alkylamino and alkylthio radicals and the corresponding unsaturated and/or substituted radicals can in each case be straight-chain or branched. Alkyl radicals, also in combined meanings such as alkoxy, haloalkyl etc., are methyl, ethyl, n- or i-propyl, alkenyl and alkynyl radicals have the meaning of the possible unsaturated radicals corresponding to the alkyl radicals, such as 2-propenyl, 2- or 3-butenyl, 2-propynyl, 2- or 3-butynyl. Halogen is fluorine, chlorine, bromine or iodine.

The compounds of the formula (I) can form salts in which the hydrogen of the -SO₂-NH group is replaced by a cation which is suitable for agricultural purposes. These salts are, for example, metal salts, in particular alkali metal or alkaline earth metal salts, or alternatively ammonium salts or salts with organic amines. Salt formation can also take place by addition of a strong acid to the pyridine moiety of the compound of the formula (I). Suitable acids for this are HCl, HBr, H₂SO₄ or HNO₃.

Preferred compounds of the formula (I) or their salts are those in which n = zero, W = 0 and A is a radical of the formula

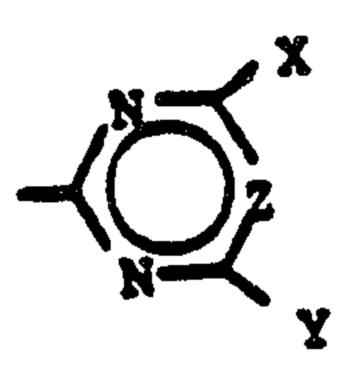
in which X, Y and Z are defined as described above.

Preferred compounds of the formula I or their salts are also those in which

 R^2 , R^4 , R^5 , n, W and A are as defined above and R^4 and R^5 independently of one another are (C_1-C_3) alkyl,

allyl or propargyl or

10


15

R* and R⁵ together are -(CH₂)₄-, -(CH₂)₅- or -CH₂CH₂OCH₂CH₂-,
R⁵ is H, (C₁-C₄)alkyl which is unsubstituted or substituted by one or more halogen atoms or by a radical from the group comprising (C₁-C₃)alkoxy,
(C₁-C₃)alkylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₄)-alkoxycarbonyl and CN, (C₃-C₄)alkenyl,
(C₃-C₄)alkynyl, (C₁-C₄)alkylsulfonyl, phenylsulfonyl, phenylsulfonyl which is substituted by one to three radicals from the group comprising halogen, (C₁-C₃)alkyl and (C₁-C₃)alkoxy,
(C₁-C₃)alkoxy or (C₁-C₄)alkylcarbonyl,

 R^7 is (C_1-C_*) alkylsulfonyl, phenylsulfonyl or phenylsulfonyl which is substituted by 1 to 3 radicals from the group comprising halogen, (C_1-C_3) alkyland (C_1-C_3) alkoxy, or $di-(C_1-C_*-alkyl)$ -aminosulfonyl or

 R^5 and R^7 together are a chain of the formula $-(CH_2)_mSO_2$ -where m is 3 or 4.

Particularly preferred compounds of the formula (I) or their salts are those in which R^2 is H, (C_1-C_3) alkyl, (C_1-C_3) alkowy, halogen or (C_1-C_3) alkylthio, R^4 and R^5 independently of one another are (C_1-C_3) alkyl, R^6 is hydrogen, (C_1-C_4) alkyl or (C_1-C_3) alkylsulfonyl, R^7 is (C_1-C_3) alkylsulfonyl and A is a radical of the formula

in which Z is CH or N, X is halogen, (C_1-C_2) alkyl, (C_1-C_2) -alkoxy, OCF₂H, CF₃ or OCH₂CF₃ and Y is (C_1-C_2) alkoxy or OCF₂H, and in particular the compounds defined above in which n = zero and W is an oxygen atom.

The present invention further relates to processes for the preparation of the compounds of the formula (I) or

their salts, which comprise

(a) reacting a compound of the formula (II)

$$R^2 \longrightarrow SO_2NH_2$$

$$(0)_n$$

$$(II)$$

with a heterocyclic carbamate of the formula (III)

in which R^* is phenyl or (C_1-C_*) alkyl, or (b) reacting a pyridylsulfonylcarbamate of the formula (IV)

$$\mathbb{R}^{2} \xrightarrow{\mathbb{R}^{1}} \mathbb{So}_{2NH-C-OC_{6}H_{5}}^{\mathbb{R}^{2}}$$

$$(IV)$$

with an aminoheterocycle of the formula (V)

$$\frac{HN-A}{R}$$
 (V)

or

(c) reacting a sulfonyl isocyanate of the formula (VI)

$$R^2$$
 SO_2NCO
 (VI)

with an aminoheterocycle of the formula $R^3-NH-A\ (V)$ or

- (d) first reacting an aminoheterocycle of the formula R³-NH-A (V) in a one-pot reaction with phosgene in the presence of a base, such as, for example, triethylamine, and reacting the intermediate formed with a pyridinesulfonamide of the formula (II) (for example analogously to EP-A-232,067).
- The reaction of the compounds of the formulae (II) and (III) is preferably carried out under base catalysis in an inert organic solvent, such as, for example, dichloromethane, acetonitrile, dioxane or THF at temperatures between 0°C and the boiling point of the solvent.

 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) or trimethylaluminum or triethylaluminum is preferably used as the base.
- The sulfonamides (II) are novel compounds. The invention also relates to them and their preparation. They are obtained starting from suitably substituted 2-halopyridines, which are reacted with S-nucleophiles such as, for example, benzylmercaptan or thiourea. The compounds formed in this way are converted with sodium hypochlorite or chlorine into the sulfochlorides (analogously to EP-A-272,855), which are then either reacted directly with ammonia or with tert.-butylamine via the tert.-butylamides with subsequent protective group removal to give the sulfonamides of the formula (II).
- The carbamates of the formula (III) can be prepared by methods which are described in South African patent

applications 82/5671 and 82/5045, or EP-A-70804 (US-A-4,480,101) or RD 275056.

The reaction of the compounds (IV) with the aminoheterocycles (V) is preferably carried out in inert aprotic solvents such as, for example, dioxane, acetonitrile or tetrahydrofuran at temperatures between 0°C and the boiling point of the solvent. The starting materials (V) required are known from the literature or can be prepared by processes which are known from the literature. The pyridylsulfonylcarbamates of the formula (IV) are obtained analogously to EP-A-44,808 or EP-A-237,292.

10

25

30

The pyridylsulfonylisocyanates of the formula (VI) can be prepared analogously to EP-A-184,385 and reacted with the aminoheterocycles (V).

The salts of the compounds of the formula (I) are preferably prepared in inert solvents such as, for example, water, methanol or acetone at temperatures of 0 - 100°C. Suitable bases for the preparation of the salts according to the invention are, for example, alkali metal carbonates, such as potassium carbonate, alkali metal and alkaline earth metal hydroxides, ammonia or ethanolamine. HCl, HBr, H₂SO₄ or HNO₃ are particularly suitable as acids for salt formation.

By "inert solvents" in the process variants above, solvents are in each case meant which are inert under the particular reaction conditions, but which do not have to be inert under all reaction conditions.

The compounds of the formula (I) according to the invention have an excellent herbicidal activity against a broad spectrum of economically important monocotyledon and dicotyledon weeds. Even perennial weeds, which are difficult to control and shoot from rhizomes, root stocks or other perennial organs, are well controlled by the active compounds. It is irrelevant here whether the

substances are applied pre-sowing, pre-emergence or postemergence. In particular, some representatives of the monocotyledon and dicotyledon weed flora which can be controlled by the compounds according to the invention may be mentioned by way of example without a restriction to certain species being intended by their mention.

On the monocotyledon weed species side, for example, Avena, Lolium, Alopecurus, Phalaris, Echinochloa, Digitaria, Setaria and Cyperus species from the annual group and on the perennial species side Agropyron, Cynodon, Imperata and Sorghum and also perennial Cyperus species are well controlled.

10

15

20

In the case of dicotyledon weed species, the spectrum of action extends to species such as, for example, Galium, Viola, Veronica, Lamium, Stellaria, Amaranthus, Sinapis, Ipomoea, Matricaria, Abutilon and Sida on the annual side and Convolvulus, Cirsium, Rumex and Artemisia in the case of the perennial weeds.

Under the specific cultivation conditions, weeds occurring in rice, such as, for example, Sagittaria, Alisma, Eleocharis, Scirpus and Cyperus are also outstandingly controlled by the active compounds according to the invention.

to the surface of the soil before germination, the emergence of the weed seedlings is either completely prevented or the weeds grow to the seed leaf stage, but then cease their growth and finally die completely after the passage of three to four weeks.

On application of the active compounds to the green parts of plants post-emergence, a drastic stop to growth also occurs very rapidly after the treatment and the weed plants remain at the growth stage present at the time of application or die completely after a certain time, so

that in this manner weed competition which is damaging for the crop plants is eliminated very early and in a lasting manner.

Although the compounds according to the invention have an excellent herbicidal activity against monocotyledon and dicotyledon weeds, crop plants of economically important crops such as, for example, wheat, barley, rye, rice, corn, sugarbeet, cotton and soya are only damaged insubstantially or not at all. For these reasons, the present compounds are very highly suitable for selectively controlling undesired plant growth in agricultural productive plantings.

Moreover, the substances according to the invention show excellent growth regulatory properties in crop plants. They intervene in a regulating manner in the plant's own metabolism and can thus be employed for influencing plant contents in a controlled manner and for simplifying harvesting such as, for example, by causing desiccation and stunting of growth. In addition, they are also suitable for the general control and inhibition of undesired vegetative growth without killing the plants. In many monocotyledon and dicotyledon crops, inhibition of the vegetative growth plays a great role, as lodging can be reduced by this or completely prevented.

15

20

35

The compounds according to the invention can be used in the customary preparations in the form of wettable powders, emulsifiable concentrates, sprayable solutions, dusting agents or granules. The invention therefore also relates to herbicidal and plant growth-regulating agents which contain compounds of the formula (I) or their salts.

The compounds of the formula (I) can be formulated in various ways, depending on which biological and/or physicochemical parameters are given. Examples of suitable formulation possibilities are: wettable powders

(WP), water-soluble powders (SP), water-soluble concentrates, emulsifiable concentrates (EC), emulsions (EW), such as oil-in-water and water-in-oil emulsions, sprayable solutions, suspension concentrates (SC), dispersions based on oil or water, oil-miscible solutions, capsule suspensions (CS), dusting agents (DP), seed dressings, granules for broadcasting and application to the soil, granules (GR) in the form of microgranules, sprayable granules, swellable granules and adsorption granules, water-dispersible granules (WG), water-soluble granules (SG), ULV formulations, microcapsules and waxes.

10

15

These individual formulation types are known in principle and are described, for example, in: Winnacker-Küchler, "Chemische Technologie", volume 7, C. Hauser Verlag Munich, 4th Edition 1986; Wade van Valkenburg, "Pesticide Formulations", Marcel Dekker N.Y., 1973; K. Martens, "Spray Drying Handbook", 3rd Ed. 1979, G. Goodwin Ltd. London.

The necessary formulation auxiliaries such as inert materials, surfactants, solvents and other additives are 20 also known and are described, for example, in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N.J.; H.v. Olphen, "Introduction to Clay Colloid Chemistry"; 2nd Ed., J. Wiley and Sons, N.Y.; C. Marsden, "Solvents Guide", 25 2nd Ed., Interscience, N.Y. 1963; McCutcheon's "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J.; Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964; Schönfeldt, "Grenzflächenaktive Äthylenoxidaddukte" (Surface-active 30 ethylene oxide adducts), Wiss. Verlagsgesell., Stuttgart 1976; Winnacker-Küchler, "Chemische Technologie" (Chemical Technology), Vol. 7, C. Hauser Verlag Munich, 4th Edition, 1986.

Combinations with other pesticidally active substances, fertilizers and/or growth regulators can also be prepared

2073146

based on these formulations, for example in the form of a finished formulation or as a tank mix.

Wettable powders are preparations which can be dispersed uniformly in water which apart from the active compound and in addition to a diluent or inert substance also contain wetting agents, for example polyoxyethylated alkylphenols, polyoxyethylated fatty alcohols and fatty amines, fatty alcohol polyglycol ether sulfates, alkane sulfonates or alkylbenzenesulfonates and dispersants, for example sodium ligninsulfonate, sodium 2,2'-dinaphthylmethane-6,6'-disulfonate, sodium dibutylnaphthalenesulfonate or alternatively sodium oleylmethyltaurate.

10

15

20

25

Emulsifiable concentrates are prepared by dissolving the active compound in an organic solvent, for example butanol, cyclohexanone, dimethylformamide, xylene or alternatively high-boiling aromatics or hydrocarbons with the addition of one or more emulsifiers. Examples of emulsifiers which can be used are: calcium alkylaryl-sulfonates such as Ca dodecylbenzenesulfonate or nonionic emulsifiers such as fatty acid polyglycol esters, alkylaryl polyglycol ethers, fatty alcohol polyglycol ethers, propylene oxide-ethylene oxide condensation products, alkyl polyethers, sorbitan fatty acid esters, polyoxy-ethylene sorbitol esters.

Dusting agents are obtained by grinding the active compound with finely divided solid substances, for example talc, natural clays such as kaolin, bentonite and pyrophyllite, or diatomaceous earth.

Granules can be prepared either by spraying the active compound onto adsorptive, granulated inert material or by applying active compound concentrates by means of adhesives, for example polyvinyl alcohol, sodium polyacry-late or alternatively mineral oils, to the surface of carriers such as sand, kaolinites or granulated inert

material. Suitable active compounds can also be granu- is lated in the manner customary in the preparation of fertilizer granules, if desired mixed with fertilizer granules.

The agrochemical preparations as a rule contain 0.1 to 99 percent by weight, in particular 0.1 to 95% by weight, of active compound of the formula (I).

In wettable powders the active compound concentration is, for example, about 10 to 90% by weight, the remainder to 10 100% by weight is composed of customary formulation components. In emulsifiable concentrates, the active compound concentration can be about 1 to 85% by weight, usually 5 to 80% by weight. Pulverulent formulations contain about 1 to 25% by weight, usually 5 to 20% by 15 weight of active compound, sprayable solutions about 0.2 to 20% by weight, usually 2 to 20% by weight of active compound. In the case of granules, the active compound content in some cases depends on whether the active compound is liquid or solid. As a rule, the content in the water-dispersible granules is between 10 and 90% by 20 weight.

In addition, said active compound formulations optionally contain the adhesives, wetting agents, dispersants, emulsifiers, penetrants, solvents, fillers or carriers customary in each case.

25

30

For application, the formulations in commercially available form are optionally diluted in a customary manner, for example by means of water in the case of wettable powders, emulsifiable concentrates, dispersions and water-dispersible granules. Pulverulent preparations, granules for application to the soil or broadcasting and sprayable solutions are customarily not diluted further with other inert substances before application.

The required application rate of the compounds of the

formula (I) varies, inter alia, with the external conditions such as temperature, humidity and the nature of the herbicide used. It can vary within wide limits, for example between 0.001 and 10.0 kg/ha or more of active substance, but it is preferably between 0.005 and 5 kg/ha.

Mixtures or mixed formulations with other active compounds, such as, for example, insecticides, acaricides, herbicides, safeners, fertilizers, growth regulators or fungicides are also optionally possible.

A. Chemical Examples

Example 1

10

2-Benzylthio-3-iodopyridine

A solution of 34.0 g (0.15 mol) of 2-fluoro-3-iodopyridine and 18.6 g (0.15 mol) of benzylmercaptan in 250 ml
of acetonitrile is heated under reflux with 22.8 g
(0.165 mol) of potassium carbonate for 8 h. The mixture
is cooled, the solvent is removed on a rotary evaporator,
the residue is taken up in dichloromethane and the
organic phase is washed with water. After drying with
sodium sulfate, evaporating and distilling the oily
residue in vacuo, 37.3 g (76% of theory) of 2-benzylthio3-iodopyridine of boiling point 150-153°C at 0.1 mbar are
obtained.

25 Example 2

30

35

3-Iodo-2-pyridinesulfonamide

510 ml (0.34 mol) of a 5% strength sodium hypochlorite solution are added dropwise at 0°C to a mixture of 25.0 g (76.5 mmol) of 2-benzylthio-3-iodopyridine, 125 ml of dichloromethane, 60 ml of water and 38 ml of concentrated hydrochloric acid. The mixture is stirred at 0°C for 30 min, extracted 3x using 100 ml of dichloromethane each time and the organic phase is dried using sodium sulfate. The solution thus obtained is cooled to -20°C. 6.8 g (0.4 mol) of ammonia is passed in at this temperature in

the course of 20 min, and the mixture is stirred at -20°C for 2 h and allowed to come to room temperature. The reaction mixture is washed with water and the organic phase is dried and evaporated. Trituration of the residue with disopropyl ether gives 15.5 g (71% of theory) of 3-iodo-2-pyridinesulfonamide of melting point 247-250°C (dec.)

Example 3

5

10

15

20

3-(4,6-Dimethoxypyrimidin-2-yl)-1-(3-iodo-2-pyridyl-sulfonyl)urea

1.2 g (0.081 mol) of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) are added to a suspension of 2.1 g (7.4 mmol) of 3-iodo-2-pyridinesulfonamide and 2.2 g (8.1 mmol) of N-(4,6-dimethoxypyrimidine-2-yl)phenyl carbamate in 30 ml of acetonitrile. The resulting solution is stirred at room temperature for 45 min and 20 ml of water are then added. The mixture is acidified to pH 4 using hydrochloric acid and the precipitated product is filtered off with suction. 3.2 g (93% of theory) of 3-(4,6-dimethoxy-pyrimidin-2-yl)-1-(3-iodo-2-pyridylsulfonyl)urea of melting point 161 - 162°C (dec.) are obtained.

Example 4

3-Dimethylsulfamoyloxy-2-pyridinesulfonamide

107 ml (72 mmol) of a 5% strength sodium hypochlorite solution are added dropwise at 0°C to a mixture of 5.7 g 25 (17.6 mmol) of 2-benzylthio-3-dimethylsulfamoyloxypyridine, 30 ml of dichloromethane, 15 ml of water and 8.5 ml of concentrated hydrochloric acid. The mixture is stirred at 0°C for 30 min, extracted 3x using 20 ml of dichloromethane each time and the organic phase is dried 30 using sodium sulfate. The solution thus obtained is cooled to -70°C. Ammonia is passed in at this temperature until the reaction mixture gives a distinctly alkaline reaction. After stirring at -70°C for 3 hours, the mixture is allowed to come to room temperature and is 35 washed with water. The organic phase is dried and evaporated. 3.0 g (61% of theory) of 3-dimethylsulfamoyloxy-2-pyridinesulfonamide are obtained; NMR (CDCl₃): δ (ppm) = 3.06 (s, 6H, N(CH₃)₂), 5.80 (s, 2H, NH₂), 7.48 (dd, 1H), 7.98 (dd, 1H), 8.38 (dd, 1H).

5 Example 5

10

15

20

25

30

35

3-(4,6-Dimethoxypyrimidin-2-yl)-1-(3-dimethylsulfamoyl-oxy-2-pyridylsulfonyl)urea

1.9 g (12.7 mmol) of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) are added to a suspension of 3.0 [lacuna] (10.6 mmol) of 3-dimethylsulfamoyloxy-2-pyridinesulfon-amide and 3.4 g (12.7 mmol) of N-(4,6-dimethoxypyrimidin-2-yl)phenyl carbamate in 40 ml of acetonitrile. The resulting solution is stirred at room temperature for 1 h and 30 ml of water are then added. The mixture is acidified to pH 4 using hydrochloric acid and the precipitated product is filtered off with suction. After triturating with diethyl ether, 2.1 g (42% of theory) of 3-(4,6-dimethoxypyrimidin-2-yl)-1-(3-dimethyl-sulfamoyloxy-2-pyridylsulfonyl)urea of melting point 155-157°C are obtained.

Example 6

3-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-1-(3-iodo-2-pyridyl-sulfonyl)urea

9.0 ml (18 mmol) of a 2M solution of trimethylaluminum in toluene are added dropwise at room temperature to 4.3 g (15 mmol) of 3-iodo-2-pyridinesulfonamide in 150 ml of dichloromethane. After evolution of gas has ceased, 3.85 [lacuna] (18 mmol) of methyl 4,6-dimethoxy-1,3,5-triazin-2-yl-carbamate in 20 ml of dichloromethane is added dropwise and the resulting solution is refluxed for 24 hours. The mixture is cooled and poured into 150 ml of ice-cold 1N hydrochloric acid. The organic phase is separated off and the aqueous phase is extractd 2x using dichloromethane. The organic phase is dried and evaporated. After triturating the crude product with diethyl ether, 3.1 g (44% of theory) of 3-(4,6-dimethoxy-1,3,5-triazin-2-yl)-1-(3-iodo-2-pyridylsulfonyl)ureaofmelting

point 155°C (dec.) are obtained.

The compounds in the following Tables 1 to 4 are obtained analogously to the processes of Examples 1-6.

Table 1

oc, H,

C3H2

OCH2CF,

OCH₂CF₃

CF₃

Ħ

Ħ

H

H

19

20

21

22

23

OC,HS

OCH,

OCH3

CH,

OCH,

CH

CH

CH

CH

CH

Cpa. No.	R:	R 2	R 3	X	Y	2	M-p[•c]
2 4	•	E	Ħ	OCH ₂ CF ₃	OCH, CF	CH	
25	•	Ħ	Ħ	OCH ₂ CF ₃	OCH,	N	
26	**	Ħ	Ħ	OCH,	H(OCH;);	CH	
27	•	4-CH;	H	OCH ³	och,	CH	
28	•	•	H	DCH,	CH,	CH	
29	-	•	Ħ	OCH 3	Cl	CH	
30	•	••	. H	CH3	CH,	CH	
31	**	•	H	OCH 3	OCH 3	N	
3 2	**	53	Ħ	OCH 3	CH ³	N	
33	••	•	H	OC ₂ H ₅	NHCH3	N	
34	**	•	CH,	OCH ₃	CH3	N	
35	11	5-CX,	H	OCH,	OCH,	CH	
3 6	**	•	H	OCH 3	CH ₃	CH	
37	**	•	H	OCH 3	Cl	CH	
38	**	**	H	CH3	CH ³	CH	
39	**	•	Ħ	OCH ₃	och,	N	
40	•	•	Ħ	och,	CH3	N	
41	••	•	Ħ	OC ₂ H ₅	NHCH3	N	
42	**	**	CH,	OCH 3	CH ³	N	
43	**	6-CH ₃	H	OCH ³	och,	CH	
44	**	•	Ħ	OCH ₃	CH ₃	CH	
45	~	•	H	och 3	Cl	CH	•
46	64	•		CH,	CE,	CH	
47	••			OCH,	OCH3	N	
48	•			OCH,	CE,	N	
49	-	•	H	oc, H,	NHCH,	N	
50	-	•	CH,	och 3	CH ₃	N	
51	•	4-C1		OCH ₃	OCH,	CH	
52	-			OCH 3	CH,	CH	
53	•	43		OCH ₃	Cl	CH	
5 4	•	-	H	CH ₃	CH 3	CH	
5 5	•	•	H	OCH 3	och,	N	
56		•	Ħ	OCH 3	CH 3	N	

•

Continuation of Table 1

Cpd. No.	R:	R2	R3	*	Y	2	M.P.[•c]
57	•		H	oc, H,	NECH,	N	
58	-	•	CX,	OCH,	CH,	N	
59	-	5-C1	H	OCH,	oca,	CH	
60	*	**		OCH,	CH,	CH	
61	-	-	H	OCH,	Cl	CH	
62	•	-	Ħ	CH ₃	CH,	CH	
63.	-	•	Ħ	OCH 3	OCH 3	N	
5 4	**	•	Ħ	OCH,	CH3	N	
6 5	••	**	Ħ	OC ₂ H ₅	NHCH 3	N	
6 6	••	•	CH3	OCH ₃	CH,	N	
6 7	**	6-C1	H	OCH ₃	OCH,	CH	
68	••	•	H	OCH ₃	CH3	CH	•
6 9	•	•	H	OCH,	Cl	CH	
70	**	•	H	CH,	CH,	CH	
71	**	**	H	och,	OCH,	N	
7 2	\$ **	**	H	OCH,	CH,	N	
73	••	, es	H	OC ₂ H ₅	NHCH,	N	
7 4	**	-	CH,	OCH,	CH ₃	N	
75	-	4-CF ₂	•	OCH ₃	OCH,	CH	
76	**	•	H .	OCH 3	CH,	CH	
77	49	•	H	OCH,	Cl	CH	
78	•	•	Ħ	CH,	CH,	CH	
79	•	•••	I	OCH,	OCH,	N	
	•	-		OCE 2	CY,	N	
80	**	4-F		OC ₂ H ₂	NHCH,	N	
81	•	# # # # # # # # # # # # # # # # # # #	CH,	OCH ₂	CH,	N	
82	•	5-CF,		OCH ₂	OCH,	CH	
83	-	•		oce,	CH,	CH	
84	CP	•	***	CCH,	Cl	CH	
85	••	•		CH ₃	CH,	CH	
8.5	•	•		och ₃	och,	N	
87	••	789		och ₃	CE,	N	
88				•	NECH,	N	
89		5 – F	Ħ	oc ₃ H ₅	naca 3	14	

Continuation of Table 1

Cpà. No.	RI	R ²	R 3	*	Y	2	M.p.[•C]
90	F		CH,	OCH,	CH,	N	
91	F	6-F	B	OCH,	OCH,	CH	
9 2	-	•	Ħ	OCH ₂	CH,	CH	
93	**	•	Ħ	OCH,	Cl	CH	
94	•		Ħ	. CH,	CH,	CH	
95		-	Ħ	OCH,	OCH,	N	
9 6	••	••	H	OCH,	CH,	N	
97	**	-	H	OC ₂ H ₅	NECH ₃	N	
98	**	•	CH3	OCH 3	CH3	N	
99	**	4-0CH	l ₃ H	OCH,	OCH ₃	CH	•
100	**	•	H	OCH3	CH ₃	CH	
101	**	**	H	OCH 3	Cl	CH	
102	*1	**	Ħ	CH3	CH3	CH	
103	70	•	Ħ	OCH 3	OCH3	N	
104	••	**	H	OCH ₃	CH,	N	
105	•	•	Ħ	OC ₂ H ₅	NHCH,	N	
105	**	•	CH3	OCH,	CH,	N	
107	. 🗪	5-0CH	13 H	OCH ₃	OCH,	CH	
108	**	•	Ħ	OCH,	CH,	CH	
109	**	•	Ħ	och,	Cl	CH	
110	•	₩	H	CH,	CH,	CH	
111	m	**	H	OCH 3	OCH ₃	N	
112	•	65		OCH 3	CH,	N	
113	*	•		OC ₂ H ₅	NECH,	N	
114	••	•	CH3	OCH,	CH,	N	
115	•	6-OCH		OCH 3	OCH,	CH	
116	••	-	H	OCH ₃	CH,	CH	
117	*	•	Ħ	OCH ₃	Cl	CH	
118	•	*		CH ₃	CH,	CH	
119	•	-		OCH ₃	OCH ³	N	
120	49	•		OCH,	CH,	N	
121	#	•	H	OC ₂ H ₅	NECH.	N	
122	-	•	CH,	OCH,	CH,	N	

2073415

127	Cpd. No	. R:	R 2	R 3	*	Y	2	M.p. {°C}
125	123	**	6-C ₂ H ₃	Ħ	OCH,	OCH,	CH	
127	124	· •	6-C,H,	Ħ	OCH,	OCH,	CH	
128	125	•	6-QC, H,	H	ocн,	OCH,	CH	
129	127	•	6-0CH, CF,	Ħ	och,	OCH,	CH	
130	128	••	6-8CH ₃	H.	OCH 3	OCH ₃	CH	
131	129	•	6-80,CH,	H	OCH,	OCH,	CH	
132	130	•	6-NO ₂	H	och,	OCH3	CH	
133 " 6-CF ₃ H OCH ₃ OCH ₃ CH 134 " 6-OCF ₃ H OCH ₃ OCH ₃ CH 135 " 6-OCF ₂ H H OCH ₃ OCH ₃ CH 136 -OSO ₂ N(CH ₃) ₂ H H OCH ₃ OCH ₃ CH 137 " H CH ₃ OCH ₃ OCH ₃ CH 138 " H CH ₃ OCH ₃ CH ₃ CH 139 " H H OCH ₃ OCH ₃ CH ₃ CH 140 " H H OCH ₃ CH ₃ CH 141 " H E CH ₃ CH ₃ CH 142 " H E OCH ₃ CH ₃ N 137-138 (dec.) 143 " H H OCH ₃ CH ₃ N 137-138 (dec.) 144 " H E OCH ₃ CH ₃ CH 145 " H E OCH ₃ CH 146 " H E OCH ₃ CH 147 " H E OCH ₃ CH 148 " H E OCH ₃ CC ₂ H CH 147 " H E OCH ₃ CC ₂ H CH 148 " H E OCH ₃ CC ₂ H CH 149 " H H OCH ₃ SCH ₃ CH 150 " H H OCH ₃ SCH ₃ CH 151 " H H OCH ₃ CC ₂ H ₃ CH 152 " H H OCH ₃ CC ₂ H ₃ CH 153 " H H OCH ₃ CC ₂ H ₃ CH 154 " H H CC ₂ H ₃ OC ₂ H ₃ CH 155 " H H COCH ₃ CC ₂ H ₃ CH 156 " H H COCH ₃ CC ₂ H ₃ CH 157 " H H COCH ₃ CC ₂ H ₃ CH 158 " H H CCH ₃ CC ₂ H ₃ CH 159 " H H CCH ₃ CC ₂ H ₃ CH 151 " H H CCH ₃ CC ₂ H ₃ CH 152 " H H CCH ₃ CC ₂ H ₃ CH 153 " H H CCH ₃ CC ₂ H ₃ CH 155 " H H CC ₂ H ₃ CC ₂ H ₃ CH 156 " H H CC ₂ H ₃ CC ₂ H ₃ CH 157 " H H CCH ₃ CC ₂ H ₃ CH 158 " H H CC ₂ H ₃ CC ₂ H ₃ CH 159 " H H CC ₂ H ₃ CC ₂ H ₃ CH 151 " H H CC ₂ H ₃ CC ₂ H ₃ CH 155 " H H CC ₂ H ₃ CCH 156 " H H CC ₂ H ₃ CCH 157 " CCH 158 " CCH 159 " CCH 150 CCH 150 CCH 151 " CCH 151 " CCH 152 " CCH 153 " CCH 154 " CCH 155 " CCH 155 " CCH 156 " CCH 157 " CCH 157 " CCH 158 " CCH 158 " CCH 158 " CCH 158 " CCH 159 " CCH 150 CCH 150 CCH 151 " CCH 151 " CCH 152 " CCH 153 " CCH 154 " CCH 155 " CCH 155 " CCH 155 " CCH 156 " CCH 157 " CCH 157 " CCH 157 " CCH 158 " CCH	131	~	6-CO ₂ CH ₃	Ħ	OCH ₃	OCH ₃	CH	
134 " 6-OCF ₃ H OCH ₃ OCH ₃ CH 135 " 6-OCF ₂ H H OCH ₃ OCH ₃ CH 136 -OSO ₂ N(CH ₃) ₂ H H OCH ₃ OCH ₃ CCH 137 " H CH ₃ OCH ₃ OCH ₃ CCH 138 " H CH ₃ OCH ₃ CH ₂ CH 139 " H H OCH ₃ CH ₂ CH 140 " H H OCH ₃ CH ₂ CH 141 " H H CH ₃ CH ₃ CH ₂ CH 141 " H H OCH ₃ CH ₂ CH 142 " H H OCH ₃ CH ₃ N 137-138 (dec .) 143 " H H OCH ₃ CH ₃ N 137-138 (dec .) 144 " H H OCH ₃ CH ₃ CH 145 " H H OCH ₃ CH ₃ CH 146 " H H OCH ₃ CH 147 " H H OCH ₃ CH 148 " H H OCH ₃ CC ₂ H CH 149 " H H OCH ₃ CC ₂ H CH 150 " H H OCH ₃ CC ₂ H CH 150 " H H OCH ₃ CC ₂ H CH 151 " H H OCH ₃ CC ₂ H CH 152 " H H OCH ₃ CC ₃ H CH 153 " H H OCH ₃ CC ₃ H CH 153 " H H OCH ₃ CC ₃ H CH 155 " H H OCH ₃ CC ₃ H CH 157 " H H OCH ₃ CC ₃ H CH 158 " H H OCH ₃ CC ₃ H CH 159 " H H OCH ₃ CC ₃ H CH 151 " H H OCH ₃ CC ₃ H CH 151 " H H OCH ₃ CC ₃ H CH 152 " H H OCH ₃ CC ₃ H CH 153 " H H OCH ₃ CC ₃ H CH 155 " H H COC ₃ H CCH 155 " H H C	132	++	6-Br	H	och 3	OCH ₃	CH	
135 " 6-OCF ₂ H H OCH ₃ OCH ₃ CE 136 -OSO ₂ N(CH ₃) ₂ H H CH ₃ OCH ₃ OCH ₃ CH 137 " H CH ₃ OCH ₃ OCH ₃ CH ₃ CH 138 " H CH ₃ OCH ₃ CH ₃ CH 139 " H H CH ₃ CH ₃ CH ₃ CH 140 " H H OCH ₃ CH ₃ CH 141 " H H CH ₃ CH ₃ CH 142 " H H OCH ₃ CH ₃ N 137-138 (dec.) 143 " H H OCH ₃ CH ₃ N 137-138 (dec.) 144 " H H OCH ₃ CCH ₃ CH 145 " H H OCH ₃ CCH ₃ CH 146 " H H OCH ₃ CCH 147 " H H OCH ₃ CCH 148 " H H OCH ₃ CCH 149 " H H OCH ₃ CCH 150 " H H OCH ₃ CCH 151 " H H OCH ₃ CC ₂ H CH 152 " H H OCH ₃ CCH 153 " H H OCH ₃ CCH 154 " H H OCH ₃ CCH 155 " H H OCH ₃ CCH 156 " H H OCH ₃ CCH 157 CH 158 CH 159 CH 150 CH 151 " H CH 152 CH 153 CH 154 CH 155 CH 155 CH 156 CH 157 CH 158 CH 159 CH 150 CH 151 CH 152 CH 153 CH 154 CH 155 CH 155 CH 156 CH 157 CH 158 CH 159 CH 150 CH 150 CH 151 CH 152 CH 153 CH 154 CH 155 CH 155 CH 156 CH 157 CH 158 CH 159 CH 150 CH 150 CH 151 CH 152 CH 153 CH 154 CH 155 CH 155 CH 156 CH 157 CH 158 CH 157 CH 158 CH 159 CH 150 CH 150 CH 151 CH 152 CH 153 CH 154 CH 155 CH 155 CH 156 CH 157 CH 158 CH 159 CH 150 CH 150 CH 151 CH 152 CH 153 CH 154 CH 155 CH 155 CH 156 CH 157 CH 157 CH 158 CH 157 CH 158 CH 158 CH 159 CH 150 CH 150 CH 151 CH 152 CH 153 CH 154 CH 155 CH 155 CH 156 CH 157 CH 157 CH 158 CH 157 CH 158 CH 157 CH 158 C	133	++	6-CF,	H	OCH 3	och,	CH	
136 -OSO,N(CH ₃) ₂ R H OÇH ₃ OCH ₃ CH 155-157 137 " H CH ₃ OCH ₃ OCH ₃ CH CH 138 " H CH ₃ OCH ₃ CH ₃ N 139 " H H CH ₃ CH ₃ CH 140 " H H OCH ₃ CH ₃ CH 141 " H H CH ₃ CH ₃ CH 142 " H H CH ₃ CH ₃ N 137-138 (dec.) 143 " H H OCH ₃ CH ₃ N 144 " H H OCH ₃ CH ₃ N 144 " H H OCH ₃ CH ₃ N 145 " H H OCH ₃ CH ₃ N 146 " H H OCH ₃ CCH ₃ CH 147 " H H OCH ₃ CCF ₂ CH 148 " H H OCH ₃ CCF ₂ CH 149 " H H OCH ₃ CC ₃ CH 150 " H H OCH ₃ CC ₃ CH 151 " H H OCH ₃ CC ₂ CH 152 " H H OCH ₃ CC ₃ CC 153 " H H OCH ₃ CC ₃ CC 154 " H H OCH ₃ CC ₂ CH 155 " H H OCH ₃ CC ₃ CC 156 CH 157 CH 158 CH 159 CH 150 CH 151 CH 152 CH 153 CH 154 CH 155 CH 155 CH 156 CH 157 CH 158 CH 158 CH 159 CH 150 CH 150 CH 151 CH 152 CH 153 CH 154 CH 155 CH 155 CH 155 CH 156 CH 157 CH 158 CH 158 CH 159 CH 150 CH 150 CH 151 CH 152 CH 153 CH 154 CH 155 CH 155 CH 156 CH 157 CH 158 CH 158 CH 159 CH 150 CH 150 CH 151 CH 152 CH 153 CH 154 CH 155 CH 155 CH 155 CH 155 CH 156 CH 157 CH 157 CH 158 CH 158 CH 158 CH 158 CH 159 CH 150 CH 150 CH 151 CH 152 CH 153 CH 154 CH 155 CH 155 CH 155 CH 156 CH 157 CH 158 CH 157 CH 158 C	134	**	6-0CF ₃	Ħ	OCH 3	OCH 3	CH .	
137 " H CH ₃ OCH ₃ CH ₃ CH 138 " H CH ₂ OCH ₃ CH ₃ N 139 " H H CH ₂ CH ₃ CH 140 " H H OCH ₃ CH ₃ CH 141 " H H CH ₃ CH ₃ CH 142 " H H OCH ₃ CH ₂ N 142 " H H OCH ₃ CH ₃ N 144 " H H OCH ₃ CH ₃ N 145 " H H OCH ₃ CCH 146 " H H OCH ₂ CC 146 " H H OCH ₂ CC 147 " H H OCH ₃ CH 148 " H H OCH ₃ CCH ₃ CH 149 " H H OCH ₃ CCH ₃ CH 150 " H H OCH ₃ CCH ₃ CH 151 " H H OCH ₃ CCH ₃ CH 152 " H H OCH ₃ CCH ₃ CC 153 " H H CCH ₃ CCH 154 " H H CCH ₃ CCH 155 " H H CCH ₃ CCH 156 " H H CCH ₃ CCH 157 CH 158 " H H CCH ₃ CCH 159 CCH 150 CCH 151 " CCCH 151 " CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	135	**	6-OCF ₂ H	H	OCH3	OCH 3	CH	
H CH3 OCH3 CH3 N 139 " H H CH3 CH3 CH3 CH 140 " H H CH3 CH3 CH3 CH 141 " H H CH3 CH3 CH3 N 142 " H H COCH3 CH3 N 143 " H H CCH3 CH3 N 144 " H H CCH3 CH3 N 144 " H H CCH3 CCH3 N 145 " H H CCH3 CCH3 N 146 " H H CCH3 CCH3 N 147 " H H CCH3 CCH3 CH 148 " H H CCH3 CCH3 CH 149 " H H CCH3 CCH3 CCH 150 " H H CCH3 CCH3 CCH 151 " H H CCH3 CCH3 CCH 152 " H H CCH3 CCH3 CCH 153 " H H CCH3 CCH3 CCH 154 " H H CCH3 CCH3 CCH 155 " H H CCH3 CCCH3 CH 156 " H H CCH3 CCCCH3 CH 157 " H H CCH3 CCCCCH3 CH 158 " H H CCH3 CCCCCCH3 CH 159 " H H CCH3 CCCCCCCCCCCCCCCCCCCCCCCCCCCC	136	-0502N10	H ₃) ₂ H	H	och,	OCH3	CH	155-157
139 " H H CH ₃ CH ₂ CH 140 " H H OCH ₃ CH ₂ CH 141 " H H CH ₃ CH ₂ N 142 " H H OCH ₃ CH ₂ N 143 " H H OCH ₃ CH ₂ N 144 " H H OCH ₃ CCH ₂ N 145 " H H OCH ₃ CCH ₂ CH 145 " H H OCH ₃ CCH 146 " H H OCF ₂ H CH ₂ CH 147 " H H OCH ₃ Br CH 148 " H H OCH ₃ CC ₂ H ₃ CH 149 " H H OCH ₃ CCH ₃ CCH 150 " H H OCH ₃ CCH ₃ CCH 151 " H H OCH ₃ CC ₂ H ₃ CH 152 " H H OCH ₃ CC ₂ H ₃ CH 153 " H H OCH ₃ CC ₂ H ₃ CH 154 " H H OC ₂ H ₃ CC ₂ H ₃ CH 155 " H H OC ₂ H ₃ CC ₂ H ₃ CH	137	**	H	CH 3	OCH 3	OCH3	CH	
140 " H H OCH3 CH2 CH 141 " H E CH3 CH3 N 142 " H E OCH3 CH3 N 143 " E E OCH3 CH3 N 144 " H E OCH3 CH3 N 145 " E E OCH3 CL CH 146 " H E OCH2 CH2 CH 147 " H E OCH3 Br CH 148 " H E OCH3 Br CH 149 " H E OCH3 CCH3 CH 150 " H E OCH3 CCH3 CH 151 " H E OCH3 CCB3 CH 152 " H E OCH3 CCB3 CH 153 " H E CCB3 CCB4 CH 154 " H E CCB3 CCB4 CH 155 " H E CCB3 CCB4 CH 155 " H E CCB4 CCB4 CH 155 " H E CCB4 CCB4 CH 156 " H E OCH3 CCB4 CH 157 " H E CCB4 CCB4 CH 158 " H E CCB4 CCB4 CH 159 " H E CCB4 CCB4 CH 150 " H E CCB4 CCB4 CH 151 " H E CCB4 CCB4 CH 155 " H E CCB4 CCB4 CH	138	**	H	CH 3	OCH 3	CE,	N	
141	139	*1	Ħ	Ħ	CH ₃	CH3	CH	•
H H CCH3 CH3 N 137-138 (dec.) 143 " H H CCH3 CCH3 N 144 " H H CCH3 CCH3 N 145 " H H CCH3 CC CH 146 " H H CCF2H CH3 CH 147 " H H CCH3 BP CH 148 " H H CCH3 CCH3 CH 149 " H H CCH3 CCH3 CH 150 " H H CCH3 CCH3 CH 151 " H H CCH3 CCH3 N 151 " H H CCH3 CCH3 CH 152 " H H CCH3 CCH3 CH 153 " H H CCH3 CCH3 CH 154 " H H CCCH3 CCH3 CH 155 " H H CCCH3 CCH3 CH	140	**	Ħ	Ħ	OCH 3	CE 3	CH	
143 " H H OCH3 OCH3 N 1444 " H H OCH3 C1 CH 145 " H H OCF2H CH3 CH 146 " H H OCF2H OCF2H CH 147 " H H OCH3 Br CH 148 " H H OCH3 OC2H3 CH 149 " H H OCH3 OC2H3 CH 150 " H H OCH3 OC3H3 N 151 " H H OCH3 OC3H3 N 151 " H H OCH3 OC3H3 CH 152 " H H OCH3 OC3H5 CH 153 " H H OCH3 CCH3 CH 154 " H H C1 OC2H3 CH 155 " H H C1 OC2H3 CH 155 " H H C1 OC2H3 CH	141	•	H	H	CH ³	CH,	N	
144 " H H OCH3 C1 CH 145 " H H OCF2H CE3 CH 146 " H H OCF2H CCF2H CH 147 " H H OCH3 Br CH 148 " H H OCH3 OC3H3 CH 149 " H H OCH3 SCH3 CH 150 " H H OCH3 OC2H3 N 151 " H H OCH3 OC3H7 CH 152 " H H OCH3 C1 N 153 " H H C1 OC2H3 CH 154 " H H C2H3 OC2H3 CH 155 " H H CCCCC CH	142	#	Ħ		och' ₃	CH ₃	N	137-138 (dec.)
145 " H H OCF ₂ H CH ₃ CH 146 " H H OCF ₂ H OCF ₂ H CH 147 " H H OCH ₃ Br CH 148 " H H OCH ₃ OC ₂ H ₃ CH 149 " H H OCH ₃ OC ₂ H ₃ CH 150 " H H OCH ₃ OC ₂ H ₃ N 151 " H E OCH ₃ OC ₃ H ₇ CH 152 " H H OCH ₃ CC ₃ H ₇ CH 153 " H H CC ₃ H ₃ CC ₂ H ₃ CH 154 " H H CC ₃ H ₃ CC ₂ H ₃ CH 155 " H H CC ₃ H ₃ CC ₄ CH	143	**	H		och,	och,	N	
146 " H H OCF ₂ H OCF ₂ H CH 147 " H H OCH ₃ Br CH 148 " H H OCH ₃ OC ₂ H ₃ CH 149 " H H OCH ₃ OC ₂ H ₃ CH 150 " H H OCH ₃ OC ₂ H ₅ N 151 " H H OCH ₃ OC ₃ H ₇ CH 152 " H H OCH ₃ CH ₃ CH 153 " H H CC ₂ H ₃ CH 154 " H H CC ₂ H ₃ CC ₃ H ₃ CH 155 " H H CC ₂ H ₃ CCH ₃ CH	144	••		I	OCX 3	Cl	CH	
147 " H H OCH3 Br CH 148 " H H OCH3 OC2H5 CH 149 " H H OCH3 OC2H5 CH 150 " H H OCH3 OC3H5 CH 151 " H H OCH3 OC3H7 CH 152 " H H OCH3 CC3H7 CH 153 " H H CCH5 CCH5 CH 154 " H H CC2H5 OC2H5 CH 155 " H H CC2H5 OCH3 CH	145	**			OCF ₂ H	CE,	CH	
148 " H H OCH3 OC2H8 CH 149 " H H OCH3 SCH3 CH 150 " H H OCH3 OC2H8 N 151 " H H OCH3 OC3H7 CH 152 " H H OCH3 CL N 153 " H H C1 OC2H8 CH 154 " H H OC2H8 OC2H8 CH 155 " H H OC3H8 OC2H8 CH	146	•			ocf ₂ H	OCT ₂ H	CH	
149 " H H OCH3 SCH3 CH 150 " H H OCH3 OC2H5 N 151 " H H OCH3 OC3H7 CH 152 " H H OCH3 CL N 153 " H H C2H5 OC2H5 CH 155 " H H C2H5 OCH3 CH	147	•			och ³	Br	CH	
150 " H H OCH ₂ OC ₂ H ₅ N 151 " H H OCH ₃ OC ₃ H ₇ CH 152 " H H OCH ₃ Cl N 153 " H H Cl OC ₂ H ₅ CH 154 " H H OC ₂ H ₅ OC ₂ H ₅ CH 155 " H H C ₂ H ₅ OCH ₃ CH	148	•			och,		CH	
151 " H H OCH; OC; H; CH 152 " H H OCH; Cl N 153 " H H Cl OC; H; CH 154 " H H C; H; OCH; CH 155 " H H C; H; OCH; CH	149	•			och,	SCH,	CH	
152 - H H OCH, Cl M 153 - H H OC ₂ H ₅ CH 154 - H H C ₂ H ₅ OC ₂ H ₅ CH 155 - H H C ₂ H ₅ OCH, CH	150	•	1	1	OCH3	oc, H,	N	•
152 153 - H H Cl OC ₂ H ₃ CH 154 - H H C ₂ H ₃ OC ₂ H ₃ CH 155 - H H C ₂ H ₃ OCH ₃ CH	151	•			OCH3	oc, H,	CH	
153 - H H C1 OC ₂ H ₃ CH 154 - H H C ₂ H ₃ OCH ₃ CH 155 - H H C ₂ H ₃ OCH ₃ CH		**			och,	Cl	N	
154 - H H C.H. OC.H. CH		•			Cl	OC'E	CH	
HE CH CH CH		•		H	OC,Hs	oc, H,	CH	
MARINE THE TOTAL CHARGE		-				OCH,	CH	•
	155	-	H	H	CF ₂	OCH,	CH	

Cpd. No. R: R: R:	Y	M.p.[•C]
157 " H GCH CE		
	_	CH
	•	CE
m m och ₂ cf ₃		
160 " H OCH3CF3	_	
A CA	(OCH,),	
a-ca ₃ a cca ₃	•	CH
a von	•	CH
		CH
a ung	•	
	OCH,	
	•	1
	nech;	₹
	CH,	1
	OCH,	CH
171 " H OCH ₃	CH,	H
172 " " H OCH ₃	Cl	
173 " E CH ₃	CH,	ZH
174 " CCH ₃	och ³	1
175 " H OCH;	CH ₃	
176 " E OC ₂ H ₅	NHCH,	X
177 "CH3 OCH3	CH,	N .
178 " 6-CH ₃ E OCH ₃	OCH,	CH
179 " E OCH ₃	CH ³	CH
180 " E OCH,	C1 (CH
181 " E CH ₃	CH,	CE
182 " E OCH,	OCH ₃	N
183 " E OCE ₃	CE,	N
184 · · · · · · · · · · · · · · · · · · ·	NECE,	
185 " CH ₃ OCH ₃	CE,	N
	OCH,	CH
187 " E OCH ₃	CH,	CH

Continuation of Table 1

Cpd. No. R1	R 2	R 3	*	Y	2	м.р[•С]
188		1.7	~~ti	~ 1		
189	•	Ħ	•	C1 Cu	CH	
190	•	Ħ	CH,	CH, CCH,		
	-	B	och,	CH,	N	
191 "	•••	H	OCH3	NECH,	N	
136			OC'E'	MAUA		
193		CH,	OCH,	CH3	N	
194	5-C1	Ħ	OCH,	OCH,	CH	
195	•	Ħ	OCH 3	CH ₃	CH	
196	•	H	och,	Cl	CH	
197	•	H	CH3	CH,	CH	
198	-	H	OCH3	och,	N	
199	47	H	och 3	CH3	N	
200 "	•	H	OC ₂ H ₅	NECH ₃	N	
201	•••	CH,	OCH ₃	CH 3	N	
202	6-C1		och,	och,	CH	•
203	••	Ħ	OCH 3	CH,	CH	
204	•	H	och,	Cl	CH	
205	•	1	CH3	CH,	CH	
206	-	Ħ	OCH 3	OCH3	N	
207		H	OCH 3	CH,	N	
208		H	oc'h	nech ³	N	
209	19	CH3	OCH,	CH3	N	
210	4-7		OCH ³	och 3	CH	•
211			och,	CE,	CH	
212		=	OCH 3	Cl	CH	
213			CH 3	CE,	CH	
214	•		och,	OCH ³	N	
215			och,	CH 3	N	
216	•		oc ₂ H ₅	nhch ³	N	
217	G9	CH3	och,	CE3	N	
218	5-F	H	och 3	OCH,	CH	

219			22				
220			H	OCH,	CH,	CH	
	_		Ħ	OCH,	Cl	CH	
221		•		CH,	CH ³	CH	
222	•		H	OCH,	OCH3	N	
223	•	•		. OCH	CH,	N	
224	-	•	H	OC ₂ H ₃	NHCH3	N	
225	~	•	CH3	OCH ₃	CH ₃	N	
225	•	6-F	A	OCH,	OCH,	CH	
227	•	•	E	OCH ₃	CH,	CH	
228	•	-	Ħ	OCH 3	Cl	CH	
229	•	••	#	CH,	CH ³	CH	
230	**	*	H	OCH ₃	OCH ₃	N	
231	**	•	Ħ	och,	CH3	N	
232	**	•	H	OC ₂ H ₅	NHCH ₃	N	
233	**		CH 3	och,	CH3	N	
234	**	4-OCH	3 3	OCH 3	och,	CH	
235	**	•	Ħ	OCH3	CH,	CH	
236	•		H	OCH,	Cl	CH	
237	•		H	CH,	CH ³	CH	
238	•	-	H	OCH ₃	OCH3	N	
239	•	•		OCH,	CH ³	N	
240		-		OC ₂ H ₅	NHCH,	N	
241	•	•	CH3	OCH,	CH ₃	N	•
242	•	5-0CH	3	OCH,	ocz,	CH	
243	-	•		och,	CH3	CH	
244	. •	•	Ħ	och,	Cl	CH	
245	\$	•		CX,	CE3	CH	
246	•	•		OCH 3	oce,	N	
247	**	4		och,	CE,	N	
248	59 -		H	OC ₂ H ₅	nech,	N	
249	**	•	CH,	och,	CE3	N	
250	•	6-OCH	1, H	OCH3	OCH,	CH	

Cpd.No.	R:	R2	R 3	X	Y	Z	M.p[•c]
251	•	•	H	OCH,	CH,	СH	
252	-	-	H	OCH ₃	Cl	CH	
253	•	•	H	CH,	CH,	CH	
254		•	Ħ	OCH,	OCH,	N	
255	•	•	Ħ	OCH ₃	CH3	N	
253	**	•	Ħ	OC ₂ H ₃	NHCH3	N	
257	F	•	CH,	OCH ₃	CH,	N	
258	**	6-C ₂ 1	is H	OCH 3	OCH,	CH	
259	**	6-C41	H g H	OCH ₃	OCH,	CH	
260	•	6-0C ₂ 1	H ₅ H	OCH ₃	OCH,	CH	
251	••	6-0CH2C	F, H	OCH,	OCH 3	CH	
252	**	6-SC	H, H	OCH,	0	CH	
253	**	6-50 ₂ C	H ₃ H	OCH 3	OCH3	CH	
264	-	5-NO	3 E	OCH ₃	OCH ₃	CH	
255	•	6-C0,C	H ₃ H	OCH 3	OCH 3	CH	
256	•	6-Br	A	OCH ³	och3	CH	
267	· ••	. 6-CF	3 A	OCH ₃	OCH ³	CH	
268	**	6-0C	F, H	och,	OCH ₃	CH	
269	.	6-0CF	2H E	OCH3	och,	CH	
	_ C	Ha					
270	-050 ₂ N - c	2 ^H S		OCH,	och,	CH	
271	€6	H	H	och 3	CH ₃	CH	
272	•	1		och 3	Cl	CH	
	•	1	ı	CH,	CH,	CH	
273	•		1	och,	OCH,	N	
274		H		OCH,	CH,	N	
275	**	I		OC, H,	MECH,		
276	**		CH ₂	OCH,	CH ₂	N	
277	•	4-C1	•	OCH ₂	OCH,	CE	
278	99	4-61	•	OCH ₃	OCH,	CH	
279	•		i, H	och,	OCH,	CH	
280	•		CH, H	och,	oca,	CH	
281	- -	9-00	-a3 =	~~** 3	2	- - -	

Cpa.	No Ri	R?	g;	*	Y	Z	M.p.(°C)
282		6-Cl	H	осн,	och,	CH	
	-050, N(CH,) OC	_	Ħ	OCH 3	och,	CH	
284	-050 ₂ N - CH,	H	Ħ	och,	och,	CX	
285	••	H	H	OCH,	CH,	CH	
286	••	H	E	OCH 3	Cl	CH	
287	••	H	H	CH3	CH,	CH	•
288	**	H	Ħ	OCH 3	OCH ₃	N	
289	••	H	H	OCH ₃	CH,	N	
290	••	H	H	OC ₂ H ₅	NHCH ₃	N	
291	**	H	CH,	OCH,	CH,	N	
292	10	4-CH3	H	OCH,	OCH,	CH	
293	**	4-Cl	H	OCH,	OCH3	CH	
294	**	6-CH,	H	OCH,	och,	CH	
295	••	6-0CH	H	OCH 3	OCH 3	CH	
295	**	6-C1	H	och,	OCH ₃	CH	
297	-0502N(A1171) ₂ H	H	OCH3	och,	CH	
298	-050 ₂ N -C ₂ H ₅			och ³	och,	CH	157-158
299	•	E	Ħ	och 3	CH,	CH	151-153 (D.)
300	•		Ħ	OCH 3	Cl	CH	
301				CH3	CH3	CH	159-160 (D.)
302				och,	OCH,	N	
303	•	H		och ₃	CX 3	N	146-149 (D-)
304	•	H		ocana	MHCH ³	N	
305	99	H	CH,	och 3	CH ³	N	
306		4-CH ₃		OCH,	och,	CH	
307		4-Cl		och,	OCH3	CH	
308	#	6-CH ₃	H	OCH3	OCH,	CH	
309		5- 0CH	, #	OCH 3	och,	CH	

Cpd.	No. R:	R?	R3	*	Y	Z	M.p. [•c]	
					•			
310	•				•	CH		
311	•	5-F		OCH3	och,	CH		
312	-050, N	H	H	och,	och,	CH	158-159	
313	•	H	2	och 3	CH,	CH	170-171	
314	**	Ħ	H	OCH,	Cl	CH		
315	•	Ħ	H	CH3	CH,	CH	169-170	
315	-	H	H	och,	och,	N		
317	,	Ħ	H	OCH ₃	CH3	N	155	
318	•••	H	Ħ	OC ₂ H ₅	NHCH;	N		
319	••	Ħ	CH3	OCH,	CH ³	N		
320	**	4-CH3	Ħ	och 3	och,	CH		
321	••	4-01	H	OCH 3	OCH 3	CH		
322	•	6-CH ₃	H	OCH ₃	OCH 3	CH		
323		6-OCH	3 H	OCH 3	OCH 3	CH		
324	44	5-C1	H	OCH ₃	OCH ₃	CH		
325	90	6-F	H	OCH ₃	OCH ³	CH		
325	-050, N	H		och,	och,	CH	173-174	(D.)
327		H		och,	CH ₃	CH		
328		H		och 3	Cl	CH		
329		Ħ	Ħ	CH ₃	CH3	CH	185-186	(D.)
330	-			och,	OCH3	N		
331	· •			och,	CE,	N		
332	•			oc, H,	Mech 3	N		
333	•		CH,	OCH ₃	CE3	N		
334	•	4-CH		oce ₃	och,	CH		
335	_	4-Cl		och,	och,	CH		
336	-	6-CH		och,	OCH 3	CH		
337	_	6-0C1	a, E	OCH	och,	CH		
338	_	6-C1		och 3	OCH,	CH		

Cpd. No	o. Ri	R?	R 3	X	Y	2	M.p. {°C}	
340	-050, N	o H	Ħ	och,	OCH,	CH	141-142 ()
341		H	H.	OCH,	CH,	CH		
342	-	H	Ħ	OCH,	Cl	CH		
3 4 3	•	Ħ	H	CH,	CH,	CH		
344	•	H	H	OCH,	ocu,	N		
3 4 5	-	H	Ħ	OCH,	CH,	N		
345	•	H	H	OC, H,	NHCH,	N		
347	••		CH,	OCH,	CH,	N		
348	•	4-CH ₂	•	och,	och,	CH		
349	••	4-C1	H	och,	och,	CH		
350	**	6-CH,		OCH,	och,	CH		
351	••	6-OCH,		OCH,	OCH,	CH		
352	**	6-C1	H	OCH ₃	OCH,	CH		
353	**	6-F	H	oca,	och,	CH		
354	-NHSO, CH,	H	Ħ	OCH,	och,	CH	191-192 (D.)
355	• • • • • • • • • • • • • • • • • • •	H	Ħ	och,	CH,	CH		
356	•	H	H	OCH,	Cl	CH		
357	90	Ħ	H	CH,	CH,	CH		
358	•	H	H	OCH,	OCH,	N		
359	•	Ħ	1	och,	CH,	N		
360	•			OC, H,	NHCH,	N		
361	99	H	CH,	OCH,	CH,	N	-	
362	₩	4-CH,	H	OCH,	OCH,	CH		
363	•	4-C1	H	OCH,	CE,	CH		
354	•	6-CH,		och,	OCH,	CH		
365	-	6-0CH		OCH,	OCH,	CH		
366	•	6-C1	H	OCH,	OCH,	CH		
367	•	6-F	H	OCH,	OCH,	CH		
	-NHSO2C2R5			OCH,	och,	CH		
				•	-			

Cpd. No.	Ri	R 2	R 3		*	Z	M.p.·(°C)
369	•	H	H	och,	CH,	CH	
370	F1	H	H	OCH,	Cl	CH	
371	11	H	H	CH,	CH,	CH	
372	**	H	Ħ	OCH,	OCH3	N	
373	**	Ħ	H	OCH,	CH,	N	
374	**	H	H	.OC'H2	NHCH3	N	
375	**	H	CH,	OCH 3	CH ³	N	
376	FR	4-CH3	H	OCH ₃	OCH,	CH	
377	••	4-01	E	och,	OCH,	CH	
378	+4	6-CH ₃	H	och,	och,	CH	
379	**	6-OCH 3	H	OCH,	OCH,	CH	
380	H	6-C1	H	OCH,	OCH3	CH '	
381	· *	6-F	H	och,	OCH ₃	CH	
382 -}	HSO2C3H7	H	Ħ	och,	OCH 3	CH	
383	**	H	Ħ	OCH,	CH ₃	CH	
384	P1	H	Ħ	OCH,	Cl	CH	
385	•	H	H	CH3	CH ³	CH	
386	-	Ħ	H	OCH 3	OCH,	N	
387	•	H	H	OCH 3	CH3	N	
388		Ħ	H	OC ₂ H ₅	NHCH ₃	N	
389	***	Ħ	CH3	OCH,	CH ³	N	
390	**	4-CH ₃	H	OCH ₃	och,	CH	
391	**	4-Cl		och 3	OCE 3	CH	
392	•	6-CH ₃		OCH3	OCE 3	CH	
393	-	6-0CH		och,	och ³	CH	
394		6-C1		och,	och,	CH	
395		6-F		OCH3	OCH,	CI	
396 -	NHSO, C. H.			ocx3	OCH,	CH	
397	•		M	och,	CH ₃	CE	
398	•			OCH ₃	Cl	CH	
399	•	11		CH,	CH ³	CH	
401	•	Ħ	H	OCH3	OCH ³	N	
402		Ħ	Ħ	OCH ₃	CH,	N	

Continuation of Table 1

Cpd. N	10. R1	R 2	R3	*	Y	2	M.p.[•C]
4 C 3	• •	H	E	OC ₂ H ₅	NHCH,	N	
404	•		CH,	OCH,	CH ₃	N	
405	400	4-CH,	•	OCH,	OCH,	CH	
406	**	4-C1			OCH 3	CH	
407	••	6-CH ₃	H	OCH,	OCH,	CH	
408	**	6-OCH,		OCH,	OCH 3	CH	
409	•	6-C1	H	OCH 3	OCH,	CH	
410	•••	6-F	Ħ	OCH ₃	OCH,	CH	
411	-N(SO2CH3)2	B	Ħ	OCH 3	OCH 3	CH	219-220 (D.)
412	••	H	H	OCH ₃	CH3	CH	
413	••	H	H	och,	Cl	CH	
414	••.	H	H	CH,	CH 3	CH	
415	-	Ħ	Ħ	och,	OCH3	N	
416	**	H	H	och3	CH3	N	
417	**	H	H	OC3H2	NHCH3	N	
418	220	H	CH,	OCH ₃	CH3	N	
419	**	4-CH3	Ħ	och 3	OCH,	CH	
420	-	4-C1	Ħ	och,	och,	CH	
421	-	6-CH ₃	Ħ	OCH,	OCH,	CH	
422	**	6-0CH	3 H	och,	och 3	CH	
423	•	6-Cl	H	och,	och,	CH	
424		6-F	Ħ	OCH,	och,	CH	<i>z</i>
425	-NISO2C2H5	2 H		och,	och,	CH	
425				OCH 3	CH3	CH	
427			X	OCH,	Cl	CH	
	••			CH,	CH,	CH	
428	•			och,	OCH,	N	
429	99		E	och,	CH,	N	
430				OC ₂ H ₃	NHCH	N	
431	•••		CH,	OCH,	CH,	N	
432	•		•	OCH,	och,	CH	
433	**	4-CH ₃		och ₃	och,	CH	
434	~		_	och,	OCH,	CH	
435		6-CH ₃	•	OCH ₃	och,	CH	
435		6-0C	13	Anu 3	73		

Cpd.	No. R1	23	R 3		*	2	M.p.[°C]
437		6-C1		och,	ocu,	CH	
438	_	6 - F	Ħ	OCH,	ocu,	CH	
439	-N(CH3)SO2CH3	H	Ħ	OCH 3	OCH3	CH	177-178
440	•	H	CH3	OCH3	OCH3	CH	152-153
441	••	H	CH3	OCH3	CH3	N	
442	**	H	H	СНЗ	CH3	CH	185-185(D.)
443	**	H	Ħ	OCH3	CH3	CH	169-170(D.)
444	**	H	H	CH3	OC2H5	CH	
445	*	H	H	OCH 3	CH3	N	158-159(D.)
446	. ••	H	H	OCH3	оснз	N	173-174(D.)
447	••	H	H	OCH 3	Cl	CH	167-169
448		Ħ	H	OCF2H	CH3	CH	
449	. +(H	H	OCF2H	OCF2H	CH	-
450	**	H	H	OCH 3	Br	CH	
451	**	H	H	OCH3	OC2H5	CH	
452	₩	H	H	OCH3	SCH3	CH	
453	**	Ħ	H	OCH 3	OC2H5	N	
454		H	Ħ	OCH3	OC3H7	CH	
455	#	Ħ	Ħ	CH3	Cl	CH	168-169(D.)
456		H		Cl	OC2H5	CH	
457	•	Ħ	Ħ	OC2H5	OC2H5	CH	
458		H	Ħ	CZHS	och3	CH	
459	-	H	Ħ	CF3	OCH3	CH	
460		H	H	OCH2C73	CH3	CH	
461	49	H	H	och2cf3	OCH3	CH	
462	•	H	H	och2cf3	OCH2CF3	CH	
463		Ħ		OCH2CF3	OCH3	N	
464				OCH3 C	E(OCH3)2	CH	

Cpd. No.	R¹	R ² R ³	X	*	2	M.p [•c]
465		4-CH3 H	оснз	OCH 3	CH	
466	**	H	осн 3	CH3	CH	
467	-	* H	OCH 3	Cl	CH	
468	₹	· H	CH3	CH3	CH	
469	**	* H	оснз	OCH 3	N	
470	*	* H	OCH3	CH3	N	
471	**	· H	OC2H5	NHCH3	N	
472	•	" CH3	OCH 3	осн з	CH	
473	•	5-CH3 H	оснз	оснз	CH	
474	**	e H	OCH 3	CH3	CH	
475	*1	" H	OCH3	Cl	CH	
476	••	" H	CH3	CH3	CH	
477	•	** H	OCH3	OCH3	N	
478	**	" H	OCH3	CH3	N	
479	**	×	OC2H5	NHCH3	N	
480	••	" CH3	OCH 3	OCH3	CH	
481	· ••	6-CH3 H	OCH3	OCH 3	CH	185
482	**	* H	OCH3	CH3	CH	•
483	P *	The state of the s	OCH 3	Cl	CH	
484	64	* H	CH3	CH3	CH	
485	**	" H	OCH 3	OCH3	N	
486	**	" H	OCH3	CH3	N	
487	•	The state of the s	OC2H5	NHCH3	N	
488	99	• CH3	och3	оснз	CH	
489	•••	4-Cl H	OCH 3	OCH3	CH	
490	PP		OCH 3	CH3	CH	
491	•	* #	OCH 3	Cl	CH	
492	**		CH3	CH3	CH	
493	•		OCH3	OCH3	N	
494			OCES	CH3	H	
495	#3		OC2H5	MHCH3	N	
496		" CH3	OCH 3	OCH3	CH	

Cpd. No.	RI	R 2	R 3	*	Y	2	M.p[•c]
497	•	5-C1	Ħ	оснз	ОС Н 3	CH	
498	•	•	H	OCH3	CH3	CH	
499	•	•	H	OCH 3	Cl	CH	
500	•	•	Ħ	CH3	CH3	CH	
501	•	•	Ħ	OCH 3	оснз	N	
502	-		H	OCH3	CH3	N	
503	**	•	H	OC2H5	NHCH3	N	
504	**	, 4	CH3	OCH 3	оснз	CH	
505	**	6-Cl	H	осн 3	оснз	CH	
506	**	*	H	OCH 3	CH3	CH	•
507	H	#9	H	OCH 3	C1	CH	
508	••	**	H	CH3	СНЗ	CH	
509	**	•	H	OCH 3	OCH3	N	
510	**	(79	H	оснз	CH3	N	
511	••	-	H	OC2H5	NHCH3	N	
512	**	•	CH3	OCH3	OCH3	CH	
513	**	4-CF3	H	OCH3	OCH3	CH	
514	**	*	H	och3	CH3	CH	
515	**	79	H	OCH 3	Cl	CH	
516	(10	33	H	CH3	CH3	CH	
517	**	•	Ħ	OCH3	OCH3	N	
518	**	•	Ħ	OCH 3	CH3	N	
519	₩	4-F	H	OC2E5	NHCH3	N	
520	•	**	CH3	OCH3	OCH3	CH	
521	•	5-CF3		OCE3	OCH3	CH	
522	•	•	Ħ	OCH3	CH3	CH	
523	•	-	H	OCH3	Cl	CH	
524	•••		I	CH3	CH3	CE	
525	•	•	H	OCH3	och3	N	
525	•	•		OCH3	CH3	N	
	pa	5-F		OC2H5	NHCH3	N	
527	•	•		och3	och3		
528			CH3	was	~~~3	CH	

Cpd. No.	RI	R2	R:		Y	2	M.p.[•c]
529	••	6-F	H	OCH3	оснз	CH	
530	**	*	H	OCH3	СНЗ	CH	
531	••	•	H	OCH 3	Cl	CH	
532	**	•	H	CH3	CH3	CH	
533	••	94	H	OCH 3	OCH3	N	
534	**	•	H	OCH 3	CH3	N	
535	•	-	Ħ	OC2H5	NHCH3	N	
536	**	•	CH3	OCH3	оснз	CH	
537		4-OCH	H	OCH3	оснз	CH	
538	**	-	H	осн 3	CH3	CH	
539	••	•	Ħ	OCH3	Cl	CH	
540	**	**	H	CH3	CH3	CH	
541	*	•	Ħ	осн 3	оснз	N	
542	**	**	H	оснз	CH3	N	
543	••	•	H	OC2H5	NHCH3	N	
544	**	•	CH3	OCH3	OCH3	CH	
545	**	5-OCH;	3 H	OCH 3	оснз	CH	
546	**	-	H	OCH3	CH3	CH	
547	**	•	H	OCH3	Cl	CH	
548	**		H	CH3	CH3	CH	
549	14	•	H	OCH 3	OCH 3	N	
550	•	•	H	OCH3	CH3	N	
551	44	***	H	OC2H5	NHCH3	N	
552	•	•	CH3	OCH3	OCH 3	CA	
553	•	6-0CH	3 H	och 3	och 3	CH	
554		•	Ħ	CH3	CH3	CH	
555	**		Ħ	OCHI	Cl	CH	
556	••	(m)	Ħ	CH3	CH3	CH	
557	•	**	H	och3	OCE3	N	
558	•	**		och 3	CH3	N	
559	•	**	Ħ	OC2H5	NHCH3	N	

Continuation of Table 1

Cpd. N	o. Ri	R 2	B;	X	Y	2	M.p[°C]
560	**	•	CH3	оснз	оснз	CH	
561	**	6-C2H5	H	OCH3	OCH 3	CH	
562	**	6-C4H9	H	OCH3	OCH3	CH	
563	**	6-OC2H5	H	OCH3	OCH3	CH	
554	••	6-OCH2CF3	H	OCH3	OCH 3	CH	
565	**	6-8CH3	H	OCH3	OCH 3	CH	
566	**	6-302CH3	H	OCH3	OCH 3	CH	
567	••	6-NO2	Ħ	OCH3	OCH3	CH	
568	•	6-C02CH3	3 H	OCH3	OCH3	CH	
569	**	6-Br	H	OCH3	OCH 3	CH	
570	••	6-CF3	H	OCH3	och3	CH	
571	11	6-OCF	3 H	OCH 3	OCH 3	CH	
572	•	6-OCF2	H H	OCH 3	OCH3	CH	
573	-N(Et)SC	2CH3 H	H	och3	OCH 3	CH	188 (D.)
574	**	H	H	OCH 3	CH3	CH	
575	**	H	H	OCH3	Cl	CH	
576	**	H	H	CH3	CH3	CH	
577	**	H	H	OCH3	OCH3	N	
578	**	H	H	OCH3	CH3	N	
579		H	Ħ	OC2H5	NHCH3	N	
580	•		CH3	och3	OCH3	CH	
581	•	4-CH3	H	OCH 3	OCH3	CH	
582	49	4-C1	H	och 3	och3	CH	
583	•	6-CH;	3 H	OCH3	och3	CH	
584	•	6-0C1	H3 H	OCE 3	OCH 3	CH	
585	•	6-C1	H	och3	OCH3	CH	
586	•	6-J	H	OCH3	OCH3	CH	
587	-N(PT)5	O2CH3	Ħ	OCH 3	OCH 3	CH	182-1836
588		H		CH3	CH3	CH	
589	-		H	och 3	Cl	CH	
590	•	Ħ	H	CH3	CH3	CH	
591	-	H	H	OCH3	OCH3	N	
592	••	Ħ	Ħ	OCH3	CH3	N	

Cpd.	No.	Rì	R2	R:	*	Y	Z	M.p.[•c]
5 9	3	*	H	H	OC2H5	NHCH3	N	
5 9	4	~	H	CH3	OCH3	OCH3	CH	
5 9	5		4-CH3	H	OCH3	OCH3	CH	
5 9	6	**	4-Cl	H	OCH 3	OCH 3	CH	
5 9	7	••	6-CH3	H	OCH3	OCH3	CH	
5 9	8	•	6-OCH3	H	OCH 3	OCH3	CH	•
5 9	9	**	6-Cl	H	OCH 3	OCH3	CH	
60	0	**	6-F	H	OCH 3	оснз	CH	
60	1 -N(i-F	r)SO2CH	ia H	H	OCH3	OCH3	CH	195(D.
60	2	**	H	H	OCH 3	CH3	CH	
5 0	3	**	H	H	OCH 3	Cl	CH	
60	4	**	H	H	CH3	CH3	CH	
60	5	**	H	H	OCH 3	оснз	N	
60	6	11	H	H	OCH 3	CH3	N	
60	7	**	H	H	OC2H5	NHCH3	N	•
60	8	**	H	CH3	OCH3	OCH3	CH	
6 (9	•	4-CH3	H	оснз	OCH 3	CH	
6 1	0	**	4-C1	H	OCH3	OCH3	CH	
6 1	11	**	6-CH3	H	OCH 3	OCH3	CH	
6	12	**	6-OCH3	H	OCH3	OCH3	CH	
.6	1 3	**	6-Cl	Ħ	OCH 3	OCH 3	CH	
6	1 4	54	6-P	H	och3	OCH3	CH	
6	15 -N(1-	Bu) 502C1	es e	Ħ	OCH3	OCH3	CH	166-167
6	16	90	H	H	OCH 3	CH3	CH	
6	17	•	H	H	OCH3	Cl	CH	
6	18	•	H	Ħ	CH3	CH3	CH	
6	19	~	H	Ħ	OCH 3	OCH 3	N	
6	20	6	Ħ	Ħ	OCH 3	CH3	N	
6	21	59	H	H	OC2H5	NHCH3	N	
	22	₹9	H	CH3	oce3	OCH3	CH	
	23	•	4-CH3	H	OCH3	OCH3	CH	
	24	**	4-Cl	Ħ	OCH3	OCH 3	CH	
	_							

Cpd. No.	R1	R?	RJ	*	Y	2	M.p.[°C]
6 2 5	*	6-CH3	Ľ	осн 3	оснз	СН	
626	•	6-OCH3		OCH3	OCHS	CH	
527	**	•			оси з	CH	
628	•	6-Cl 6-F	H	OCH3	OCH3	CH	
	(CF3)S02C		H	OCH3	OCH3	CH	
630	, or 3 / 5 o Z c	H	H	OCH3	CH3	CH	
631	•	H	H	OCH 3	Cl	CH	
532	**	H	H	CH3	CH3	CH	
633	**	H	H	OCH 3	OCH 3	N	
634	11	H	H	OCH 3	CH3	N	
635	11	H	H	OC2H5	NHCH3	N	
636	**	H	CH3	оснз	оснз	CH	
637	**	4-CH3	H	оснз	OCH3	CH	
638	•	4-C1	H	OCH3	оснз	CH	
639	**	6-CH3	H	оснз	оснз	CH	
640	**	6-OCH;	3 H	OCH3	оснз	CH	
641	**	5-C1	H	осн 3	оснз	CH	
642	**	6-F	H	OCH3	оснз	CH	
643 -N	(CHF2)30	2CH3 H	H	OCH3	OCH3	CH	
644	**	Ħ	H	OCH3	CH3	CH	
. 645	7 7)	Ħ	H	och3	Cl	CH	
646	**	H	H	CH3	CH3	CH	
647	90	Ħ	H	OCH3	OCH 3	N	
648	F	Ħ	Ħ	OCH3	CH3	N	
649	•	H	H	OC2H5	NHCH3	N	
650	•	H	CH3	OCH3	OCH3	CH	
551	#8	4-CH3	H	och 3	OCH3	CH	
652	•	4-Cl	H	CH3	OCH 3	CH	
653	•	6-CH3	H	och 3	OCH 3	CH	
654	•	6-OCH	3 H	OCH 3	CH3	CE	
655	-	6-C1	H	och 3	OCH 3	CH	
656		8-F	Ħ	och 3	och3	CH	

Spd.	No.	Ri	R2	R 3	*	Y	Z	M.p[•c]
								
2 2	7	CH ₂ CF ₃	**		OCH3	оснз	CH	
6.5		SO_CH.		57.	CCAJ	66.13	•	
6 5		<u>-</u>	H	H	оснз	СНЗ	CH	
65		**	H	H	OCH 3	Cl	CH	
6 6		**	H	H	CH3	CH3	CH	
6 6		**	H	H	OCH3	оснз	N	
6 6	5 2	**	H	H	оснз	CH3	N	
6 6	3	**	H	H	OC2H5	NHCH3	N	
6 6	4	11	H	CH3	оснз	осн 3	CH	
6 6	5 5	••	4-CH3	H	оснз	оснз	CH	
6 6	5 6	••	4-Cl	H	оснз	оснз	CH	
6 6	7	, 44	6-CH3	H	OCH 3	оснз	CH	
6 6	8	**	6-OCH3	H	OCH 3	OCH3	CH	
6 6	9	**	6-C1	H	OCH3	оснз	CH	
6 7	70	₩	6-F	H	OCH 3	OCH3	CH	
		CH3CH3C1						
6 7	' '		H	H	OCH3	OCH 3	CH	
		50 ₂ CH ₃						
67		**	H	H	OCH3	CH3	CH	
67		•	#	H	OCH 3	Cl	CH	
57		•	H	Ħ	CH3	CH3	CH	
	75	•••	H	H	OCH3	OCH3	N	
	76	**	H	H	OCH3	CH3	N	
6	7 7	•••	H	H	OC2H5	NHCH3	N	
6	78	••	H	CH3	OCH3	OCH3	CH	
5	79	**	4-CH3	H	OCH3	OCH 3	CH	
68	30	•	4-C1	H	OCES	OCH3	CH	
68	81	•••	6-CH3		OCHS	OCH3	CH	
61	B 2	•	6-0CH;		oce3	och 3	CH	
6 8	83	**	6-Cl	H	OCH3	OCH3	CH	•
6	8 4		6-F	H	OCH 3	OCH3	CH	

Spd. No	D. R1	R2	R)	*	Y	2	M.p. [*C]
						<u> </u>	
685	- NCH2CH2CC	H ₃	7.7	000.			
	CH2CH2CC	44	H	OCH3	OCH 3	CH	
686	*	H	H	~~~	~ **•	~ 11	
687	•	H	H	OCH3	CH3 Cl	CH	
688	•	H	Ħ	CH3	CH3	CH	
689	••	H	H	OCH3	OCH 3	N	
690	•	H	H	OCH 3	CH3	N	
691	**	Ħ	H	OC2H5	NHCH3	N	
692	**	H	CH3	OCH3	OCH 3	СН	
693	41	4-CH3	Ħ	OCH 3	оснз	CH	
694	**	4-C1	H	OCH 3	OCH3	СН	
695	••	6-CH3	H	OCH3	OCH 3	CH	
696	••	6-OCH	3 H	OCH3	OCH3	CH	
697	+1	6-C1	H	оснз	OCH3	CH	
598	**	6-F	H	оснз	OCH 3	CH	
	eu eeu				_		
699	CH ₂ SCH ₃	H	H	OCH 3	оснз	CH	
	50,CH,		•				
700	**	H	H	OCH3	СНЗ	CH	
701	**	H	H	OCH 3	Cl	CH	
702	**	R	Ħ	CH3	CH3	CH	
703	**	Ħ	H	OCH3	ОСНЗ	N	
704	••	. #	H	OCE3	CH3	N	
706	· • • • • • • • • • • • • • • • • • • •	H	H	OC2H5	NHCH3	N	
707	•	Ħ	CHS	OCH3	OCH3	CH	
708	•	4-CH3	Ħ	OCH3	OCH3	CH	
709	•	4-C1	H	OCH3	OCH3	CH	
710	•	6-CH3	H	OCH3	OCH3	CH	
711	-	6-OCH	3 H	OCH3	och 3	CH	
712	•	6-Cl	Ħ	OCH 3	OCH3	CH	
713	•	6-F	H	OCH3	OCH3	CH	
, . •		•					

Cpd. No.		R2			Y	2	M.p.[°C]
	CH, SO, CH,						
714	SO.CH	H	H	OCH 3	OCH3	CH	
715	"	H	H	OCH 3	CH3	СН	
716	••	H	H	OCH 3	Cl	CH	
717	**	H	H	CH3	CH3	CH	
718	**	H	H	OCH 3	оснз	N	
719	•••	H	H	оснз	CH3	N	
720	**	H	H	OC2H5	NHCH3	N	
721	**	H	СНЗ	осн з	OCH3	CH	
722	••	4-CH3	H	OCH 3	оснз	CH	
723	**	4-C1	H	оснз	оснз	CH	
724	**	6-CH3		оснз	оснз	CH	
725	**	6-0CH		оснз	OCH3	CH	
726	**	6-C1	H	OCH 3	осн3	CH	
727	•	6-F	H	OCH 3	оснз	CH	
728 -	CH ₂ CO ₂ CH ₃	H	H	CH3	оснз	CH	
	SO,CH,						
729	**	Ħ	Ħ	OCH3	CH3	CH	
730	•	H	Ħ	OCH3	Cl	CH	
730	•	H	H	CH3	CH3	CH	
	•	H	H	OCH 3	OCH3	N	
732	**	1	H	OCH3	CH3	N	
733							
734	••	H	H	OC2H5	NECES	N	
735		H	CH3	CHI	OCH3	CH	
736		4-CH3		OCH3	OCH3	CH	•
737	***	4-C1	H	OCH3	CH3	CH	
738		6-CH		OCH3	OCH 3	CH	
739	•••	6-0CE	13 H	och 3	och3	CH	
740	**	6-C1	H	OCH 3	OCH3	CH	
741	***	6-F	Ħ	och3	OCH3	CA	

•	Cpd. No	. R1	R ²	R3		Y	2	M.p[°C]
		CH ₂ CN SO ₂ CH ₃						
	742	= NCH2CN	H	H	OCH3	осн 3	CH	
		SO,CH.	•					
	743	**	H	H	оснз	CH3	CH	
	744	•	H	H	оснз	Cl	CH	
	745	**	H	Ħ	CH3	CH3	CH	
	746	**	H	H	OCH 3	оснз	N	
	747	**	H	H	OCH3	CH3	N	
	748	••	H	H	OC2H5	NHCH3	N	
	749	**	H	CH3	OCH 3	OCH 3	CH	
	750	••	4-CH3	H	OCH3	оснз	CH	
	751	**	4-01	H	OCH3	оснз	CH	
	752	•	6-CH3	H	OCH3	OCH3	CH	
	753	•••	6-OCH;	3 H	OCH 3	оснз	CH	
	754	**	6-C1	H	оснз	OCH3	CH	
	755	**	6-F	H	OCH 3	OCH3	CH	
		Allw1						
	756 -	- NAllyl	H	Ħ	OCH3	OCH3	CH	208-2100.)
	•	SO2CH3						
	757	•	H	H	OCH3	CH3	CH	
	758	**	Ħ	Ħ	OCE 3	Cl	CH	
	759	•	·	Ħ	CH3	CH3	CH	
	760	•	Ħ		och3	och 3	N	
	761	#	Ħ	H	OCH 3	CH3	N	
	762		Ħ		OC2H5	Necha	N	
	763	•	Ħ	CH3	OCH3	OCH3	CH	,
	764	49	4-CH3	H	OCH 3	och3	CH	
	765		4-C1	H	och3	och3	CH	
	766	•	6-CH3	Ħ	OCH3	och3	CH	
	767	•	6-0CH	3 H	OCH 3	OCH 3	CH	
	768	-	6-Cl	Ħ	och3	OCH3	CH	
	769 .	••	6-F	H	OCH 3	OCH3	CH	

Cpd. No.	R1	R ²	R 3	X	Y	2	M.P.[oc]
770 — N	Propergy) H	H	OCH 3	оснз	CH	167-168(D.)
	SO ₂ CH ₃	••	••				
771	11	H	H	оснз	СНЗ	CH	
772	••	H	H	OCH3	Cl	CH	
773	. ••	H	H	CH3	CH3	CH	
774	11	H	H	осн 3	оснз	N	
775	**	H	H	OCH3	CH3	N	
776	11	H	H	OC2H5	NHCH3	N	
777	**	H	CH3	OCH3	OCH3	CH	
778	99	4-CH3	H	осн 3	ОСН3	CH	
779	**	4-Cl	H	OCH3	OCH3	CH	
780	••	6-CH3	H	OCH3	OCH3	CH	
781	••	6-OCH	3 H	оснз	OCH3	CH	
782	**	6-Cl	H	OCH 3	OCH3	CH	
783	**	6-F	H	OCH3	OCH 3	CH	
	COCH ₃						
784 —	N	H	H	OCH3	OCH3	CH	
	SO ₂ CH ₃			.	43.1.	~ 11	
785	**	H	H	och3	CH3	CH	
786	**	H	H	OCH3	Cl	CH	
787	•	H	H	CH3	CH3	CH	
788	**	H	H	OCH3	OCH3	N	
789	••	H	H	OCH3	CH3	N	
790	•	H	H	OC2H5	NHCH3	N	
791	••	H	CH3	OCH 3	OCH3	CH	
792	•••	4-CH3		OCH3	OCH3	CH	
793		4-C1	H	OCH 3	och3	CH	
794	**	6-CH3		OCH3	OCH3	CH	
795	•	6-0CH		OCH3	OCH3	CH	
796	*	6-C1	Ħ	OCH3	OCH3	CH	
797	••	6-F	H	OCH 3	OCH3	CH	

Cpd. No.	R1	R2	R 3	I	Y	2	M.p.[•c]
798		H	H	OCH3	оснз	CH	195 (D.
799	"	H	H	OCH 3	CH3	CH	
800	H	H	H	осн 3	Cl	CH	•
801	••	H	H	CH3	CH3	CH	
802	•	H	H	OCH 3	OCH3	N	
803	**	H	H	OCH3	CH3	N	
804	** .	H	H	OC2H5	NHCH3	N	
805	**	H	CH3	OCH3	оснз	CH	
806	**	4-CH3	H	OCH3	OCH3	CH	
807	**	4-C1	H	OCH 3	OCH 3	CH	
808	**	6-CH3	H	OCH3	OCH 3	CH	
809	94	6-OCH	3 H	OCH3	OCH3	CH	
810	**	6-Cl	H	OCH3	OCH3	CH	
811	***	6-F	Ħ	OCH3	OCH 3	CH	
812		H	H	OCH 3	OCH 3	CH	192-193 (D.)
•	11						
813		H	Ħ	och3	CH3	CH	
814	**	H	H	CEES	Cl	CH	F
815	**	H	H	CH3	CH3	CH	
816	**	H	H	OCH3	OCH3	N	
817		H	H	OCH3	CH3	N	
818	••	H	H	OC2H5	NHCH3	N	
819	₩	#	CH3	OCE3	OCH3	CH	
820	•	4-CH3		OCH3	OCH3	CH	
821	•	4-C1		OCH3	OCH3	CH	
822	•	6-CH3		OCE3	CHIO	CH	•
823		6-0CX		OCH3	CH3	CH	
824	•••	6-C1	H	OCHI	och 3	CH	
825		6 - F	Ħ	och 3	OCH 3	CH	

Continuation of Table 1

Cpd.	No. R ¹	R ²	R ³	X	Y	2	M.p/*27
0 26	-N/OCHANGO OT	••	**			~ 11	
	-N(OCH3)SO2CH	•	H	OCH 3	OCH 3	CH	
827	•	H	H	OCH 3	CH3	CH	
828	•	H	H	OCH3	Cl	CH	
829	••	H	H	CH3	CH3	CH	
830		H	H	OCH3	OCH 3	N	
831	••	Ħ	H	OCH 3	CH3	N	
832		H	H	OC2H5	NHCH3	N	
833	•• · · · · · · · · · · · · · · · · · ·	H	CH3	OCH3	OCH 3	CH	
834	₩	4-CH3	H	OCH 3	OCH 3	CH	
835	••	4-Cl	H	OCH 3	OCH 3	CH	
836	**	6-CH3	H	OCH 3	OCH3	CH	
837	•	6-0CH	3 H	OCH 3	OCH 3	CH	
838		6-Cl	H	OCH 3	OCH3	CH	
839	**	6-F	Ħ	OCH3	OCH3	CH	
840	-N(CH3)SO2CF	3 H	Ħ	OCH3	OCH3	CH	
841	. ••	H	H	OCH3	CH3	CH	
	· • • • • • • • • • • • • • • • • • • •	·			~ 1	Au	
842		H	H	OCH3	C1	CH	
843		H	H	CH3	CH3	CH	
844		Ħ	H	OCH3	OCH 3	N	
845		H	Ħ	OCH3	CH3	N	
846		H	H	OC2H5	NHCH3	N	
847		Ħ	CH3	OCH 3	OCH3	CH	
848		4-CH3	H	OCHJ	OCH3	CH	
849		4-C1		OCH3	OCH 3	CH	
850	•	6-CH3	H	OCH3	OCH3	CH	
851		6-0CE	is H	OCH3	OCH3	CH	
852		6-Cl	H	OCH 3	CH3	CH	
853	•	6-F		och 3	OCH3	CH	

.

865 " 6-OCH3 H OCH3 OCH3 CH 866 " 6-C1 H OCH3 OCH3 CH 867 " 6-F H OCH3 OCH3 CH 868 -N(CH3)SO2Ph H H OCH3 OCH3 CH 869 " H H OCH3 CH3 CH 870 " H H OCH3 C1 CH	
855 " H H OCH3 CH3 CH 856 " H H OCH3 C1 CH 857 " H H CH3 CH3 CH 858 " H H OCH3 OCH3 N 859 " H H OCH3 CH3 N 860 " H H OC245 NHCH3 N 861 " H CH3 OCH3 OCH3 CH 862 " 4-CH3 H OCH3 OCH3 CH 863 " 4-C1 H OCH3 OCH3 CH 864 " 6-CH3 H OCH3 OCH3 CH 865 " 6-OCH3 H OCH3 OCH3 CH 866 " 6-C1 H OCH3 OCH3 CH 867 " 6-F H OCH3 OCH3 CH 868 -N(CH3)SO2Ph H H OCH3 OCH3 CH 869 " H H OCH3 CH3 CH	
856 " H H CH3 C1 CH 857 " H H CH3 CH3 CR 858 " H H OCH3 OCH3 N 859 " H H OCH3 CH3 N 860 " H H OC2H5 NHCH3 N 861 " H CH3 OCH3 OCH3 CH 862 " 4-CH3 H OCH3 OCH3 CH 863 " 4-C1 H OCH3 OCH3 CH 864 " 6-CH3 H OCH3 OCH3 CH 865 " 6-OCH3 H OCH3 OCH3 CH 866 " 6-C1 H OCH3 OCH3 CH 867 " 6-F H OCH3 OCH3 CH 868 -N(CH3)SO2Ph H H OCH3 OCH3 CH 869 " H H OCH3 CH3 CH 870 " H H OCH3 CH3 CH	
857 " H H CH3 CH3 CH 858 " H H OCH3 OCH3 N 859 " H H OCH3 CH3 N 860 " H H OC2H5 NHCH3 N 861 " H CH3 OCH3 OCH3 CH 862 " 4-CH3 H OCH3 OCH3 CH 863 " 4-Cl H OCH3 OCH3 CH 864 " 6-CH3 H OCH3 OCH3 CH 865 " 6-OCH3 H OCH3 OCH3 CH 866 " 6-Cl H OCH3 OCH3 CH 867 " 6-F H OCH3 OCH3 CH 868 -N(CH3)SO2Ph H H OCH3 OCH3 CH 869 " H H OCH3 CH3 CH 869 " H H OCH3 CH3 CH	
858 " H H OCH3 OCH3 N 859 " H H OCH3 CH3 N 860 " H H OC2H5 NHCH3 N 861 " H CH3 OCH3 OCH3 CH 862 " 4-CH3 H OCH3 OCH3 CH 863 " 4-C1 H OCH3 OCH3 CH 864 " 6-CH3 H OCH3 OCH3 CH 865 " 6-OCH3 H OCH3 OCH3 CH 866 " 6-C1 H OCH3 OCH3 CH 867 " 6-F H OCH3 OCH3 CH 868 -N(CH3)SO2Ph H H OCH3 OCH3 CH 869 " H H OCH3 CH3 CH 870 " H H OCH3 CH3 CH	
859 " H H OCH3 CH3 N 860 " H H OC2H5 NHCH3 N 861 " H CH3 OCH3 OCH3 CH 862 " 4-CH3 H OCH3 OCH3 CH 863 " 4-Cl H OCH3 OCH3 CH 864 " 6-CH3 H OCH3 OCH3 CH 865 " 6-OCH3 H OCH3 OCH3 CH 866 " 6-Cl H OCH3 OCH3 CH 867 " 6-F H OCH3 OCH3 CH 868 -N(CH3)SO2Ph H H OCH3 OCH3 CH 869 " H H OCH3 CH3 CH 870 " H H OCH3 CH3 CH	
860 " H H OC2H5 NHCH3 N 861 " H CH3 OCH3 OCH3 CH 862 " 4-CH3 H OCH3 OCH3 CH 863 " 4-Cl H OCH3 OCH3 CH 864 " 6-CH3 H OCH3 OCH3 CH 865 " 6-OCH3 H OCH3 OCH3 CH 866 " 6-Cl H OCH3 OCH3 CH 867 " 6-F H OCH3 OCH3 CH 868 -N(CH3)SO2Ph H H OCH3 OCH3 CH 869 " H H OCH3 CH3 CH 870 " H H OCH3 CH3 CH	
861 " H CH3 OCH3 OCH3 CH 862 " 4-CH3 H OCH3 OCH3 CH 863 " 4-Cl H OCH3 OCH3 CH 864 " 6-CH3 H OCH3 OCH3 CH 865 " 6-OCH3 H OCH3 OCH3 CH 866 " 6-Cl H OCH3 OCH3 CH 867 " 6-F H OCH3 OCH3 CH 868 -N(CH3)SO2Ph H H OCH3 OCH3 CH 869 " H H OCH3 CH3 CH 870 " H H OCH3 CH3 CH	
862 " 4-CH3 H OCH3 OCH3 CH 863 " 4-Cl H OCH3 OCH3 CH 864 " 6-CH3 H OCH3 OCH3 CH 193-19 865 " 6-OCH3 H OCH3 OCH3 CH 866 " 6-Cl H OCH3 OCH3 CH 867 " 6-F H OCH3 OCH3 CH 868 -N(CH3)SO2Ph H H OCH3 OCH3 CH 869 " H H OCH3 CH3 CH 870 " H H OCH3 CH3 CH	
863 " 4-C1 H OCH3 OCH3 CH 864 " 6-CH3 H OCH3 OCH3 CH 193-19 865 " 6-OCH3 H OCH3 OCH3 CH 866 " 6-C1 H OCH3 OCH3 CH 867 " 6-F H OCH3 OCH3 CH 868 -N(CH3)SO2Ph H H OCH3 OCH3 CH 869 " H H OCH3 CH3 CH 870 " H H OCH3 CH3 CH	
865 " 6-OCH3 H OCH3 OCH3 CH 866 " 6-C1 H OCH3 OCH3 CH 867 " 6-F H OCH3 OCH3 CH 868 -N(CH3)SO2Ph H H OCH3 OCH3 CH 869 " H H OCH3 CH3 CH 870 " H H OCH3 C1 CH	•
866 " 6-C1 H OCH3 OCH3 CH 867 " 6-F H OCH3 OCH3 CH 868 -N(CH3)SO2Ph H H OCH3 OCH3 CH 869 " H H OCH3 CH3 CH 870 " H H OCH3 C1 CH	(D.)
867 " 6-F H OCH3 OCH3 CH 868 -N(CH3)SO2Ph H H OCH3 OCH3 CH 869 " H H OCH3 CH3 CH 870 " H H OCH3 C1 CH	
868 -N(CH3)SO2Ph H H OCH3 OCH3 CH 869 " H H OCH3 CH3 CH 870 " H H OCH3 C1 CH	
869 " H H OCH3 CH 870 " H H OCH3 C1 CH	
870 " H H OCH3 C1 CH	
871 " H CH3 CH3 CH	
872 " H H OCH3 OCH3 N	
873 " H DCH3 CH3 N	
874 " H H OC2H5 NHCH3 N	
875 " H CH3 OCH3 OCH3 CH	
876 ° 4-CH3 H OCH3 OCH3 CH	
877 " 4-C1 E OCE3 OCE3 CH	
878 " 6-CH3 N OCH3 CH	
879 " 6-OCH3 H OCH3 " OCH3 CH	
880 " 6-Cl H OCH3 OCH3 CH	
881 " 6-F H OCH3 OCH3 CH	

Continuation of Table 1

Cpd. No.	R	R ²	R ³	X	¥	Z	M.p./*c7
882 -N(C	H3)SO2NM	ie 2 H	Ħ	OCH3	осн 3	CH	
883	Ħ	H	H	оснз	CH3	CH	
884	•	H	H	OCH 3	Cl	CH	
885	**	H	H	CH3	CH3	CH	
886	•	H	H	OCH3	OCH3	N	
887	-	Ħ	H	OCH3	CH3	N	
888	•	H	Ħ	OC2H5	NHCH3	N	
889	•	H	CH3	OCH3	OCH3	CH	
890	#	4-CH3	H	OCH 3	OCH3	CH	
891	#	4-C1	H	оснз	OCH3	CH	
892	**	6-CH3	H	OCH3	оснз	CH	
893	**	6-0CH	i3 H	OCH 3	OCH3	CH	•
894	•	6-01	Ħ	оснз	OCH 3	CH	
895	77	6-F	H	och3	OCH3	CH	

Table 2

Cpd. No	. R1	R2	R3	*	Y	2	M.p[°C]
896	I	H	H	оснз	оснз	СН	
897	**	H	H	OCH 3	CH3	CH	
898	••	H	H	OCH3	Cl	CH	
899	**	H	H	CH3	CH3	CH	
900	11	H	H	оснз	OCH 3	N	
901	••	H	H	OCH3	CH3	N	
902	**	H	H	OC2H5	NHCH3	N	
903	**	H	CH3	OCH 3	OCH3	CH	
904	••	4-CH3	H	оснз	OCH 3	CH	
905	**	6-CH3	H	OCH3	OCH 3	CH	-
906	**	4-Cl	H	OCH 3	OCH3	CH	
907	**	6-C1	H	OCH3	OCH 3	CH	
908	P9	4-F	H	och3	OCH3	CH	
909	**	6-F	Ħ	OCH 3	оснз	CH	
910	•••	4-0CH	3 H	OCH 3	OCH 3	CH	
911		6-0CH	3 H	OCH3	OCH3	CH	
912	-0302N(CH3)2	H		OCH3	OCH3	CH	
913	•	4-CH3	Ħ	OCH3	OCH3	CH	
914		6-CH3		och 3	och 3	CH	
915		4-Cl	H	OCH 3	CH3	CH	
916		6-Cl		OCH 3	OCE3	CH	
917		4-F	Ħ	OCHS	OCH3	CH	

Continuation of Table 2

Cpd.	No.	R¹ R	2	R³	I	Y	2	м. p [°С]
	918	•	6-F	H	оснз	оснз	CH	
	919	**	4-OCH3	H	OCH3	оснз	CH	
	920	14	6-OCH3	H	оснз	оснз	CH	
	921	-N(CH3)SO2CH3	H	H	OCH3	OCH 3	CH	
	922	•	H	H	оснз	CH3	CH	
•	923	**	H	H	OCH 3	Cl	CH	
	924	**	H	H	CH3	CH3	CH	
	925	**	H	H	OCH3	оснз	N	
•	926	••	H	H	OCH 3	CH3	N	
	927	**	H	H	OC2H5	NHCH3	N	
	928	**	H	СНЗ	OCH3	оснз	CH	
	929	**	4-CH3	H	OCH3	оснз	CH	
	930	. **	6-CH3	H	OCH3	OCH3	CH	
	931	•	4-C1	H	оснз	оснз	CH	•
	932	**	6-Cl	H	оснз	OCH3	CH	
	933	**	4-F	Ħ	OCH3	оснз	CH	
	934	**	6-F	H	OCH3	OCH3	CH	
	935	P	4-OCH3	H	оснз	оснз	CH	
	936		6-OCH3	Ħ	OCH3	оснз	CH	
	937	-NHSO2CH3	Ħ	H	оснз	оснз	CH	
,	938	-NHSO2C2H5	H	H	оснз	оснз	CH	
	939	-N(SO2CH3)2	H	H	OCH3	оснз	CH	
	940	-N(CH3)802Et	H	Ħ	ОСН 3	OCH3	CH	
	941	-N(Et)SO2CH3	H	H	OCH3	OCH3	CH	

Cpa. No.

R¹

A

Cpd. No.	R	A
\$47	-050 ₂ N(CH ₃) ₂	N-N-CH3 (CH3) (CH3)
948	1	N-N-CH ₃ CH ₃ CH ₃ N-N-SCH ₃
949	-050 ₂ N(CH ₃) ₂	-CH ₂ -N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N
950	1	CN OCH,
951	-050 ₃ N(CH ₃) ₃	CH, CH, OCH,
\$52		CN OCH,
953	-050 ₂ N(CH ₃) ₃	

Spd. No.	R	A
954		CH. CH.
955	-N(CH ₃)\$0,2CH ₃	N N N N N N N N N N N N N N N N N N N
958		N CH3
\$57		N CH,
958		N CH ₃
\$59		N S

Cpd. No.	R	A
960	-N(CH3)SO2CH3	N-N-CH ₃ A-N-CH ₃ A-N-CH ₃
961		N-N-CH ₃ AN-N-SCH ₃
962		-CH2-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N
963		CN OCH,
954		CN CH3
965		CN OCH,

Cpd. No.	R ¹	À
965		DE NOCH,
967		CH. CI

Table 4

Cpa. No.	R1	R ²	M.p.[°C]
968	I	H	247-250 (dec.)
969	••	4-CH3	
970	**	5-CH3	
971	**	6-CH3	
972	**	4-OCH3	
973	**	5-OCH 3	
974	**	6-OCH3	
975	**	4-C1	
976	••	5-Cl	
977	••	6-C1	
978	**	4-F	
979	••	5-F	•
980	**	6-F	
981	•	6-C2H5	
982	**	6-C4H9	•
983	*	5-0C2R5	•
984	e	6-OCH2CF3	
985	59	6-SCH3	
986	•	6-802CH3	
987	\$	6-NO2	
	•	6-C02CH3	
989	-	6-Br	
990	•	6-CF3	
991	-	6-OCF3	
992	•	6-OCF2H	
			

2073446

Cpd. No	o. R ¹	R ²	M.p. [°C]
993	-0502N(CH3)2	1 4	oil
994	•	4-CH3	
995	69	5-CH3	
996	•	6-CH3	
997	•	4-OCH3	
998	**	5-OCH3	
999	••	6-OCH3	
1000	••	4-Cl	
1001	**	5-C1	
1002	**	6-Cl	
1002	**	4-F	
1004	**	5-F	
1005	••	6-F	
1006	**	6-C2H5	
1007	••••••••••••••••••••••••••••••••••••••	6-C4H9	
1008	**	6-OC2H5	
1009	**	6-OCH2CF3	
1010	**	6-SCH3	
1011	44	6-802CH3	-
1012	•	6-NO2	
1013	**	6-C02CH3	
1014	**	6-Br	
1015		6-CF3	
1016	•	6-OCF3	•
1017		5-OCF2H	
1018	-0502-N <c2h3< td=""><td></td><td></td></c2h3<>		
1019	-0503-N CH3		

1020 $-0SO_2-N < \frac{C_2H_3}{C_2H_3}$ H 94-97 1021 $-0SO_2-N$ H 142-143 1022 $-0SO_2-N$ H 166-167 1023 $-0SO_2-N$ H 0il 1024 $-NHSO_2CH_3$ H 176-178 1025 $-NHSO_2C_2H_5$ H 208 1026 $-NHSO_2C_3H_7$ H 208 1027 $-NHSO_2C_6H_5$ H 208 1028 $-N(SO_2C_3H_3)$ H 208 1029 $-N(SO_2C_3H_3)$ H 175 1031 " 4-CH3 1032 " 5-CH3 1033 " 6-CH3 1034 " 4-OCH3 1035 " S-OCH3 1036 - G-OCH3 1037 " 4-CCH 1038 " S-OCH3 1039 " 6-CCI 1040 " 4-F	Cpd. No	o. R ¹	R ²	M.p.[°C]
1022 -oso ₂ -N 1023 -oso ₂ -N 1024 -NHSO ₂ CH ₃ 1025 -NHSO ₂ C ₂ H ₅ 1026 -NHSO ₂ C ₂ H ₅ 1027 -NHSO ₂ C ₆ H ₅ 1028 -N(SO ₂ CH ₃) ₂ 1029 -N(SO ₂ CH ₃) ₂ 1030 -N(CH ₃)SO ₂ CH ₃ 1031 - 4-CH ₃ 1032 - 5-CH ₃ 1033 - 6-CH ₃ 1034 - 4-OCH ₃ 1035 - 5-OCH ₃ 1036 - 6-OCH ₃ 1037 - 4-Cl 1038 - 6-CH 1039 - 6-Cl 1040 - 4-F	1020	-0502-N < C2H5		94-97
1023 -0S0 ₂ -N	1021	-050 ₂ -N		142-143
1024 -NHSO2CH3 H 176-178 1025 -NHSO2C2H5 H 1026 -NHSO2C3H7 H 1027 -NHSO2C6H5 H 1028 -N(SO2CH3)2 H 208 1029 -N(SO2CH5)2 H 1030 -N(CH3)SO2CH3 H 175 1031 " 4-CH3 1032 " 5-CH3 1033 " 6-CH3 1034 " 4-OCH3 1035 " 5-OCH3 1036 " 6-OCH3 1037 " 4-CL 1038 " 5-CL 1039 " 6-CL 1039 " 6-CL 1040 " 4-F	1022	-050 ₂ -N		155-157
1025 -NHSO2C2HS H 1026 -NHSO2C3H7 H 1027 -NHSO2C6HS H 1028 -N(SO2CH3)2 H 208 1029 -N(SO2C2HS)2 H 1030 -N(CH3)SO2CH3 H 175 1031 " 4-CH3 1032 " 5-CH3 1033 " 6-CH3 1'24 1034 " 4-OCH3 1035 " 5-OCH3 1036 " 6-OCH3 1037 " 4-C1 1038 " 5-C1 1039 " 6-C1 1040 " 4-F	1023	-050 ₂ -N		oil
1025 -NHSO2C2H5 H 1026 -NHSO2C3H7 H 1027 -NHSO2C6H5 H 1028 -N(SO2CH3)2 H 208 1029 -N(SO2C2H5)2 H 1030 -N(CH3)SO2CH3 H 175 1031 " 4-CH3 1032 " 5-CH3 1033 " 6-CH3 1'24 1034 " 4-OCH3 1035 " 5-OCH3 1036 " 6-OCH3 1037 " 4-Cl 1038 " 5-Cl 1039 " 6-Cl 1040 " 4-F	1024	-NHSO2CH3	H	176-178
1027 -NHSO2C6H5 H 1028 -N(SO2CH3)2 H 1029 -N(SO2C2H5)2 H 1030 -N(CH3)SO2CH3 H 1031 " 4-CH3 1032 " 5-CH3 1033 " 6-CH3 1'24 1034 " 4-OCH3 1035 " 5-OCH3 1036 " 6-OCH3 1037 " 4-Cl 1038 " 5-Cl 1039 " 6-Cl 1040 " 4-F			H	
1028 -N(SO2CH3)2 H 208 1029 -N(SO2CH5)2 H 1030 -N(CH3)SO2CH3 H 175 1031 " 4-CH3 1032 " 5-CH3 1033 " 6-CH3 1034 " 4-OCH3 1035 " 5-OCH3 1036 " 6-OCH3 1037 " 4-Cl 1038 " 5-Cl 1039 " 6-Cl 1040 " 4-F	1025		Ħ	
1029 -N(\$02C2H5)2 H 1030 -N(CH3)\$02CH3 H 175 1031 " 4-CH3 1032 " 5-CH3 1033 " 6-CH3 124 1034 " 4-OCH3 1035 " 5-OCH3 1036 " 6-OCH3 1037 " 4-C1 1038 " 5-C1 1039 " 6-Cl	1027	-NHSO2C6H5	H	
1030 -N(CH3)SO2CH3 H 175 1031 " 4-CH3 1032 " 5-CH3 1033 " 6-CH3 1034 " 4-OCH3 1035 " 8-OCH3 1036 " 6-OCH3 1037 " 4-C1 1038 " 5-C1 1039 " 6-Cl 1040 " 4-F	1028	-N(SO2CH3)2	Ħ	208
1031 " 4-CH3 1032 " 5-CH3 1033 " 6-CH3 1034 " 4-OCH3 1035 " 5-OCH3 1036 " 6-OCH3 1037 " 4-C1 1038 " 5-Cl 1039 " 6-Cl 1040 " 4-F	1029	-N(SO2C2H5)2	H	
1032 "	1030	-N(CH3)802CH3		175
1033 " 6-CE3 1'24 1034 " 4-OCH3 1035 " 5-OCH3 1036 " 6-OCE3 1037 " 4-C1 1038 " 5-C1 1039 " 6-C1 1040 " 4-F	1031	**	4-CH3	
1034 " 4-OCH3 1035 " 5-OCH3 1036 " 6-OCH3 1037 " 4-Cl 1038 " 5-Cl 1039 " 6-Cl 1040 " 4-F	1032		5-CH3	
1035 "	1033		6-CE3	1.24
1036	1034	*	4-0CH3	
1037 " 4-Cl 1038 " 5-Cl 1039 " 6-Cl 1040 " 4-F	1035	•	S-OCH3	
1038 "	1036		6-0CH3	
1039 "	1037	**	4-C1	
1040 * 4-F	1038		5-C1	
	1039		6-Cl	
1041 ** 5-F	1040	**	4-F	
	1041		5 - F	

Cpd. No.	R ¹	R ²	M.p.[°c]
1042		6-F	
1043	**	6-C2H5	
1044		6-C4H9	
1045	•	6-0C2H5	
1046	•	6-OCH2CF3	
1047	•	6-8CH3	
1048	••	6-802CH3	
1049	**	6-NO2	
1050	**	6-C02CH3	
1051	••	6-Br	
1052	**	6-CF3	
1053	**	6-OCF3	
1054	**	6-OCF2H	
1055	-N(Et)SO2CH3	H	178-179(D.)
1056	-N(Pr)SO2CH3	H	149-150
1057	-N(1-PT)SO2CH3		201
1058	-N(1-Bu)SO2CH3	H	amorphous
1059	-NCH3CF3		
1060	CH ₂ CH ₂ Cl SO ₂ CH ₃		
1061	- KCH2CH3 - KSO2CH3		
1062	- KCH, SCH, SO, CH, SO, CH,		

Cpd. No	3. R ¹	R ²	M.p[°C]
1053	CH ₂ SO ₂ CH ₃ SO ₂ CH ₃		
1064	CH ₂ CO ₂ CH ₃ - N SO ₂ CH ₃	H	
1065	CH ₂ CN SO ₂ CH ₃	H	
1066	- N SO ₂ CH ₃	H	143-144
1067	- N Propargyl - N SO ₂ CH ₃	H	138-141
1068	- N COCH, SO,CH,	H	
1069		· 1	200 (p.)
1070			220-221 (D.)
1071	-N (OCH3)802CH3	H	
1072	-N(CH3)SO2C2H5		135-137
1073	-N(CH3)802CF3	Ħ	
1074	-N(CH3)802Ph	Ħ	200-203
1075	-N(CH3)SO2N(Me)2		

B. FORMULATION EXAMPLES

10

30

2073446

- a) A dusting agent is obtained by mixing 10 parts by weight of a compound of the formula (I) and 90 parts by weight of talc or inert material and comminuting in a hammer mill.
- b) A wettable powder which is easily dispersible in water is obtained by mixing 25 parts by weight of a compound of the formula (I), 64 parts by weight of kaolin-containing quartz as inert material, 10 parts by weight of potassium ligninsulfonate and 1 part by weight of sodium oleoylmethyltaurate as wetting agent and dispersant and grinding in a pin-disk mill.
- in water is obtained by mixing 20 parts by weight of a compound of the formula (I) with 6 parts by weight of alkylphenol polyglycol ether (*Triton X 207), 3 parts by weight of isotridecanol polyglycol ether (8 EO) and 71 parts by weight of paraffinic mineral oil (boiling range, for example, about 255 to over 277°C) and grinding to a fineness of less than 5 microns in a friction ball mill.
- d) An emulsifiable concentrate is obtained from 15 parts by weight of a compound of the formula (I), 75 parts by weight of cyclohexane as solvent and 10 parts by weight of ethoxylated nonylphenol as emulsifier.
 - e) Granules which are dispersible in water are obtained by mixing

75 parts by weight of a compound of the formula (I),

- of calcium ligninsulfonate,
- of sodium lauryl sulfate,
- 3 of polyvinyl alcohol and
- 7 of kaolin,

grinding in a pinned-disk mill and granulating the powder in a fluidized bed by spraying water as a granulating fluid.

- Granules which are dispersible in water are also f) obtained by homogenizing and precomminuting 25 parts by weight of a compound of the formula (I), of sodium 2,2'-dinaphthylmethane-6,6'-disulfonate,

 - of sodium oleolymethyltaurate,
 - of polyvinyl alcohol,

of a single substance nozzle and drying.

- of calcium carbonate and 17
- 50 then grinding in a bead mill and atomizing the suspension thus obtained in a spray tower by means

of water,

Extruder granules are obtained by mixing 20 parts by g) weight of active compound, 3 parts by weight of sodium ligninsulfonate, 1 part by weight of carboxymethylcellulose and 76 parts by weight of kaolin, grinding and moistening with water. This mixture is extruded and then dried in a stream of air.

C. Biological examples

10

15

20

35

1. Weed action pre-emergence

Seeds or pieces of rhizome of monocotyledon and dicotyle-25 don weed plants were planted in sandy loam soil in plastic pots and covered with earth. The compounds according to the invention formulated in the form of wettable powders or emulsion concentrates were then applied in various dosages to the surface of the covering 30 earth as aqueous suspensions or emulsions using a water application rate of 600 to 800 1/ha after conversion.

> After the treatment, the pots were placed in a greenhouse and kept under good growth conditions for the weeds. Visual assessment of the plants and the emergence damage

was carried out in comparison to untreated controls after the emergence of the experiment plants after an experiment time of 3 to 4 weeks. As the assessment values show, the compounds according to the invention have a good herbicidal pre-emergence activity against a broad spectrum of weed grasses and weeds (cf. Table 5).

Table 5: Pre-emergence action of the compounds according to the invention

	Ex.No.	Dose	Herbicidal action					
10		(kg a.i./ha)	LOMU	ECCR	AVSA	STME	CHSE	SIAL
	1	0.3	5	5	5	5	5	5
	136	0.3	5	5	4	5	5	5
	4	0.3	5	5	5	5	5	5
15	411	0.3	5	5	5	5	5	5
	354	0.3	5	5	5	5	5	5
	439	0.3	5	5	5	5	5	5
	312	0.3	4	4	2	4	4	5
	326	0.3	2	2	2	3	3	4
20	7	0.3	5	5	5	5	5	5
	299	0.3	5	5	4	5	5	5
	443	0.3	5	5	5	5	5	5
	301	0.3	2	2	2	2	2	3
	298	0.3	5	5	4	5	5	5
25	313	0.3	3	3	2	4	3	5
	446	0.3	5	3	5	4	3	5
	445	0.3	5	4	5	5	2	4
	756	0.3	5	5	5	5	5	5
	442	0.3	5	5	5	5	5	5
30	455	0.3	3	2	2	3	3	5
	770	0.3	5	5	5	5	5	5
	854	0.3	5	5	5	5	5	5
	8	0.3	5	5	5	5	5	5
•	5	0.3	5	5	5	5	5	5
35	142	0.3	5	5	5	5	5	5
	340	0.3	5	5	3	5	5	5
	573	0.3	5	5	5	5	5	5

Abbreviations:

Ex.No. = Preparation example from Tables 1 to 4

a.i. = active ingredient (based on pure active compound)

5 LOMU = Lolium multiflorum

ECCR = Echinochloa crus-galli

AVSA = Avena sativa

STME = Stellaria media

CHSE = Chrysanthemum segetum

10 STAL = Sinapis alba

15

20

2. Weed action post-emergence

Seeds or pieces of rhizome of monocotyledon and dicotyledon weeds were planted in sandy loam soil in plastic pots, covered with earth and raised in a greenhouse under good growth conditions. Three weeks after sowing, the experimental plants were treated in the three-leaf stage.

The compounds according to the invention formulated as wettable powders or as emulsion concentrates were sprayed onto the green parts of plants in various dosages using a water application rate of 600 to 800 l/ha after conversion and, after a standing time of the experimental plants in the greenhouse under optimum growth conditions of about 3 to 4 weeks, the action of the preparations was assessed visually in comparison to untreated controls.

The agents according to the invention also show a good herbicidal activity post-emergence against a broad spectrum of economically important weed grasses and weeds (cf. Table 6).

Table 6

	Ex.No.	Dose	Herbicidal action					
		(kg a.i./ha	LOMU	ECCR	AVSA	STME	CHSE	SIAL
5	1	0.3	5	5	5	5	5	5
	136	0.3	3	4	1	5	5	5
	4	0.3	5	5	5	5	5	5
	411	0.3	5	5	4	5	5	5
	354	0.3	5	5	5	5	5	5
10	439	0.3	5	5	5	5	5	5
	7	0.3	5	5	5	5	5	5
	299	0.3	3	3	2	3	2	5
	443	0.3	5	5	5	5	3	5
	298	0.3	3	5	2	4	3	5
15	445	0.3	3	2	2	3	4	3
	756	0.3	5	4	3	4	4	5
	442	0.3	5	2	3	3	2	4
	770	0.3	5	3	3	3	3	3
	854	0.3	4	5	4	4	5	5
20	8	0.3	5	5	5	5	3	5
	· 5	0.3	5	5	5	5	5	5
	142	0.3	4	2	2	4	1	3
	340	0.3	3	3	0	5	2	5
	573	0.3	5	5	5	5	5	5
25	·			, <u></u>		· · · · · · · · · · · · · · · · · · ·	<u>. </u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Abbreviations:

Ex.No. =	Preparation example from Tables 1 to 4 active ingredient (based on pure active			
a.1. —	compound)			
LOMU =	Lolium multiflorum			
ECCR =	Echinochloa crus-galli			
AVSA =	Avena sativa			
STME =	Stellaria media			
CHSE =	Chrysanthemum segetum			
STAL =	Sinapis alba			
	a.i. = LOMU = ECCR = AVSA = STME = CHSE =			

3. Crop plant tolerability

In further experiments in a greenhouse, seeds of a relatively large number of crop plants and weeds were planted in sandy loam soil and covered with earth.

- Some of the pots were immediately treated as described under 1 and the others were placed in a greenhouse until the plants had developed two to three true leaves and then sprayed with the substances according to the invention in various dosages, as described under 2.
- 10 Four to five weeks after application and standing in a greenhouse, it was determined by means of optical assessment that the compounds according to the invention left dicotyl crops such as, for example, soya, cotton, rape, sugarbeet and potatoes undamaged pre- and post-emergence even at high active compound dosages. Moreover, some substances also spared gramineous crops such as, for example, barley, wheat, rye, sorghum millet, corn and rice. The compounds of the formula (I) thus have a high selectivity when used for controlling undesired plant growth in agricultural crops.

PATENT CLAIMS

1. A compound of the formula (I) or its salts

$$R^{2} \longrightarrow SO_{2}-NH-C-N-A$$

$$(I)$$

$$(I)$$

in which

10

 R^1 is $-OSO_2NR^4R^5$, $-NR^5R^7$ or iodine,

 R^2 is H, (C_1-C_3) alkyl, (C_1-C_3) haloalkyl, halogen, NO_2 , CN, (C_1-C_3) alkoxy, (C_1-C_3) haloalkoxy, (C_1-C_3) alkylthio, (C_1-C_3) alkoxy- (C_1-C_3) alkyl, (C_1-C_3) alkoxy-carbonyl, (C_1-C_3) alkylsulfinyl, (C_1-C_3) alkylsulfinyl, sulfonyl, $SO_2NR^aR^b$ or $C(O)NR^aR^b$,

 R^a and R^b independently of one another are H, (C_1-C_3) alkyl, (C_3-C_4) alkenyl, propargyl, or together are $-(CH_2)_4-$, $-(CH_2)_5-$ or $-CH_2CH_2OCH_2CH_2-$,

 R^3 is H or CH_3 ,

R⁴ is H, (C_1-C_3) alkyl, (C_3-C_4) alkenyl, (C_1-C_3) alkoxy or (C_3-C_4) alkynyl, and

 R^5 is H, (C_1-C_3) alkyl, (C_3-C_4) alkenyl or (C_3-C_4) alkynyl, or

 R^4 and R^5 together are -(CH₂)₄-, -(CH₂)₅- or -CH₂CH₂OCH₂CH₂-, .

atoms, (C1-C4) alkylsulfonyl which is unsubstituted

20 R⁶ is H, (C₁-C₈)alkyl, which is unsubstituted or substituted by one or more radicals from the group comprising halogen, (C₁-C₄)alkoxy, (C₁-C₄)alkyl-thio, (C₁-C₄)alkylsulfinyl, (C₁-C₄)alkylsulfonyl, (C₁-C₄)alkoxycarbonyl and CN, (C₃-C₆)alkenyl which is unsubstituted or substituted by one or more halogen atoms, (C₃-C₆)alkynyl which is unsubstituted or substituted by one or more halogen

REPLACEMENT SHEET

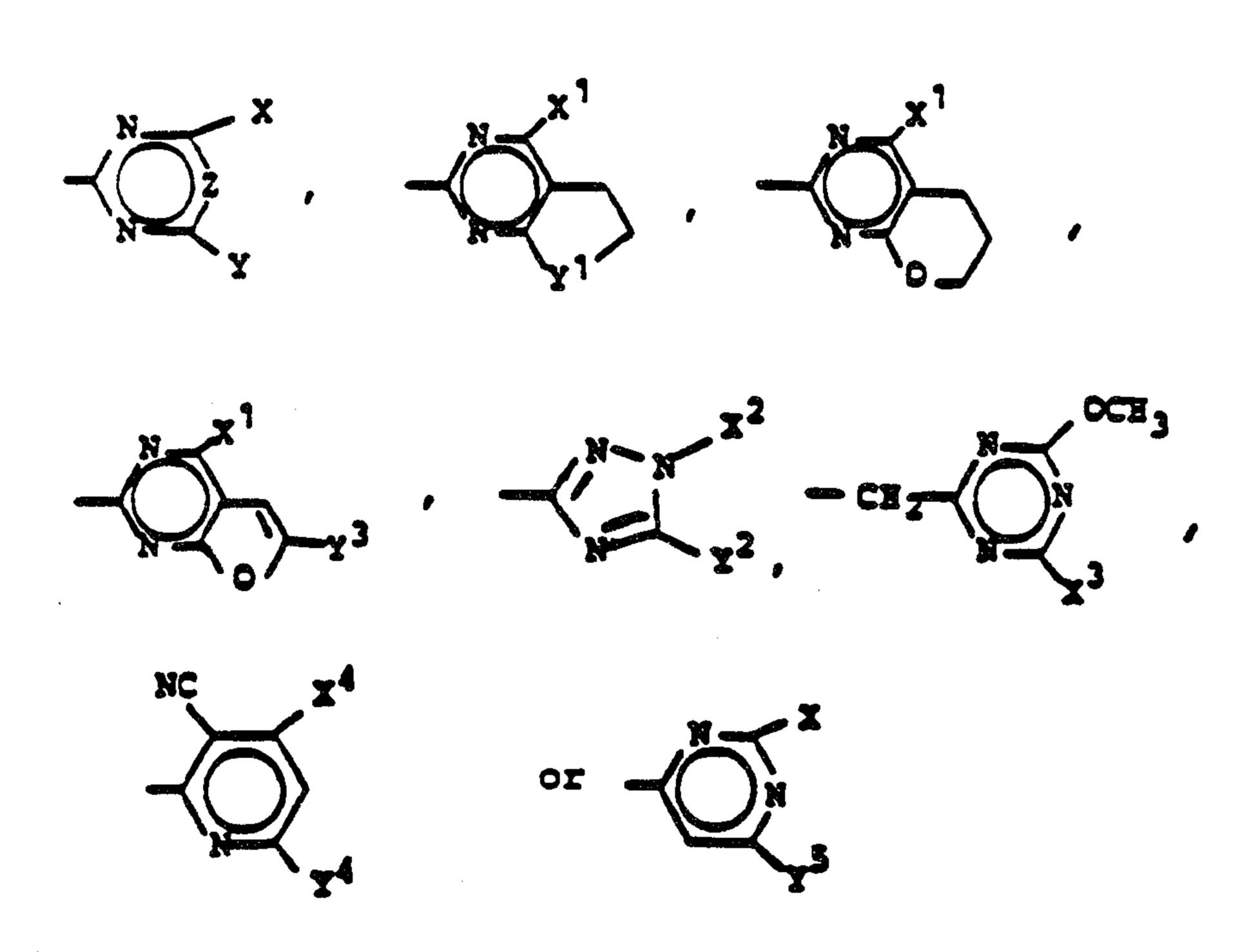
. 28976-48

66a

or substituted by one or more halogen atoms, phenylsulfonyl where the phenyl radical is unsubstituted or substituted by one or more radicals

The state of the satisfactory throughout the same of the satisfactory throughout the satisfactory through the satisfactory throughout the satisfactory throughout the satisfactory through the satisf

from the group comprising halogen, (C_1-C_4) alkyland (C_1-C_4) alkoxy, (C_1-C_4) alkoxy or (C_1-C_4) alkylandonyl which is unsubstituted or substituted by one or more halogen atoms,


5 R⁷ is (C₁-C₄)alkylsulfonyl which is unsubstituted or substituted by one or more halogen atoms, phenylsulfonyl where the phenyl radical is unsubstituted or substituted by one or more radicals from the group comprising halogen, (C₁-C₄)alkyl and (C₁-C₄)alkoxy, or [di-(C₁-C₄)-alkyl]aminosulfonyl or

 R^5 and R^7 together are a chain of the formula $-(CH_2)_m-SO_2-$, where the chain can additionally be substituted by 1 to 4 (C_1-C_3) alkyl radicals and m is 3 or 4,

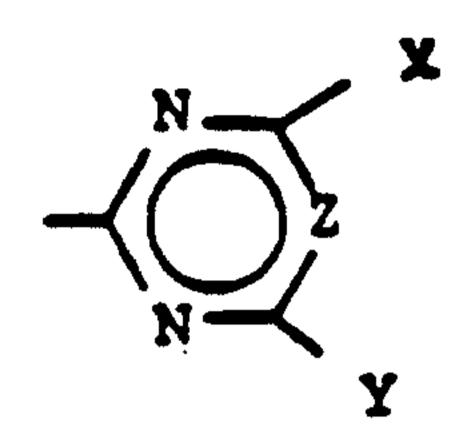
n is zero or 1,

W is O or S,

A is a radical of the formula

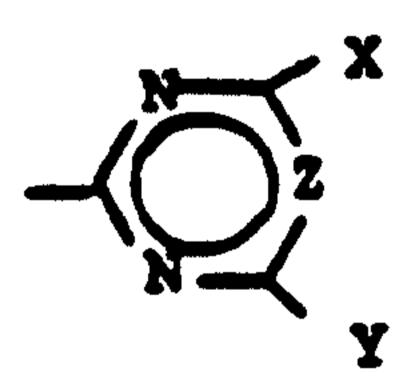
X is H, halogen, (C_1-C_3) alkyl, (C_1-C_3) alkoxy, where the two last-mentioned radicals are unsubstituted or monosubstituted or polysubstituted by halogen or

monosubstituted by (C₁-C₃)alkoxy,


- H, (C₁-C₃)alkyl, (C₁-C₃)alkoxy or (C₁-C₃)alkylthio, where the abovementioned alkyl-containing radicals are unsubstituted or monosubstituted or polysubstituted by halogen or monosubstituted or disubstituted by (C₁-C₃)alkoxy or (C₁-C₃)alkylthio, or a radical of the formula NR⁸R⁹, (C₃-C₆)-cycloalkyl, (C₂-C₄)alkenyl, (C₂-C₄)alkynyl, (C₃-C₄)alkenyloxy or (C₃-C₄)alkynyloxy,
- In the second s
 - X¹ is CH₃, OCH₃, OC₂H₅ or OCF₂H,
 - Y^1 is -0- or $-CH_2-$,
- 15 X^2 is CH_3 , C_2H_5 or CH_2CF_3 ,
 - Y² is OCH₃, OC₂H₅, SCH₅, SC₂H₅, CH₃ or C₂H₅,
 - X³ is CH₃ or OCH₃,
 - Y^3 is H or CH_3 ,
 - X' is CH₃, OCH₃, OC₂H₅, CH₂OCH₃ or Cl,
- 20 Y'is CH3, OCH3, OC2H5 or Cl,
 - Y^5 is CH_3 , C_2H_5 , OCH_3 or Cl.
 - 2. A compound as claimed in claim 1, wherein
 - R^4 and R^5 independently of one another are $(C_1\text{-}C_3)\,alkyl\,,$ allyl or propargyl or
- R⁴ and R⁵ together are -(CH₂)₄-, -(CH₂)₅- or -CH₂CH₂OCH₂CH₂-,
 R⁶ is H, (C₁-C₄)alkyl which is unsubstituted or substituted by one or more halogen atoms or by a radical from the group comprising (C₁-C₃)alkoxy,
 (C₁-C₃)alkylthio, (C₁-C₃)alkylsulfonyl, (C₁-C₄)alkoxycarbonyl and CN, (C₃-C₄)alkenyl,
 (C₃-C₄)alkynyl, (C₁-C₄)alkylsulfonyl, phenylsulfonyl, phenylsulfonyl which is substituted by one to three radicals from the group comprising halogen, (C₁-C₃)alkyl and (C₁-C₃)alkoxy, (C₁-C₃)alkoxy or (C₁-C₄)alkylcarbonyl,
 - R^7 is (C_1-C_4) alkylsulfonyl, phenylsulfonyl or phenylsulfonyl which is substituted by 1 to 3 radicals from the group comprising halogen, (C_1-C_3) alkyl

15

and (C_1-C_3) alkoxy, or $di-(C_1-C_4-alkyl)$ -aminosul-fonyl or


 R^6 and R^7 together are a chain of the formula $-(CH_2)_mSO_2$ —where m is 3 or 4.

- 3. A compound as claimed in claim 1 or 2, wherein
 W is an oxygen atom,
 - n is the number zero and
 - A is a radical of the formula

4. A compound as claimed in any one of claims 1 to 3, wherein

 R^2 is H, (C_1-C_3) alkyl, (C_1-C_3) alkoxy, halogen or (C_1-C_3) -alkylthio, R^4 and R^5 independently of one another are (C_1-C_3) alkyl, R^6 is hydrogen, (C_1-C_4) alkyl or (C_1-C_3) alkylsulfonyl, R^7 is (C_1-C_3) alkylsulfonyl and A is a radical of the formula

in which Z is CH or N, X is halogen, (C_1-C_2) alkyl, (C_1-C_2) -alkoxy, OCF_2H , CF_3 or OCH_2CF_3 and Y is (C_1-C_2) alkyl, (C_1-C_2) alkoxy or OCF_2H .

- 5. A process for the preparation of a compound of the formula (I) or its salts as defined by any one of claims 1 to 4, which comprises
 - (a) reacting a compound of the formula (II)

$$R^{2} \longrightarrow R^{1}$$

$$So_{2}NH_{2}$$

$$(II)$$

with a heterocyclic carbamate of the formula (III)

$$R^* - O - C - N - A$$
 (III)

in which R^* is phenyl or (C_1-C_4) alkyl, or (b) reacting a pyridylsulfonylcarbamate of the formula (IV)

$$R^2$$

$$So_2NH-C-OC_6H_5$$
(IV)

with an aminoheterocycle of the formula (V)

10 or

(c) reacting a sulfonyl isocyanate of the formula (VI)

$$R^2$$

$$So_2NCO$$
(VI)

with an aminoheterocycle of the formula R3-NH-A (V)

71

or

(d) first reacting an aminoheterocycle of the formula R³-NH-A (V) in a one-pot reaction with phosgene in the presence of a base and reacting the intermediate formed with a pyridinesulfonamide of the formula (II),

wherein R^1 , R^2 , R^3 , A and n are as defined in any one of claims 1 to 4.

- 6. A herbicide or plant growth-regulating agent, which contains a compound of the formula (I) or its salts as defined by any one of claims 1 to 4 and formulation auxiliaries.
- 7. A method of combating undesired plants or of regulating the growth of plants, wherein an amount of a compound of the formula (I) or its salts as defined by any one of claims 1 to 4, which is herbicidally effective or effective for regulating the growth of plants, is applied to the plants, plant seed or the cultivated area.
 - 8. A compound of the formula (II)

$$R^2$$
 R^1
 SO_2NH_2
 (II)

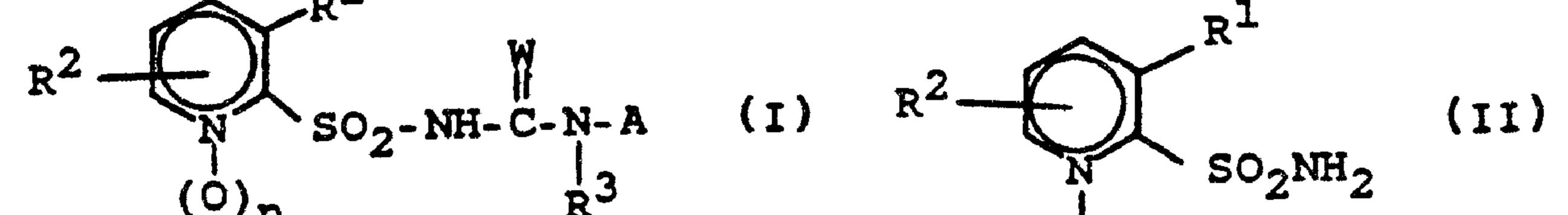
in which R^1 , R^2 and n have the meaning mentioned in any one of claims 1 to 4.

9. A process for the preparation of a compound of the formula (II) as claimed in claim 8, which comprises converting a sulfochloride of the formula

$$R^2$$
 R^2
 SO_2-C
 $(O)_n$

in which R¹, R² and n are as defined in claim 8 into a sulfonamide of the formula (II) by reaction (a) with tert.-butylamine to form a tert.-butylamide and subsequent removal of the tert.-butyl group or (b) with ammonia.

10. The process as claimed in claim 9, wherein the sulfochloride is prepared by reaction of a compound of the formula


$$R^2$$
 R^2
 N
 Hal
 $(O)_n$

in which Hal is fluorine, chlorine, bromine or iodine and R^1 , R^2 and n are as defined in claim 9, with an S-nucleophile and subsequent reaction of the resulting intermediate with sodium hypochlorite or chlorine.

FETHERSTONHAUGH & CO.

OTTAWA, CANADA

PATENT AGENTS

