Office de la Propriete Canadian CA 2469503 A1 2005/01/01

Intellectuelle Intellectual Property
du Canada Office (21) 2 469 503
v organisme An agency of 12 DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada
CANADIAN PATENT APPLICATION
(13) A1
(22) Date de depot/Filing Date: 2004/06/01 (51) CLInt.”/Int.CI." GOBF 12/02, GO6F 13/00, HO4L 9/32
(41) Mise a la disp. pub./Open to Public Insp.: 2005/01/01 (71) Demandeur/Applicant:

MICROSOFT CORPORATION, US

(72) Inventeurs/Inventors:
MILLER, DAVID MICHAEL, US;
HOLMES, JOHN, US;
VONKOCH, WALTER, US

(74) Agent: SMART & BIGGAR

(30) Prionte/Priority: 2003/0/7/01 (10/611,599) US

(54) Titre : MISE EN MEMOIRE D'OBJET DE MESSAGERIE INSTANTANEE
(54) Title: INSTANT MESSAGING OBJECT STORE

100

~

—— e —'——x

CLIENT COMPUTER (1) 102 N RK 106 —

124 _
INSTANT MESSAGING SWITCHBOARD |
PLATFORM 112 — SERVER 110 |
| File |
{ System
126

FEATURE FEATURE
(A) (N) 11
4

128
CLIENT |
OBJECT STORE COMPUTER (2) |
1 > 104
———
| Cache OBECT CACHE MANAGER
11 108

(57) Abrégée/Abstract:
A method includes recelving a name associated with a user on a remote computer, the name including location data and a hash

value unigquely associated with a data object representing the user and retrieving the data object from one of a local cache based
on the hash value or a location identified by the location data. A system for managing objects representing users In an instant
messaging conversation includes a data object representing a user, the data object having an object name including a location
identifler and a hash value, the object name allowing, and an object store operable to retrieve the data object from a location
identified by the location identifier and store the data object in a local cache based on the hash value.

<o
SoTEEN S /7

e

' A

3 '_{,-.Tl'.
o~

C an a d a http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 02469503 2004-06-01

ABSTRACT

A method includes receiving a name associated with a user on a remote computer,

the name including location data and a hash value uniquely associated with a data object

.|| representing the user and retrieving the data object from one of a local cache based on the °

s (| hash value or a location identified by the location data. A system for managing objects

6|| representing users In an Instant messaging conversation includes a data object

711 representing a user, the data object having an object name including a location identifier
and a hash value, the object name allowing, and an object store operable to retrieve the

data object from a location identified by the location identifier and store the data object in

. a local cache based on the hash value.
i1
12
13
14
15
16
17
18
19
20
2]
22
23

24

25

Lee & Hayes, PLLC MS1-1527US
303973.1

s N 4y Hg s DA AR M Wb L2 6 3V HAAT s oA TS AN LA ST s AAALASI WOAA A L0 DR SN VA At LT T MH LI i oI Al A . 44420477 A 101 AL D A OT P FEYLIGY DS 10t X PP e I SO 17 Ao 0o af 0wl Temrnet e
< o A APyt A VA i AR 6 M i o 1 G Sl LN et 4.5 NN YOS B MMM it 14 TP : '

10

I

12

13

14

15

16

17

18

19

20

21

22

23

24

25

CA 02469503 2004-06-01

INSTANT MESSAGING OBJECT STORE

CROSS-REFERENCE TO RELATED APPLICATION

The present application 1s related to co-pending U.S. patent application Ser. No.

, Attorney Docket No. MS1-1526, entitled “Transport System for Instant

ey e e—

Messaging,” by John Holmes, David Michael Miller, and Walter vonKoch, which is filed

concurrently herewith, assigned to the assignee of the present application, and incorporated

herein by reference for all that it teaches and discloses.

TECHNICAL FIELD
The described subject matter relates to computer communications. More

particularly, the subject matter relates to an object store for instant messaging.

BACKGROUND
[nstant messaging is becoming a very popular communications tool for users of
computer devices. An instant messaging (IM) application (e.g., WINDOWS ® Messenger
system of Microsoft Corporation of Redmond, WA, Yahoo! Messenger, AOL instant

messenger (AIM), and the like) enables a user to engage in a real time conversation with

‘one or more contacts, who are identified in the user’s private list of contacts. Typically,

private lists are stored on a server, such as a switchboard, or relay server, through which a

conversation is established. The switchboard server then routes inbound messages to the

appropriate recipients.

Lee & Hayes, PLLC | MS1-1527US
303973.1

10

11

12

13

14

15

16

17

18

19

- .20

21

22

23

24

25

CA 02469503 2004-06-01

As instant messaging systems advance, they can provide more features that make

the instant messaging conversation a richer experience. Such features operate on various

types of data objects, in addition to text. For example, a custom user tile feature allows a
user to generate and transmit a custom user tile that uniquely represents the user on another
user’s computer. Transmission of such feature objects typically requires a higher
bandwidth, than text, to appear error-free to the recipient. In addition, objects that represent
a user during a conversation typically will change infrequently compared to how often such
objects are accessed.

Unfortunately, traditional instant messaging applications do not provide
mechanisms to efficiently manage feature objects while preventing tampenng of such
objects. For example, if a user were to simply send his/her unique custom user tile to a
second user, the second user could change the first user’s tile so that the tile no longer

represents the first user in the way he/she wants to be represented.

SUMMARY

Exemplary implementations are described that solve the above problems and other
problems.

One implementation includes a method for communicating object data by
receiving a name associated with a user on a remote computer, the name including
location data and a hash value uniquely associated with a data object representing the user
and retrieving the data object from one of a local cache based on the hash value or a

location 1dentified by the location data.

Lee & Hayes, PLLC 2 MS1-1527US
303973.1

P T W P —
L 4

10

L1

12

i3

14

15

16

17

18

1Y

20

21

22

23

24

25

CA 02469503 2004-06-01

Another implementation includes a system for managing objects that represent
users in an instant messaging conversation, wherein the system includes a data object
representing a user, the data object having an object name including a location identifier
and a hash value, the object name allowing, and an object store operable to retrieve the

data object from a location identified by the location 1dentifier and store the data object in

a local cache based on the hash value.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 illustrates an exemplary network environment for an instant messaging
conversation utilizing an object store.

Fig. 2 is a class diagram having exemplary classes that may be instantiated in a
messenger platform to provide an object store for object management.

Fig. 3 illustrates a store object operation flow having exemplary operations for
creating an object and storing the object using an object store.

Fig. 4 is a flow chart having exemplary operations for selecting an avatar, 1nviting
another user to have the avatar presented on the user’s device, and initializing dedicated
resources for presenting the avatar on the user’s device.

Fig. 5 illustrates an exemplary object retrieval scenario 500 in which requested
object data is located 1n a local file system.

Fig. 6 illustrates another exemplary object retrieval scenario 600 in which
requested object data is located on a network storage device.

Fig. 7 illustrates another exemplary object retrieval scenario 700 1n which

requested object data 1s located at a peer computer.

Lee & Hayes, PLLC 3 MSI1-1527U8
303973.1

unn-w:u;lbhtl-&‘-f"t-mNﬂ\ﬂhlluhﬂmmwmumh"-'.Il"l-:'-h"-d CELL LTI ' Yo
nﬂmmm:mummﬁra%nmw:wm¥mmmﬂwmmmmmmm--*annmnwm;M“W e AT NG TR LA NS MR LN S NIRRT s ke siolt 1

AN P1Ar v bl P o AR L 7 0 e o b STl P R TP AT C o LY

10

11

12

13 |}

14

15

10

17

| 8

19

20

21

22

23

24

25

CA 02469503 2004-06-01

Fig. 8 1llustrates an exemplary system that provides a suitable operating

environment to engage in an instant messaging conversation using an object store to

manage feature objects.

DETAILED DESCRIPTION

Turning to the drawings, wherein like reference numerals refer to like elements,
various methods are illustrated as being implemented in a suitable computing
environment. Although not required, various exemplary methods will be described in the
general context of computer-executable instructions, such as program modules, being
executed by a personal computer and/or other computing device. Generally, program
modules include routines, programs, objects, components, data structures, etc. that
perform particular tasks or implement particular abstract data types. Moreover, those
skilled in the art will appreciate that various exemplary methods may be practiced with
other computer system configurations, including hand-held devices, multi-processor
systems, microprocessor based or programmable consumer electronics, network PCs,
minicomputers, mainframe computers, and the like. Various exemplary methods may
also be practiced in distributed computing environments where tasks are performed by
remote processing devices that are linked through a communications network. In a
distributed computing environment, program modules may be located in Both local and
remote memory storage devices.

In some diagrams herein, various algorithmic acts are summarized 1n individual
“blocks”. Such blocks describe specific actions or decisions that are made or carried out

as a process proceeds. Where a microcontroller (or equivalent) 1s employed, the flow

Lee & Hayes, PLLC 4 MS1-1527US
303973.1

AP10 AV paina o b mrwwperryl b U I AL N v S P o AR s A o B e o

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

CA 02469503 2004-06-01

charts presented herein provide a basis for a “control program” or software/firmware that
may be used by such a microcontroller (or equivalent) to effectuate the desired control.
As such, the processes are implemented as machine-readable instructions storable in
memory that, when executed by a processor, perform the various acts illustrated as
blocks.

Those skilled in the art may readily write such a control program based on the
flow charts and other descriptions presented herein. It i1s to be understood and
appreciated that the subject matter described herein includes not only devices and/or
systems when programmed to perform the acts described below, but the software that is
configured to program the microcontrollers and, additionally, any and all computer-
readable media on which such software might be embodied. Examples of such computer-
readable media include, without limitation, floppy disks, hard disks, CDs, RAM, ROM,

flash memory and the like.

Overview

Exemplary methods, systems, and devices are disclosed for managing objects 1n
an instant messaging system. Generally, an object store provides a write-once, read-many
object storage and retrieval system, wherein the objects are immutable. The object store
provides an interface through which a feature application can store or retrieve an object
using an object name. The object store encodes the object data to create a unique
identifier, through which the object store can access the object from a local cache, or from

one of a plurality of locations. The object may be stored locally or remotely. The object

Lee & Hayes, PLLC S MS1-1527US
303973.1

memwvm“m- At AW B WA ey AN 7 B s § AR SN A TR A Sttt by VA T e I A e Y RTS8 28 oot W - s .-

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

CA 02469503 2004-06-01

store can decode the object’s name to obtain location and/or creator information to

retrieve the object from the local or remote storage.

Exemplary Svystems for Storing Objects in an Instant Messaging Scenario

Fig. 1 illustrates an exemplary network environment 100 for an instant messaging
conversation. Generally, two clients 102 and 104 can communicate with each other via a
network 106 or directly, via a direct connection 108. A switchboard server 110 facilitates
communication between client (1) 102 and client (2) 104 via the network 106. The client
(1) 102 and/or the client (2) 104 can connect to the switchboard server 110 to establish an
instant messaging session. Using the direct connection 108, data need not be routed
through the switchboard server 110, but rather, the data may be communicated 1n a peer-
to-peer fashion between client (1) 102 and client (2) 104.

An instant messaging (IM) platform 112 enables the clhient (1) 102 and the client
(2) 104 to engage in an instant messaging conversation. A user of the IM platform 112
interacts with the IM platform 112 via a user interface (not shown) to send and receive
messages, and other data, to and from the client (2) 104. The IM platform 112 includes
one or more features 114 (also called end user features (EUFs)), an object store 116, an
object cache manager 118, and a transport protocol stack 120. The transport protocol
stack 120 provides an application programming interface (API) 122 whereby highef level
functions, such as the features 114 and the object store 116 can use functions in the
transport protocol stack 120 to send and receive data.

In general, the transport protocol stack 120 and the transport API 122 provide

means for client (1) 102 to communicate with client (2) 104 over the network 106 and/or

Lee & Hayes, PLLC 6 MS1-1527US
303973.1

AT bt oAVt soeouP S G5O O 0 e 060 .7 MR AL e AU 00 AL A0 it A S IO A0 I 54 LI N a4 A BT A 0501 A 2710 M 6O 0 AP RABRAIL BB 23 0 1 e

10

11

12

13

14

I5

16

17

18

19

20

21

22

23

24

25

CA 02469503 2004-06-01

over the direct connection 108 1n a peer-to-peer fashion. The transport protocol stack 120
establishes necessary connections for communicating instant messaging data, including
data related to the features 114 and the object store 116. Exemplary implementations of
the transport protocol stack 120 and transport API 122 are described 1n further detail in
co-pending U.S. Patent Application Serial No. , entitled “Transport
System for Instant Messaging.”

The features 114 are functions or applications hosted or executed by or within the
[M application 112 to present data associated with the feature 114. A feature 114 may be
characterized by the type of data the feature 114 presents, the manner of presenting the
data, the operations that the feature 114 may perform on the data, and/or the interactive
options that the feature 114 provides to the user to interact with the data. For example, a
custom user tile feature 114 presents picture data in a screen tile on the user interface; a
file transfer feature 114 enables a user to select a file and send the file to an instant
messaging contact. By way of example, but not limitation, the features 114 may include
custom emoticons, ink, embedded pictures, and other applications.

The features 114 use objects during an instant messaging conversation to present
data. Objects are managed by the object store 116. The object store 116 provides
methods and data for storing, accessing, and otherwise managing data objects used in
instant messaging. For example, the object store 204 may be used by a custom emoticon
feature 114 to display a custom emoticon from the client (2) 104 at the client (1) 102. As
discussed in further detail below, the object store 116 can provide degrees of data security

by encrypting data, such as by hashing identifier data associated with an object.

Lee & Hayes, PLLC 7 MSI-1527US
303973.1

e Leewd WREWA by e 248 LDyt s £ P N | R n T TNOrud s gt

10

11

12

13

14

15

16

il
I8
19
20
21
22
23
24

25

CA 02469503 2004-06-01

The client computer (1) 102 includes a file system 124 and a cache 126. Objects

can be stored in both the file system 124 and the cache 126. The file system 124 is a
standard computer file system for cataloging files 1n the client computer (1) 102. The
cache 126 includes memory, such as hard or floppy disk, and/or Random Access Memory
(RAM). The object cache manager 118 manages objects 1n the cache 126.

One implementation of the object cache manager 118 uses the WInINET ® cache,

which is the cache used by the Internet Explorer ® from Microsoft ® Corporation. In this

implementation, when an object is retrieved from a web address (e.g., a umiform resource
locator (URL)), WinINET ® will automatically write the object into the WinINET ®
cache. If an object is retrieved from a location other than a URL location, the object
cache manager 118 will request that the transport protocol stack 120 retrieve the object,
and the object cache manager 118 writes the object to the WinINET ® cache.

The network 106 includes storage 128, which can also hold object data that can be
used by the clients 102 and 104. The client (1) 102 may access network storage 128 to
retrieve an object via the network 106. Objects on the client (1) 102 can be retrieved and
used by the client (2) 104, and vice versa. As is discussed 1n further detail below, the
object store 116 handles requests for objects, by determining where the requested objects
are and retrieving them from the determined locations. Thus, as shown in Fig. 1, the
object store 116 can determine that objects are in a local cache 126, 1n a local file system
124, in network storage 128, and/or on a remote chent (2) 104.

Although they are not shown, modules analogous to those included on the chent

(1) 102 are included on the client (2) 104. Thus, the client (2) 104 includes a messenger

Lee & Hayes, PLLC 3 MSi-1527U8
303973.1

A th o b A) s 00 gl L AN gt . -~ VLI TV e N b e S g s e '
WWMMMMWW #rtend (A TLNNT PP R P KN 0 | A YTIN S A A S

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

CA 02469503 2004-06-01

platform, features, an object store, an object cache manager, a transport protocol stack, a
file system, and cache memory.

Although the exemplary environment 100 1n Fig. 1 depicts only two clients 102
and 104 in a conversation, it 1s to be understood that more than two clients may be
involved in a conversation. Two or more clients may communicate in a multipoint
fashion, wherein each client may have a connection (e.g., peer-to-peer, or through a
server) to two or more other clients. More detailed descriptions of exemplary operations
and systems that may be employed in the network environment 100 are provided below.

Fig. 2 illustrates a class diagram 200 having exemplary classes that may be
instantiated in a messenger platform (e.g., the IM platform 112, Fig. 1) to provide object
management. One class 1s an ObjectStore class 202 representing an object store (e.g., the
object store 116, Fig. 1) on a client computer (e.g., the chent (1) 102, Fig. 1). The
ObjectStore class 202 uses a StoredObject class 204 that represents a stored object. A
type enumerator 206 defines one or more types of objects. Those skilled in the art will be
familiar with object oriented software design and class diagram designs, such as the class
diagram 200 1n Fig. 2.

Features (e.g., the features 114, Fig. 1) in a messenger application (e.g., the IM
platform 112, Fig. 1) interface with the ObjectStore class 202 (or an instance of the
ObjectStore class 202) to store and retrieve instances of the StoredObj ect class 204. In a
particular implementation, the ObjectStore class 202 is a static singleton, which means
that only one instance of the ObjectStore class 202 is created to handle requests from all

the features that may be executing.

Lee & Hayes, PLLC 9 MSI-1527US
303973.1

’ i , ww“lMWMUQMMMNWWIJD'QWN*W1WH|unnu.r- PP IP I T wers ey ' '
S TN MY W Pt F IS N b et LT ot AL | B P T o s e D A SO SN vt oo VAT R 4 AP ML A M TR AP0, ST P} 200 RN O I N MR et

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

. . e T T R I LA A T T B BRTT PRRIY Y SRR TTFIIUITL TN RN ot Al 1Ay “ g
S M £ N 11 PRD AN Lim AV B[VTR B wme bt wt 1A R 5P A L il A1 I TS FENMAKE TR 4 L 3 PRI B M i A P ML = it it R v
kb TR of e bt At LA LI S04 AR A 3 s s R S DS TON E Pypst b Sty LRIy T A TN AS SR G b S L Fr NN 55 vt P s S ot T s SV UL T AHIA IR hmpead: shohibyive

CA 02469503 2004-06-01

Exemplary object types are provided in the StoredObjectTypeEnum 206. As
shown, in the particular implementation of Fig. 2, the enumerated types are custom

emoticon, user tile, background, avatar, and shared file. The types may refer to objects

that a user can generate that represent the user. The user may create an object, such as a-

custom emoticon, an avatar, or a user tile, that 1s unique to the user.

As shown i1n Fig. 2, the ObjectStore class 202 provides three functions:
GetObject(StoredObject), StoreObject(StoredObject), and DeleteObject(StoredObject).
As the function names indicate, a feature can retrieve a stored object by calling the
GetObject function, store an object by calling the StoreObject function, and delete an
object by calling the DeleteObject function. Each of the functions includes a parameter
of the type StoredObject class 204.

The StoredObject class 204 refers to an object of data. Data 1in an object 1s
composed of any Binary Large Objects (BLOB) of data of any size or type. An instance
of the Stored Object class 204 need not be stored with the object data to which the
instance refers. For example, client (1) 102 (Fig. 1) may have an instance of a
StoredObject 204 that refers to object data that is stored on network storage 128 (Fig. 1)
or another client, such as client (2) 104 (Fig. 1). The actual location of the object data 1s
transparent to a feature using instances of the ObjectStore class 202 and the StoredObject
class 204.

The StoredObject class 204 includes object metadata 208 that describes the object
data. The exemplary metadata 208 includes a name field, a Type field, a FriendlyName

field, a Hashl field, a Hash2 field, a Creator field, and a Location field. The name 1s a

string that identifies the object. In one embodiment, the name field 1s a combination of

Lee & Hayes, PLLC 10 MS1-1527US
303973.1

p-.,»m.emg.anM-mmvmwmm!Mmh

10

11

12

13

14

15

16}

17

18

19|

20

21

2|

23

24

235

Nerry e pra— ATt o iAo SR R o Al T3 P ARV R

CA 02469503 2004-06-01

one or more of the metadata 208 fields. The Type field 1s one of the types in the
StoredObjectTypeEnum 206 that specifies the type of object. The FriendlyName field 1s a
user-readable name that a user can give the object.

In one embodiment, the Hashl field has a value uniquely associated with the
object data, and may be used to locate the object data in a cache. The Hashl value 1s
generated using a cryptographic hashing function, such as a Secure Hash Algorithm 1
(SHA1). The SHA1 function takes the object data as input to generate the Hashl value.
An example calling signature of the SHA1 function 1s SHAI(Data) where Data refers to
the object data to be stored.

SHA1 is an algorithm for computing a ‘condensed representation’ of the object
data. The 'condensed representation’ 1s of fixed length and i1s known as a 'message digest’
or ‘fingerprint’. A common fixed length of the Hashl field 1s 160 bits, which virtually
guarantees that the Hashl value will be unique for every object. The uniqueness of the
Hashl value enables the Hashl value to act as a 'fingerprint' of the object data, to ensure
data integrity and allow for data comparison checking. For instance, when object data 1s
downloaded, the Hash1l value can be calculated and compared to a previous Hash1l value
to guarantee that the object data is unaltered. The Hashl value can also be used as an
index into a cache to locate the previously stored object data.

The Hashl value may be calculated using other known algorithms,' such as the
Message Digest Algorithm 5 (MDS) developed by Professor Ronald L. Rivest. Using

MD5, SHA1, or a similar algorithm, the Hash1 value is non-reversible, meaning that the
object data cannot be generated from the Hashl value. For those skilled in the art,

resources are readily available for implementing a hashing or message digest algorithm,

Lee & Hayes, PLLC 11 MS1-1527US
303973.1

.....

10

i1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

A RO P D TR CAAMEANG nbd o B LA PR s (50 T2 & ZALIN MACIRLS B bor L e At e N

CA 02469503 2004-06-01

such as a SHA or an MD. Details of one particular implementation of a SHA1 algorithm
are available in “US Secure Hash Algorithm 1 (SHA1)” wnitten by Donald E. Eastlake,
III, and Paul E. Jones, and published in Request for Comments 3174 (RFC3174) by The
Internet Society (September, 2001). Also, Federal Information Processing Standards
Publication (FIPS PUB) 180-2, August 1, 2002 sets forth a Secure Hash Standard.

The Hash2 field 1s a hash value that results when the metadata fields (i.e., the
Creator field, the Type field, the FriendlyName field, the Location field, and the Hashl
field) are input into a hash function, such as the SHA1 function discussed above.

The Creator field of the StoredObject class 204 represents the user, peer, or client
that created the object. The Creator field may be a string having the creator’s name,
email address, or any other identifier that specifies the creator of the object. The Location
field of the StoredObject class 204 specifies the location of the object data. As shown in
Fig. 2, the location 1s given b; a uniform resource locator (URL). As 1s generally known,
a URL is an address that defines the route to data on the Web or any other network
facility. As discussed in further detail below, the ObjectStore class 202 can use the
Creator and the Location fields to retrieve the object data.

An instance of the exemplary StoredObject class 204 provides an overloaded
function “Create” function, whereby stored objects may be created of various types.
Thus, when the Create function is called with an ID, an object 1s created having the ID;.
when the Create function is called with a File handle, an object is created using the

referenced File, and so on.
An instance of the StoredObject class 204 has a “GetData()” function. When the

GetData() function is called, the object data referenced by the instance of the

Lee & Hayes, PLLC 12 MS1-1527US
303973.1

A PP 3 ARG A AR 0354 s N KPR S) AN S 4 1 14711 .-».ummmmm%mummummwmwmm‘“'m -)W;MnuMWWM“MWWWWNMh“M.MMW-*M O T v am

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

CA 02469503 2004-06-01

StoredObject class 204, 1s returned. Thus, when a feature needs to present the object, the

feature can call GetData() to obtain the actual data, whether the data define an emoticon,

an avatar, a user tile, a file, a background, or otherwise.

Exemplary Operations for Storing and Retrieving an Object using an Object Store
Fig. 3 illustrates a store object operation flow 300 having exemplary operations
for creating an object and storing the object using an object store, such as the object store
116, Fig. 1, and/or the ObjectStore class 202, Fig. 2. In one scenario, a feature interacts
with an instance of an ObjectStore class 202 and a StoredObject class 204 to create and
store an object. The feature receives an object name from the object store, which the

feature can later use to retrieve the object.

After a start operation 302, a creating operation 304 creates an object. In one
implementation of the creating operation 304, an instance of the StoredObject class 204
(Fig. 2) is created. A call is made to a Create() function with a reference to the data to be
stored. For example, a user can use a custom emoticon feature to create a custom
emoticon type StoredObject. The custom emoticon feature calls the Create() function
with a reference to the custom emoticon.

A calculating operation 306 calculates a first Hash value corresponding to the data
associated with the StoredObject (created in the creating operation 304).' The calculating
operation 306 may calculate a second Hash value based on the metadata fields 1n the
StoredObject. Various resources and algorithms for calculating Hash values are described

above, and will not be reiterated here. A storing operation 308 stores the object data in a

Lee & Hayes, PLLC 13 MS1-1527US
303973.1

10

8

12

13

14

1S

16

17

18

19

20

21

22

23

24

25

CA 02469503 2004-06-01

local cache. The object data 1s stored at a location in the cache corresponding to the first
Hash value, so that the object data can later be easily retrieved from the cache.

A setting operation 310 sets the fields in the metadata (see metadata fields in Fig.
2) of the StoredObject. The Creator field and the Location field of the object metadata
can be set based on user login settings. The Type field 1s set to the type of stored object
data. The FriendlyName may be specified by the user. The Hashl field and the Hash2
field are set to the first Hash value and second Hash value, respectively, calculate in the
calculating operation 306.

A returning operation 312 returns an object name. The object name 1s the
concatenation of one or more fields in the metadata, which were set in the setting
operation 310. In one implementation, the object name that 1s returned includes the
Creator field and the Location field. The Creator field and the Location field will enable
the ObjectStore to later retrieve the object data from a location other than the local cache
1f necessary.

The name returned in the returning operation 312 may be in a specified format,
such as Uniform Resource Identifier (URI) and Uniform Resource Name (URN). A URI
is a character string that can identify any kind of resource on the Internet, including
images, text, video, audio and programs. A common version of a URI 1s a Uniform
Resource Locator (URL). A URN is defined to be a permanent, globally unique name for

an object. An exemplary URI and URN are shown below:
URI: //[Creator)/[Type)/[Hash1]/[Hash2]?fn=[FrnnendlyName]&URL=[Location|;

URN: [Type]:[Creator]:[FriendlyName]:[Location]}:[Hash1]:[Hash2]

Lee & Hayes, PLLC 14 MS1-1527US
303973.1

AL AR et et

10

11

12

Bl

14“

15

16

17

18

19

20

21

22

23

24

23

ChIT o A AT T TR IR AN | S AR P L% AN L 1 aaalril AP P Mt 1 4

CA 02469503 2004-06-01

Fig. 4 is a retrieve object operation flow 400 having exemplary operations for
retrieving an object that may be stored at any of various locations on a computer network.
As discussed with regard to Fig. 1, objects and object data may be stored in a local cache,
in a local file system, in network storage (e.g., on a disk on network server), and/or on a
remote client, or peer computer. The operation flow 400 responds to a request for an
object by determining where the object 1s located, and then retrieving the object from that
location.

A requesting operation 402 requests object data using an object name, such as the
object name returned in the returning operation 310 (Fig. 3). The requesting operation
402 may pass in an object name obtained from a remote client computer, or a network
server. The object name is assumed to include location information (e.g., a URL, or

Location field in StoredObject 204, Fig. 2) specifying the location of the requested object.

| The object name also includes a Hash value uniquely related to the requested object. The

requesting operation 402 may involve calling the GetObject() function of the ObjectStore
202 (F1g. 2).

A query operation 404 determines whether the requested object 1s in a local cache.
In one implementation of the query operation 404, the Hashl value in the input Name 1s
used to determine if the object is in the local cache. The Hashl value is a hash of the data
associated with the StoredObject.” Thus, the Hashl is based only on the object data to be
retrieved, and is independent of any other Name data associated with the object. Because
the Hashl value is a unique index into the cache, the Hashl value can be used to
determine whether the data associated with the Hashl value is stored in the local cache.

If the requested object is determined to be in the local cache, the retrieve object operation

Lee & Hayes, PLLC 15 MS1-1527US
303973.1

. s .0 ‘. smmyes SR e IPsaaan i ver et . '
: . e rrevipr TR PR T PIPT L TR T P S L TR T 1P e BN INE] 4 STIVIOM S ho b i MAE DS CY VI YRR RS 112 H T 00 L b] p skt pr e p ANV 71w et = v s st 8 T
Mehrerd ;mwmwumﬂm;mmnm.mh.-rfmnumanﬁm-IM?-WJ»MWHWIHI‘H“MWW““‘m’“mm"

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

CA 02469503 2004-06-01

400 branches “YES” to a retrieving operation 406. The retrieving operation 406 uses the
Hash value to index into the local cache and retrieve the object data.

The first time an object 1s accessed, the object data may not be 1n the local cache.
If the requested object is determined not to be in the local cache, the retrieve object
operation 400 branches “NO” to a retrieving operation 408. The retrieving operation 408
retrieves the requested object from a location other than the local cache. The location is
specified by the Location field in the input Name. Several scenarios are presented below
that illustrate how the Location field may be used to retrieve the requested object from a
location other than the local cache.

After the requested object is retrieved from a location other than local cache, a
storing operation 410 stores the object in the local cache. After retrieving the requested
object from the local cache or storing the requested object in the local cache, a returning

operation 412 returns the requested object.

Exemplary Object Retrieval Scenarios

%

Fig. 5 illustrates an exemplary object retrieval scenario 500 in which requested
object data is located in a local file system. A feature 502 requests object data from an
object store 504 by passing an object name to the object store 504. The object store 504
determines whether the requested object is in a local cache 506. In the scenario 500, 1t 1S
assumed the requested object is not found in the local cache 506. The object store 504
parses the object name to determine the location of the requested object data. In the

scenario 500, the location data in the object name specifies the location as being a local

file system 508.

Lee & Hayes, PLLC 16 ' MS1-1527US
303973.1

CA 02469503 2004-06-01

Thus, the local file system 508 1s accessed to retrieve the request object data. The
request object data is then stored in the local cache 506 and returned to the requesting

feature 502. Thus, as will be appreciated, the exemplary scenario 500 takes place entirely

.|| atasingle client.

5 Fig. 6 illustrates another exemplary object retrieval scenario 600 in which
6|| requested object data is located on a network storage device. A feature 602 requests
71l object data from an object store 604 by passing in an object name having a hash value and
location information. The object store 604 uses the hash value of the requested object

data to determine if the requested object is in a local cache 606. It 1s assumed 1n the

10 |
exemplary scenario that the requested object 1s not n the local cache 606. The object

11
store 604 determines from the location information that the requested object 1s stored at a

12

location on a network 608.
13

The location is given by a URL that designates network storage 610. The
14

< requested object is retrieved from the network storage 610. Subsequently, the requested

|| object is stored in the local cache 606 and returned to the requesting feature 602.

17 Fig. 7 illustrates another exemplary object retrieval scenario 700 in which
18|| requested object data is located at a peer computer. A feature 702 running on a client,

19]| client 1, requests object data from an object store 704 by passing in an object name

201l having a hash value and location data. The object store 704 determines that the requested

! object data is not in a local cache 706. By parsing the object name, the object store 704

22
determines that the requested object data 1s at a client computer, client 2.

23 .
A request is sent to a transport protocol stack 706 to retrieve the requested object
24

data from client 2. The transport protocol stack 708 utilizes a peer-to-peer connection to
25

Lee & Hayes, PLLC 17 MS1-1527US
303973.1

. » - e 0 (PR TN PP T TS H H mordwiiey) Lt | . LIIE LR AL o' 0
. N L e =S wwm Kitarshaars vl wiaN N/l priTbr el WMMM‘W“ MMI”WMWnHW'W~ Bl E R AL L L hilthiinn " Ir 7“"%'“'”"‘“’“*%%%“” Wb e L
IIT] W}mlww#pu}m,uv.UW'llth”‘-"’) i nM-MﬂWWM’W . i " - rhrk buthcamtin sitke chdd

lllll

1]

12 ||

13

14|

15

16

17

18

19

20

21

22

23

24

235

CA 02469503 2004-06-01

a transport protocol stack 710 on the client 2. A request for the object data is sent to the
transport protocol stack 710 on client 2. The transport protocol stack 710 issues a call
back to a remote object store 712 on client 2. The remote object store 712 retrieves the
requested object data from a remote file system 714 on the client 2.

Subsequently, the requested object data is transmitted from client 2 to client 1 via
the transport protocol stacks 708 and 710. At clhient 1, the request object data is stored in
the local cache 706. Thus, later requests for the object data are easily satisfied from the
local cache 706 without resorting to a peer-to-peer request. The requested object data is

then returned to the requesting feature 702.

An Exemplary Operating Environment

Fig. 8 and the corresponding discussion are intended to provide a general
description of a suitable computing environment in which the described arrangements and
procedures to store and retrieve objects may be implemented. Exemplary computing
environment 820 1s only one example of a suitable computing environment and is not
intended to suggest any limitation as to the scope of use or functionality of the described
subject matter. Neither should the computing environment 820 be interpreted as having
any dependency or requirement relating to any one or combination of components
1llustrated 1n the exemplary computing environment 820. C

The exemplary arrangements and procedures to manage objects In a network
environment are operational with numerous other general purpose or special purpose

computing system environments or configurations. Examples of well known computing

systems, environments, and/or configurations that may be suitable for use with the

Lee & Hayes, PLLC 18 MSI-1527US
303973.1

At KR LD L TSN MRS MR A L. SR AGIRARS AR VIR 1ot g g ViAae Mo o LU P ST PP ALE T 47 AL LAY R SN S AR LMD by 00 S 1 3 P g A D 300 St S S S0 J N H ARSI e P SR v s TPERIT] crbrs gt is 0T oot ALl IR b U5 N SRS b A LT AL 0 O ke AT L PRI AT I ML Rt b W P b) ot D BPPAR AAMNIIA =51 L 1020 B ATAN S e e e Pmd St e e

10

1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

CA 02469503 2004-06-01

described subject matter include, but are not hmited to, personal computers, server
computers, thin clients, thick clients, hand-held or laptop devices, multiprocessor
systems, microprocessor-based systems, mainframe computers, distributed computing
environments such as server farms and corporate intranets, and the like, that include any
of the above systems or devices.

The computing environment 820 includes a general-purpose computing device in
the form of a computer 830. The computer 830 may include and/or serve as an
exemplary implementation of an object store as described above. The components of the
computer 830 may include, by are not limited to, one or more processors or processing
units 832, a system memory 834, and a bus 836 that couples various system components
including the system memory 834 to the processor 832.

The bus 836 represents one or more of any of several types of bus structures,
including a memory bus or memory controller, a peripheral bus, an accelerated graphics
port, and a processor or local bus using any of a variety of bus architectures. By way of
example, and not limitation, such architectures include Industry Standard Architecture
(ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and Peripheral Component
Interconnects (PCI) bus also known as Mezzanine bus.

The computer 830 typically includes a variety of computer readable media. Such
media may be any available media that is accessible by the computer 830, and 1t includes
both volatile and non-volatile media, removable and non-removable media.

The system memory includes computer readable media in the form of volatile

memory, such as random access memory (RAM) 840, and/or non-volatile memory, such

Lee & Hayes, PLLC 19 MS1-1527US
303973.1

of
a

12

14”

15

16

17”

18

19

0|

21 ”

22

||

24
23 H

CA 02469503 2004-06-01

as read only memory (ROM) 838. A basic input/output system (BIOS) 842, containing
the basic routines that help to communicate information between elements within the
computer 830, such as during start-up, 1s stored in ROM 838. The RAM 840 typically
contains data and/or program modules-that are immediately accessible to and/or presently
be operated on by the processor 832.

The computer 830 may further include other removable/non-removable,
volatile/non-volatile computer storage media. By way of example only, Fig. 8 illustrates
a hard disk drive 844 for reading from and writing to a non-removable, non-volatile
magnetic media (not shown and typically called a *“hard drive”), a magnetic disk drive
846 for reading from and writing to a removable, non-volatile magnetic disk 848 (e.g., a
“floppy disk”), and an optical disk drive 850 for reading from or writing to a removable,
non-volatile optical disk 852 such as a CD-ROM, DVD-ROM or othe:r optical media. The
hard disk drive 844, magnetic disk drive 846, and optical disk drive 850 are each
connected to bus 836 by one or more interfaces 854.

The drives and their associated computer-readable media provide nonvolatile
storage of computer readable instructions, data structures, program modules, and other
data for the computer 830. Although the exemplary environment described herein
employs a hard disk, a removable magnetic disk 848 and a removable optical disk 852, it
should be appreciated by those skilled in the art that other types of computer readable
media which can store data that is accessible by a computer, such as magnetic cassettes,
flash memory cards, digital video disks, random access memories (RAMs), read only

memories (ROM), and the like, may also be used in the exemplary operating

environment.

Lee & Hayes, PLLC 20 MS1-1527US
303973.1

10

i1l

12

13

14

|5

16

17

18

19

20

21

22

23

24

235

B L T I LT LT ST LT N SN P AR WEOTITTUNTT TS WETRTPITERN U SRety N P ess e T rervees W0 VTR RN ey 1PN SR TEn P T o P PTR PO S R LA IR LR e R L

CA 02469503 2004-06-01

A number of program modules may be stored on the hard disk, magnetic disk 848,

optical disk 852, ROM 838, or RAM 540, including, by way of example, and not

Iimitation, an operating system 858, one or more application programs 860, other

program modules 862, and program data 864. Application programs 860 may include an

instant messaging program with feature applications an object store and a transport
protocol stack as described herein.

A user may enter commands and information into the computer 830 through
optional input devices such as a keyboard 866 and a pointing device 868 (such as a

“mouse”). Other input devices (not shown) may include a microphone, joystick, game

” pad, satellite dish, senial port, scanner, or the like. These and other input devices are

connected to the processing unit 832 through a user input interface 870 that is coupled to
the bus 836, but may be connected by other interface and bus structures, such as a parallel
port, game port, or a universal serial bus (USB).

An optional monitor 872 or other type of display device is connected to the
bus 836 via an interface, such as a video adapter 874. In addition to the monitor, personal
computers typically include other peripheral output devices (not shown), such as speakers
and printers, which may be connected through output peripheral interface 875.

The computer 830 may operate in a networked environment using logical
connections to one or more remote computers, such as a remote compﬁter 882. The
remote computer 882 may include many or all of the elements and features described

herein relative to the computer 830. The logical connections shown i1n Fig. 8 are a local

area network (LAN) 877 and a general wide area network (WAN) 879. The LAN 877

and/or the WAN 879 can be wired networks, wireless networks, or any combination of

Lee & Hayes, PLLC 21 MS1-1527US
303973.1

4 SAATAITE) IO PO A 8 S RN KA TR AL DI AN+ S TP PP IR ET AP 147 1O HL A ICLIRAAIN NN] DN 1920711 0001 L F PN SO e sbAe 31 s Lo S S8 3asibcd gm0 gt s e et erorbor g v BN A 00l

10

11

12

R

14

L5

16

17

18

19

20

21

22

23

24

23

CA 02469503 2004-06-01

wired or wireless networks. Such networking environments are commonplace in offices,
enterprise-wide computer networks, intranets, and the Internet.

When used 1in a LAN networking environment, the computer 830 is connected to
the LAN 877 wvia a network interface or an adapter 8806. When used in a WAN
networking environment, the computer 830 typically includes a modem 878 or other
means for establishing communications over the WAN 879. The modem 878, which may
be internal or external, may be connected to the system bus 836 via the user input
interface 870 or other appropriate mechanism. Depicted in Fig. 8 1s a specific
implementation of a WAN via the Internet. The computer 830 typically includes a modem
878 or other means for establishing communications over the Internet 880. The modem
878 is connected to the bus 836 via the interface 870.

In a networked environment, program modules depicted relative to the personal
computer 830, or portions thereof, may be stored in a remote memory storage device. By
way of example, and not limitation, Fig. 8 illustrates remote application programs 889 as
residing on a memory device of remote computer 882. It will be appreciated that the
network connections shown and described are exemplary and other means of establishing

a communications link between the computers may be used.

Lee & Hayes, PLLC 22 MS1-1527US
303973.1

s m.mwmm-h--Mume‘%m REANE patseet

BT B A St LU A 5 e c—t 0 e, W v v e L wil— ACE » VA

CA 02469503 2004-06-01

Conclusion

Although the described arrangements, procedures and components have been
described in language specific to structural features and/or methodological operations, it
.|l is to be understood that the subject matter defined mn the appended claims is not
s|| necessarily limited to the specific features or operations described. Rather, the specific

6|| features and operations are disclosed as preferred forms of implementing the claimed

7|| present subject matter.

10
|
12
13
14
15
16
17
18

19

20
21
22
23
24

23

Lee & Hayes, PLLC 23 MS1-1527US
303973.1

3 e " e varwdienss ae=t e s 0w
chrrm a1 SR PR 'mwn-wwrmwmmmw“mmmmmmwwm IR LL O w
Vet Arar N N RN T 2 HAREY N MO TR s b N 15 P T IS W i a7 St e M P Y7 il rp i HA

CA 02469503 2004-06-01

| CLAIMS
1
: We claim:
, 1. A method for communicating object data comprising:
) || generating a hash value based on object data representing a user of a local
5| computer;
6 storing the object data at a storage location; and
7 returning an object name having the hash value and a location 1dentifier

identifying the storage location, the object name enabling a user of a remote computer to

l|
9

1ol
1

12|

access the object data.

2. A method as recited in claim 1 further comprising:

I receiving a request for the object data, the request including the object name; and
13

14|
15

I 3. A method as recited in claim 1 further comprising:

retrieving the object data from a local cache based on the hash value.

16

17 l receiving a request for the object data, the request including the object name; and

18 in response to receiving the request, retrieving the object data from the location

91| using the location 1dentifier.

20

2] 4. A method as recited in claim 1 further comprising:

22
receiving a request for the object data, the request including the object name; and

23
determining whether the requested object data is in a local cache based on the

24

hash value; and
25

Lee & Hayes, PLLC 24 MS1-1527US
303973.1

S .- - - : AP AT Y z + PPN M NG e B T CTEEEL I LULICE LS LU i e A Bes
71 4 byt e MM TURALES MM 6 T OO 07724 B A s PP g it o A D R A AN s AN I S ORI AR £SHASIAAT P S AL it h BRI X Bt M i TSR e T SRS b= ety a1 a T R AAENA DRI TSI RTH AR, NN T MMM K AR M PP ot o b ion Pt e

13

14

15

16

17

18

19 |

20

21

22

23

24

25

CA 02469503 2004-06-01

if the requested object data is in the local cache, retrieving the object data from the

local cache,

otherwise, retrieving the requested object data from the location 1dentified by the

location i1dentifier.

5. A method as recited in claim 4 wherein the retrieving the requested object

I data from the location identified by the location identifier comprises:

retrieving the requested object data from network storage.

0. A method as recited in claim 4 wherein the retrieving the requested object
data from the location identified by the location identifier comprises:

retrieving the requested object data from a local file system.

7. A method as recited in claim 4 wherein the retrieving the requested object

data from the location identified by the location identifier comprises:

retrieving the requested object data from a remote file system.

8. A method as recited in claim 7 wherein the retrieving the requested object

data from a remote file system comprises:

accessing the remote file system via a peer-to-peer connection.

9. A method as recited in claim 7 wherein the retrieving the requested object

data from a remote file system comprises:

Lee & Hayes, PLLC 25 MS1-1527US
303973.1

' AR e i b R T U R TR 1 Oyt B 2 S P IR R AN M S AT N I st ST e e e = e .

CA 02469503 2004-06-01

accessing the remote file system via a connection through a switchboard server.

10

11

12

13||

14

1S

16|I

17

18”

19

20

21 ||

22

23 ||

24

25||

Lee & Hayes, PLLC 26 MS1-1527US
303973.1

T P Tt R B SN Y s Bl oA 5 T AL). P T MM S LRSI AN Mgl T (007Dt AN AL 3 A DEYET ., MBI e S4B 2 T3 D1 A 3 VR MO U TS SOOI 36 HTP O AOWCA T YN I 00 o MDA TUG R Y AL B oM =10 Nt 201300 30w i R U R 57 ORI S XS5OG A S NI P8 TV ek 7 Tl ae s il W Aad bl it e et e Y gt by M Sl W et et et

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

235

CA 02469503 2004-06-01

10. A computer-readable medium having stored thereon computer-executable
instructions for performing a method comprnsing:

receiving a name associated with a user on a remote computer, the name including
location data and a hash value uniquely associated with a data object representing the
user; and

retrieving the data object from one of a local cache based on the hash value or a

location 1dentified by the location data.

11. A computer-readable medium as recited in claim 10 wherein the retrieving
the data object from one of a local cache based on the hash value or a location 1dentified

by the location data comprises:

determining whether the data object is in a local cache based on the hash value;

and

if the data object is in the local cache, retrieving the data object from the local
cache;

otherwise, retrieving the data object from the location identified by the location
data.

12. A computer-readable medium as recited 1n claim 11 wherein the retrieving
the data object from the location identified by the location data comprises retrieving the

data object from a remote file system.

Lee & Hayes, PLLC 27 MS1-1527US
303973.1

A s houln = mw_ﬁ..:—-so Tl AB Ay T om e A e ANV NN e o e e LSRN
. .
A S S s e AN sk i 2 e N S L P iy L R W v e 4t SPTRVE ASOwrRvR S AT ittt SR SR A st sl S -sanstmlccacs Wuralin gt el VT e P B A | 1A e

10

11

12

13

i4

15

16

17

18

19

- 20

21

22

23

24

25

CA 02469503 2004-06-01

13. A computer-readable medium as recited in claim 11 wherein the retrieving
the data object from the location 1dentified by the location data comprises retrieving the

data object from a local file system.

14. A computer-readable medium as recited in claim 11 wherein the retrieving
the data object from the location 1dentified by the location data comprises retrieving the

data object from a network storage.

15. A computer-readable medium as recited in claim 11 wherein the retrieving
the data object from the location identified by the location data comprises accessing a

remote computer via a peer-to-peer connection.

Lee & Hayes, PLLC 28 MS1-1527US
303973.1

CA 02469503 2004-06-01

16. A system for managing objects representing users in an instant messaging

conversation, the system comprising:

a data object representing a user, the data object having an object name including

.|| alocation identifier and a hash value, the object name allowing; and

S ‘ an object store operable to retrieve the data object from a location identified by

6 || the location identifier and store the data object in a local cache based on the hash value.

: 17. A system as recited in claim 16 wherein the object name further comprises

a creator identifier identifying a creator of the data object.

10

3
18. A system as recited in claim 16 further comprising a transport protocol

12

stack enabling the object store to retrieve the data object from a remote storage location
13

over a peer-to-peer connection.
14

15

» 19. A system as recited in claim 16 wherein the data object further comprise

17 || metadata descriptive of the data object.

18

19 20. A system as recited in claim 19 wherein the metadata comprises:

20 . a friendly name field;

2 a type field indicating a type of data object; and

22
a hash value based on the metadata.
23

24

25

Lee & Hayes, PLLC 29 MS1-1527US
303973.1

10

11

12

{3

14

15

16

17

18

19

20

21

22

23

24

25

CA 02469503 2004-06-01

21. A system as recited in claim 16 wherein the location identifier comprises a

uniform resource locator (URL).

22. A system as recited 1n claim-16 wherein the location identifier comprises a

uniform resource identifier (URI).

Smart & Biggar
Ottawa, Canada
Patent Agents

Lee & Hayes. PLLC 30 MS1-1527US
303973.1

CA 02469503 2004-06-01

¥ol

(Z) ¥3LNdnoD
INTITD

Ol 1 ¥3AY3S
QYVOgHILIMS

Q0] MHOML3IN

E
(N) loeel (W)
ANLY3 S 3uNLvag

¢l

ayoen

9cl

Z11 wWyo4dlvld -

ONIOVSSIN LNVISN]

201 (1) ¥3LNdWOD IN3ITD

J

001

il

CA 02469503 2004-06-01

200 1

iObjectStore

202 _|GetObject(StoredObject)

StoreObject(StoredObject)
DeleteObject(StoredObject)

StoredObject

Name : string
208 <| Type : StoredObjectTypeEnum

FriendlyName : string

Creator : string

Location : url

Hash1 : string

Hash2 : string
204 Create(string |1D) : |

g ID) : StoredObject

Create(handle File) ;. StoredObject
Create(string URL) : StoredObject
Create(void* Data) . StoredObject

GetDataAsFile() : handle |
GetData() : byte

StoredObjectTypeEnum

DefaultType = 0,
CustomEmoticon,
UserTile,
SharedFile,
Avatar,
Background

206

CA 02469503 2004-06-01

300
4

302
Start
Create Object

306
Calculate Hash Value
308 o
Store Object in Cache at Hash Value

310
Set Metadata
312

304

294. 3

CA 02469503 2004-06-01

400
1

402 ™ /Request Object
with Name

404

406 Retrieve
from Local

Cache

412 Return Requested
Object

Retrieve
from
Specified
Location

Store in
Local Cache

20G. 4

408

410

500
A

CA 02469503 2004-06-01

502
FEATURE
1 6
504
OBJECT STORE
2 5

CA 02469503 2004-06-01

803

yyomiaN 019

{7 c |
- 3JYOLS 103r80 o FHNLVYIS
G
€
<>
09 09
909

j

008

et ey m."‘-@lm%mw.,--m.,ws.rm--l -~ o s

VAR S LIPS LM s oest g r, et AT o s
"

Frope T TR T L

CA 02469503 2004-06-01

¢ U3l

0L

004

L LY SR T P L A

e FELIRRR ~ VAP

CA 02469503 2004-06-01

QuVOgAI)

SNOILYDINddY
‘310W3Y

"-‘f‘v:"-i"".ﬂ

¥98
V.LVQ WYH90ud

{

J

|

!

|

| 798 S3INACN
“ WYH908d ¥3HLO
l

|

}

|

3OVIYILN]
1NN ¥3sN

NV ASOMULIN SIOV4uILIN] VIG3N Viv(]

e

_
i
i
|
}
|
|
|
.
[
098 ,
.
i
_
]
l
|
|
|
|
_
|

|
|
“ 0.8 pCg
| sng SWYHO04d
_ . NOILYOINddy
|
W ocs "
“ JOVAHILN |
. WH3IHINA] | STe
| 1Nd1NO | W3LSAS ONILYEIHO
| ¥31dvay ”

— | O3aIN

= 618 pyg _r

| 1IN ONISS300¥d
. .
. AR “

A

1 o _ Eos_ms_ N3LSAS |
M £8 vmmLﬂ! ARSI
cl8 029 =~ - == === = ——— - e e e e e

TN AT O O T TTIIIIR LAY | 2 e — AN A e o

100

~

o~ R
CLIENT COMPUTER (1) 102 N RK 106 —

124 o
INSTANT MESSAGING SWITCHBOARD
< PLATFORM 112 SERVER 110
FEATURE FEATURE |
(A) (N) 11
128 |

CLIENT
26 OBJECT STORE COMPUTER (2) |
<> __ 104
— .

Cache OBECT CACHE MANAGER

|11 108

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - abstract drawing

