

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2014244333 B2

(54) Title
Compositions comprising anti-CD38 antibodies and carfilzomib

(51) International Patent Classification(s)
C07K 16/28 (2006.01) **A61P 35/00** (2006.01)
A61K 39/395 (2006.01)

(21) Application No: **2014244333** (22) Date of Filing: **2014.03.13**

(87) WIPO No: **WO14/159911**

(30) Priority Data

(31) Number 61/778,540	(32) Date 2013.03.13	(33) Country US	
	61/808,381	2013.04.04	US

(43) Publication Date: **2014.10.02**
(44) Accepted Journal Date: **2019.02.07**

(71) Applicant(s)
Sanofi;The Regents of The University of California

(72) Inventor(s)
Tomkinson, Blake;Aftab, Blake T.;Hann, Byron C.;Martin, Thomas G.

(74) Agent / Attorney
Watermark Intellectual Property Pty Ltd, L 1 109 Burwood Rd, Hawthorn, VIC, 3122, AU

(56) Related Art
WO 2012/041800 A1
US 2010/0028346 A1
WO 2010/061359 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2014/159911 A1

(43) International Publication Date
2 October 2014 (02.10.2014)

WIPO | PCT

(51) International Patent Classification:
A61K 39/395 (2006.01) *A61P 35/00* (2006.01)
C07K 16/28 (2006.01)

HANN, Byron, C.; c/o University of California, San Francisco, HDF Comprehensive Cancer Ctr, Box 0875, 2340 Sutter Street, San Francisco, CA 94143 (US). **MARTIN, Thomas, G.**; c/o University of California, San Francisco, Hematology/oncology, Box 0324, 400 Parnassus Ave, UC Clinics, San Francisco, CA 94143 (US).

(21) International Application Number:
PCT/US2014/025441

(74) Agent: **SUNDBY, Suzannah, K.**; Smith, Gambrell & Russell, LLP, 1055 Thomas Jefferson Street, NW, #400, Washington, DC 20007 (US).

(22) International Filing Date:
13 March 2014 (13.03.2014)

(81) **Designated States** (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language: English

(84) **Designated States** (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

(26) Publication Language: English

(30) Priority Data:
61/778,540 13 March 2013 (13.03.2013) US
61/808,381 4 April 2013 (04.04.2013) US

(71) Applicants: SANOFI [FR/FR]; 54, Rue La Boétie, F-75008 Paris (FR). THE REGENTS OF THE UNIVERSITY OF CALIFORNIA [US/US]; 1111 Franklin Street, Twelfth Floor, Oakland, CA 94607-5200 (US).

(72) Inventor; and

(71) Applicant : **TOMKINSON, Blake** [US/US]; c/o Sanofi-Aventis, 55 Corporate Drive, Bridgewater, NJ 08807 (US).

(72) Inventors: **AFTAB, Blake, T.**; c/o University of California, San Francisco, HDF Comprehensive Cancer Ctr, Box 0128, 1450 3rd Street, San Francisco, CA 94158 (US).

[Continued on next page]

(54) Title: COMPOSITIONS COMPRISING ANTI-CD38 ANTIBODIES AND CARFILZOMIB

(57) **Abstract:** Disclosed herein are compositions and kits which comprise anti-CD38 antibodies and carfilzomib compounds. Also disclosed are methods for treating cancers, such as multiple myeloma, in subjects with the compositions and kits.

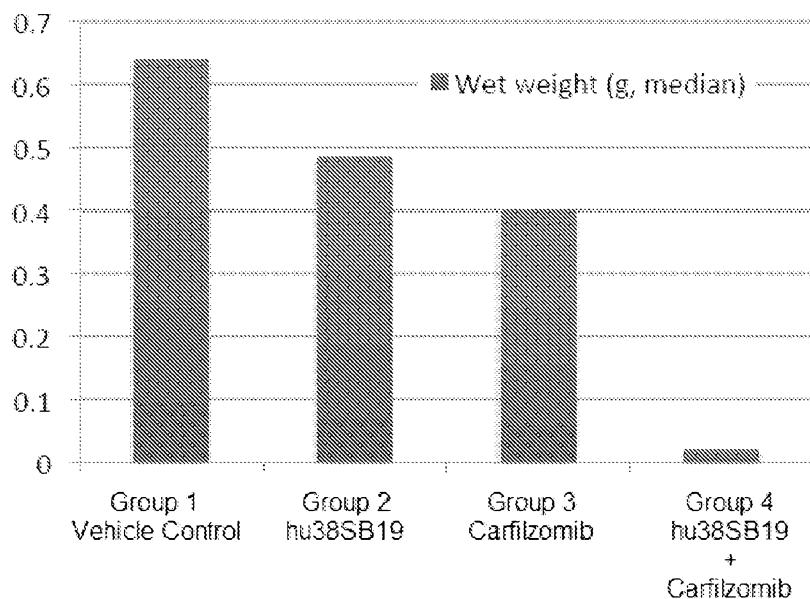


Fig. 9B

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- *with international search report (Art. 21(3))*
- *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))*
- *with sequence listing part of description (Rule 5.2(a))*

Declarations under Rule 4.17:

- *as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))*
- *as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))*

COMPOSITIONS COMPRISING ANTI-CD38 ANTIBODIES AND CARFILZOMIB

[01] CROSS-REFERENCE TO RELATED APPLICATIONS

[02] This application claims the benefit of U.S. Application No. 61/778,540, filed 13 March 2013, and U.S. Application No. 61/808,381, filed 4 April 2013, all of which are herein incorporated by reference in their entirety.

[03] REFERENCE TO A SEQUENCE LISTING SUBMITTED VIA EFS-WEB

[04] The content of the ASCII text file of the sequence listing named “20140313_034543_002WO1_seq” which is 56.7 kb in size was created on 13 March 2014 and electronically submitted via EFS-Web herewith the application is incorporated herein by reference in its entirety.

[05] BACKGROUND OF THE INVENTION

[06] 1. FIELD OF THE INVENTION

[07] The field of the present invention relates to anti-CD38 antibodies, carfilzomib, and cancer treatments.

[08] 2. DESCRIPTION OF THE RELATED ART

[09] Multiple myeloma (MM) is a B cell malignancy. In MM, abnormal plasma cells accumulate in the bone marrow where they interfere with the production of normal cells. Current therapy of MM includes administration of proteasome inhibitors such as bortezomib and carfilzomib, immunomodulatory drugs such as lenalidomide and thalidomide, and chemotherapy such as melphalan and prednisone. While these agents have improved survival in multiple myeloma, invariably resistance becomes problematic and patients succumb from their illness. Multiple myeloma thus remains ultimately fatal, with a median survival of approximately 3 to 5 years only.

[10] CD38 is expressed on malignant plasma cells. CD38 is a 45 kD type II transmembrane glycolprotein with a long C-terminal extracellular domain and a short N-terminal cytoplasmic domain. The CD38 protein is a bifunctional ectoenzyme that can catalyze the conversion of NAD⁺ into cyclic ADP-ribose (cADPR) and also hydrolyze cADPR into ADP-ribose. CD38 is up-regulated and has been implicated in many hematopoietic malignancies.

[11] Thus, some proposed MM treatments include the administration of anti-CD38 antibodies. See, for example, WO 2012/041800; de Weers et al. (2011) J Immunol 186:1840-1848; and Van der Veer et al. (2011) Haematologica 96(2):284-290.

Unfortunately, like various drugs and chemotherapies, not all antibodies are the same and not all antibodies against the same antigen exhibit the same activities.

[12] There is thus a need for new and efficacious treatments for extending survival and improving outcome of treatments of multiple myeloma, and more generally of blood cancers.

[13] DESCRIPTION OF THE DRAWINGS

[14] Both the foregoing general description and the following detailed description are exemplary and explanatory only and are intended to provide further explanation of the invention as claimed. The accompanying drawings are included to provide a further understanding of the invention and are incorporated in and constitute part of this specification, illustrate several embodiments of the invention, and together with the description serve to explain the principles of the invention.

[15] This invention is further understood by reference to the drawings wherein:

[16] Figure 1A shows the growth rate of tumors in xenograft models implanted with NCI-H929 cells (H929 models).

[17] Figure 1B shows the growth rate of tumors in xenograft models implanted with RPMI 8226 cells (RPMI models).

[18] Figure 2A shows the tumor volume of tumors in RPMI models after treatment with the indicated dose of hu38SB19 at the indicated times (arrows).

[19] Figure 2B shows the body weight of the RPMI models after treatment with the indicated dose of hu38SB19 at the indicated times (arrows).

[20] Figure 3A shows the tumor volume of tumors in H929 models after treatment with the indicated dose of hu38SB19 at the indicated times (arrows).

[21] Figure 3B shows the body weight of the H929 models after treatment with the indicated dose of hu38SB19 at the indicated times (arrows).

[22] Figure 4A shows the tumor volume of tumors in H929 models after treatment with the indicated dose of hu38SB19 at the indicated times (arrows).

[23] Figure 4B shows the body weight of the H929 models after treatment with the indicated dose of hu38SB19 at the indicated times (arrows).

[24] Figure 5A shows the tumor volume of tumors in H929 models after treatment with the indicated dose of hu38SB19 at the indicated times (arrows).

[25] Figure 5B shows the body weight of the H929 models after treatment with the indicated dose of hu38SB19 at the indicated times (arrows).

[26] Figure 6A shows the tumor volume of tumors in H929 models after treatment with the indicated dose of carfilzomib at the indicated times (arrows).

[27] Figure 6B shows the body weight of the H929 models after treatment with the indicated dose of carfilzomib at the indicated times (arrows).

[28] Figure 7A shows the tumor volume of tumors in RPMI models after treatment with the indicated dose of carfilzomib at the indicated times (arrows).

[29] Figure 7B shows the body weight of the RPMI models after treatment with the indicated dose of carfilzomib at the indicated times (arrows).

[30] Figure 8A shows the tumor volume of tumors in H929 models after treatment with the indicated dose of hu38SB19 at the indicated times (top arrows) and the indicated dose of carfilzomib at the indicated times (bottom arrows).

[31] Figure 8B shows the body weight of the H929 models after treatment with the indicated dose of hu38SB19 at the indicated times (top arrows) and the indicated dose of carfilzomib at the indicated times (bottom arrows).

[32] Figure 9A is a graph showing the mean wet tumor weights of the H929 models after the indicated treatment with carfilzomib and/or hu38SB19 (mAb).

[33] Figure 9B is a graph showing the median wet tumor weights of the H929 models after the indicated treatment with carfilzomib and/or hu38SB19 (mAb).

[34] Figure 10A shows the tumor volume of tumors in RPMI-8226 models after treatment with the indicated dose of hu38SB19 at the indicated times (top arrows) and the indicated dose of carfilzomib at the indicated times (bottom arrows).

[35] Figure 10B shows the body weight of the RPMI-8226 models after treatment with the indicated dose of hu38SB19 at the indicated times (top arrows) and the indicated dose of carfilzomib at the indicated times (bottom arrows).

[36] Figure 11 is a graph showing the cell surface density of CD38 in multiple myeloma cell lines.

[37] Figure 12 is a graph showing that hu38SB19, as the sole active ingredient, results in dose-dependent anti-tumor effects and eradication of NCI-H929 hind-flank xenograft tumor growth. Four cumulative doses, given twice weekly at 5 mg/kg were sufficient to eliminate palpable tumors in all mice within the cohort.

[38] Figure 13 is a graph showing that low-dose combinations of carfilzomib and hu38SB19 results in near complete tumor growth inhibition of NCI-H929 xenografts.

[39] SUMMARY OF THE INVENTION

[40] In some embodiments, the present invention relates to a method of treating a cancer in a subject which comprises administering one or more anti-CD38 antibodies and one or more carfilzomib compounds to the subject. In some embodiments, the cancer is a hematological malignancy. In some embodiments, the cancer is multiple myeloma. In some embodiments, the cancer is a relapsed multiple myeloma or a refractory multiple myeloma. In some embodiments, the one or more carfilzomib compounds is carfilzomib. In some embodiments, the one or more anti-CD38 antibodies are administered in an effective amount, preferably a synergistic amount. In some embodiments, the one or more anti-CD38 antibodies and/or the one or more carfilzomib compounds are administered in a therapeutically effective amount. In some embodiments, at least one of the one or more anti-CD38 antibodies is capable of killing a CD38+ cell by apoptosis, antibody-dependent cell-mediated cytotoxicity (ADCC), and complement-dependent cytotoxicity (CDC). In some embodiments, the antibody is hu38SB19. In some embodiments, at least one of the one or more anti-CD38 antibodies comprises one or more complementarity-determining region having an amino acid sequence selected from the group consisting of SEQ ID NOs: 13, 14, 81, 15, 16, 17, 18, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 and 36. In some embodiments, at least one of the one or more anti-CD38 antibodies is selected from the group consisting of: a) an antibody comprising a heavy chain comprising three sequential CDRs having amino acid sequences consisting of SEQ ID NOs: 13, 15 and either SEQ ID NO: 14 or SEQ ID NO: 81, and a light chain comprising three sequential CDRs having amino acid sequences consisting of SEQ ID NOs: 16, 17 and 18; b) an antibody comprising a heavy chain comprising three sequential CDRs having amino acid sequences consisting of SEQ ID NOs: 25, 26 and 27, and a light chain comprising three sequential CDRs having amino acid sequences consisting of SEQ ID NOs: 28, 29 and 30; c) an antibody comprising a heavy chain comprising three sequential CDRs having amino acid sequences consisting of SEQ ID NOs: 1, 2 and 3, and a light chain comprising three sequential CDRs having amino acid sequences consisting of SEQ ID NOs: 4, 5 and 6; d) an antibody comprising a heavy chain comprising three sequential CDRs having amino acid sequences consisting of SEQ ID NOs: 7, 8 and 9, and a light chain comprising three sequential CDRs having amino acid sequences consisting of SEQ ID NOs: 10, 11 and 12; e) an antibody comprising a heavy chain comprising three sequential CDRs having amino acid sequences consisting of SEQ ID NOs: 19,

20 and 21, and a light chain comprising three sequential CDRs having amino acid sequences consisting of SEQ ID NOs: 22, 23 and 24; and f) an antibody comprising a heavy chain comprising three sequential CDRs having amino acid sequences consisting of SEQ ID NOs: 31, 32 and 33, and a light chain comprising three sequential CDRs having amino acid sequences consisting of SEQ ID NOs: 34, 35 and 36. In some embodiments, the antibody comprises a heavy chain having a VH variable region represented by SEQ ID NO: 66, and a light chain having a VL variable region represented by either SEQ ID NO: 62 or SEQ ID NO: 64. In some embodiments, the antibody comprises a heavy chain having a VH variable region represented by SEQ ID NO: 72, and a light chain having a VL variable region represented by either SEQ ID NO: 68 or SEQ ID NO: 70. In some embodiments, the one or more anti-CD38 antibodies are administered intravenously. In some embodiments, the one or more carfilzomib compounds are administered orally. In some embodiments, the one or more anti-CD38 antibodies and the one or more carfilzomib compounds are administered sequentially. In some embodiments, the method further comprises administering a dexamethasone compound, preferably dexamethasone, to the subject. In some embodiments, the dexamethasone compound is administered orally. In some embodiments, the dexamethasone compound is administered at a low dose. In some embodiments, the one or more anti-CD38 antibodies, the one or more carfilzomib compounds, and the dexamethasone compound are administered sequentially. In some embodiments, the one or more anti-CD38 antibodies and the one or more carfilzomib compounds are administered sequentially.

[41] In some embodiments, the present invention relates to a composition comprising a) at least one anti-CD38 antibody, preferably the antibody is capable of killing a CD38+ cell by apoptosis, antibody-dependent cell-mediated cytotoxicity (ADCC), and complement-dependent cytotoxicity (CDC); and b) at least one carfilzomib compound, preferably carfilzomib; and, optionally c) a dexamethasone compound, preferably dexamethasone. In some embodiments, the present invention relates to a composition comprising a) at least one anti-CD38 antibody; and b) at least one carfilzomib compound; and, optionally i) a dexamethasone compound. In some embodiments, the antibody is capable of killing a CD38+ cell by apoptosis, antibody-dependent cell-mediated cytotoxicity (ADCC), and complement-dependent cytotoxicity (CDC). In some embodiments, the antibody is hu38SB19. In some

embodiments, the carfilzomib compound is carfilzomib. In some embodiments, the dexamethasone compound is dexamethasone.

[42] In some embodiments, the present invention is directed to a kit comprising a) a first composition comprising at least one anti-CD38 antibody, preferably the antibody is capable of killing a CD38+ cell by apoptosis, antibody-dependent cell-mediated cytotoxicity (ADCC), and complement-dependent cytotoxicity (CDC); and b) a second composition comprising at least one carfilzomib compound, preferably carfilzomib. In some embodiments, the compositions in the kit are packaged for sequential administration to a subject. In some embodiments, the antibody is hu38SB19. In some embodiments, the kit further includes a dexamethasone compound, preferably dexamethasone. In some embodiments, the carfilzomib compound and the dexamethasone compound are packaged for sequential administration to a subject.

[43] In some embodiments, the present invention is directed to a kit comprising at least one anti-CD38 antibody capable of killing a CD38+ cell by apoptosis, antibody-dependent cell-mediated cytotoxicity (ADCC), and complement-dependent cytotoxicity (CDC), packaged together with a label having one or more messages that the at least one anti-CD38 antibody shall be administered in combination with carfilzomib, and optionally with dexamethasone. In some embodiments, the antibody is hu38SB19. In some embodiments, the kit further includes a dexamethasone compound, preferably dexamethasone. In some embodiments, the carfilzomib compound and the dexamethasone compound are packaged for sequential administration to a subject.

[44] In some embodiments, the present invention is directed to a combination of: (i) at least one anti-CD38 antibody, preferably the antibody is capable of killing a CD38+ cell by apoptosis, antibody-dependent cell-mediated cytotoxicity (ADCC), and complement-dependent cytotoxicity (CDC); and (ii) at least one carfilzomib compound, preferably carfilzomib; and, optionally (iii) a dexamethasone compound, preferably dexamethasone. In some embodiments, the present invention relates to a combination comprising a) at least one anti-CD38 antibody; and b) at least one carfilzomib compound; and, optionally i) a dexamethasone compound. In some embodiments, the antibody is capable of killing a CD38+ cell by apoptosis, antibody-dependent cell-mediated cytotoxicity (ADCC), and complement-dependent cytotoxicity (CDC). In some embodiments, the antibody is hu38SB19. In some

embodiments, the carfilzomib compound is carfilzomib. In some embodiments, the dexamethasone compound is dexamethasone. In some embodiments, the combination is for sequential use in the treatment of a hematological malignancy, preferably multiple myeloma.

[45] In some embodiments, the present invention is directed to use of (i) at least one anti-CD38 antibody, preferably the antibody is capable of killing a CD38+ cell by apoptosis, antibody-dependent cell-mediated cytotoxicity (ADCC), and complement-dependent cytotoxicity (CDC); and (ii) at least one carfilzomib compound, preferably carfilzomib; and, optionally (iii) a dexamethasone compound, preferably dexamethasone, for the treatment of a hematological malignancy, preferably multiple myeloma. In some embodiments, the present invention relates to use of a) at least one anti-CD38 antibody; and b) at least one carfilzomib compound; and, optionally i) a dexamethasone compound, for the treatment of a hematological malignancy, preferably multiple myeloma. In some embodiments, the antibody is capable of killing a CD38+ cell by apoptosis, antibody-dependent cell-mediated cytotoxicity (ADCC), and complement-dependent cytotoxicity (CDC). In some embodiments, the antibody is hu38SB19. In some embodiments, the carfilzomib compound is carfilzomib. In some embodiments, the dexamethasone compound is dexamethasone.

[46] In some of the various embodiments of the present invention, the subject to be treated is mammalian. In some of the various embodiments of the present invention, the subject to be treated is a test animal such as a mouse. In some of the various embodiments of the present invention, the subject to be treated is human.

[46a] In another embodiment, there is provided a method of treating multiple myeloma in a subject, comprising
administering a therapeutically effective amount of an anti-CD38 antibody and carfilzomib to the subject,
wherein the anti-CD38 antibody comprises a heavy chain comprising three sequential CDRs of SEQ ID NOs: 13, 81, and 15, and a light chain comprising three sequential CDRs of SEQ ID NOs: 16, 17 and 18; and
wherein the subject has undergone at least one prior therapy for multiple myeloma.

[46b] In yet another embodiment, there is provided the use of an anti-CD38 antibody and carfilzomib in the manufacture of at least one composition for treating multiple

myeloma in a subject that has undergone at least one prior therapy for multiple myeloma,

wherein the anti-CD38 antibody comprises a heavy chain comprising three sequential CDRs of SEQ ID NOs: 13, 81, and 15, and a light chain comprising three sequential CDRs of SEQ ID NOs: 16, 17 and 18.

[47] DETAILED DESCRIPTION OF THE INVENTION

[48] The present invention relates to methods of treating a cancer in a subject which comprises administering one or more anti-CD38 antibodies and one or more carfilzomib compounds to the subject. As used herein, “treat” or “treating” means to alleviate symptoms, eliminate the causation of the symptoms either on a temporary or permanent basis, or to prevent or slow the appearance of symptoms of the named disorder or condition. As disclosed herein, the efficacy of a carfilzomib compound is considerably improved when administered in conjunction with one or more anti-CD38 antibodies according to the present invention. In fact, the administration of one or more anti-CD38 antibodies which exhibit (a) the capability of killing a CD38⁺ cell by apoptosis, (b) antibody-dependent cell-mediated cytotoxicity (ADCC), and (c) complement-dependent cytotoxicity (CDC) is believed to considerably improve the

[REMAINING LINES ON THIS PAGE HAVE BEEN LEFT BLANK INTENTIONALLY]
[PAGE 8 TO FOLLOW]

efficacy of carfilzomib compounds in the treatment of hematological malignancies, including MM, to a degree that is unexpectedly more than other anti-CD38 antibodies which do not exhibit all three (a)-(c) activities. Therefore, in some embodiments, the one or more anti-CD38 antibodies are capable of (a) killing a CD38⁺ cell by apoptosis, (b) antibody-dependent cell-mediated cytotoxicity (ADCC), and (c) complement-dependent cytotoxicity (CDC). In some embodiments, the one or more anti-CD38 antibodies and/or the one or more carfilzomib compounds are administered in a therapeutically effective amount. As used herein, a “therapeutically effective amount” of a substance refers to an amount of that substance that results in the alleviation of one or more symptoms, elimination of the causation of the symptoms either on a temporary or permanent basis, and/or the prevention or reduction in the appearance of symptoms of the named disorder or condition in the majority of subjects afflicted with and similarly treated for the named disease or disorder.

[49] In some embodiments, the cancer is one in which CD38 is expressed by the malignant cells. In some embodiments, the cancer is a hematological malignancy of the blood, bone marrow, and/or lymph nodes. In some embodiments, the cancer is a blood cancer. Blood cancers include myeloma, lymphoma and leukemia. The blood cancer might, for instance, be selected from the group consisting of multiple myeloma, non-Hodgkin's lymphoma, Hodgkin's lymphoma, hairy cell leukemia, chronic lymphocytic leukemia, chronic myeloid leukemia, acute myeloid leukemia, and acute lymphocytic leukemia. In some embodiments, the cancer is multiple myeloma (MM). In some embodiments, the cancer is a relapse MM or refractory MM. As used herein, relapsed MM refers to clinically active MM after a period of remission and refractory MM refers to progressive or stable disease while being treated or progressive disease within 3 months of the last doses of the prior treatment. See Dimopoulos et al. (2010) Eur J Haematology 88:1-15.

[50] In some embodiments, the subject is mammalian, preferably human. In some embodiments, the subject is an adult human, e.g., at least 18 years. In some embodiments, the subject is in need of treatment for the cancer. In some embodiments, the subject has been diagnosed as having the cancer. In some embodiments, the cancer is in partial or complete remission, however, the one or more carfilzomib compounds and the one or more anti-CD38 antibodies are administered to the subject so as to reduce the likelihood of relapse. In some embodiments, the subject has a Karnofsky performance status equal or superior to 60%. The Karnofsky

status runs from 100 to 0, where 100 is “perfect” health and 0 is death (Karnofsky and Burchenal, 1949, “The Clinical Evaluation of Chemotherapeutic Agents in Cancer.” In: MacLeod CM (Ed), Evaluation of Chemotherapeutic Agents. Columbia Univ Press). In some embodiments, the subject has undergone at least one or two prior therapies for multiple myeloma, induction therapy being considered one prior therapy. In some embodiments, the subject exhibits evidence that either the cancer progressed while the subject underwent a prior therapy, or that the subject was refractory to the prior therapy.

[51] In some embodiments, the anti-CD38 antibodies specifically bind CD38. In some embodiments, the anti-CD38 antibodies are raised against CD38 or an epitope thereof. In some embodiments, the anti-CD38 antibodies are monoclonal antibodies. In some embodiments, one or more of the anti-CD38 antibodies according to the present invention are monoclonal antibodies as described in WO 2008/047242, which is herein incorporated by reference in its entirety. In some embodiments, one or more of the anti-CD38 antibodies are monoclonal antibodies 38SB13, 38SB18, 38SB19, 38SB30, 38SB31, and 38SB39 as described in WO 2008/047242, which is herein incorporated by reference in its entirety. In some embodiments, the one or more anti-CD38 antibodies are capable of killing CD38⁺ cells by three different cytotoxic mechanisms, induction of apoptosis, antibody-dependent cell-mediated cytotoxicity (ADCC), and complement-dependent cytotoxicity (CDC).

[52] The term “antibody” is used herein in the broadest sense and includes monoclonal antibodies (including full length monoclonal antibodies) of any isotype such as IgG, IgM, IgA, IgD and IgE, polyclonal antibodies, multispecific antibodies, chimeric antibodies, and antibody fragments. As used herein, the prefix “anti-” when in conjunction with an antigen, indicates that the given antibody is reactive with the given antigen. An antibody reactive with a specific antigen can be generated by synthetic and/or recombinant methods such as selection of libraries of recombinant antibodies in phage or similar vectors, or by immunizing an animal with the antigen or an antigen-encoding nucleic acid.

[53] A typical IgG antibody is comprised of two identical heavy chains and two identical light chains that are joined by disulfide bonds. Each heavy and light chain contains a constant region and a variable region. Each variable region contains three segments called “complementarity-determining regions” (“CDRs”) or “hypervariable regions”, which are primarily responsible for binding an epitope of an antigen. They

are usually referred to as CDR1, CDR2, and CDR3, numbered sequentially from the N-terminus. The more highly conserved portions of the variable regions outside of the CDRs are called the “framework regions”. As used herein, “V_H” or “VH” refers to the variable region of an immunoglobulin heavy chain of an antibody, including the heavy chain of an Fv, scFv, dsFv, Fab, Fab’ or F(ab’)₂ fragment. Reference to “V_L” or “VL” refers to the variable region of the immunoglobulin light chain of an antibody, including the light chain of an Fv, scFv, dsFv, Fab, Fab’ or F(ab’)₂ fragment.

[54] The antibodies according to the present invention may be, e.g., murine, chimeric, and/or humanized antibodies. As used herein, a “chimeric antibody” is an antibody in which the constant region, or a portion thereof, is altered, replaced, or exchanged, so that the variable region is linked to a constant region of a different species, or belonging to another antibody class or subclass. “Chimeric antibody” also refers to an antibody in which the variable region, or a portion thereof, is altered, replaced, or exchanged, so that the constant region is linked to a variable region of a different species, or belonging to another antibody class or subclass. Methods for producing chimeric antibodies are known in the art. See e.g., Morrison, 1985, Science, 229: 1202; Oi et al., 1986, BioTechniques, 4: 214; Gillies et al., 1989, J. Immunol. Methods, 125: 191-202; U.S. Pat. Nos. 5,807,715; 4,816,567; and 4,816,397, which are incorporated herein by reference in their entireties. The term “humanized antibody”, as used herein, refers to a chimeric antibody which contain minimal sequence derived from non-human immunoglobulin. The goal of humanization is a reduction in the immunogenicity of a xenogenic antibody, such as a murine antibody, for introduction into a human, while maintaining the full antigen binding affinity and specificity of the antibody. Humanized antibodies, or antibodies adapted for non-rejection by other mammals, may be produced using several technologies such as resurfacing and CDR grafting. As used herein, the resurfacing technology uses a combination of molecular modelling, statistical analysis and mutagenesis to alter the non-CDR surfaces of antibody variable regions to resemble the surfaces of known antibodies of the target host. The CDR grafting technology involves substituting the complementarity determining regions of, for example, a mouse antibody, into a human framework domain, e.g., see WO 92/22653. Humanized chimeric antibodies preferably have constant regions and variable regions other than the complementarity determining regions (CDRs) derived substantially or

exclusively from the corresponding human antibody regions and CDRs derived substantially or exclusively from a mammal other than a human.

[55] Strategies and methods for the resurfacing of antibodies, and other methods for reducing immunogenicity of antibodies within a different host, are disclosed in US Pat. No. 5,639,641, which is hereby incorporated in its entirety by reference. Antibodies can be humanized using a variety of other techniques including CDR-grafting (EP 0 239 400; WO 91/09967; US Pat. Nos. 5,530,101; and 5,585,089), veneering or resurfacing (EP 0 592 106; EP 0 519 596; Padlan E. A., 1991, Molecular Immunology 28(4/5): 489-498; Studnicka G. M. et al., 1994, Protein Engineering, 7(6): 805-814; Roguska M.A. et al., 1994, PNAS, 91: 969-973), chain shuffling (US Pat. No. 5,565,332), and identification of flexible residues (PCT/US2008/074381). Human antibodies can be made by a variety of methods known in the art including phage display methods. See also US Pat. Nos. 4,444,887, 4,716,111, 5,545,806, and 5,814,318; and international patent application publication numbers WO 98/46645, WO 98/50433, WO 98/24893, WO 98/16654, WO 96/34096, WO 96/33735, and WO 91/10741 (said references incorporated by reference in their entireties).

[56] In some embodiments, one or more of the anti-CD38 antibodies according to the invention are capable of killing a CD38⁺ cell by apoptosis, antibody-dependent cell-mediated cytotoxicity (ADCC), and complement-dependent cytotoxicity (CDC). In some embodiments, one or more of the anti-CD38 antibodies according to the invention are capable of killing said CD38⁺ cells by apoptosis even in the absence of stroma cells or stroma-derived cytokines. These activities can be assessed as described in WO 2008/047242, which is hereby incorporated by reference in its entirety.

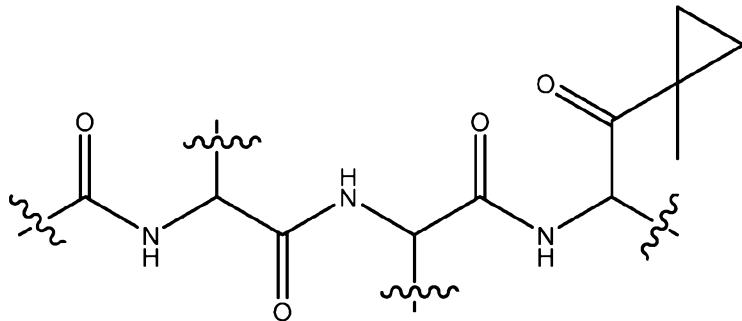
[57] In some embodiments according to the invention, one or more anti-CD38 antibodies are selected from the group consisting of 38SB13, 38SB18, 38SB19, 38SB30, 38SB31, 38SB39, and antibodies cross-competing with 38SB13, 38SB18, 38SB19, 38SB30, 38SB31 or 38SB39. The hybridoma cell lines producing the 38SB13, 38SB18, 38SB19, 38SB30, 38SB31, and 38SB39 murine anti-CD38 antibodies have been deposited at the American Type Culture Collection (10801 University Bld, Manassas, VA, 20110-2209, USA), on 21 June 21 2006, under the deposit numbers PTA-7667, PTA-7669, PTA-7670, PTA-7666, PTA-7668, and PTA-7671, respectively (as described in WO 2008/047242, which is herein incorporated by reference in its entirety).

[58] As disclosed herein, references to SEQ ID NOs refers to the sequences set forth in the Sequence Listing submitted herewith and also as recited in WO 2008/047242, which is herein incorporated by reference in its entirety. In some embodiments, the anti-CD38 antibodies according to the present invention may, for instance, comprise a heavy chain comprising three sequential CDRs having amino acid sequences represented by SEQ ID NOs: 1, 2, and 3, and a light chain comprising three sequential CDRs having amino acid sequences represented by SEQ ID NOs: 4, 5, and 6. An example of such an antibody is the 38SB13 antibody, which comprises a heavy chain having a V_H variable region represented by SEQ ID NO: 50, and a light chain having a V_L variable region represented by SEQ ID NO: 38.

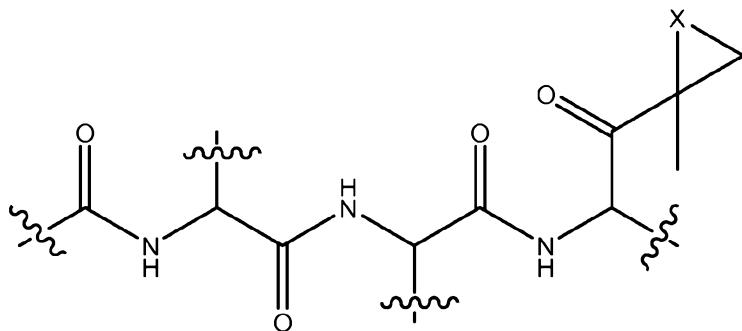
[59] In some embodiments, the anti-CD38 antibodies according to the present invention may, for instance, comprise a heavy chain comprising three sequential CDRs having amino acid sequences represented by SEQ ID NOs: 7, 8, and 9, and a light chain comprising three sequential CDRs having amino acid sequences represented by SEQ ID NOs: 10, 11, and 12. An example of such an antibody is the 38SB18 antibody, which comprises a heavy chain having a V_H variable region represented by SEQ ID NO: 52 and a light chain having a V_L variable region represented by SEQ ID NO: 40.

[60] In some embodiments, the anti-CD38 antibodies according to the present invention may, for instance, comprise a heavy chain comprising three sequential CDRs having amino acid sequences represented by SEQ ID NO: 13, SEQ ID NO: 15 and either SEQ ID NO: 14 or SEQ ID NO: 81, and a light chain comprising three sequential CDRs having amino acid sequences represented by SEQ ID NOs: 16, 17, and 18. An example of such an antibody is the 38SB19 antibody, which comprises a heavy chain having a V_H variable region represented by SEQ ID NO: 54 and a light chain having a V_L variable region represented by SEQ ID NO: 42. Specific examples of humanized versions of 38SB19 (hu38SB19) include antibodies comprising a heavy chain having a V_H variable region represented by SEQ ID NO: 66, and a light chain having a V_L variable region represented by either SEQ ID NO: 62 or SEQ ID NO: 64. hu38SB19 is a humanized anti-CD38 antibody currently undergoing clinical evaluation in CD38-positive hematologic malignancies, including multiple myeloma. Previous and current studies demonstrate that the anti-myeloma activity associated with this agent involve mechanisms of ADCC, and CDC, as well as novel, direct apoptotic and anti-ADP-ribosyl cyclase activity. See Marie-Cécile Wetzel, Céline

Nicolazzi, François Vallée, et al. hu38SB19: characterization of a potent phase I humanized anti-CD38 antibody for the treatment of multiple myeloma and other hematologic malignancies. AACR Annual Meeting 2013, Abstract #4735.


[61] In some embodiments, the anti-CD38 antibodies according to the present invention may, for instance, comprise a heavy chain comprising three sequential CDRs having amino acid sequences represented by SEQ ID NOs: 19, 20, and 21, and a light chain comprising three sequential CDRs having amino acid sequences represented by SEQ ID NOs: 22, 23, and 24. An example of such an antibody is the 38SB30 antibody, which comprises a heavy chain having a V_H variable region represented by SEQ ID NO: 56 and a light chain having a V_L variable region represented by SEQ ID NO: 44.

[62] In some embodiments, the anti-CD38 antibodies according to the present invention may, for instance, comprise a heavy chain comprising three sequential CDRs having amino acid sequences represented by SEQ ID NOs: 25, 26, and 27, and a light chain comprising three sequential CDRs having amino acid sequences represented by SEQ ID NOs: 28, 29, and 30. An example of such an antibody is the 38SB31 antibody, which comprises a heavy chain having a V_H variable region represented by SEQ ID NO: 58 and a light chain having a V_L variable region represented by SEQ ID NO: 46. Specific examples of humanized versions of 38SB31 (hu38SB31) include antibodies comprising a heavy chain having a V_H variable region represented by SEQ ID NO: 72, and a light chain having a V_L variable region represented by either SEQ ID NO: 68 or SEQ ID NO: 70.


[63] In some embodiments, the anti-CD38 antibodies according to the present invention may, for instance, comprise a heavy chain comprising three sequential CDRs having amino acid sequences represented by SEQ ID NOs: 31, 32 and 33, and a light chain comprising three sequential CDRs having amino acid sequences represented by SEQ ID NOs: 34, 35, and 36. An example of such an antibody is the 38SB39 antibody, which comprises a heavy chain having a V_H variable region represented by SEQ ID NO: 60 and a light chain having a V_L variable region represented by SEQ ID NO: 48.

[64] In some embodiments, the anti-CD38 antibodies according to the invention are humanized antibodies consisting of two identical heavy chains and of two identical light chains, wherein each chain consists of one constant region and of one variable region.

[65] As used herein, a “carfilzomib compound” refers to carfilzomib (*S*)-4-Methyl-*N*-((*S*)-1-(((*S*)-4-methyl-1-((*R*)-2-methyloxiran-2-yl)-1-oxopentan-2-yl)amino)-1-oxo-3-phenylpropan-2-yl)-2-((*S*)-2-(2-morpholinoacetamido)-4-phenylbutanamido)pentanamide and carfilzomib derivatives. As used herein, “carfilzomib derivatives” refers to compounds which have 2-acetamido-*N*-(1-((1-methylcyclopropyl)-1-oxopropan-2-yl)amino)-1-oxopropan-2-yl)propanamide, i.e.,

which may or may not be substituted, as part of its structural formula. In some embodiments, carfilzomib derivatives include compounds which have the following structure, which may or may not be substituted, as part of its structural backbone:

wherein X is selected from O, NH, and N-C₁₋₆alkyl, preferably O. Examples of “carfilzomib derivatives” according to the present invention include those as set forth in U.S. Patent Nos. 7,232,818; 7,417,042; 7,491,704; 7,737,112; 8,129,346; 8,207,125; 8,207,126; 8,207,127; and 8,207,297.

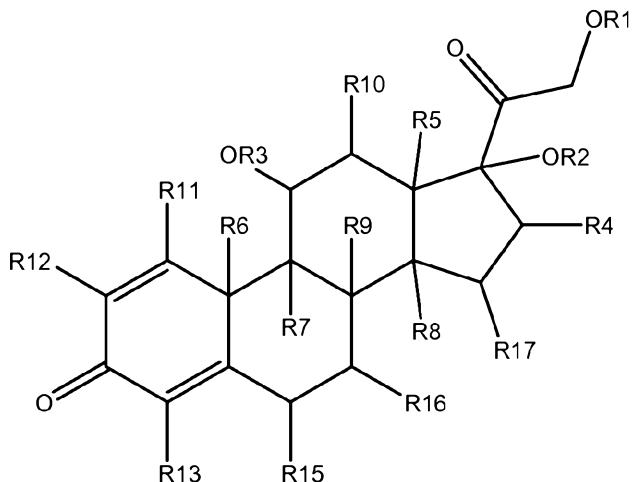
[66] In some embodiments, the one or more anti-CD38 antibodies are administered in an effective amount. As used herein, an effective amount of the one or more anti-CD38 antibodies is an amount which results in an additive or a synergistic effect with the one or more carfilzomib compounds. As used herein, a “synergistic amount” is one that results in a synergistic effect. As used herein, a “synergistic effect” refers to the effect of the combination of the one or more anti-CD38 antibodies and the one or more carfilzomib compounds which is more than their expected additive effect. In some embodiments, the one or more anti-CD38 antibodies are administered before,

during, and/or after the administration of the one or more carfilzomib compounds. In some embodiments, the one or more anti-CD38 antibodies and the one or more carfilzomib compounds are co-administered in the form of a single composition, e.g., as a mixture.

[67] Thus, in some embodiments, the present invention is directed to compositions comprising a mixture of at least one anti-CD38 antibody and at least one carfilzomib compound. In some embodiments, the mixture comprises the at least one anti-CD38 antibody in an amount that results in an additive or a synergistic effect with the at least one carfilzomib compound in a subject when both are administered. In some embodiments, the at least one anti-CD38 antibody in the mixture is one which is capable of killing a CD38⁺ cell by apoptosis, antibody-dependent cell-mediated cytotoxicity (ADCC), and complement-dependent cytotoxicity (CDC); and at least one carfilzomib compound.

[68] For the purposes of the present invention, the methods and compositions of the present invention are not exclusively limited to those which are obtained by physical association of the anti-CD38 antibodies and the carfilzomib compound, but also to those which permit a separate administration, which can be simultaneous or spaced out over a period of time. Thus, in some embodiments, the present invention is directed to a first composition comprising the one or more anti-CD38 antibodies, and a second composition comprising one or more carfilzomib compounds. In some embodiments, the at least one anti-CD38 antibody is one which is capable of killing a CD38⁺ cell by apoptosis, antibody-dependent cell-mediated cytotoxicity (ADCC), and complement-dependent cytotoxicity (CDC); and at least one carfilzomib compound. In some embodiments, the amount of the one or more anti-CD38 antibodies provided in the first composition is one that results in an additive or a synergistic effect with the at least one carfilzomib compound in the second composition in a subject when both are administered.

[69] In some embodiments, the first and second compositions may be packaged in a kit. Thus, in some embodiments, the present invention is directed to kits which comprise a first composition comprising the one or more anti-CD38 antibodies, and a second composition comprising one or more carfilzomib compounds. In some embodiments, the first and second composition may be mixed together before administering to a subject. In some embodiments, the first and second compositions, may be administered either simultaneously or sequentially (i.e., spaced out over a


period of time) so as to obtain the maximum efficacy, additivity, synergy, or a combination thereof of the combination. In some embodiments, the present invention is directed to kits comprising at least one anti-CD38 antibody packaged together with a label having one or more messages that the anti-CD38 antibody shall or might be administered in combination with carfilzomib and optionally with dexamethasone. The kits according to the present invention may further comprise one or more messages that the antibody shall or might be administered to a subject suffering from a blood cancer such as multiple myeloma (e.g., relapsed or refractory multiple myeloma). In some embodiments, the one or more anti-CD38 antibodies in the kits of the present invention are those which are capable of killing a CD38⁺ cell by apoptosis, antibody-dependent cell-mediated cytotoxicity (ADCC), and complement-dependent cytotoxicity (CDC).

[70] In some embodiments, the compositions of the present invention are pharmaceutical compositions. As used herein, the term “pharmaceutical composition” refers to a composition comprising at least one active principle (e.g., an anti-CD38 antibody or a carfilzomib compound) and at least one pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers are well known to the skilled in the art, and usually depend on the chosen route of administration. Pharmaceutical compositions according to the present invention may be provided in any form or formulation that is suitable for the chosen route of administration, such as e.g., a solution in case of an intravenous route of administration, e.g., capsules, pills or tablets in case of an oral route of administration, etc.

[71] The dosage regimen of the active principles and of the pharmaceutical composition described herein can be chosen by prescribing physicians, based on their knowledge of the art, including information published by regulatory authorities. For example, carfilzomib is typically administered intravenously. According to the U.S. Food and Drug Administration (FDA), carfilzomib might be administered intravenously, e.g., over 2 to 10 minutes, on two consecutive days each week for three weeks (Days 1, 2, 8, 9, 15, and 16), followed by a 12-day rest period (Days 17 to 28). In some embodiments, the recommended Cycle 1 dose is 20 mg/m²/day and, if tolerated, the doses of Cycle 2 and subsequent cycles are increased to 27 mg/m²/day. In some embodiments, patients are hydrated prior to and/or following administration. Since, however, co-administration of the one or more anti-CD38 antibodies and the one or more carfilzomib compounds results in an additive or a synergistic effect, the

dosing of the carfilzomib compound may be adjusted accordingly, e.g., the dose changed and/or the dosing schedule modified. Of course, prescribing physicians might reconsider which dose and schedule to use depending on the condition and disease status of the patient and based upon clinical and laboratory findings.

[72] As the FDA recommends pre-medication with dexamethasone prior to all Cycle 1 doses, during the first cycle of dose escalation, and if infusion reaction symptoms develop or reappear, the methods and compositions of the present invention may further include dexamethasone, which is member of the glucocorticoid class of steroid drugs, and acts as an anti-inflammatory and immunosuppressant. Thus, in some embodiments, the treatment methods of the present invention further comprise administering a dexamethasone compound to the subject being treated with the one or more anti-CD38 antibodies and the one or more carfilzomib compounds. Similarly, the compositions and kits of the present invention which comprise the one or more anti-CD38 antibodies and/or the one or more carfilzomib compounds may further comprise a dexamethasone compound. As used herein, a “dexamethasone compound” refers to dexamethasone ((8S,9R,10S,11S,13S,14S,16R,17R)-9- Fluoro-11,17-dihydroxy-17-(2-hydroxyacetyl)-10,13,16- trimethyl-6,7,8,9,10,11,12,13,14,15,16,17- dodecahydro-3H-cyclopenta[*a*]phenanthren-3-one) and dexamethasone derivatives. As used herein, a “dexamethasone derivative” refers to a compound having the following structural formula:

wherein R1-R17 are each independently H, a halogen, an alkyl, an alkoxy, amino, or an alkylamine. In some preferred embodiments, R1-R3 are H. In some preferred embodiments, R4-R6 are methyl. In some preferred embodiments, R7 is a halogen, preferably fluorine. In some preferred embodiments, R8 is H. In some preferred

embodiments, R1-R3 are H, R4-R6 are methyl, R7 is a halogen, preferably fluorine, and R8 is H.

[73] In some embodiments, the dexamethasone compound may be administered orally. In some embodiments, the dexamethasone compound may be administered at the same or a lower dose than the dose recommended for dexamethasone by the EMA.

[74] The compositions of the present invention may be used as a medicament and/or for use in the manufacture of a medicament. In some embodiments, the compositions of the present invention may be used as a medicament and/or for use in the manufacture of a medicament for use in the treatment of a cancer such as a hematological malignancy of the blood, bone marrow, and/or lymph nodes, preferably a blood cancer.

[75] Several documents are cited throughout the text of this specification. Each of the documents herein (including any journal article or abstract, published or unpublished patent application, issued patent, manufacturer's specifications, instructions, *etc.*) are hereby incorporated by reference. However, there is no admission that any document cited herein is indeed prior art in respect of the present invention.

[76] The following examples are intended to illustrate but not to limit the invention.

[77] EXAMPLES

[78] hu38SB19 was provided in solution at 5 mg/ml, stored at 4°C. It was diluted into sterile saline in preparation for dosing, stored at 4°C and used within 10 days of dilution.

[79] Carfilzomib (PR-171) was obtained from Chemie Tek (CT-CARF 98). Carfilzomib was formulated in an aqueous solution of 10% (w/v) sulfobutylether-h-cyclodextrin (Cydex) and 10 mmol/L sodium citrate (pH 3.5), 2 mg/ml stock prepared and frozen at -80°C, diluted daily with vehicle before injection. Carfilzomib was administered weekly qdx2 x 3 wk (iv).

[80] *Example 1: Effect of the administration of both anti-CD38 antibody and carfilzomib in a mice model of MM*

[81] These studies under this Example were done under approval of the UCSF IACUC.

[82] The subcutaneous multiple myeloma (MM) xenograft mouse models were established using NCI-H929 or RPMI-8226 cell lines. Specifically, 5-6 week old female Balb/c Scid mice were obtained from Jackson Lab. Mice were housed for 7-10 days prior to implantation. Mice were housed in a dedicated room in the UCSF Mt Zion Animal Barrier Facility. NCI-H929 and RPMI-8226 cells were obtained from the German Collection of Microorganisms and Cell Cultures, DSMZ, (Deutsche Sammlung von Mikroorganismen und Zellkulturen), and grown in sterile suspension culture in T225 flasks as follows: NCI-H929: RPMI1640 + 20% FBS + 4 mM L-glutamine + 1 mM sodium pyruvate + 50 µM mercaptoethanol. RPMI-8226: RPMI1640 + 10% FBS + 4 mM L-glutamine.

[83] At the time of implantation, mice were shaved on the right flank and shoulder region and anesthetized with ip avertin. MM cells suspended in serum free RPMI 1640 media diluted 1:1 with Matrigel (BD) at a concentration of 1×10^8 cells per ml were injected sc into the right flank in 100 µL volume (1×10^7 cells) using a 1 ml syringe and 25 g needle. Mice were monitored twice weekly for the appearance of tumors and once tumors were visible, measurements were collected twice weekly for body weight and tumor volume. Electronic balance and calipers were used and data was collected directly into a study management program (Study Director). When the mean tumor volume reached about 150-200 mm³, the mice were distributed into treatment groups of 8-10 mice per groups and dosing was begun.

[84] The dosing schedule was hu38SB19 was 2x/wk x 2 wk (iv, lateral tail vein) and carfilzomib was weekly qdx2 x 3 wk (iv, lateral tail vein) (once per day, two days a week for three weeks). Dose levels for use in combination studies are as follows:

Cell Type	Carfilzomib	hu38SB19
NCI-H929	2 mpk	0.5 mpk
RPMI 8226	2.5 mpk	15 mpk

mpk = mg per kg body weight

[85] Data were collected using electronic balance and calipers using a study management application called StudyLog (Study Director). Graphs are taken directly from the application. The experimental results are provided in Figures 1A-10B.

[86] Based on the single agent results of hu38SB19 and carfilzomib in RPMI-8226 and NCI-H929 multiple myeloma xenograft models, the H929 model appears to be a more sensitive model to both agents while the RPMI model seems to be more resistant

to the treatments even at the highest doses tested (Figures 1A-7B). Therefore in the combination studies, a suboptimal dose for each agent was chosen to evaluate the activity of the combination treatment (carfilzomib + hu38SB19) in the H929 model while higher doses of carfilzomib and hu38SB19 were tested in the RPMI model.

[87] Antitumor activity was determined according to NCI standards based on the ratio of the median tumor volume change of the treated / median tumor volume change of the control x 100 (%ΔT/ΔC). Low numerical values for ΔT/ΔC describe stronger anti-tumor activity. Anti-tumor activity is defined as T/C ≤ 40% at minimum. ΔT/ΔC <10% is considered high anti-tumor activity.

[88] In the H929 model, hu38SB19 alone at 0.5 mg/kg/injection (twice a week for 2 weeks) was inactive with a %ΔT/ΔC of 74%. Treatment with carfilzomib alone at 2 mg/kg (twice a week for three weeks) was inactive (68%ΔTΔ/C). The combination of hu38SB19 (0.5 mg/kg/injection) and carfilzomib (2 mg/kg/injection) had much higher activity (tumor regression) with %ΔT/ΔC of -11% (Figure 8). The results are summarized in Table 1.

TABLE 1
Anti-tumor efficacy of hu38SB19 in combination with carfilzomib against NCI-H929 multiple myeloma model

Agent	Dose in mg/kg (total dose)	Schedule of Administration IV route	%ΔT/ΔC (D69)	Activity
PBS	-	2x/wk x 2 wk (IV)		
hu38SB19	0.5 (2)	2x/wk x 2 wk (IV)	74	Inactive
Carfilzomib	2 (12)	2x/wk x 3 wk (IV)	68	Inactive
hu38SB19 + Carfilzomib	0.5 (2) + 2 (12)	2x/wk x 2 wk (IV) + 2x/wk x 3 wk (IV)	-11	Highly Active

%ΔT/ΔC Median tumor volume change of the treated / Median tumor volume change of the control x 100, IV=intravenous, wk=week, PBS: phosphate buffered saline

[89] As shown in Figures 10A-10B, similar results were obtained in the RPMI-8226 xenograft models. In particular, on Day 41, carfilzomib (3 mg/kg qdx2 every wk x 3 wk) resulted in 0/10 complete regressions; hu38SB19 (3 mg/kg BIW x 2 wk) resulted in 2/10 complete regressions. Thus, the additive expectation based on extrapolation for the combination of carfilzomib and hu38SB19 would be expected to be 2/10 complete regressions. However, the combination of carfilzomib and hu38SB19 surprisingly resulted in 5/8 complete regressions which is more than 3 times the expected result.

[90] In both the NCI-H929 and RPMI-8226 xenograft models, the combination treatment inhibited tumor growth to a much greater extent than a single agent alone, indicating the combination of hu38SB19 and carfilzomib blocked tumor cell growth through potential synergistic mechanisms. Carfilzomib is a second generation proteasome inhibitor which was recently approved to treat relapsed and refractory multiple myeloma patients. Inhibition of proteasome activity by carfilzomib results in a build-up of polyubiquinated proteins, which may cause cell cycle arrest, apoptosis, and inhibition of tumor growth. Hu38SB19 has demonstrated multiple mechanisms of action including ADCC, CDC, and direct apoptosis induction.

[91] It has been reported that some CD38 antibodies such as Daratumumab is able to induce apoptosis only after cross-linking with a secondary antibody without much direct effect by itself. However, in preclinical studies, hu38SB19 demonstrated potent direct pro-apoptotic activity on tumor cells without cross-linking. Thus, this unique property of hu38SB19 may also lead to greater tumor cell killing when in combination with carfilzomib compared to other CD38 antibodies combined with carfilzomib.

[92] *Example 2: Effect of the administration of both anti-CD38 antibody and carfilzomib in humans*

[93] A clinical study for evaluating the effects of a treatment with hu38SB19 combined with carfilzomib in patients with relapsed or refractory multiple myeloma may be performed as described below.

[94] The goals of the study may include:

- To determine the efficacy and the maximum tolerated dose;
- To evaluate the safety, including immunogenicity, of hu38SB19 in combination with carfilzomib in relapse or refractory multiple myeloma. The severity, frequency and incidence of all toxicities is assessed;
- To evaluate the pharmacokinetics (PK) of hu38SB19 when administered in combination with carfilzomib and the PK of carfilzomib in combination with hu38SB19, and optionally dexamethasone.
- To assess the relationship between clinical (adverse event and/or tumor response) effects and pharmacologic parameters (PK/pharmacodynamics), and/or biologic (correlative laboratory) results;

- Estimate the activity (response rate) using International Myeloma Working Group defined response criteria of hu38SB19 plus carfilzomib, and optionally dexamethasone; and
- To describe overall survival, progression free survival (PFS) and time to disease progression in patients treated with this combination.

[95] Patients with relapsed multiple myeloma who have received at least two prior treatments (including bortezomib and thalidomide and/or lenalidomide) and whose disease has a less than or equal to 25% response to the most recent therapy or has disease progression during or within 60 days of the most recent therapy are enrolled. Patients excluded from the trial are those having total bilirubin levels $\geq 2 \times$ upper limit of normal (ULN); creatinine clearance rates < 30 mL/min; New York Heart Association Class III to IV congestive heart failure; symptomatic cardiac ischemia; myocardial infarction within the last 6 months; peripheral neuropathy Grade 3 or 4, or peripheral neuropathy Grade 2 with pain; active infections requiring treatment; and pleural effusion.

[96] Carfilzomib is administered intravenously over 2 to 10 minutes on two consecutive days each week for three weeks, followed by a 12-day rest period (28-day treatment cycle), until disease progression, unacceptable toxicity, or for a maximum of 12 cycles. Patients receive 20 mg/m² at each dose in Cycle 1, and 27 mg/m² in subsequent cycles. To reduce the incidence and severity of fever, rigors, chills, dyspnea, myalgia, and arthralgia, dexamethasone 4 mg by mouth or by intravenous infusion may be administered prior to all carfilzomib doses during the first cycle and prior to all carfilzomib doses during the first dose-escalation (27 mg/m²) cycle. Dexamethasone premedication (4 mg orally or intravenously) may be reinstated if these symptoms reappeared during subsequent cycles. Doses of hu38SB19 may be administered on the same days the carfilzomib doses are administered and/or on different days. When administered on the same days, hu38SB19 and carfilzomib may be administered at the same time as one composition or as two separate compositions.

[97] The study duration for an individual patient includes a screening period for inclusion of up to 21 days, and at least 4 weeks of treatment in the absence of severe adverse reaction, dose limiting toxicity or disease progression plus up to 60 days post-treatment follow up. The total duration of the study may be up to one year.

[98] The following parameters may be measured during and/or at the end of the study:

- Number of patients with adverse events when treated with hu38SB19 in combination with carfilzomib;

- Assessment of partial response, complete response, progression free survival, and survival;
- Assessment of the following PK parameters: area under curve (AUC), maximum concentration (Cmax) and plasma half-life (T 1/2);
- Number of CD38 receptors occupied by hu38SB19; and
- Number of anti-SAR antibodies in response to hu38SB19.

[99] *Example 3: Efficacy of anti-CD38 antibody in in vivo tumor models of multiple myeloma as a single-agent or in combination with and carfilzomib*

[100] A. Materials and Methods

[101] CD38 Density: CD38 density was determined using anti-CD38-PE Quantibrite (BD Biosciences; Cat.342371) per the manufacturer's recommended protocols.

[102] Reagents & Compounds: hu38SB19 was provided by Sanofi Oncology in solution at 5 mg/ml and stored at 4° C. hu38SB19 was diluted into sterile saline in preparation for dosing and used within 10 days of dilution. hu38SB19 was administered twice weekly x 2 wk IV. Carfilzomib (PR-171) was obtained from Chemie Tek (CT-CARF 98). Carfilzomib was formulated in an aqueous solution of 10% (w/v) sulfobutylether-h-cyclodextrin (Cydex) and 10 mmol/L sodium citrate (pH 3.5), 2 mg/ml stock prepared and frozen at -80°C, diluted daily with vehicle before injection. Carfilzomib was administered weekly qdx2 x 3 wk (iv).

[103] Test Animals: 5-6 week old female Balb/c Scid mice were obtained from Jackson Lab. Mice were housed for 7-10 days prior to implantation of multiple myeloma (MM) cell lines. Mice were housed in a dedicated room in the UCSF Mt. Zion Animal Barrier Facility.

[104] Xenograft Model: At the time of implantation, mice were shaved on the right flank and shoulder. MM cells were suspended in serum free RPMI 1640 media diluted 1:1 with Matrigel (BD) at a concentration of 1×10^8 cells per ml were injected sc into the right flank in 100 ul volume (1×10^7 cells) using a 1 ml syringe and 25 g needle. Mice were monitored twice weekly for the appearance of tumors and once tumors were visible, measurements were collected twice weekly for body weight and tumor volume. Electronic balance and calipers were used and data was collected directly into a study management program (Study Director). When the mean tumor

volume reached approximately 150-200 mm³, mice were distributed into treatment groups of 8-10 mice per group and dosing was initiated.

[105] B. Summary and Conclusions

[106] hu38SB19 is a humanized anti-CD38 antibody whose anti-myeloma effects incorporate mechanisms of ADCC, CDC, and direct apoptosis. Figure 11 shows the cell surface density of CD38 in multiple myeloma cell lines. See Kim D, Park CY, Medeiros BC, Weissman IL. CD19-CD45 low/- CD38 high/CD138+ plasma cells enrich for human tumorigenic myeloma cells. *Leukemia*. 2012 Dec, 26(12):2530-7. CD38-positive multiple myeloma plasma cells demonstrate variable CD38 cell surface densities. All cell lines, with the exception of XG-6, are reported as CD38-positive. See Bataille R, Jégo G, Robillard N, et al. The phenotype of normal, reactive and malignant plasma cells. Identification of "many and multiple myelomas" and of new targets for myeloma therapy. *Haematologica*. 2006 Sept, 91(9):1234-40. Binding of hu38SB19 to CD38 also impinges on the ADPRC enzymatic activity of CD38. *In vivo*, hu38SB19 demonstrates potent anti-tumor effects in multiple myeloma xenografts, a disease largely characterized by neoplastic plasma cells expressing CD38. Figure 12 shows that single-agent administration of hu38SB19 results in dose-dependent inhibition of tumor growth in an NCI-H929 hind-flank model. The magnitude and significance of tumor growth inhibition at the end of the study increased with increased doses of hu38SB19. Figure 13 shows that a combined regimen of hu38SB19 and carfilzomib results in significant tumor growth inhibition in an NCI-H929 xenograft model that is not robustly sensitive to single-agent therapy with carfilzomib. These data demonstrate that single-agent hu38SB19 inhibits growth of NCI-H929 tumors and combines with sub-efficacious doses of carfilzomib to produce significant inhibition of tumor growth. Taken together, these data support further evaluation of hu38SB19, both as a single-agent and in combination with standard-of-care treatment regimens, as a potential therapy for the treatment of multiple myeloma.

[107] To the extent necessary to understand or complete the disclosure of the present invention, all publications, patents, and patent applications mentioned herein are expressly incorporated by reference therein to the same extent as though each were individually so incorporated.

[108] Having thus described exemplary embodiments of the present invention, it should be noted by those skilled in the art that the within disclosures are exemplary only and that various other alternatives, adaptations, and modifications may be made within the scope of the present invention. Accordingly, the present invention is not limited to the specific embodiments as illustrated herein, but is only limited by the following claims.

CLAIMS:

1. A method of treating multiple myeloma in a subject, comprising administering a therapeutically effective amount of an anti-CD38 antibody and carfilzomib to the subject,
wherein the anti-CD38 antibody comprises a heavy chain comprising three sequential CDRs of SEQ ID NOS: 13, 81, and 15, and a light chain comprising three sequential CDRs of SEQ ID NOS: 16, 17 and 18; and
wherein the subject has undergone at least one prior therapy for multiple myeloma.
2. The use of an anti-CD38 antibody and carfilzomib in the manufacture of at least one composition for treating multiple myeloma in a subject that has undergone at least one prior therapy for multiple myeloma,
wherein the anti-CD38 antibody comprises a heavy chain comprising three sequential CDRs of SEQ ID NOS: 13, 81, and 15, and a light chain comprising three sequential CDRs of SEQ ID NOS: 16, 17 and 18.
3. The method of claim 1 or the use of claim 2, wherein the at least one prior therapy was an immunomodulatory drug.
4. The method or use of claim 2, wherein the immunomodulatory drug was lenalidomide or thalidomide.
5. The method of any one of claims 1, 3 or 4, or the use of any one of claims 2 to 4, wherein the at least one prior therapy was a proteasome inhibitor.
6. The method or of claim 5, wherein the proteasome inhibitor was bortezomib.
7. The method of any one of claims 1 or 3 to 6, or the use of any one of claims 2 to 6, wherein the anti-CD38 antibody is capable of killing a CD38⁺ cell by apoptosis, antibody-dependent cell-mediated cytotoxicity (ADCC), and complement-dependent cytotoxicity (CDC).
8. The method of any one of claims 1 or 3 to 7, or the use of any one of claims 2 to 7, wherein said anti-CD38 antibody comprises a heavy chain variable region comprising an amino

30 Oct 2018
2014244333

acid sequence set forth in SEQ ID NO: 66, and a light chain variable region comprising an amino acid sequence set forth in SEQ ID NO: 62 or SEQ ID NO: 64.

9. The method of any one of claims 1 or 3 to 8, wherein the anti-CD38 antibody is administered intravenously,

or the use of any one of claims 2 to 8, wherein the anti-CD38 antibody is formulated for administration intravenously.

10. The method of any one of claims 1 or 3 to 9, wherein the carfilzomib is administered intravenously,

or the use of any one of claims 2 to 9, wherein carfilzomib is formulated for administration intravenously.

11. The method of any one of claims 1 or 3 to 11, wherein the anti-CD38 antibody and the carfilzomib are administered sequentially,

or the use of any one of claims 2 to 11, wherein the anti-CD38 antibody and the carfilzomib formulated for administration sequentially.

12. The method of any one of claims 1 or 3 to 11, and further comprising administering a dexamethasone compound to the subject

or the use of any one of claim 2 to 11, wherein said use further comprises manufacture of composition comprising a dexamethasone compound for treating multiple myeloma.

13. The method or use of claim 12, wherein the dexamethasone compound is dexamethasone.

14. The method of claim 12 or 13, wherein the dexamethasone compound is administered orally,

or the use of claim 12 or 13, wherein the dexamethasone compound is formulated for administration orally.

15. The method of any one of claims 12 to 14, wherein the anti-CD38 antibody, the carfilzomib, and the dexamethasone compound are administered sequentially,

or the use of any one of claims 12 to 14, wherein the anti-CD38 antibody, the

2014244333 30 Oct 2018

carfilzomib, and the dexamethasone compound are formulated for administration sequentially.

16. A kit when used in the method of any one of claims 1 or 3 to 15, or the use of any one of claims 2 to 15, said kit comprising

a) a first composition comprising an anti-CD38 antibody that comprises a heavy chain comprising three sequential CDRs having amino acid sequences of SEQ ID NOs: 13, 81, and 15, and a light comprising three sequential CDRs having amino acid sequences of SEQ ID NOs: 16, 17, and 18; and

b) a second composition comprising carfilzomib.

17. The kit of claim 16, wherein said anti-CD38 antibody is capable of killing a CD38+ cell by apoptosis, antibody-dependent cell-mediated cytotoxicity (ADCC), and complement-dependent cytotoxicity (CDC).

18. The kit of claim 16 or 17, wherein said anti-CD38 antibody comprises a heavy chain variable region comprising an amino acid sequence set forth in SEQ ID NO: 66, and a light chain variable region comprising an amino acid sequence set forth in SEQ ID NO: 62 or SEQ ID NO: 64.

19. The kit of any one of claims 16 to 18, wherein the first and second compositions are packaged for sequential administration to a subject.

20. The kit of any one of claims 16 to 19, further including a dexamethasone compound.

21. The kit of claim 20, wherein the dexamethasone compound is dexamethasone.

22. The kit of claim 21 or 21, wherein the dexamethasone compound is packaged for sequential administration to a subject.

SANOFI & THE REGENTS OF THE UNIVERSITY OF CALIFORNIA

WATERMARK INTELLECTUAL PROPERTY PTY LTD

P41092AU00

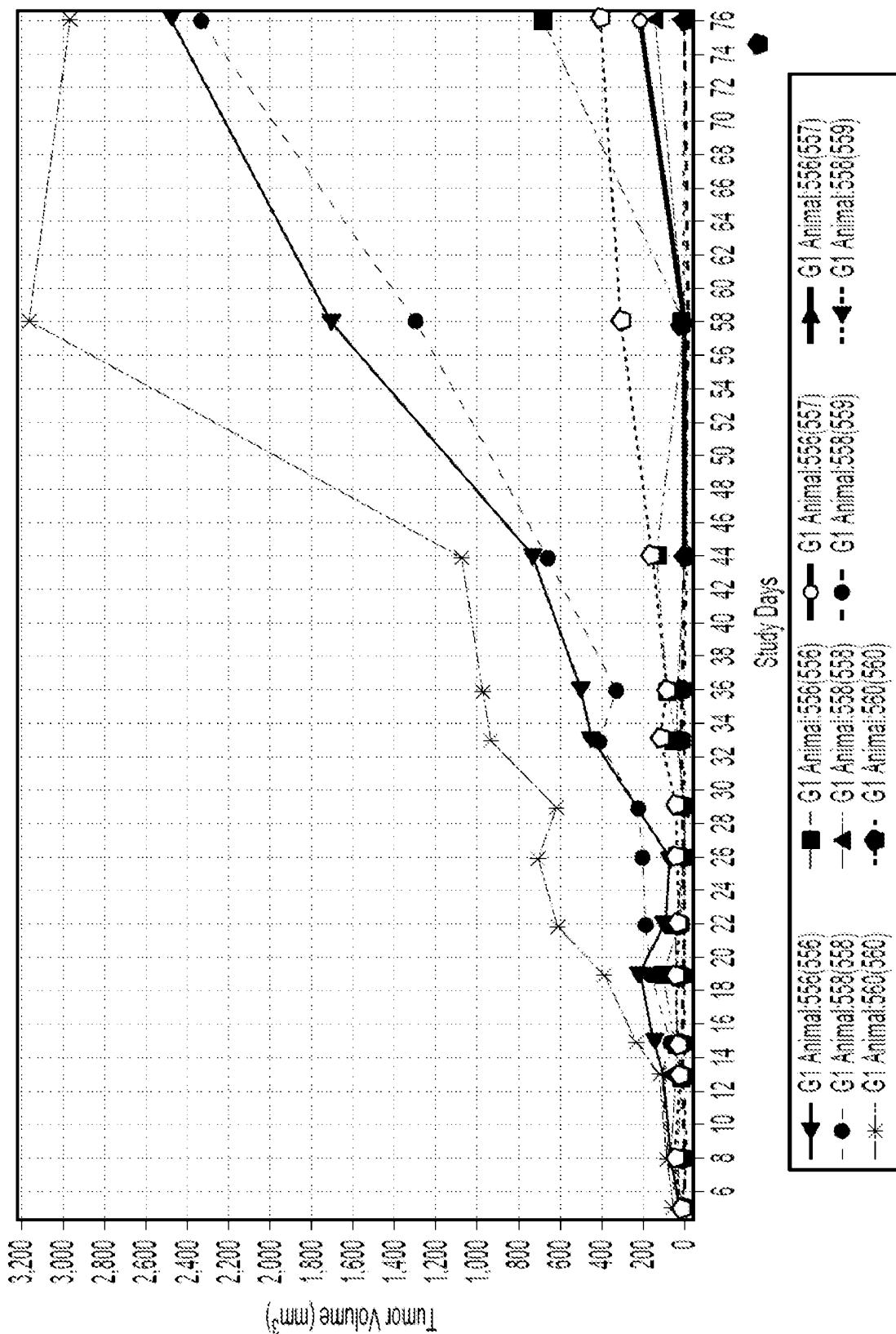


Fig. 1A

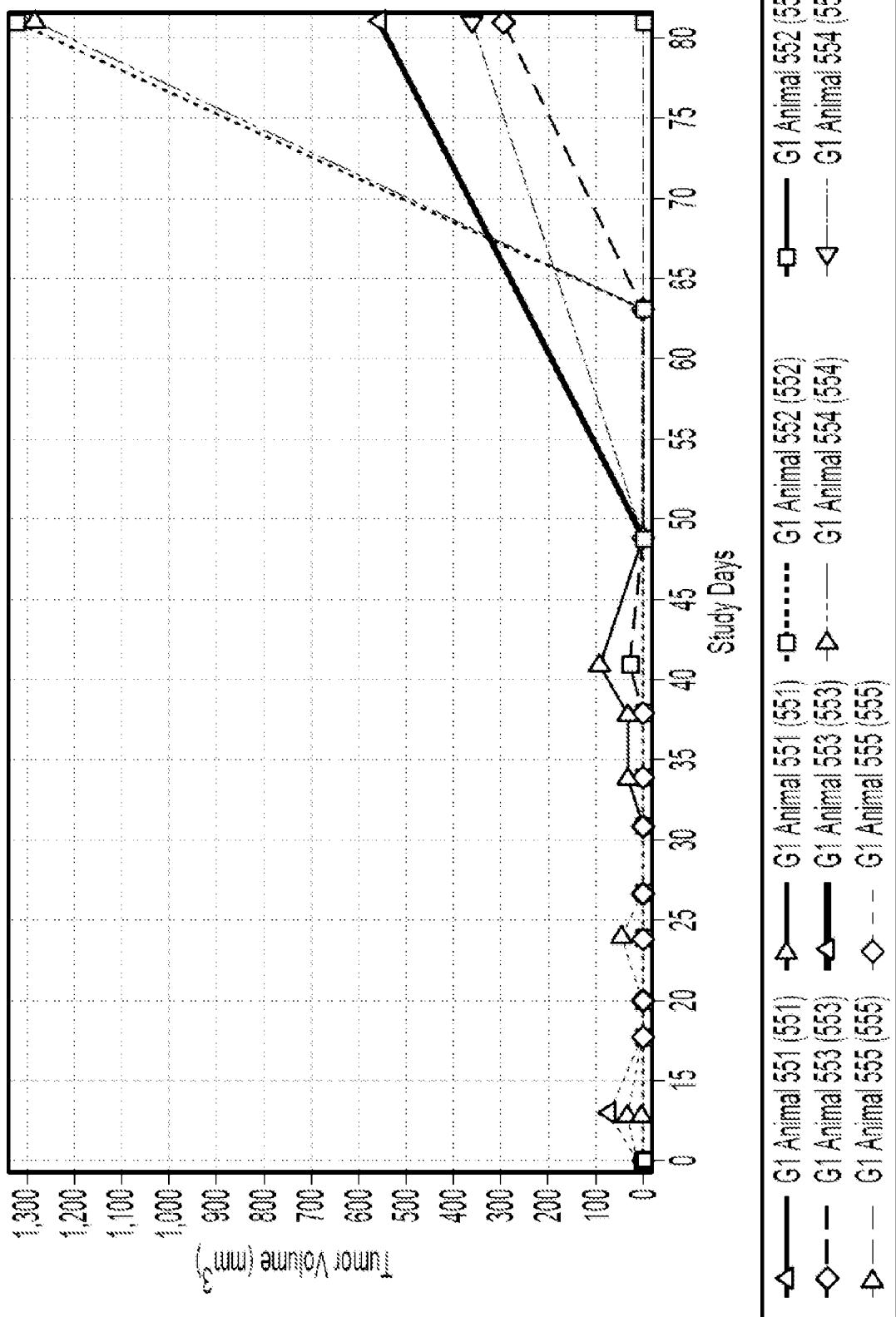


Fig. 1B

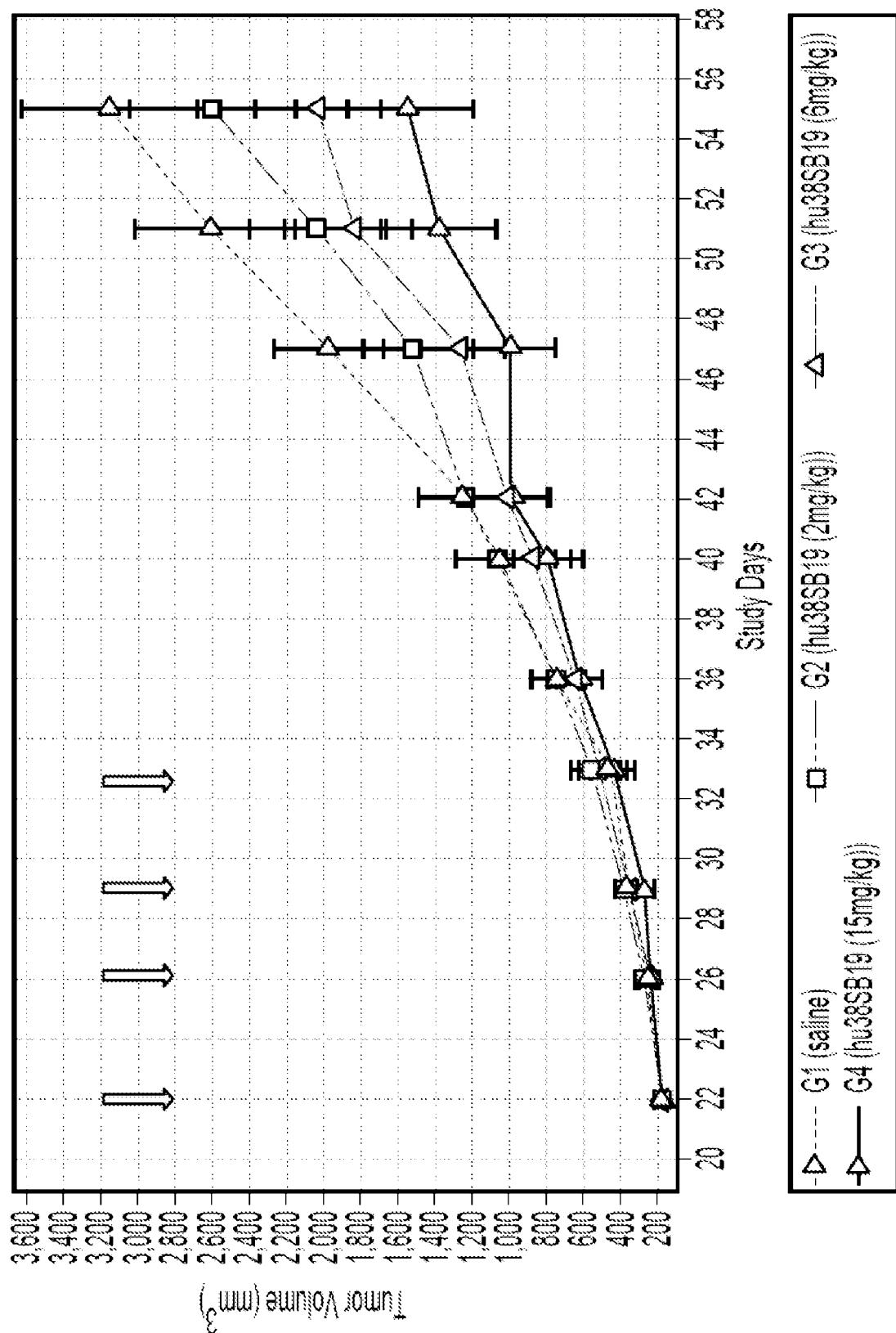


Fig. 2A

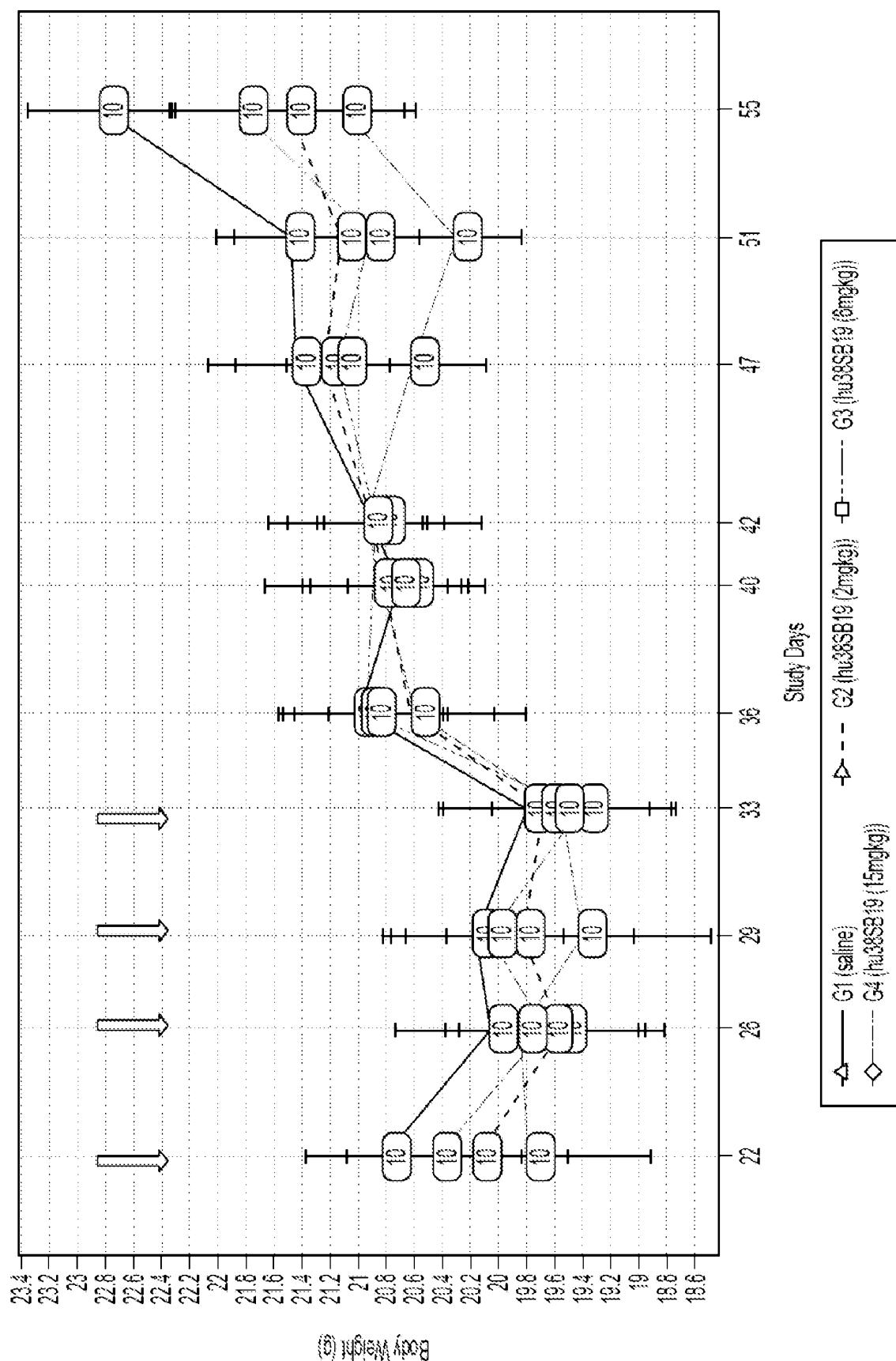


Fig. 2B

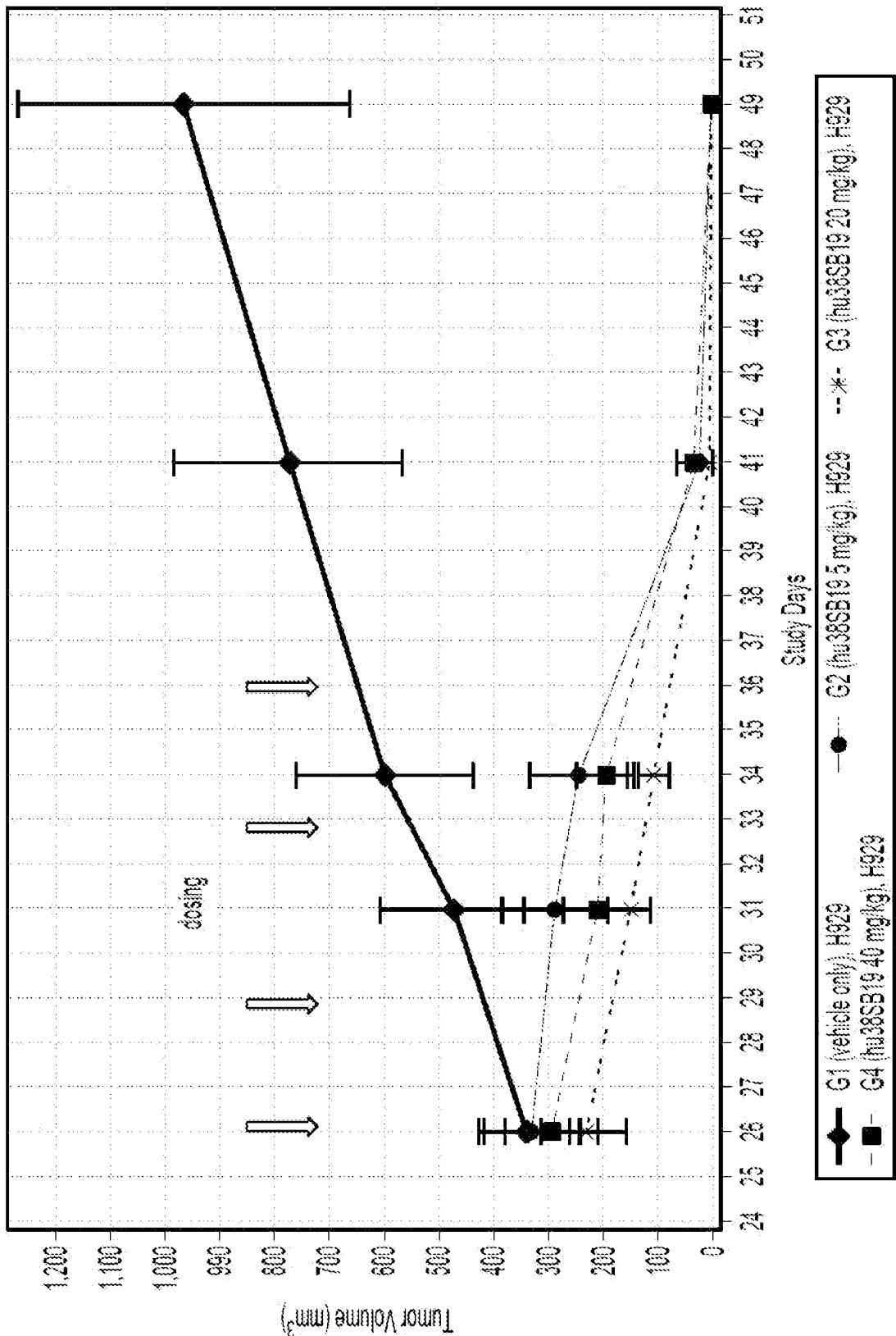


Fig. 3A

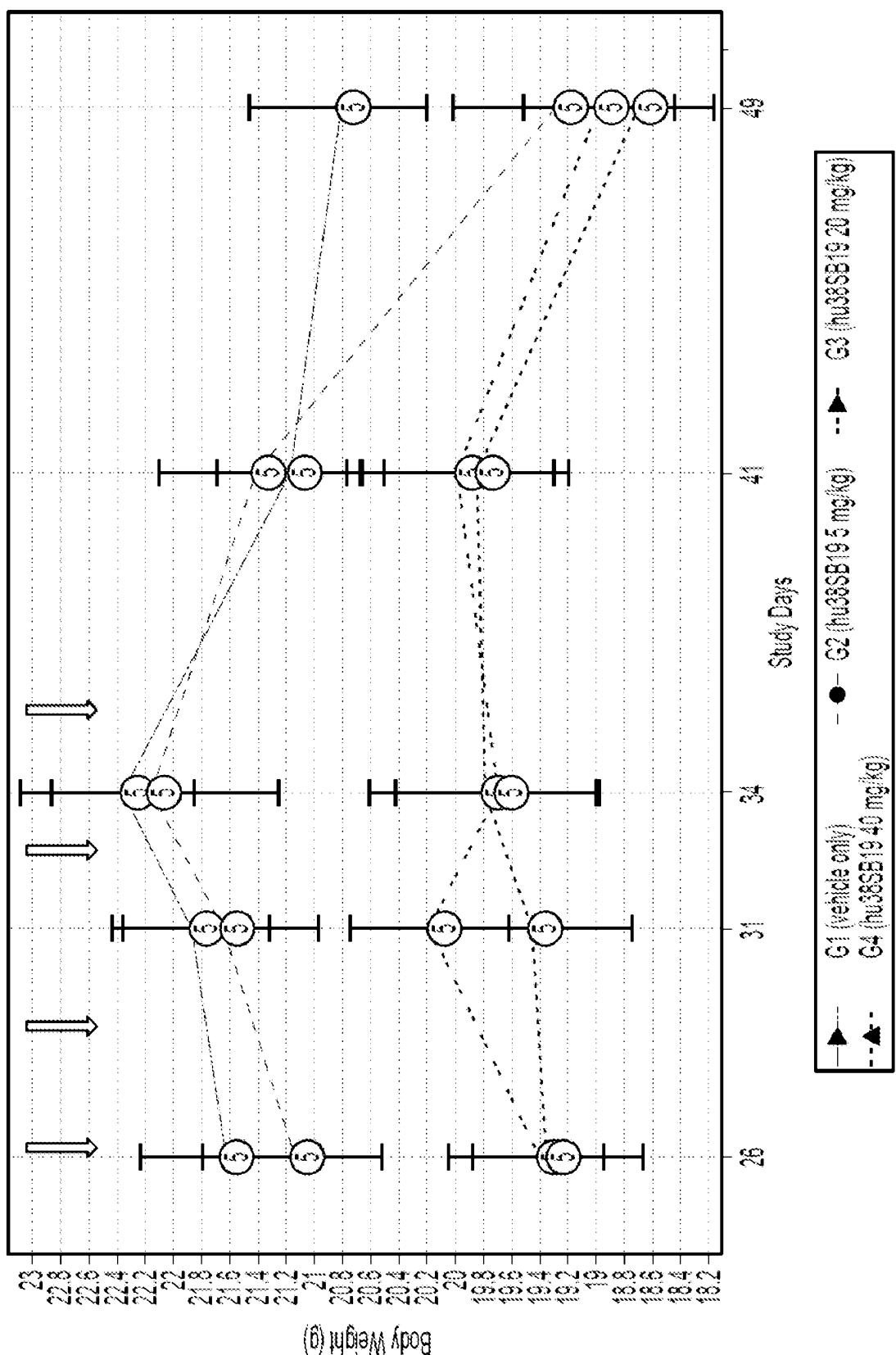


Fig. 3B

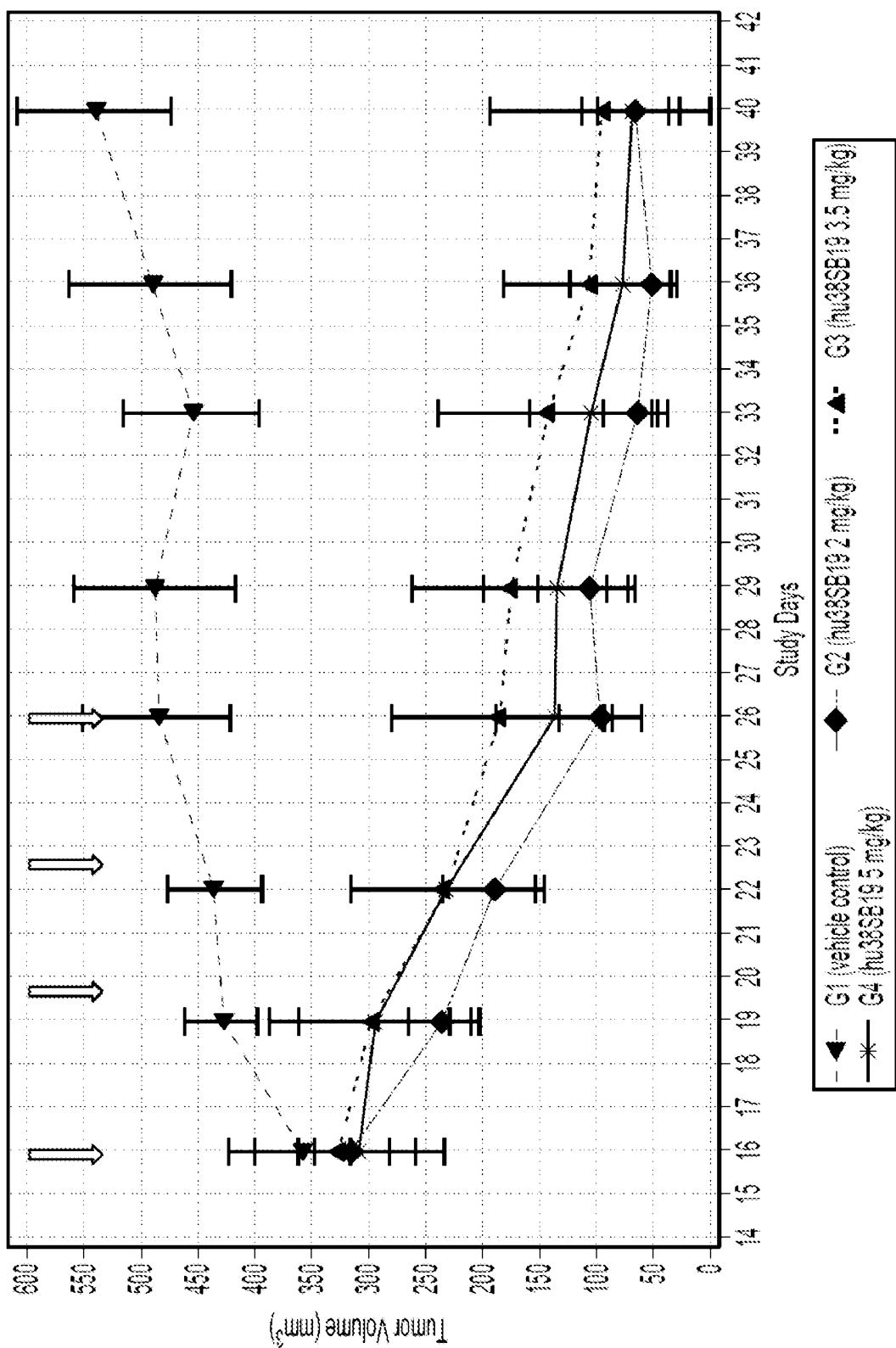


Fig. 4A

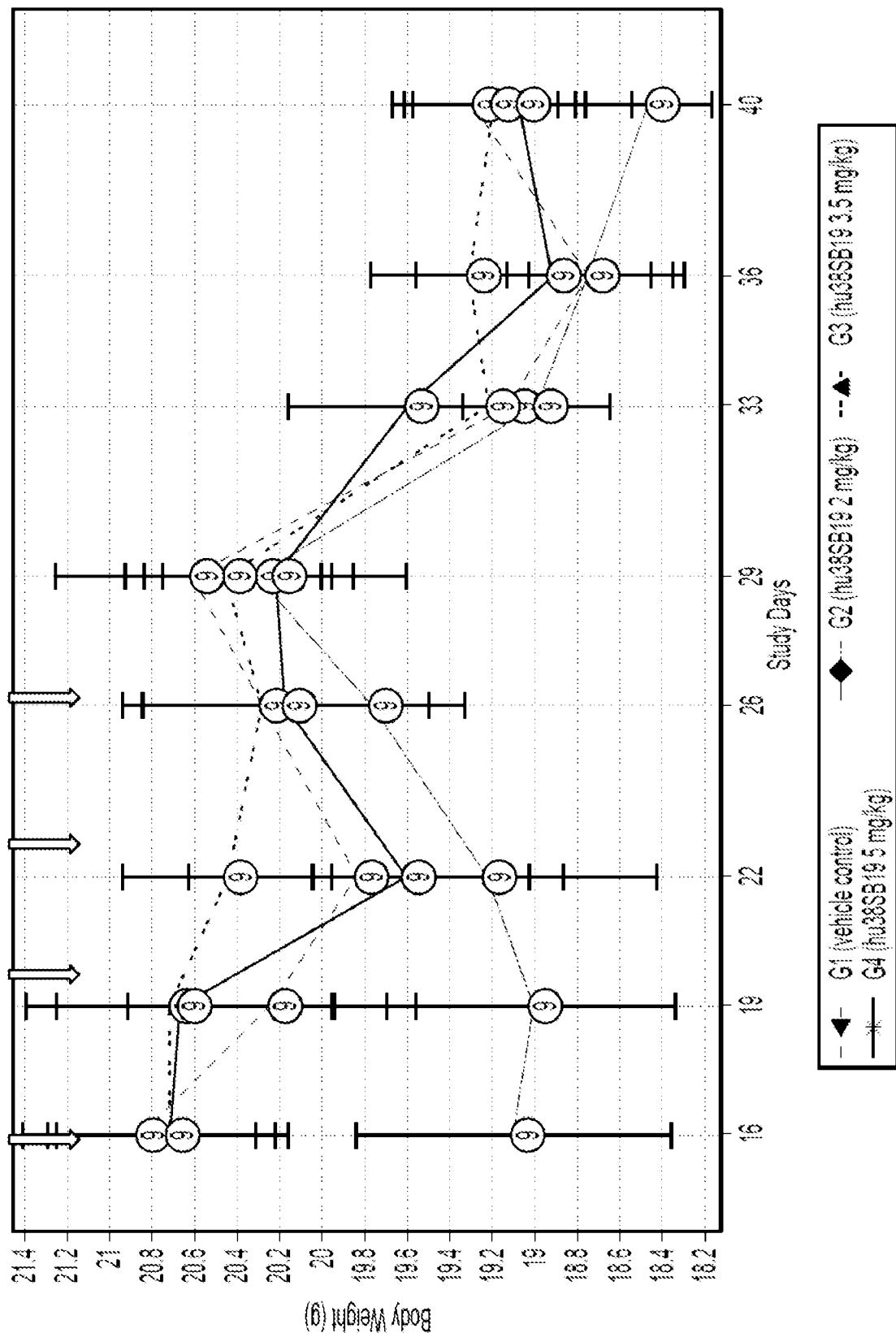


Fig. 4B

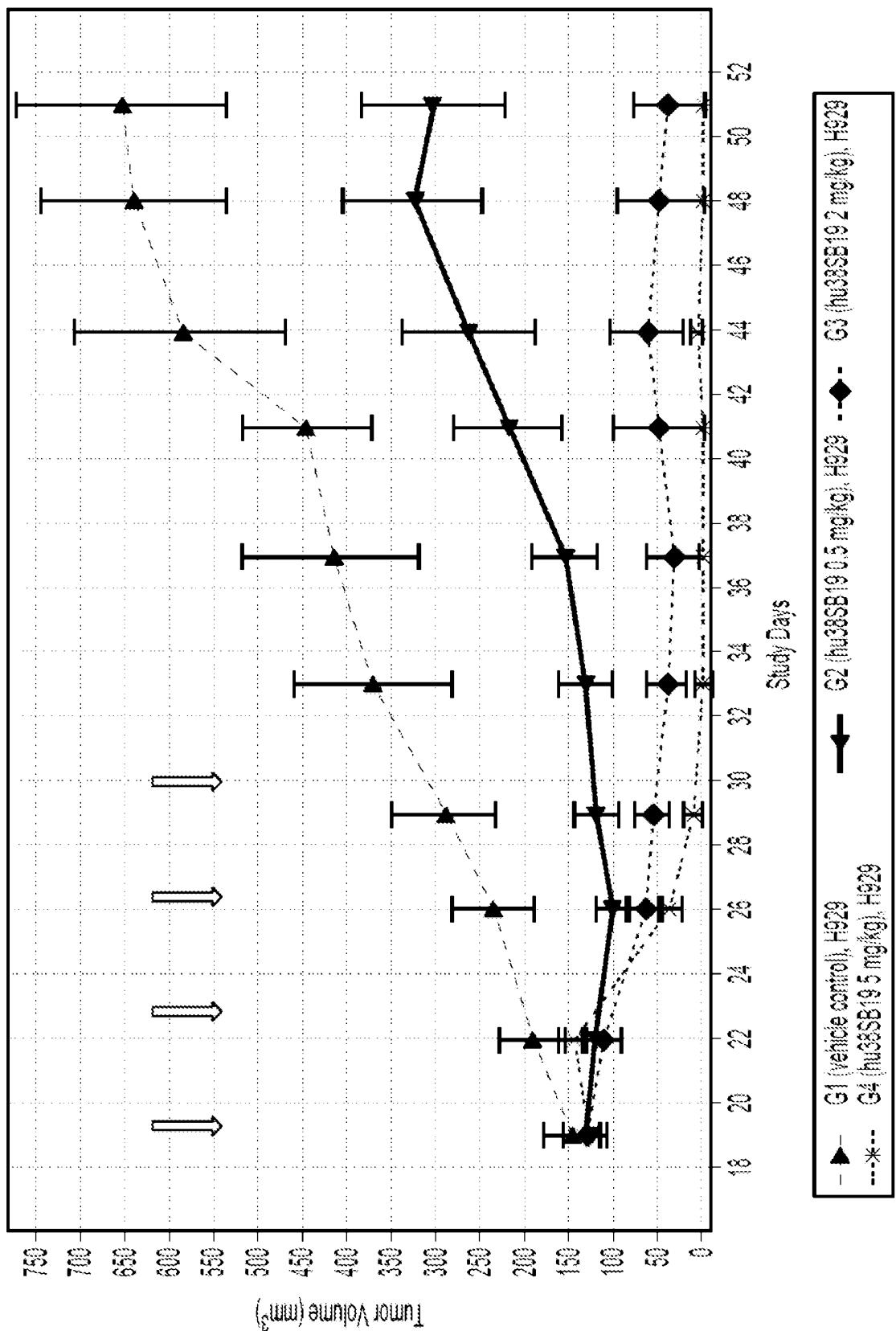


Fig. 5A

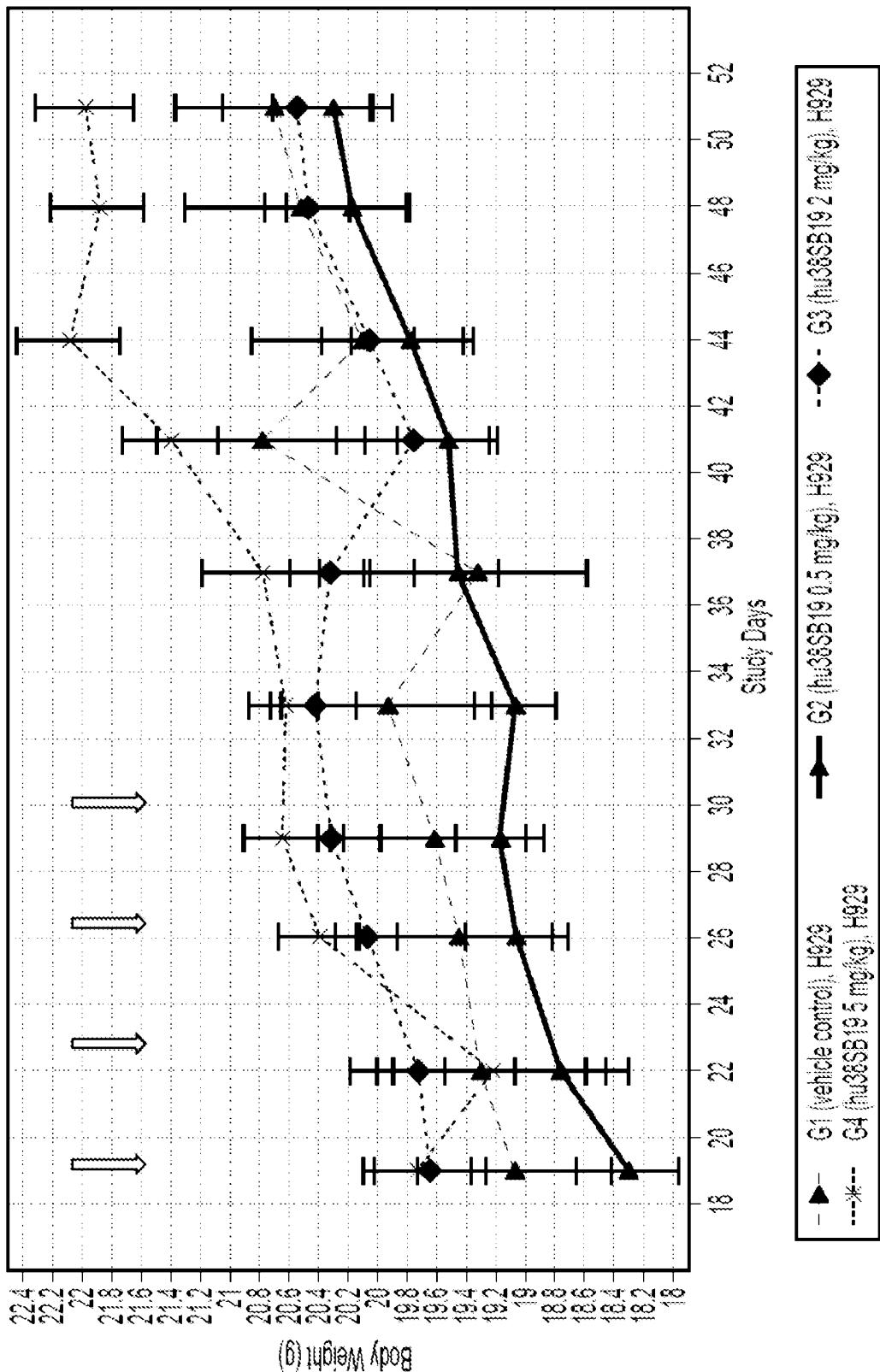


Fig. 5B

11/22

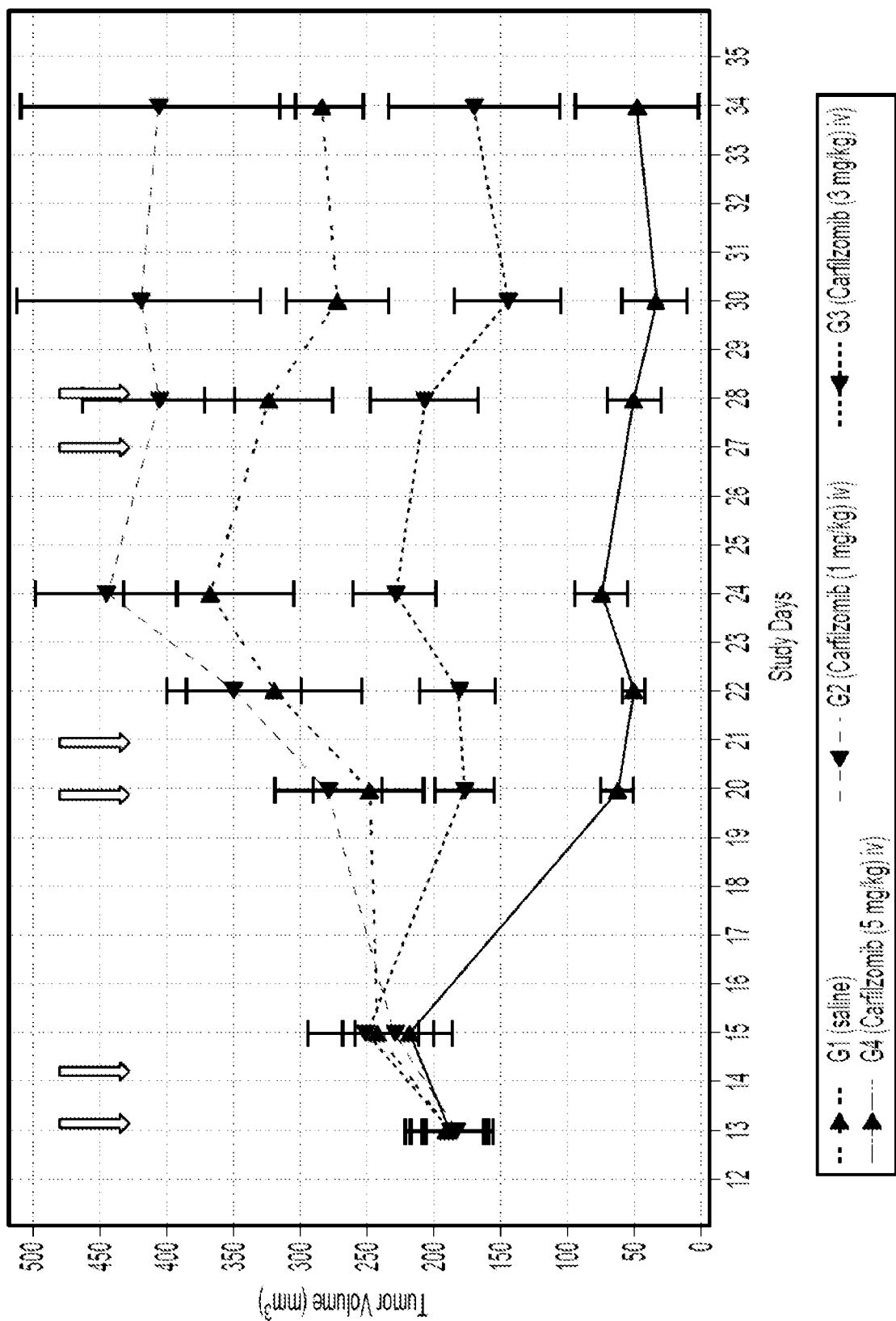


Fig. 6A

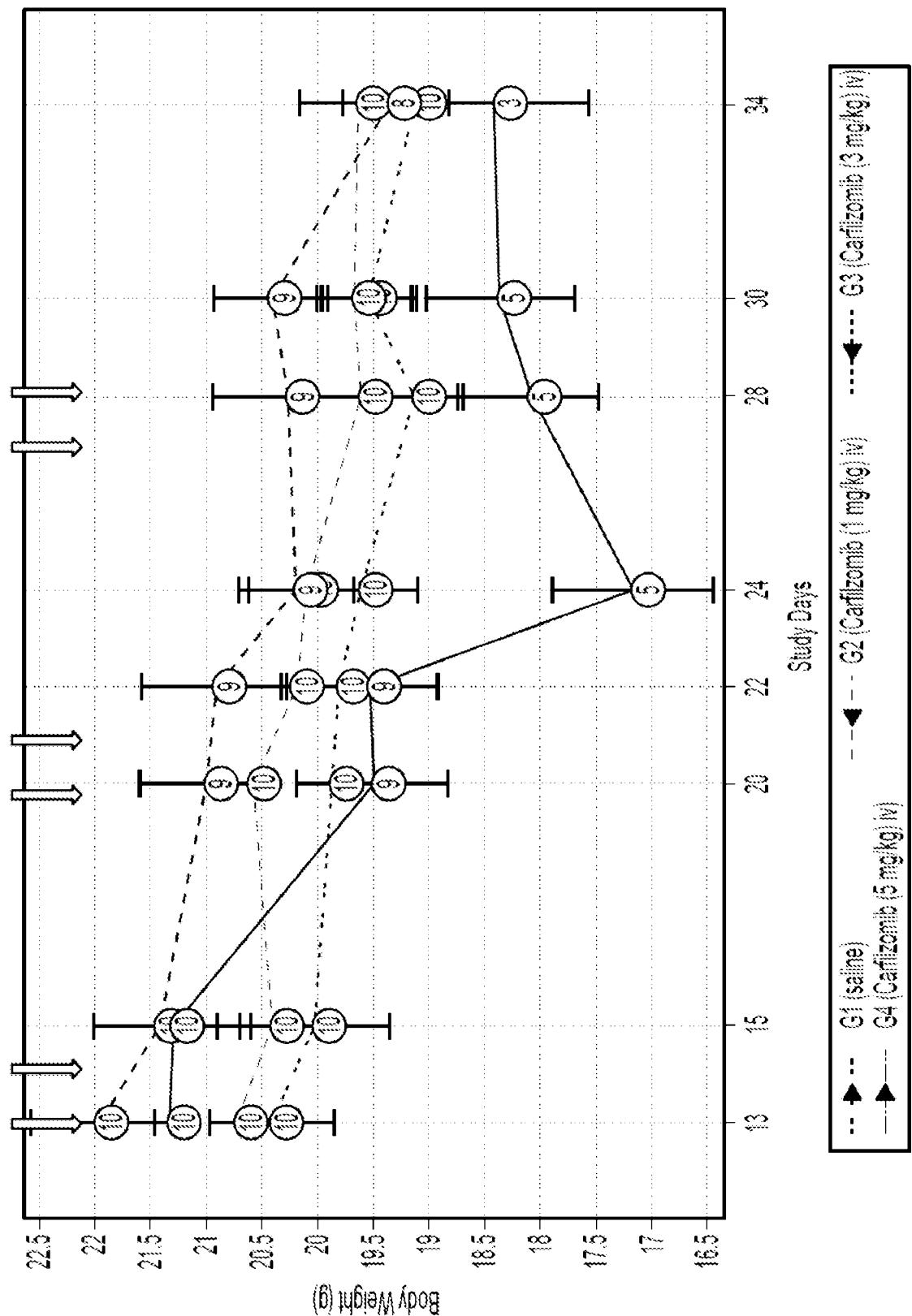


Fig. 6B

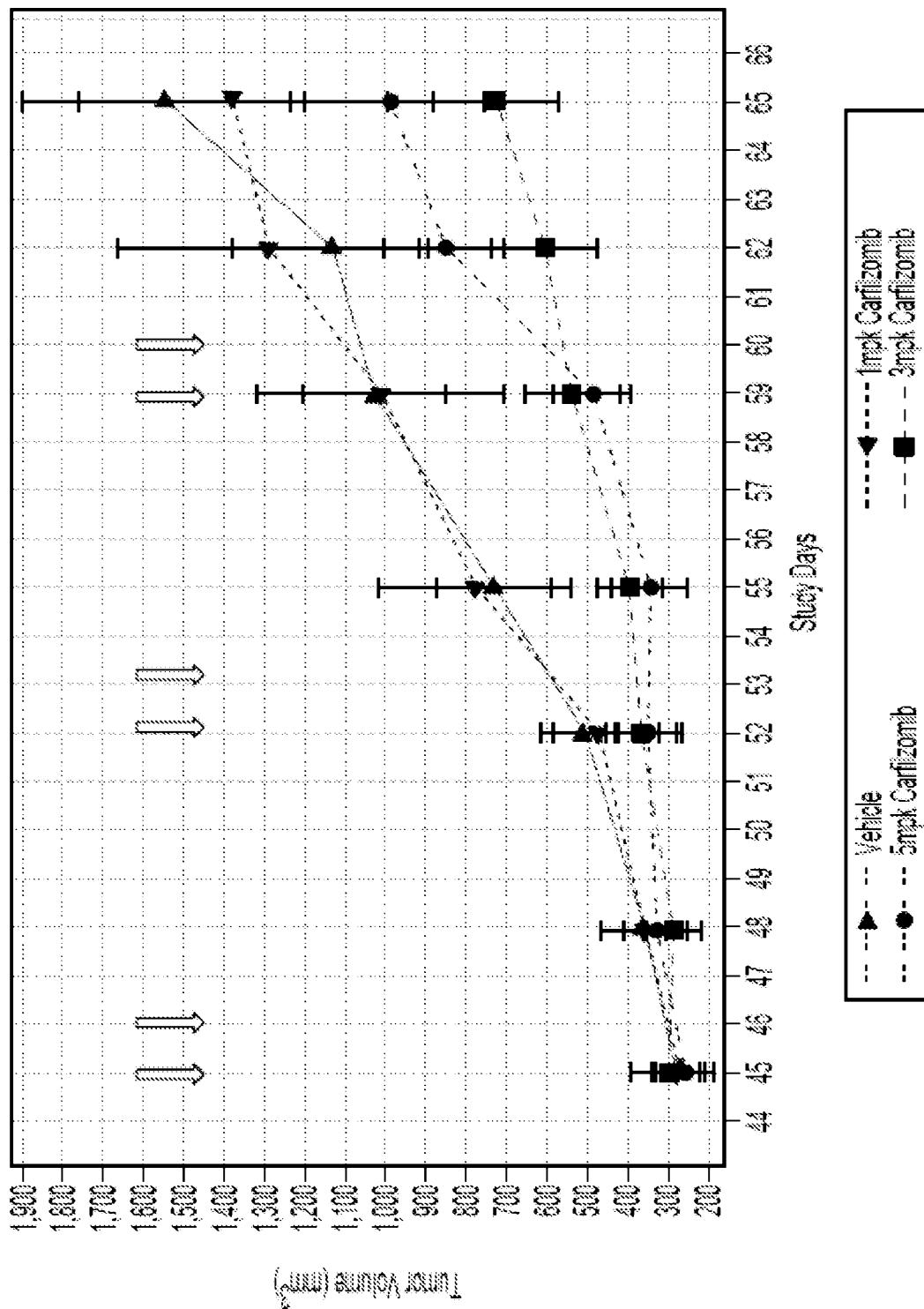


Fig. 7A

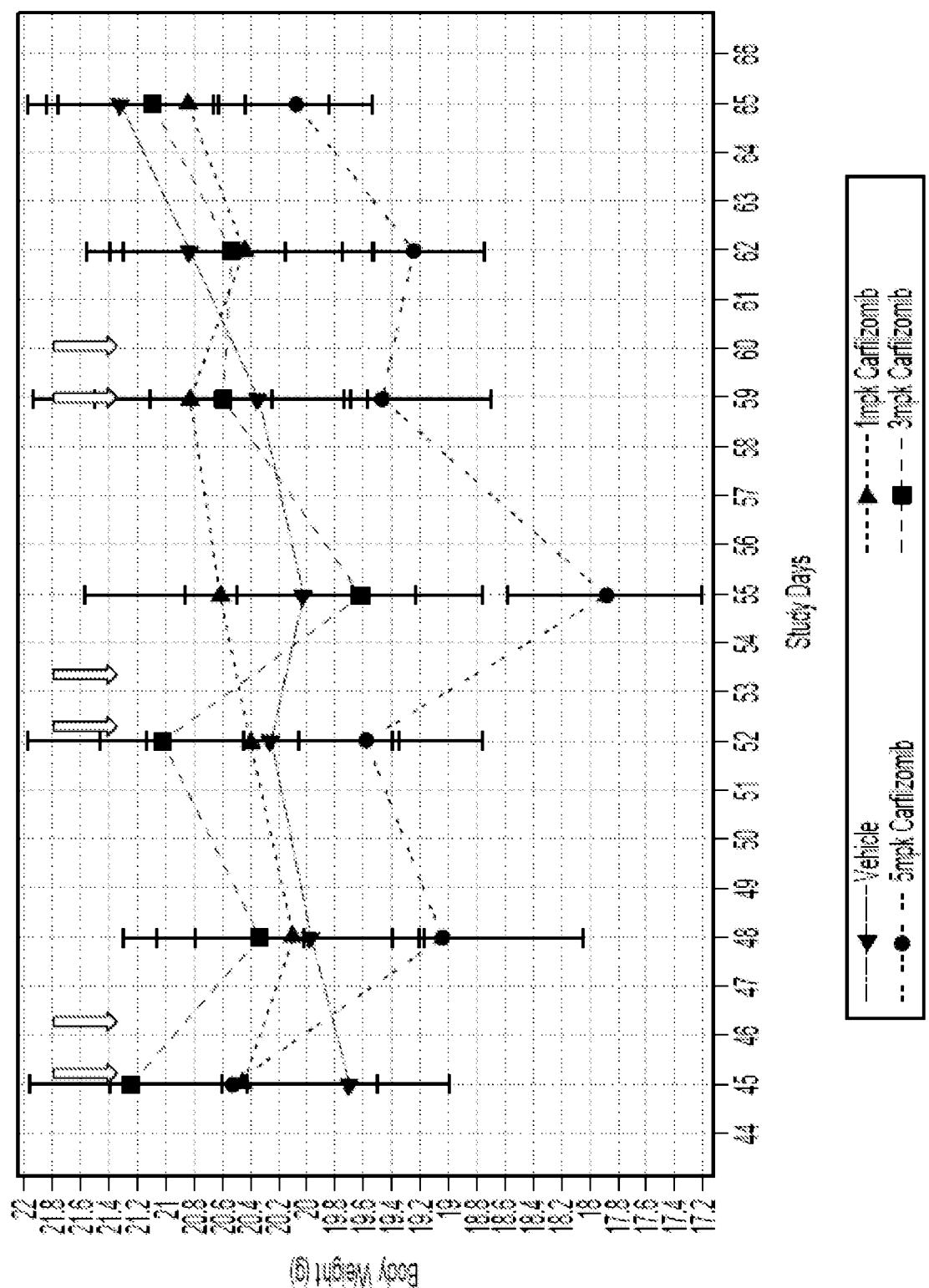


Fig. 7B

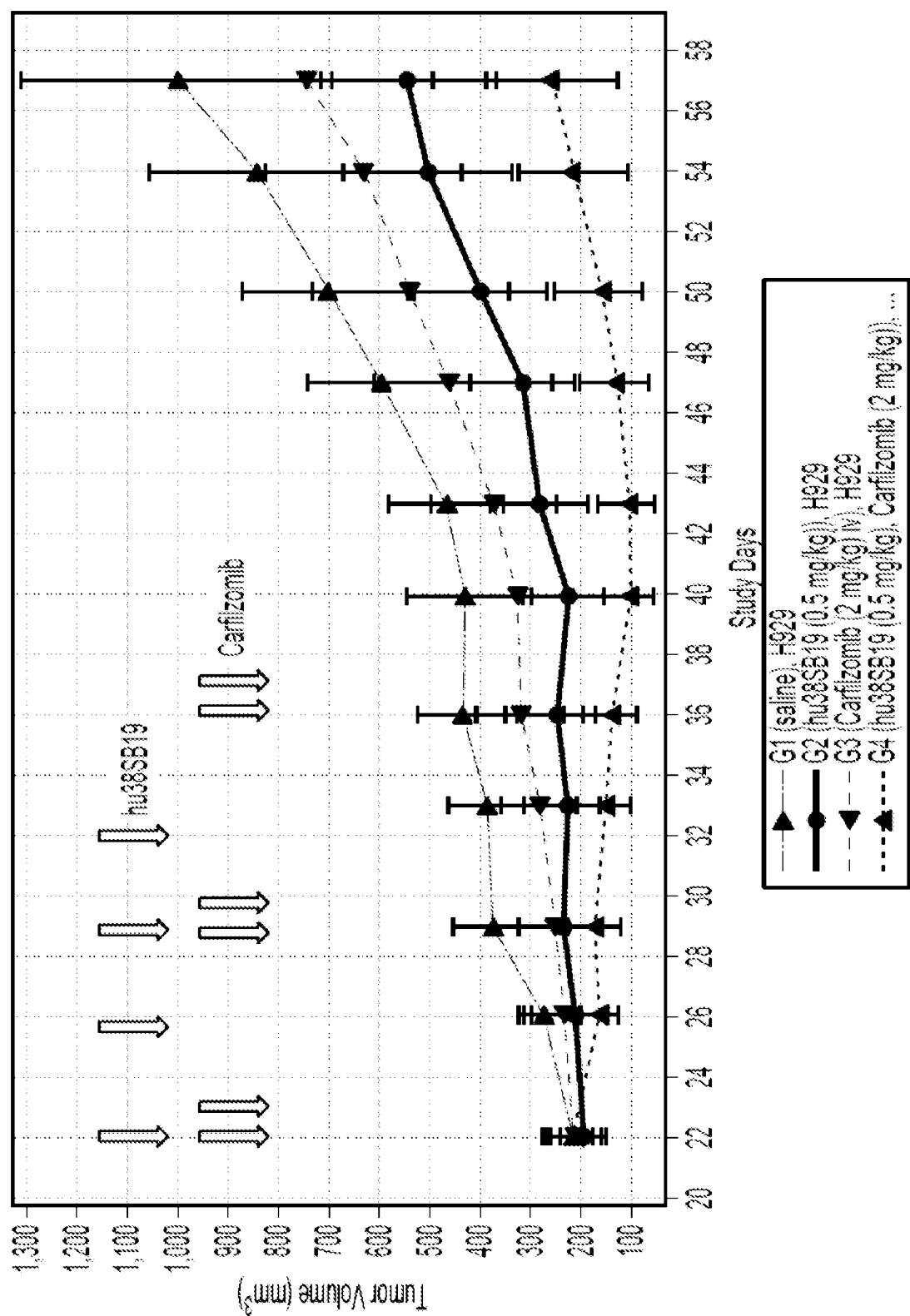


Fig. 8A

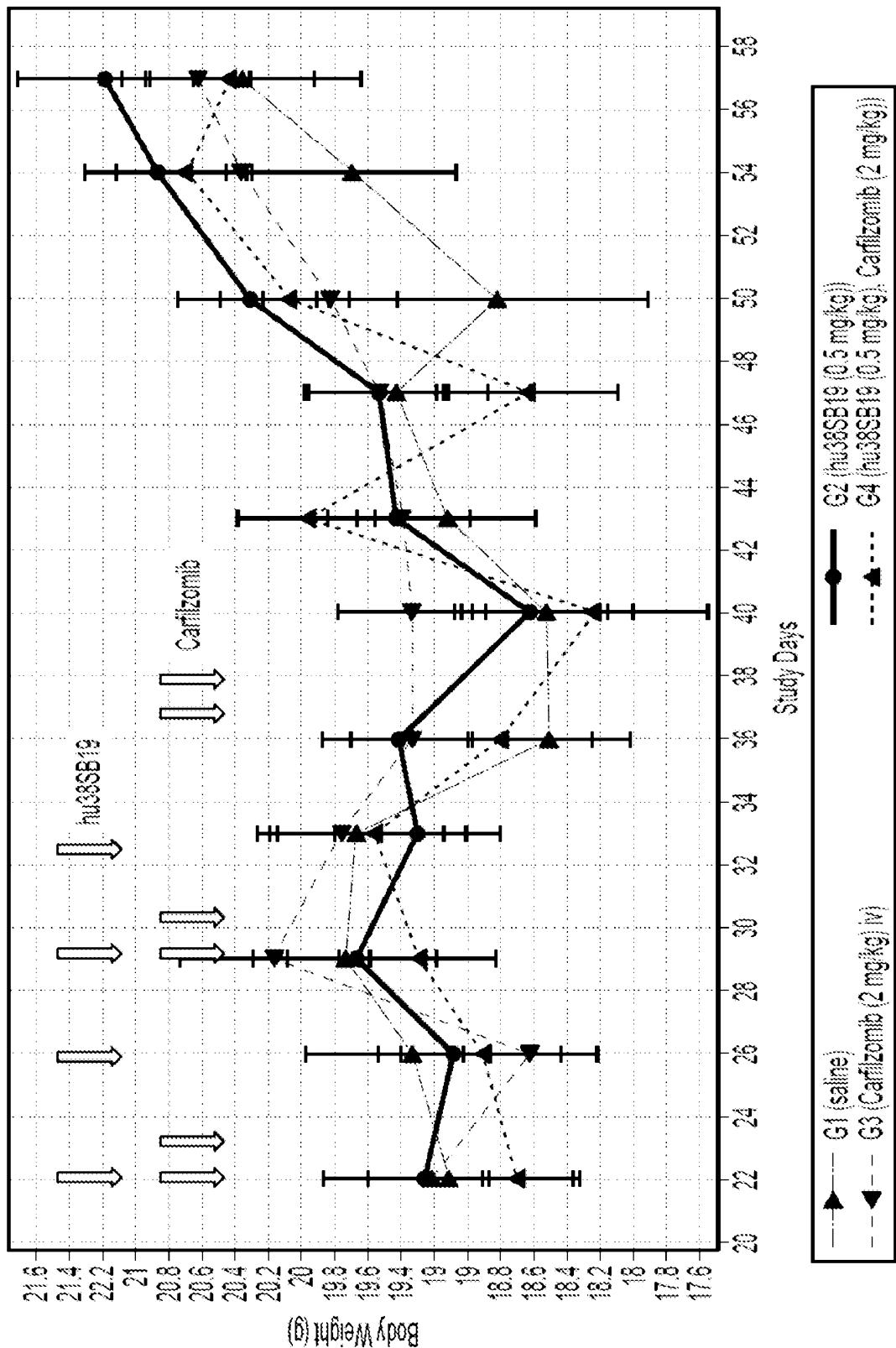


Fig. 8B

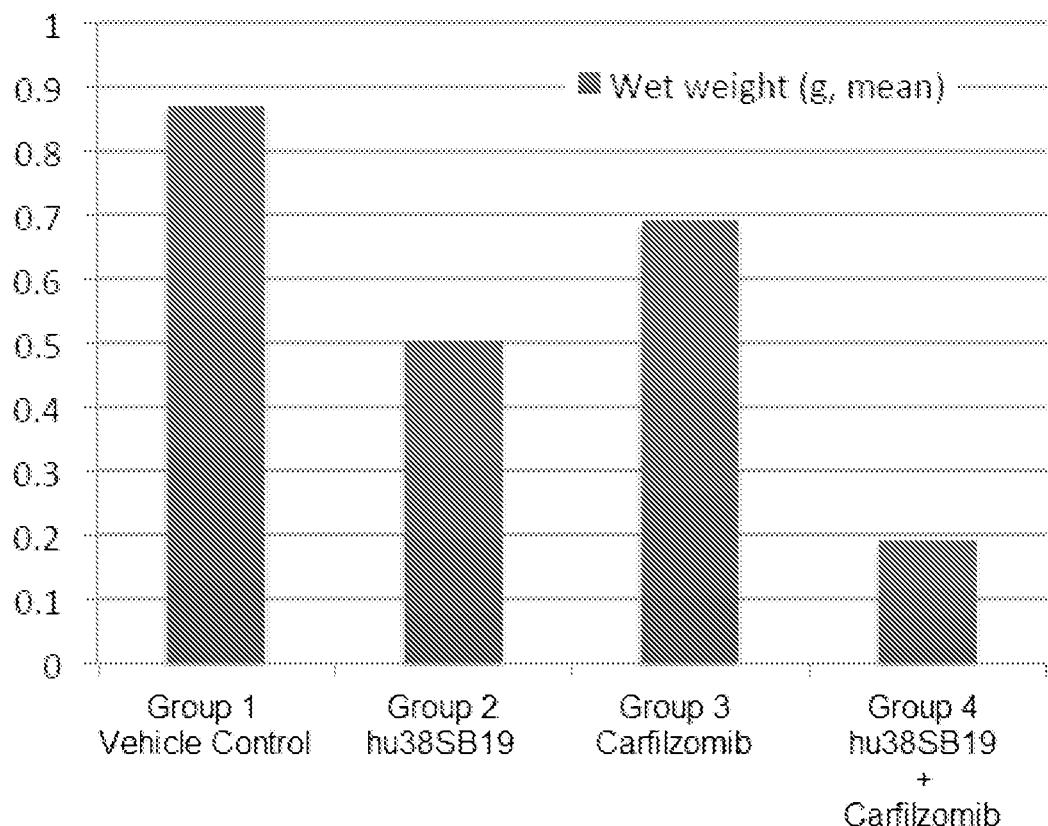


Fig. 9A

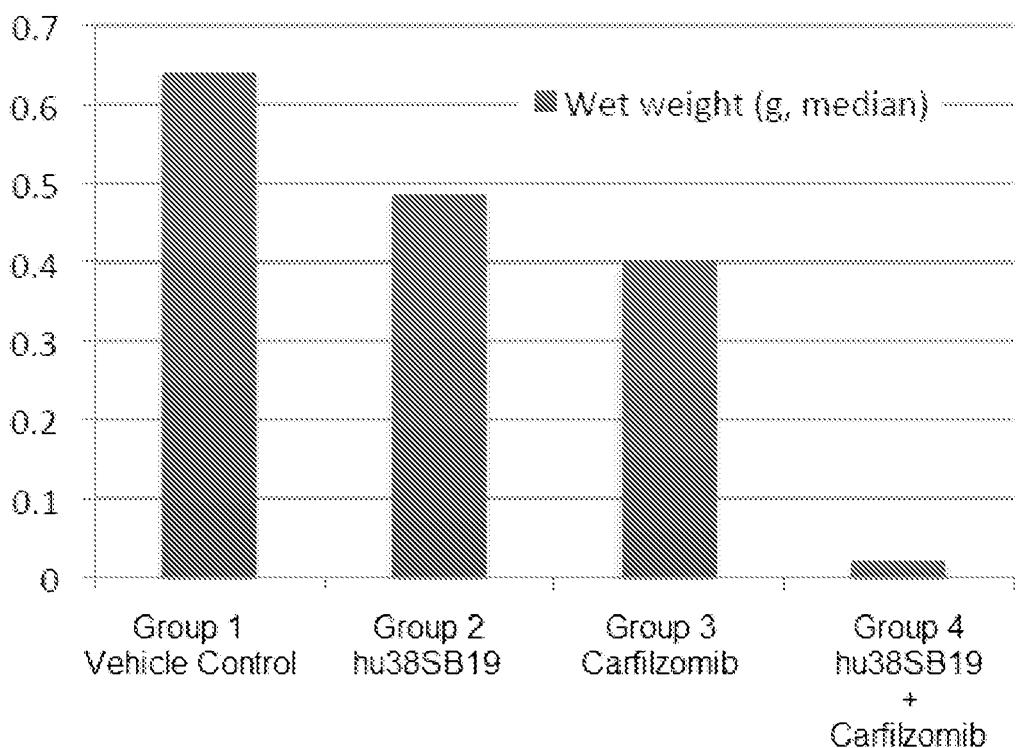


Fig. 9B

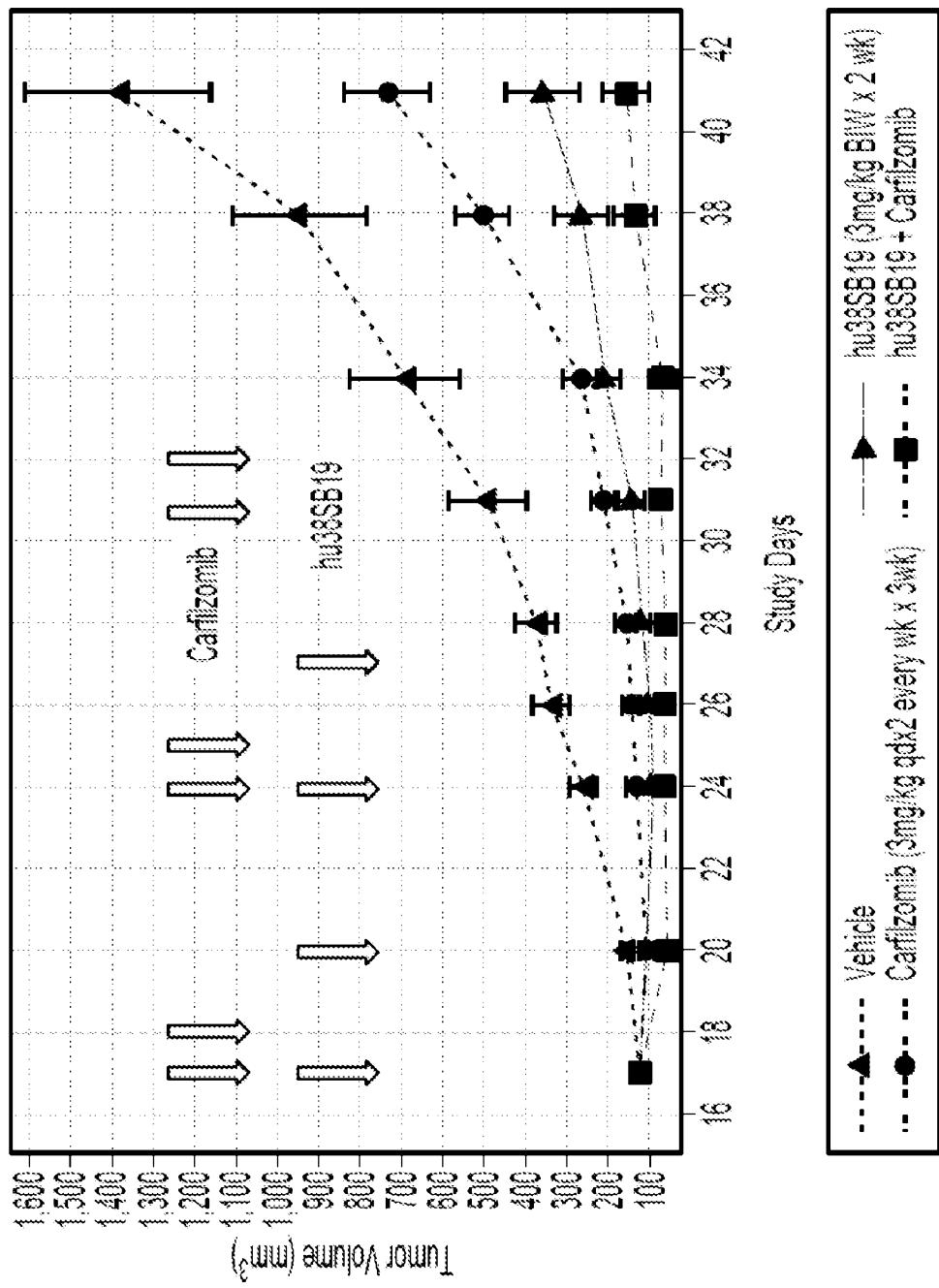


Fig. 10A

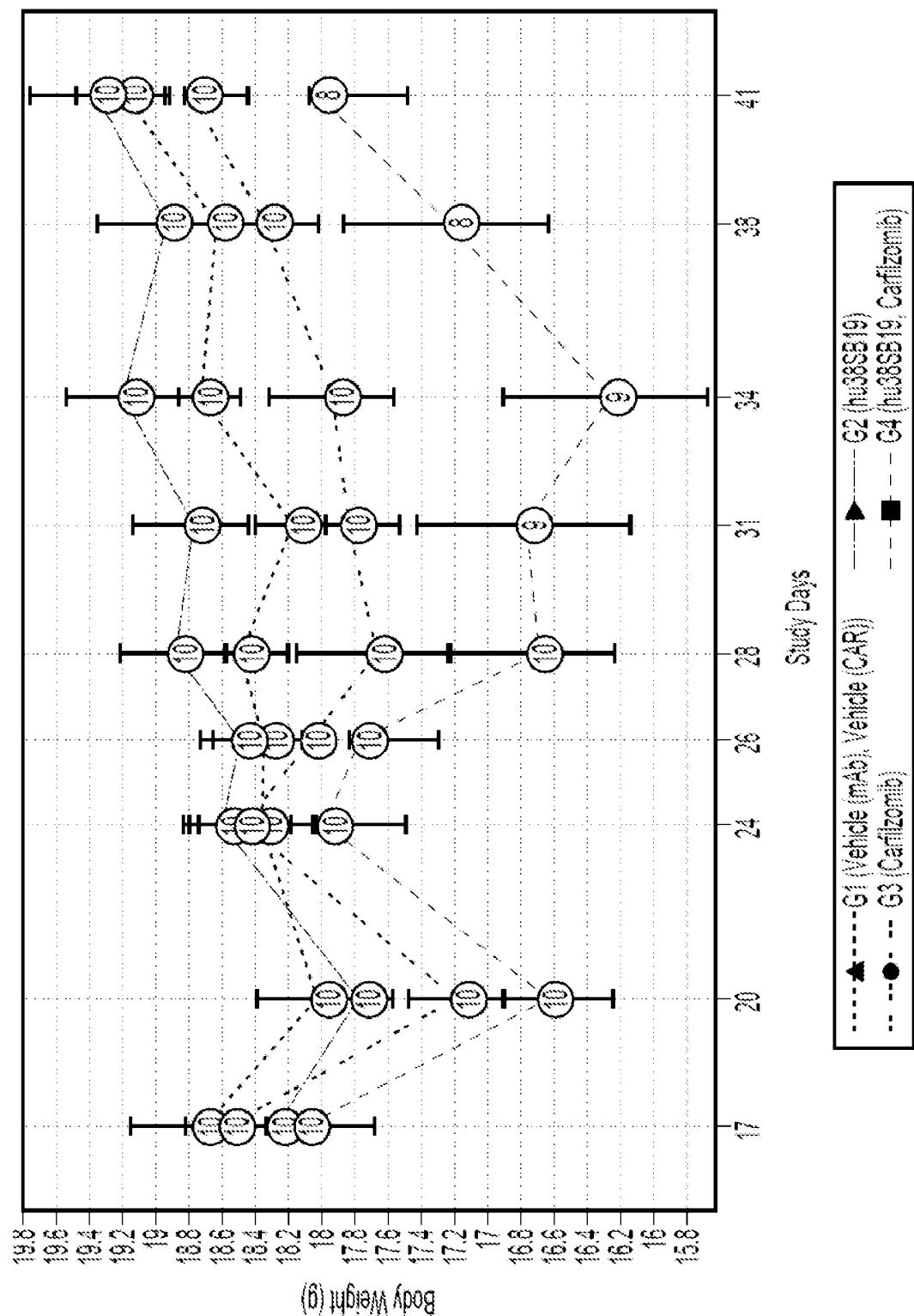
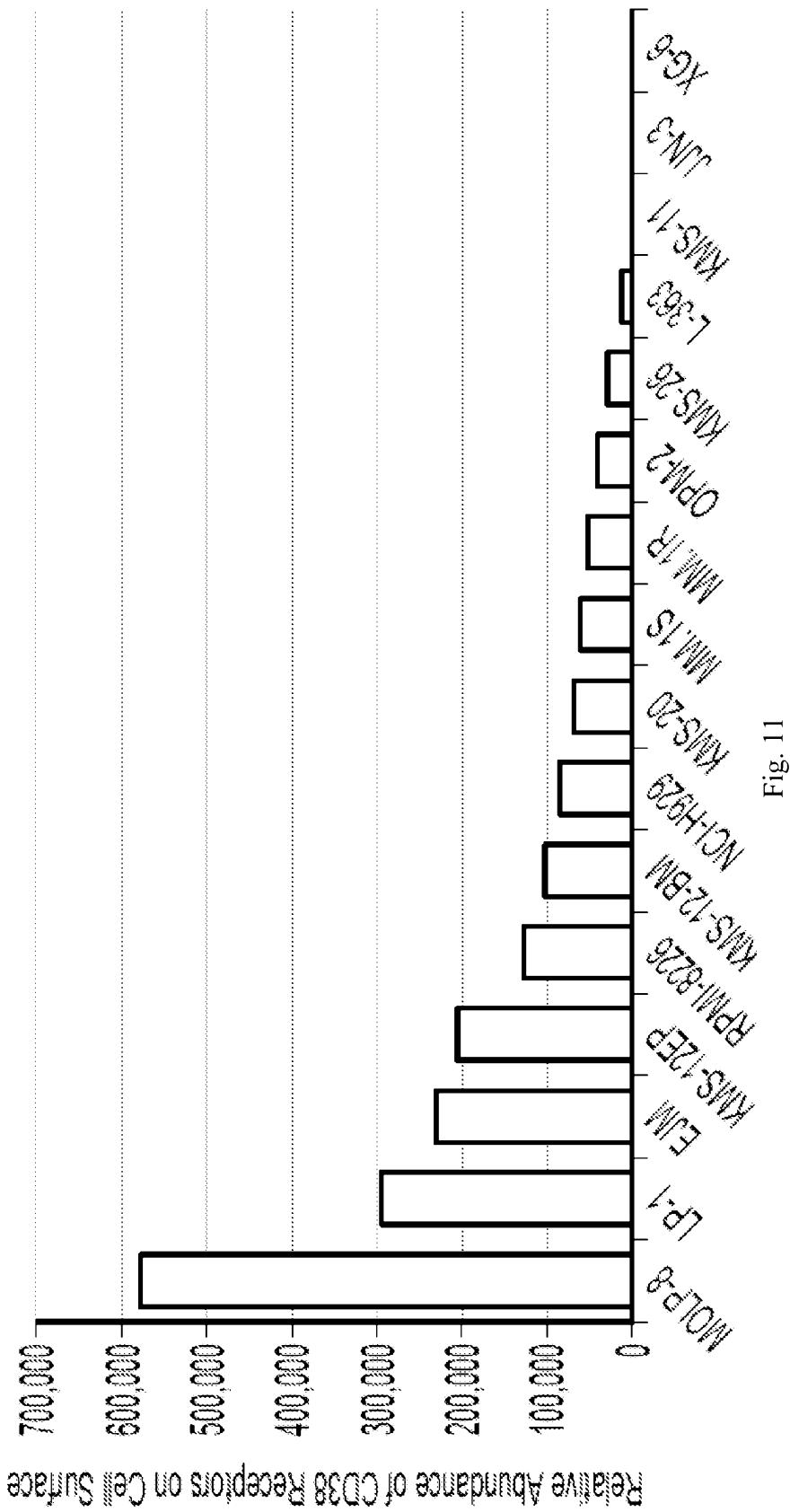



Fig. 10B

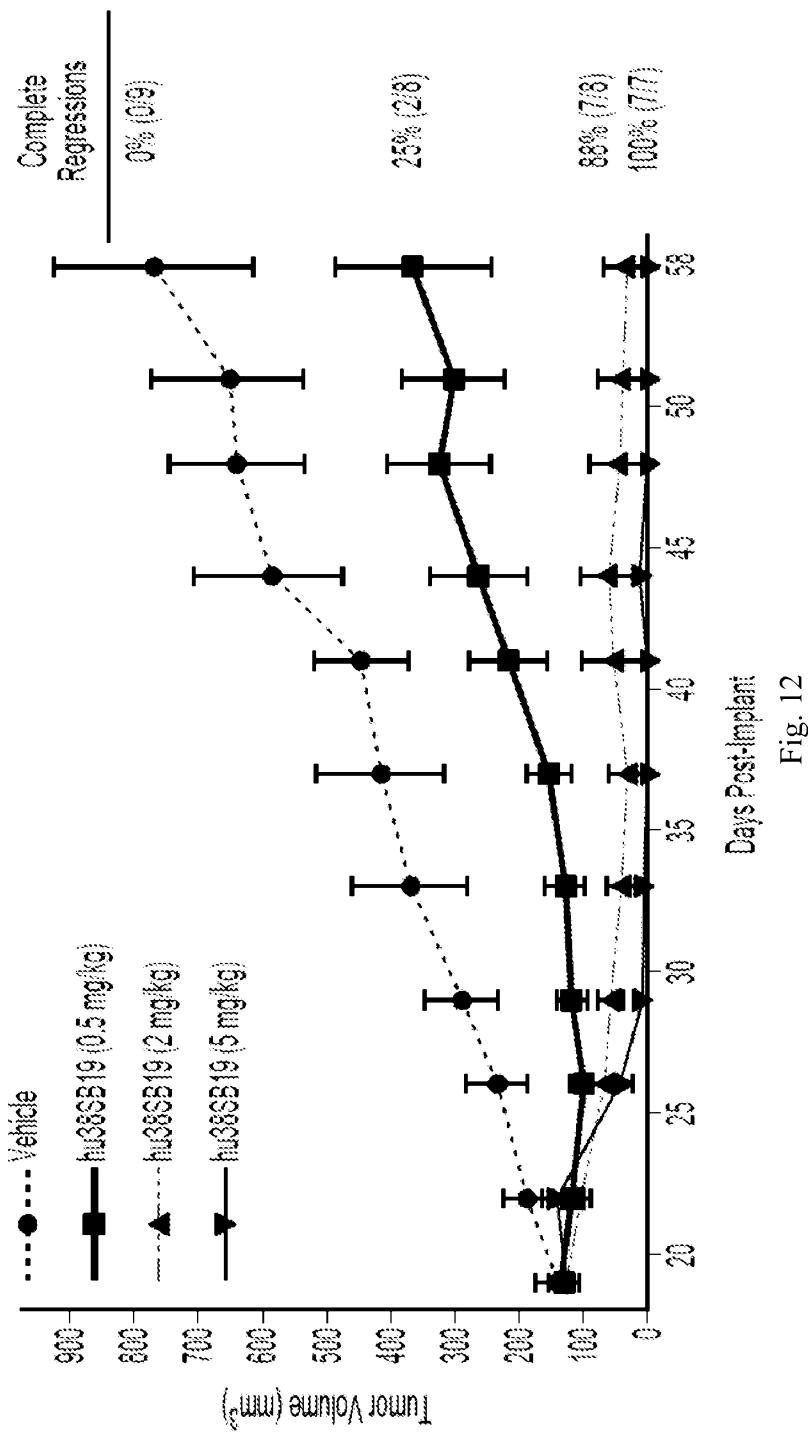


Fig. 12

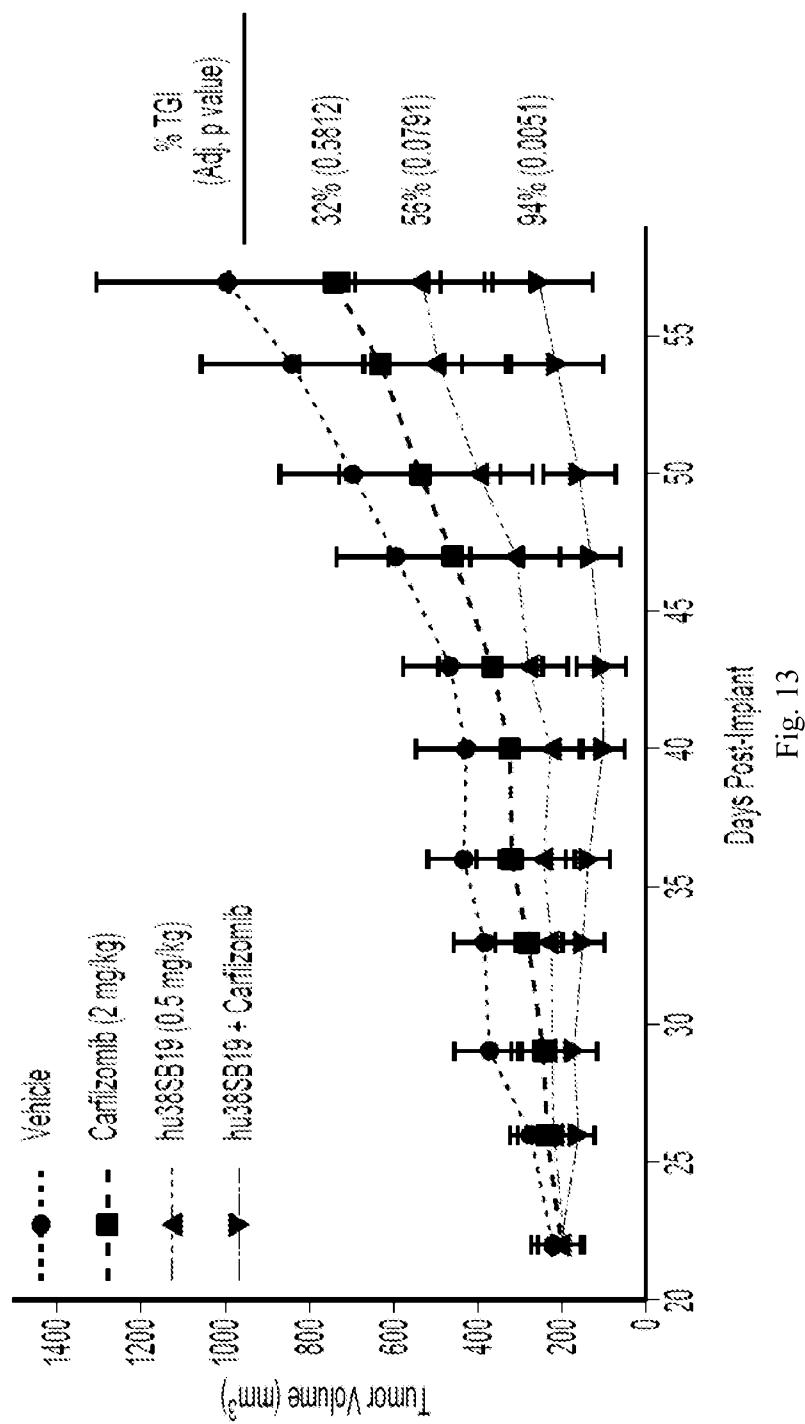


Fig. 13

20140313_034543_002w01_seq.txt
SEQUENCE LISTING

<110> SANOFI
THE REGENTS OF THE UNIVERSITY OF CALIFORNIA

<120> COMPOSITIONS COMPRISING ANTI-CD38 ANTIBODIES AND CARFILZOMIB

<130> 034543.002w01

<160> 81

<170> PatentIn version 3.3

<210> 1

<211> 5

<212> PRT

<213> Mus sp.

<400> 1

Ser Tyr Gly Met Asn
1 5

<210> 2

<211> 17

<212> PRT

<213> Mus sp.

<400> 2

Trp Ile Asn Thr Tyr Thr Gly Glu Pro Thr Tyr Ala Asp Asp Phe Lys
1 5 10 15

Gly

<210> 3

<211> 5

<212> PRT

<213> Mus sp.

<400> 3

Arg Gly Phe Ala Tyr
1 5

<210> 4

<211> 15

<212> PRT

<213> Mus sp.

<400> 4

Arg Ala Ser Glu Ser Val Glu Ile Tyr Gly Asn Gly Phe Met Asn
1 5 10 15

<210> 5

<211> 7

<212> PRT

<213> Mus sp.

<400> 5

Arg Ala Ser Asn Leu Glu Ser

1 5

<210> 6
<211> 9
<212> PRT
<213> Mus sp.

<400> 6

Gln Gln Ile Asn Glu Asp Pro Phe Thr
1 5

<210> 7
<211> 5
<212> PRT
<213> Mus sp.

<400> 7

Asn Ser Gly Met Asn
1 5

<210> 8
<211> 17
<212> PRT
<213> Mus sp.

<400> 8

Trp Ile Asn Thr Tyr Thr Gly Glu Pro Thr Tyr Ala Asp Asp Phe Lys
1 5 10 15

Gly

<210> 9
<211> 5
<212> PRT
<213> Mus sp.

<400> 9

Arg Gly Phe Val Tyr
1 5

<210> 10
<211> 15
<212> PRT
<213> Mus sp.

<400> 10

Arg Ala Ser Glu Ser Val Ala Ile Tyr Gly Asn Ser Phe Leu Lys
1 5 10 15

<210> 11
<211> 7
<212> PRT
<213> Mus sp.

<400> 11

20140313_034543_002w01_seq.txt

Arg Ala Ser Asn Leu Glu Ser
1 5

<210> 12
<211> 9
<212> PRT
<213> Mus sp.

<400> 12

Gln Gln Ile Asn Glu Asp Pro Tyr Thr
1 5

<210> 13
<211> 5
<212> PRT
<213> Mus sp.

<400> 13

Asp Tyr Trp Met Gln
1 5

<210> 14
<211> 17
<212> PRT
<213> Mus sp.

<400> 14

Thr Ile Tyr Pro Gly Asp Gly Asp Thr Gly Tyr Ala Gln Lys Phe Lys
1 5 10 15

Gly

<210> 15
<211> 11
<212> PRT
<213> Mus sp.

<400> 15

Gly Asp Tyr Tyr Gly Ser Asn Ser Leu Asp Tyr
1 5 10

<210> 16
<211> 11
<212> PRT
<213> Mus sp.

<400> 16

Lys Ala Ser Gln Asp Val Ser Thr Val Val Ala
1 5 10

<210> 17
<211> 7
<212> PRT
<213> Mus sp.

20140313_034543_002w01_seq.txt

<400> 17

Ser Ala Ser Tyr Arg Tyr Ile
1 5

<210> 18

<211> 9

<212> PRT

<213> Mus sp.

<400> 18

Gln Gln His Tyr Ser Pro Pro Tyr Thr
1 5

<210> 19

<211> 5

<212> PRT

<213> Mus sp.

<400> 19

Gly Ser Trp Met Asn
1 5

<210> 20

<211> 17

<212> PRT

<213> Mus sp.

<400> 20

Arg Ile Tyr Pro Gly Asp Gly Asp Ile Ile Tyr Asn Gly Asn Phe Arg
1 5 10 15

Asp

<210> 21

<211> 10

<212> PRT

<213> Mus sp.

<400> 21

Trp Gly Thr Phe Thr Pro Ser Phe Asp Tyr
1 5 10

<210> 22

<211> 11

<212> PRT

<213> Mus sp.

<400> 22

Lys Ala Ser Gln Asp Val Val Thr Ala Val Ala
1 5 10

<210> 23

<211> 7

20140313_034543_002w01_seq.txt

<212> PRT
<213> Mus sp.

<400> 23

Ser Ala Ser His Arg Tyr Thr
1 5

<210> 24

<211> 9

<212> PRT
<213> Mus sp.

<400> 24

Gln Gln His Tyr Thr Thr Pro Thr Thr
1 5

<210> 25

<211> 5

<212> PRT
<213> Mus sp.

<400> 25

Ser Tyr Thr Leu Ser
1 5

<210> 26

<211> 17

<212> PRT
<213> Mus sp.

<400> 26

Thr Ile Ser Ile Gly Gly Arg Tyr Thr Tyr Tyr Pro Asp Ser Val Glu
1 5 10 15

Gly

<210> 27

<211> 8

<212> PRT
<213> Mus sp.

<400> 27

Asp Phe Asn Gly Tyr Ser Asp Phe
1 5

<210> 28

<211> 11

<212> PRT
<213> Mus sp.

<400> 28

Lys Ala Ser Gln Val Val Gly Ser Ala Val Ala
1 5 10

20140313_034543_002w01_seq.txt

<210> 29
<211> 7
<212> PRT
<213> Mus sp.

<400> 29

Trp Ala Ser Thr Arg His Thr
1 5

<210> 30
<211> 9
<212> PRT
<213> Mus sp.

<400> 30

Gln Gln Tyr Asn Ser Tyr Pro Tyr Thr
1 5

<210> 31
<211> 5
<212> PRT
<213> Mus sp.

<400> 31

Asn Phe Gly Met His
1 5

<210> 32
<211> 17
<212> PRT
<213> Mus sp.

<400> 32

Tyr Ile Arg Ser Gly Ser Gly Thr Ile Tyr Tyr Ser Asp Thr Val Lys
1 5 10 15

Gly

<210> 33
<211> 11
<212> PRT
<213> Mus sp.

<400> 33

Ser Tyr Tyr Asp Phe Gly Ala Trp Phe Ala Tyr
1 5 10

<210> 34
<211> 11
<212> PRT
<213> Mus sp.

<400> 34

Lys Ala Ser Gln Asn Val Gly Thr Asn Val Ala
1 5 10

20140313_034543_002w01_seq.txt

<210> 35
 <211> 7
 <212> PRT
 <213> Mus sp.

<400> 35

Ser Ala Ser Ser Arg Tyr Ser
 1 5

<210> 36
 <211> 9
 <212> PRT
 <213> Mus sp.

<400> 36

Gln Gln Tyr Asn Ser Tyr Pro Leu Thr
 1 5

<210> 37
 <211> 336
 <212> DNA
 <213> Mus sp.

<220>
 <221> CDS
 <222> (1)..(336)

<400> 37
 aac att gtg ctg acc caa tct cca gct tct ttg gct gtg tct ctt ggg 48
 Asn Ile Val Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly
 1 5 10 15
 cag agg gcc acc ata tcc tgc aga gcc agt gaa agt gtt gag att tat 96
 Gln Arg Ala Thr Ile Ser Cys Arg Ala Ser Glu Ser Val Glu Ile Tyr
 20 25 30
 ggc aat ggt ttt atg aac tgg ttc cag cag aaa cca gga cag cca ccc 144
 Gly Asn Gly Phe Met Asn Trp Phe Gln Gln Lys Pro Gly Gln Pro Pro
 35 40 45
 aaa ctc ctc atc tat cgt gca tcc aac cta gaa tct ggg atc cct gcc 192
 Lys Leu Leu Ile Tyr Arg Ala Ser Asn Leu Glu Ser Gly Ile Pro Ala
 50 55 60
 agg ttc agt ggc agt ggg tct agg aca gag ttc acc ctc acc att gat 240
 Arg Phe Ser Gly Ser Gly Ser Arg Thr Glu Phe Thr Leu Thr Ile Asp
 65 70 75 80
 cct gtg gag gct gat gat gtt gca acc tat tac tgt caa caa att aat 288
 Pro Val Glu Ala Asp Asp Val Ala Thr Tyr Tyr Cys Gln Gln Ile Asn
 85 90 95
 gag gat cca ttc acg ttc ggc tcg ggg aca aag ttg gaa ata aaa cgg 336
 Glu Asp Pro Phe Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile Lys Arg
 100 105 110

<210> 38
 <211> 112
 <212> PRT
 <213> Mus sp.

20140313_034543_002w01_seq.txt

<400> 38

Asn Ile Val Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly
 1 5 10 15

Gln Arg Ala Thr Ile Ser Cys Arg Ala Ser Glu Ser Val Glu Ile Tyr
 20 25 30

Gly Asn Gly Phe Met Asn Trp Phe Gln Gln Lys Pro Gly Gln Pro Pro
 35 40 45

Lys Leu Leu Ile Tyr Arg Ala Ser Asn Leu Glu Ser Gly Ile Pro Ala
 50 55 60

Arg Phe Ser Gly Ser Gly Ser Arg Thr Glu Phe Thr Leu Thr Ile Asp
 65 70 75 80

Pro Val Glu Ala Asp Asp Val Ala Thr Tyr Tyr Cys Gln Gln Ile Asn
 85 90 95

Glu Asp Pro Phe Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile Lys Arg
 100 105 110

<210> 39

<211> 336

<212> DNA

<213> Mus sp.

<220>

<221> CDS

<222> (1)..(336)

<400> 39

gac att gta ctg acc caa tct cca gct tct ttg gct gtg tct cta ggg 48
 Asp Ile Val Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly
 1 5 10 15

cag agg gcc acc ata tcc tgc aga gcc agt gag agt gtt gct att tat 96
 Gln Arg Ala Thr Ile Ser Cys Arg Ala Ser Glu Ser Val Ala Ile Tyr
 20 25 30

ggc aat agt ttt ctg aaa tgg ttc cag cag aaa ccg gga cag cca ccc 144
 Gly Asn Ser Phe Leu Lys Trp Phe Gln Gln Lys Pro Gly Gln Pro Pro
 35 40 45

aaa ctc ctc atc tat cgt gca tcc aac cta gaa tct ggg atc cct gcc 192
 Lys Leu Leu Ile Tyr Arg Ala Ser Asn Leu Glu Ser Gly Ile Pro Ala
 50 55 60

agg ttc agt ggc agt ggg tct ggg aca gac ttc acc ctc acc att aat 240
 Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Asn
 65 70 75 80

cct gtg gag gct gat gat gtc gca acc tat tac tgt cag caa att aat 288
 Pro Val Glu Ala Asp Asp Val Ala Thr Tyr Tyr Cys Gln Gln Ile Asn
 85 90 95

gag gat ccg tac acg ttc gga ggg ggg acc aag ctg gaa ata aaa cgg 336
 Glu Asp Pro Tyr Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys Arg

100

20140313_034543_002w01_seq.txt
105 110

<210> 40
<211> 112
<212> PRT
<213> Mus sp.

<400> 40

Asp Ile Val Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly
1 5 10 15

Gln Arg Ala Thr Ile Ser Cys Arg Ala Ser Glu Ser Val Ala Ile Tyr
20 25 30

Gly Asn Ser Phe Leu Lys Trp Phe Gln Gln Lys Pro Gly Gln Pro Pro
35 40 45

Lys Leu Leu Ile Tyr Arg Ala Ser Asn Leu Glu Ser Gly Ile Pro Ala
50 55 60

Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Asn
65 70 75 80

Pro Val Glu Ala Asp Asp Val Ala Thr Tyr Tyr Cys Gln Gln Ile Asn
85 90 95

Glu Asp Pro Tyr Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys Arg
100 105 110

<210> 41
<211> 324
<212> DNA
<213> Mus sp.

<220>

<221> CDS

<222> (1)..(324)

<400> 41

gac att gtg atg gcc cag tct cac aaa ttc atg tcc aca tca gtt gga 48
Asp Ile Val Met Ala Gln Ser His Lys Phe Met Ser Thr Ser Val Gly
1 5 10 15

gac agg gtc agc atc acc tgc aag gcc agt cag gat gtg agt act gtt 96
Asp Arg Val Ser Ile Thr Cys Lys Ala Ser Gln Asp Val Ser Thr Val
20 25 30

gtg gcc tgg tat caa cag aaa cca gga caa tct cct aaa cga ctg att 144
Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Arg Leu Ile
35 40 45

tac tcg gca tcc tat cgg tat att gga gtc cct gat cgc ttc act ggc 192
Tyr Ser Ala Ser Tyr Arg Tyr Ile Gly Val Pro Asp Arg Phe Thr Gly
50 55 60

agt gga tct ggg acg gat ttc act ttc acc atc agc agt gtg cag gct 240
Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr Ile Ser Ser Val Gln Ala
65 70 75 80

20140313_034543_002w01_seq.txt

gaa gac ctg gca gtt tat tac tgt cag caa cat tat agt cct ccg tac	288
Glu Asp Leu Ala Val Tyr Tyr Cys Gln Gln His Tyr Ser Pro Pro Tyr	
85 90 95	
acg ttc gga ggg ggg acc aag ctg gaa ata aaa cg	324
Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys Arg	
100 105	
<210> 42	
<211> 108	
<212> PRT	
<213> Mus sp.	
<400> 42	
Asp Ile Val Met Ala Gln Ser His Lys Phe Met Ser Thr Ser Val Gly	
1 5 10 15	
Asp Arg Val Ser Ile Thr Cys Lys Ala Ser Gln Asp Val Ser Thr Val	
20 25 30	
Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Arg Leu Ile	
35 40 45	
Tyr Ser Ala Ser Tyr Arg Tyr Ile Gly Val Pro Asp Arg Phe Thr Gly	
50 55 60	
Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr Ile Ser Ser Val Gln Ala	
65 70 75 80	
Glu Asp Leu Ala Val Tyr Tyr Cys Gln Gln His Tyr Ser Pro Pro Tyr	
85 90 95	
Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys Arg	
100 105	
<210> 43	
<211> 324	
<212> DNA	
<213> Mus sp.	
<220>	
<221> CDS	
<222> (1)..(324)	
<400> 43	
gac att gtg atg acc cag tct cac aaa ttc ttg tcc aca tca gtt gga	48
Asp Ile Val Met Thr Gln Ser His Lys Phe Leu Ser Thr Ser Val Gly	
1 5 10 15	
gac agg gtc agt atc acc tgc aag gcc agt cag gat gtg gtt act gct	96
Asp Arg Val Ser Ile Thr Cys Lys Ala Ser Gln Asp Val Val Thr Ala	
20 25 30	
gtt gcc tgg ttt caa cag aaa cca gga caa tct cca aaa cta ctg att	144
Val Ala Trp Phe Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile	
35 40 45	

20140313_034543_002w01_seq.txt

tat	tgc	gca	tcc	cac	cgg	tac	act	gga	gtc	cct	gat	cgc	ttc	act	ggc	192	
Tyr	Ser	Ala	Ser	His	Arg	Tyr	Thr	Gly	Val	Pro	Asp	Arg	Phe	Thr	Gly		
50						55				60							
agt	gga	tct	ggg	aca	gat	ttc	act	ttc	acc	atc	atc	agt	gtg	cag	gct	240	
Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Phe	Thr	Ile	Ile	Ser	Val	Gln	
65						70				75					80		
gaa	gac	ctg	gca	gtt	tat	tac	tgt	caa	caa	cat	tat	act	act	ccc	acg	288	
Glu	Asp	Leu	Ala	Val	Tyr	Tyr	Cys	Gln	Gln	His	Tyr	Thr	Thr	Pro	Thr		
						85			90					95			
acg	ttc	ggt	gga	ggc	acc	aag	ctg	gac	ttc	aga	cgg					324	
Thr	Phe	Gly	Gly	Gly	Thr	Lys	Leu	Asp	Phe	Arg	Arg						
						100			105								
<210> 44																	
<211> 108																	
<212> PRT																	
<213> Mus sp.																	
<400> 44																	
Asp Ile Val Met Thr Gln Ser His Lys Phe Leu Ser Thr Ser Val Gly																	
1 5 10 15																	
Asp Arg Val Ser Ile Thr Cys Lys Ala Ser Gln Asp Val Val Thr Ala																	
20 25 30																	
Val Ala Trp Phe Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile																	
35 40 45																	
Tyr Ser Ala Ser His Arg Tyr Thr Gly Val Pro Asp Arg Phe Thr Gly																	
50 55 60																	
Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr Ile Ile Ser Val Gln Ala																	
65 70 75 80																	
Glu Asp Leu Ala Val Tyr Tyr Cys Gln Gln His Tyr Thr Thr Pro Thr																	
85 90 95																	
Thr Phe Gly Gly Thr Lys Leu Asp Phe Arg Arg																	
100 105																	
<210> 45																	
<211> 324																	
<212> DNA																	
<213> Mus sp.																	
<220>																	
<221> CDS																	
<222> (1)..(324)																	
<400> 45																	
gac act gtg atg acc cag tct cac aaa ttc ata tcc aca tca gtt gga																	
Asp Thr Val Met Thr Gln Ser His Lys Phe Ile Ser Thr Ser Val Gly																	
1 5 10 15																	
gac agg gtc agc atc acc tgc aag gcc agt cag gtt gtg ggt agt gct																	
48																	
Page 11																	
96																	

20140313_034543_002wo1_seq.txt

Asp Arg Val Ser Ile Thr Cys Lys Ala Ser Gln Val Val Gly Ser Ala	20	25	30	
gta gcc tgg tat caa cag aaa cca ggg caa tct cct aaa cta ctg att				144
Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile				
35	40	45		
tac tgg gca tcc acc cgg cac act gga gtc cct gat cgc ttc aca ggc				192
Tyr Trp Ala Ser Thr Arg His Thr Gly Val Pro Asp Arg Phe Thr Gly				
50	55	60		
agt gga tct ggg aca gat ttc act ctc acc att agc aat gtg cag tct				240
Ser G1y Ser G1y Thr Asp Phe Thr Leu Thr Ile Ser Asn Val Gln Ser				
65	70	75	80	
gaa gac ttg gca gat tat ttc tgt cag caa tat aac agc tat ccg tac				288
Glu Asp Leu Ala Asp Tyr Phe Cys Gln Gln Tyr Asn Ser Tyr Pro Tyr				
85	90	95		
acg ttc gga ggg acc aag ctg gaa ata aaa cgg				324
Thr Phe G1y G1y Thr Lys Leu Glu Ile Lys Arg				
100	105			

<210> 46

<211> 108

<212> PRT

<213> Mus sp.

<400> 46

Asp Thr Val Met Thr Gln Ser His Lys Phe Ile Ser Thr Ser Val Gly	1	5	10	15
---	---	---	----	----

Asp Arg Val Ser Ile Thr Cys Lys Ala Ser Gln Val Val Gly Ser Ala	20	25	30	
---	----	----	----	--

Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile	35	40	45	
---	----	----	----	--

Tyr Trp Ala Ser Thr Arg His Thr Gly Val Pro Asp Arg Phe Thr Gly	50	55	60	
---	----	----	----	--

Ser G1y Ser G1y Thr Asp Phe Thr Leu Thr Ile Ser Asn Val Gln Ser	65	70	75	80
---	----	----	----	----

Glu Asp Leu Ala Asp Tyr Phe Cys Gln Gln Tyr Asn Ser Tyr Pro Tyr	85	90	95	
---	----	----	----	--

Thr Phe G1y G1y Thr Lys Leu Glu Ile Lys Arg	100	105	
---	-----	-----	--

<210> 47

<211> 324

<212> DNA

<213> Mus sp.

<220>

<221> CDS

<222> (1)..(324)

20140313_034543_002w01_seq.txt

<400> 47
gac att gtg atg acc cag tct caa aaa ttc atg tcc aca tca gta gga 48
Asp Ile Val Met Thr Gln Ser Gln Lys Phe Met Ser Thr Ser Val Gly
1 5 10 15

gac agg gtc agc gtc acc tgc aag gcc agt cag aat gtg ggt act aat 96
Asp Arg Val Ser Val Thr Cys Lys Ala Ser Gln Asn Val Gly Thr Asn
20 25 30

gtt gcc tgg tat caa cac aaa cca gga caa tcc cct aaa ata atg att 144
Val Ala Trp Tyr Gln His Lys Pro Gly Gln Ser Pro Lys Ile Met Ile
35 40 45

tat tcg gcg tcc tcc cgg tac agt gga gtc cct gat cgc ttc aca ggc 192
Tyr Ser Ala Ser Ser Arg Tyr Ser Gly Val Pro Asp Arg Phe Thr Gly
50 55 60

agt gga tct ggg aca ctt ttc act ctc acc atc aac aat gtg cag tct 240
Ser Gly Ser Gly Thr Leu Phe Thr Leu Thr Ile Asn Asn Val Gln Ser
65 70 75 80

gaa gac ttg gca gag tat ttc tgt cag caa tat aac agc tat cct ctc 288
Glu Asp Leu Ala Glu Tyr Phe Cys Gln Gln Tyr Asn Ser Tyr Pro Leu
85 90 95

acg ttc ggc tcg ggg aca aag ttg gaa ata aaa cgg 324
Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile Lys Arg
100 105

<210> 48
<211> 108
<212> PRT
<213> Mus sp.

<400> 48

Asp Ile Val Met Thr Gln Ser Gln Lys Phe Met Ser Thr Ser Val Gly
1 5 10 15

Asp Arg Val Ser Val Thr Cys Lys Ala Ser Gln Asn Val Gly Thr Asn
20 25 30

Val Ala Trp Tyr Gln His Lys Pro Gly Gln Ser Pro Lys Ile Met Ile
35 40 45

Tyr Ser Ala Ser Ser Arg Tyr Ser Gly Val Pro Asp Arg Phe Thr Gly
50 55 60

Ser Gly Ser Gly Thr Leu Phe Thr Leu Thr Ile Asn Asn Val Gln Ser
65 70 75 80

Glu Asp Leu Ala Glu Tyr Phe Cys Gln Gln Tyr Asn Ser Tyr Pro Leu
85 90 95

Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile Lys Arg
100 105

<210> 49
<211> 342

20140313_034543_002wo1_seq.txt

<212> DNA
<213> Mus sp.

<220>
<221> CDS
<222> (1)..(342)

<400> 49	cag atc cag ttg gtg cag tct gga cct gag ctg aag aag cct gga gag	48
Gln Ile Gln Leu Val Gln Ser Gly Pro Glu Leu Lys Lys Pro Gly Glu		
1 5 10 15		
aca gtc aag atc tcc tgc aag gct tct ggg tat acc ctc aca agc tac		96
Thr Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Leu Thr Ser Tyr		
20 25 30		
gga atg aac tgg gtg aag cag gct cca gga aag ggt tta aag tgg atg		144
Gly Met Asn Trp Val Lys Gln Ala Pro Gly Lys Gly Leu Lys Trp Met		
35 40 45		
ggc tgg ata aac acc tac act gga gaa cca aca tat gct gat gac ttt		192
Gly Trp Ile Asn Thr Tyr Thr Gly Glu Pro Thr Tyr Ala Asp Asp Phe		
50 55 60		
aag gga cgt ttt gcc ttc tct ttg gaa acc tct gcc agc act gcc ttt		240
Lys Gly Arg Phe Ala Phe Ser Leu Glu Thr Ser Ala Ser Thr Ala Phe		
65 70 75 80		
ttg cag atc aac aac ctc aaa aat gag gac acg gct aca tat ttc tgt		288
Leu Gln Ile Asn Asn Leu Lys Asn Glu Asp Thr Ala Thr Tyr Phe Cys		
85 90 95		
gta aga cgc ggg ttt gct tac tgg ggc caa ggg act ctg gtc act gtc		336
Val Arg Arg Gly Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val		
100 105 110		
tct gca		342
Ser Ala		

<210> 50
<211> 114
<212> PRT
<213> Mus sp.

<400> 50

Gln Ile Gln Leu Val Gln Ser Gly Pro Glu Leu Lys Lys Pro Gly Glu
1 5 10 15

Thr Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Leu Thr Ser Tyr
20 25 30

Gly Met Asn Trp Val Lys Gln Ala Pro Gly Lys Gly Leu Lys Trp Met
35 40 45

Gly Trp Ile Asn Thr Tyr Thr 55 Gly Glu Pro Thr Tyr Ala Asp Asp Phe
50 60

Lys Gly Arg Phe Ala Phe Ser Leu Glu Thr Ser Ala Ser Thr Ala Phe
65 70 75 80

20140313_034543_002wo1_seq.txt

Leu Gln Ile Asn Asn Leu Lys Asn Glu Asp Thr Ala Thr Tyr Phe Cys
85 90 95

Val Arg Arg Gly Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val
100 105 110

Ser Ala

<210> 51
<211> 342
<212> DNA
<213> Mus sp.

<220>
<221> CDS
<222> (1)..(342)

<400> 51
cag atc cag ttg gtg cag tct gga cct gag ctg aag aag cct gga gag 48
Gln Ile Gln Leu Val Gln Ser Gly Pro Glu Leu Lys Lys Pro Gly Glu
1 5 10 15

```

aca gtc aag atc tcc tgc aag gct tct ggg tat acc ttc aca aac tct 96
Thr Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Ser
20          25          30

```

gga atg aac tgg gtg aag cag gct cca gga aag ggt tta aag tgg atg 144
 Gly Met Asn Trp Val Lys Gln Ala Pro Gly Lys Gly Leu Lys Trp Met
 35 40 45

```

ggc tgg ata aac acc tac act gga gag ccg aca tat gct gat gac ttc      192
Gly Trp Ile Asn Thr Tyr Thr Gly Glu Pro Thr Tyr Ala Asp Asp Phe
50          55          60

```

aag gga cgg ttt gcc ttc tct ttg gaa acc tct gcc agc tct gcc tat	240
Lys Gly Arg Phe Ala Phe Ser Leu Glu Thr Ser Ala Ser Ser Ala Tyr	
65 70 75 80	

ttg cag atc agt aac ctc aaa aat gag gac acg gct aca tat ttc tgt 288
 Leu Gln Ile Ser Asn Leu Lys Asn Glu Asp Thr Ala Thr Tyr Phe Cys
 85 90 95

gca aga agg ggt ttt gtt tac tgg ggc caa ggg act ctg gta act gtc	336
Ala Arg Arg Gly Phe Val Tyr Trp Gly Gln Gly Thr Leu Val Thr Val	
100 105 110	

tct gca 342
Ser Ala

<210> 52
<211> 114
<212> PRT
<213> Mus sp.

<400> 52

Gln Ile Gln Leu Val Gln Ser Gly Pro Glu Leu Lys Lys Pro Gly Glu
1 5 10 15

20140313_034543_002w01_seq.txt

Thr Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Ser
 20 25 30

Gly Met Asn Trp Val Lys Gln Ala Pro Gly Lys Gly Leu Lys Trp Met
 35 40 45

Gly Trp Ile Asn Thr Tyr Thr Gly Glu Pro Thr Tyr Ala Asp Asp Phe
 50 55 60

Lys Gly Arg Phe Ala Phe Ser Leu Glu Thr Ser Ala Ser Ser Ala Tyr
 65 70 75 80

Leu Gln Ile Ser Asn Leu Lys Asn Glu Asp Thr Ala Thr Tyr Phe Cys
 85 90 95

Ala Arg Arg Gly Phe Val Tyr Trp Gly Gln Gly Thr Leu Val Thr Val
 100 105 110

Ser Ala

<210> 53
 <211> 360
 <212> DNA
 <213> Mus sp.

<220>
 <221> CDS
 <222> (1)..(360)

<400> 53
 cag gtt cag ctc cag cag tct ggg gct gag ctg gca aga cct ggg act 48
 Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Thr
 1 5 10 15

tca gtg aag ttg tcc tgt aag gct tct ggc tac acc ttt act gac tac 96
 Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr
 20 25 30

tgg atg cag tgg gta aaa cag agg cct gga cag ggt ctg gag tgg att 144
 Trp Met Gln Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
 35 40 45

ggg act att tat cct gga gat ggt gat act ggg tac gct cag aag ttc 192
 Gly Thr Ile Tyr Pro Gly Asp Gly Asp Thr Gly Tyr Ala Gln Lys Phe
 50 55 60

aag ggc aag gcc aca ttg act gcg gat aaa tcc tcc aaa aca gtc tac 240
 Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Lys Thr Val Tyr
 65 70 75 80

atg cac ctc agc agt ttg gct tct gag gac tct gcg gtc tat tac tgt 288
 Met His Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Tyr Cys
 85 90 95

gca aga ggg gat tac tac ggt agt aat tct ttg gac tat tgg ggt caa 336
 Ala Arg Gly Asp Tyr Tyr Gly Ser Asn Ser Leu Asp Tyr Trp Gly Gln
 100 105 110

gga acc tca gtc acc gtc tcc tca 360

20140313_034543_002w01_seq.txt

Gly Thr Ser Val Thr Val Ser Ser
115 120

<210> 54
<211> 120
<212> PRT
<213> Mus sp.

<400> 54

Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Thr
1 5 10 15

Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr
20 25 30

Trp Met Gln Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Thr Ile Tyr Pro Gly Asp Gly Asp Thr Gly Tyr Ala Gln Lys Phe
50 55 60

Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Lys Thr Val Tyr
65 70 75 80

Met His Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Gly Asp Tyr Tyr Gly Ser Asn Ser Leu Asp Tyr Trp Gly Gln
100 105 110

Gly Thr Ser Val Thr Val Ser Ser
115 120

<210> 55
<211> 357
<212> DNA
<213> Mus sp.

<220>
<221> CDS
<222> (1)..(357)

<400> 55
cag gtc cag tta cag caa tct gga cct gaa ctg gtg agg cct ggg gcc 48
Gln Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Val Arg Pro Gly Ala
1 5 10 15

tca gtg aag att tcc tgc aaa act tct ggc tac gca ttc agt ggc tcc 96
Ser Val Lys Ile Ser Cys Lys Thr Ser Gly Tyr Ala Phe Ser Gly Ser
20 25 30

tgg atg aac tgg gtg aag cag agg cct gga cag ggt cta gag tgg att 144
Trp Met Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

gga cgg att tat ccg gga gat gga gat atc att tac aat ggg aat ttc 192
Gly Arg Ile Tyr Pro Gly Asp Gly Asp Ile Ile Tyr Asn Gly Asn Phe

20140313_034543_002w01_seq.txt

50

55

60

agg gac aag gtc aca ctg tct gca gac aaa tcc tcc aac aca gcc tac 240
 Arg Asp Lys Val Thr Leu Ser Ala Asp Lys Ser Ser Asn Thr Ala Tyr
 65 70 75 80

atg cag ctc agc agc ctg acc tct gtg gac tct gcg gtc tat ttt tgt 288
 Met Gln Leu Ser Ser Leu Thr Ser Val Asp Ser Ala Val Tyr Phe Cys
 85 90 95

tcg aga tgg ggg aca ttt acg ccg agt ttt gac tat tgg ggc caa ggc 336
 Ser Arg Trp Gly Thr Phe Thr Pro Ser Phe Asp Tyr Trp Gly Gln Gly
 100 105 110

acc act ctc aca gtc tcc tca 357
 Thr Thr Leu Thr Val Ser Ser
 115

<210> 56

<211> 119

<212> PRT

<213> Mus sp.

<400> 56

Gln Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Val Arg Pro Gly Ala
 1 5 10 15

Ser Val Lys Ile Ser Cys Lys Thr Ser Gly Tyr Ala Phe Ser Gly Ser
 20 25 30

Trp Met Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
 35 40 45

Gly Arg Ile Tyr Pro Gly Asp Gly Asp Ile Ile Tyr Asn Gly Asn Phe
 50 55 60

Arg Asp Lys Val Thr Leu Ser Ala Asp Lys Ser Ser Asn Thr Ala Tyr
 65 70 75 80

Met Gln Leu Ser Ser Leu Thr Ser Val Asp Ser Ala Val Tyr Phe Cys
 85 90 95

Ser Arg Trp Gly Thr Phe Thr Pro Ser Phe Asp Tyr Trp Gly Gln Gly
 100 105 110

Thr Thr Leu Thr Val Ser Ser
 115

<210> 57

<211> 351

<212> DNA

<213> Mus sp.

<220>

<221> CDS

<222> (1)..(351)

20140313_034543_002wo1_seq.txt

<400> 57 20110915_091915_002w31_seq.txt 48
 gac gtg aag ctg gtg gag tct ggg gga ggc tta gtg aag cct gga ggg
 Asp Val Lys Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly
 1 5 10 15
 tcc ctg aaa ctc tcc tgt gaa gcc tct gga ttc act ttc agt agc tat 96
 Ser Leu Lys Leu Ser Cys Glu Ala Ser Gly Phe Thr Phe Ser Ser Tyr
 20 25 30
 acc ctg tct tgg gtt cgc cag act ccg gag acg agg ctg gag tgg gtc 144
 Thr Leu Ser Trp Val Arg Gln Thr Pro Glu Thr Arg Leu Glu Trp Val
 35 40 45
 gca acc att agt att ggt ggt cgc tac acc tat tat cca gac agt gtg 192
 Ala Thr Ile Ser Ile Gly Gly Arg Tyr Thr Tyr Tyr Pro Asp Ser Val
 50 55 60
 gag ggc cga ttc acc atc tcc aga gac aat gcc aag aac acc ctg tac 240
 Glu Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr
 65 70 75 80
 ctg caa atg aac agt ctg aag tct gag gac aca gcc atg tat tac tgt 288
 Leu Gln Met Asn Ser Leu Lys Ser Glu Asp Thr Ala Met Tyr Tyr Cys
 85 90 95
 aca aga gat ttt aat ggt tac tct gac ttc tgg ggc caa ggc acc act 336
 Thr Arg Asp Phe Asn Gly Tyr Ser Asp Phe Trp Gly Gln Gly Thr Thr
 100 105 110
 ctc aca gtc tcc tca 351
 Leu Thr Val Ser Ser
 115

<210> 58
<211> 117
<212> PRT
<213> Mus sp.

<400> 58

Asp Val Lys Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly
1 5 10 15

Ser Leu Lys Leu Ser Cys Glu Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30

Thr Leu Ser Trp Val Arg Gln Thr Pro Glu Thr Arg Leu Glu Trp Val
35 40 45

Ala Thr Ile Ser Ile Gly Gly Arg Tyr Thr Tyr Tyr Pro Asp Ser Val
50 55 60

Glu Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr
65 70 75 80

Leu Gln Met Asn Ser Leu Lys Ser Glu Asp Thr Ala Met Tyr Tyr Cys
85 90 95

Thr Arg Asp Phe Asn Gly Tyr Ser Asp Phe Trp Gly Gln Gly Thr Thr
100 105 110

20140313_034543_002w01_seq.txt

Leu Thr Val Ser Ser
115

<210> 59
<211> 360
<212> DNA
<213> Mus sp.

<220>
<221> CDS
<222> (1)..(360)

<400> 59
aat gta cag ctg gta gag tct ggg gga ggc tta gtg cag cct gga ggg 48
Asn Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15

tcc cgg aaa ctc tcc tgt gca gcc tct gga ttc act ttc agt aac ttt 96
Ser Arg Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Phe
20 25 30

gga atg cac tgg gtt cgt cag gct cca gag aag ggt ctg gag tgg gtc 144
Gly Met His Trp Val Arg Gln Ala Pro Glu Lys Gly Leu Glu Trp Val
35 40 45

gca tac att cgt agt ggc agt ggt acc atc tac tat tca gac aca gtg 192
Ala Tyr Ile Arg Ser Gly Ser Gly Thr Ile Tyr Tyr Ser Asp Thr Val
50 55 60

aag ggc cga ttc acc atc tcc aga gac aat ccc aag aac acc ctg ttc 240
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Pro Lys Asn Thr Leu Phe
65 70 75 80

ctg caa atg acc agt cta agg tct gag gac acg gcc atg tat tac tgt 288
Leu Gln Met Thr Ser Leu Arg Ser Glu Asp Thr Ala Met Tyr Tyr Cys
85 90 95

gca aga tcc tac tat gat ttc ggg gcc tgg ttt gct tac tgg ggc caa 336
Ala Arg Ser Tyr Tyr Asp Phe Gly Ala Trp Phe Ala Tyr Trp Gly Gln
100 105 110

ggg act ctg gtc act gtc tct gca 360
Gly Thr Leu Val Thr Val Ser Ala
115 120

<210> 60
<211> 120
<212> PRT
<213> Mus sp.

<400> 60
Asn Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15

Ser Arg Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Phe
20 25 30

Gly Met His Trp Val Arg Gln Ala Pro Glu Lys Gly Leu Glu Trp Val
35 40 45

20140313_034543_002w01_seq.txt

Ala Tyr Ile Arg Ser Gly Ser Gly Thr Ile Tyr Tyr Ser Asp Thr Val
 50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Pro Lys Asn Thr Leu Phe
 65 70 75 80

Leu Gln Met Thr Ser Leu Arg Ser Glu Asp Thr Ala Met Tyr Tyr Cys
 85 90 95

Ala Arg Ser Tyr Tyr Asp Phe Gly Ala Trp Phe Ala Tyr Trp Gly Gln
 100 105 110

Gly Thr Leu Val Thr Val Ser Ala
 115 120

<210> 61
 <211> 324
 <212> DNA
 <213> Homo sapiens

<220>
 <221> CDS
 <222> (1)..(324)

<400> 61
 gat atc gta atg acc cag tcc cac ctg agt atg agt acc tcc ctg gga 48
 Asp Ile Val Met Thr Gln Ser His Leu Ser Met Ser Thr Ser Leu Gly
 1 5 10 15
 gat cct gtg tca atc act tgc aag gcc tca cag gat gtg agc acc gtc 96
 Asp Pro Val Ser Ile Thr Cys Lys Ala Ser Gln Asp Val Ser Thr Val
 20 25 30
 gtt gct tgg tat cag cag aag ccc ggg caa tca ccc aga cgt ctc atc 144
 Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Arg Arg Leu Ile
 35 40 45
 tac tca gca tca tac cgt tac atc ggg gtg cct gac cga ttt act ggc 192
 Tyr Ser Ala Ser Tyr Arg Tyr Ile Gly Val Pro Asp Arg Phe Thr Gly
 50 55 60
 tct ggc gct ggc aca gat ttc acc ttt aca att agt tcc gtc cag gcc 240
 Ser Gly Ala Gly Thr Asp Phe Thr Phe Thr Ile Ser Ser Val Gln Ala
 65 70 75 80
 gaa gac ctg gcc gtg tac tac tgc cag cag cac tac agt ccc cca tac 288
 Glu Asp Leu Ala Val Tyr Tyr Cys Gln Gln His Tyr Ser Pro Pro Tyr
 85 90 95
 act ttc ggg gga ggg act aag ctc gaa atc aaa cgt 324
 Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys Arg
 100 105

<210> 62
 <211> 108
 <212> PRT
 <213> Homo sapiens

<400> 62

Asp Ile Val Met Thr Gln Ser His Leu Ser Met Ser Thr Ser Leu Gly
 Page 21

1

5

10

15

Asp Pro Val Ser Ile Thr Cys Lys Ala Ser Gln Asp Val Ser Thr Val
 20 25 30

Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Arg Arg Leu Ile
 35 40 45

Tyr Ser Ala Ser Tyr Arg Tyr Ile Gly Val Pro Asp Arg Phe Thr Gly
 50 55 60

Ser Gly Ala Gly Thr Asp Phe Thr Phe Thr Ile Ser Ser Val Gln Ala
 65 70 75 80

Glu Asp Leu Ala Val Tyr Tyr Cys Gln Gln His Tyr Ser Pro Pro Tyr
 85 90 95

Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys Arg
 100 105

<210> 63
 <211> 324

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(324)

<400> 63
 gac att gtt atg gct caa agc cat ctg tct atg agc aca tct ctg gga 48
 Asp Ile Val Met Ala Gln Ser His Leu Ser Met Ser Thr Ser Leu Gly
 1 5 10 15

gat cct gtg tcc atc act tgc aaa gcc agt caa gac gtg tct aca gtt 96
 Asp Pro Val Ser Ile Thr Cys Lys Ala Ser Gln Asp Val Ser Thr Val
 20 25 30

gtt gca tgg tat caa cag aag cca ggc cag tca ccc aga cgg ctc att 144
 Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Arg Arg Leu Ile
 35 40 45

tac tca gct tct tac cga tac atc ggg gtc cct gac aga ttt aca ggt 192
 Tyr Ser Ala Ser Tyr Arg Tyr Ile Gly Val Pro Asp Arg Phe Thr Gly
 50 55 60

agt ggg gcc ggt act gac ttc act ttt act atc tca tcc gta caa gcc 240
 Ser Gly Ala Gly Thr Asp Phe Thr Phe Thr Ile Ser Ser Val Gln Ala
 65 70 75 80

gaa gac ctg gca gta tat tac tgc cag caa cat tat tcc cca ccc tac 288
 Glu Asp Leu Ala Val Tyr Tyr Cys Gln Gln His Tyr Ser Pro Pro Tyr
 85 90 95

aca ttc ggc ggg ggt act aag ctg gaa att aaa cgt 324
 Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys Arg
 100 105

<210> 64

20140313_034543_002w01_seq.txt

<211> 108
 <212> PRT
 <213> Homo sapiens

<400> 64

Asp Ile Val Met Ala Gln Ser His Leu Ser Met Ser Thr Ser Leu Gly
 1 5 10 15

Asp Pro Val Ser Ile Thr Cys Lys Ala Ser Gln Asp Val Ser Thr Val
 20 25 30

Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Arg Arg Leu Ile
 35 40 45

Tyr Ser Ala Ser Tyr Arg Tyr Ile Gly Val Pro Asp Arg Phe Thr Gly
 50 55 60

Ser Gly Ala Gly Thr Asp Phe Thr Phe Thr Ile Ser Ser Val Gln Ala
 65 70 75 80

Glu Asp Leu Ala Val Tyr Tyr Cys Gln Gln His Tyr Ser Pro Pro Tyr
 85 90 95

Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys Arg
 100 105

<210> 65
 <211> 360
 <212> DNA
 <213> Homo sapiens

<220>
 <221> CDS
 <222> (1)..(360)

<400> 65
 cag gta cag ctc gtt cag tcc ggc gcc gag gta gct aag cct ggt act 48
 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Ala Lys Pro Gly Thr
 1 5 10 15

tcc gta aaa ttg tcc tgt aag gct tcc ggg tac aca ttt aca gac tac 96
 Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr
 20 25 30

tgg atg cag tgg gta aaa cag cgg cca ggt cag ggc ctg gag tgg att 144
 Trp Met Gln Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
 35 40 45

gga aca ata tat ccc ggc gac ggc gac aca ggc tat gcc cag aag ttt 192
 Gly Thr Ile Tyr Pro Gly Asp Gly Asp Thr Gly Tyr Ala Gln Lys Phe
 50 55 60

caa ggc aag gca acc ctt act gct gat aaa tct tcc aag act gtc tac 240
 Gln Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Lys Thr Val Tyr
 65 70 75 80

atg cat ctg tct tcc ttg gca tct gag gat agc gct gtc tat tac tgt 288
 Met His Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Tyr Cys
 85 90 95

20140313_034543_002w01_seq.txt

gct	agg	ggg	gac	tac	tat	ggg	tca	aat	tcc	ctg	gat	tac	tgg	ggc	cag	336
Ala	Arg	Gly	Asp	Tyr	Tyr	Gly	Ser	Asn	Ser	Leu	Asp	Tyr	Trp	Gly	Gln	
100							105						110			
ggc	acc	agt	gtc	acc	gtg	agc	agc									360
Gly	Thr	Ser	Val	Thr	Val	Ser	Ser									
115							120									
<210> 66																
<211> 120																
<212> PRT																
<213> Homo sapiens																
<400> 66																
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Ala Lys Pro Gly Thr																
1 5 10 15																
Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr																
20 25 30																
Trp Met Gln Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile																
35 40 45																
Gly Thr Ile Tyr Pro Gly Asp Gly Asp Thr Gly Tyr Ala Gln Lys Phe																
50 55 60																
Gln Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Lys Thr Val Tyr																
65 70 75 80																
Met His Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Tyr Cys																
85 90 95																
Ala Arg Gly Asp Tyr Tyr Gly Ser Asn Ser Leu Asp Tyr Trp Gly Gln																
100 105 110																
Gly Thr Ser Val Thr Val Ser Ser																
115 120																
<210> 67																
<211> 324																
<212> DNA																
<213> Homo sapiens																
<220>																
<221> CDS																
<222> (1)..(324)																
<400> 67																
gac acc gtg atg acc cag tcc ccc tcc acc atc tcc acc tct gtg ggc																
Asp Thr Val Met Thr Gln Ser Pro Ser Thr Ile Ser Thr Ser Val Gly																
1 5 10 15																
gac cgg gtg tcc atc acc tgt aag gcc tcc cag gtg gtg ggc tcc gcc																
Asp Arg Val Ser Ile Thr Cys Lys Ala Ser Gln Val Val Gly Ser Ala																
20 25 30																
48 96																

20140313_034543_002w01_seq.txt

gtg gcc tgg tat cag cag aag cct ggc cag tcc cct aag ctg ctg atc	144
Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile	
35 40 45	
tac tgg gcc tcc acc cgg cat acc ggc gtg cct gac cgg ttc acc ggc	192
Tyr Trp Ala Ser Thr Arg His Thr Gly Val Pro Asp Arg Phe Thr Gly	
50 55 60	
tcc ggc agc ggc acc gac ttc acc ctg acc atc tcc aac gtg cag tcc	240
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Asn Val Gln Ser	
65 70 75 80	
gac gac ctg gcc gac tac ttc tgc cag cag tac aac tcc tac cct tac	288
Asp Asp Leu Ala Asp Tyr Phe Cys Gln Gln Tyr Asn Ser Tyr Pro Tyr	
85 90 95	
acc ttt ggc ggc gga aca aag ctg gag atc aag cgt	324
Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys Arg	
100 105	

<210> 68
<211> 108
<212> PRT
<213> Homo sapiens

<400> 68

Asp Thr Val Met Thr Gln Ser Pro Ser Thr Ile Ser Thr Ser Val Gly

1 5 10 15

Asp Arg Val Ser Ile Thr Cys Lys Ala Ser Gln Val Val Gly Ser Ala

20 25 30

Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile

35 40 45

Tyr Trp Ala Ser Thr Arg His Thr Gly Val Pro Asp Arg Phe Thr Gly

50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Asn Val Gln Ser

65 70 75 80

Asp Asp Leu Ala Asp Tyr Phe Cys Gln Gln Tyr Asn Ser Tyr Pro Tyr

85 90 95

Asp Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys Arg

100 105

<210> 69
<211> 324
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (1)..(324)

<400> 69
gac acc gtg atg acc cag tcc ccc tcc tcc atc tcc acc tcc atc ggc

20140313_034543_002w01_seq.txt

Asp	Thr	Val	Met	Thr	Gln	Ser	Pro	Ser	Ser	Ile	Ser	Thr	Ser	Ile	Gly		
1				5					10					15			
gac	cg	gt	tcc	atc	acc	tgt	aag	gcc	tcc	cag	gt	gt	g	gc	tcc	gcc	96
Asp	Arg	Val	Ser	Ile	Thr	Cys	Lys	Ala	Ser	Gln	Val	Val	Gly	Ser	Ala		
							25						30				
gt	gc	tg	ta	cag	cag	aag	cct	ggc	cag	tcc	cct	aag	ct	ct	atc		144
Val	Ala	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Gln	Ser	Pro	Lys	Leu	Leu	Ile		
							40					45					
ta	tgg	gc	tcc	acc	cg	cat	acc	ggc	gt	cct	gc	cgg	ttc	acc	ggc		192
Tyr	Trp	Ala	Ser	Thr	Arg	His	Thr	Gly	Val	Pro	Ala	Arg	Phe	Thr	Gly		
							55					60					
tcc	ggc	agc	ggc	acc	gac	ttc	acc	ctg	acc	atc	tcc	aa	gt	cag	tcc		240
Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr	Ile	Ser	Asn	Val	Gln	Ser		
							70					75		80			
ga	ga	ctg	gc	gac	ta	ttc	tg	cag	cag	ta	aa	tcc	ta	cct	ta		288
Glu	Asp	Leu	Ala	Asp	Tyr	Phe	Cys	Gln	Gln	Tyr	Asn	Ser	Tyr	Pro	Tyr		
							85					90		95			
ac	ttt	ggc	ggc	gga	aca	aag	ctg	ga	atc	aa	cg						324
Thr	Phe	Gly	Gly	Gly	Thr	Lys	Leu	Glu	Ile	Lys	Arg						
							100					105					

<210> 70

<211> 108

<212> PRT

<213> Homo sapiens

<400> 70

Asp	Thr	Val	Met	Thr	Gln	Ser	Pro	Ser	Ser	Ile	Ser	Thr	Ser	Ile	Gly	
1				5					10					15		

Asp	Arg	Val	Ser	Ile	Thr	Cys	Lys	Ala	Ser	Gln	Val	Val	Gly	Ser	Ala	
							25						30			

Val	Ala	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Gln	Ser	Pro	Lys	Leu	Leu	Ile	
							40					45				

Tyr	Trp	Ala	Ser	Thr	Arg	His	Thr	Gly	Val	Pro	Ala	Arg	Phe	Thr	Gly	
							55					60				

Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr	Ile	Ser	Asn	Val	Gln	Ser	
							65					75		80		

Glu	Asp	Leu	Ala	Asp	Tyr	Phe	Cys	Gln	Gln	Tyr	Asn	Ser	Tyr	Pro	Tyr	
							85					90		95		

Thr	Phe	Gly	Gly	Gly	Thr	Lys	Leu	Glu	Ile	Lys	Arg					
							100					105				

<210> 71

<211> 351

<212> DNA

<213> Homo sapiens

20140313_034543_002w01_seq.txt

<220>
 <221> CDS
 <222> (1)..(351)

<400> 71
 gag gtg cag ctg gtg gag tct ggc ggc gga ctg gtg aag cct ggc ggc 48
 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly
 1 5 10 15

tcc ctg agg ctg tcc tgt gag gcc tcc ggc ttc acc ttc tcc tcc tac 96
 Ser Leu Arg Leu Ser Cys Glu Ala Ser Gly Phe Thr Phe Ser Ser Tyr
 20 25 30

acc ctg tcc tgg gtg agg cag acc cct ggc aag ggc ctg gag tgg gtg 144
 Thr Leu Ser Trp Val Arg Gln Thr Pro Gly Lys Gly Leu Glu Trp Val
 35 40 45

gcc acc atc tcc atc ggc ggc agg tac acc tac tac cct gac tcc gtg 192
 Ala Thr Ile Ser Ile Gly Gly Arg Tyr Thr Tyr Tyr Pro Asp Ser Val
 50 55 60

aag ggc cgg ttc acc atc tcc cgg gac aac gcc aag aac acc ctg tac 240
 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr
 65 70 75 80

ctg cag atg aac tcc ctg aag tcc gag gac acc gcc atg tac tac tgt 288
 Leu Gln Met Asn Ser Leu Lys Ser Glu Asp Thr Ala Met Tyr Tyr Cys
 85 90 95

acc cgg gac ttc aac ggc tac tcc gac ttc tgg ggc cag ggc acc aca 336
 Thr Arg Asp Phe Asn Gly Tyr Ser Asp Phe Trp Gly Gln Gly Thr Thr
 100 105 110

ctg acc gtg tcc tcc 351
 Leu Thr Val Ser Ser
 115

<210> 72
 <211> 117
 <212> PRT
 <213> Homo sapiens

<400> 72
 Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Lys Pro Gly Gly 15
 1 5 10 15

Ser Leu Arg Leu Ser Cys Glu Ala Ser Gly Phe Thr Phe Ser Ser Tyr
 20 25 30

Thr Leu Ser Trp Val Arg Gln Thr Pro Gly Lys Gly Leu Glu Trp Val
 35 40 45

Ala Thr Ile Ser Ile Gly Gly Arg Tyr Thr Tyr Tyr Pro Asp Ser Val
 50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr
 65 70 75 80

Leu Gln Met Asn Ser Leu Lys Ser Glu Asp Thr Ala Met Tyr Tyr Cys
 85 90 95

20140313_034543_002w01_seq.txt

Thr Arg Asp Phe Asn Gly Tyr Ser Asp Phe Trp Gly Gln Gly Thr Thr
100 105 110

Leu Thr Val Ser Ser
115

<210> 73
<211> 36
<212> DNA
<213> Mus sp.

<400> 73
ggaggatcca tagacagatg ggggtgtcgt tttggc 36

<210> 74
<211> 32
<212> DNA
<213> Mus sp.

<400> 74
ggaggatccc ttgaccaggc atcctagagt ca 32

<210> 75
<211> 32
<212> DNA
<213> Mus sp.

<220>
<221> misc_feature
<222> (1)..(32)
<223> mixed bases are defined as follows: H=A+T+C, S=G+C, Y=C+T, K=
G+T, M=A+C, R=A+G, W=A+T, V = A+C+G, N = A+C+G+T

<400> 75
cttccggaat tcsargtnma gctgsagsag tc 32

<210> 76
<211> 35
<212> DNA
<213> Mus sp.

<220>
<221> misc_feature
<222> (1)..(35)
<223> mixed bases are defined as follows: H=A+T+C, S=G+C, Y=C+T, K=
G+T, M=A+C, R=A+G, W=A+T, V = A+C+G, N = A+C+G+T

<400> 76
cttccggaat tcsargtnma gctgsagsag tcwgg 35

<210> 77
<211> 31
<212> DNA
<213> Mus sp.

<220>
<221> misc_feature

20140313_034543_002w01_seq.txt

<222> (1)..(31)
<223> mixed bases are defined as follows: H=A+T+C, S=G+C, Y=C+T, K=
G+T, M=A+C, R=A+G, W=A+T, V = A+C+G, N = A+C+G+T

<400> 77
ggagctcgay attgtgmtsa cmcarwctmc a 31

<210> 78
<211> 46
<212> DNA
<213> Mus sp.

<400> 78
tatagagctc aagcttggat ggtggagaaga tggatacagt tggtgc 46

<210> 79
<211> 21
<212> DNA
<213> Mus sp.

<400> 79
atggagtcac agattcaggt c 21

<210> 80
<211> 32
<212> DNA
<213> Mus sp.

<400> 80
ttttgaattc cagtaacttc aggtgtccac tc 32

<210> 81
<211> 17
<212> PRT
<213> Homo sapiens

<400> 81
Thr Ile Tyr Pro Gly Asp Gly Asp Thr Gly Tyr Ala Gln Lys Phe Gln
1 5 10 15

Gly