

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
11 March 2010 (11.03.2010)

(10) International Publication Number
WO 2010/027827 A2

(51) International Patent Classification:
C07K 14/47 (2006.01) C07K 14/705 (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:
PCT/US2009/054969

(22) International Filing Date:
25 August 2009 (25.08.2009)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
61/091,705 25 August 2008 (25.08.2008) US
61/091,502 25 August 2008 (25.08.2008) US
61/091,694 25 August 2008 (25.08.2008) US
61/091,709 25 August 2008 (25.08.2008) US
61/142,548 5 January 2009 (05.01.2009) US
61/165,652 1 April 2009 (01.04.2009) US

(71) Applicant (for all designated States except US): AM-PLIMMUNE, INC. [US/US]; 9800 Medical Center Drive, Suite C-120, Rockville, MD 20850 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): LANGERMANN, Solomon [US/US]; 6606 Cross Country Blvd., Baltimore, MD 21215 (US).

(74) Agents: PABST, Patrea et al.; Pabst Patent Group LLP, 1545 Peachtree Street, N.E., Suite 320, Atlanta, GA 30309 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— of inventorship (Rule 4.17(iv))

Published:

— without international search report and to be republished upon receipt of that report (Rule 48.2(g))
— with sequence listing part of description (Rule 5.2(a))

(54) Title: TARGETED COSTIMULATORY POLYPEPTIDES AND METHODS OF USE TO TREAT CANCER

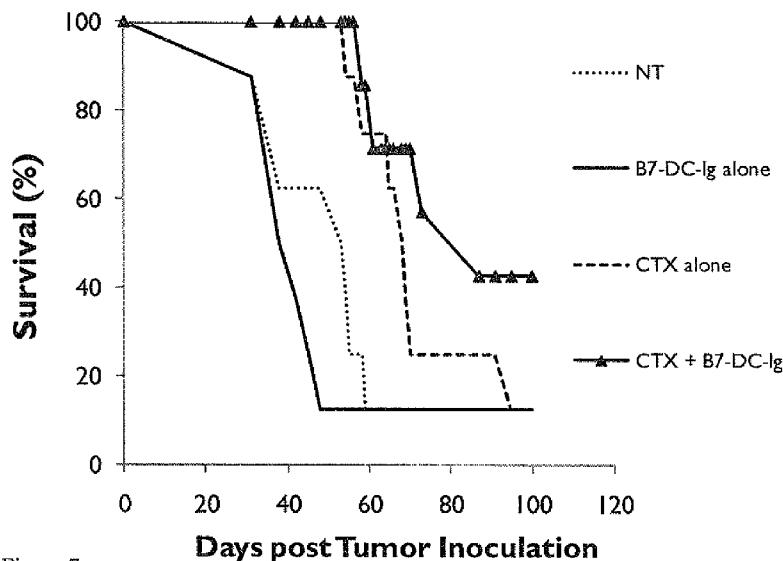


Figure 7

(57) Abstract: Compositions are provided that are targeted to tumors or tumor- associated neovasculature and enhance the function of tumor-infiltrating T cells. The compositions include fusion proteins that contain a T cell binding domain and a tumor/tumor-associated neovasculature targeting domain. The fusion proteins optionally contain a peptide/polypeptide linker domain and a domain that mediates dimerization or multimerization. The T cell binding domain can be a costimulatory molecule. Methods for using the fusion proteins to enhance an immune response are provided. Therapeutic uses for the disclosed compositions include the induction of tumor immunity.

**TARGETED COSTIMULATORY POLYPEPTIDES AND METHODS
OF USE TO TREAT CANCER**

CROSS-REFERENCE TO RELATED APPLICATIONS

5 This application claims priority to and benefit of U.S. Provisional Application No. 61/091,502, filed on August 25, 2008, U.S. Provisional Application No. 61/091,694, filed on August 25, 2008, U.S. Provisional Application No. 61/091,709, filed on August 25, 2008, U.S. Provisional Application No. 61/091,705, filed on August 25, 2008, and U.S. Provisional
10 Application No. 61/142,548, filed on January 5, 2009, and U.S. Provisional Application No. 61/165,652 filed on April 1, 2009, and where permissible are incorporated by reference in their entireties.

FIELD OF THE INVENTION

15 This invention relates to compositions and methods for modulating T cell activation, in particular to compositions and methods for enhancing T cell activation in tumor microenvironments and in tissues involved in immune cell activation.

BACKGROUND OF THE INVENTION

20 Cancer has an enormous physiological and economic impact. For example a total of 1,437,180 new cancer cases and 565,650 deaths from cancer are projected to occur in the United States in 2008 (Jemal, A., *Cancer J. Clin.*, 58:71-96 (2008)). The National Institutes of Health estimate overall costs of cancer in 2007 at \$219.2 billion: \$89.0 billion for direct medical costs (total of all health expenditures); \$18.2 billion for indirect morbidity
25 costs (cost of lost productivity due to illness); and \$112.0 billion for indirect mortality costs (cost of lost productivity due to premature death). Although there are several methods for treating cancer, each method has its own degree of effectiveness as well as side-effects. Typical methods for treating cancer include surgery, chemotherapy, radiation, and immunotherapy.

30 Stimulating the patients own immune response to target tumor cells is an attractive option for cancer therapy and many studies have demonstrated effectiveness of immunotherapy using tumor antigens to induce the immune response. However, induction of an immune response and the effective eradication of cancer often do not correlate in cancer immunotherapy trials

(Cormier, et al., *Cancer J. Sci. Am.*, 3(1):37-44 (1997); Nestle, et al., *Nat. Med.*, 4(3):328-332 (1998); Rosenberg, *Nature*, 411(6835):380-384 (2001)). Thus, despite primary anti-tumor immune responses in many cases, functional, effector anti-tumor T cell responses are often weak at best.

5 An antigen specific T cell response is mediated by two signals: 1) engagement of the TCR with antigenic peptide presented in the context of MHC (signal 1), and 2) a second antigen-independent signal delivered by contact between different receptor/ligand pairs (signal 2). This “second signal” is critical in determining the type of T cell response (activation vs inhibition) as well as the strength and duration of that response, and is regulated by both positive and negative signals from costimulatory molecules, such as the B7 family of proteins.. The most extensively characterized T cell costimulatory pathway is B7-CD28, in which B7-1 (CD80) and B7-2 (CD86) each can engage the stimulatory CD28 receptor and the inhibitory CTLA-4 (CD152) receptor. In conjunction with signaling through the T cell receptor, CD28 ligation increases antigen-specific proliferation of T cells, enhances production of cytokines, stimulates differentiation and effector function, and promotes survival of T cells (Lenshow, et al., *Annu. Rev. Immunol.*, 14:233-258 (1996); Chambers and Allison, *Curr. Opin. Immunol.*, 9:396-404 (1997); 10 and Rathmell and Thompson, *Annu. Rev. Immunol.*, 17:781-828 (1999)). In contrast, signaling through CTLA-4 is thought to deliver a negative signal that inhibits T cell proliferation, IL-2 production, and cell cycle progression (Krummel and Allison, *J. Exp. Med.*, 183:2533-2540 (1996); and Walunas, et al., *J. Exp. Med.*, 183:2541-2550 (1996)). Other members of the B7 family 15 include B7-H1 (Dong, et al., *Nature Med.*, 5:1365-1369 (1999); and Freeman, et al., *J. Exp. Med.*, 192:1-9 (2000)), B7-DC (also Tseng, et al., *J. Exp. Med.*, 193:839-846 (2001); and Latchman, et al., *Nature Immunol.*, 2:261-268 (2001)), B7-H2 (Wang, et al., *Blood*, 96:2808-2813 (2000); Swallow, et al., *Immunity*, 11:423-432 (1999); and Yoshinaga, et al., *Nature*, 402:827-832 (1999)), B7-H3 (Chapoval, et al., *Nature Immunol.*, 2:269-274 (2001)) and 20 B7-H4 (Choi, et al., *J. Immunol.*, 171:4650-4654 (2003); Sica, et al., *Immunity*, 18:849-861 (2003); Prasad, et al., *Immunity*, 18:863-873 (2003); and Zang, et al., *Proc. Natl. Acad. Sci. U.S.A.*, 100:10388-10392 (2003)). B7- 25

H1 (also known as PD-L1) and B7-DC (also known as PD-L2) are ligands for PD-1, B7-H2 is a ligand for ICOS, and B7-H3 and B7-H4 remain orphan ligands at this time(Dong, et al., *Immunol. Res.*, 28:39-48 (2003)).

Certain molecules such as those of the B7 family can enhance effector 5 immune responses to tumor/tumor antigens. Exogenous delivery of costimulatory molecules that enhance T cell response *in vivo* is therefore thought to be a practical way to augment the immune response to tumors. However, reaching an effective level of costimulatory molecules *in vivo* may require a large amount of recombinant protein. Systemic delivery of costimulatory 10 molecules *in vivo* can also result in non-specific immune activation that can be harmful to the host.

Therefore, it is an object of the invention to provide T cell costimulatory compositions that enhance T cell responses and are targeted to tumors or tumor-associated neovasculature and methods for their use.

15 It is another object of the invention to provide costimulatory compositions that enhance T cell responses and can concentrate inside tumors *in vivo* and augment the function of tumor-infiltrating T cells.

It is another object of the invention to provide costimulatory molecule 20 compositions that enhance T cell responses and reduce the amount of costimulatory molecule necessary to achieve effective anti-tumor T cell responses *in vivo*.

It is another object of the invention to provide costimulatory molecule compositions that enhance T cell responses and reduce non-specific immune activation in a host.

25 SUMMARY OF THE INVENTION

Compositions are provided that are targeted to tumors or tumor-associated neovasculature and enhance the function of tumor-infiltrating T cells. The compositions include fusion proteins that contain a T cell binding domain, a tumor/tumor-associated neovasculature targeting domain and 30 optionally a linker domain. The linker is preferably a peptide/polypeptide.

In one embodiment, the T cell binding domain is a costimulatory molecule or a variant and/or fragment thereof that binds to and activates a receptor on T cells, resulting in enhanced T cell responses. Representatives of such receptor agonists include members of the B7 family, including, but

not limited to, B7-1, B7-2, and B7-H5. Useful fragments of said costimulatory molecules include soluble fragments, including the extracellular domain, or fragments thereof, including the IgV and/or IgC domains. Agonistic single polypeptide antibodies or fragments thereof that bind to and activate costimulatory receptors and lead to enhanced T cell responses are also useful T cell activating domains.

5 The tumor/tumor-associated neovasculature targeting domain is a domain that binds to an antigen, receptor or ligand that is specific for tumors or tumor-associated neovasculature, or is overexpressed in tumors or tumor-
10 associated neovasculature as compared to normal tissue. Suitable antigens that can be targeted include, but are not limited to, tumor-specific and tumor-associated antigens and antigens overexpressed on tumor-associated neovasculature including, but not limited to, VEGF/KDR, Tie2, vascular cell adhesion molecule (VCAM), endoglin and $\alpha_5\beta_3$ integrin/vitronectin.
15 Suitable tumor/tumor-associated neovasculature targeting domains include, but are not limited to, ligands, receptors, single polypeptide antibodies and immunoglobulin Fc domains.

20 The peptide/polypeptide linker domain can be any flexible peptide or polypeptide at least 2 amino acids in length that separates the T cell binding domain and the tumor/tumor-associated neovasculature targeting domain and provides increased rotational freedom between these two domains. Suitable polypeptides include the hinge region of immunoglobulins alone, or in combination with either immunoglobulin Fc regions or the C_H1 or C_L regions.

25 The fusion proteins can also contain dimerization or multimerization domains that can either be separate domains or can be contained within the T cell binding domain, the tumor/tumor-associated neovasculature targeting domain or the peptide/polypeptide linker domain. Preferred dimerization domains contain at least one cysteine that is capable of forming an
30 intermolecular disulfide bond. Other suitable dimerization/multimerization domains are provided.

The fusion proteins can be dimerized or multimerized to form homodimers, heterodimers, homomultimers or heteromultimers.

Dimerization or multimerization can occur either through dimerization/multimerization domains, or can be the result of chemical crosslinking. Dimerization/multimerization partners can be arranged either in parallel or antiparallel orientations.

5 Isolated nucleic acids molecules encoding the disclosed fusion proteins, vectors and host cells, and pharmaceutical and immunogenic compositions containing the fusion proteins are also provided. Immunogenic compositions contain antigens, a source of fusion proteins and, optionally, additional adjuvants.

10 Methods for using the fusion proteins to increase T cell responses and block inhibition of T cell activation, or to reverse T cell exhaustion and anergy, are also provided. Therapeutic uses for the disclosed compositions include the induction of tumor immunity. The tumor or tumor-associated neovasculature binding domains function to effectively target the fusion 15 proteins to the tumor microenvironment, where they can specifically enhance the activity of tumor-infiltrating T cells through their T cell binding domains. The ability of the compositions to concentrate in tumors reduces the amount of costimulatory molecule that is necessary to administer *in vivo* to achieve an effective amount, and thereby reduces the risk of non-specific activation 20 of the immune system. Fusion proteins can be administered as monomers, dimers or multimers. In one embodiment, fusion proteins are administered as dimers or multimers that have increased valency for T cell and/or tumor/tumor-associated neovasculature binding determinants.

Also provided are methods for administering fusion proteins in 25 combination with other tumor therapies or as part of a prophylactic or therapeutic vaccine composition.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a diagram of an exemplary dosing regimen for the P815 tumor model.

30 Figures 2A-C is a line graphs of tumor volumes plotted as a function of time and treatment: A) vehicle control, B) mouse IgG control, and C) murine B7-DC-Ig.

Figures 3A and B are line graphs of tumor growth (mm^3) versus days post tumor inoculation in mice given 100 mg/kg cyclophosphamide (CTX or Cytoxin®) alone (Figure 3A) and mice given the combination of CTX and dimeric murine B7-DC-Ig (Figure 3B). The combination of B7-DC-Ig and 5 CTX resulted in eradication of established CT26 tumors (colon carcinoma) in mice. Each line in each graph represents one mouse. Black arrow stands for B7-DC-Ig administration. Figure 3C is a line graph of average average tumor volume versus days post tumor implantation in mice given 100 mg/kg CTX (-●-) or the combination of CTX and dimeric murine B7-DC-Ig (-▲-).

10 Figure 4 shows the results of experiments wherein the combination of CTX and dimeric murine B7-DC-Ig eradicated established CT26 tumors (colon carcinoma) in mice and protected against re-challenge with CT26. Mice that were treated with CTX and B7-DC-Ig and found to be free of tumor growth on day 44 following tumor inoculation were rechallenged with 15 tumors. The mice were later rechallenged again on Day 70. None of the mice displayed tumor growth by day 100.

20 Figure 5 shows CTX and B7-DC-Ig treatment resulted in generation of tumor specific memory CTL. Mice eradicated established CT26 subcutaneous tumors post CTX and B7-DC-Ig treatment were re-challenged with CT26 cells. Seven days later, splenocytes were isolated and pulsed with either ovalbumin, an irrelevant peptide, or AH1, a CT26 specific peptide. Cells were stained with anti-CD8 antibody first followed by intracellular staining with anti-IFN γ antibody prior to FACS analysis.

25 Figures 6A and B show the results of experiments wherein Balb/C mice at age of 9 to 11 weeks of age were implanted with 1×10^5 CT26 cells subcutaneously. On Day 9, mice were injected with 100 mg/kg of CTX, IP. Twenty four hours later, on Day 10, mice were treated with 100 ug of B7-30 DC-Ig. There were 5 groups: naïve mice that did not receive any tumor cells, vehicle injected, CTX alone, CTX + B7-DC-Ig or B7-DC-Ig alone. Two naïve mice and 4 mice from other groups were removed from the study on Day 11 (2 days post CTX) and Day 16 (7 days post CTX) for T cell analysis. Figure 6A shows on Day 11, 2 days post CTX injection, Treg in the spleen of the mice with CTX treatment was significantly lower than the one in the mice with tumor implantation and injected with vehicle. Figure 6B shows

that on Day 16, 7 days post CTX and 6 days post B7-DC-Ig treatment, B7-DC-Ig significantly lowered the CD4+ T cells expressing high PD-1. This was observed in both the B7-DC-Ig treated and CTX + B7-DC-Ig treated mice. Mice implanted with tumor cells intended to have more PD-1+/CD4+ T cells in the draining LN compared with naïve mice.

Figure 7 is a line graph of survival (%) versus days post tumor implantation in mice administered with the combination of CTX and B7-DC-Ig (-▲-), CTX alone (dashed line), or B7-DC-Ig alone (solid line). SP-1 cells were isolated from mouse lungs that were metastasized from TRAMP prostate tumor cell injection. B10.D2 mice were first injected with 3×10^5 SP-1 cells via tail vein injection. On Day 5, 12 and 19, mice were injected with 50 mg/kg of CTX where was indicated. On Day 6, 13 and 20, mice were administered with 5 mg/kg of B7-DC-Ig were it was indicated. Here, "NT" refers to "not treated".

Figure 8 is line graph of overall survival (%) versus days post tumor implantation in Balb/C mice at age of 11-13 weeks given isolated hepatic metastases using a hemispleen injection technique. The spleens of anesthetized mice were divided into two halves and the halves were clipped. CT26 cells (1E05) were injected into one hemispleen, and after 30 seconds, that hemispleen was resected and the splenic draining vein was clipped. On Day 10, mice received 1 injection of CTX at 50 mg/kg, IP. Twenty four hours later, on Day 11, mice were treated with recombinant Listeria carrying AH1 peptide, an immunodominant epitope of CT26, at $0.1 \times LD50$ (1×10^7 CFU), then on Day 14 and 17. Mice were also treated with B7-DC-Ig on Day 11 and then on Day 18. Mouse overall survival was monitored.

DETAILED DESCRIPTION OF THE INVENTION

I. Definitions

As used herein the term "isolated" is meant to describe a compound of interest (e.g., either a polynucleotide or a polypeptide) that is in an environment different from that in which the compound naturally occurs e.g. separated from its natural milieu such as by concentrating a peptide to a concentration at which it is not found in nature. "Isolated" is meant to include compounds that are within samples that are substantially enriched for

the compound of interest and/or in which the compound of interest is partially or substantially purified.

As used herein, the term “polypeptide” refers to a chain of amino acids of any length, regardless of modification (e.g., phosphorylation or 5 glycosylation).

As used herein, a “costimulatory polypeptide” or “costimulatory molecule” is a polypeptide that, upon interaction with a cell-surface molecule on T cells, modulates the activity of the T cell. Costimulatory signaling can inhibit T cell function or enhance T cell function depending on which T cell 10 receptor is activated or blocked.

As used herein, an “amino acid sequence alteration” can be, for example, a substitution, a deletion, or an insertion of one or more amino acids.

As used herein, a “vector” is a replicon, such as a plasmid, phage, or 15 cosmid, into which another DNA segment may be inserted so as to bring about the replication of the inserted segment. The vectors described herein can be expression vectors.

As used herein, an “expression vector” is a vector that includes one or more expression control sequences

20 As used herein, an “expression control sequence” is a DNA sequence that controls and regulates the transcription and/or translation of another DNA sequence.

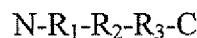
“Operably linked” refers to an arrangement of elements wherein the components so described are configured so as to perform their usual or 25 intended function. Thus, two different polypeptides operably linked together retain their respective biological functions while physically linked together.

As used herein, “valency” refers to the number of binding sites available per molecule.

As used herein, the term “host cell” refers to prokaryotic and 30 eukaryotic cells into which a recombinant expression vector can be introduced.

As used herein, “transformed” and “transfected” encompass the introduction of a nucleic acid (e.g. a vector) into a cell by a number of techniques known in the art.

As used herein, the term “antibody” is meant to include both intact molecules as well as fragments thereof that include the antigen-binding site. These include Fab and F(ab')₂ fragments which lack the Fc fragment of an intact antibody.


5 The terms “individual”, “host”, “subject”, and “patient” are used interchangeably herein, and refer to a mammal, including, but not limited to, humans, rodents such as mice and rats, and other laboratory animals.

II. Fusion proteins

10 The compositions disclosed herein are fusion proteins that contain a costimulatory polypeptide domain and a domain that is an antigen-binding domain that targets the fusion protein to tumor cells, tumor cell-associated neovasculature, or to tissues involved in T cell activation. The costimulatory polypeptide can either bind to a T cell receptor and enhance a T cell response

15 The fusion proteins also optionally contain a peptide or polypeptide linker domain that separates the costimulatory polypeptide domain from the antigen-binding domain.

Fusion proteins disclosed herein are of formula I:

20 wherein “N” represents the N-terminus of the fusion protein, “C” represents the C-terminus of the fusion protein, “R₁” is a costimulatory polypeptide domain or a antigen-binding targeting domain, “R₂” is a peptide/polypeptide linker domain, and “R₃” is a costimulatory polypeptide domain or a antigen-binding targeting domain, wherein “R₃” is a costimulatory polypeptide domain when “R₁” is a antigen-binding targeting domain, and “R₃” is a antigen-binding targeting domain when “R₁” is a costimulatory polypeptide domain. In a preferred embodiment, “R₁” is a costimulatory polypeptide domain and “R₃” is a antigen-binding targeting domain.

25 30 Optionally, the fusion proteins additionally contain a domain that functions to dimerize or multimerize two or more fusion proteins. The domain that functions to dimerize or multimerize the fusion proteins can either be a separate domain, or alternatively can be contained within one of one of the other domains (costimulatory polypeptide domain, antigen-

binding targeting domain, or peptide/polypeptide linker domain) of the fusion protein.

The fusion proteins can be dimerized or multimerized. Dimerization or multimerization can occur between or among two or more fusion proteins 5 through dimerization or multimerization domains. Alternatively, dimerization or multimerization of fusion proteins can occur by chemical crosslinking. The dimers or multimers that are formed can be homodimeric/homomultimeric or heterodimeric/heteromultimeric.

The modular nature of the fusion proteins and their ability to dimerize 10 or multimerize in different combinations provides a wealth of options for targeting molecules that function to costimulate T cells to the tumor cell microenvironment or to immune regulatory tissues.

A. Costimulatory molecules that Enhance Immune Responses

15 The fusion proteins disclosed herein include costimulatory polypeptides of the B7 family, or biologically active fragments and/or variants thereof. Representative co-stimulatory polypeptides include, but are not limited to B7-1, B7-2, and B7-H5. These costimulatory polypeptides can activate T cell function. In a preferred embodiment, the extracellular domain 20 or a biologically active fragment thereof is used as a T cell costimulatory polypeptide.

It has been shown that B7-DC binds to PD-1, a distant member of the CD28 receptor family that is inducibly expressed on activated T cells, B cells, natural killer (NK) cells, monocytes, DC, and macrophages (Keir, et al 25 Curr. Opin. Immunol. 19:309-314 (2007)). The phenotypes of PD-1-/- mice provide direct evidence for PD-1 being a negative regulator of immune responses in vivo. In the absence of PD-1, mice on the C57BL/6 background slowly develop a lupus-like glomerulonephritis and progressive arthritis (Nishimura, et al., Immunity, 11:141-151 (1999)). PD-1-/- mice on the 30 BALB/c background rapidly develop a fatal autoimmune dilated cardiomyopathy (Nishimura, et al., Science. 291:319-322 (2001)). Therefore, by binding to PD-1, B7-DC is a costimulatory molecule that inhibits T cell function. However, substantial evidence indicates that B7-DC can function to costimulate activate T cell responses. In the presence of

suboptimal TCR signals, B7-DC causes increased proliferation and production of cytokines in vitro (Tseng, et al., *J. Exp. Med.* 193:839–846 (2001)). On the other hand, in vitro studies indicate a negative regulatory role for B7-DC in T cell responses. These seemingly contradictory data are 5 best interpreted by expression of additional receptors for B7-DC on T cells other than PD-1. Therefore, in certain circumstances, B7-DC acts as a costimulatory polypeptide that can activate T cell function.

The B7 costimulatory polypeptide may be of any species of origin. In one embodiment, the costimulatory polypeptide is from a mammalian 10 species. In a preferred embodiment, the costimulatory polypeptide is of murine or human or non-human primate origin. Useful human B7 costimulatory polypeptides have at least about 80, 85, 90, 95 or 100% sequence identity to the B7-DC polypeptide encoded by the nucleic acid having GenBank Accession Number NM_025239; the B7-1 polypeptide 15 encoded by the nucleic acid having GenBank Accession Number NM_005191; the B7-2 polypeptide encoded by the nucleic acid having GenBank Accession Number U04343 or; the B7-H5 polypeptide encoded by the nucleic acid having GenBank Accession Number NP_071436. B7-H5 is also disclosed in PCT Publication No. WO 2006/012232.

20 1. Fragments of B7 costimulatory polypeptides

The B7 polypeptides disclosed herein can be full-length polypeptides, or can be a fragment of a full length B7 polypeptide. As used herein, a fragment of B7 polypeptides refers to any subset of the polypeptide that is a shorter polypeptide of the full length protein. In certain embodiments, the 25 fragments retain the ability to co-stimulate T cells. Fragments of B7 costimulatory molecules may be useful to reduce the size of the fusion protein in order to facilitate the simultaneous association of the costimulatory molecule with a costimulatory receptor on T cells in concert with CD3/T cell receptor engagement during formation of immune synapses.

30 Useful fragments are those that retain the ability to bind to their natural ligands. A costimulatory polypeptide that is a fragment of full-length costimulatory polypeptide typically has at least 20 percent, 30 percent, 40 percent, 50 percent, 60 percent, 70 percent, 80 percent, 90 percent, 95 percent, 98 percent, 99 percent, 100 percent, or even more than 100 percent

of the ability to bind its natural ligand(s) as compared to the full-length costimulatory polypeptide.

One embodiment provides B7 polypeptide fragments that retain the ability to costimulate T cells. A B7 polypeptide that is a fragment of a full-length B7 polypeptide typically has at least 20 percent, 30 percent, 40 percent, 50 percent, 60 percent, 70 percent, 80 percent, 90 percent, 95 percent, 98 percent, 99 percent, 100 percent, or even more than 100 percent of the costimulatory activity of the full-length B7 polypeptide.

Human and mouse and non-human primate B7 proteins contain short intracytoplasmic domains, a single transmembrane domain and an extracellular domain. The extracellular domain typically contains two Ig domains; a membrane proximal IgC domain and a membrane distal IgV domain. Useful fragments of B7 costimulatory polypeptides include soluble fragments. Soluble B7 costimulatory polypeptide fragments are fragments of B7 costimulatory polypeptides that may be shed, secreted or otherwise extracted from the producing cells. Soluble fragments of B7 costimulatory polypeptides include some or all of the extracellular domain of the B7 costimulatory polypeptide, and lack some or all of the intracellular and/or transmembrane domains. In one embodiment, B7 costimulatory polypeptide fragments include the entire extracellular domain of the B7 costimulatory B7 costimulatory polypeptide. In other embodiments, the soluble fragments of B7 costimulatory polypeptides include fragments of the extracellular domain that retain B7 costimulatory biological activity. It will be appreciated that the extracellular domain can include 1, 2, 3, 4, or 5 amino acids from the transmembrane domain. Alternatively, the extracellular domain can have 1, 2, 3, 4, or 5 amino acids removed from the C-terminus, N-terminus, or both.

Generally, the B7 costimulatory polypeptides or fragments thereof are expressed from nucleic acids that include sequences that encode a signal sequence. The signal sequence is generally cleaved from the immature polypeptide to produce the mature polypeptide lacking the signal sequence. It will be appreciated that the signal sequence of B7 costimulatory polypeptides can be replaced by the signal sequence of another polypeptide using standard molecule biology techniques to affect the expression levels, secretion, solubility, or other property of the polypeptide. The signal

sequence that is used to replace the B7 costimulatory polypeptide signal sequence can be any known in the art.

B7-DC

Murine B7-DC polypeptides can have at least 80%, 85%, 90%, 95%,

5 99% or 100% sequence identity to:

MLLILPILNL	SLQLHPVAAL	FTVTAPKEVY	TVDVGSSVSL	ECDFDRRECT	ELEGIRASLQ	60
KVENDTSLQS	ERATLLEEQL	PLGKALFHIP	SQVQRDSGQY	RCLVICGAAW	DYKYLTVKVK	120
ASYMRIDTRI	LEVPGTGEVQ	LTCQARGYPL	AEVSWQNVS	PANTSHIRTP	EGLYQVTSVL	180
RLKPQPSRNF	SCMFWNNAHMK	ELTSAIIDPL	SRMEPKVPR	WPLHVFIPAC	TIALIFLAIV	240
10 IIQRKRI						247

(SEQ ID NO:1) or

LFTVTAPKEV	YTVVGSSVS	LECDFDRREC	TELEGIRASL	QKVENDTSIQ	SERATLLEEQ	60
LPLGKALFH	PSVQRDSGQ	YRCVICGAA	WDYKYLTVKV	KASYMRIDTR	ILEVPGTGEV	120
QLTCQARGYP	LAEVSWQNVS	VPANTSHIRT	PEGLYQVTSV	LRLKPQPSRN	FSCMFWNNAHM	180
15 KELTSAIIDP	LSRMEPKVPR	TWPLHVFIP	CTIALIFLA	VIIQRKRI		228

(SEQ ID NO:2).

Human B7-DC polypeptides can have at least 80%, 85%, 90%, 95%,
99% or 100% sequence identity to:

MIFLLMLSL	ELQLHQIAAL	FTVTVPKELY	IIEHGSNVT	ECNFDTGSH	NLGAITASLQ	60
20 KVENDTSPHR	ERATLLEEQL	PLGKASFHIP	QVQRDEGQY	QCIIIIYGV	DYKYLTLKVK	120
ASYRKINTHI	LKVPE	LTCQATGYPL	AEVSWPNVS	PANTSHSRTP	EGLYQVTSVL	180
RLKPPPGRN	SCVFWNTHVR	ELTLASIDLQ	SQMEPRTHPT	WLLHIFIPFC	IIAFIFIATV	240
IALRKQLCQK	LYSSKDTTKR	PVTTKREVN	SAI			273

(SEQ ID NO:3) or

25 LFTVTVPKEL	YIIIEHGSNVT	LECNFDTGSH	VNLGAITASL	QKVENDTSPH	RERATLLEEQ	60
LPLGKASFH	PQVQRDEGQ	YQCIIIIYGV	WDYKYLTLKV	KASYRKINTH	ILKVPETDEV	120
ELTCQATGYP	LAEVSWPNVS	VPANTSHSRT	PEGLYQVTSV	LRLKPPGRN	FSCVFWNTHV	180
RELTLASIDL	QSQMEPRTHP	TWLLHIFIPF	CIIAFIFIAT	VIALRKQLCQ	KLYSSKDTTK	240
RPVTTKREV	NSAI					254

30 (SEQ ID NO:4).

Non-human primate (*Cynomolgus*) B7-DC polypeptides can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:

MIFLLMLSL	ELQLHQIAAL	FTVTVPKELY	IIEHGSNVT	ECNFDTGSH	NLGAITASLQ	60
35 KVENDTSPHR	ERATLLEEQL	PLGKASFHIP	QVQRDEGQY	QCIIIIYGV	DYKYLTLKVK	120
ASYRKINTHI	LKVPE	LTCQATGYPL	AEVSWPNVS	PANTSHSRTP	EGLYQVTSVL	180
RLKPPPGRN	SCVFWNTHVR	ELTLASIDLQ	SQMEPRTHPT	WLLHIFIPSC	IIAFIFIATV	240
IALRKQLCQK	LYSSKDATKR	PVTTKREVN	SAI			273

(SEQ ID NO:5) or

40 LFTVTVPKEL	YIIIEHGSNVT	LECNFDTGSH	VNLGAITASL	QKVENDTSPH	RERATLLEEQ	60
LPLGKASFH	PQVQRDEGQ	YQCIIIIYGV	WDYKYLTLKV	KASYRKINTH	ILKVPETDEV	120
ELTCQATGYP	LAEVSWPNVS	VPANTSHSRT	PEGLYQVTSV	LRLKPEPGRN	FSCVFWNTHV	180
RELTLASIDL	QSQMEPRTHP	TWLLHIFIPS	CIIAFIFIAT	VIALRKQLCQ	KLYSSKDATK	240

RPVTTTKREV NSAI

254

(SEQ ID NO:6)

It will be appreciated that SEQ ID NOs: 1, 3 and 5 each contain a signal peptide.

5 **B7-1**

Murine B7-1 polypeptides can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:

MACNCQLMQD	TPLLKFPFCPR	LILLFVLLIR	LSQVSSDVDE	QLSKSVKDKV	LLPCRYNSPH	60	
EDESEDRIWY	QKHDKVVL	SVIAGKLKVWPE	YKNRTLYDNT	TYSLIILGLV	LSDRGTYSCV	120	
10	VQKKERGTYE	VKHLALV	KLS IKADFSTPNI	TESGNPSADT	KRITCFASGG	FPKPRFSWLE	180
	NGRELPGINT	TISQDPESL	YTISSQLDFN	TTRNHTIKCL	IKYGDHVSE	DFTWEKPPED	240
	PPDSKNTLVL	FGAGFGAVIT	VVIVVIIKC	FCKHRSCFRR	NEASRETNNS	LTFGPEEALA	300
	EQTVFL						306

(SEQ ID NO:7) or							
15	VDEQLSKSVK	DKVLLPCRYN	SPHEDESEDR	IYWQKHDKVV	LSVIAGKLKV	WPEYKNRTLY	60
	DNTTYSLLIIL	GLVLSDRGTY	SCVVQKKERG	TYEVKHLALV	KLSIKADFST	PNITESGNPS	120
	ADTKRITCFA	SGGFPKPRFS	WLENGRELPG	INTTISQDP	SELYTISSQL	DFNTTRNHTI	180
	KCLIKYGDAAH	VSEDFTWEKP	PEDPPDSKNT	LVLFGAGFGA	VITVVVIVVI	IKCFCKHRSC	240
	FRRNEASRET	NNSLTFGPEE	ALAEQTVFL				269

20 (SEQ ID NO:8).

Human B7-1 polypeptides can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:

MGHTRRQGTS	PSKCPYLNFF	QLLVIAGLSH	FCSGVIHVTK	EVKEVATLSC	GHNVSVEEALA	60	
QTRIYWQKEK	KMVLTMMSGD	MNIWPEYKNR	TIFDITNNLS	IIVLALRPSD	EGTYECVVVLK	120	
25	YEKDAFKREH	LAEVTLVKA	DFPTPSISDF	EIPTSNIRRI	ICSTSGGFPE	PHLSWLENGE	180
	ELNAINTTVS	QDPETELYAV	SSKLDFNMTT	NHSFMCLIKY	GHLRVNQTFN	WNTTKQEHFP	240
	DNLLPSWAIT	LISVNGIFVI	CCLTYCFAPR	CRERRRNERL	RRESVRPV		288

(SEQ ID NO:9) or							
25	VIHVTKEVKE	VATLSCGHNV	SVEELAQTRI	IYWQKEKKMVL	TMMMSGDMNIW	PEYKNRTIFD	60
30	ITNNLNSIVIL	ALRPSDEGTY	ECVVLKYEKD	AFKREHHLAEV	TLSVKADFPT	PSISDFEIPT	120
	SNIRRIICST	SGGFPEPHLS	WLENGEELNA	INTTVSQDPE	TELYAVSSKL	DFNMTTNHSF	180
	MCLIKYGHLR	VNQTFNWNTT	KQEHFPDNLL	PSWAITLISV	NGIFVICCLT	YCFAPRCRER	240
	RRNERLRRRES	VRPV					254

(SEQ ID NO:10).						
35	It will be appreciated that SEQ ID NOs: 7 and 9 each contain a signal peptide.					

B7-2

Murine B7-2 polypeptides can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:							
40	MDPRCTMGLA	ILIFVTVLLI	SDAVSVETQA	YFNGTAYLPC	PFTKAQNISL	SELVVFWQDQ	60
	QKLVLVYEHYL	GTEKLDVNA	KYLGRTSFDR	NNWTLRLHNV	QIKDMGSYDC	FIQKKPPTGS	120

	IIQQQLTEL SVIANFSEPE IKLAQNVTGN SGINLTCTSK QGHPKPKKMY FLITNSTNEY	180
	GDNMQISQDN VTEFLSISNS LSLSFPDGW HMTVVCVLET ESMKISSKPL NFTQEFPSPQ	240
	TYWKEITASV TVALLIVMLL IIVCHKKPNQ PSRPSNTASK LERDSNADRE TINLKELEPQ	300
	IASAKPNAE	309
5	(SEQ ID NO:11) or	
	VSVETQAYFN GTAYLPCPFT KAQNISLSEL VVFWQDQQKL VLYEHYLGTE KLDGVNAKYL	60
	GRTSFDRNNW TLRHLHNVQIK DMGSYDCFQ KKPPTGSIIQ QQTLTELSVI ANFSEPEIKL	120
	AQNVTGNSGI NLTCTSKQGH PKPKKMYFLI TNSTNEYGDN MQISQDNVTE LFSISNSLSL	180
	SFPDGWVHMT VVCVLETESM KISSKPLNFT QEFPSPQTYW KEITASVTVA LLLVMILLIIV	240
10	CHKKPNQPSR PSNTASKLER DSNAADRETIN LKELEPQIAS AKPNAE	286
	(SEQ ID NO:12).	

Human B7-2 polypeptides can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:

	MGLSNILFVM AFLLSGAAPL KIQAYFNETA DLPCQFANSQ NQSLSELVVF WQDQENLVN	60
15	EVYLGKEKFD SVHSKYMGR RT SFDSDSWTLR LHNLQIKDKG LYQCIHHKK PTGMIRIHQM	120
	NSELSVLANF SQPEIVPISN ITENVYINLT CSSIHGYPEP KKMSVLLRTK NSTIEYDGIM	180
	QKSQDNVTEL YDVSISLSVS FPDVTSNMTI FCILETDKTR LLSSPPSIEL EDPQPPPDHI	240
	PWITAVLPTV IICVMVFCLI LWKWKKKRP RNSYKCGTNT MEREESEQTK KREKIHIPER	300
	SDEAQRVFKS SKTSSCDKSD TCF	323
20	(SEQ ID NO:13) or	
	AYFNETADLP CQFANSQNQS LSELVVFWQD QENLVLNEVY LGKEKFDSVH SKYMGRTSFD	60
	SDSWSLRLHN LQIKDKGLYQ CIIHHKKPTG MIRIHQMNSE LSVLANFSQP EIVPISNITE	120
	NVYINLTCSS IHGYPEPKM SVLLRTKNST IEYDGIMQKS QDNVTELYDV SISLSVSFPD	180
	VTSNMTIFCI LETDKTRLLS SPF SIELED P QPPP DHIPWI TAVLPTVIIC VMVFCLILWK	240
25	WKKKKRPRNS YKCGTNTMER EESSEQTKKRE KIHIPERSDE AQRVEKSSKT SSCDKSDTCF	300
	(SEQ ID NO:14).	

It will be appreciated that SEQ ID NOs: 11 and 13 each contain a signal peptide.

B7-H5

30	Murine B7-H5 polypeptides can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:	
	MGVPAVPEAS SPRWGTLLA IFLAASRGLV AAFKVTTPPYS LYVCPEGQNA TLTCRILGPV	60
	SKGHGDVTIYK TWYLSSRGEV QMCKEHRPIR NFTLQHLQHH GSHLKANASH DQPQKHGLEL	120
	ASDHGHNFSI TLRNVTPRDS GLYCCLVIEL KNHHPEQRFY GSMELQVQAG KGSGSTCMAS	180
35	NEQDSDSITA AALATGACIV GILCLPLILL LVYKQRQVAS HRRAQELVRM DSSNTQGIEN	240
	PGFETTPPFQ GMPEAKTRPP LSYVAQRQPS ESGRYLLSDP STPLSPPGPG DVFFPSLDPV	300
	PDSPNSEAI	309
	(SEQ ID NO:15) or	
	FKVTTPPSLY VCPEGQNAATL TCRLGPVSK GHDVTIYKTW YLSSRGEVQM CKEHRPIRNF	60
40	TLQHLQHHGS HLKANASHDQ PQKHGLELAS DHGHNFSITL RNVTPRDSGL YCCLVIELKN	120
	HHPEQRFYGS MELQVQAGKG SGSTCMASNE QDSDSITAAA LATGACIVGI LCLPLILLV	180
	YKQRQVASHR RAQELVRMDS SNTQGIENPG FETTPPFQGM PEAKTRPPLS YVAQRQPSES	240
	GRYLLSDPST PLSPPGPGDV FFFSLDPVDP SPNSEAI	277

(SEQ ID NO:16).

Human B7-H5 can have at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:

5 MGVPTALEAG SWRWGSILF A LFLAASLGPV AAFKVATPYS LYVCPEGQNV TLTCRLLGPV 60
 DKGHDTVTFYK TWYRSSRGEV QTCSEERRPIR NLTFQDLHLH HGGHQAANTS HDLAQRHGLE 120
 SASDHGHNFS ITMRNLTLID SGLYCLVVE IRHHHSEHRV HGAMELQVQT GKDAPSNCVV 180
 YPSSSQDSEN ITAAALATGA CIVGILCLPL ILLLVYKQRQ AASNRRAQEL VRMDSNIQGI 240
 ENPGFEASAPP AQGIPPEAKVR HPLSYVAQRQ PSESGRHLLS EPSTPLSPPG PGDVFFPSLD 300
 PVPDSPNFEV I 311

10 (SEQ ID NO:17) or

FKVATPYSLY VCPEGQNVTL TCRLLGPVDK GHDVTFYKTV YRSSRGEVQT CSERRPIRNL 60
 TFQDLHLHHG GHQAANTSHD LAQRHGLESA SDHHGNFSIT MRNLTLDSG LYCCLVVEIR 120
 HHHSEHRVHG AMELQVQTGK DAPSNCVVYP SSSQDSENIT AAALATGACI VGILCLPLIL 180
 LLVYKQRQAA SNRRAQELVR MDSNIQGIEN PGFEASPPAQ GIPEAKVRHP LSYVAQRQPS 240
 15 ESGRHLLSEP STPLSPPGPG DVFFPSLDPV PDSPNFEVI 279

(SEQ ID NO:18).

It will be appreciated that SEQ ID NOs: 15 and 17 each contain a signal peptide.

20 a. **Murine B7 costimulatory extracellular domains**

In one embodiment, the disclosed fusion proteins include the extracellular domain of the murine B7-DC, B7-1, B7-2 or B7-H5, proteins shown in SEQ ID NOs:1, 2, 7, 8, 11, 12, 15 or 16, as shown below.

B7-DC

25 The costimulatory polypeptide domain of the fusion protein can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

30 atgctgtcc tgctggccat actgaacctg agcttacaac ttcatccctgt agcagcttta 60
 ttcacccgtga cagccctaa agaagtgtac accgttagacg tcggcagcag tgtgagccctg 120
 gagtgcgatt ttgaccgcag agaatgcact gaactggaag ggataagacg cagtttgcag 180
 aaggtagaaa atgatacgct tctgcaaagt gaaagagcca ccctgctgga ggagcagctg 240
 cccctggaa aggcttgtt ccacatccct agtgtccaag tgagagattc cgggcagttac 300
 cgttgcctgg tcatctgcgg ggccgcctgg gactacaagt acctgacggt gaaagtcaaa 360
 gcttcttaca tgaggataga cactaggatc ctggagggttc caggtacagg ggaggtgcag 420
 35 cttacctgcc aggcttaggg ttatccctta gcagaagtgt cctggaaaa tgtcagtgtt 480
 cctgccaaca ccagccacat caggacccccc gaaggccctt accaggtcac cagtgttctg 540
 cgcctcaagc ctcagcctag cagaaacttc agctgcatgt tctggaatgc tcacatgaag 600
 gagctgactt cagccatcat tgaccctctg agtcggatgg aacccaaagt ccccagaacg 660
 tgg 663

40 (SEQ ID NO:19).

In another embodiment, the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

5	MLLLPIILNL SLQLHPVAAL FTVTAPKEVY TVDVGSSVSL ECDFDRRECT ELEGIRASLQ	60
	KVENDTSLQS ERATLLEEQI PLGKALFHIP SVQVRDSGQY RCLVICGAAW DYKYLTVKVK	120
	ASYMRIDTRI LEVPGTGEVQ LTCQARGYPL AEVSWQNVS PANTSHIRTP EGLYQVTSVL	180
	RLKPQPSRNF SCMFWNAHMK ELTSAIIDPL SRMEPKVPR T W	221
	(SEQ ID NO:20).	

It will be appreciated that the signal sequence will be removed in the mature protein. Additionally, it will be appreciated that signal peptides from other organisms can be used to enhance the secretion of the fusion protein from a host during manufacture. SEQ ID NO:21 provides the murine amino acid sequence of SEQ ID NO:20 without the signal sequence:

15 LFTVTAPKEV YTVDVGSSVS LECDFDRREC TELEGIRASL QKVENDTSLQ SERATLLEEQ 60
 LPLGKALFHI PSVQVRDSGQ YRCLVICGAA WDYKYLTVKV KASYMRIDTR ILEVPGTGEV 120
 QLTCQARGYP LAEVSWQNVS VPANTSHIRT PEGLYQVTSV LRLKPQPSRN FSCMFWNAHM 180
 KELTSAIIDP LSRMEPKVPR TW 202
 (SEQ ID NO:21).

In another embodiment, the costimulatory polypeptide domain of the fusion protein includes the IgV domain of murine B7-DC. The costimulatory polypeptide domain can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

ttcaccgtga cagccccata agaagtgtac accgttagacg tcggcagcag tgtgagcctg 60
 gagtgcgatt ttgaccgcag agaatgcact gaactggaag ggataagagc cagtttgcag 120
 aaggtagaaa atgatacgtc tctgcaaagt gaaagagcca ccctgtgga ggagcagctg 180
 cccctggaa aggctttgtt ccacatccct agtgtccaag tgagagattc cgggcagttac 240
 cgttgcctgg tcatctgcgg ggccgcctgg gactacaagt actgtacggt gaaa 294
 (SEQ ID NO:22).

The costimulatory polypeptide domain of the fusion protein can have
30 at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

FTVTAPKEVY TVDVGSSVSL ECDFDRRECT ELEGIRASLQ KVENDTSIQLS ERATLLEEQL 60
PLGKALFHIP SVQVRDSGQY RCLVICGAAW DYKYLTVK 98
(SEQ ID NO:23), also referred to as B7-DCV.

B7-1

35 The costimulatory polypeptide domain of the fusion protein can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

```

atggcttgc attgtcagg t gatgcaggat acaccactcc tcaagttcc atgtccaaagg 60
ctcattcttc tctttgtgct gctgattcgt ctttcacaag tgtcttcaga tggtgtatgaa 120

```

	caactgtcca agtcagtgaa agataaggta ttgctgcctt gccgttacaa ctctccatcat	180
	gaagatgagt ctgaagaccg aatctactgg caaaaacatg acaaagtggt gctgtctgtc	240
	attgctggaa aactaaaagt gtggcccgag tataagaacc ggactttata tgacaacact	300
5	acctactctc ttatcatect gggctggc ctttcagacc gggcacata cagctgtgtc	360
	gttcaaaaga agggaaagagg aacgtatgaa gttaaacact tggctttagt aaagtgtcc	420
	atcaaagctg acttctctac ccccaacata actgagtctg gaaaccatc tgcagacact	480
	aaaaggattt cctgcttgc ttccgggggt ttcccaaaggc ctcgcttctc ttggttggaa	540
	aatgaaagag aattacctgg catcaatacg acaatttccc aggatcctga atctgaattt	600
	tacaccattt gtagccaaact agatttcaat acgactcgca accacaccat taagtgtctc	660
10	attaaataty gagatgctca cgtgtcagag gacttcaccc gggaaaaacc cccagaagac	720
	cctcctgata gcaagaac	738

(SEQ ID NO:24).

In another embodiment, the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100%

15 sequence identity to:

	MACNCQLMQD TPPLLKFPCCPR LILLFVLLIR LSQVSSDVDE QLSKSVKDKV LLPCRYNSPH	60
	EDESEDRYIW QKHDKVLSV IAGKLKVWPE YKNRTLYDNT TYSLIILGLV LSDRGTYSCV	120
	VQKKERGTYE VKHLALVKLS IKADFSTPNI TESGNPSADT KRITCFASGG FPKPRFSWLE	180
	NGRELPGINT TISQDPESEL YTISSQLDFN TTRNHTIKCL IKYGDAHVSE DFTWEKPPED	240
20	PPDSKN	246

(SEQ ID NO:25).

It will be appreciated that the signal sequence will be removed in the mature protein. Additionally, it will be appreciated that signal peptides from other organisms can be used to enhance the secretion of the fusion protein

25 from a host during manufacture. SEQ ID NO:26 provides the murine amino acid sequence of SEQ ID NO:25 without the signal sequence:

	VDEQLSKSVK DKVLLPCRYN SPHEDESEDR IYWQKHDKVV LSVIAGKLKV WPEYKNRTLY	60
	DNTTYSLLIL GLVLSDRGTY SCVVKKERG TYEVKHLALV KLSIKADFST PNITESGNPS	120
	ADTKRITCFA SGGFPKPRFS WLENGRELPG INTTISQDPE SELYTISQL DFNTTRNHTI	180
30	KCLIKYGDAH VS EDFTEKPPED PEDPPDSKN	209

(SEQ ID NO:26).

In another embodiment, the costimulatory polypeptide domain of the fusion protein includes the IgV domain of murine B7-1. The costimulatory polypeptide domain can be encoded by a nucleotide sequence having at least

35 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

	gttcatgttcaac aactgtccaa gtcagtgaaa gataaggat tgcgtgcctt ccgttacaa	60
	tcttcctcatg aagatgagtc tgaagaccga atctactggc aaaaacatga caaaagtgggt	120
	ctgtgtgtca ttgctggaa actaaaagtgt tggcccgagt ataagaaccg gactttat	180
	gacaacacta cctactcttct tatcatcctg ggcctggcc tttcagaccg gggcacatac	240
40	agctgtgtcg ttcaaaagaa ggaaagagga acgtatgaag ttaaacactt g	291

(SEQ ID NO:27).

The costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

VDEQLSKSVK DKVLLPCRYN SPHEDESEDR IYWQKHDKVW LSVIAGKLKV WPEYKNRTLY	60
DNTTYSLLIL GLVLSDRGTY SCVVQKKERG TYEVKHL	97

5 (SEQ ID NO:28), also referred to as B7-1V.

B7-2

The costimulatory polypeptide domain of the fusion protein can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

10 atggacccca gatgcacccat gggcttggca atccttatct ttgtgacagt ctgtgtgatc	60
tcagatgctg tttccgtgga gacgcaagct tatttcaatg ggactgcata tctgcccgtgc	120
ccatttacaa aggctcaaaa cataagoctg agtgagctgg tagtattttgcaggaccag	180
caaaaagttgg ttctgtacga gcactatgg ggcacagaga aacttgatag tgtgaatgcc	240
aagtacctgg gccgcacgag ctttgacagg aacaactgga ctctacgact tcacaatgtt	300
15 cagatcaagg acatgggctc gtatgattgt tttatacaaaa aaaagccacc cacaggatca	360
attatcctcc aacagacatt aacagaactg tcagtatcg ccaacttcag tgaacctgaa	420
ataaaaactgg ctcagaatgt aacaggaaat tctggcataa atttgacctg cacgtctaag	480
caaggtcacc cgaaacctaa gaagatgtat tttctgtataa ctaattcaac taatgagtt	540
ggtgataaca tgcatgatatac acaagataat gtcacagaac tggtcgttat ctccaacagc	600
20 ctctctctt cattcccgga tggtgtgtgg catatgaccg ttgtgtgtgt tctggaaacg	660
gagtcaatga agatttcctc caaacctctc aatttcactc aagagttcc atccctcaa	720
acgtatttggaa ag	732

(SEQ ID NO:29).

In another embodiment, the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

MDPRCTMGLA ILIFTVLLI SDAVSVETQA YFNGTAYLPC PFTKAQNISL SELVVFWQDQ	60
QKLVLVLYEHYL GTEKLDVNA KYLGRTSFDR NNWTLRLHNV QIKDMGSYDC FIQKKPPTGS	120
IILQQTLTEL SVIANFSEPE IKLAQNVTGN SGINLTCTSK QGHPKPKKMY FLITNSTNEY	180
30 GDNMQISQDN VTELFISNS LSLSFPDGWV HMTVVCVLET ESMKISSKPL NFTQEFPSPQ	240
TYWK	244

(SEQ ID NO:30).

It will be appreciated that the signal sequence will be removed in the mature protein. Additionally, it will be appreciated that signal peptides from other organisms can be used to enhance the secretion of the fusion protein from a host during manufacture. SEQ ID NO:31 provides the murine amino acid sequence of SEQ ID NO:30 without the signal sequence:

VSVEVQAYFN GTAYLPCPFT KAQNISLSEL VVFWQDQQKL VLYEHYLGTE KLDSVNAKYL	60
GRTSFDRNNW TLRLHNVQIK DMGSYDCFIQ KKPPTGSIIL QQTLTELSVI ANFSEPEIKL	120
40 AQNVTGNNSGI NLCTSKQGH PKPKPKKMYFLI TNSTNEYGDN MQISQDNVTE LFSISNSL	180
SFPDGWVWHMT VVCVLETESM KISSKPLNFT QEFPSPQTYW K	221

(SEQ ID NO:31).

In another embodiment, the costimulatory polypeptide domain of the fusion protein includes the IgV domain of murine B7-2. The costimulatory polypeptide domain can be encoded by a nucleotide sequence having at least

5 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

aatgggactg	cataatctgcc	gtgcccattt	acaaaggctc	aaaacataag	cctgagtgag	60
ctggtagtat	tttggcagga	ccagcaaaag	ttggttctgt	acgagcacta	tttgggcaca	120
gagaaaacttg	atagtgtgaa	tgccaaagtac	ctggggcgca	cgagcttga	caggaacaac	180
tggactctac	gacttcacaa	tgttcagatc	aaggacatgg	gctcgtatga	ttgttttata	240
10 caaaaaaaagc	cacccacagg	atcaattatc	ctccaacaga	cattaaca		288

10 (SEQ ID NO:32).

The costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

NGTAYLPCPF	TKAQNISLSE	LVVFQWQDQQK	LVLYEHYLGT	EKLDSVNAKY	LGRTSFDRNN	60
15 WTLRLHNVQI	KDMGSYDCFI	QKKPPTGSII	LQQTLT			96

(SEQ ID NO:33), also referred to as B7-2V.

B7-H5

The costimulatory polypeptide domain of the fusion protein can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 20 99%, or 100% sequence identity to:

atgggtgtcc	ccgcggtccc	agaggccagc	agcccgcgct	ggggAACCCt	gtcccttgct	60
attttcttgg	ctgcatccag	aggctctggta	gcagccttca	aggtcaccac	tccatattct	120
ctctatgtgt	gtcccgaggg	acagaatgcc	accctcacct	gcaggattct	gggccccgtg	180
tccaaagggc	acgatgtgac	catctacaag	acgtggtacc	tcaagctcacg	aggcgaggtc	240
25 cagatgtgca	aagaacacccg	gcccatacgc	aacttcacat	tgcagcacct	tcaagcaccac	300
ggaagccacc	tgaaagccaa	cgccagccat	gaccagcccc	agaagcatgg	gctagagcta	360
gcttctgacc	accacgttaa	cttctctatc	accctgcgca	atgtgacccc	aaggcacagc	420
ggcctctact	gctgtctagt	gatagaatta	aaaaaccacc	acccagaaca	acgttctac	480
30 aatgagcagg	agctacaggt	acaggcaggc	aaaggctcgg	ggtccacatg	catggcgtct	540

(SEQ ID NO:34).

In another embodiment, the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

35 MGVPAPVEAS	SPRWGTLLA	IFLAASRGLV	AAFKVITTPYS	LYVCPEGQNA	TLCRILGPV	60
SKGHHDVTIYK	TWYLSSRGEV	QMCKEHRPIR	NFTLQHLQHH	GSHLKANASH	DQPQKHGLEL	120
ASDHGGNFSI	TLRNVTPRDS	GLYCCLVIEL	KNHHPEQRFY	GSMELOVQAG	KGSGSTCMAS	180
NEQDSDSITA						190

(SEQ ID NO:35).

It will be appreciated that the signal sequence will be removed in the mature protein. Additionally, it will be appreciated that signal peptides from other organisms can be used to enhance the secretion of the fusion protein from a host during manufacture. SEQ ID NO:36 provides the murine amino acid sequence of SEQ ID NO:35 without the signal sequence:

FKVTTTPYSLY VCPEGQNATL TCRILGPVSK GHDVTIYKTW YLSSRGEVQM CKEHRPIRNF	60
TLQHLQHHGS HLKANASHDQ PQKHGLELAS DHHGNFSITL RNVTPRDSGL YCCLVIELKN	120
HHPEQRFYGS MELQVQAGKG SGSTCMASNE QDSDSITA	158

(SEQ ID NO:36).

10 In another embodiment, the costimulatory polypeptide domain of the fusion protein includes the IgV domain of murine B7-H5. The costimulatory polypeptide domain can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

ttcaagggtca ccactccata ttctctctat gtgtgtcccg agggacagaa tgccaccctc	60
acctgcagga ttctgggccc cgtgtccaaa gggcacgtat tgaccatcta caagacgtgg	120
tacctcagct cacgaggcga ggtccagatg tgcaaagaac accggcccat acgcaacttc	180
acattgcagc accttcagca ccacggaaagc cacctgaaag ccaacgcccag ccatgaccag	240
ccccagaagc atgggctaga gctagcttct gaccaccacg gtaacttctc tatcaccctg	300
cgcaatgtga ccccaaggga cagcggccctc tactgctgtc tagtgataga attaaaaaac	360
caccacccag aacaacgggtt ctacggg	387

(SEQ ID NO:37).

The T cell receptor binding domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

FKVTTTPYSLY VCPEGQNATL TCRILGPVSK GHDVTIYKTW YLSSRGEVQM CKEHRPIRNF	60
TLQHLQHHGS HLKANASHDQ PQKHGLELAS DHHGNFSITL RNVTPRDSGL YCCLVIELKN	120
HHPEQRFYG	129

(SEQ ID NO:36), also referred to as B7-H5V.

b. Human B7 costimulatory extracellular domains

30 In one embodiment, the disclosed fusion proteins include the extracellular domain of the human B7-DC, B7-1, B7-2 or B7-H5, proteins shown in SEQ ID NOs:3, 4, 9, 10, 13, 14, 15 or 16, as shown below.

B7-DC

35 The costimulatory polypeptide domain of the fusion protein can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

atgatctttc ttcttattgtat gctgtctttg gaattgcaac ttccaccaat cgccggccctc	60
tttactgtga ccgtgcacaaa agaactgtat atcattgagc acgggtccaa tgtgaccctc	120

	gaatgttaact ttgacacccgg cagccacgtt aacctggggg ccatcaactgc cagcttgcaa	180
	aaagttgaaa acgacacatc acctcaccgg gagagggcaa ccctcttggg ggagcaactg	240
	ccattggggg aggccctcctt tcatatccct caggtgcagg ttccggatga gggacagtac	300
5	cagtgcatta ttatctacgg cgtggcttgg gattacaagt atctgaccctt gaaggtgaaa	360
	gcttcctatc ggaaaattaa cactcacatt cttaaggtgc cagagacgga cgaggtggaa	420
	ctgacatgcc aagccacccgg ctaccggcgtt gcagaggtca gctggcccaa cgtgagcgtt	480
	cctgctaaca ctctcatc taggacaccc gagggcctt accaggttac atccgtgctc	540
	cgccctaaac cggccccagg cccggatttt agttgcgtgt tttggaaatac ccacgtgcga	600
10	gagctgactc ttgcatctat tgcattgcag tcccgatgg agccacggac tcatccaact	660
	tgg	663

(SEQ ID NO:39).

In another embodiment, the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

15	MIFLLLMLSL ELQLHQIAAL FTVTVPKELY IIEHGSNVTL ECNFDTGSHV NLGAITASLQ	60
	KVENDTSPHR ERATLLEEQL PLGKASFHIP QVQVRDEGQY QCIIIYGVAV DYKYLTLKV	120
	ASYRKINTHI LKVPETDEVE LTCQATGYPL AEVSWPNVSV PANTSHSRTP EGLYQVTSVL	180
	RLKPPPGRNF SCVFWNTHVR ELTLASIDLQ SQMEPRTHPT W	221

(SEQ ID NO:40).

20 It will be appreciated that the signal sequence will be removed in the mature protein. Additionally, it will be appreciated that signal peptides from other organisms can be used to enhance the secretion of the fusion protein from a host during manufacture. SEQ ID NO:41 provides the human amino acid sequence of SEQ ID NO:40 without the signal sequence:

25	LFTVTVPKEL YIEHGSNVT LECNFDTGSH VNLGAITASL QKVENDTSPH RERATLLEEQ	60
	LPLGKASFHI PQVQVRDEGQ YQCIIIYGVAV WDYKYLTLKV KASYRKINTH ILKVPETDEV	120
	ELTCQATGYPL LAEVSWPNVS VPANTSHSRTP EGLYQVTSVL LRLKPPPGRNF FSCVFWNTHV	180
	RELTLASIDLQ SQMEPRTHPT W	202

(SEQ ID NO:41).

30 In another embodiment, the costimulatory polypeptide domain of the fusion protein includes the IgV domain of human B7-DC. The costimulatory polypeptide domain can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

35	tttactgtga ccgtgcacaaa agaactgtat atcattgagc acgggtccaa tgtgaccctc	60
	gaatgttaact ttgacacccgg cagccacgtt aacctggggg ccatcaactgc cagcttgcaa	120
	aaagttgaaa acgacacatc acctcaccgg gagagggcaa ccctcttggg ggagcaactg	180
	ccattggggg aggccctcctt tcatatccct caggtgcagg ttccggatga gggacagtac	240
	cagtgcatta ttatctacgg cgtggcttgg gattacaagt atctgaccctt gaag	294

(SEQ ID NO:42).

The costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

FTVTVPKELY IIEHGSNTL ECNFDTGSHV NLGAITASLQ KVENDTSPHR ERATLLEEQL	60
PLGKASFHIP QVQVRDEGQY QCIIIIYGVAW DYKYLTALK	98

5 (SEQ ID NO:43), also referred to as B7-DC.

B7-1

The costimulatory polypeptide domain of the fusion protein can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

10 atgggccaca cacggaggca gggAACATCA ccatccaagt gtccataacct caatttcttt	60
cagctcttgg tgctggctgg tcttctcac ttctgttcaag gtgttatcca cgtgaccaag	120
gaagtgaaag aagtggcaac gctgtcctgt ggtcacaatg tttctgttga agagctggca	180
caaactcgcac tctactggca aaaggagaag aaaatggtgc tgactatgat gtctggggac	240
atgaatatata ggcggagta caagaaccgg accatcttg atatcactaa taacctctcc	300
15 attgtgatcc tggctctgac cccatctgac gagggcacat acgagtggtgt tggctctgaag	360
tataaaaaag acgcttcaa gcgggaacac ctggctgaag tgacgttatac agtcaaagct	420
gacttcccta cacctagttat atctgacttt gaaattccaa cttctaatat tagaaggata	480
atttgctcaa cctctggagg tttccagag cctcacctct cctgggttga aaatggagaa	540
gaattaaatg ccatcaacac aacagttcc caagatcctg aaactgagct ctatgcttt	600
20 agcagcaaacc tggatttcaa tatgacaacc aaccacagct tcattgtgtt catcaagtat	660
ggacattttaa gagtgaatca gacccatcaac tggataacaa ccaagcaaga gcattttcct	720
gataacctgc tc	732

(SEQ ID NO:44).

In another embodiment, the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

MGHTRRQGTS PSKCPYLNFF QLLVLAGLSH FCSGVIHVTK EVKEVATLSC GHNVSVLELA	60
QTRIYWQKEK KMVLTMMSGD MNIWPEYKNR TIFDITNNES IVILALRPSD EGTYECVVLK	120
YEKDAFKREH LAEVTLSVKA DFPTPSISDF EIPTSNIRRI ICSTSGGFPE PHLSWLENGE	180
30 ELNAINTTIVS QDPETELYAV SSKLDFNMTT NHSFMCLIKY GHLRVNQTFN WNTTKQEHFP	240
DNL	243

(SEQ ID NO:45).

It will be appreciated that the signal sequence will be removed in the mature protein. Additionally, it will be appreciated that signal peptides from other organisms can be used to enhance the secretion of the fusion protein from a host during manufacture. SEQ ID NO:46 provides the murine amino acid sequence of SEQ ID NO:45 without the signal sequence:

VIHVTKEVKE VATLSCGHNV SVEELAQTRI YWQKEKKMVL TMMMSGDMNIW PEYKNRTIFD	60
ITNNNLISIVIL ALRPSDEGTY ECVVLKYEKD AFKREHHLAEV TLSVKADFPT PSISDFEIPT	120
40 SNIRRIICST SGGFPEPHLS WLENGEELNA INTTVSQDPE TELYAVSSKL DFNMNTTNHSF	180
MCLIKYGHLR VNQTFNWNNTT KQEHFPDNL	209

(SEQ ID NO:46).

In another embodiment, the costimulatory polypeptide domain of the fusion protein includes the IgV domain of human B7-1. The costimulatory polypeptide domain can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

5 gttatccacg tgaccaagga agtggaaagaa gtggcaacgc tgcctgtgg tcacaatgtt 60
 tctgttgaag agctggcaca aactcgcac tactggcaaa aggagaagaa aatggtgctg 120
 actatgatgt ctggggacat gaatatatgg cccgagtgaca agaaccggac catctttgat 180
 atcactaata acctctccat tgtgatcctg gctctgcgc catctgacga gggcacatac 240
 10 gagggtgttg ttctgaagta tgaaaaagac gcttcaagc gggAACACCT ggctgaagtg 300
 acg 303

(SEQ ID NO:47).

The costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

15 VIHVTKEVKE VATLSCGHNV SVEELAQTRI YWQKEKKMVL TMMMSGDMNIW PEYKNRTIFD 60
 ITNNNLSIVIL ALRPSDEGTY ECVVLKYEKD AFKREHHLAEV T 101

(SEQ ID NO:48), also referred to as B7-1.

B7-2

The costimulatory polypeptide domain of the fusion protein can be 20 encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

25 atgggactga gtaacattct ctttgtatg gccttcctgc tctctggc tgccctctg 60
 aagattcaag cttatttcaa tgagactgca gacctgcatt gccaatttgc aaactctcaa 120
 aacccaaagcc tgagtggact agtagtattt tggcaggacc aggaaaactt ggttctgaat 180
 gaggtataact taggcaaaaga gaaatttgc agtgttcatt ccaagtataat gggccgcaca 240
 30 agttttgatt cggacagttt gaccctgaga cttcacaatc ttcatgatcaa ggacaaggcc 300
 ttgttatcaat gtatcatcca tcacaaaaag cccacaggaa tgattcgcatt ccaccagatg 360
 aattctgaac tgtcagtgc tgcataactt agtcaacctg aaatagtacc aatttctaat 420
 ataacagaaa atgtgtacat aaatttgacc tgctcatcta tacacggta cccagaacct 480
 35 aagaagatga gtgtttgc aagaaccaag aattcaacta tcgagttatga tgggttatg 540
 cagaaatctc aagataatgt cacagaactg tacgacgtt ccatcagctt gtctgtttca 600
 ttccctgatg ttacgagcaa tatgaccatc ttctgtattt tggaaactga caagacgcgg 660
 cttttatctt caccttctc tataagacatt gaggaccctc agcctcccc agaccacatt 720
 ccttggatta cagctgtact t 741

35 (SEQ ID NO:49).

In another embodiment, the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

40 MGLSNILFVM AFLLSGAAPL KIQAYFNETA DLPCQFANSQ NQSLSELVVF WQDQENLVLN 60
 EVYLGKEKFD SVHSKYMGRT SFDSDSWTLR LHNLQIKDKG LYQCIHHKK PTGMIRIHQM 120
 NSELSVLANF SQPEIVPISN ITENVYINLT CSSIHGYPEP KKMSVLLRTK NSTIEYDGVM 180

QKSQDNVTEL YDVSISLSVS FPDVTSNMTI FCILETDKTR LLSSPFSIEL EDPQPPPDI	240
PWITAVL	247

(SEQ ID NO:50).

It will be appreciated that the signal sequence will be removed in the 5 mature protein. Additionally, it will be appreciated that signal peptides from other organisms can be used to enhance the secretion of the fusion protein from a host during manufacture. SEQ ID NO:51 provides the murine amino acid sequence of SEQ ID NO:50 without the signal sequence:

AYFNETADLP CQFANSQNQS LSELVVFWQD QENLVLNEVY LGKEKFDSVH SKYMGRTSFD	60
10 SDSWTLRLHN LQIHKDKGLYQ CIIHHKKPTG MIRIHMNSE LSVLANFSQP EIVPISNITE	120
NVYINLTCSS IHGYPEPKRM SVLLRTKNST IEYDGVMQKS QDNVTELYDV SISLSVSFPD	180
VTSNMTIFCI LETDKTRLLS SPFSIELEDP QPPPDIHPWI TAVL	224

(SEQ ID NO:51).

In another embodiment, the costimulatory polypeptide domain of the 15 fusion protein includes the IgV domain of human B7-2. The costimulatory polypeptide domain can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

ccatgccaat ttgcaaactc tcaaaaaccaa agcctgagtg agcttagtagt attttggcag	60
gaccagggaaa acttgggtct gaatgaggta tacttaggca aagagaaatt tgacagtgtt	120
20 cattccaagt atatggccg cacaagttt gattcggaca gttggaccct gagacttcac	180
aatcttcaga tcaaggacaa gggcttgtat caatgtatca tccatcacaa aaagcccaca	240
ggaatgattc gcatccacca gatgaattct gaactgtcag tgcttgctaa cttc	294

(SEQ ID NO:52).

The costimulatory polypeptide domain of the fusion protein can have 25 at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

PCQFANSQNQ SLSELVVFWQ DQENLVLNEV YLGKEKFDSV HSKYMGRTSF DSDSWTLRLH	60
NLQIHKDKGLY QCIHHKKPT GMIRIHMNS ELSVLANF	98

(SEQ ID NO:53), also referred to as B7-2V.

B7-H5

30 The costimulatory polypeptide domain of the fusion protein can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

atgggcgtcc ccacggccct ggaggccggc agctggcgct gggatccct gctttcgct	60
ctcttcctgg ctgcgtccct aggtccggtg gcagccttca aggtcgccac gccgtattcc	120
35 ctgtatgtct gtcccgaggg gcagaacgtc accctcacct gcaggctt gggccctgtg	180
gacaaagggc acgatgtgac cttctacaag acgtggtacc gcagctcgag gggcgagggt	240
cagacctgtc cagagcggc gcccattccgc aacctcacgt tccaggacct tcacactgcac	300
catggaggcc accaggctgc caacaccaggc cacgacctgg ctcagcgcca cgggctggag	360
teggcctccg accaccatgg caacttctcc atcaccatgc gcaacctgac cctgctggat	420
40 agcggcctct actgotgcct ggtggtgag atcaggcacc accactcgga gcacagggtc	480

catggtgcca tggagctgca ggtgcagaca ggcaaaatg caccatccaa ctgtgtggtg	540
tacccatcct cctccagga tagtggaaac atcacggct	579

(SEQ ID NO:54).

In another embodiment, the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

MGVPTALEAG SWRWGSILLFA LFLAASLGPV AAFKVATPYS LYVCPEGQNV TLTCRLLGPV	60
DKGHDVTFYK TWYRSSRGEV QTCSERRPIR NLTFQDLHLH HGGHQANTS HDLAQRHGLE	120
SASDHGNFS ITMRNLTLDD SGLYCCLVVE IRHHHSEHRV HGAMELOVQT GKDAPSNCVV	180
10 YPSSSQDSEN ITA	193

(SEQ ID NO:55).

It will be appreciated that the signal sequence will be removed in the mature protein. Additionally, it will be appreciated that signal peptides from other organisms can be used to enhance the secretion of the fusion protein from a host during manufacture. SEQ ID NO:56 provides the murine amino acid sequence of SEQ ID NO:55 without the signal sequence:

FKVATPYSLY VCPEGQNVTL TCRLLGTVVK GHDVTFYKTV YRSSRGEVQT CSERRPIRNL	60
TFQDLHLHHG GHQAANTS HDLAQRHGLESA SDHHGNFSIT MRNLTLDDSG LYCCLVVEIR	120
HHHSEHRVHG AMELQVQTGK DAPSNCVVYP SSSQDSENIT A	161

20 (SEQ ID NO:56).

In another embodiment, the costimulatory polypeptide domain of the fusion protein includes the IgV domain of human B7-H5. The costimulatory polypeptide domain can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

25 ttcaaggctcg ccacgcgtta ttccctgtat gtctgtcccg agggcagaa cgtcaccctc	60
acctgcaggc tcttggccccc tggacaaa gggcacatg tgacattcta caagacgtgg	120
taccgcagct cgagggcga ggtgcagacc tgctcagagc gcccggccat ccccaaccc	180
acgttccagg accttacact gcaccatgga ggccaccagg ctgccaacac cagccacgac	240
ctggctcagc gccacgggct ggagtggcc tccgaccacc atggcaactt ctccatcacc	300
30 atgcgcacacc tgaccctgct ggatagcgcc ctctactgct gcctgggtgg ggagatcagg	360
caccaccact cggagcacag ggtccatgg	390

(SEQ ID NO:57).

The costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

35 FKVATPYSLY VCPEGQNVTL TCRLLGTVVK GHDVTFYKTV YRSSRGEVQT CSERRPIRNL	60
TFQDLHLHHG GHQAANTS HDLAQRHGLESA SDHHGNFSIT MRNLTLDDSG LYCCLVVEIR	120
HHHSEHRVHG	130

(SEQ ID NO:58), also referred to as B7-H5V.

**c. Non-human primate B7-DC
costimulatory extracellular domains**

In one embodiment, the disclosed fusion proteins include the extracellular domain of the non-human primate (*Cynomolgus*) B7-DC, 5 proteins shown in SEQ ID NOs:5 or 6, as shown below.

B7-DC

The costimulatory polypeptide domain of the fusion protein can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

10	atgatcttcc tccctgtaat gttgaggctg gaattgcgc ttcaccagat agcagctta	60
	ttcacagtga cagtccctaa ggaactgtac ataatagagc atggcagcaa tgtgaccctg	120
	gaatgcaact ttgacactgg aagtcatgtg aaccttggag caataacagc cagtttgcaa	180
	aagggtggaaa atgatacatac cccacacccgt gaaagagcca ctttgcgtt ggagcagctg	240
	cccttaggga aggcctcggtt ccacataccct caagtccaaag tgagggacga aggacagttac	300
15	caatgcataa tcatctatgg ggtcgccctgg gactacaagt acctgactct gaaagtcaaa	360
	gcttcctaca ggaaaataaa cactcacatc ctaaagggttc cagaaacaga tgaggttagag	420
	ctcacctgcg aggctacagg ttatccctctg gcagaagttat octggccaaa cgtcagcggtt	480
	octgccaaca ccagccactc caggaccctt gaaggccctt accaggtcac cagtggtctg	540
	cgccctaaaggc caccctctgg cagaaacttc agctgtgtt tctggaataac tcacgtgagg	600
20	gaacttactt tggccagcat tgaccttcaa agtcagatgg aacccaggac ccacccaaactt	660
	tgg	663

(SEQ ID NO:59).

In another embodiment, the costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

25	MIFLLLMISL ELQLHQIAAL FTVTVPKELY IIEHGSNVTL ECNFDTGSHV NLGAITASLQ	60
	KVENDTSPHR ERATLLEEQL PLGKASFHIP QVQRDEGQY QCIIIYGVAW DYKYLTLKVK	120
	ASYRKINTHI LKVPETDEVE LTCQATGYPL AEVSWPNVSV PANTSHSRTP EGLYQVTSVL	180
	RLKPPPGRNF SCVFWNTHVR ELTLASIDLQ SQMEPRTHPT W	221
30	(SEQ ID NO:60).	

It will be appreciated that the signal sequence will be removed in the mature protein. Additionally, it will be appreciated that signal peptides from other organisms can be used to enhance the secretion of the fusion protein from a host during manufacture. SEQ ID NO:61 provides the non-human primate amino acid sequence of SEQ ID NO:60 without the signal sequence:

35	LFTVTVPKEL YIIEHGSNVT LECNFDTGSH VNLGAITASL QKVENDTSPH RERATLLEEQ	60
	LPLGKASFHI PQVQRDEGQ YQCIIIYGVVA WDYKYLTLKV KASYRKINTH ILKVPETDEV	120
	ELTCQATGYP LAEVSWPNVS VPANTSHSRTP PEGLYQVTSV LRLKPPPGRN FSCVFWNTHV	180
	RELTLASIDLQ QSQMEPRTHP TW	202
40	(SEQ ID NO:61).	

In another embodiment, the costimulatory polypeptide domain of the fusion protein includes the IgV domain of non-human primate B7-DC. The costimulatory polypeptide domain can be encoded by a nucleotide sequence having at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

5 ttcacagtga cagtcctaa ggaactgtac ataatacggc atggcagcaa tgtgaccctg 60
 gaatgcaact ttgacactgg aagtcatgtg aaccttggag caataacagc cagtttgc当地
 aagggtggaaa atgatacatac cccacacccgt gaaagagccca ctttgctgga ggagcagctg 180
 ccccttaggaa aggccctcggtt ccacataacct caagtccaa tgagggacga aggacagttac 240
 caatgcataaa tcatctatgg ggtccctgg gactacaagt acctgactct gaaa 294

10 (SEQ ID NO:62).

The costimulatory polypeptide domain of the fusion protein can have at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to:

FTVTVPKELY IIEHGSNVTL ECNFDTGSHV NLGAITASLQ KVENDTSPHR ERATLLEEQL 60
 PLGKASFHIP QVQVRDEGQY QCIIIYGVAW DYKYLTALK 98

15 (SEQ ID NO:63), also referred to as B7-DC.

d. B7 costimulatory extracellular domain fragments

It will be appreciated that B7-DC, B7-1, B7-2 and B7-H5 extracellular domains can contain one or more amino acids from the signal peptide or the putative transmembrane domain of B7-DC, B7-1, B7-2 or B7-H5. During secretion, the number of amino acids of the signal peptide that are cleaved can vary depending on the expression system and the host. Additionally, fragments of B7-DC, B7-1, B7-2 or B7-H5 extracellular domain missing one or more amino acids from the C-terminus or the N-terminus that retain the ability to bind to their natural receptors can be used as a fusion partner for the disclosed fusion proteins.

B7-DC

Exemplary suitable fragments of murine B7-DC that can be used as a costimulatory polypeptide domain include, but are not limited to, the following:

30 24-221, 24-220, 24-219, 24-218, 24-217, 24-216, 24-215,
 23-221, 23-220, 23-219, 23-218, 23-217, 23-216, 23-215,
 22-221, 22-220, 22-219, 22-218, 22-217, 22-216, 22-215,
 21-221, 21-220, 21-219, 21-218, 21-217, 21-216, 21-215,
 35 20-221, 20-220, 20-219, 20-218, 20-217, 20-216, 20-215,
 19-221, 19-220, 19-219, 19-218, 19-217, 19-216, 19-215,

18-221, 18-220, 18-219, 18-218, 18-217, 18-216, 18-215,
17-221, 17-220, 17-219, 17-218, 17-217, 17-216, 17-215,
16-221, 16-220, 16-219, 16-218, 16-217, 16-216, 16-215,
of SEQ ID NO:80.

5 Additional suitable fragments of murine B7-DC include, but are not limited to, the following:

20-221, 33-222, 33-223, 33-224, 33-225, 33-226, 33-227,
21-221, 21-222, 21-223, 21-224, 21-225, 21-226, 21-227,
22-221, 22-222, 22-223, 22-224, 22-225, 22-226, 22-227,

10 23-221, 23-222, 23-223, 23-224, 23-225, 23-226, 23-227,
24-221, 24-222, 24-223, 24-224, 24-225, 24-226, 24-227,

of SEQ ID NO:1, optionally with one to five amino acids of a signal peptide attached to the N-terminal end. The signal peptide may be any disclosed herein, including the signal peptide contained within SEQ ID NO:1, or may 15 be any signal peptide known in the art.

Exemplary suitable fragments of human B7-DC that can be used as a costimulatory polypeptide domain include, but are not limited to, the following:

24-221, 24-220, 24-219, 24-218, 24-217, 24-216, 24-215,
20 23-221, 23-220, 23-219, 23-218, 23-217, 23-216, 23-215,
22-221, 22-220, 22-219, 22-218, 22-217, 22-216, 22-215,
21-221, 21-220, 21-219, 21-218, 21-217, 21-216, 21-215,
20-221, 20-220, 20-219, 20-218, 20-217, 20-216, 20-215,
19-221, 19-220, 19-219, 19-218, 19-217, 19-216, 19-215,
25 18-221, 18-220, 18-219, 18-218, 18-217, 18-216, 18-215,
17-221, 17-220, 17-219, 17-218, 17-217, 17-216, 17-215,
16-221, 16-220, 16-219, 16-218, 16-217, 16-216, 16-215,
of SEQ ID NO:83.

Additional suitable fragments of human B7-DC include, but are not 30 limited to, the following:

20-221, 33-222, 33-223, 33-224, 33-225, 33-226, 33-227,
21-221, 21-222, 21-223, 21-224, 21-225, 21-226, 21-227,
22-221, 22-222, 22-223, 22-224, 22-225, 22-226, 22-227,
23-221, 23-222, 23-223, 23-224, 23-225, 23-226, 23-227,

24-221, 24-222, 24-223, 24-224, 24-225, 24-226, 24-227,
of SEQ ID NO:3, optionally with one to five amino acids of a signal peptide
attached to the N-terminal end. The signal peptide may be any disclosed
herein, including the signal peptide contained within SEQ ID NO:3, or may
5 be any signal peptide known in the art.

Exemplary suitable fragments of non-human primate B7-DC that can
be used as a costimulatory polypeptide domain include, but are not limited
to, the following:

24-221, 24-220, 24-219, 24-218, 24-217, 24-216, 24-215,
10 23-221, 23-220, 23-219, 23-218, 23-217, 23-216, 23-215,
22-221, 22-220, 22-219, 22-218, 22-217, 22-216, 22-215,
21-221, 21-220, 21-219, 21-218, 21-217, 21-216, 21-215,
20-221, 20-220, 20-219, 20-218, 20-217, 20-216, 20-215,
19-221, 19-220, 19-219, 19-218, 19-217, 19-216, 19-215,
15 18-221, 18-220, 18-219, 18-218, 18-217, 18-216, 18-215,
17-221, 17-220, 17-219, 17-218, 17-217, 17-216, 17-215,
16-221, 16-220, 16-219, 16-218, 16-217, 16-216, 16-215,
of SEQ ID NO:86.

Additional suitable fragments of non-human primate B7-DC include,
20 but are not limited to, the following:

20-221, 33-222, 33-223, 33-224, 33-225, 33-226, 33-227,
21-221, 21-222, 21-223, 21-224, 21-225, 21-226, 21-227,
22-221, 22-222, 22-223, 22-224, 22-225, 22-226, 22-227,
23-221, 23-222, 23-223, 23-224, 23-225, 23-226, 23-227,
25 24-221, 24-222, 24-223, 24-224, 24-225, 24-226, 24-227,
of SEQ ID NO:5, optionally with one to five amino acids of a signal peptide
attached to the N-terminal end. The signal peptide may be any disclosed
herein, including the signal peptide contained within SEQ ID NO:5, or may
be any signal peptide known in the art.

30 **B7-1**

Exemplary suitable fragments of murine B7-1 that can be used as a
costimulatory polypeptide domain include, but are not limited to, the
following:

42-246, 42-245, 42-244, 42-243, 42-242, 42-241, 42-240,

41-246, 41-245, 41-244, 41-243, 41-242, 41-241, 41-240,
40-246, 40-245, 40-244, 40-243, 40-242, 40-241, 40-240,
39-246, 39-245, 39-244, 39-243, 39-242, 39-241, 39-240,
38-246, 38-245, 38-244, 38-243, 38-242, 38-241, 38-240,
5 37-246, 37-245, 37-244, 37-243, 37-242, 37-241, 37-240,
36-246, 36-245, 36-244, 36-243, 36-242, 36-241, 36-240,
35-246, 35-245, 35-244, 35-243, 35-242, 35-241, 35-240,
34-246, 34-245, 34-244, 34-243, 34-242, 34-241, 34-240,

of SEQ ID NO:89.

10 Additional suitable fragments of murine B7-1 include, but are not limited to, the following:

38-246, 38-247, 38-248, 38-249, 38-250, 38-251, 38-252,
39-246, 39-247, 39-248, 39-249, 39-250, 39-251, 39-252,
40-246, 40-247, 40-248, 40-249, 40-250, 40-251, 40-252,
15 41-246, 41-247, 41-248, 41-249, 41-250, 41-251, 41-252,
42-246, 42-247, 42-248, 42-249, 42-250, 42-251, 42-252,

of SEQ ID NO:7, optionally with one to five amino acids of a signal peptide attached to the N-terminal end. The signal peptide may be any disclosed herein, including the signal peptide contained within SEQ ID NO:7, or may 20 be any signal peptide known in the art.

Exemplary suitable fragments of human B7-1 that can be used as a costimulatory polypeptide domain include, but are not limited to, the following:

39-243, 39-242, 39-241, 39-240, 39-239, 39-238, 39-237,
25 38-243, 38-242, 38-241, 38-240, 38-239, 38-238, 38-237,
37-243, 37-242, 37-241, 37-240, 37-239, 37-238, 37-237,
36-243, 36-242, 36-241, 36-240, 36-239, 36-238, 36-237,
35-243, 35-242, 35-241, 35-190, 35-239, 35-238, 35-237,
34-243, 34-242, 34-241, 34-240, 34-239, 34-238, 34-237,
30 33-243, 33-242, 33-241, 33-240, 33-239, 33-238, 33-237,
32-243, 32-242, 32-241, 32-240, 32-239, 32-238, 32-237,
31-243, 31-242, 31-241, 31-240, 31-239, 31-238, 31-237,

of SEQ ID NO:92.

Additional suitable fragments of human B7-1 include, but are not limited to, the following:

35-243, 35-244, 35-245, 35-246, 35-247, 35-248, 35-249,
36-243, 36-244, 36-245, 36-246, 36-247, 36-248, 36-249,
5 37-243, 37-244, 37-245, 37-246, 37-247, 37-248, 37-249,
38-243, 38-244, 38-245, 38-246, 38-247, 38-248, 38-249,
39-243, 39-244, 39-245, 39-246, 39-247, 39-248, 39-249,
of SEQ ID NO:9, optionally with one to five amino acids of a signal peptide attached to the N-terminal end. The signal peptide may be any disclosed
10 herein, including the signal peptide contained within SEQ ID NO:9, or may be any signal peptide known in the art.

B7-2

Exemplary suitable fragments of murine B7-2 that can be used as a costimulatory polypeptide domain include, but are not limited to, the
15 following:

28-244, 28-243, 28-242, 28-241, 28-240, 28-239, 28-238,
27-244, 27-243, 27-242, 27-241, 27-240, 27-239, 27-238,
26-244, 26-243, 26-242, 26-241, 26-240, 26-239, 26-238,
25-244, 25-243, 25-242, 25-241, 25-240, 25-239, 25-238,
20 24-244, 24-243, 24-242, 24-241, 24-240, 24-239, 24-238,
23-244, 23-243, 23-242, 23-241, 23-240, 23-239, 23-238,
22-244, 22-243, 22-242, 22-241, 22-240, 22-239, 22-238,
21-244, 21-243, 21-242, 21-241, 21-240, 21-239, 21-238,
20-244, 20-243, 20-242, 20-241, 20-240, 20-239, 20-238,
25 of SEQ ID NO:95.

Additional suitable fragments of murine B7-2 include, but are not limited to, the following:

24-244, 24-245, 24-246, 24-247, 24-248, 24-249, 24-250,
25-244, 25-245, 25-246, 25-247, 25-248, 25-249, 25-250,
30 26-244, 26-245, 26-246, 26-247, 26-248, 26-249, 26-250,
27-244, 27-245, 27-246, 27-247, 27-248, 27-249, 27-250,
28-244, 28-245, 28-246, 28-247, 28-248, 28-249, 28-250,

of SEQ ID NO:11, optionally with one to five amino acids of a signal peptide attached to the N-terminal end. The signal peptide may be any

disclosed herein, including the signal peptide contained within SEQ ID NO:11, or may be any signal peptide known in the art.

Exemplary suitable fragments of human B7-2 that can be used as a costimulatory polypeptide domain include, but are not limited to, the 5 following:

28-247, 28-246, 28-245, 28-244, 28-243, 28-242, 28-241,
27-247, 27-246, 27-245, 27-244, 27-243, 27-242, 27-241,
26-247, 26-246, 26-245, 26-244, 26-243, 26-242, 26-241,
25-247, 25-246, 25-245, 25-244, 25-243, 25-242, 25-241,
10 24-247, 24-246, 24-245, 24-244, 24-243, 24-242, 24-241,
23-247, 23-246, 23-245, 23-244, 23-243, 23-242, 23-241,
22-247, 22-246, 22-245, 22-244, 22-243, 22-242, 22-241,
21-247, 21-246, 21-245, 21-244, 21-243, 21-242, 21-241,
20-247, 20-246, 20-245, 20-244, 20-243, 20-242, 20-241,
15 of SEQ ID NO:98.

Additional suitable fragments of human B7-2 include, but are not limited to, the following:

24-247, 24-248, 24-249, 24-250, 24-251, 24-252, 24-253,
25-247, 25-248, 25-249, 25-250, 25-251, 25-252, 25-253,
20 26-247, 26-248, 26-249, 26-250, 26-251, 26-252, 26-253,
27-247, 27-248, 27-249, 27-250, 27-251, 27-252, 27-253,
28-247, 28-248, 28-249, 28-250, 28-251, 28-252, 28-253,

of SEQ ID NO:13, optionally with one to five amino acids of a signal peptide attached to the N-terminal end. The signal peptide may be any 25 disclosed herein, including the signal peptide contained within SEQ ID NO:13, or may be any signal peptide known in the art.

B7-H5

Exemplary suitable fragments of murine B7-H5 that can be used as a costimulatory polypeptide domain include, but are not limited to, the 30 following:

37-190, 37-189, 37-188, 37-187, 37-186, 37-185, 37-184,
36-190, 36-189, 36-188, 36-187, 36-186, 36-185, 36-184,
35-190, 35-189, 35-188, 35-187, 35-186, 35-185, 35-184,
34-190, 34-189, 34-188, 34-187, 34-186, 34-185, 34-184,

33-190, 33-189, 33-188, 33-187, 33-186, 33-185, 33-184,
32-190, 32-189, 32-188, 32-187, 32-186, 32-185, 32-184,
31-190, 31-189, 31-188, 31-187, 31-186, 31-185, 31-184,
30-190, 30-189, 30-188, 30-187, 30-186, 30-185, 30-184,
5 29-190, 29-189, 29-188, 29-187, 29-186, 29-185, 29-184,
of SEQ ID NO:101.

Additional suitable fragments of murine B7-H5 include, but are not limited to, the following:

33-190, 33-191, 33-192, 33-193, 33-194, 33-195, 33-196,
10 34-190, 34-191, 34-192, 34-193, 34-194, 34-195, 34-196,
35-190, 35-191, 35-192, 35-193, 35-194, 35-195, 35-196,
36-190, 36-191, 36-192, 36-193, 36-194, 36-195, 36-196,
37-190, 37-191, 37-192, 37-193, 37-194, 37-195, 37-196,
of SEQ ID NO:15, optionally with one to five amino acids of a signal
15 peptide attached to the N-terminal end. The signal peptide may be any disclosed herein, including the signal peptide contained within SEQ ID NO:15, or may be any signal peptide known in the art.

Exemplary suitable fragments of human B7-H5 that can be used as a costimulatory polypeptide domain include, but are not limited to, the
20 following:

37-193, 37-192, 37-191, 37-190, 37-189, 37-188, 37-187,
36-193, 36-192, 36-191, 36-190, 36-189, 36-188, 36-187,
35-193, 35-192, 35-191, 35-190, 35-189, 35-188, 35-187,
34-193, 34-192, 34-191, 34-190, 34-189, 34-188, 34-187,
25 33-193, 33-192, 33-191, 33-190, 33-189, 33-188, 33-187,
32-193, 32-192, 32-191, 32-190, 32-189, 32-188, 32-187,
31-193, 31-192, 31-191, 31-190, 31-189, 31-188, 31-187,
30-193, 30-192, 30-191, 30-190, 30-189, 30-188, 30-187,
29-193, 29-192, 29-191, 29-190, 29-189, 29-188, 29-187,
30 of SEQ ID NO:104.

Additional suitable fragments of human B7-H5 include, but are not limited to, the following:

33-193, 33-194, 33-195, 33-196, 33-197, 33-198, 33-199,
34-193, 34-194, 34-195, 34-196, 34-197, 34-198, 34-199,

35-193, 35-194, 35-195, 35-196, 35-197, 35-198, 35-199,
36-193, 36-194, 36-195, 36-196, 36-197, 36-198, 36-199,
37-193, 37-194, 37-195, 37-196, 37-197, 37-198, 37-199,
of SEQ ID NO:17, optionally with one to five amino acids of a signal
5 peptide attached to the N-terminal end. The signal peptide may be any
disclosed herein, including the signal peptide contained within SEQ ID
NO:17, or may be any signal peptide known in the art.

b. Variant B7 costimulatory polypeptides

Variants of costimulatory molecules can also be used. In one
10 embodiment the variant B7 costimulatory polypeptide has the same activity,
substantially the same activity, or different activity as a reference B7
costimulatory polypeptide, for example a non-mutated B7-DC polypeptide.
Substantially the same activity means it retains the ability to costimulate T
cells.

15 Exemplary variant B7 co-stimulatory polypeptides include, but are
not limited to B7-1, B7-2, B7-H5 or B7-DC polypeptides that are mutated to
contain a deletion, substitution, insertion, or rearrangement of one or more
amino acids. A variant B7 costimulatory polypeptide can have any
combination of amino acid substitutions, deletions or insertions. In one
20 embodiment, isolated B7 variant polypeptides have an integer number of
amino acid alterations such that their amino acid sequence shares at least 60,
70, 80, 85, 90, 95, 97, 98, 99, 99.5 or 100% identity with an amino acid
sequence of a wild type B7 co-stimulatory polypeptide. In a preferred
embodiment, B7 variant polypeptides have an amino acid sequence sharing
25 at least 60, 70, 80, 85, 90, 95, 97, 98, 99, 99.5 or 100% identity with the
amino acid sequence of a wild type murine or wild type human B7
polypeptide (GenBank Accession Number NM_025239, NM_005191,
U04343, or NP_071436).

Percent sequence identity can be calculated using computer programs
30 or direct sequence comparison. Preferred computer program methods to
determine identity between two sequences include, but are not limited to, the
GCG program package, FASTA, BLASTP, and TBLASTN (see, e.g., D. W.
Mount, 2001, Bioinformatics: Sequence and Genome Analysis, Cold Spring
Harbor Laboratory Press, Cold Spring Harbor, N.Y.). The BLASTP and

TBLASTN programs are publicly available from NCBI and other sources. The well-known Smith Waterman algorithm may also be used to determine identity.

Exemplary parameters for amino acid sequence comparison include 5 the following: 1) algorithm from Needleman and Wunsch (*J. Mol. Biol.*, 48:443-453 (1970)); 2) BLOSSUM62 comparison matrix from Hentikoff and Hentikoff (*Proc. Natl. Acad. Sci. U.S.A.*, 89:10915-10919 (1992)) 3) gap 10 penalty = 12; and 4) gap length penalty = 4. A program useful with these parameters is publicly available as the “gap” program (Genetics Computer Group, Madison, Wis.). The aforementioned parameters are the default parameters for polypeptide comparisons (with no penalty for end gaps).

Alternatively, polypeptide sequence identity can be calculated using 15 the following equation: % identity = (the number of identical residues)/(alignment length in amino acid residues)*100. For this calculation, alignment length includes internal gaps but does not include terminal gaps.

Amino acid substitutions in B7 costimulatory polypeptides may be 20 “conservative” or “non-conservative”. As used herein, “conservative” amino acid substitutions are substitutions wherein the substituted amino acid has similar structural or chemical properties, and “non-conservative” amino acid substitutions are those in which the charge, hydrophobicity, or bulk of the substituted amino acid is significantly altered. Non-conservative 25 substitutions will differ more significantly in their effect on maintaining (a) the structure of the peptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain.

Examples of conservative amino acid substitutions include those in 30 which the substitution is within one of the five following groups: 1) small aliphatic, nonpolar or slightly polar residues (Ala, Ser, Thr, Pro, Gly); 2) polar, negatively charged residues and their amides (Asp, Asn, Glu, Gln); polar, positively charged residues (His, Arg, Lys); large aliphatic, nonpolar residues (Met, Leu, Ile, Val, Cys); and large aromatic residues (Phe, Tyr, Trp). Examples of non-conservative amino acid substitutions are those where 1) a 35 hydrophilic residue, e.g., seryl or threonyl, is substituted for (or by) a

hydrophobic residue, e.g., leucyl, isoleucyl, phenylalanyl, valyl, or alanyl; 2) a cysteine or proline is substituted for (or by) any other residue; 3) a residue having an electropositive side chain, e.g., lysyl, arginyl, or histidyl, is substituted for (or by) an electronegative residue, e.g., glutamyl or aspartyl; 5 or 4) a residue having a bulky side chain, e.g., phenylalanine, is substituted for (or by) a residue that does not have a side chain, e.g., glycine.

B7 family molecules are expressed at the cell surface with a membrane proximal constant IgC domain and a membrane distal IgV domain. Receptors for these ligands share a common extracellular IgV-like 10 domain. Interactions of receptor-ligand pairs are mediated predominantly through residues in the IgV domains of the ligands and receptors. In general, IgV domains are described as having two sheets that each contain a layer of β -strands. These β -strands are referred to as A', B, C, C', C'', D, E, F and G. In one embodiment the B7 variant polypeptides contain amino acid 15 alterations (i.e., substitutions, deletions or insertions) within one or more of these β -strands in any possible combination. In another embodiment, B7 variants contain one or more amino acid alterations (i.e., substitutions, deletions or insertions) within the A', C, C', C'', D, E, F or G β -strands. In a preferred embodiment B7 variants contain one or more amino acid 20 alterations in the G β -strand.

An exemplary variant B7-DC co-stimulatory polypeptide is one that is mutated so that it retains its ability to enhance T cell activity, but shows reduced PD-1 binding activity. Accordingly, with respect to murine human or non-human primate B7-DC co-stimulatory polypeptides, a variant B7-DC 25 polypeptide can contain, without limitation, substitutions, deletions or insertions at position 33 of the A' β -strand, positions 39 or 41 of the B β -strand, positions 56 or 58 of the C β -strand, positions 65 or 67 of the C' β -strand, positions 71 or 72 of the C'' β -strand, position 84 of the D β -strand, position 88 of the E β -strand, positions 101, 103 or 105 of the F β -strand, or 30 positions 110, 111, 113 or 116 of the G β -strand. These amino acid positions are relative to the full length amino acid sequences of murine and human B7-DC provided by SEQ ID NO:1 and SEQ ID NO:3, respectively. It will be appreciated that fragments of murine and human B7-DC polypeptides may

contain substitutions, deletions or insertions at corresponding amino acid positions.

In one embodiment, variant B7-DC polypeptides contain a substitution at position 33 (e.g., a serine substitution for aspartic acid at position 33), a substitution at position 39 (e.g., a tyrosine substitution for serine at position 39), a substitution at position 41 (e.g., a serine substitution for glutamic acid at position 41), a substitution at position 56 (e.g., a serine substitution for arginine at position 56), a substitution at position 58 (e.g., a tyrosine substitution for serine at position 58), a substitution at position 65 (e.g., a serine substitution for aspartic acid at position 65), a substitution at position 67 (e.g., a tyrosine substitution for serine at position 67), a substitution at position 71 (e.g., a serine substitution for glutamic acid at position 71), a substitution at position 72 (e.g., a serine substitution for arginine at position 72), a substitution at position 84 (e.g., a serine substitution for lysine at position 84), a substitution at position 88 (e.g., an alanine substitution for histidine at position 88), a substitution at position 101 (e.g., a serine substitution for arginine at position 101), a substitution at position 103 (e.g., an alanine substitution for leucine at position 103), a substitution at position 105 (e.g., an alanine substitution for isoleucine at position 105), a substitution at position 110 (e.g., an alanine substitution for tryptophan at position 110), a substitution at position 111 (e.g., a serine substitution for aspartic acid at position 111), a substitution at position 113 (e.g., a serine substitution for lysine at position 113), or a substitution at position 116 (e.g., a tyrosine substitution for threonine at position 116).

It is understood, however, that substitutions at the recited amino acid positions can be made using any amino acid or amino acid analog. For example, the substitutions at the recited positions can be made with any of the naturally-occurring amino acids (e.g., alanine, aspartic acid, asparagine, arginine, cysteine, glycine, glutamic acid, glutamine, histidine, leucine, valine, isoleucine, lysine, methionine, proline, threonine, serine, phenylalanine, tryptophan, or tyrosine).

In one embodiment, the costimulatory polypeptide domain of the fusion protein includes the extracellular domain of human B7-DC with a K113S substitution provided by SEQ ID NO:64, or a fragment thereof:

MIFLLLMLSL	ELQLHQIAAL	FTVTVPKELY	IIEHGSNVTL	ECNFDTGSHV	NLGAITASLQ	60
KVENDTSPHR	ERATLLEEQL	PLGKASFHIP	QVQVRDEGQQ	QCIIIIYGVAW	DYSYLTALKV	120
ASYRKINTHI	LKVPEDEVE	LTCQATGYPL	AEVSWPNVSV	PANTSHSRTP	EGLYQVTSVL	180
RLKPPPGRNF	SCVFWNTHVR	ELTLASIDLQ	SQMEPRTHPT	W		221

5 (SEQ ID NO:64).

It will be appreciated that the signal sequence will be removed in the mature protein. Additionally, it will be appreciated that signal peptides from other organisms can be used to enhance the secretion of the fusion protein from a host during manufacture. SEQ ID NO:65 provides the human amino acid sequence of SEQ ID NO:64 without the signal sequence:

LFTVTVPKEL	YIIIEHGSNT	LECNFDTGSH	VNLGAI	TASL	QKVENDTSPH	RERATLLEE	60
LPLGKASFHI	PQVQVRDEGQ	YQCIIIIYGVA	WDYSYLTALKV	KASYRKINTH	ILKVPE	120	
ELTCQATGYP	LAEVSWPNVS	VPANTSHSRT	PEGLYQVTSV	LRLKPPPGRN	FSCVFWNTHV	180	
RELTLASIDL	QSQMEPRTHP	TW				202	

15 (SEQ ID NO:65).

In another embodiment, the costimulatory polypeptide domain of the fusion protein includes the IgV domain of human B7-DC with a K113S substitution provided by SEQ ID NO:66, or a fragment thereof:

FTVTVPKELY	IIEHGSNVTL	ECNFDTGSHV	NLGAITASLQ	KVENDTSPHR	ERATLLEEQL	60
PLGKASFHIP	QVQVRDEGQQ	QCIIIIYGVAW	DYSYLTALK			98

(SEQ ID NO:66).

In another embodiment, the costimulatory polypeptide domain of the fusion protein includes the extracellular domain of human B7-DC with a D111S substitution provided by SEQ ID NO:67, or a fragment thereof:

MIFLLLMLSL	ELQLHQIAAL	FTVTVPKELY	IIEHGSNVTL	ECNFDTGSHV	NLGAITASLQ	60
KVENDTSPHR	ERATLLEEQL	PLGKASFHIP	PQVQVRDEGQ	YQCIIIIYGVA	WSYKYLTLKV	120
ASYRKINTHI	LKVPEDEVE	LTCQATGYPL	AEVSWPNVSV	PANTSHSRTP	EGLYQVTSVL	180
RLKPPPGRNF	SCVFWNTHVR	ELTLASIDLQ	SQMEPRTHPT	W		221

(SEQ ID NO:67).

30 It will be appreciated that the signal sequence will be removed in the mature protein. Additionally, it will be appreciated that signal peptides from other organisms can be used to enhance the secretion of the fusion protein from a host during manufacture. SEQ ID NO:68 provides the human amino acid sequence of SEQ ID NO:67 without the signal sequence:

LFTVTVPKEL	YIIIEHGSNT	LECNFDTGSH	VNLGAI	TASL	QKVENDTSPH	RERATLLEE	60
LPLGKASFHI	PQVQVRDEGQ	YQCIIIIYGVA	WSYKYLTLKV	KASYRKINTH	ILKVPE	120	
ELTCQATGYP	LAEVSWPNVS	VPANTSHSRT	PEGLYQVTSV	LRLKPPPGRN	FSCVFWNTHV	180	
RELTLASIDL	QSQMEPRTHP	TW				202	

(SEQ ID NO:68).

In another embodiment, the costimulatory polypeptide domain of the fusion protein includes the IgV domain of human B7-DC with a D111S substitution provided by SEQ ID NO:69, or a fragment thereof:

5 FTVTVPKELY IIEHGSNVTLC CNFDTGSHV NLGAITASLQ KVENDTSPHR ERATLLEEQL 60
PLGKASFHIP QVQVRDEGQY QCIIYGVAW SYKYLTLK 98
(SEQ ID NO:69).

10 While the substitutions described herein are with respect to mouse and human B7-DC, it is noted that one of ordinary skill in the art could readily make equivalent alterations in the corresponding polypeptides from other species (e.g., mouse, rat, hamster, guinea pig, gerbil, rabbit, dog, cat, horse, pig, sheep, cow or non-human primate).

15 It will be appreciated that nucleic acids encoding the disclosed fusion polypeptides may be optimized for expression in the expression host of choice. Codons may be substituted with alternative codons encoding the same amino acid to account for differences in codon usage between the mammal from which the nucleic acid sequence is derived and the expression host. In this manner, the nucleic acids may be synthesized using expression host-preferred codons.

20 **c. Properties of variant B7 costimulatory polypeptides**

25 The disclosed B7 costimulatory polypeptides and variants and fragments thereof are capable of activating T cells. The T cell response that results from the interaction typically is greater than the response in the absence of the costimulatory polypeptide. The response of the T cell in the absence of the costimulatory polypeptide can be no response or can be a response significantly lower than in the presence of the costimulatory polypeptide.

30 Exemplary variants of costimulatory polypeptides are those that have an insertion, deletion, or substitution of one or more amino acids that reduces or prevents the co-stimulatory molecule from participating in signal transduction pathways that transmit inhibitory signals in T cells.

Methods for measuring the binding affinity between two molecules are well known in the art. Methods for measuring the binding affinity of B7 variant polypeptides to receptors include, but are not limited to, fluorescence

activated cell sorting (FACS), surface plasmon resonance, fluorescence anisotropy, affinity chromatography and affinity selection-mass spectrometry.

Methods for measuring costimulation of T cells are well known in the art and include measurements of T cell proliferation and secretion of 5 cytokines, including, but not limited to, IL-2, IL-4, IL-5, IL-6, IL-10, IL-13, and IFN- γ . Proliferation of T cells can be measured by a number of methods including, but not limited to, cell counting, measuring DNA synthesis by uptake of labeled nucleotides (such as [3 H] TdR and BrdU) and measuring metabolic activity with tetrazolium salts. Methods for measuring the 10 secretion of cytokines include, but are not limited to, ELISA.

B. Antigen-binding targeting domain

The fusion proteins also contain antigen-binding targeting domains. In some embodiments, the targeting domains bind to antigens, ligands or receptors that are specific to tumor cells or tumor-associated neovasculature, 15 or are upregulated in tumor cells or tumor-associated neovasculature compared to normal tissue. In some embodiments, the targeting domains bind to antigens, ligands or receptors that are specific to immune tissue involved in the regulation of T cell activation in response to infectious disease causing agents.

20 **1. Tumor/tumor-associated vasculature targeting**

domains

a. Antigens, ligands and receptors to target

i. Tumor-specific and tumor-associated antigens

25 In one embodiment the fusion proteins contain a domain that specifically binds to an antigen that is expressed by tumor cells. The antigen expressed by the tumor may be specific to the tumor, or may be expressed at a higher level on the tumor cells as compared to non-tumor cells. Antigenic markers such as serologically defined markers known as tumor associated 30 antigens, which are either uniquely expressed by cancer cells or are present at markedly higher levels (e.g., elevated in a statistically significant manner) in subjects having a malignant condition relative to appropriate controls, are contemplated for use in certain embodiments.

Tumor-associated antigens may include, for example, cellular oncogene-encoded products or aberrantly expressed proto-oncogene-encoded products (e.g., products encoded by the neu, ras, trk, and kit genes), or mutated forms of growth factor receptor or receptor-like cell surface molecules (e.g., surface receptor encoded by the c-erb B gene). Other tumor-associated antigens include molecules that may be directly involved in transformation events, or molecules that may not be directly involved in oncogenic transformation events but are expressed by tumor cells (e.g., carcinoembryonic antigen, CA-125, melanoma associated antigens, etc.)

5 (see, e.g., U.S. Pat. No. 6,699,475; Jager, et al., *Int. J. Cancer*, 106:817-20 (2003); Kennedy, et al., *Int. Rev. Immunol.*, 22:141-72 (2003); Scanlan, et al. *Cancer Immun.*, 4:1 (2004)).

10

Genes that encode cellular tumor associated antigens include cellular oncogenes and proto-oncogenes that are aberrantly expressed. In general, 15 cellular oncogenes encode products that are directly relevant to the transformation of the cell, and because of this, these antigens are particularly preferred targets for immunotherapy. An example is the tumorigenic neu gene that encodes a cell surface molecule involved in oncogenic transformation. Other examples include the ras, kit, and trk genes. The 20 products of proto-oncogenes (the normal genes which are mutated to form oncogenes) may be aberrantly expressed (e.g., overexpressed), and this aberrant expression can be related to cellular transformation. Thus, the product encoded by proto-oncogenes can be targeted. Some oncogenes encode growth factor receptor molecules or growth factor receptor-like 25 molecules that are expressed on the tumor cell surface. An example is the cell surface receptor encoded by the c-erbB gene. Other tumor-associated antigens may or may not be directly involved in malignant transformation. These antigens, however, are expressed by certain tumor cells and may therefore provide effective targets. Some examples are carcinoembryonic 30 antigen (CEA), CA 125 (associated with ovarian carcinoma), and melanoma specific antigens.

In ovarian and other carcinomas, for example, tumor associated antigens are detectable in samples of readily obtained biological fluids such as serum or mucosal secretions. One such marker is CA125, a carcinoma

associated antigen that is also shed into the bloodstream, where it is detectable in serum (e.g., Bast, et al., *N. Eng. J. Med.*, 309:883 (1983); Lloyd, et al., *Int. J. Canc.*, 71:842 (1997). CA125 levels in serum and other biological fluids have been measured along with levels of other markers, for example, carcinoembryonic antigen (CEA), squamous cell carcinoma antigen (SCC), tissue polypeptide specific antigen (TPS), sialyl TN mucin (STN), and placental alkaline phosphatase (PLAP), in efforts to provide diagnostic and/or prognostic profiles of ovarian and other carcinomas (e.g., Sarandakou, et al., *Acta Oncol.*, 36:755 (1997); Sarandakou, et al., *Eur. J. Gynaecol. Oncol.*, 19:73 (1998); Meier, et al., *Anticancer Res.*, 17(4B):2945 (1997); Kudoh, et al., *Gynecol. Obstet. Invest.*, 47:52 (1999)). Elevated serum CA125 may also accompany neuroblastoma (e.g., Hirokawa, et al., *Surg. Today*, 28:349 (1998), while elevated CEA and SCC, among others, may accompany colorectal cancer (Gebauer, et al., *Anticancer Res.*, 17(4B):2939 (1997)).

The tumor associated antigen, mesothelin, defined by reactivity with monoclonal antibody K-1, is present on a majority of squamous cell carcinomas including epithelial ovarian, cervical, and esophageal tumors, and on mesotheliomas (Chang, et al., *Cancer Res.*, 52:181 (1992); Chang, et al., *Int. J. Cancer*, 50:373 (1992); Chang, et al., *Int. J. Cancer*, 51:548 (1992); Chang, et al., *Proc. Natl. Acad. Sci. USA*, 93:136 (1996); Chowdhury, et al., *Proc. Natl. Acad. Sci. USA*, 95:669 (1998)). Using MAb K-1, mesothelin is detectable only as a cell-associated tumor marker and has not been found in soluble form in serum from ovarian cancer patients, or in medium conditioned by OVCAR-3 cells (Chang, et al., *Int. J. Cancer*, 50:373 (1992)). Structurally related human mesothelin polypeptides, however, also include tumor-associated antigen polypeptides such as the distinct mesothelin related antigen (MRA) polypeptide, which is detectable as a naturally occurring soluble antigen in biological fluids from patients having malignancies (see WO 00/50900).

A tumor antigen may include a cell surface molecule. Tumor antigens of known structure and having a known or described function, include the following cell surface receptors: HER1 (GenBank Accession No. U48722), HER2 (Yoshino, et al., *J. Immunol.*, 152:2393 (1994); Disis, et al.,

Canc. Res., 54:16 (1994); GenBank Acc. Nos. X03363 and M17730), HER3 (GenBank Acc. Nos. U29339 and M34309), HER4 (Plowman, et al., *Nature*, 366:473 (1993); GenBank Acc. Nos. L07868 and T64105), epidermal growth factor receptor (EGFR) (GenBank Acc. Nos. U48722, and K03193),

5 vascular endothelial cell growth factor (GenBank No. M32977), vascular endothelial cell growth factor receptor (GenBank Acc. Nos. AF022375, 1680143, U48801 and X62568), insulin-like growth factor-I (GenBank Acc. Nos. X00173, X56774, X56773, X06043, European Patent No. GB 2241703), insulin-like growth factor-II (GenBank Acc. Nos. X03562,

10 X00910, M17863 and M17862), transferrin receptor (Trowbridge and Omary, *Proc. Nat. Acad. USA*, 78:3039 (1981); GenBank Acc. Nos. X01060 and M11507), estrogen receptor (GenBank Acc. Nos. M38651, X03635, X99101, U47678 and M12674), progesterone receptor (GenBank Acc. Nos. X51730, X69068 and M15716), follicle stimulating hormone receptor (FSH-R) (GenBank Acc. Nos. Z34260 and M65085), retinoic acid receptor (GenBank Acc. Nos. L12060, M60909, X77664, X57280, X07282 and X06538), MUC-1 (Barnes, et al., *Proc. Nat. Acad. Sci. USA*, 86:7159 (1989); GenBank Acc. Nos. M65132 and M64928) NY-ESO-1 (GenBank Acc. Nos. AJ003149 and U87459), NA 17-A (PCT Publication No. WO 96/40039),

15 Melan-A/MART-1 (Kawakami, et al., *Proc. Nat. Acad. Sci. USA*, 91:3515 (1994); GenBank Acc. Nos. U06654 and U06452), tyrosinase (Topalian, et al., *Proc. Nat. Acad. Sci. USA*, 91:9461 (1994); GenBank Acc. No. M26729; Weber, et al., *J. Clin. Invest*, 102:1258 (1998)), Gp-100 (Kawakami, et al., *Proc. Nat. Acad. Sci. USA*, 91:3515 (1994); GenBank Acc. No. S73003,

20 Adema, et al., *J. Biol. Chem.*, 269:20126 (1994)), MAGE (van den Bruggen, et al., *Science*, 254:1643 (1991)); GenBank Acc. Nos. U93163, AF064589, U66083, D32077, D32076, D32075, U10694, U10693, U10691, U10690, U10689, U10688, U10687, U10686, U10685, L18877, U10340, U10339, L18920, U03735 and M77481), BAGE (GenBank Acc. No. U19180; U.S.

25 Pat. Nos. 5,683,886 and 5,571,711), GAGE (GenBank Acc. Nos. AF055475, AF055474, AF055473, U19147, U19146, U19145, U19144, U19143 and U19142), any of the CTA class of receptors including in particular HOM-MEL-40 antigen encoded by the SSX2 gene (GenBank Acc. Nos. X86175, U90842, U90841 and X86174), carcinoembryonic antigen (CEA, Gold and

Freedman, *J. Exp. Med.*, 121:439 (1985); GenBank Acc. Nos. M59710, M59255 and M29540), and PyLT (GenBank Acc. Nos. J02289 and J02038); p97 (melanotransferrin) (Brown, et al., *J. Immunol.*, 127:539-46 (1981); Rose, et al., *Proc. Natl. Acad. Sci. USA*, 83:1261-61 (1986)).

5 Additional tumor associated antigens include prostate surface antigen (PSA) (U.S. Pat. Nos. 6,677,157; 6,673,545); β -human chorionic gonadotropin β -HCG) (McManus, et al., *Cancer Res.*, 36:3476-81 (1976); Yoshimura, et al., *Cancer*, 73:2745-52 (1994); Yamaguchi, et al., *Br. J. Cancer*, 60:382-84 (1989); Alftan, et al., *Cancer Res.*, 52:4628-33 (1992)); 10 glycosyltransferase β -1,4-N-acetylgalactosaminyltransferases (GalNAc) (Hoon, et al., *Int. J. Cancer*, 43:857-62 (1989); Ando, et al., *Int. J. Cancer*, 40:12-17 (1987); Tsuchida, et al., *J. Natl. Cancer*, 78:45-54 (1987); Tsuchida, et al., *J. Natl. Cancer*, 78:55-60 (1987)); NUC18 (Lehmann, et al., *Proc. Natl. Acad. Sci. USA*, 86:9891-95 (1989); Lehmann, et al., *Cancer Res.*, 47:841-45 (1987)); melanoma antigen gp75 (Vijayasaradhi, et al., *J. Exp. Med.*, 171:1375-80 (1990); GenBank Accession No. X51455); human 15 cytokeratin 8; high molecular weight melanoma antigen (Natali, et al., *Cancer*, 59:55-63 (1987); keratin 19 (Datta, et al., *J. Clin. Oncol.*, 12:475-82 (1994)).

20 Tumor antigens of interest include antigens regarded in the art as “cancer/testis” (CT) antigens that are immunogenic in subjects having a malignant condition (Scanlan, et al., *Cancer Immun.*, 4:1 (2004)). CT antigens include at least 19 different families of antigens that contain one or more members and that are capable of inducing an immune response, 25 including but not limited to MAGEA (CT1); BAGE (CT2); MAGEB (CT3); GAGE (CT4); SSX (CT5); NY-ESO-1 (CT6); MAGEC (CT7); SYCP1 (C8); SPANXB1 (CT11.2); NA88 (CT18); CTAGE (CT21); SPA17 (CT22); OY-TES-1 (CT23); CAGE (CT26); HOM-TES-85 (CT28); HCA661 (CT30); NY-SAR-35 (CT38); FATE (CT43); and TPTE (CT44).

30 Additional tumor antigens that can be targeted, including a tumor-associated or tumor-specific antigen, include, but not limited to, alpha-actinin-4, Bcr-Abl fusion protein, Casp-8, beta-catenin, cdc27, cdk4, cdkn2a, coa-1, dek-can fusion protein, EF2, ETV6-AML1 fusion protein, LDLR-

fucosyltransferaseAS fusion protein, HLA-A2, HLA-A11, hsp70-2, KIAAO205, Mart2, Mum-1, 2, and 3, neo-PAP, myosin class I, OS-9, pml-RAR α fusion protein, PTPRK, K-ras, N-ras, Triosephosphate isomeras, Bage-1, Gage 3,4,5,6,7, GnTV, Herv-K-mel, Lage-1, Mage-5 A1,2,3,4,6,10,12, Mage-C2, NA-88, NY-Eso-1/Lage-2, SP17, SSX-2, and TRP2-Int2, MelanA (MART-I), gp100 (Pmel 17), tyrosinase, TRP-1, TRP-2, MAGE-1, MAGE-3, BAGE, GAGE-1, GAGE-2, p15(58), CEA, RAGE, NY-ESO (LAGE), SCP-1, Hom/Mel-40, PRAME, p53, H-Ras, HER-2/neu, BCR-ABL, E2A-PRL, H4-RET, IGH-IGK, MYL-RAR, Epstein Barr virus 10 antigens, EBNA, human papillomavirus (HPV) antigens E6 and E7, TSP-180, MAGE-4, MAGE-5, MAGE-6, p185erbB2, p180erbB-3, c-met, nm-23H1, PSA, TAG-72-4, CA 19-9, CA 72-4, CAM 17.1, NuMa, K-ras, β -Catenin, CDK4, Mum-1, p16, TAGE, PSMA, PSCA, CT7, telomerase, 43-9F, 5T4, 791Tgp72, α -fetoprotein, 13HCG, BCA225, BTAA, CA 125, CA 15 15-3 (CA 27.29\BCAA), CA 195, CA 242, CA-50, CAM43, CD68\KP1, CO-029, FGF-5, G250, Ga733 (EpCAM), HTgp-175, M344, MA-50, MG7-Ag, MOV18, NB\70K, NY-CO-1, RCAS1, SDCCAG16, TA-90 (Mac-2 binding protein\cyclophilin C-associated protein), TAAL6, TAG72, TLP, and TPS. Other tumor-associated and tumor-specific antigens are known to 20 those of skill in the art and are suitable for targeting by the disclosed fusion proteins.

ii. Antigens associated with tumor neovasculature

Protein therapeutics can be ineffective in treating tumors because they 25 are inefficient at tumor penetration. Tumor-associated neovasculature provides a readily accessible route through which protein therapeutics can access the tumor. In another embodiment the fusion proteins contain a domain that specifically binds to an antigen that is expressed by neovasculature associated with a tumor.

30 The antigen may be specific to tumor neovasculature or may be expressed at a higher level in tumor neovasculature when compared to normal vasculature. Exemplary antigens that are over-expressed by tumor-associated neovasculature as compared to normal vasculature include, but are

not limited to, VEGF/KDR, Tie2, vascular cell adhesion molecule (VCAM), endoglin and $\alpha_5\beta_3$ integrin/vitronectin. Other antigens that are over-expressed by tumor-associated neovasculature as compared to normal vasculature are known to those of skill in the art and are suitable for targeting 5 by the disclosed fusion proteins.

iii. Chemokines/chemokine receptors

In another embodiment, the fusion proteins contain a domain that specifically binds to a chemokine or a chemokine receptor. Chemokines are soluble, small molecular weight (8–14 kDa) proteins that bind to their 10 cognate G-protein coupled receptors (GPCRs) to elicit a cellular response, usually directional migration or chemotaxis. Tumor cells secrete and respond to chemokines, which facilitate growth that is achieved by increased endothelial cell recruitment and angiogenesis, subversion of immunological surveillance and maneuvering of the tumoral leukocyte profile to skew it 15 such that the chemokine release enables the tumor growth and metastasis to distant sites. Thus, chemokines are vital for tumor progression.

Based on the positioning of the conserved two N-terminal cysteine residues of the chemokines, they are classified into four groups namely CXC, CC, CX3C and C chemokines. The CXC chemokines can be further 20 classified into ELR+ and ELR– chemokines based on the presence or absence of the motif ‘glu-leu-arg (ELR motif)’ preceding the CXC sequence. The CXC chemokines bind to and activate their cognate chemokine receptors on neutrophils, lymphocytes, endothelial and epithelial cells. The CC chemokines act on several subsets of dendritic cells, lymphocytes, 25 macrophages, eosinophils, natural killer cells but do not stimulate neutrophils as they lack CC chemokine receptors except murine neutrophils. There are approximately 50 chemokines and only 20 chemokine receptors, thus there is considerable redundancy in this system of ligand/receptor interaction.

30 Chemokines elaborated from the tumor and the stromal cells bind to the chemokine receptors present on the tumor and the stromal cells. The autocrine loop of the tumor cells and the paracrine stimulatory loop between the tumor and the stromal cells facilitate the progression of the tumor.

Notably, CXCR2, CXCR4, CCR2 and CCR7 play major roles in tumorigenesis and metastasis. CXCR2 plays a vital role in angiogenesis and CCR2 plays a role in the recruitment of macrophages into the tumor microenvironment. CCR7 is involved in metastasis of the tumor cells into 5 the sentinel lymph nodes as the lymph nodes have the ligand for CCR7, CCL21. CXCR4 is mainly involved in the metastatic spread of a wide variety of tumors.

2. Molecular classes of targeting domains

a. Ligands and receptors

10 In one embodiment, tumor or tumor-associated neovasculature targeting domains are ligands that bind to cell surface antigens or receptors that are specifically expressed on tumor cells or tumor-associated neovasculature or are overexpressed on tumor cells or tumor-associated neovasculature as compared to normal tissue. Tumors also secrete a large 15 number of ligands into the tumor microenvironment that affect tumor growth and development. Receptors that bind to ligands secreted by tumors, including, but not limited to growth factors, cytokines and chemokines, including the chemokines provided above, are suitable for use in the disclosed fusion proteins. Ligands secreted by tumors can be targeted using 20 soluble fragments of receptors that bind to the secreted ligands. Soluble receptor fragments are fragments polypeptides that may be shed, secreted or otherwise extracted from the producing cells and include the entire extracellular domain, or fragments thereof.

25 **b. Single polypeptide antibodies**

In another embodiment, tumor or tumor-associated neovasculature targeting domains are single polypeptide antibodies that bind to cell surface antigens or receptors that are specifically expressed on tumor cells or tumor-associated neovasculature or are overexpressed on tumor cells or tumor-associated neovasculature as compared to normal tissue. Single domain 30 antibodies are described above with respect to coinhibitory receptor antagonist domains.

c. Fc domains

In another embodiment, tumor or tumor-associated neovasculature targeting domains are Fc domains of immunoglobulin heavy chains that bind to Fc receptors expressed on tumor cells or on tumor-associated neovasculature. The Fc region as used herein includes the polypeptides containing the constant region of an antibody excluding the first constant region immunoglobulin domain. Thus Fc refers to the last two constant region immunoglobulin domains of IgA, IgD, and IgG, and the last three constant region immunoglobulin domains of IgE and IgM. In a preferred embodiment, the Fc domain is derived from a human or murine immunoglobulin. In a more preferred embodiment, the Fc domain is derived from human IgG1 or murine IgG2a including the C_H2 and C_H3 regions.

In one embodiment, the hinge, C_H2 and C_H3 regions of a human immunoglobulin C_γ1 chain are encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:

15	gagcctaagt catgtgacaa gaccatacg tgcccaccct gtcccgctcc agaactgctg	60
	gggggaccta gcgtttctt gttccccc aagcccaagg acaccctcat gatctcacgg	120
	actccccaa gaag taacatgcgt agtagtcgac gtgagccacg aggatcctga agtgaagttt	180
	aattggtagc tggacggagt cgaggtgcat aatgccaaa ctaaacctcg ggaggagcag	240
20	tataacagta cctaccgcgt ggtatccgtc ttgacagtgc tccaccagga ctggctgaat	300
	ggttaaggagt ataaatgcaa ggtcagcaac aaagctttc ccgcggcaat tgaaaagact	360
	atcagcaagg ccaagggaca accccgcgag ccccgaggttt acacccttcc acttcacga	420
	gacgagctga ccaagaacca ggtgtctctg acttgtctgg tcaaagggtt ctatccttcc	480
	gacatcgca gtaggtggga gtcaaacggg cagcctgaga ataactacaa gaccacaccc	540
25	ccagtgcggat atagcgatgg gagcttttc ctctacagta agtgcgtgt ggacaaatcc	600
	cgctggcagc agggaaacgt tttctttgt agcgtcatgc atgaggccct ccacaaccat	660
	tatactcaga aaagcctgag tctgagtccc ggcaaa	696

(SEQ ID NO:70)

The hinge, C_H2 and C_H3 regions of a human immunoglobulin C_γ1 chain encoded by SEQ ID NO:70 has the following amino acid sequence:

30	EPKSCDKTHCPPCPAPELL GGPSVFLFPP KPKDTLMISR TPEVTCVVVD VSHEDPEVKF	60
	NWYVDGVEVH NAKTKPREEQ YNSTYRVVSV LTVLHQDWLN GKEYKCKVSN KALPAPIEKT	120
	ISKAKGQPREG QVYTLPPSR DELTKQVSL TCLVKGFYPS DIAVEWESNG QPENNYKTP	180
	PVLDSDGSFEL YSKLTVDKS RWQQGNVFSC SVMHEALHNH YTQKSLSLSP GK	232
35	(SEQ ID NO:71)	

In another embodiment, the hinge, C_H2 and C_H3 regions of a murine immunoglobulin C_γ2a chain are encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:

gagccaagag gtcctacgat caagccctgc ccgccttgta aatgcccaacg tccaaatttg	60
--	----

	ctgggtggac cgtcagtctt tatcttcccc ccaaagataa aggacgtctt gatgattagt	120
	ctgagcccca tcgtgacatg cgttgtggtg gatgttcaag aggatgaccc cgacgtgaa	180
	atcagtttgt tcgttaacaa cgtggagggtg cataccgctc aaaccagac ccacagagag	240
	gattataaca gcaccctgctg ggttagtgcgc gccctgccc tccagcatca ggattggatg	300
5	agcgggaaag agtcaagttaaagttaaac aacaaagatc tgccagcgcc gattgaacga	360
	accattagca agccgaaagg gagcgtgcgc gcacctcagg tttacgtctt tcctccacca	420
	gaagaggaga tgacgaaaaa gcaggtgacc ctgacatgca tggtaactga ctttatgcca	480
	gaagatattt acgtgaaatg gactataaac ggaaagacag agctcaatta caagaacact	540
	gagcctgttc tggattctga tggcagctac tttatgtact ccaaattgag ggtcgagaag	600
10	aagaattggg tcgagagaaaa cagttatagt tgctcagtgg tgcattggg cctccataat	660
	catcacacca caaagtccctt cagccgaacg cccggaaaa	699

(SEQ ID NO:72)

The hinge, C_H2 and C_H3 regions of a murine immunoglobulin C_γ2a chain encoded by SEQ ID NO:72 has the following amino acid sequence:

15	EPRGPTIKPC PPCKCPAPNL LGGPSVFIFF PKIKDVLMS LSPIVTCVVV DVSEDDPDVQ	60
	ISWFVNNVEV HTAQQTQTHRE DYNSTLRVVS ALPIQHQDWMM SGKEFKCKVN NKDLPPAPIER	120
	TISKPKGSVR APQVYVLPPP EEEEMTKKQVT LTCMVTDFMP EDIYVETWNN GKTELNYKNT	180
	EPVLDSDGSY FMYSKLRVEK KNWVERNSYS CSVVHEGLHN HHTTKSFSRT PGK	233

(SEQ ID NO:73)

20 In one embodiment, the Fc domain may contain one or more amino acid insertions, deletions or substitutions that enhance binding to specific Fc receptors that specifically expressed on tumors or tumor-associated neovasculature or are overexpressed on tumors or tumor-associated neovasculature relative to normal tissue. Suitable amino acid substitutions 25 include conservative and non-conservative substitutions, as described above.

The therapeutic outcome in patients treated with rituximab (a chimeric mouse/human IgG1 monoclonal antibody against CD20) for non-Hodgkin's lymphoma or Waldenstrom's macroglobulinemia correlated with the individual's expression of allelic variants of Fc_γ receptors with distinct 30 intrinsic affinities for the Fc domain of human IgG1. In particular, patients with high affinity alleles of the low affinity activating Fc receptor CD16A (Fc_γRIIA) showed higher response rates and, in the cases of non-Hodgkin's lymphoma, improved progression-free survival. In another embodiment, the Fc domain may contain one or more amino acid insertions, deletions or 35 substitutions that reduce binding to the low affinity inhibitory Fc receptor CD32B (Fc_γRIIB) and retain wild-type levels of binding to or enhance binding to the low affinity activating Fc receptor CD16A (Fc_γRIIA). In a preferred embodiment, the Fc domain contains amino acid insertions,

deletions or substitutions that enhance binding to CD16A. A large number of substitutions in the Fc domain of human IgG1 that increase binding to CD16A and reduce binding to CD32B are known in the art and are described in Stavenhagen, et al., *Cancer Res.*, 57(18):8882-90 (2007). Exemplary 5 variants of human IgG1 Fc domains with reduced binding to CD32B and/or increased binding to CD16A contain F243L, R929P, Y300L, V305I or P296L substitutions. These amino acid substitutions may be present in a human IgG1 Fc domain in any combination. In one embodiment, the human IgG1 Fc domain variant contains a F243L, R929P and Y300L substitution.

10 In another embodiment, the human IgG1 Fc domain variant contains a F243L, R929P, Y300L, V305I and P296L substitution.

d. Glycophosphatidylinositol anchor domain

In another embodiment, tumor or tumor-associated neovasculature targeting domains are polypeptides that provide a signal for the 15 posttranslational addition of a glycosylphosphatidylinositol (GPI) anchor. GPI anchors are glycolipid structures that are added posttranslationally to the C-terminus of many eukaryotic proteins. This modification anchors the attached protein in the outer leaflet of cell membranes. GPI anchors can be used to attach T cell receptor binding domains to the surface of cells for 20 presentation to T cells. In this embodiment, the GPI anchor domain is C-terminal to the T cell receptor binding domain.

In one embodiment, the GPI anchor domain is a polypeptide that signals for the posttranslational addition addition of a GPI anchor when the polypeptide is expressed in a eukaryotic system. Anchor addition is 25 determined by the GPI anchor signal sequence, which consists of a set of small amino acids at the site of anchor addition (the ω site) followed by a hydrophilic spacer and ending in a hydrophobic stretch (Low, *FASEB J.*, 3:1600-1608 (1989)). Cleavage of this signal sequence occurs in the ER before the addition of an anchor with conserved central components (Low, 30 *FASEB J.*, 3:1600-1608 (1989)) but with variable peripheral moieties (Homans et al., *Nature*, 333:269-272 (1988)). The C-terminus of a GPI-anchored protein is linked through a phosphoethanolamine bridge to the highly conserved core glycan, mannose(α 1-2)mannose(α 1-6)mannose(α 1-4)glucosamine(α 1-6)myo-

inositol. A phospholipid tail attaches the GPI anchor to the cell membrane. The glycan core can be variously modified with side chains, such as a phosphoethanolamine group, mannose, galactose, sialic acid, or other sugars. The most common side chain attached to the first mannose residue is another 5 mannose. Complex side chains, such as the *N*-acetylgalactosamine-containing polysaccharides attached to the third mannose of the glycan core, are found in mammalian anchor structures. The core glucosamine is rarely modified. Depending on the protein and species of origin, the lipid anchor of the phosphoinositol ring is a diacylglycerol, an alkylacylglycerol, or a 10 ceramide. The lipid species vary in length, ranging from 14 to 28 carbons, and can be either saturated or unsaturated. Many GPI anchors also contain an additional fatty acid, such as palmitic acid, on the 2-hydroxyl of the inositol ring. This extra fatty acid renders the GPI anchor resistant to cleavage by PI-PLC.

15 GPI anchor attachment can be achieved by expression of a fusion protein containing a GPI anchor domain in a eukaryotic system capable of carrying out GPI posttranslational modifications. GPI anchor domains can be used as the tumor or tumor vasculature targeting domain, or can be additionally added to fusion proteins already containing separate tumor or 20 tumor vasculature targeting domains.

In another embodiment, GPI anchor moieties are added directly to isolated T cell receptor binding domains through an *in vitro* enzymatic or chemical process. In this embodiment, GPI anchors can be added to polypeptides without the requirement for a GPI anchor domain. Thus, GPI 25 anchor moieties can be added to fusion proteins described herein having a T cell receptor binding domain and a tumor or tumor vasculature targeting domain. Alternatively, GPI anchors can be added directly to T cell receptor binding domain polypeptides without the requirement for fusion partners encoding tumor or tumor vasculature targeting domains.

30 **C. Peptide or polypeptide linker domain**

Fusion proteins disclosed herein optionally contain a peptide or polypeptide linker domain that separates the costimulatory polypeptide domain from the antigen-binding targeting domain.

1. Hinge region of antibodies

In one embodiment, the linker domain contains the hinge region of an immunoglobulin. In a preferred embodiment, the hinge region is derived from a human immunoglobulin. Suitable human immunoglobulins that the hinge can be derived from include IgG, IgD and IgA. In a preferred embodiment, the hinge region is derived from human IgG.

In another embodiment, the linker domain contains a hinge region of an immunoglobulin as described above, and further includes one or more additional immunoglobulin domains. In one embodiment, the additional domain includes the Fc domain of an immunoglobulin. The Fc region as used herein includes the polypeptides containing the constant region of an antibody excluding the first constant region immunoglobulin domain. Thus Fc refers to the last two constant region immunoglobulin domains of IgA, IgD, and IgG, and the last three constant region immunoglobulin domains of IgE and IgM. In a preferred embodiment, the Fc domain is derived from a human immunoglobulin. In a more preferred embodiment, the Fc domain is derived from human IgG including the C_H2 and C_H3 regions.

In another embodiment, the linker domain contains a hinge region of an immunoglobulin and either the C_H1 domain of an immunoglobulin heavy chain or the C_L domain of an immunoglobulin light chain. In a preferred embodiment, the C_H1 or C_L domain is derived from a human immunoglobulin. The C_L domain may be derived from either a κ light chain or a λ light chain. In a more preferred embodiment, the C_H1 or C_L domain is derived from human IgG.

Amino acid sequences of immunoglobulin hinge regions and other domains are well known in the art.

2. Other peptide/polypeptide linker domains

Other suitable peptide/polypeptide linker domains include naturally occurring or non-naturally occurring peptides or polypeptides. Peptide linker sequences are at least 2 amino acids in length. Preferably the peptide or polypeptide domains are flexible peptides or polypeptides. A “flexible linker” herein refers to a peptide or polypeptide containing two or more

amino acid residues joined by peptide bond(s) that provides increased rotational freedom for two polypeptides linked thereby than the two linked polypeptides would have in the absence of the flexible linker. Such rotational freedom allows two or more antigen binding sites joined by the 5 flexible linker to each access target antigen(s) more efficiently. Exemplary flexible peptides/polypeptides include, but are not limited to, the amino acid sequences Gly-Ser, Gly-Ser-Gly-Ser (SEQ ID NO:74), Ala-Ser, Gly-Gly-Gly-Ser (SEQ ID NO:75), (Gly₄-Ser)₃ (SEQ ID NO:76), (Gly₄-Ser)₄ (SEQ ID NO:77), and (Gly₄-Ser)₄ (SEQ ID NO:78). Additional flexible 10 peptide/polypeptide sequences are well known in the art.

D. Dimerization and multimerization domains

The fusion proteins disclosed herein optionally contain a dimerization or multimerization domain that functions to dimerize or multimerize two or more fusion proteins. The domain that functions to dimerize or multimerize 15 the fusion proteins can either be a separate domain, or alternatively can be contained within one of the other domains (T cell costimulatory/coinhibitory receptor binding domain, tumor/tumor neovasculature antigen-binding domain, or peptide/polypeptide linker domain) of the fusion protein.

1. Dimerization domains

20 A “dimerization domain” is formed by the association of at least two amino acid residues or of at least two peptides or polypeptides (which may have the same, or different, amino acid sequences). The peptides or polypeptides may interact with each other through covalent and/or non-covalent association(s). Preferred dimerization domains contain at least one 25 cysteine that is capable of forming an intermolecular disulfide bond with a cysteine on the partner fusion protein. The dimerization domain can contain one or more cysteine residues such that disulfide bond(s) can form between the partner fusion proteins. In one embodiment, dimerization domains contain one, two or three to about ten cysteine residues. In a preferred embodiment, the dimerization domain is the hinge region of an 30 immunoglobulin. In this particular embodiment, the dimerization domain is contained within the linker peptide/polypeptide of the fusion protein.

Additional exemplary dimerization domain can be any known in the art and include, but not limited to, coiled coils, acid patches, zinc fingers,

calcium hands, a C_H1-C_L pair, an “interface” with an engineered “knob” and/or “protruberance” as described in U.S. Pat. No. 5,821,333, leucine zippers (e.g., from jun and/or fos) (U.S. Pat. No. 5,932,448), SH2 (src homology 2), SH3 (src Homology 3) (Vidal, et al., *Biochemistry*, 43, 7336-44 ((2004))), phosphotyrosine binding (PTB) (Zhou, et al., *Nature*, 378:584-592 (1995)), WW (Sudol, *Prog. Biochys. Mol. Bio.*, 65:113-132 (1996)), PDZ (Kim, et al., *Nature*, 378: 85-88 (1995); Komau, et al., *Science*, 269:1737-1740 (1995)) 14-3-3, WD40 (Hu, et al., *J Biol Chem.*, 273, 33489-33494 (1998)) EH, Lim, an isoleucine zipper, a receptor dimer pair (e.g., interleukin-8 receptor (IL-8R); and integrin heterodimers such as LFA-1 and GPIIIb/IIIa), or the dimerization region(s) thereof, dimeric ligand polypeptides (e.g. nerve growth factor (NGF), neurotrophin-3 (NT-3), interleukin-8 (IL-8), vascular endothelial growth factor (VEGF), VEGF-C, VEGF-D, PDGF members, and brain-derived neurotrophic factor (BDNF) (Arakawa, et al., *J. Biol. Chem.*, 269(45): 27833-27839 (1994) and Radziejewski, et al., *Biochem.*, 32(48): 1350 (1993)) and can also be variants of these domains in which the affinity is altered. The polypeptide pairs can be identified by methods known in the art, including yeast two hybrid screens. Yeast two hybrid screens are described in U.S. Pat. Nos. 5,283,173 and 6,562,576, both of which are herein incorporated by reference in their entireties. Affinities between a pair of interacting domains can be determined using methods known in the art, including as described in Katahira, et al., *J. Biol. Chem.*, 277, 9242-9246 (2002)). Alternatively, a library of peptide sequences can be screened for heterodimerization, for example, using the methods described in WO 01/00814. Useful methods for protein-protein interactions are also described in U.S. Pat. No. 6,790,624.

2. Multimerization domains

A “multimerization domain” is a domain that causes three or more peptides or polypeptides to interact with each other through covalent and/or non-covalent association(s). Suitable multimerization domains include, but are not limited to, coiled-coil domains. A coiled-coil is a peptide sequence with a contiguous pattern of mainly hydrophobic residues spaced 3 and 4 residues apart, usually in a sequence of seven amino acids (heptad repeat) or eleven amino acids (undecad repeat), which assembles (folds) to form a

multimeric bundle of helices. Coiled-coils with sequences including some irregular distribution of the 3 and 4 residues spacing are also contemplated. Hydrophobic residues are in particular the hydrophobic amino acids Val, Ile, Leu, Met, Tyr, Phe and Trp. Mainly hydrophobic means that at least 50% of 5 the residues must be selected from the mentioned hydrophobic amino acids.

The coiled coil domain may be derived from laminin. In the extracellular space, the heterotrimeric coiled coil protein laminin plays an important role in the formation of basement membranes. Apparently, the multifunctional oligomeric structure is required for laminin function. Coiled 10 coil domains may also be derived from the thrombospondins in which three (TSP-1 and TSP-2) or five (TSP-3, TSP-4 and TSP-5) chains are connected, or from COMP (COMPcc) (Guo, et al., *EMBO J.*, 1998, 17: 5265-5272) which folds into a parallel five-stranded coiled coil (Malashkevich ,et al., *Science*, 274: 761-765 (1996)).

15 Additional coiled-coil domains derived from other proteins, and other domains that mediate polypeptide multimerization are known in the art and are suitable for use in the disclosed fusion proteins.

E. Exemplary fusion proteins

B7-DC

20 A representative murine B7-DC fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:

atgctgctcc	tgctgccat	actgaacctg	agcttacaac	ttcatcctgt	agcagctta	60	
ttcacggta	cagcccctaa	agaagtgtac	accgttagacg	tcggcagcag	tgtgagcctg	120	
25	gagtgcgatt	ttgaccgcag	agaatgcact	gaactggaag	ggataagagc	cagttgcag	180
	aaggtagaaa	atgataacgta	tctgcaaagt	gaaagagcca	ccctgctgga	ggagcagctg	240
	cccttggaa	aggcttgtt	ccacatccct	agtgtccaag	tgagagattc	cgggcagtag	300
	cgttgcctgg	tcatctgcgg	ggccgcctgg	gactacaagt	acgtgacggt	gaaagtcaaa	360
	gcttcttaca	tgaggataga	cactaggatc	ctggaggttc	caggtacagg	ggaggtgcag	420
30	cttacctgcc	aggctagagg	ttatccccta	gcagaagtgt	cctggcaaaa	tgtcagtgtt	480
	cctgccaaca	ccagccacat	caggaccccc	gaaggccctct	accaggtcac	cagtgttctg	540
	cgcctcaagc	ctcagcctag	cagaaacttc	agctgcatgt	tctggaatgc	tcacatgaag	600
	gagctgactt	cagccatcat	tgaccctctg	agtcggatgg	aacccaaagt	ccccagaacg	660
	tgggagccaa	gaggtcctac	gatcaagccc	tgccgcctt	gtaaatgccc	agctccaaat	720
35	ttgctgggtg	gaccgtcagt	ctttagtcttc	ccgccaaaga	taaaggacgt	cttgatgatt	780
	agtctgagcc	ccatcgtgac	atgcgttgt	gtggatgtt	cagaggatga	ccccgacgtg	840
	caaattcagg	ggttcgtaa	caacgtggag	gtgcataccg	ctcaaaccca	gaccacacaga	900
	gaggattata	acagcaccct	gccccgtatgt	tccgcctcgc	cgatccagca	tcaggattgg	960
	atgagcggga	aagagtcaa	gtgtaaggta	aacaacaaag	atctgccagc	gccgattgaa	1020

cgaaccatta gcaagccgaa agggagcgtg cgccgaccc tc aggttacgt ctttcccca 1080
 ccagaagagg agatgacgaa aaacgcggc acccgtacat gcatggtaac tgactttatg 1140
 ccagaagata ttacgtgga atggactaat aacggaaaga cagagctcaa ttacaagaac 1200
 actgagcccg ttctggattc tgatggcago tactttatgt actccaaatt gagggtcgag 1260
 5 aagaagaatt gggcggagaa aacagttat agttgctcag tggtgcata gggcctccat 1320
 aatcatcaca ccacaaagtc cttcagccga acgcccggga aatga 1365

(SEQ ID NO:79)

The murine B7-DC fusion protein encoded by SEQ ID NO:79 has the following amino acid sequence:

10 MLLLLPILNL SLQLHPVAAL FTVTAPKEVY TVDVGVSSVSL ECDFDRRECT ELEGIRASLQ 60
 KVENDTSLQS ERATLLEEQL PLGKALFHIP SVQVRDLSGQY RCLVICGAAW DYKYLTVKVK 120
 ASYMRIDTRI LEVPGTGEVQ LTCQARGYPL AEVSWQNVS PANTSHIRTP EGLYQVTSVL 180
 RLKPQPSRNF SCMFWNNAHMK ELTSAIIDPL SRMEPKVPRP WEPRGPTIKP CPPCKCPAPN 240
 LLGGPSVFI PPKIKDVLM SLSPIVTCVV VDVSEDDPDV QISWFVNNE VHTAQQTQTHR 300
 15 EDYNSTLRVV SALPIQHQDW MSGKEFKCKV NNKDLPLAPIE RTISKPKGSV RAPQVYVLPP 360
 PEEEMTKKQV TLTCMVTDFM PEDIYVEWTN NGKTELNYKN TEPVLDSDGS YFMYSKLRVE 420
 KKNWVERNSY SCSVVHEGLH NHHTTKSFSR RTPK 454

(SEQ ID NO:80)

The amino acid sequence of the murine B7-DC fusion protein of SEQ ID NO:80 without the signal sequence is:

LFTVTAPKEV YTVDVGSSVS LECDFDRREC TELEGIRASL QKVENDTSLQ SERATLLEEQ 60
 LPLGKALFHIP PSVQVRDLSGQ YRCLVICGAAW WDYKYLTVKVK KASYMRIDTR ILEVPGTGEV 120
 QLTCQARGYPL LAEVSWQNVS VPANTSHIRTP PEGLYQVTSV LRLKPQPSRN FSCMFWNNAHM 180
 KELTSAIIDP LSRMEPKVPR TWEPRGPTIK PCPPCKCPAP NLLGGPSVFI FPPKIKDVLM 240
 25 ISLSPIVTCV VDVSEDDPDV VQISWFVNNE EVHTAQQTQH REDYNSTLRV VSALPIQHQDW 300
 WMSGKEFKCKV VNNKDLPLAPI ERTISKPKGS VRAPQVYVLP PEEEMTKKQ VTLTCMVTDF 360
 MPEDIYVEWTN NNGKTELNYK NTEPVLDSDG SYFMYSKLRV EKKNWVERNS YSCSVVHEGL 420
 HNHHTTKSFSR RTPK 435

(SEQ ID NO:81).

30 A representative human B7-DC fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:

atgatctttc ttctcttgat gctgtctttg gaattgcaac ttccaccaat cgccggccctc 60
 tttactgtga ccgtgcacaaa agaactgtat atcattgagc acgggtccaa tgtgaccctc 120
 35 gaatgttaact ttgacacccgg cagccacgtt aacctggggg ccatcactgc cagttgcaa 180
 aaagttgaaa acgacacttc acctcaccgg gagagggcaa ccctcttggg ggagcaactg 240
 ccattggggg aggccctt ccatatccct caggtgcagg ttccggatga gggacagttac 300
 cagtgcatta ttatctacgg cgtggcttgg gattacaagt atctgaccct gaaggtgaaa 360
 40 gcgtccatc ggaaaattaa cactcacatt cttaagggtgc cagagacgga cgaggtggaa 420
 ctgacatgcc aagccacccgg ctacccgttg gcagagggtca gctggccaa cgtgagcgt 480
 cctgctaaca cttctcattc taggacaccc gagggcctct accaggttac atccgtgctc 540
 cgcctcaaac cggcccccagg cggaaatttt agttgcgtgt ttggaaatac ccacgtgcga 600
 gagctgactc ttgcataat tgatctgcag tcccagatgg agccacggac tcataccaact 660
 tggaaacctt aatcttgcga taaaactcat acctgtcccc cttgcccagc ccccgagctt 720

	ctgggaggtc ccagtgtgtt tctgtttccc ccaaaaaccta aggacacact tatgatatcc	780
	cgaacccgg aagtgacatg cgtggttgtg gacgtctcac acgaagaccc ggaggtgaaa	840
	ttcaactggt acgttgacgg agttgagggtt cataacgcta agaccaagcc cagagaggag	900
	caataacaatt ccacctatcg agtggtagt gtactgaccc tttgcacca agactggctg	960
5	aatggaaaag aatacaagtcaaaatgatca aacaaggctt tgcctgcacc catcgagaag	1020
	acaatttcta aagccaaagg gcagcccagg gaaccgcagg tgtacacact cccaccatcc	1080
	cgcgcacgacgc tgacaaagaa tcaagtatcc ctgacctgccc tggtaaagg cttttaccca	1140
	tctgacatttgcgttgcggatggaaatggaaatcacaacttgcgacacttgcata gtaagctcac tgcataag	1200
10	ccacctgtgc ttgacagcga cgggtcctt ttcctgtaca gtaagctcac tgcataag	1260
	tctcgctggc agcaggggcaa cgtctttca ttttttttttgcacgaagc tctgcacaac	1320
	cattacaccc agaagtctct gtcactgagc ccaggtaat ga	1362

(SEQ ID NO:82)

The human B7-DC fusion protein encoded by SEQ ID NO:82 has the following amino acid sequence:

15	MIFLLMLSL ELQLHQIAAL FTVTVPKELY IIEHGSNVTLCNFDTGSHVNLAGITASLQ	60
	KVENDTSPHR ERATLLEEQL PLGKASFHIP QVQVRDEGQY QCIIIIYGVADYKYLTLKVK	120
	ASYRKINTHI LKVPEDEVE LTCQATGYPL AEVSWPNVSV PANTSHSRTP EGLYQVTSVL	180
	RLKPPPGRNF SCVFWNTHVR ELTLASIDLQ SQMEPRTHPT WEPKSCDKTH TCPCPAPEL	240
	LGGPSVFLFP PKPKDTLMIS RTPEVTCVVV DVSHEDPEVK FNWYVDGVEV HNAKTKPREE	300
20	QYNSTYRVVSV LVTVLHQDWL NGKEYKCKVSNKALPAPIEK TISKAKGQPR EPOVYTLPPS	360
	RDELTKNQVS LTCLVKGFYP SDIAVEWESN GQPENNYKTT PPVLDSDGSF FLYSKLTVDK	420
	SRWQQGNVFS CSVMHEALHN HYTQKSLSLSPGK	453

(SEQ ID NO:83)

The amino acid sequence of the human B7-DC fusion protein of SEQ ID NO:83 without the signal sequence is:

	LFTVTVPKEL YIIEHGSNVTLCNFDTGSHVNLAGITASLQKVENDTSPHRERATLLEEQL	60
	LPLGKASFHIP QVQVRDEGQYQCIIIIYGVADYKYLTLKVKASYRKINTHILKVPEDEVE	120
	ELTCQATGYPLAEVSWPNVSVVPANTSHSRTPEGLYQVTSVLRLKPPPGRNFSCVFWNTHVR	180
	RELTLASIDLQSQMEPRTHPTWEPKSCDKTHTCPCPAPELLGGPSVFLFPKPKDTLMISRTPEVTCVV	240
30	DVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEK	300
	KTISKAKGQPRREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK	360
	SRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGK	420

(SEQ ID NO:84).

35 A representative non-human primate (*Cynomolgus*) B7-DC fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:

B7-1

A representative murine B7-1 fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:

atggcttgca attgtcagtt gatgcaggat acaccactcc tcaagtttcc atgtccaaagg	60
--	----

	ctcattcttc tctttgtgct gctgattcgt ctttcacaag tgtcttcaga tggatgaa	120
	caactgtcca agtcagtgaa agataaggta ttgctgcctt gcccataa ctctccat	180
	gaagatgagt ctgaagaccc aatctactgg caaaaacatg acaaagtggt gctgtctgc	240
5	atgtctggaa aactaaaagt gtggcccgag tataagaacc ggactttata tgacaacact	300
	acctactctc ttatcatctt gggcctggc ctttcagacc gggcacata cagctgtgc	360
	gttcaaaaaga aggaaagagg aacgtatgaa gttaaacact tggctttgt aaagttgtcc	420
	atcaaagctg acttctctac cccaaacata actgagtctg gaaaccatc tgcagacact	480
	aaaaggattt cctgcttgc ttccgggggt ttcccaaagg ctcgcttctc ttggttggaa	540
10	aatggaaagag aattacctgg catcaatacg acaatttccc aggatcctga atctgaattt	600
	tacaccatta gtagccaaact agatitcaat acgactcgca accacaccat taagtgtctc	660
	attaaatatg gagatgctca cgtgtcagag gacttcaccc gggaaaaacc cccagaagac	720
	cctcctgata gcaagaacga gccaagaggt cctacgatca agccctgccc gccttgaaa	780
	tgccccagctc caaatttgct ggggtggaccg tcagtttta tcttcccgcc aaagataaaag	840
15	gacgtcttga tgatttagtct gagccccatc gtgacatgcg ttgtgggta tgtttcagag	900
	gatgaccccg acgtgcaaat cagttggttc gttacaacaacg tggaggtgca taccgctcaa	960
	acccagaccc acagagagga ttataacacgc accctgcggg tagtgtccgc cctgcccgc	1020
	cagcatcagg attggatgag cgggaaagag ttcaagtgtt aggtaaacaa caaagatctg	1080
	ccagcggcga ttgaacaaac cattagcaag ccgaaaggga gctgccccgc acctcaggtt	1140
20	tacgtccttc ctccaccaga agaggagatg acgaaaaagc aggtgaccct gacatgcatt	1200
	gtaactgact ttatgccaga agatattttac gtggaatgga ctaataacgg aaagacagag	1260
	ctcaattaca agaacactga gctgttctg gattctgatg gctactt tatgtactcc	1320
	aaattgaggg tcgagaagaa gaattgggtc gagagaaaaca gttatagttt ctcagtggtt	1380
	catgagggcc tccataatca tcacaccaca aagtcttca gcccacgccc cggaaaa	1437

(SEQ ID NO:88)

25 The murine B7-1 fusion protein encoded by SEQ ID NO:88 has the following amino acid sequence:

	MACNCQIMQD TPLLKFPCCPR LILLFVLLIR LSQVSSDVDE QLSKSVKDKV LLPCRYNSPH	60
	EDESEDRIYW QKHDKVLSV IAGKLKVWPE YKNRTLYDMNT TYSLIILGLV LSDRGTYSCV	120
	VQKKERGTYE VKHLALVKLS IKADFSTPNI TESGNPSADT KRITCFASGG FPKPRFSWLE	180
30	NGRELPGINT TISQDPESEL YTISSQLDFN TTRNHTIKCL IKYGDAAHVS DFTWEKPPED	240
	PPDSKNEPRG PTIKPCPPCK CPAPNLLGGP SVFIFPPKIK DVLMISLSPI VTCVVVDVSE	300
	DDPDVQISWF VNNVEVHTAQ TQTHREDYNS TLRVVSALPI QHQDWMSGKE FKCKVNNKDL	360
	PAPIERTISK PKGSVRAPQV YVLPPPEEM TKKQVILTCM VTDFMPEDIY VEWTNNNGKTE	420
	LNYKNTEPVL DSDGSYFMYS KLRVEKKNWV ERNSYSCSVV HEGLHNHHTT KSFSRTPGK	479
35	(SEQ ID NO:89)	

The amino acid sequence of the murine B7-1 fusion protein of SEQ ID NO:89 without the signal sequence is:

	VDEQLSKSVK DVVLLPCRYN SPHEDESEDR IYWQKHDKVV LSVIAGKLKV WPEYKNRTLY	60
	DNTTYSLLIL GLVLSDRGTY SCVVQKKERG TYEVKHLALV KLSIKADFST PNITESGNPS	120
40	ADTKRITCEA SGGFPKPRFS WLENGRELPG INTTISQDPE SELYTIISSQL DFNTTRNHTI	180
	KCLIKYGDAAH VSEDFTWEKP PEDPPDSKNE PRGPTIKPCP PCKCPAPNLL GGPSVIFPP	240
	KIKDVLMISL SPIVTCVVVD VSEDDPDVQI SWFVNNVEVH TAQTQTHRED YNSTLRVVSA	300
	LPIQHQDWMS GKEFKCKVNN KDLPIAPIERT ISKPKGSVRA PQVYVLPPPE EEMTKKQVTL	360
	TCMVTDMPDIY VEWTNNNG KTELNYKNTE PVLDSDGSYF MYSKLRVEKK NWVERNSYSC	420
45	SVVHEGLHNH HTTKSFSRTP GK	442

(SEQ ID NO:90).

A representative human B7-1 fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:

5	atgggccaca cacggaggca gggAACATCA ccatccaAGT gtccataacct caatttcttt cagctcttgg tgctggctgg tctttctcac ttctgttcaG gtgttatcca cgtgaccaag gaagtggaaAG aagtggcaac gctgtcctgt ggtcacaatG tttctgttga agagctggca caaactcgca tctactggca aaaggagaAG aaaatggtgc tgactatgtat gtctgggac atgaatataAT ggcccagAGta caagaaccgg accatcttG atatcactaa taacctctcc	60 120 180 240 300
10	attgtgatcc tggctctgAG cccatctgac gagggcacat acggAGtGtGtG tGttctgaAG tatgaaaaAG acgcttcaa ggggaacac ctggctgaAG tgacgttacG agtcaaAGct gacttcccta cacctagtat atctgacttt gaaattccaa cttctaataat tagaaggata atttgctcaa cctctggagg tttccagAG cctcacctct cctgggtggaa aaatggagaa gaattaaAT ccatacacac aacagttcc caagatcctg aaactgagct ctatgctgtt	360 420 480 540 600
15	agcagcaaaAC tggatttcaa tatgacaacc aaccacagct tcataGtGtct catcaagtat ggacatttaa gagtgaatca gaccccaac tggaaatacaa ccaagcaaga gcattttcct gataacctgg agcctaAGtc atgtgacaAG acccataoGt gcccacccctg tcccgctcca gaactgctgg ggggacctAG cgtttcttG ttccccccaa agcccaagga caccctcatG atctcacggA cttccGAAGt aacatgcgtA gtagtgcAGt tgagccacga ggatcctgaa	660 720 780 840 900
20	gtgaagttta attggtaCGt ggacggagtc gaggtgcata atgccaAAAC taaacctcgg gaggagcagt ataacagtac ctaccgcgtG gtatccgtct tgacagtGct ccaccaggac tggctgaatG gtaaggagta taaatgcaag gtcagcaaca aagctttcc cgcCcAAatt gaaaagacta tcagcaaggc caagggacaa ccccgcgAGc cccaggTTA cacccttcca ccttcacggAG acgagctgac caagaaccAG gtGtctGtA cttgtctGgt caaaggTTtC	960 1020 1080 1140 1200
25	tatccttccG acatcgAGt ggagtgggAG tcaaaCgggC agcctgagaa taactacaAG accacacccc cagtgcTTGA tagcgatggG agcttttcc tctacagtaa gctgactgtG gacaaatccc gctggcagca gggaaacgTT ttctttgtA gctgtcatgca tgaggccctc cacaaccatt atactcagaa aagcctgagt ctgagtcccc gcaAA	1260 1320 1380 1425

(SEQ ID NO:91)

30 The human B7-1 fusion protein encoded by SEQ ID NO:91 has the following amino acid sequence:

MGHTRRQGTS PSKCPYLNFF QLLVLAGLSH FCSGVIVHVTK EVKEVATLSC GHNVSVEEA QTRIYWKKEK KMVLTMMSGD MNIWPEYKNR TIFDITNNLS IVILALRPSD EGTYECVVLK YEKDAFKREH LAEVTLVKA DFPTPSISDF EIPTSNIIRRI ICSTGGFPE PHLSWLEN 35 ELNAINTTVAQ QDPETELYAV SSKLDFNMTT NHSFMCLIKY GHLRVNQTFN WNTTKQEHFP DNLEPKSCDK THTCPPCPAP ELLGGPSVFL FPPKPDKTLM ISRTPEVTCV VVDVSHEDPE VKFNWYVDGV EVHNAAKTKPR EEQYNSTYRV VSVLTVLHQD WLNGKEYKCK VSNKALPAPI EKTISKAKGQ PREPQVYTLPSRDELTKNQ VSLTCLVKGF YPSDIAVEWE SNGQPENNYK 420 TPPVLDSDG SFFLYSKLTV DKSRWQQGNV FSCSVMHEAL HNHYTQKSLS LSPGK	60 120 180 240 300 360 420 475
--	---

40 (SEQ ID NO:92)

The amino acid sequence of the human B7-1 fusion protein of SEQ ID NO:92 without the signal sequence is:

VIHVTKEVKE VATLSCGHNV SVEELAQTRI YWQKEKKMVL TMMMSGDMNIW PEYKNRTIFD ITNNNLSIVIL ALRPSDEGTY ECVVLKYEKD AFKREHHLAEV TLSVKADFPT PSISDFEIPt	60 120
---	-----------

SNIRRIICST	SGGFPEPHLS	WLENGEELNA	INTTVSQDPE	TELYAVSSKL	DFNMTTNHSE	180
MCLIKYGHLR	VNQTFNWNTT	KQEHPDNLE	PKSCDKTHTC	PPCPAPELLG	GPSVFLFPPK	240
PKDTLMISRT	PEVTCVVVDV	SHEDPEVKFN	WYVDGVEVHN	AKTKPREEQY	NSTYRVVSVL	300
TVLHQDWLNG	KEYKCKVSNK	ALPAPIEKTI	SKAKGQPREP	QVYTLPPSRD	ELTKNQVSLT	360
5	CLVKGFYPSD	IAVEWESNGQ	PENNYKTPPP	VLDSDGSFFL	YSKLTVDKSR	420
	VMHEALHNHY	TQKSLSLSPG	K			441

(SEQ ID NO:93).

B7-2

A representative murine B7-2 fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:

atggacccca	gatgcaccat	gggcttggca	atccttatct	ttgtgacagt	cttgctgatc	60	
tcagatgctg	tttccgtgga	gacgcaagct	tatttcaatg	ggactgcata	tctgcccgtgc	120	
ccatttacaaa	aggctcaaaaa	cataaggctg	agttagctgg	tagtattttg	gcaggaccag	180	
15	caaaaagttgg	ttctgtacga	gcactatttgc	ggcacagaga	aacttgatag	tgtgaatgcc	240
	aagtacctgg	gccgcacgag	ctttgacagg	aacaactgg	ctctacgact	tcacaatgtt	300
	cagatcaagg	acatgggctc	gtatgattgt	tttataaaaa	aaaagccacc	cacaggatca	360
	attatcctcc	aacagacatt	aacagaactg	tcagtgtatcg	ccaaacttcag	tgaacctgaa	420
	ataaaaactgg	ctcagaatgt	aacaggaaat	tctggcataa	atttgacctg	cacgtctaa	480
20	caaggtcacc	cgaaacctaa	gaagatgtat	tttctgataa	ctaattcaac	taatgagttat	540
	ggtgataaca	tgcagatatac	acaagataat	gtcacagaac	tgttcagttat	ctccaaacagc	600
	ctctctcttt	cattccggaa	tggtgtgtgg	cataatgac	tttgtgtgtgt	tctggaaacg	660
	gagtcaatga	agatttcctc	caaacctctc	aatttcactc	aagagttcc	atctcctcaa	720
	acgttattgg	aggagccaag	aggtcctacg	atcaaggccct	gccccgcctt	taaatgccc	780
25	gctccaaatt	tgctgggtgg	accgtcagtc	tttatcttcc	cgccaaagat	aaaggacgtc	840
	ttgatgatta	gtctgagccc	catcgtgaca	tgcgttgg	tggatgtttc	agaggatgac	900
	cccgacgtgc	aaatcgttg	gttcgttaac	aacgtggagg	tgcataccgc	tcaaacc	960
	acccacagag	aggattataa	cagcacccctg	cggtagtgt	ccgcctgccc	gatccagcat	1020
	caggattgg	tgagcgggaa	agagttcaag	tgttaaggtaa	acaacaaaga	tctgccagcg	1080
30	ccgattgaac	gaaccattag	caagccgaaa	gggagcgtgc	gcmcacctca	ggtttacgtc	1140
	cttcctccac	cagaagagga	gatgacgaaa	aagcaggta	ccctgacatg	catggtaact	1200
	gactttatgc	cagaagatat	ttacgtggaa	tggactaata	acggaaagac	agagctcaat	1260
	tacaagaaca	ctgagcctgt	tctggattct	gatggcagct	actttatgt	ctccaaattt	1320
	agggctcgaga	agaagaattt	ggtcgagaga	aacagttata	gttgctcag	ggtgcata	1380
35	ggcctccata	atcatcacac	cacaaagtcc	ttcagccgaa	cgcccgaa	a	1431

(SEQ ID NO:94)

The murine B7-2 fusion protein encoded by SEQ ID NO:84 has the following amino acid sequence:

MDPRCTMGLA	ILIFVTVLLI	SDAVSVETQA	YFNGTAYLPC	PFTKAQNISL	SELVVFWQDQ	60
40	QKLVLVYEHYL	GTEKLDVNA	KYLGRTSFDR	NNWTLRLHNV	QIKDMGSYDC	120
	IIILQQTLTEL	SVIANFSEPE	IKLAQNVVTGN	SGINLTCTSK	QGHPKPKKMY	180
	GDNMQISQDN	VTELFSISNS	LSLSFPDGW	HMTVVVCVLET	ESMKISSKPL	240
	TYWKEPRGPT	IKPCPPCKCP	APNLLGGPSV	FIFPPKIKDV	LMISLSP1VT	300
	PDVQISWFVN	NVEVHTAQTO	THREDYNSTL	RVVSALPIQH	QDWMSGKEFK	360
45	PIERTISKPK	GSVRAPQVYV	LPPPEEEMTK	KQVTLTCMVT	DFMPEDIYVE	420

YKNTEPVLDS DGSYFMYSKL RVEKKNWVER NSYSCSVVHE GLHNHHTKS FSRTPGK

477

(SEQ ID NO:95)

The amino acid sequence of the murine B7-2 fusion protein of SEQ ID NO:95 without the signal sequence is:

5 VSVETQAYFN GTAYLPCPFT KAQNISLSEL VVFWDQQQL VLYEHYLGTE KLDGVNAKYL 60
 GRTSFDRNNW TRLRHNVQIK DMGSYDCFIQ KKPPTGSIIL QQLTELSVI ANFSEPEIKL 120
 AQNVVTGNSGI NLTCTSKQGH PKPKKMYFLI TNSTNEYGDN MQISQDNVTE LFSISNSL 180
 SFDPDGVWHMT VVCVLETESM KISSKPLNFT QEFPSPQTYW KEPRGPTIKP CPPCKCPAPN 240
 LLGGPSVIF PPKIKDVLMI SLSPIVTCVV VDVSEDDPDV QISWFVNNE VHTAQQTQTHR 300
 10 EDYNSTLRVV SALPIQHQDW MSGKEFKCKV NNKDLPPAPIE RTISKPKGSV RAPQVYVLPP 360
 PEEEEMTKKQV TLTCMVTDFM PEDIYVEWTN NGKTELNYKN TEPVLDSDGS YFMYSKLRVE 420
 KKNWVERNSY SCSVVHEGLH NHHTTKSFSR TPGK 454

(SEQ ID NO:96).

A representative human B7-2 fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:

atgggactga gtaacattct ctttgtatg gccttcctgc tctctggtgc tgctccctctg 60
 aagattcaag cttatttcaa tgagactgca gacgtccat gccaatttgc aaactctcaa 120
 aaccaaagcc ttagtgagct agtagtattt tggcaggacc aggaaaactt ggttctgaat 180
 20 gaggtatact taggcaaaaga gaaatttgc agtgttccatt ccaagtatat gggccgcaca 240
 agttttgatt cggacagttt gaccctgaga cttcacaatc ttcagatcaa ggacaaggc 300
 ttgtatcaat gtagatcca tcacaaaaag cccacaggaa tgattcgat ccaccagatg 360
 aattctgaac tgcgtgtct tgctaacttc agtcaacctg aaatagtacc aatttcta 420
 ataacagaaa atgtgtacat aaatttgacc tgctcatcta tacacggta cccagaacct 480
 25 aagaagatga gtgtttgct aagaaccaag aattcaacta tcgagttatga tgggtttatg 540
 cagaaaatctc aagataatgt cacagaaactg tacgacgtt ccattcgtt gtctgtttca 600
 ttccctgtatg ttacgagcaa tatgaccatc ttctgtattc tggaaactga caagacgcgg 660
 cttttatctt caccttctc tatagagctt gaggaccctc agcctcccc agaccacatt 720
 ccttggattt cagctgtact tgacgcttacat tgcgtgtaca agacccatac gtgccccc 780
 30 tgcgttttgc cagaactgtct gggggacact agcgttttct tggccccc aaagcccaag 840
 gacaccctca tgatctcactg gactccgaa gtaacatgcg tagtagtcga cgtgagccac 900
 gaggatcctg aagtgaagtt taatttgcgtt gttttttttt tggacggag tggatgtca 960
 actaaacctc gggaggagca gtataacagt acctaccgcg tggatccgt cttgacagtg 1020
 ctccaccagg actggctgaa tggtaaggag tataaatgca aggtcagcaa caaagcttt 1080
 35 cccggcccaa ttgaaaagac tatcagcaag gccaaggac aaccccgca gccccaggat 1140
 tacacccttc caccttccactg agacgagctg accaagaacc aggtgtctct gacttgcgt 1200
 gtccaaaggat tctatccttc cgacatcgca gttttttttt tggatgtgg agtcaacccgg 1260
 aataactaca agaccacacc cccagtgctt gatagcgatg ggagctttt cctctacagt 1320
 aagctgactg tggacaaatc cccgtggcag caggaaacg tttttttt tggatgtgg 1380
 40 catgaggccc tccacaacca ttatactcag aaaaggctga gtctgagtcc cggcaaa 1437

(SEQ ID NO:97)

The human B7-2 fusion protein encoded by SEQ ID NO:97 has the following amino acid sequence:

MGLSNILFVM AFLLSGAAPL KIQAYFNETA DLPCQFANSQ NQSLSELVVF WQDQENLVLN

60

EVYLGKEKFD SVHSKYMGR RT SFDSDSWTLR LHNLQIKDKG LYQCIIHHKK PTGMIRIHQM 120
 NSELSVLANF SQPEIVPISN ITENVYINLT CSSIHGYPEP KKMSVLLRTK NSTIEYDGVM 180
 QKSQDNVTEL YDVSISLSVS FPDVTSNMTI FCILETDKTR LLSSPFSIEL EDPQPPPDI 240
 PWITAVLEPK SCDKTHTCPP CPAPELLGGP SVFLFPPKPK DTLMISRTPE VTCVVVDVSH 300
 5 EDPEVKFNWY VDGVEVHNNAK TKPREEQYNS TYRVSLSVLTW LHQDWLNGKE YKCKVSNKAL 360
 PAPIEKTISK AKGQPREPQV YTLPPSRDEL TKNQVSLTCL VKGFYPSDIA VEWESNGQPE 420
 NNYKTTPPVLDSDGSFFFLYS KLTVDKSRWQ QGNVFSCSVM HEALHNHYTQ KSLSLSPGK 479

(SEQ ID NO:98)

The amino acid sequence of the human B7-2 fusion protein of SEQ

10 ID NO:98 without the signal sequence is:

AYFNETADLP CQFANSQNQS LSELVVFWQD QENLVLNEVY LGKEKFDSVH SKYMGRTSFD 60
 SDSWTLRLHN LQIKDKGLYQ CIIHHKKPTG MIRIHQMNS EIVPISNITE 120
 NVYINLTCSS IHGYPEPKKM SVLLRTKNST IEYDGVMQKS QDNVTELYDV SISLSVSFPD 180
 VTSNMTIFCI LETDKTRLLS SPFSIELEDP QPFPDHPWITAVLEPKSCD KTHTCPPCPA 240
 15 PELLGGPSVF LFPPKPKDTL MISRTPEVTC VVVDVSHEDP EVKFNWYVDG VEVHNAKTKP 300
 REEQYNSTYR VVSVLTVLHQ DWLNGKEYKC KVSNKALPAP IEKTISKAKG QPREPQVYTL 360
 PPSRDELTKN QVSLTCLVKG FYPSDIAVEW ESNQOPENNY KTTPPVLDSD GSFFLYSKLT 420
 VDKSRWQQGN VFSCSVMHEA LHNHYTQKSL SLSPGK 456

(SEQ ID NO:99)

20 **B7-H5**

A representative murine B7-H5 fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity to:

atgggtgtcc ccgggggtccc agaggccagc agcccgccgt ggggaaccct gctcccttgct 60
 25 attttcctgg ctgcatccag aggtctggta gcagccctca aggtcaccac tccatattct 120
 ctctatgtgt gtcccgaggg acagaatgcc accctcacct gcaggattct gggccccgtg 180
 tccaaagggc acgatgtgac catctacaag acgtggtaacc tcagctcacg aggcgaggtc 240
 cagatgtgca aagaacaccg gcccatacgc aacttcacat tgcagcacct tcagcaccac 300
 ggaagccacc taaaagccaa cggcagccat gaccagcccc agaagcatgg gctagagcta 360
 30 gcttctgacc accacggtaa cttctctatc accctgcgca atgtgacccc aagggacagc 420
 ggcctctact gctgtctagt gatagaatta aaaaaccacc acccagaaca acggttctac 480
 gggtccatgg agctacaggt acaggcaggc aaaggctcg ggtccacatg catggcgtct 540
 aatgagcagg acagtgcacg catcacggct gagccaagag gtcctacatg caagccctgc 600
 ccgccttcta aatgcccagc tccaaatttg ctgggtggac cgtcagtctt tatcttcccg 660
 35 ccaaagataa aggacgttctt gatgattagt ctgagccca tcgtgacatg cgttgggtgt 720
 gatgtttcag aggtgaccc cgacgtgcaa atcagtttgt tcgttaacaa cgtggagggt 780
 cataccgctc aaaccaggac ccacagagag gattataaca gcaccctgcg gtagtgcgtcc 840
 gcccgtccga tccagcatca ggattggatg agcgggaaag agttcaagtg taaggtaaac 900
 aacaaagatc tgccagggcc gattgaacga accattagca agccgaaagg gagcgtgcgc 960
 40 gcacccctcagg tttacgtct tcctccacca gaagaggaga tgacgaaaaa gcaggtgacc 1020
 ctgacatgca tggtaactga ctttatgcca gaagatattt acgtggaatg gactaataac 1080
 gaaaagacag agctcaatta caagaacact gagcctgttc tggattctga tggcagctac 1140
 tttatgtact ccaaatttgag ggtcgagaag aagaattggg tcgagagaaa cagttatagt 1200
 tgctcagtgg tgcatacggg cctccataat catcacacca caaagtcctt cagccgaacg 1260
 45 cccgggaaa 1269

(SEQ ID NO:100)

The murine B7-H5 fusion protein encoded by SEQ ID NO:100 has the following amino acid sequence:

MGVPAVPEAS SPRWGTLLLA	IFLAASRGLV AAFKVTPYS	LYVCPEGQNA	TLCRILGPV	60		
5 SKGHDVTIYK TWYLSSRGEV	QMCKEHRPIR	NFTLQHLQHH	GSHLKANASH	DQPQKHGLEL	120	
ASDHGHNFSI	TLRNVTPRDS	GLYCCLVIEL	KNHHPEQRFY	GSMELQVQAG	KGSGSTCMAS	180
NEQDSDSITA	EPRGPTIKPC	PPCKCPAPNL	LGGPSVFIFPP	PKIKDVLMS	LSPIVTCVVV	240
DVSEDDPDVQ	ISWFVNNVEV	HTAQQTQTHRE	DYNSTLRVVS	ALPIQHQDWM	SGKEFKCKVN	300
10 NKDLPAPIER	TISKPKGSVR	APQVYVLPPP	EEEMTKKQVT	LTCMVTDFMP	EDIYVEWTNN	360
15 GKTELNYKNT	EPVLDSDGSY	FMYSKLRVEK	KNWVERNSYS	CSVVHEGLHN	HHTTKSFSRT	420
PGK						423

(SEQ ID NO:101)

The amino acid sequence of the murine B7-H5 fusion protein of SEQ ID NO:101 without the signal sequence is:

15 FKVTTPYSLY	VCPEGQNATL	TCRILGPVSK	GHDVTIYKTW	YLSSRGEVQM	CKEHRPIRNF	60
TLQHLQHHGS	HLKANASHDQ	PQKHGLELAS	DHHGNFSITL	RNVTPRDSGL	YCCLVIELKN	120
HPHEQRFYGS	MELQVQAGKG	SGSTCMASNE	QDSDSITAEP	RGPTIKPCPP	CKCPAPNLLG	180
GPSVFIFPPK	IKDVLMSLIS	PIVTCVVVDV	SEDDPDVQIS	WFVNNVEVHT	AQTQTHREDY	240
20 NSTLRVVSAL	PIQHQDWMMSG	KEFKCKVNNK	DLPAPIERTI	SKPKGSVRAP	QVYVLPPPSEE	300
EMTKKQVTLT	CMVTDFMPED	IYVEWTNNNGK	TELNYKNTEP	VLDSDGSYFM	YSKLRVEKKN	360
WVERNSYSCS	VVHEGLHNHH	TTKSFSLRTPG	K			391

(SEQ ID NO:102).

A representative human B7-H5 fusion protein is encoded by a nucleic acid having at least 80%, 85%, 90%, 95%, 99% or 100% sequence identity

25 to:	atgggcgtcc	ccacggccct	ggaggccggc	agctggcgct	ggggatccct	gctttcgct	60
	ctcttcctgg	ctgcgtccct	aggctccggtg	gcagccttca	aggtcgccac	ggcgatttcc	120
	ctgtatgtct	gtcccgaggg	gcagaacgtc	accctcacct	gcaggctatt	ggggccctgtg	180
	gacaaaagggc	acgatgtgac	cttctacaag	acgtggtaacc	gcagctcgag	gggcgagggt	240
30 30 cagacctgct	cagagcggcg	gcccatccgc	aacctcacgt	tccaggacct	tcacactgcac		300
	catggaggcc	accaggctgc	caacaccaggc	cacgacctgg	ctcagcgcac	cgggctggag	360
	tcggcctccg	accaccatgg	caacttctcc	atcaccatgc	gcaacctgac	cctgctggat	420
	agcggcctct	actgctgcct	ggtggtggag	atcaggcacc	accactcgga	gcacagggtc	480
35 35 catggtgcca	tggagctgca	ggtgcagaca	ggcaaagatg	caccatccaa	ctgtgtggtg		540
	tacccatccct	cctccccagga	tagtggaaaac	atcacggctg	agcctaagtc	atgtgacaag	600
	acccatacgt	gcccacccctg	tcccgctcca	gaactgctgg	ggggacctag	cgttttcttg	660
	ttccccccaa	agcccaagga	caccctcatg	atctcacgca	ctcccgaaagt	aacatgcgt	720
40 40 gtagtcgacg	tgagccacga	ggatcctgaa	gtgaagttt	attggtagtgc	ggacggagtc		780
	gaggtgcata	atgccaaaac	taaacctcg	gaggagcagt	ataacagtac	ctaccgcgt	840
	gtatccgtct	tgacagtgc	ccaccaggac	tggctgaatg	gtaaggagta	taaatgcac	900
	gtcagcaaca	aagcttcc	cgcggcaatt	gaaaagacta	ttagcaaggc	caagggacaa	960
	ccccgcgagc	cccagggtta	cacccttcca	ccttcacgag	acgagctgac	caagaaccag	1020
	gtgtctctga	cttgcgtgg	caaagtttc	tatcctccg	acatgcagt	ggagtggag	1080
	tcaaacgggc	agcctgagaa	taactacaag	accacacccc	cagtgcgt	tagcgatggg	1140

agctttttcc	tctacagtaa	gctgactgtg	gacaaatccc	gctggcagca	gggaaacgtt	1200
ttctcttgc	gcgtcatgca	tgaggccctc	cacaaccatt	ataactcagaa	aagcctgagt	1260
ctgagtcggc	gcaaa					1275

(SEQ ID NO:103)

5 The human B7-H5 fusion protein encoded by SEQ ID NO:103 has the following amino acid sequence:

MGVPTALEAG	SWRWGSLLFA	LFLAASLGIV	AAFKVATPYS	LYVCPEGQNV	TLTCRLLGPV	60
DKGHDVTFYK	TWYRSSRGEV	QTCSEERRPIR	NLTQDLHLH	HGGHQANTS	HDLAQRHGLE	120
SASDHGNFS	ITMRNLTLLD	SGLYCCIVVE	IRHHHSEHRV	HGAMELQVQT	GKDAPSNCVV	180
10 YPSSSQDSEN	ITAEPKSCDK	THTCPPCPAP	ELLGGPSVFL	FPPKPKDTLM	ISRTPEVTCV	240
VVDVSHEDPE	VKFNWYVDGV	EVHNAAKTKPR	EEQYNSTYRV	VSVLTVLHQD	WLNGKEYKCK	300
VSNKALPAPI	EKTISKAKGQ	PREPVQVYTLR	PSRDELTKNQ	VSLTCLVKGF	YPSDIAVEWE	360
SNGQPENNYK	TPPPVLDSDG	SFFLYSKLTV	DKSRWQQGNV	FSCSVMHEAL	BNHYTQKSLS	420
LSPGK						425

15 (SEQ ID NO:104)

The amino acid sequence of the human B7-H5 fusion protein of SEQ ID NO:104 without the signal sequence is:

FKVATPYSLY	VCPEGQNVTL	TCRLLGPVDK	GHDVTFYKTW	YRSSRGEVQT	CSERRPIRNL	60
TFQDLHLHHG	GHQAANTS	SHD	LAQRHGLESA	SDHHGNFSIT	MRNLTLLDSG	120
20 HHHSEHRVHG	AMELQVQTGK	DAPSNCVVYP	SSSQDSENIT	AEPKSCDKTH	TCPPCPAPEL	180
LGGPSVFLFP	PKPKDTLMIS	RTPEVTCVVV	DVSHEDEPEVK	FNWYVDGVEV	HNAKTKPREE	240
QYNSTYRVVS	VLTVLHQDWL	NGKEYKCKVS	NKALPAPIEK	TISKAKGQPR	EPQVYTLPPS	300
RDELTKNQVS	LTCLVKGFYP	SDIAVEWESN	GQPENNYKTT	PPVLDSDGSF	FLYSKLTVDK	360
SRWQQGNVFS	CSVMEALHN	HYTQKSLSLS	PGK			393

25 (SEQ ID NO:105).

F. Fusion protein dimers and multimers

The fusion proteins disclosed herein can be dimerized or multimerized. Dimerization or multimerization can occur between or among two or more fusion proteins through dimerization or multimerization 30 domains, including those described above. Alternatively, dimerization or multimerization of fusion proteins can occur by chemical crosslinking. Fusion protein dimers can be homodimers or heterodimers. Fusion protein multimers can be homomultimers or heteromultimers.

Fusion protein dimers as disclosed herein are of formula II:

35

N-R₁-R₂-R₃-C

N-R₄-R₅-R₆-C

or, alternatively, are of formula III:

N-R₁-R₂-R₃-C

C-R₄-R₅-R₆-N

5 wherein the fusion proteins of the dimer provided by formula II are defined as being in a parallel orientation and the fusion proteins of the dimer provided by formula III are defined as being in an antiparallel orientation. Parallel and antiparallel dimers are also referred to as *cis* and *trans* dimers, respectively. “N” and “C” represent the N- and C-termini of the fusion 10 protein, respectively. The fusion protein constituents “R₁”, “R₂” and “R₃” are as defined above with respect to formula I. With respect to both formula II and formula III, “R₄” is a costimulatory polypeptide domain or a antigen-binding targeting domain, “R₅” is a peptide/polypeptide linker domain, and “R₆” is a costimulatory polypeptide domain or a antigen-binding targeting 15 domain, wherein “R₆” is a costimulatory polypeptidedomain when “R₄” is a antigen-binding targeting domain, and “R₆” is a antigen-binding targeting domain when “R₄” is a costimulatory polypeptide domain. In one embodiment, when “R₁” is a costimulatory polypeptide domain, “R₄” is also a costimulatory polypeptidedomain, and “R₃” and “R₆” are both antigen- 20 binding targeting domains. In another embodiment, when “R₁” is a antigen-binding targeting domains, “R₄” is also a antigen-binding targeting domains, and “R₃” and “R₆” are both costimulatory polypeptide domains. In a preferred embodiment, “R₁” and “R₄” are costimulatory polypeptide domains, and “R₃” and “R₆” are antigen-binding targeting domains.

25 Fusion protein dimers of formula II are defined as homodimers when “R₁” = “R₄”, “R₂” = “R₅” and “R₃” = “R₆”. Similarly, fusion protein dimers of formula III are defined as homodimers when “R₁” = “R₆”, “R₂” = “R₅” and “R₃” = “R₄”. Fusion protein dimers are defined as heterodimers when these conditions are not met for any reason. For example, heterodimers may 30 contain domain orientations that meet these conditions (i.e., for a dimer according to formula II, “R₁” and “R₄” are both costimulatory polypeptide domains, “R₂” and “R₅” are both peptide/polypeptide liker domains and “R₃” and “R₆” are both antigen-binding targeting domains), however the species of one or more of these domains is not identical. For example, although “R₃”

and “R₆” may both be antigen-binding targeting domains, they may each target a distinct antigen. Alternatively, “R₃” and “R₆” may both be antigen-binding targeting domains that target the same antigen, but may be distinct classes of binding domains (i.e., “R₃” is a natural ligand for a receptor and 5 “R₆” is a single chain variable fragment (scFv) that binds to the same receptor).

Dimers of fusion proteins that contain either a C_{H1} or C_L region of an immunoglobulin as part of the polypeptide linker domain preferably form 10 heterodimers wherein one fusion protein of the dimer contains a C_{H1} region and the other fusion protein of the dimer contains a C_L region.

Fusion proteins can also be used to form multimers. As with dimers, multimers may be parallel multimers, in which all fusion proteins of the multimer are aligned in the same orientation with respect to their N- and C-termini. Multimers may be antiparallel multimers, in which the fusion 15 proteins of the multimer are alternatively aligned in opposite orientations with respect to their N- and C-termini. Multimers (parallel or antiparallel) can be either homomultimers or heteromultimers.

G. Peptide and polypeptide modifications

The disclosed fusion proteins may be modified by chemical moieties 20 that may be present in polypeptides in a normal cellular environment, for example, phosphorylation, methylation, amidation, sulfation, acylation, glycosylation, sumoylation and ubiquitylation. Fusion proteins may also be modified with a label capable of providing a detectable signal, either directly or indirectly, including, but not limited to, radioisotopes and fluorescent 25 compounds.

The fusion proteins disclosed herein may also be modified by chemical moieties that are not normally added to polypeptides in a cellular environment. Such modifications may be introduced into the molecule by reacting targeted amino acid residues of the polypeptide with an organic 30 derivatizing agent that is capable of reacting with selected side chains or terminal residues. Another modification is cyclization of the protein.

Examples of chemical derivatives of the polypeptides include lysinyl and amino terminal residues derivatized with succinic or other carboxylic acid anhydrides. Derivatization with a cyclic carboxylic anhydride has the

effect of reversing the charge of the lysinyl residues. Other suitable reagents for derivatizing amino-containing residues include imidoesters such as methyl picolinimidate; pyridoxal phosphate; pyridoxal; chloroborohydride; trinitrobenzenesulfonic acid; *O*-methylisourea; 2,4 pentanedione; and

5 transaminase-catalyzed reaction with glyoxylate. Carboxyl side groups, aspartyl or glutamyl, may be selectively modified by reaction with carbodiimides (R—N=C=N—R') such as 1-cyclohexyl-3-(2-morpholinyl-(4-ethyl)carbodiimide or 1-ethyl-3-(4-azonia-4,4-dimethylpentyl) carbodiimide. Furthermore, aspartyl and glutamyl residues can be converted to asparaginyl

10 and glutaminyl residues by reaction with ammonia. Fusion proteins may also include one or more D-amino acids that are substituted for one or more L-amino acids.

III. Isolated nucleic acid molecules

Isolated nucleic acid sequences encoding the fusion proteins disclosed herein are also provided. An isolated nucleic acid can be, for example, a DNA molecule, provided one of the nucleic acid sequences normally found immediately flanking that DNA molecule in a naturally-occurring genome is removed or absent. Thus, an isolated nucleic acid includes, without limitation, a DNA molecule that exists as a separate molecule independent of other sequences (e.g., a chemically synthesized nucleic acid, or a cDNA or genomic DNA fragment produced by PCR or restriction endonuclease treatment), as well as recombinant DNA that is incorporated into a vector, an autonomously replicating plasmid, a virus (e.g., a retrovirus, lentivirus, adenovirus, or herpes virus), or into the genomic DNA of a prokaryote or eukaryote. In addition, an isolated nucleic acid can include an engineered nucleic acid such as a recombinant DNA molecule that is part of a hybrid or fusion nucleic acid. A nucleic acid existing among hundreds to millions of other nucleic acids within, for example, a cDNA library or a genomic library, or a gel slice containing a genomic DNA restriction digest, is not to be considered an isolated nucleic acid.

Nucleic acids encoding fusion polypeptides may be optimized for expression in the expression host of choice. Codons may be substituted with alternative codons encoding the same amino acid to account for differences

in codon usage between the mammal from which the nucleic acid sequence is derived and the expression host. In this manner, the nucleic acids may be synthesized using expression host-preferred codons.

Nucleic acids can be DNA, RNA, or nucleic acid analogs. Nucleic acid analogs can be modified at the base moiety, sugar moiety, or phosphate backbone. Such modification can improve, for example, stability, hybridization, or solubility of the nucleic acid. Modifications at the base moiety can include deoxyuridine for deoxythymidine, and 5-methyl-2'-deoxycytidine or 5-bromo-2'-deoxycytidine for deoxycytidine.

10 Modifications of the sugar moiety can include modification of the 2' hydroxyl of the ribose sugar to form 2'-O-methyl or 2'-O-allyl sugars. The deoxyribose phosphate backbone can be modified to produce morpholino nucleic acids, in which each base moiety is linked to a six membered, morpholino ring, or peptide nucleic acids, in which the deoxyphosphate backbone is replaced by a pseudopeptide backbone and the four bases are retained. See, for example, Summerton and Weller (1997) *Antisense Nucleic Acid Drug Dev.* 7:187-195; and Hyrup *et al.* (1996) *Bioorgan. Med. Chem.* 4:5-23. In addition, the deoxyphosphate backbone can be replaced with, for example, a phosphorothioate or phosphorodithioate backbone, a phosphoroamidite, or an alkyl phosphotriester backbone.

20

Nucleic acids encoding polypeptides disclosed herein can be administered to subjects in need thereof. Nucleic delivery involves introduction of "foreign" nucleic acids into a cell and ultimately, into a live animal. Compositions and methods for delivering nucleic acids to a subject are known in the art (see Understanding Gene Therapy, Lemoine, N.R., ed., BIOS Scientific Publishers, Oxford, 2008).

One approach includes nucleic acid transfer into primary cells in culture followed by autologous transplantation of the *ex vivo* transformed cells into the host, either systemically or into a particular organ or tissue. In 30 one embodiment, vectors containing nucleic acids encoding fusion proteins are transfected into cells that are administered to a subject in need thereof.

Ex vivo methods can include, for example, the steps of harvesting cells from a subject, culturing the cells, transducing them with an expression vector, and maintaining the cells under conditions suitable for expression of

the encoded polypeptides. These methods are known in the art of molecular biology. The transduction step can be accomplished by any standard means used for *ex vivo* gene therapy, including, for example, calcium phosphate, lipofection, electroporation, viral infection, and biolistic gene transfer.

5 Alternatively, liposomes or polymeric microparticles can be used. Cells that have been successfully transduced then can be selected, for example, for expression of the coding sequence or of a drug resistance gene. The cells then can be lethally irradiated (if desired) and injected or implanted into the subject.

10 *In vivo* nucleic acid therapy can be accomplished by direct transfer of a functionally active DNA into mammalian somatic tissue or organ *in vivo*. For example, nucleic acids encoding polypeptides disclosed herein can be administered directly to lymphoid tissues or tumors. Alternatively, lymphoid tissue specific targeting can be achieved using lymphoid tissue-specific 15 transcriptional regulatory elements (TREs) such as a B lymphocyte-, T lymphocyte-, or dendritic cell-specific TRE. Lymphoid tissue specific TREs are known in the art.

Nucleic acids may also be administered *in vivo* by viral means. Nucleic acid molecules encoding fusion proteins may be packaged into 20 retrovirus vectors using packaging cell lines that produce replication-defective retroviruses, as is well-known in the art. Other virus vectors may also be used, including recombinant adenoviruses and vaccinia virus, which can be rendered non-replicating. In addition to naked DNA or RNA, or viral vectors, engineered bacteria may be used as vectors.

25 Nucleic acids may also be delivered by other carriers, including liposomes, polymeric micro- and nanoparticles and polycations such as asialoglycoprotein/polylysine.

In addition to virus- and carrier-mediated gene transfer *in vivo*, physical means well-known in the art can be used for direct transfer of DNA, 30 including administration of plasmid DNA and particle-bombardment mediated gene transfer.

C. Vectors and host cells

Nucleic acids, such as those described above, can be inserted into vectors for expression in cells. As used herein, a “vector” is a replicon, such

as a plasmid, phage, or cosmid, into which another DNA segment may be inserted so as to bring about the replication of the inserted segment. Vectors can be expression vectors. An “expression vector” is a vector that includes one or more expression control sequences, and an “expression control sequence” is a DNA sequence that controls and regulates the transcription and/or translation of another DNA sequence.

5 Nucleic acids in vectors can be operably linked to one or more expression control sequences. As used herein, “operably linked” means incorporated into a genetic construct so that expression control sequences 10 effectively control expression of a coding sequence of interest. Examples of expression control sequences include promoters, enhancers, and transcription terminating regions. A promoter is an expression control sequence composed of a region of a DNA molecule, typically within 100 nucleotides upstream of the point at which transcription starts (generally near the 15 initiation site for RNA polymerase II). To bring a coding sequence under the control of a promoter, it is necessary to position the translation initiation site of the translational reading frame of the polypeptide between one and about fifty nucleotides downstream of the promoter. Enhancers provide expression specificity in terms of time, location, and level. Unlike promoters, enhancers 20 can function when located at various distances from the transcription site. An enhancer also can be located downstream from the transcription initiation site. A coding sequence is “operably linked” and “under the control” of expression control sequences in a cell when RNA polymerase is able to transcribe the coding sequence into mRNA, which then can be translated into 25 the protein encoded by the coding sequence.

Suitable expression vectors include, without limitation, plasmids and viral vectors derived from, for example, bacteriophage, baculoviruses, tobacco mosaic virus, herpes viruses, cytomegalo virus, retroviruses, vaccinia viruses, adenoviruses, and adeno-associated viruses. Numerous 30 vectors and expression systems are commercially available from such corporations as Novagen (Madison, WI), Clontech (Palo Alto, CA), Stratagene (La Jolla, CA), and Invitrogen Life Technologies (Carlsbad, CA).

Vectors containing nucleic acids to be expressed can be transferred into host cells. The term “host cell” is intended to include prokaryotic and

eukaryotic cells into which a recombinant expression vector can be introduced. As used herein, “transformed” and “transfected” encompass the introduction of a nucleic acid molecule (e.g., a vector) into a cell by one of a number of techniques. Although not limited to a particular technique, a 5 number of these techniques are well established within the art. Prokaryotic cells can be transformed with nucleic acids by, for example, electroporation or calcium chloride mediated transformation. Nucleic acids can be transfected into mammalian cells by techniques including, for example, calcium phosphate co-precipitation, DEAE-dextran-mediated transfection, 10 lipofection, electroporation, or microinjection. Host cells (e.g., a prokaryotic cell or a eukaryotic cell such as a CHO cell) can be used to, for example, produce the fusion proteins described herein. In some embodiments, a host cell (e.g., an antigen presenting cell) can be used to express the fusion proteins disclosed herein for presentation to a T cell.

15 **IV. Immunogenic compositions**

Vaccines require strong T cell response to eliminate cancer cells and infected cells. The fusion proteins described herein can be administered as a component of a vaccine to provide a costimulatory signal to T cells. Vaccines disclosed herein include antigens, a source of fusion proteins, and 20 optionally, adjuvants.

A. Antigens

Antigens can be any substance that evokes an immunological response in a subject. Representative antigens include peptides, proteins, polysaccharides, saccharides, lipids, nucleic acids, or combinations thereof. 25 The antigen can be derived from a tumor or from a transformed cell such as a cancer or leukemic cell and can be a whole cell or immunogenic component thereof, e.g., cell wall components or molecular components thereof.

Suitable antigens are known in the art and are available from commercial sources. The antigens may be purified or partially purified 30 polypeptides derived from tumors or other sources. The antigens can be recombinant polypeptides produced by expressing DNA encoding the polypeptide antigen in a heterologous expression system. The antigens can be DNA encoding all or part of an antigenic protein. The DNA may be in the form of vector DNA such as plasmid DNA.

Antigens may be provided as single antigens or may be provided in combination. Antigens may also be provided as complex mixtures of polypeptides or nucleic acids.

B. Fusion proteins

5 Any of the fusion proteins disclosed herein are suitable for use in the immunogenic compositions. Sources of fusion proteins include any fusion protein or nucleic acid encoding any fusion protein disclosed herein, or host cells containing vectors that express any of the fusion proteins disclosed herein. The fusion proteins may be monomeric, homodimeric, 10 heterodimeric, homomultimeric or heteromultimeric.

C. Adjuvants

Optionally, the vaccines described herein may include adjuvants. The adjuvant can be, but is not limited to, one or more of the following: oil emulsions (e.g., Freund's adjuvant); saponin formulations; virosomes and 15 viral-like particles; bacterial and microbial derivatives; immunostimulatory oligonucleotides; ADP-ribosylating toxins and detoxified derivatives; alum; BCG; mineral-containing compositions (e.g., mineral salts, such as aluminium salts and calcium salts, hydroxides, phosphates, sulfates, etc.); bioadhesives and/or mucoadhesives; microparticles; liposomes; 20 polyoxyethylene ether and polyoxyethylene ester formulations; polyphosphazene; muramyl peptides; imidazoquinolone compounds; and surface active substances (e.g. lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, and dinitrophenol).

Additional adjuvants may also include immunomodulators such as 25 cytokines, interleukins (e.g., IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, etc.), interferons (e.g., interferon-.gamma.), macrophage colony stimulating factor, and tumor necrosis factor. In addition to the fusion proteins disclosed herein, other costimulatory molecules, including other polypeptides of the B7 family, may be co-administered. Such proteinaceous adjuvants may be 30 provided as the full-length polypeptide or an active fragment thereof, or in the form of DNA, such as plasmid DNA.

V. Pharmaceutical compositions

Pharmaceutical compositions including fusion polypeptides disclosed herein are provided. Pharmaceutical compositions containing peptides or

polypeptides may be for administration by parenteral (intramuscular, intraperitoneal, intravenous (IV) or subcutaneous injection), transdermal (either passively or using iontophoresis or electroporation), or transmucosal (nasal, vaginal, rectal, or sublingual) routes of administration or using

5 bioerodible inserts and can be formulated in dosage forms appropriate for each route of administration.

In some *in vivo* approaches, the compositions disclosed herein are administered to a subject in a therapeutically effective amount. As used herein the term “effective amount” or “therapeutically effective amount”

10 means a dosage sufficient to treat, inhibit, or alleviate one or more symptoms of the disorder being treated or to otherwise provide a desired pharmacologic and/or physiologic effect. The precise dosage will vary according to a variety of factors such as subject-dependent variables (e.g., age, immune system health, etc.), the disease, and the treatment being effected.

15 Therapeutically effective amounts of the fusion proteins disclosed herein cause an immune response against a tumor or an infectious agent to be activated or sustained. Therapeutically effective amounts of the fusion proteins disclosed herein also costimulate the subject’s T cells..

For the compositions disclosed herein and nucleic acids encoding the

20 same, as further studies are conducted, information will emerge regarding appropriate dosage levels for treatment of various conditions in various patients, and the ordinary skilled worker, considering the therapeutic context, age, and general health of the recipient, will be able to ascertain proper dosing. The selected dosage depends upon the desired therapeutic effect, on

25 the route of administration, and on the duration of the treatment desired.

Generally dosage levels of 0.001 to 10 mg/kg of body weight daily are administered to mammals. Generally, for intravenous injection or infusion, dosage may be lower.

1. Formulations for parenteral administration

30 In a preferred embodiment, compositions disclosed herein, including those containing peptides and polypeptides, are administered in an aqueous solution, by parenteral injection. The formulation may also be in the form of a suspension or emulsion. In general, pharmaceutical compositions are provided including effective amounts of a peptide or polypeptide, and

optionally include pharmaceutically acceptable diluents, preservatives, solubilizers, emulsifiers, adjuvants and/or carriers. Such compositions include diluents sterile water, buffered saline of various buffer content (e.g., Tris-HCl, acetate, phosphate), pH and ionic strength; and optionally, 5 additives such as detergents and solubilizing agents (e.g., TWEEN 20, TWEEN 80, Polysorbate 80), anti-oxidants (e.g., ascorbic acid, sodium metabisulfite), and preservatives (e.g., Thimersol, benzyl alcohol) and bulking substances (e.g., lactose, mannitol). Examples of non-aqueous solvents or vehicles are propylene glycol, polyethylene glycol, vegetable 10 oils, such as olive oil and corn oil, gelatin, and injectable organic esters such as ethyl oleate. The formulations may be lyophilized and redissolved/resuspended immediately before use. The formulation may be sterilized by, for example, filtration through a bacteria retaining filter, by incorporating sterilizing agents into the compositions, by irradiating the 15 compositions, or by heating the compositions.

2. Formulations for topical administration

Fusion proteins disclosed herein can be applied topically. Topical administration does not work well for most peptide formulations, although it can be effective especially if applied to the lungs, nasal, oral (sublingual, 20 buccal), vaginal, or rectal mucosa.

Compositions can be delivered to the lungs while inhaling and traverse across the lung epithelial lining to the blood stream when delivered either as an aerosol or spray dried particles having an aerodynamic diameter of less than about 5 microns.

25 A wide range of mechanical devices designed for pulmonary delivery of therapeutic products can be used, including but not limited to nebulizers, metered dose inhalers, and powder inhalers, all of which are familiar to those skilled in the art. Some specific examples of commercially available devices are the Ultravent nebulizer (Mallinckrodt Inc., St. Louis, Mo.); the Acorn II 30 nebulizer (Marquest Medical Products, Englewood, Colo.); the Ventolin metered dose inhaler (Glaxo Inc., Research Triangle Park, N.C.); and the Spinhaler powder inhaler (Fisons Corp., Bedford, Mass.). Nektar, Alkermes and Mannkind all have inhalable insulin powder preparations approved or in

clinical trials where the technology could be applied to the formulations described herein.

Formulations for administration to the mucosa will typically be spray dried drug particles, which may be incorporated into a tablet, gel, capsule, 5 suspension or emulsion. Standard pharmaceutical excipients are available from any formulator. Oral formulations may be in the form of chewing gum, gel strips, tablets or lozenges.

Transdermal formulations may also be prepared. These will typically be ointments, lotions, sprays, or patches, all of which can be prepared using 10 standard technology. Transdermal formulations will require the inclusion of penetration enhancers.

3. Controlled delivery polymeric matrices

Fusion proteins disclosed herein may also be administered in controlled release formulations. Controlled release polymeric devices can be 15 made for long term release systemically following implantation of a polymeric device (rod, cylinder, film, disk) or injection (microparticles). The matrix can be in the form of microparticles such as microspheres, where peptides are dispersed within a solid polymeric matrix or microcapsules, where the core is of a different material than the polymeric shell, and the 20 peptide is dispersed or suspended in the core, which may be liquid or solid in nature. Unless specifically defined herein, microparticles, microspheres, and microcapsules are used interchangeably. Alternatively, the polymer may be cast as a thin slab or film, ranging from nanometers to four centimeters, a powder produced by grinding or other standard techniques, or even a gel 25 such as a hydrogel.

Either non-biodegradable or biodegradable matrices can be used for delivery of fusion polypeptides or nucleic acids encoding the fusion polypeptides, although biodegradable matrices are preferred. These may be natural or synthetic polymers, although synthetic polymers are preferred due 30 to the better characterization of degradation and release profiles. The polymer is selected based on the period over which release is desired. In some cases linear release may be most useful, although in others a pulse release or "bulk release" may provide more effective results. The polymer may be in the form of a hydrogel (typically in absorbing up to about 90% by

weight of water), and can optionally be crosslinked with multivalent ions or polymers.

The matrices can be formed by solvent evaporation, spray drying, solvent extraction and other methods known to those skilled in the art.

5 Bioerodible microspheres can be prepared using any of the methods developed for making microspheres for drug delivery, for example, as described by Mathiowitz and Langer, *J. Controlled Release*, 5:13-22 (1987); Mathiowitz, et al., *Reactive Polymers*, 6:275-283 (1987); and Mathiowitz, et al., *J. Appl. Polymer Sci.*, 35:755-774 (1988).

10 The devices can be formulated for local release to treat the area of implantation or injection – which will typically deliver a dosage that is much less than the dosage for treatment of an entire body – or systemic delivery. These can be implanted or injected subcutaneously, into the muscle, fat, or swallowed.

15 **VI. Methods of manufacture**

A. Methods for producing fusion proteins

20 Isolated fusion proteins can be obtained by, for example, chemical synthesis or by recombinant production in a host cell. To recombinantly produce a fusion protein, a nucleic acid containing a nucleotide sequence encoding the fusion protein can be used to transform, transduce, or transfect a bacterial or eukaryotic host cell (e.g., an insect, yeast, or mammalian cell). In general, nucleic acid constructs include a regulatory sequence operably linked to a nucleotide sequence encoding the fusion protein. Regulatory sequences (also referred to herein as expression control sequences) typically 25 do not encode a gene product, but instead affect the expression of the nucleic acid sequences to which they are operably linked.

30 Useful prokaryotic and eukaryotic systems for expressing and producing polypeptides are well known in the art include, for example, *Escherichia coli* strains such as BL-21, and cultured mammalian cells such as CHO cells.

In eukaryotic host cells, a number of viral-based expression systems can be utilized to express fusion proteins. Viral based expression systems are well known in the art and include, but are not limited to, baculoviral, SV40, retroviral, or vaccinia based viral vectors.

Mammalian cell lines that stably express variant fusion proteins can be produced using expression vectors with appropriate control elements and a selectable marker. For example, the eukaryotic expression vectors pCR3.1 (Invitrogen Life Technologies) and p91023(B) (see Wong *et al.* (1985) 5 *Science* 228:810-815) are suitable for expression of variant costimulatory polypeptides in, for example, Chinese hamster ovary (CHO) cells, COS-1 cells, human embryonic kidney 293 cells, NIH3T3 cells, BHK21 cells, MDCK cells, and human vascular endothelial cells (HUVEC). Following introduction of an expression vector by electroporation, lipofection, calcium 10 phosphate, or calcium chloride co-precipitation, DEAE dextran, or other suitable transfection method, stable cell lines can be selected (e.g., by antibiotic resistance to G418, kanamycin, or hygromycin). The transfected cells can be cultured such that the polypeptide of interest is expressed, and the polypeptide can be recovered from, for example, the cell culture 15 supernatant or from lysed cells. Alternatively, a fusion protein can be produced by (a) ligating amplified sequences into a mammalian expression vector such as pcDNA3 (Invitrogen Life Technologies), and (b) transcribing and translating *in vitro* using wheat germ extract or rabbit reticulocyte lysate.

Fusion proteins can be isolated using, for example, chromatographic 20 methods such as DEAE ion exchange, gel filtration, and hydroxylapatite chromatography. For example, a costimulatory polypeptide in a cell culture supernatant or a cytoplasmic extract can be isolated using a protein G column. In some embodiments, fusion proteins can be engineered to contain an additional domain containing amino acid sequence that allows the 25 polypeptides to be captured onto an affinity matrix. For example, a tag such as c-myc, hemagglutinin, polyhistidine, or FlagTM (Kodak) can be used to aid polypeptide purification. Such tags can be inserted anywhere within the polypeptide, including at either the carboxyl or amino terminus. Other 30 fusions that can be useful include enzymes that aid in the detection of the polypeptide, such as alkaline phosphatase. Immunoaffinity chromatography also can be used to purify costimulatory polypeptides. Fusion proteins can additionally be engineered to contain a secretory signal (if there is not a secretory signal already present) that causes the fusion protein to be secreted

by the cells in which it is produced. The secreted fusion proteins can then conveniently be isolated from the cell media.

B. Methods for producing isolated nucleic acid molecules

5 Isolated nucleic acid molecules can be produced by standard techniques, including, without limitation, common molecular cloning and chemical nucleic acid synthesis techniques. For example, polymerase chain reaction (PCR) techniques can be used to obtain an isolated nucleic acid encoding a variant costimulatory polypeptide. PCR is a technique in which
10 target nucleic acids are enzymatically amplified. Typically, sequence information from the ends of the region of interest or beyond can be employed to design oligonucleotide primers that are identical in sequence to opposite strands of the template to be amplified. PCR can be used to amplify specific sequences from DNA as well as RNA, including sequences from
15 total genomic DNA or total cellular RNA. Primers typically are 14 to 40 nucleotides in length, but can range from 10 nucleotides to hundreds of nucleotides in length. General PCR techniques are described, for example in PCR Primer: A Laboratory Manual, ed. by Dieffenbach and Dveksler, Cold Spring Harbor Laboratory Press, 1995. When using RNA as a source of
20 template, reverse transcriptase can be used to synthesize a complementary DNA (cDNA) strand. Ligase chain reaction, strand displacement amplification, self-sustained sequence replication or nucleic acid sequence-based amplification also can be used to obtain isolated nucleic acids. See, for example, Lewis (1992) *Genetic Engineering News* 12:1; Guatelli *et al.*
25 (1990) *Proc. Natl. Acad. Sci. USA* 87:1874-1878; and Weiss (1991) *Science* 254:1292-1293.

Isolated nucleic acids can be chemically synthesized, either as a single nucleic acid molecule or as a series of oligonucleotides (e.g., using phosphoramidite technology for automated DNA synthesis in the 3' to 5' 30 direction). For example, one or more pairs of long oligonucleotides (e.g., >100 nucleotides) can be synthesized that contain the desired sequence, with each pair containing a short segment of complementarity (e.g., about 15 nucleotides) such that a duplex is formed when the oligonucleotide pair is annealed. DNA polymerase can be used to extend the oligonucleotides,

resulting in a single, double-stranded nucleic acid molecule per oligonucleotide pair, which then can be ligated into a vector. Isolated nucleic acids can also be obtained by mutagenesis. Fusion protein-encoding nucleic acids can be mutated using standard techniques, including 5 oligonucleotide-directed mutagenesis and/or site-directed mutagenesis through PCR. See, Short Protocols in Molecular Biology, Chapter 8, Green Publishing Associates and John Wiley & Sons, edited by Ausubel *et al*, 1992. Examples of amino acid positions that can be modified include those described herein.

10 **VII. Methods of use**

A. Activation of T cells

The fusion proteins disclosed herein, nucleic acids encoding the fusion proteins, or cells expressing the fusion proteins can be used to activate T cells (i.e., increase antigen-specific proliferation of T cells, enhance 15 cytokine production by T cells, stimulate differentiation and effector functions of T cells and/or promote T cell survival).

Methods for using fusion proteins to activate T cell responses are disclosed herein. The methods include contacting a T cell with any of the molecules disclosed herein. Fusion proteins are a preferred example. An 20 isolated fusion protein or a dimer or multimer of fusion proteins. The fusion protein or fusion protein dimer or multimer can be any of those described herein, including any of the disclosed amino acid alterations, polypeptide fragments, and combinations thereof.

With respect to variant costimulatory polypeptides used in the fusion 25 proteins, the variants described herein can have reduced or increased binding to coinhibitory receptors (i.e. PD-1) relative to wild type costimulatory polypeptides, yet retain the ability to costimulate T cells. Preferred variant costimulatory polypeptides have an enhanced ability to stimulate signaling through and activating receptor compared to a non-variant costimulatory 30 polypeptide.

The contacting can be *in vitro*, *ex vivo*, or *in vivo* (e.g., in a mammal such as a mouse, rat, rabbit, dog, cow, pig, non-human primate, or a human). In a preferred embodiment, fusion proteins are administered to contact T cells *in vivo*. The contacting can occur before, during, or after activation of

the T cell. In one embodiment, contacting of the T cell with fusion protein can be at substantially the same time as activation. Activation can be, for example, by exposing the T cell to an antibody that binds to the T cell receptor (TCR) or one of the polypeptides of the CD3 complex that is 5 physically associated with the TCR. Alternatively, a T cell can be exposed to either an alloantigen (e.g., a MHC alloantigen) on, for example, an APC [e.g., an interdigitating dendritic cell (referred to herein as a dendritic cell), a macrophage, a monocyte, or a B cell] or an antigenic peptide produced by processing of a protein antigen by any of the above APC and presented to the 10 T cell by MHC molecules on the surface of the APC. The T cell can be a CD4⁺ T cell or a CD8⁺ T cell.

If the activation is *in vitro*, the fusion proteins can be bound to the floor of a relevant culture vessel, e.g. a well of a plastic microtiter plate. *In vitro* application of the isolated variant costimulatory polypeptides can be 15 useful, for example, in basic scientific studies of immune mechanisms or for production of activated T cells for use in studies of T cell function or, for example, passive immunotherapy. Furthermore, fusion proteins disclosed herein can be added to *in vitro* assays (e.g., T cell proliferation assays) designed to test for immunity to an antigen of interest in a subject from 20 which the T cells were obtained. Addition of fusion proteins to such assays would be expected to result in a more potent, and therefore more readily detectable, *in vitro* response. Moreover, a fusion proteins disclosed herein or nucleic acids encoding them, can be used: (a) as a positive control in an assay to test for costimulatory activity in other molecules; or (b) in screening 25 assays for compounds useful in inhibiting T costimulation (e.g., compounds potentially useful for treating autoimmune diseases or organ graft rejection).

B. Therapeutic uses of fusion proteins

1. Activation of T cell-mediated immune responses to cancer

30 The fusion proteins provided herein are generally useful *in vivo* and *ex vivo* as immune response-stimulating therapeutics. The fusion proteins are particularly useful *in vivo* for the induction of tumor immunity and immunity to agents that cause infectious diseases.

In some embodiments, the fusion proteins disclosed herein contain a domain that binds to an antigen, ligand, or receptor on tumors or tumor-associated neovasculature in the local tumor environment. The tumor or tumor-associated neovasculature binding domain functions to effectively 5 target the fusion proteins to the local tumor microenvironment, where they can specifically enhance the activity of tumor-infiltrating effector T cells.

In other embodiments, the fusion proteins disclosed herein contain a domain that binds to an antigen, ligand or receptor on cells in tissues involved in regulating immune cell activation in response to infectious 10 disease causing agents. Targeting the fusion proteins to tissues involved in immune cell activation allows for efficient activation of T cells and can cause local activation of T cell, resulting in long term immunity.

The ability of the fusion proteins to concentrate in tumors or immune tissues involved in immune cell activation also reduces the amount of 15 costimulatory molecule that is necessary to administer *in vivo* to achieve therapeutic efficacy. The ability of the fusion proteins to concentrate in tumors or immune tissues involved in immune cell activation and the resulting reduction in the amount of costimulatory molecule that is necessary to administer *in vivo* to achieve therapeutic efficacy also reduces non- 20 specific activation of the immune system. Non-specific activation of the immune system refers to activation of T cells or other immune cells that do not specifically recognize antigens expressed by a tumor or an infectious disease causing agent to be treated or are not involved directly or indirectly in the anti-tumor or anti-infection response. Non-specific activation of the 25 immune response can lead to the development of inflammatory disorders and autoimmunity.

Fusion proteins can be administered as monomers or as dimers or multimers. Dimers and multimers can be homodimers/homomultimers or heterodimers/heteromultimers as described above. In a preferred 30 embodiment, fusion proteins are administered as dimers or multimers.

Administration of fusion proteins as dimers or multimers increases the valency of the fusion proteins. The increase in valency can result in an increase in the avidity of the fusion protein for its target antigen(s), receptor(s) or ligand(s) on the tumor, tumor-associated neovasculature, or

tissue involved in immune cell activation, and thereby increase its retention in the tumor microenvironment or in the immune-regulating tissue.

Increasing the valency of the fusion proteins can also increase their ability to cross-link costimulatory receptors on T cells.

5 **1. Induction of tumor immunity**

Some cancer patients have tumor-infiltrating, antigen specific cytotoxic T lymphocytes (TIL) that are able to kill tumor cells and reduce tumor burden. However, the frequency of patients with such responses and the number of TILs within the tumor is extremely low. Consequently, they 10 are unable to eradicate the tumors. Human clinical trials in melanoma patients demonstrated that when these patients were treated with passive administration of high doses of antigen specific TIL expanded *ex vivo*, a significant number of tumors, including large tumors, were eradicated (Dudley, *Science*, 298:850-4 (2002)).

15 Compositions that are targeted to tumors or tumor-associated neovasculature and contain molecules that enhance the function of tumor-infiltrating T cells are provided herein. In certain embodiments it is believed that the compositions increase or augment the functional immune response against a tumor relative to a control by costimulating T cells or by inhibiting 20 or reducing inhibitory signals to T cells in a subject. In a preferred embodiment, the compositions are formulated to increase the number or functional activity of tumor-infiltrating, antigen specific cytotoxic T lymphocytes (TILs) in a subject in need thereof.

One embodiment provides a method for increasing the activation of 25 tumor-infiltrating leukocytes in a subject by administering to the subject an effective amount of a fusion protein disclosed herein or a nucleic acid encoding the same to activate the subject's T cells and/or to inhibit or reduce coinhibition of the subject's T cells.

Another embodiment provides a method for increasing the population 30 of tumor-infiltrating leukocytes in a subject by administering to the subject an effective amount of a fusion protein disclosed herein or a nucleic acid encoding the same to costimulate the subject's T cells and/or to inhibit or reduce coinhibition of the subject's T cells.

Another embodiment provides a method for stimulating or augmenting an effective anti-tumor T cell response by administering to the subject an effective amount of a fusion protein disclosed herein or a nucleic acid encoding the same to activate the subject's T cells and/or to inhibit or 5 block inhibition of the subject's T cells.

Malignant tumors which may be treated are classified herein according to the embryonic origin of the tissue from which the tumor is derived. Carcinomas are tumors arising from endodermal or ectodermal tissues such as skin or the epithelial lining of internal organs and glands.

10 Sarcomas, which arise less frequently, are derived from mesodermal connective tissues such as bone, fat, and cartilage. The leukemias and lymphomas are malignant tumors of hematopoietic cells of the bone marrow. Leukemias proliferate as single cells, whereas lymphomas tend to grow as tumor masses. Malignant tumors may show up at numerous organs or 15 tissues of the body to establish a cancer.

The types of cancer that can be treated in with the provided compositions and methods include, but are not limited to, the following: bladder, brain, breast, cervical, colo-rectal, esophageal, kidney, liver, lung, nasopharangeal, pancreatic, prostate, skin, stomach and uterine.

20 Administration is not limited to the treatment of an existing tumor or infectious disease but can also be used to prevent or lower the risk of developing such diseases in an individual, i.e., for prophylactic use. Potential candidates for prophylactic vaccination include individuals with a high risk of developing cancer, i.e., with a personal or familial history of 25 certain types of cancer.

2. Use of fusion proteins in vaccines

The fusion proteins disclosed herein, and/or nucleic acids encoding the same may be administered alone or in combination with any other suitable treatment. In one embodiment, fusion proteins, and/or nucleic acids 30 encoding the same may be administered in conjunction with, or as a component of, a vaccine composition. Suitable components of vaccine compositions are described above. Fusion protein compositions described herein can be administered prior to, concurrently with, or after the

administration of a vaccine. In one embodiment the fusion protein composition is administered at the same time as administration of a vaccine.

The fusion proteins described herein may be administered in conjunction with prophylactic vaccines, which confer resistance in a subject 5 to development of certain types of tumors, or in conjunction with therapeutic vaccines, which can be used to initiate or enhance a subject's immune response to a pre-existing antigen, such as a tumor antigen in a subject already having cancer.

The desired outcome of a prophylactic or therapeutic immune 10 response may vary according to the disease, according to principles well known in the art. For example, an immune response against cancer, may completely treat the cancer or infectious disease, may alleviate symptoms, or may be one facet in an overall therapeutic intervention against the cancer or infectious disease.

15 **C. Combination therapy**

The disclosed fusion protein compositions can be administered alone or in combination with one or more additional therapeutic agents. For example, the stimulation of an immune response against a cancer may be coupled with surgical, chemotherapeutic, radiologic, hormonal and other 20 immunologic approaches in order to affect treatment.

For example, the disclosed fusion proteins can be administered with an antibody or antigen binding fragment thereof specific for growth factor receptors or tumor specific antigens. Representative growth factors receptors include, but are not limited to, epidermal growth factor receptor (EGFR; 25 HER1); c-erbB2 (HER2); c-erbB3 (HER3); c-erbB4 (HER4); insulin receptor; insulin-like growth factor receptor 1 (IGF-1R); insulin-like growth factor receptor 2/Mannose-6-phosphate receptor (IGF-II R/M-6-P receptor); insulin receptor related kinase (IRRK); platelet-derived growth factor receptor (PDGFR); colony-stimulating factor-1 receptor (CSF-1R) (c-Fms); 30 steel receptor (c-Kit); Flk2/Flt3; fibroblast growth factor receptor 1 (Flg/Cek1); fibroblast growth factor receptor 2 (Bek/Cek3/K-Sam); Fibroblast growth factor receptor 3; Fibroblast growth factor receptor 4; nerve growth factor receptor (NGFR) (TrkA); BDNF receptor (TrkB); NT-3-receptor (TrkC); vascular endothelial growth factor receptor 1 (Flt1);

vascular endothelial growth factor receptor 2/Flk1/KDR; hepatocyte growth factor receptor (HGF-R/Met); Eph; Eck; Eek; Cek4/Mek4/HEK; Cek5; Elk/Cek6; Cek7; Sek/Cek8; Cek9; Cek10; HEK11; 9 Ror1; Ror2; Ret; Axl; RYK; DDR; and Tie.

5 Additional therapeutic agents include conventional cancer therapeutics such as chemotherapeutic agents, cytokines, chemokines, and radiation therapy. The majority of chemotherapeutic drugs can be divided into: alkylating agents, antimetabolites, anthracyclines, plant alkaloids, topoisomerase inhibitors, and other antitumour agents. All of these drugs
10 affect cell division or DNA synthesis and function in some way. Additional therapeutics include monoclonal antibodies and the tyrosine kinase inhibitors e.g. imatinib mesylate (GLEEVEC® or GLIVEC®), which directly targets a molecular abnormality in certain types of cancer (chronic myelogenous leukemia, gastrointestinal stromal tumors).

15 Representative chemotherapeutic agents include, but are not limited to cisplatin, carboplatin, oxaliplatin, mechlorethamine, cyclophosphamide, chlorambucil, vincristine, vinblastine, vinorelbine, vindesine, taxol and derivatives thereof, irinotecan, topotecan, amsacrine, etoposide, etoposide phosphate, teniposide, epipodophyllotoxins, trastuzumab (HERCEPTIN®),
20 cetuximab, and rituximab (RITUXAN® or MABTHERA®), bevacizumab (AVASTIN®), and combinations thereof.

EXAMAPLES

Example 1: P815 Mastocytoma Model

25 The *in vivo* activity of murine B7-DC-Ig was tested in the P815 mastocytoma tumor model. P815 mastocytoma cells were derived from DBA/2 mice after methylcholanthrene (MCA) treatment. Injection of 5×10^4 cells SC can result in mortality approximately 35 days post tumor inoculation.

30 DBA/2 mice (6 – 10 weeks of age, females) were first challenged with 5×10^4 live P815 cells injected SC in the flank. Six days later, the mice were treated with murine B7-DC-Ig via IP injection. The dosing regimen, shown in Figure 1, was 100 µg of murine B7-DC-Ig per injection (approximately 5 mg/kg), 2 times per week, up to 6 doses. Control groups were treated with vehicle only or with murine IgG. Tumor size was measured

with digital calipers every 2 – 3 days. Mice were euthanized and defined as dead when their tumor size reached or exceeded 1000 mm³, according to protocols approved by the Institutional Animal Care and Use Committee (IACUC) of the American Red Cross (ARC; the site of Amplimmune's vivarium). Surviving tumor free mice were re-challenged with P815 tumor cells on Day 52.

As shown in Table 1 and Figure 1**Error! Reference source not found.**, all of the mice treated with vehicle or control mouse IgG required euthanasia by Day 38 because their tumor volumes reached the IACUC limit.

10 Four of 5 murine B7-DC-Ig treated mice responded to treatment: tumor was eradicated in two mice and two additional mice showed delayed tumor growth during murine B7-DC-Ig treatment.

Table 1. P815 tumor model results.

Group	Treatment	# Tumor free	# Tumor < 500 mm ³	# Tumor ≥ 500 mm ³
A	Vehicle control	0	0	5
B	Mouse IgG control	0	0	5
C	Murine B7-DC-Ig (5 mg/kg IP biw 3 weeks starting Day 6)	2	2	1

15

Figures 2A-C show tumor eradication in mice using murine B7-DC-Ig. The tumor-free mice were then re-challenged with 5×10^4 P815 cells administered to the flank opposite the primary inoculation site on Day 52. The mice remained tumor free through 74 days after the primary inoculation, 20 while all naïve mice challenged with P815 cells developed tumors. This suggests that mice inoculated with P815 cells and treated with murine B7-DC-Ig developed long-term immunity against P815 mastocytoma.

Example 2

25 Combination of cyclophosphamide and B7-DC-Ig can eradicate established tumors.

Balb/C mice at age of 9 to 11 weeks were implanted subcutaneously with 1.0 x 10⁵ CT26 colorectal tumor cells. On day 10 post tumor implantation, mice received 100 mg/kg of cyclophosphamide. B7-DC-Ig treatment started 1 day later, on day 11. Mice were treated with 100 ug of B7-DC-Ig, 2 doses per week, for 4 weeks and total 8 doses. 75% of the mice that received the CTX + B7-DC-Ig treatment regimen eradicated the established tumors by Day 44, whereas all mice in the control CTX alone group died as a result of tumor growth or were euthanized because tumors exceeded the sizes approved by IACUC (results shown in Figure 3). These results demonstrate the effectiveness of the treatment regimen on established tumors and not mere prophylaxis.

Example 3
Combination of cyclophosphamide and B7-DC-Ig can eradicate established tumors and protect against tumor re-challenge.

Mice eradicated established CT26 colorectal tumors from the above described experiment were rechallenged with 1x10⁵ CT26 cells on Day 44 and Day 70. No tumors grew out from the rechallenge suggesting they had developed long term anti-tumor immunity from the cyclophosphamide and B7-DC-Ig combination treatment. All mice in the vehicle control group developed tumors (results shown in Figure 4). These results show the effectiveness of the treatment regimen on established tumors and that the cyclophosphamide and B7-DCIg combination treatment resulted in memory responses to tumor antigens.

Example 4
Combination of cyclophosphamide and B7-DC-Ig can generate tumor specific, memory cytotoxic T lymphocytes
Mice eradicated established CT26 colorectal tumors from the above described experiment were rechallenged with 2.5x10⁵ CT26 cells on Day 44. Seven days later, mouse spleens were isolated. Mouse splenocytes were pulsed with 5 or 50 ug/mL of ovalbumin (OVA) or AH1 peptides for 6 hours in the presence of a Golgi blocker (BD BioScience). Memory T effector cells were analyzed by assessing CD8+/IFN \square + T cells. Results in Figure 5 show that

there were significant amount of CT26 specific T effector cells in the CT26 tumor-eradicated mice.

Example 5

5 Combination of cyclophosphamide and B7-DC-Ig Regimen Leads to Reduction of Tregs in the Tumor Microenvironment
Figure 6 shows the results of experiments wherein Balb/C mice at age of 9 to 11 weeks of age were implanted with 1 X 10⁵ CT26 cells subcutaneously. On Day 9, mice were injected with 100 mg/kg of CTX, IP. Twenty four
10 hours later, on Day 10, mice were treated with 100 ug of B7-DC-Ig. There were 5 groups: naïve mice that did not receive any tumor cells, vehicle injected, CTX alone, CTX + B7-DC-Ig or B7-DC-Ig alone. Two naïve mice and 4 mice from other groups were removed from the study on Day 11 (2 days post CTX) and Day 16 (7 days post CTX) for T cell analysis. Left panel
15 shows on Day 11, 2 days post CTX injection, Treg in the spleen of the mice with CTX treatment was significantly lower than the one in the mice with tumor implantation and injected with vehicle. Right panel shows that on Day 16, 7 days post CTX and 6 days post B7-DC-Ig treatment, B7-DC-Ig significantly lowered the CD4+ T cells expressing high PD-1. This was
20 observed in both the B7-DC-Ig treated and CTX + B7-DC-Ig treated mice. Mice implanted with tumor cells intended to have more PD-1+/CD4+ T cells in the draining LN compared with naïve mice.

Example 6

25 Combination of cyclophosphamide and B7-DC-Ig can promote mouse survival in a metastatic prostate lung tumor model
B10.D2 mice at age of 9 to 11 weeks were injected intravenously with 3.0 x 10⁵ SP-1 mouse prostate tumor cells, which were isolated from lung metastasis post parent TRAMP prostate tumor cell injection. The CTX mice
30 received 3 doses of CTX, 50 mg/kg, on Day 5, 12 and 19. The B7-DC-Ig treated mice received 3 doses of B7-DC-Ig, 5 mg/kg, on Day 6, 13 and 20. On Day 100, 17% of mice in the control groups, no-treated, CTX alone, B7-DC-Ig alone survived while 43% of the mice received combination of CTX and B7-DC-Ig survived. Results are shown in Figure 7.

Example 7

Combination of Listeria cancer vaccine and B7-DC-Ig can enhance mouse survival post CT26 liver implantation

Balb/C mice at age of 11-13 weeks were implanted with CT26 cells using a 5 hemispleen injection technique (Yoshimura K et al., 2007, Cancer Research). On Day 10, mice received 1 injection of CTX at 50 mg/kg, IP. Twenty four hours later, on Day 11, mice were treated with recombinant Listeria carrying AH1 peptide, an immunodominant epitope of CT26, at 0.1 LD50 (1x10⁷ CFU), then on Day 14 and 17. Mice were also treated with B7-DC-Ig on Day 10 11 and then on Day 18. Figure 8 shows mice without any treatment or treated with CTX and Listeria cancer vaccine all died before Day 45. There were 60% of the mice received triple combination, CTX + Listeria cancer vaccine and B7-DC-Ig survived.

Unless defined otherwise, all technical and scientific terms used 15 herein have the same meanings as commonly understood by one of skill in the art to which the disclosed invention belongs. Publications cited herein and the materials for which they are cited are specifically incorporated by reference.

Those skilled in the art will recognize, or be able to ascertain using no 20 more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

We claim:

1. A fusion protein comprising a first fusion partner comprising a T cell costimulatory polypeptide, or a fragment and/or variant thereof, fused (i) directly to a second fusion partner and, (ii) optionally fused to a linker peptide or polypeptide sequence that is fused to the second fusion partner,

wherein the costimulatory molecule or costimulatory fragment and/or variant thereof increases antigen-specific proliferation of T cells, enhances production of cytokines by T cells, stimulated differentiation or effector function of T cells, or promotes the survival of T cells, and

wherein the second fusion partner comprises a polypeptide that targets the fusion protein to cells of a tumor, tumor vasculature, or tissue involved in activation of an immune response.

2. The fusion protein of claim 1, wherein the costimulatory polypeptide comprises a B7 family costimulatory molecule or a fragment and/or variant thereof.

3. The fusion protein of claim 2, wherein the costimulatory molecule comprises a soluble fragment of a B7 family costimulatory molecule.

4. The fusion protein of claim 3, wherein the costimulatory molecule comprises the extracellular domain of a B7 family costimulatory molecule.

5. The fusion protein of any of claims 2-4, wherein the costimulatory molecule is selected from the group consisting of B7-DC, B7-1, B7-2, B7-H5, and fragments and/or variants thereof.

6. The fusion protein of claim 5, wherein the costimulatory molecule is a variant costimulatory molecule or fragment thereof,

wherein the costimulatory molecule or fragment thereof is a variant of a wild-type costimulatory molecule,

wherein the variant costimulatory molecule or fragment thereof comprises a substitution, deletion or insertion of one or more amino acids.

7. The fusion protein of claim 5, wherein the B7-DC polypeptide is murine B7-DC.

8. The fusion protein of claim 5, wherein the B7-DC polypeptide is human B7-DC.

9. The fusion protein of claim 5, wherein the B7-DC polypeptide is non-human primate B7-DC.

10. The fusion protein of any of claim 6, wherein the substitution, deletion or insertion of one or more amino acids is in the A', B, C, C', C'', D, E, F, or G strand of B7-DC, or any combination thereof.

11. The fusion protein of any of claims 1-10, wherein the second fusion partner comprises a polypeptide that binds to an antigen on a tumor or on tumor-associated neovasculature.

12. The fusion protein of claim 11, wherein the second fusion partner comprises a polypeptide that binds to a tumor-specific or a tumor-associated antigen.

13. The fusion protein of claim 12, wherein the tumor-specific or tumor-associated antigen is selected from the group consisting of alpha-actinin-4, Bcr-Abl fusion protein, Casp-8, beta-catenin, cdc27, cdk4, cdkn2a, coa-1, dek-can fusion protein, EF2, ETV6-AML1 fusion protein, LDLR-fucosyltransferaseAS fusion protein, HLA-A2, HLA-A11, hsp70-2, KIAAO205, Mart2, Mum-1, 2, and 3, neo-PAP, myosin class I, OS-9, pml-RAR α fusion protein, PTPRK, K-ras, N-ras, Triosephosphate isomeras, Bage-1, Gage 3,4,5,6,7, GnTV, Herv-K-mel, Lage-1, Mage-A1,2,3,4,6,10,12, Mage-C2, NA-88, NY-Eso-1/Lage-2, SP17, SSX-2, and TRP2-Int2, MelanA (MART-I), gp100 (Pmel 17), tyrosinase, TRP-1, TRP-2, MAGE-1, MAGE-3, BAGE, GAGE-1, GAGE-2, p15(58), CEA, RAGE, NY-ESO (LAGE), SCP-1, Hom/Mel-40, PRAME, p53, H-Ras, HER-2/neu, BCR-ABL, E2A-PRL, H4-RET, IGH-IGK, MYL-RAR, Epstein Barr virus antigens, EBNA, human papillomavirus (HPV) antigens E6 and E7, TSP-180, MAGE-4, MAGE-5, MAGE-6, p185erbB2, p180erbB-3, c-met, nm-23H1, PSA, TAG-72-4, CA 19-9, CA 72-4, CAM 17.1, NuMa, K-ras, β -Catenin, CDK4, Mum-1, p16, TAGE, PSMA, PSCA, CT7, telomerase, 43-9F, 5T4, 791Tgp72, α -fetoprotein, 13HCG, BCA225, BTAA, CA 125, CA 15-3 (CA 27.29\BCAA), CA 195, CA 242, CA-50, CAM43, CD68\KP1, CO-029, FGF-5, G250, Ga733 (EpCAM), HTgp-175, M344, MA-50, MG7-

Ag, MOV18, NBV70K, NY-CO-1, RCAS1, SDCCAG16, TA-90 (Mac-2 binding protein\cyclophilin C-associated protein), TAAL6, TAG72, TLP, and TPS.

14. The fusion protein of claim 11, wherein the second fusion partner comprises a polypeptide that binds to an antigen that is specific to tumor-associated neovasculature or is more highly expressed in tumor neovasculature relative to normal vasculature.

15. The fusion protein of claim 14, wherein the antigen is selected from the group consisting of VEGF/KDR, Tie2, vascular cell adhesion molecule (VCAM), endoglin and $\alpha_5\beta_3$ integrin/vitronectin.

16. The fusion protein of any of claims 1-12, wherein the second fusion partner comprises a chemokine or a chemokine receptor or a soluble fragment thereof.

17. The fusion protein of claim 16, wherein the second fusion partner comprises a soluble fragment of a chemokine receptor selected from the group consisting of CXCR2, CXCR4, CCR2 and CCR7,

wherein the soluble fragment binds to a chemokine.

18. The fusion protein of claim 17, wherein the second fusion partner comprises a chemokine selected from the group consisting of CXC, CC, CX3C and C chemokines or a fragment thereof.

19. The fusion protein of any of claims 1-18, wherein the linker peptide or polypeptide comprises a flexible peptide or polypeptide, wherein the peptide or polypeptide comprises 2 or more amino acids, and

wherein the peptide or polypeptide comprises an amino acid sequence selected from the group consisting of Gly-Ser, Gly-Ser-Gly-Ser, Ala-Ser, Gly-Gly-Gly-Ser, (Gly₄-Ser)₃, (Gly₄-Ser)₄, and (Gly₄-Ser)₄.

20. The fusion protein of any of claims 1-19, wherein the linker peptide or polypeptide comprises the hinge region of a human immunoglobulin, and optionally, further comprises an additional region of an immunoglobulin selected from the group consisting of the Fc domain, the C_H1 region or the C_L region.

21. The fusion protein of any of claims 1-19, further comprising a domain that mediates dimerization or multimerization of the fusion protein to form homodimers, heterodimers, homomultimers, or heteromultimers.

22. The fusion protein of claim 21, wherein the domain that mediates dimerization or multimerization is selected from the group consisting of one or more cysteines that are capable of forming an intermolecular disulfide bond with a cysteine on the partner fusion protein, a coiled-coil domain, an acid patch, a zinc finger domain, a calcium hand domain, a C_H1 region, a C_L region, a leucine zipper domain, an SH2 (src homology 2) domain, an SH3 (src Homology 3) domain, a PTB (phosphotyrosine binding) domain, a WW domain, a PDZ domain, a 14-3-3 domain, a WD40 domain, an EH domain, a Lim domain, an isoleucine zipper domain, and a dimerization domain of a receptor dimer pair.

23. The fusion protein of claim 22, wherein the dimerization or multimerization domain is contained within the first fusion partner, the second fusion partner, or the linker peptide or polypeptide.

24. The fusion protein of claim 22, wherein the dimerization or multimerization domain is separate from and not contained within the first fusion partner, the second fusion partner, or the linker peptide or polypeptide.

25. A dimeric protein comprising a first and a second fusion protein, wherein the first and the second fusion proteins comprise the fusion protein of any of claims 1-27, wherein the first and the second fusion proteins are bound to one another by covalent or noncovalent bonds to form a dimer.

26. The dimeric protein of claim 25, wherein the dimer is a homodimer.

27. The dimeric protein of claim 25, wherein the dimer is a heterodimer.

28. A multimeric protein comprising more than two fusion proteins, wherein each of the fusion proteins comprise the fusion protein of any of claims 1-24, wherein the fusion proteins are bound to one another by covalent or noncovalent bonds to form a multimer.

29. The multimeric protein of claim 28, wherein the multimer is a homomultimer.

30. The multimeric protein of claim 29, wherein the multimer is a heteromultimer.

31. The dimeric or multimeric protein of any of claims 25-30 wherein the fusion proteins are bound together by disulfide bonds.

32. The dimeric or multimeric protein of claim 31 wherein the disulfide bonds are formed between cysteines in the linker peptide sequence.

33. An isolated nucleic acid molecule comprising a nucleic acid sequence that encodes the fusion protein of any of claims 1-24.

34. A vector comprising the nucleic acid of claim 33.

35. The vector of claim 34, wherein said nucleic acid sequence is operably linked to an expression control sequence.

36. A host cell comprising the vector of claim 35.

37. A pharmaceutical composition for use with an antigen or a vaccine to increase the immunogenicity of the antigen or vaccine comprising:

a) the isolated fusion protein, dimeric protein, or multimeric protein of any of claims 1-24, and

b) a pharmaceutically and immunologically acceptable excipient or carrier.

38. An immunogenic composition useful for inducing a T cell immune response against a tumor, comprising

(a) a source of antigen to which an immune response is desired;

(b) a fusion protein, dimeric protein, or multimeric protein of any of claims 1-32,

(c) optionally, a general immunostimulatory agent or adjuvant; and

(d) a pharmaceutically and immunologically acceptable excipient or carrier for (a),(b) and, optionally, (c).

39. A method for costimulating T cells comprising contacting a T cell with the fusion protein, dimeric protein, or multimeric polypeptide of any of claims 1-32.

40. The method of claim 39, wherein the method comprises administering the fusion protein to a mammal.

41. A method for increasing the activation of tumor-infiltrating T cells in a subject by administering to a mammal in need thereof an effective amount of a fusion protein, dimeric protein, or multimeric protein of any of claims 1-32, or a nucleic acid encoding the same, to activate the mammal's T cells.

42. A method for increasing the population of tumor-infiltrating T cells in a subject by administering to a mammal in need thereof an effective amount of a fusion protein, dimeric protein, or multimeric protein of any of claims 1-32, or a nucleic acid encoding the same, to activate the mammal's T cells.

43. A method for stimulating or augmenting an effective anti-tumor T cell response by administering to a mammal in need thereof an effective amount of a fusion protein, dimeric protein, or multimeric protein of any of claims 1-32, or a nucleic acid encoding the same, to activate the mammal's T cells.

44. A method for potentiating an immune response to an antigen or a vaccine in a mammalian subject, comprising administering to the mammal, in combination with the antigen or vaccine, the fusion protein, dimeric protein, or multimeric protein of any of claims 1-32, or a nucleic acid encoding the same, in an effective amount to activate the subject's T cells.

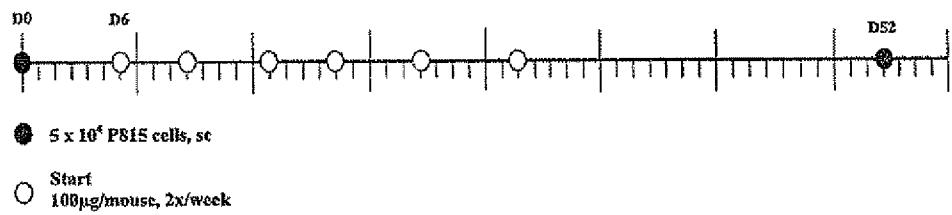
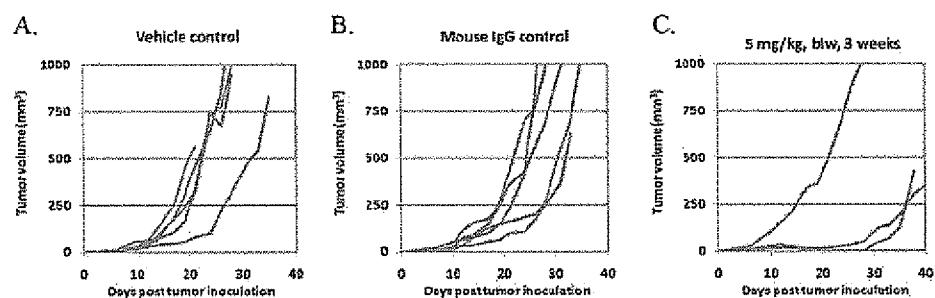
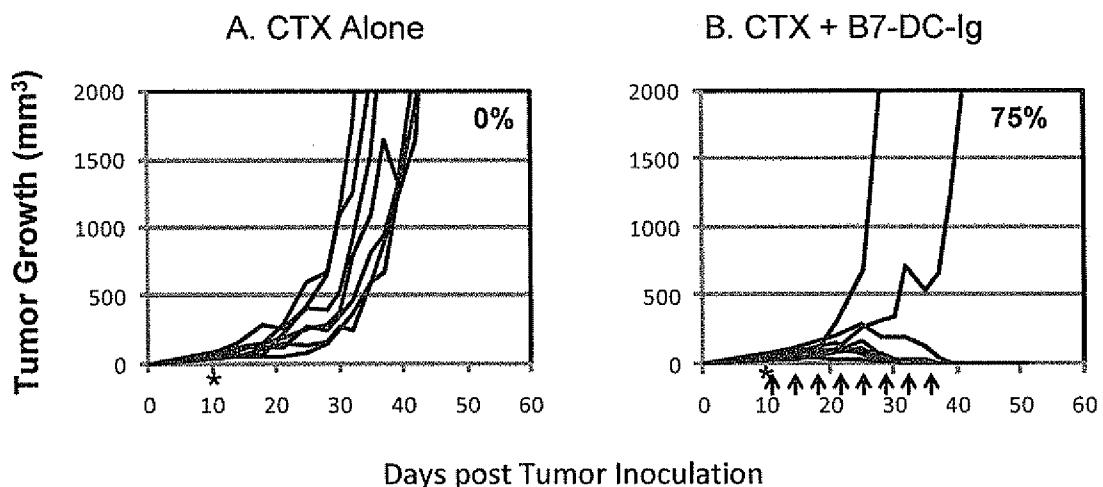




FIGURE 1

FIGURES 2A-C

Figures 3A-B

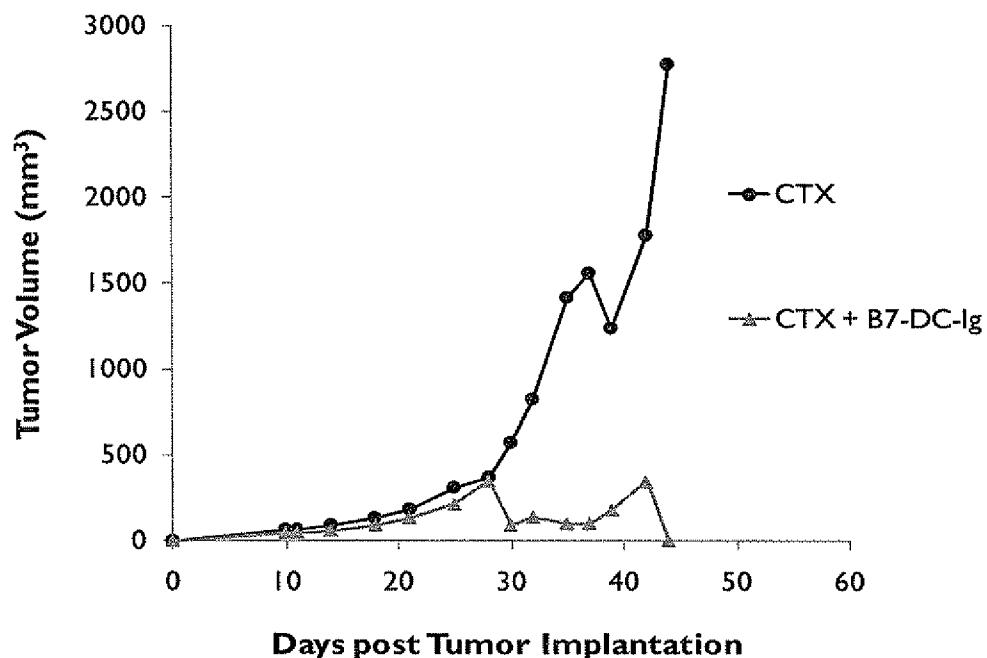


Figure 3C

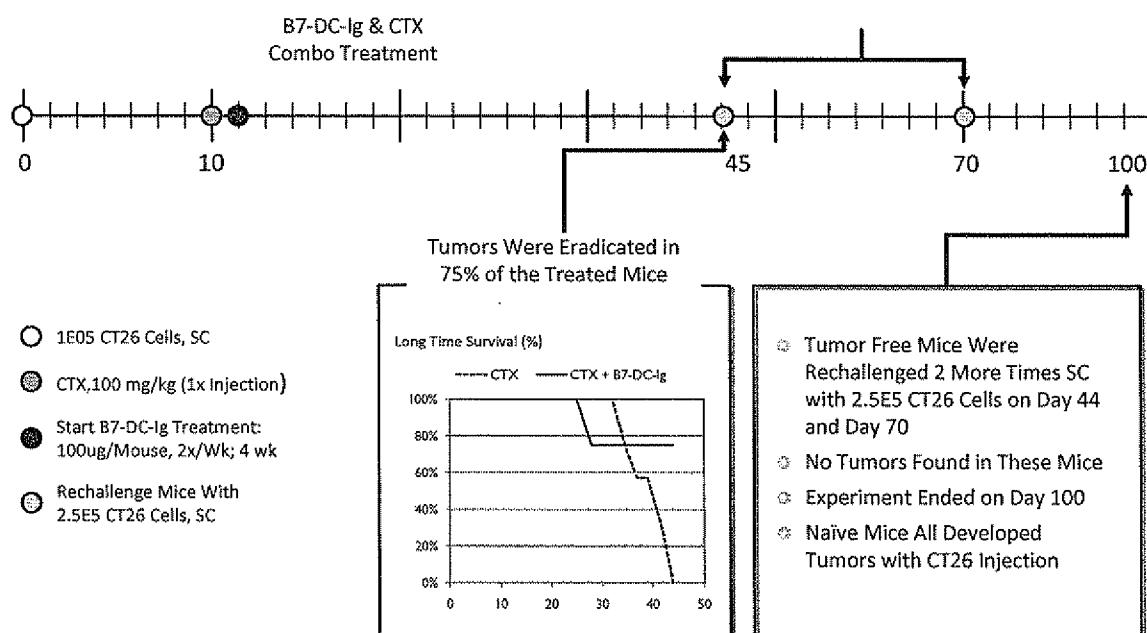


Figure 4

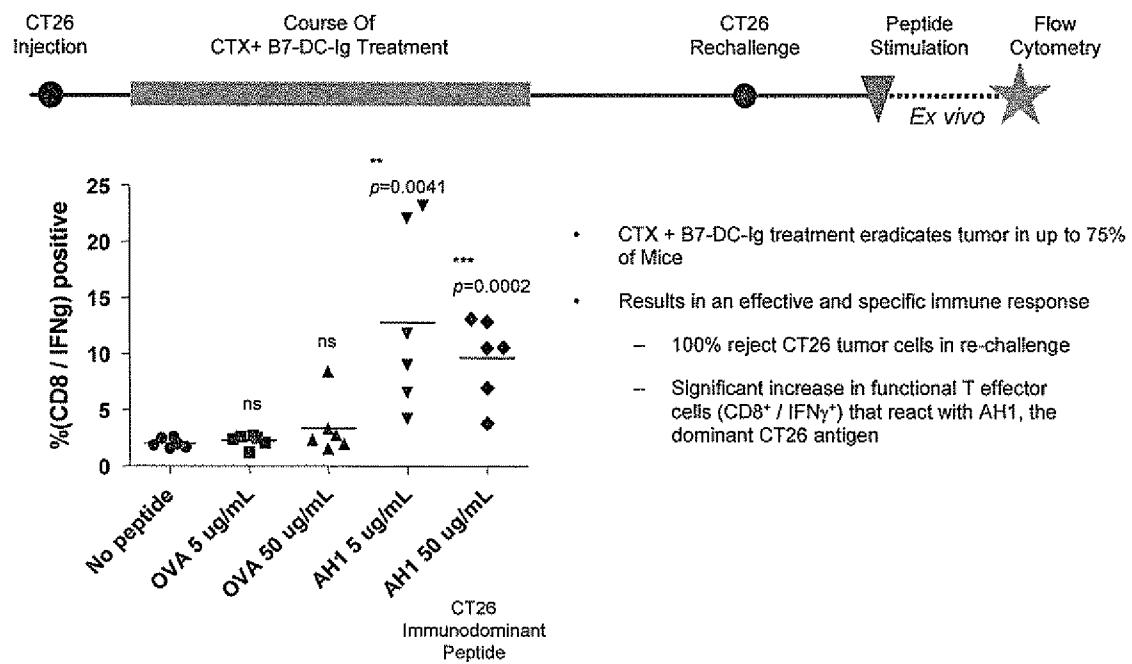


Figure 5

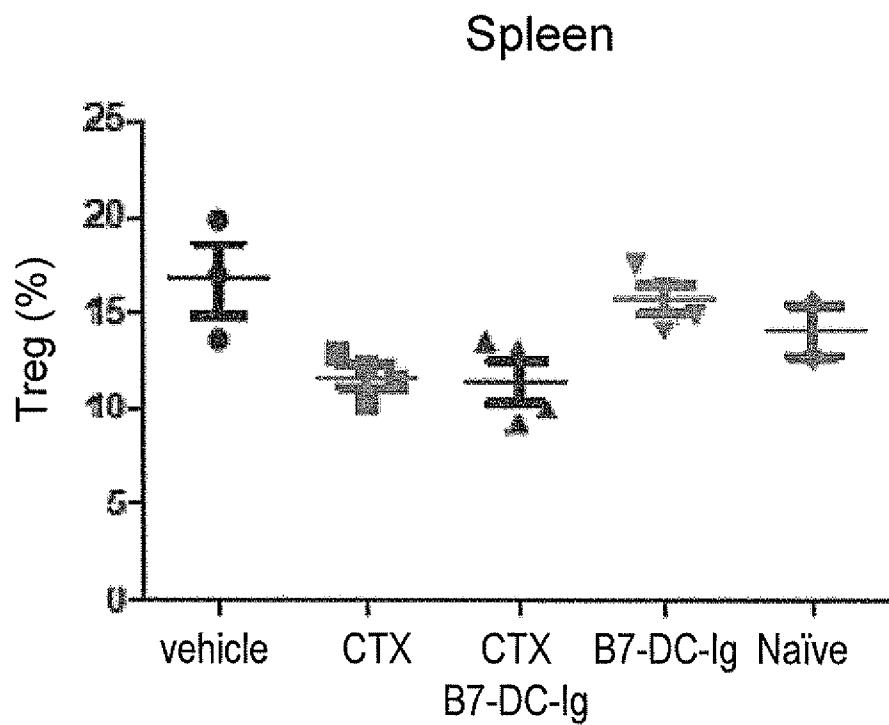


Figure 6A

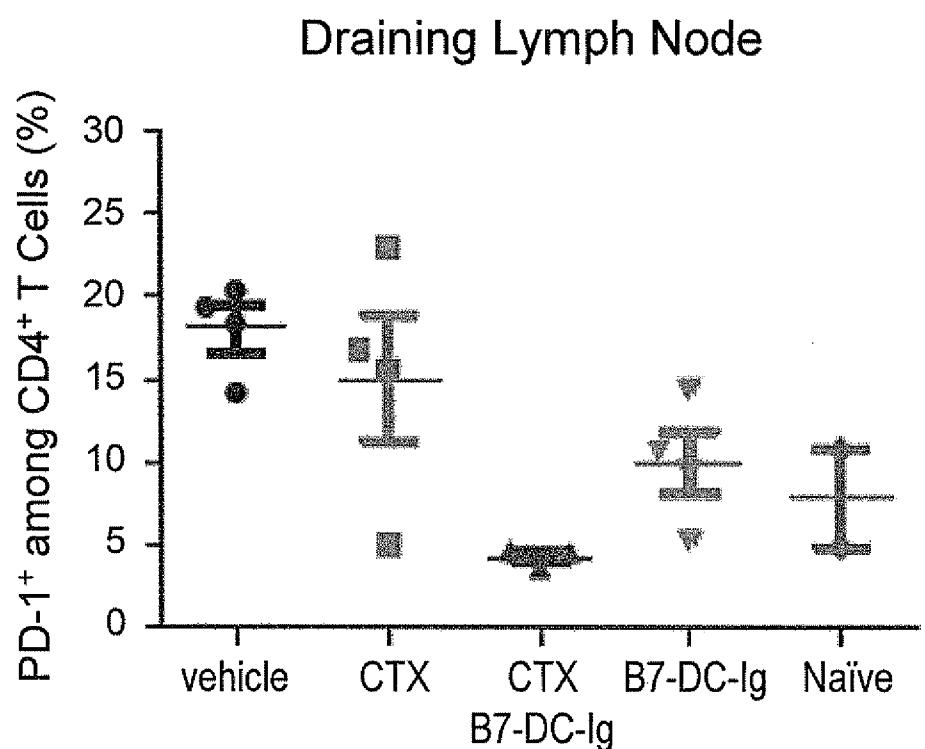


Figure 6B

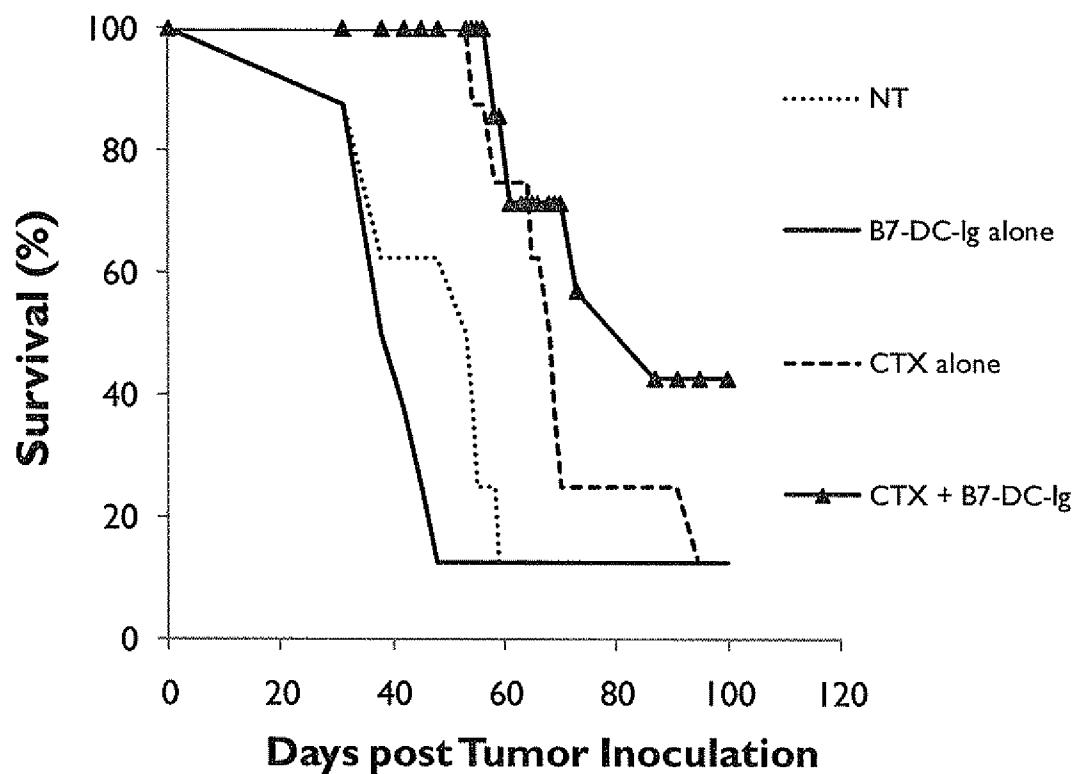


Figure 7

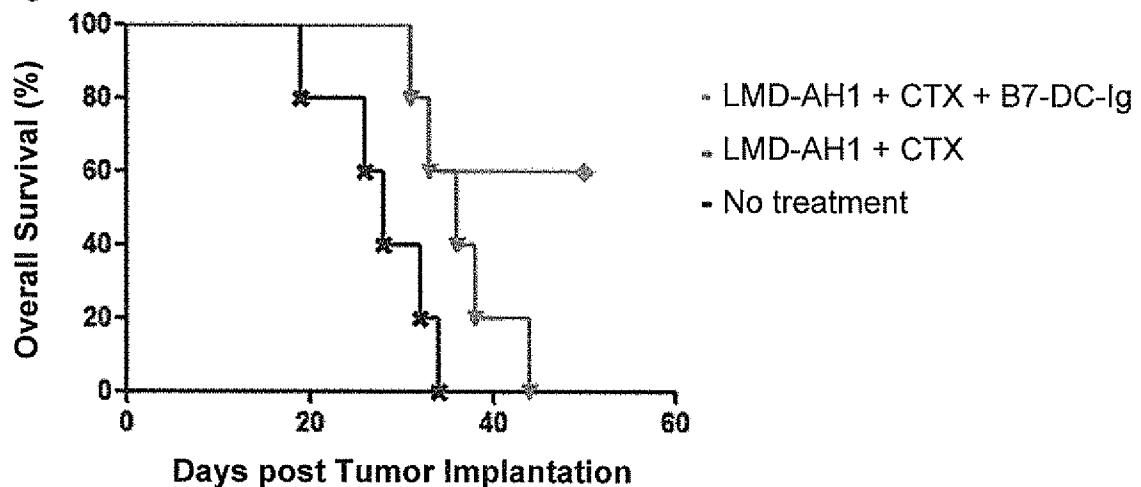


Figure 8