

(19)日本国特許庁(JP)

(12)公開特許公報(A)

(11)公開番号
特開2022-171622
(P2022-171622A)

(43)公開日 令和4年11月11日(2022.11.11)

(51)国際特許分類

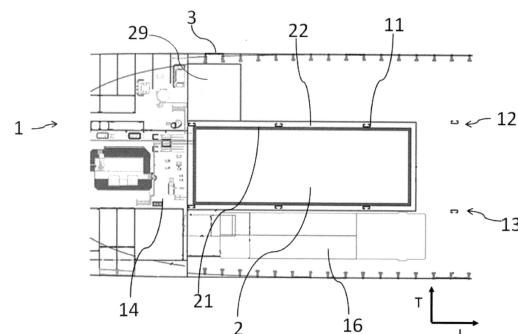
B 6 3 B	11/04 (2006.01)	B 6 3 B	11/04	B
B 6 3 B	27/00 (2006.01)	B 6 3 B	27/00	B
B 6 3 H	21/38 (2006.01)	B 6 3 H	21/38	C

F I

審査請求 未請求 請求項の数 10 O L 外国語出願 (全33頁)

(21)出願番号 特願2022-74086(P2022-74086)
 (22)出願日 令和4年4月28日(2022.4.28)
 (31)優先権主張番号 2104590
 (32)優先日 令和3年4月30日(2021.4.30)
 (33)優先権主張国・地域又は機関
 フランス(FR)

(71)出願人 515220317
 ギヤズトランスポルト エ テクニギヤズ
 フランス国 エフ - 7 8 4 7 0 サン レミ
 レ シュヴルーズ ルート ドゥ ヴェルサ
 イユ 1
 100134832
 弁理士 瀧野 文雄
 100165308
 弁理士 津田 俊明
 100115048
 弁理士 福田 康弘
 チン リム
 フランス国 7 8 4 7 0 サン レミ レ
 シュヴルーズ ルート ドゥ ヴェルサイユ
 1 ギヤズトランスポルト エ テクニギ
 最終頁に続く


(54)【発明の名称】 液化ガスを貯蔵するためのタンクを備えたロールオン・ロールオフ船

(57)【要約】 (修正有)

【課題】ロールオン・ロールオフ船における液化可燃性ガス貯蔵用のタンクの位置及び寸法を開発すること。

【解決手段】ロールオン・ロールオフ船(1)は、二重壁の底部を備えた船殻(3)と、主荷役甲板を含む複数の中間甲板と、少なくとも1つの荷役ランプと、高さ方向に延在するペアリングピラー(11)と、機関室と、液化可燃性ガスを貯蔵するための密閉断熱タンク(2)であって、メンブレンを有し、推進システムに可燃性ガスを供給するための密閉断熱タンク(2)と、を備えており、密閉断熱タンク(2)は高さ方向において主荷役甲板の下方において底部の内壁に当たるように配されており、密閉断熱タンク(2)はロールオン・ロールオフ船の横方向(T)において第1のピラー列(12)と第2のピラー列(13)との間に配されている。

【選択図】図6

10

【特許請求の範囲】

【請求項 1】

内壁(5)及び外壁(6)を有する二重壁の底部(4)と、当該底部(4)から高さ方向(H)に離隔した外甲板(7)と、を備えた船殻(3)と、

前記船殻(3)の前記底部(4)と前記外甲板(7)との間に配され、主荷役甲板(8)及び1つ又は複数の保管甲板(9)を含む複数の中間甲板と、

前記船殻(3)の前記底部(4)に下端が固定されている複数のベアリングピラー(11)であって、前記中間甲板に通されて当該中間甲板を支持するよう前記高さ方向(H)にそれぞれ延在し、少なくとも第1のピラー列(12)と第2のピラー列(13)とに配列され、特定のピラー列の前記ベアリングピラー(11)は前記ロールオン・ロールオフ船の長手方向(L)に互いに離隔しているベアリングピラー(11)と、

前記船殻(3)内に配され、推進システム(15)を備えた機関室(14)と、
液化可燃性ガスを貯蔵するための密閉断熱タンク(2)であって、前記推進システム(15)に前記液化可燃性ガスを供給するための密閉断熱タンク(2)と、

前記機関室(14)を前記密閉断熱タンク(2)から隔離するコファダム壁(22)と、
を備えたロールオン・ロールオフ船であって、

前記密閉断熱タンク(2)は前記高さ方向(H)において前記主荷役甲板(8)と前記船殻(3)の前記底部(4)の前記内壁(5)との間に配されており、

前記密閉断熱タンク(2)は、前記ロールオン・ロールオフ船(1)の前記高さ方向(H)と前記長手方向(L)とに対して垂直な前記ロールオン・ロールオフ船の横方向(T)において、前記第1のピラー列(12)と前記第2のピラー列(13)との間に配されている

ことを特徴とするロールオン・ロールオフ船(1)。

【請求項 2】

前記密閉断熱タンク(2)は前記横方向(T)において前記ロールオン・ロールオフ船の中央に配されている、

請求項1記載のロールオン・ロールオフ船(1)。

【請求項 3】

タンクバルブと少なくとも1つのドーム構造とを内部に配したタンク接続スペース(26)を有し、

前記タンク接続スペース(26)は、前記高さ方向(H)において前記密閉断熱タンクの天井壁と前記主荷役甲板(8)との間に配されている、

請求項1又は2記載のロールオン・ロールオフ船(1)。

【請求項 4】

前記密閉断熱タンク(2)の長手寸法は、前記長手方向において前記コファダム壁から前記ロールオン・ロールオフ船の船首部分まで延在する、

請求項1から3までのいずれか1項記載のロールオン・ロールオフ船(1)。

【請求項 5】

前記コファダム壁は後部コファダム壁(22)であり、

前記密閉断熱タンクは、

前記後部コファダム壁(22)によって前記機関室(14)から隔離された後部タンク壁(17)と、

前記ロールオン・ロールオフ船の前記長手方向(L)において前記後部タンク壁(17)から離隔した前部タンク壁(18)と、

好適には前記船殻(3)の前記底部(4)の前記内壁(5)に当たるように配される底部タンク壁(19)と、

前記高さ方向(H)において前記底部タンク壁(19)から離隔した天井タンク壁(20)と、

2つの長手方向タンク壁(21)と、

10

20

40

50

を備えている、

請求項 1 から 4 までのいずれか 1 項記載のロールオン・ロールオフ船 (1)。

【請求項 6】

前記各長手方向タンク壁 (21) は長手方向コファダム壁 (22) に固定されており、前記各長手方向コファダム壁 (22) は好適には、内側スキン部 (23) と、前記ロールオン・ロールオフ船 (1) の前記横方向 (T) において前記内側スキン部 (23) から離隔した外側スキン部 (24) と、を有する、

請求項 5 記載のロールオン・ロールオフ船 (1)。

【請求項 7】

前記第 1 のピラー列 (12) の少なくとも 1 つの前記ベアリングピラー (11) は前記長手方向コファダム壁 (22) のうち 1 つの中に配され、及び / 又は、前記第 2 のピラー列 (13) の少なくとも 1 つの前記ベアリングピラー (11) は他の前記長手方向コファダム壁 (22) の中に配されている、

請求項 6 記載のロールオン・ロールオフ船 (1)。

【請求項 8】

前記密閉断熱タンク (2) は、それぞれ多層構造を有する複数のタンク壁 (17, 18, 19, 20, 21) を備えている、

前記各タンク壁は、前記密閉断熱タンク (2) の外部から内部に向かって、二次断熱バリアと、前記二次断熱バリアに当たるように配された二次密閉メンブレンと、前記二次密閉メンブレンに当たるように配された一次断熱バリアと、前記一次断熱バリアに当たるように配され、前記液化可燃性ガスと接触する一次密閉メンブレンと、を備えている、

請求項 1 から 7 までのいずれか 1 項記載のロールオン・ロールオフ船 (1)。

【請求項 9】

液化可燃性ガスのための移送システムであって、

請求項 1 から 8 までのいずれか 1 項記載のロールオン・ロールオフ船 (1) と、

前記ロールオン・ロールオフ船 (1) の前記船殻に設置された前記密閉断熱タンク (2) を浮体式又は沿岸貯蔵設備 (77) に接続するように配置された断熱パイプライン (79, 76, 81) と、

前記浮体式又は沿岸貯蔵設備から前記断熱パイプラインを介して前記ロールオン・ロールオフ船 (1) の前記密閉断熱タンクへ低温液体製品の流れを送るためのポンプと、を備えていることを特徴とする移送システム。

【請求項 10】

請求項 1 から 8 までのいずれか 1 項記載のロールオン・ロールオフ船 (1) に燃料供給を行うための方法であって、

浮体式又は沿岸貯蔵設備 (77) から断熱パイプライン (79, 76, 81) を介して前記ロールオン・ロールオフ船 (1) の前記密閉断熱タンクへ液化可燃性ガスを搬送することを特徴とする方法。

【発明の詳細な説明】

【技術分野】

【0001】

本発明は、例えば車両等の牽引される又は自走式の車輪付き貨物を 1 つ又は複数の出入ランプから積載して輸送するためのいわゆる「ロールオン・ロールオフ」(RORO) 船の分野に関する。本発明は具体的には、液化可燃性ガスを低温で貯蔵するための密閉断熱タンクであってメンブレンを有する密閉断熱タンクを備えたロールオン・ロールオフ船の分野に関する。上記タンクは、ロールオン・ロールオフ船推進用の燃料として用いられる液化ガスを入れるためのものである。

【0002】

一実施形態では、液化ガスは LNG、すなわち、メタン含量が高く大気圧で約 -162 度貯蔵される混合物である。他の液化可燃性ガス、特にエタン、プロパン、ブタン、液化石油ガス (LPG) 又はエチレンも使用することができる。

10

20

30

40

50

【背景技術】

【0003】

牽引される又は自走式車輪付き貨物の輸送のためのロールオン・ロールオフ船は、従来技術から公知である。

【0004】

かかる船舶は、底部と、底部から高さ方向に離隔した外甲板とを有する船殻と、船殻の底部と外甲板との間に配置された複数の中間甲板であって主荷役甲板及び1つ又は複数の保管甲板を含む複数の中間甲板と、主荷役甲板に接続された荷役ランプと、第1端が底部に固定され、第2端が例えば外甲板等に固定されるように高さ方向に延在するベアリングピラーと、を備える。ベアリングピラーは一般的には、船舶の長手方向に沿って複数のピラー列に配列される。従って主荷役甲板は、貨物の荷役作業に用いられる荷役ランプ上で搬送される貨物の搬送先の固定された甲板に相当する。

【0005】

上述のベアリングピラーは、船舶の船殻の剛性に不可欠な役割を果たす。というのも、伝統的な船舶とは対照的に、ロールオン・ロールオフ船は保管甲板上に、船殻の内部を区画して船殻を高剛性化する隔壁を有しないからである。隔壁をこのように設けないことは、牽引される又は自走式の車輪付き貨物が中間甲板上を移動できるようにするために必要なことである。

【0006】

上述の船舶は主に、燃料として例えば重油（HFO）等の石油誘導体を使用し、その沸点は周囲温度よりかなり高く、例えば120～600等になる。従来技術の船舶は、上述のような燃料を貯蔵するため、船殻内に1つ又は複数のタンクを備える。これらのタンクは、その内容物を周囲温度で液状に貯蔵することができるので、特殊な装置を要しない。よって、上述のタンクは船舶における設置の際に何ら支障がなく、船舶の特に空いている領域、例えば側部等に配置される。

【0007】

しかし、特に海上輸送のための温室効果ガス排出を取り締まる法的規制の変更のため、上述のロールオン・ロールオフ船についてその推進技術を変更する必要がある。

【0008】

伝統的な重油と比較すると、LNGの燃焼では硫黄酸化物及び微粒子は100%、窒素酸化物は80%、CO₂は20%削減される。現在、LNGは技術面、操業面、環境面で最も効率的な炭素系燃料となっている。

【発明の概要】

【0009】

本発明の1つの基本コンセプトは、ロールオン・ロールオフ船における液化可燃性ガス貯蔵用のタンクの位置及び寸法を開発することである。

【0010】

一実施形態では、本発明はロールオン・ロールオフ船を提供し、当該ロールオン・ロールオフ船は、

- 内壁及び外壁を有する二重壁の底部と、当該底部から高さ方向に離隔した外甲板と、を備えた船殻と、

- 前記船殻の前記底部と前記外甲板との間に配され、主荷役甲板及び1つ又は複数の保管甲板を含む複数の中間甲板と、

- 前記高さ方向に延在する複数のベアリングピラーであって、各ベアリングピラーの下端が前記船殻の前記底部に固定されており、各ベアリングピラーは前記中間甲板に通されて当該中間甲板を支持するように前記高さ方向にそれぞれ延在し、少なくとも第1のピラー列と第2のピラー列とに配列され、特定のピラー列の前記ベアリングピラーは前記ロールオン・ロールオフ船の長手方向に互いに離隔しているベアリングピラーと、

- 前記船殻内に配され、推進システムを備えた機関室と、

- 液化可燃性ガスを貯蔵するための密閉断熱タンクであって、前記推進システムに前記

10

20

30

40

50

液化可燃性ガスを供給するための密閉断熱タンクと、

- 前記機関室を前記密閉断熱タンクから隔離するコファダム壁と、
を備えており、

- 前記密閉断熱タンクは前記高さ方向において前記主荷役甲板と前記船殻の前記底部の前記内壁との間に配されており、

- 前記密閉断熱タンクは、前記ロールオン・ロールオフ船の前記高さ方向と前記長手方向とに対して垂直な前記ロールオン・ロールオフ船の横方向において、前記第1のピラー列と前記第2のピラー列との間に配されている。

【0011】

上記の特徴により、タンクの配置とその寸法とによって、新規の膨大な構造的計算を伴うような大きな構造的修正を要することなく、ロールオン・ロールオフ船の特定の構造に合わせることができる。その理由は、ピラー間ににおけるタンクの配置によってベアリングピラーの配置を維持できるからである。さらに、タンクの全部が二重壁の底部と主荷役甲板との間に配されるので、タンクが荷役作業中に邪魔にならなくなり、荷物の移動の修正を行う必要がなくなる。最後に、タンクを機関室付近に配置することにより船舶内の可燃性ガスの流れが制限される。

【0012】

実施形態によって、上述の船舶は以下の特徴のうち1つ又は複数を具備することができる。

【0013】

一実施形態では前記ロールオン・ロールオフ船は、前記主荷役甲板に接続された少なくとも1つの荷役ランプを備える。

【0014】

一実施形態では前記コファダム壁は、内側スキン部と、当該内側スキン部から離隔した外側スキン部と、を有する。

【0015】

一実施形態では、前記タンクは平行六面体の形状である。

【0016】

一実施形態では、前記タンクは8面又は10面を有する多面体の形状である。

【0017】

一実施形態では、前記密閉断熱タンクはメンブレンを備えたタンク、好適にはLNG貯蔵用のタンクである。

【0018】

一実施形態では、前記密閉断熱タンクの長手寸法は、前記長手方向において前記コファダム壁から前記ロールオン・ロールオフ船の船首部分まで延在する。

【0019】

かかる特徴により、タンクの長手寸法を所望の積載量すなわち液化ガスの最大容量に依存して容易に調整することができる。

【0020】

一実施形態では、前記主荷役甲板は固定されており、嵩張った荷物を配置するための2つの隣り合う中間甲板間の距離を変えるように少なくとも1つの保管甲板が前記高さ方向に移動可能である。

【0021】

一実施形態では、前記主荷役甲板の上方又は下方に配された前記保管甲板は前記高さ方向に移動可能である。

【0022】

一実施形態では、前記ベアリングピラーのうち少なくとも1つ、好適には複数又は各ベアリングピラーが、全ての前記中間甲板に通されてこれらを支持するように前記高さ方向に延在する。

【0023】

10

20

30

40

50

一実施形態では、前記タンクは前記横方向において前記船舶の中央に配されている。

【0024】

一実施形態では前記船舶は、タンクバルブと少なくとも1つのドーム構造とを内部に配したタンク接続スペースを有し、前記タンク接続スペースは、前記高さ方向において前記タンクの天井壁と前記主荷役甲板との間に配されている。

【0025】

よって、タンク接続スペースは二重壁の底部と主荷役甲板との間に配されることにもなり、荷役作業中に邪魔にならなくなるので、荷物の移動の修正を行う必要がなくなる。

【0026】

一実施形態では、前記コファダム壁は後部コファダム壁であり、前記タンクは、前記後部コファダム壁によって前記機関室から隔離された後部タンク壁と、前記船舶の前記長手方向において前記後部タンク壁から離隔した前部タンク壁と、好適には前記船殻の前記底部の前記内壁に当たるように配される底部タンク壁と、前記高さ方向において前記底部タンク壁から離隔した天井タンク壁と、2つの長手方向タンク壁と、を備えている。

【0027】

一実施形態では、前記各長手方向タンク壁は長手方向コファダム壁に固定されており、前記各長手方向コファダム壁は好適には、内側スキン部と、前記船舶の前記横方向において前記内側スキン部から離隔した外側スキン部と、を有する。

【0028】

一実施形態では、前記(1つ又は複数の)コファダム壁は金属製、例えば鋼製等である。

【0029】

一実施形態では、前記内側スキン部及び/又は外側スキン部はシートメタルの層、例えば鋼の層により形成されている。

【0030】

一実施形態では、前記ベアリングピラーは金属製、例えば鋼製等である。

【0031】

一実施形態では、前記第1のピラー列の少なくとも1つの前記ベアリングピラーは前記長手方向コファダム壁のうち1つの中に配され、及び/又は、前記第2のピラー列の少なくとも1つの前記ベアリングピラーは他の前記長手方向コファダム壁の中に配されている。

【0032】

このように、タンクに隣接するピラーを長手方向コファダム壁の中に配置することにより、船舶の船殻内におけるピラーの配置を修正することなくタンクの横寸法を最大限にすることができる。

【0033】

一実施形態では、前記コファダム壁の中に配置された少なくとも1つの前記ベアリングピラーは、他の前記ベアリングピラーの鋼より高いグレードの鋼製である。

【0034】

よって、タンクに接するコファダム壁における温度は、液化ガス貯蔵タンクに近接していることにより、船舶の他の部分より下がり得る。ピラーの鋼グレードを高くすることにより、この温度差を補償して十分な機械的強度を維持することができる。

【0035】

他の一実施形態では、前記コファダム壁の中に配置された少なくとも1つの前記ベアリングピラーは、他の前記ベアリングピラーの鋼と同じグレードの鋼製とすることができます。

【0036】

一実施形態では、前記第1のピラー列の前記少なくとも1つのベアリングピラーは、前記長手方向コファダム壁の内側スキン部又は外側スキン部に当たるように形成されている。

10

20

30

40

50

【0037】

一実施形態では、前記第2のピラー列の前記少なくとも1つのベアリングピラーは、前記長手方向コファダム壁の内側スキン部又は外側スキン部に当たるように形成されている。

【0038】

一実施形態では、前記長手方向コファダム壁の前記内側スキン部及び外側スキン部は、前記横方向に突出するスチフナを有し、これにより当該内側スキン部及び外側スキン部を高剛性化することができる。

【0039】

長手方向コファダム壁の内側スキン部又は外側スキン部に当たるように配されたベアリングピラーもその剛性に寄与し、より好適には、当該ベアリングピラーによって上述のスチフナのうち一部を不要とすることができる。

【0040】

一実施形態では、前記各ベアリングピラーの上端は前記外甲板に固定されている。

【0041】

一実施形態では前記タンクは、それぞれ多層構造を有する複数のタンク壁を備えており、前記各タンク壁は、前記タンクの外部から内部に向かって、二次断熱バリアと、前記二次断熱バリアに当たるように配された二次密閉メンブレンと、前記二次密閉メンブレンに当たるように配された一次断熱バリアと、前記一次断熱バリアに当たるように配され、前記液化可燃性ガスと接触する一次密閉メンブレンと、を備えている。

【0042】

一実施形態では、本発明は液化可燃性ガスのための移送システムも提供し、当該移送システムは、上記のロールオン・ロールオフ船と、前記ロールオン・ロールオフ船の前記船殻に設置された前記タンクを浮体式又は沿岸貯蔵設備に接続するように配置された断熱パイプラインと、前記浮体式又は沿岸貯蔵設備から前記断熱パイプラインを介して前記ロールオン・ロールオフ船の前記タンクへ低温液体製品の流れを送るためのポンプと、を備えている。

【0043】

一実施形態では本発明は、上記のロールオン・ロールオフ船に燃料供給を行うための方法も提供し、当該方法は、浮体式又は沿岸貯蔵設備から断熱パイプラインを介して前記ロールオン・ロールオフ船の前記タンクへ液化可燃性ガスを搬送する。

【0044】

添付の図面を参照して、本発明の複数の特定の実施形態についての以下の説明を読めば、本発明をより良好に理解できると共に、本発明の他の目的、詳細、特徴及び利点がより明らかとなる。以下の説明の特定の実施形態はあくまで例示であり、本発明を限定するものではない。

【図面の簡単な説明】

【0045】

【図1】一実施形態のロールオン・ロールオフ船の内部側面図である。

【図2】前記船舶の船殻の貯蔵タンクを特に示す、図1の細部IIを示す図である。

【図3】第1の実施形態の貯蔵タンクに対するベアリングピラーの配置を示す、図1の平面III-IIIに沿った部分断面図である。

【図4】第2の実施形態の貯蔵タンクに対するベアリングピラーの横方向の配置を示す、図1の平面III-IIIに沿った部分断面図である。

【図5】第2の実施形態の貯蔵タンクに対するベアリングピラーの長手方向の配置を示す、図1の平面V-Vに沿った断面図である。

【図6】貯蔵タンクとベアリングピラーの一部とを特に示す、図5の細部VIを示す図である。

【図7】液化可燃性ガス用の貯蔵タンクを備えたロールオン・ロールオフ船と、当該タンクに充填するためのターミナルと、を示す図である。

10

20

30

40

50

【発明を実施するための形態】

【0046】

以下、図1～7を参照して、種々の実施形態に係るロールオン・ロールオフ船1について説明する。

【0047】

上述したようにロールオン・ロールオフ(RORO)船1は、牽引される又は自走式の車輪付き貨物を複数の異なる貨物甲板間で自由に移動できるようにするための特殊な構造を有し、この船舶1は、荷物が自力で船舶1に入り、同一経路で船舶1から出ることができるようになっている。この貨物は例えば、自動車、荷物の路上輸送や積込みを行える車両(トレーラを有するトラック、連結式トラック)、建築及び公共工事のための重機、トラクタ等農業機器、又はフォークリフトトラック若しくはトレーラ等の荷役車両に取り付けられたコンテナとすることができる。

【0048】

従ってRORO船の場合、クレーン等の巻上機によって貨物が鉛直方向に持ち上げられて積載される従来の貨物船とは対照的に、港の岸側に設置されたランプに繋げられ又は岸側に直接繋げられる可動の荷役ランプ10を使用して、貨物を船の出入りで船内を移動させることにより積込んだり揚げ荷したりする。

【0049】

かかる荷役作業を行うため、ロールオン・ロールオフ船1は以下のものを備える：

- 二重壁の底部4と、当該底部4から高さ方向に離隔した外甲板7と、を備えた船殻3
- 船殻3の底部4と外甲板7との間に配され、主荷役甲板8及び1つ又は複数の保管甲板9を含む複数の中間甲板8, 9、
- 主荷役甲板8に接続された少なくとも1つの荷役ランプ10、
- 中間甲板8, 9に通されてこれらを支持するように高さ方向に延在するベアリングピラー11、
- 船殻3内に配され、推進システム15を備えた機関室14、
- 液化可燃性ガスを貯蔵するための密閉断熱タンク2であって、メンブレンを有し、推進システム15に可燃性ガスを供給するための密閉断熱タンク2。

【0050】

二重壁の底部4は、内壁5及び外壁6によって構成されている。よって、ベアリングピラー11の下端は底部4の内壁5に固定され、上端は外甲板7に固定することができる。

【0051】

ベアリングピラー11は、図5及び図6に示された実施形態では第1のピラー列12と第2のピラー列13とに配列されている。特定の列12, 13のベアリングピラー11は、船舶1の長手方向Lにおいて互いに離隔している。さらに、これら2つの列12, 13は、バランス良くかつ船舶1の全長にわたって船殻3を高剛性化するため、横方向Tにおいて対称的に配置されている。他の実施形態(不図示)では、ベアリングピラー11を3つ以上の列、例えば4列等、好ましくは偶数列で配列することができる。

【0052】

図1は、一構成例のロールオン・ロールオフ船1を示す。具体的には、本例のロールオン・ロールオフ船1は12個の中間甲板を有するので、11個の保管甲板9と1つの主荷役甲板8とを備えている。底部4の内壁5は保管甲板9としても使用され、船舶1の高さ方向Hにおいて最下部の甲板から最上部の甲板に順に各甲板を番号で表すと、底部4の内壁5は通常は第1の甲板とされる。よって、本構成では主荷役甲板8は第5の甲板となる。中間甲板8、9及び内壁4は、出入ランプ16又は垂直昇降システムを用いて互いに接続されている。

【0053】

ここで、タンク2の構造並びに船舶1の船殻3におけるその配置及び寸法について詳細に説明する。

【0054】

タンク2は、図2を見ると分かるようにここでは平行六面体の形状であり、複数のタンク壁、すなわち後部タンク壁17と、後部タンク壁17とは反対側の前部タンク壁18と、底壁19と、底壁19とは反対側の天井壁20と、2つの長手方向壁21と、を有する。底壁19は、底部4の内壁5に当たるように配置されている。

【0055】

底壁19を除いて他のタンク壁17, 18, 20, 21はコファダム壁22に固定されており、これらのコファダム壁22は、図2~4から分かるように、船殻3の内壁5と合わせてタンク2の支持構造を構成する。コファダム壁22は、タンク壁17, 18, 20, 21が固定された内側スキン部23と、内側スキン部23から離隔した外側スキン部24と、によって形成されている。コファダム壁22内部の内側スキン部23及び外側スキン部24をそれぞれ高剛性化するため、これらのスキン部23, 24にはスチフナ25が配置されている。

【0056】

タンク2は、図2に示されているように、コファダム壁22のうち1つが機関室14と後部タンク壁17とを隔離するように船殻3内に配置されている。機関室14はここでは、船舶1の長手方向Lにおいて船舶1の船尾にある底部4の内壁5に配されている。

【0057】

各タンク壁17~21は多層構造を有し、各多層構造はタンクの外部から内部に向かって、二次断熱バリアと、二次断熱バリアに当たるように配された二次密閉メンブレンと、二次密閉メンブレンに当たるように配された一次断熱バリアと、一次断熱バリアに当たるように配され、液化可燃性ガスと接触する一次密閉メンブレンと、を備えている。例えば、メンブレンを有する上述のようなタンクは、国際公開第2019/239048号、同第14057221号、仏国特許出願公開第2691520号明細書及び同第2877638号明細書に特に記載されている。メンブレンを有するタンクは特に、本願出願人によって開発されたGTT(登録商標)Next1、MarkV(登録商標)、MarkII(登録商標)及びNO96(登録商標)の技術により構成することができる。

【0058】

図2から分かるように、天井壁20の上部にはタンク接続スペース26が存在し、このタンク接続スペース26はコファダム壁22によって囲まれている。タンク接続スペース26は特にドーム構造27を有し、液化可燃性ガスをタンク2に充填するため、ドーム構造27を介して燃料供給パイプ28が特に天井壁20に通されている。このタンク接続スペース26は、天井壁20に通されるパイプが船舶の他の装置、例えばタンクバルブ等に接続される、安全確保された空間である。

【0059】

また、船舶1には燃料調製室29も設けられており、これは図5及び図6に示されている。燃料調製室29は、タンク2の長手方向壁21のうち1つと機関室14とに隣接して配されている。燃料調製室29は特に、可燃性ガスの圧力及び温度を推進システム15に適した値に調整するため、可燃性ガスを調製するための装置を備えている。

【0060】

よって、タンク2、コファダム壁22及びタンク接続スペース26は、図2に示すように主荷役甲板8の下方に配するための寸法となっているが、これは、図2の構成例では、コファダム壁22のうち最上部のもの、すなわちタンク接続スペース26の上方に位置するコファダム壁22が、第4の甲板の高さ、すなわち保管甲板9のうち1つに位置するからである。従って、タンク2及びその装置の構造、例えばタンク接続スペース26等の構造は、主荷役甲板8の構成に影響を与えることがない。

【0061】

図3及び図4は、ペアリングピラー11に対するタンク2の配置及び寸法の2つの実施形態を示す。

【0062】

10

20

30

40

50

図3及び図4では、第1～5の甲板と、タンク2と、第1のピラー列のベアリングピラー11のうちの1つと、が示されている。横方向Tでは対称的な構成となっているので、船舶1の断面の半分のみを示している。よって、図3及び図4に示された本例の構成では、保管甲板9である第2の甲板及び第4の甲板は高さ方向Hに移動可能な甲板であり、保管甲板9である第3の甲板と主荷役甲板8である第5の甲板は高さ方向Hに固定された甲板である。これらの固定された甲板は、移動可能な甲板と比べて高荷重に耐えられる構成となっている。

【0063】

図3の第1の実施形態では、タンク2及び長手方向コファダム壁22は横方向Tにおいて2つのピラー列12, 13の間に配されている。これは、図示のように、長手方向コファダム壁22が第1のピラー列12のうち1つのベアリングピラー11に当たるように配されているからである。従って、タンク2及びコファダム壁22の構造は、ベアリングピラー11の構成及び配置に影響を及ぼすことがない。他の一実施形態(不図示)では、長手方向コファダム22はここでも引き続き2つのピラー列12, 13によって囲まれているが、ピラー列12, 13から距離をおいた場所に配置することができる。

10

【0064】

図4の第2の実施形態では、第1のピラー列12のうち1つのベアリングピラー11が長手方向コファダム壁22のうち1つの中に、すなわち内側スキン部23に当たるように配置される。従って、タンク2及びコファダム壁22の構造はベアリングピラー11の構成及び配置に影響を及ぼすことがない。さらに、第1の実施形態と対比すると、ベアリングピラー11の配置に影響を及ぼすことなく横寸法が最大限に拡大したタンクを得ることができる。タンク2の幅の増加は、長手方向コファダム壁22の横寸法に実質的に等しい。

20

【0065】

他の一実施形態(不図示)では、第1のピラー列12のうち1つのベアリングピラー11が長手方向コファダム壁22のうち1つの中に、すなわち外側スキン部24に当たるように配置される。従って上記のように、タンク2及びコファダム壁22の構造はベアリングピラー11の構成及び配置に影響を及ぼすことがない。

【0066】

このように、各列12, 13のベアリングピラー11は長手方向に略整列していることが分かる。

30

【0067】

図5及び図6は、各ピラー列12, 13の全てのベアリングピラー11を示すと共に、これらのベアリングピラー11に対するタンク2及びコファダム壁22の配置を示すことができるように、船舶1の断面を示した図である。

40

【0068】

具体的には、図6の細部図で分かるように、本実施形態の各ピラー列12, 13の3つのベアリングピラー11が長手方向コファダム壁22内に配置されている。コファダム壁22内のベアリングピラーの数は、船舶1の長さと、ピラーの総数と、タンク2の長手方向Lの長さとに依存する。

【0069】

図7を参照すると、同図は、船舶1の船殻3に取り付けられた密閉断熱タンク2を有するロールオン・ロールオフ船1の図である。自明のように、タンク2にLNG燃料貨物を移送するため、船舶に燃料を供給するためのパイプラインを適切なコネクタによって海上又は港湾ターミナルに接続することができる。

【0070】

図7は、燃料供給ステーション75と、水中パイプ76と、沿岸設備77とを備えた海上ターミナルの一例を示す。燃料供給ステーション75は、可動アーム74と、可動アーム74を支持するタワー78とを備えた定置の沖合設備である。可動アーム74は、船舶に燃料を供給するためのパイプラインに接続可能な少なくとも1つの可撓性チューブ79

50

を支持する。方向調整可能なこの可動アーム 74 は、あらゆる規模の船舶に適合する。タワー 78 内部には接続パイプ（不図示）が延在している。燃料供給ステーション 75 は、沿岸設備 77 から LNG 燃料をロールオン・ロールオフ船 1 に充填するためのものである。沿岸設備 77 は、液化ガス貯蔵タンク 80 と、水中パイプ 76 によって燃料供給ステーション 75 に接続された接続パイプ 81 と、を備えている。水中パイプ 76 によって、燃料供給ステーション 75 と沿岸設備 77 との間を例えば 5 km 等の長距離にわたって液化ガスを移送できるので、燃料供給作業中、ロールオン・ロールオフ船 1 を沿岸から遠距離に離した状態に維持することができる。

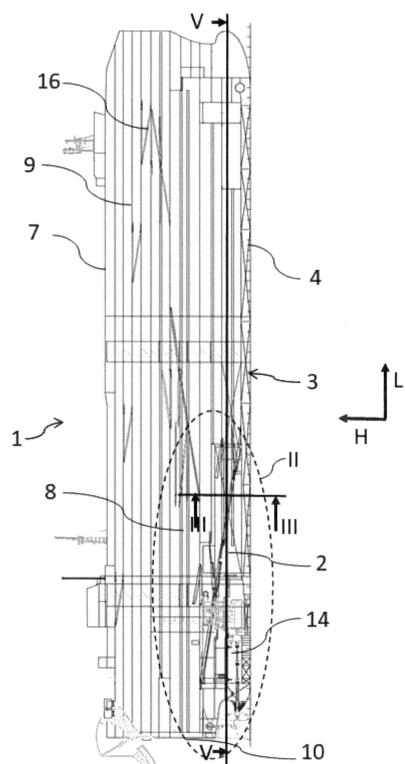
【0071】

液化ガスを移送するために必要な圧力を発生させるためには、船舶 1 に搭載されたポンプ及び／又は沿岸設備 77 に取り付けられたポンプ及び／又は燃料供給ステーション 75 に取り付けられたポンプが使用される。

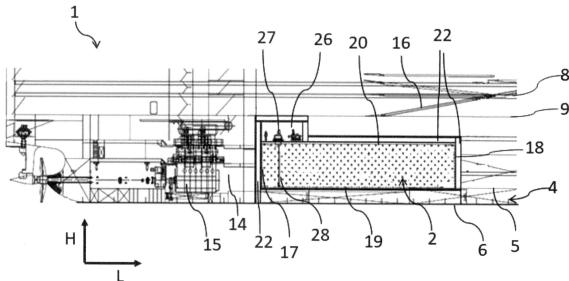
【0072】

複数の特定の実施形態を参照して本発明を説明したが、これは本発明を何ら限定するものではなく、本発明は、ここに記載した手段の技術的均等態様であって本発明の範囲に属する全ての技術的均等態様及びその組み合わせも含む。

【0073】


動詞「有する（comprise）」又は「含む（include）」及びその活用形の使用は、請求項に記載されたもの以外の要素又はステップの存在を除外するものではない。

【0074】

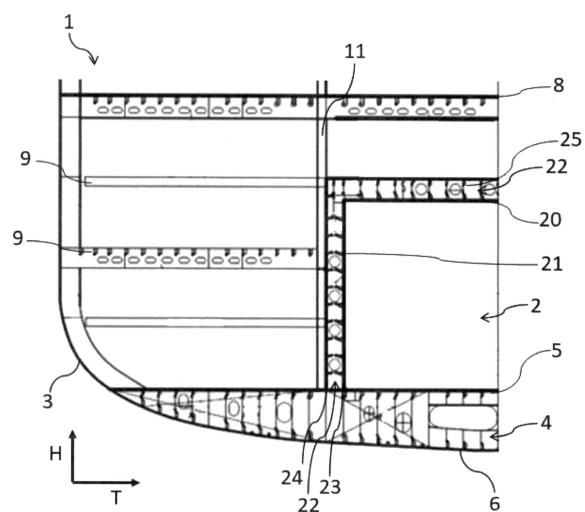

特許請求の範囲において、いかなる括弧書きの符号も、特許請求の範囲の限定と解すべきものではない。

【図面】

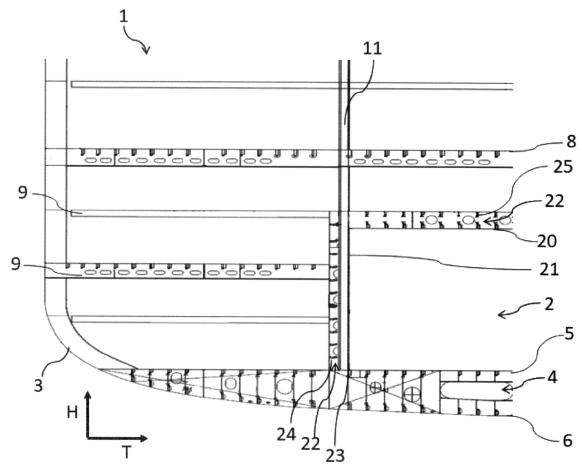
【図 1】

【図 2】

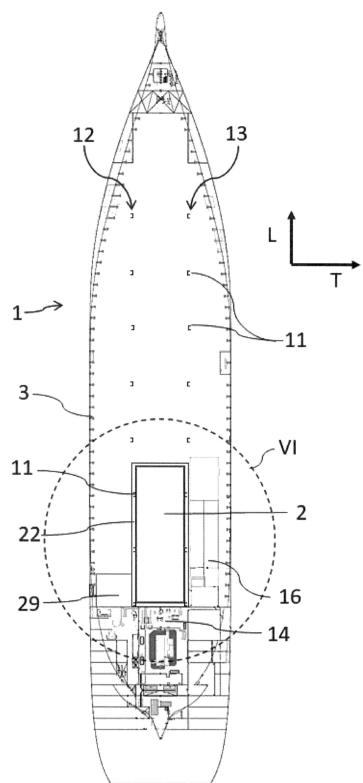
10

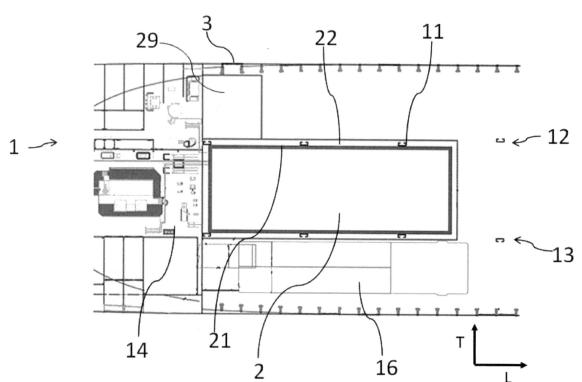

20

30

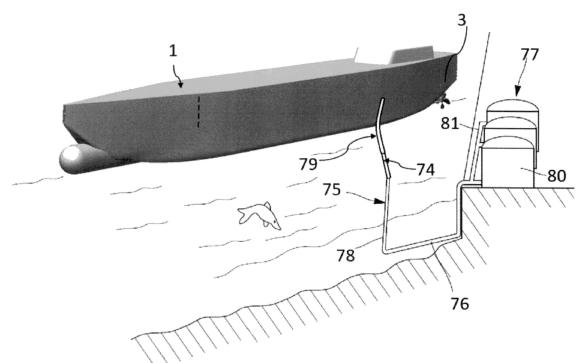

40

50


【図3】


【図4】

【図5】


【図6】

40

50

【図7】

10

【外国語明細書】

20

30

40

50

Description

Title of the Invention: Roll-on/Roll-off Ship Comprising a Tank for Storing Liquefied Gas

Technical Field

5 [0001] The invention relates to the field of so-called "roll-on/roll-off" (RO/RO) ships for the transport of towed or automotive wheeled cargo, such as vehicles, embarking on-board via one or more access ramps. The invention relates more particularly to the field of roll-on/roll-off ships comprising a sealed and thermally insulating tank with membranes for storing a liquefied combustible gas at low temperature. The tank is intended to receive 10 liquefied gas used as fuel for the propulsion of the roll-on/roll-off ship.

10

[0002] In one embodiment, the liquefied gas is LNG, i.e. a mixture which has a high methane content and is stored at a temperature of about -162°C at atmospheric pressure. Other liquefied combustible gases may also be envisaged, in particular ethane, propane, butane, liquefied petroleum gas (LPG) or ethylene.

20

15 Technological Background

[0003] Roll-on/roll-off ships for the transport of towed or automotive wheeled cargo are known from the prior art.

20 [0004] These ships comprise a hull having a bottom and an external deck spaced apart from the bottom in a height direction, a plurality of intermediate decks located between the bottom and the external deck of the hull, the plurality of intermediate decks including a main loading/unloading deck and one or more storage decks, a loading/unloading ramp connected to the main loading/unloading deck, and bearing pillars extending in the height direction so that a first end is fixed to the bottom and a second end is fixed, for example, to the external deck. The bearing pillars are generally arranged in a plurality of rows of 25 pillars along a longitudinal direction of the ship. The main loading/unloading deck thus corresponds to a fixed deck to which the cargo is conveyed via the loading/unloading ramps in order to load or unload the cargo.

30

30 [0005] These bearing pillars play an essential part in the rigidity of the hull of the ship because, in contrast to a traditional ship, roll-on/roll-off ships do not have a bulkhead on the storage decks which partitions the interior of the hull and thereby rigidifies the hull. This absence of a bulkhead is necessary to allow the towed or automotive wheeled cargo to move on the intermediate decks.

40

50

[0006] These ships mainly use petroleum derivatives as fuel, for instance heavy fuel oil (HFO), which has a boiling point much higher than ambient temperature, for example between 120 and 600°C. Ships of the prior art contain one or more tanks in their hull for storing such a fuel. These tanks do not require special equipment since their content can be stored in liquid form at ambient temperature. These tanks thus present no difficulty for their placement in the ship, and they are placed particularly in the regions of the ship which are left free, such as the sides.

[0007] However, because of statutory changes in the regulations governing greenhouse gas emissions, particularly for maritime transport, there is a need for these roll-on/roll-off ships to change their propulsion technology.

[0008] Compared with that of traditional heavy fuel oil, the combustion of LNG leads to reductions by 100% of sulphur oxides and fine particles, 80% of nitrogen oxides and 20% of CO₂. At present, LNG is the most efficient carbon-based fuel in technical, operational and environmental terms.

15 **Summary**

[0009] One basic concept of the invention is to position and dimension a tank for storing liquefied combustible gas in a roll-on/roll-off ship.

[0010] According to one embodiment, the invention provides a roll-on/roll-off ship comprising: a hull having a double-walled bottom and an external deck spaced apart from the bottom in a height direction, the double-walled bottom comprising an internal wall and an external wall,

- a plurality of intermediate decks located between the bottom and the external deck of the hull, the plurality of intermediate decks including a main loading/unloading deck and one or more storage decks,

- bearing pillars extending in the height direction, each bearing pillar having a lower end fixed to the bottom of the hull and extending in the height direction so as to pass through and support the intermediate decks, the bearing pillars being arranged in at least a first row of pillars and a second row of pillars, the bearing pillars of a given row being spaced apart from one another in a longitudinal direction of the ship,

- an engine room located in the hull and comprising a propulsion system,

- a sealed and thermally insulating tank for storing a liquefied combustible gas, which is intended to supply the combustible gas to the propulsion system, and

- a cofferdam wall separating the engine room from the tank,

wherein the tank is located in the height direction between the main loading/unloading deck and the internal wall of the bottom of the hull,

10

20

30

40

50

and wherein the tank is located in a transverse direction of the ship between the first row of pillars and the second row of pillars, the transverse direction being perpendicular to the longitudinal direction and to the height direction of the ship.

[0011] By virtue of these characteristics, the positioning of the tank and its dimensioning make 5 it possible to adapt to the particular structure of the roll-on/roll-off ship without requiring major structural modification, which would involve significant new structural calculations. This is because positioning the tank between the pillars makes it possible to keep the arrangement of the bearing pillars. Furthermore, the entire tank is located between the 10 double-walled bottom and the main loading/unloading deck so that the tank does not cause an obstruction during the loading and unloading operations and it therefore does not necessitate modification of the movement of the goods. Lastly, positioning it close to the engine room limits the flow of combustible gas in the ship.

10

[0012] Depending on the embodiments, such a ship may have one or more of the following characteristics.

15 [0013] According to one embodiment, the roll-on/roll-off ship comprises at least one loading/unloading ramp connected to the main loading/unloading deck.

20

[0014] According to one embodiment, the cofferdam wall comprises an internal skin and an external skin spaced apart from the internal skin.

[0015] According to one embodiment, the tank is of parallelepipedal shape.

20 [0016] According to one embodiment, the tank is of polyhedral shape, the polyhedron having eight or ten faces.

[0017] According to one embodiment, the sealed and thermally insulating tank is a tank with membranes, preferably a tank configured for storing LNG.

25 [0018] According to one embodiment, the tank has a longitudinal dimension extending in the longitudinal direction from the cofferdam wall to a front part of the ship.

30

[0019] By virtue of these characteristics, the longitudinal dimension of the tank is readily adjustable as a function of the desired capacity, that is to say the maximum volume of liquefied gas.

30 [0020] According to one embodiment, the main loading/unloading deck is fixed and at least one storage deck can be moved in the height direction so as to vary the distance between two adjacent intermediate decks for the placement of bulky goods.

[0021] According to one embodiment, the storage deck located above or below the main loading/unloading deck can be moved in the height direction.

40

50

[0022] According to one embodiment, at least one, preferably a plurality of or each bearing pillar extends in the height direction so as to pass through and support all the intermediate decks.

5 [0023] According to one embodiment, the tank is located at the middle of the ship in the transverse direction.

[0024] According to one embodiment, the ship includes a tank connection space, with tank valves and at least one dome structure being located in the tank connection space, the tank connection space being located between a ceiling wall of the tank and the main loading/unloading deck in the height direction.

10 [0025] Thus, the tank connection space is also located between the double-walled bottom and the main loading/unloading deck so that it does not cause an obstruction during the loading and unloading operations and it therefore does not necessitate modification of the movement of the goods.

15 [0026] According to one embodiment, the cofferdam wall is a rear cofferdam wall and the tank has a rear tank wall separated from the engine room by the rear cofferdam wall, a front tank wall spaced apart from the rear tank wall along the longitudinal direction of the ship, a bottom tank wall preferably located against the internal wall of the bottom of the hull, a ceiling tank wall spaced apart from the bottom tank wall along the height direction, and two longitudinal tank walls.

20 [0027] According to one embodiment, the longitudinal tank walls are each fixed to a longitudinal cofferdam wall, each longitudinal cofferdam wall preferably comprising an internal skin and an external skin spaced apart from the internal skin in the transverse direction of the ship.

25 [0028] According to one embodiment, the cofferdam wall(s) is/are made of metal, for example steel.

[0029] According to one embodiment, the internal skin and/or the external skin is formed by a layer of sheet metal, for example steel.

[0030] According to one embodiment, the bearing pillars are made of metal, for example steel.

30 [0031] According to one embodiment, at least one bearing pillar of the first row of pillars is located in one of the longitudinal cofferdam walls and/or at least one bearing pillar of the second row of pillars is located in the other of the longitudinal cofferdam walls.

10

20

30

40

50

[0032] Thus, by positioning the pillars adjacent to the tank in the longitudinal cofferdam walls, it is possible to maximise the transverse dimension of the tank without modifying the arrangement of the pillars in the hull of the ship.

5 [0033] According to one embodiment, the said at least one bearing pillar located in the cofferdam wall is made of a steel grade higher than that of the other bearing pillars.

[0034] Thus, the temperature in the cofferdam walls bordering the tank may be lower than in the other parts of the ship because of the proximity to the liquefied gas storage tank. The higher steel grade for this pillar makes it possible to compensate for this temperature difference in order to maintain a sufficient mechanical strength.

10 10 [0035] According to another embodiment, the said at least one bearing pillar located in the cofferdam wall may be made from a steel grade identical to that of the other bearing pillars.

[0036] According to one embodiment, the said at least one bearing pillar of the first row of pillars is formed against the internal skin or the external skin of the longitudinal cofferdam wall.

15 20 [0037] According to one embodiment, the said at least one bearing pillar of the second row of pillars is formed against the internal skin or the external skin of the longitudinal cofferdam wall.

20 [0038] According to one embodiment, the internal skin and the external skin of the longitudinal cofferdam walls have stiffeners protruding in the transverse direction, making it possible to rigidify the internal skin and the external skin.

[0039] The bearing pillars located against the internal skin or the external skin of the longitudinal cofferdam walls also contribute to its rigidity, and more preferably the said bearing pillars make it possible to obviate some of these stiffeners.

25 30 [0040] According to one embodiment, each bearing pillar has an upper end fixed to the external deck.

30 [0041] According to one embodiment, the tank has a plurality of tank walls, each tank wall having a multilayer structure comprising, from the exterior to the interior of the tank, a secondary thermal insulating barrier, a secondary sealing membrane located against the secondary thermally insulating barrier, a primary thermal insulating barrier located against the secondary sealing membrane, and a primary sealing membrane located against the primary thermally insulating barrier and intended to be in contact with the liquefied combustible gas.

40

20

30

40

50

[0042] According to one embodiment, the invention also provides a transfer system for a liquefied combustible gas, the system comprising a roll-on/roll-off ship as mentioned above, insulated pipelines arranged so as to connect the tank installed in the hull of the roll-on/roll-off ship to a floating or onshore storage facility, and a pump for delivering a flow of cold liquid product through the insulated pipelines from the floating or onshore storage facility to the tank of the roll-on/roll-off ship.

[0043] According to one embodiment, the invention also provides a method for fuelling a roll-on/roll-off ship as mentioned above, wherein a liquefied combustible gas is conveyed through insulated pipelines from a floating or onshore storage facility to the tank of the roll-on/roll-off ship.

Brief Description of the Figures

[0044] The invention will be understood better, and further objects, details, characteristics and advantages thereof will become clearer from the following description of several particular embodiments of the invention, which are given only by way of illustration and without limitation, with reference to the appended drawings.

[0045] [Fig. 1] Figure 1 represents a side view of the interior of a roll-on/roll-off ship according to one embodiment.

[0046] [Fig. 2] Figure 2 is a view of the detail II of Figure 1, representing in particular the storage tank in the hull of the ship.

[0047] [Fig. 3] Figure 3 is a view in partial section along the plane III-III of Figure 1, representing the arrangement of a bearing pillar with respect to the storage tank according to a first embodiment.

[0048] [Fig. 4] Figure 4 is a view in partial section along the plane III-III of Figure 1, representing the arrangement of a bearing pillar with respect to the storage tank in the transverse direction according to a second embodiment.

[0049] [Fig. 5] Figure 5 is a view in section along the plane V-V of Figure 1, representing the arrangement of a bearing pillar with respect to the storage tank in the longitudinal direction according to the second embodiment.

[0050] [Fig. 6] Figure 6 is a view of the detail VI of Figure 5, representing in particular the storage tank and some of the bearing pillars.

[0051] [Fig. 7] Figure 7 is a schematic representation of a roll-on/roll-off ship having a storage tank for liquefied combustible gas and a terminal for filling this tank.

Description of the Embodiments

10

20

30

40

50

[0052] A roll-on/roll-off ship 1 according to various embodiments will be described below with reference to Figures 1 to 7.

[0053] As explained above, roll-on/roll-off (RO/RO) ships 1 have a particular structure in order to allow free movement of towed or automotive wheeled cargo between the various cargo decks, the ship 1 allowing goods to enter the ship 1 by their own means and to leave the ship 1 in the same way. This cargo may for example be composed of cars, vehicles for road transport of goods and their loading (lorries with trailers, articulated lorries), heavy machinery for building and public works, agricultural equipment such as tractors, or containers mounted on loading/unloading vehicles such as fork-lift trucks or trailers.

[0054] Thus, in contrast to conventional freighter ships in which the cargo is loaded vertically by hoisting machines such as cranes, in this case the cargo is loaded and unloaded by having it travel inside at the entry and exit of the ship using a mobile loading/unloading ramp 10 which connects to a ramp installed on the wharf of a port or directly onto the wharf.

[0055] For this purpose, the roll-on/roll-off ship 1 comprises:

- a hull 3 having a double-walled bottom 4 and an external deck 7 spaced apart from the bottom 4 in a height direction H,
- a plurality of intermediate decks 8, 9 located between the bottom 4 and the external deck 7 of the hull 3, the plurality of intermediate decks including a main loading/unloading deck 8 and one or more storage decks 9,
- at least one loading/unloading ramp 10 connected to the main loading/unloading deck 8,
- bearing pillars 11 extending in the height direction so as to pass through and support the intermediate decks 8, 9,
- an engine room 14 located in the hull 3 and comprising a propulsion system 15,
- a sealed and thermally insulating tank 2 with membranes for storing a liquefied combustible gas, which is intended to supply the combustible gas to the propulsion system 15.

[0056] The double-walled bottom 4 is composed of an internal wall 5 and an external wall 6. The bearing pillars 11 thus have a lower end fixed to the internal wall 5 of the bottom 4 and an upper end which may be fixed to the external deck 7.

[0057] The bearing pillars 11 are arranged in the example illustrated in Figures 5 and 6 in a first row of pillars 12 and a second row of pillars 13. The bearing pillars 11 of a given row 12, 13 are spaced apart from one another in a longitudinal direction L of the ship 1. Furthermore, the two rows 12, 13 are arranged symmetrically in a transverse direction T in order to rigidify the hull 3 in a balanced fashion and over the entire length of the ship 1.

10

20

30

40

50

In other embodiments (not illustrated), the bearing pillars 11 may be arranged in more than two rows, for example four and preferably in an even number of rows.

[0058] Figure 1 illustrates a roll-on/roll-off ship 1 according to an exemplary design.

Specifically, in this example, the roll-on/roll-off ship 1 has twelve intermediate decks, 5 therefore comprising eleven storage decks 9 and one main loading/unloading deck 8. The internal wall 5 of the bottom 4 is also used as a storage deck 9 and is commonly regarded as the first deck, each deck being referred to by its number from the lowermost deck to the uppermost deck in the height direction H of the ship 1. For this design, the main loading/unloading deck 8 is thus the fifth deck. The intermediate decks 8, 9 as well as the 10 internal wall 4 are connected to one another by means of access ramps 16 or vertical elevator systems.

[0059] The structure of the tank 2 as well as its positioning and dimensioning in the hull 3 of the ship 1 will now be described in more detail.

[0060] The tank 2 is of parallelepipedal shape here, as may be seen in Figure 2, and has a 15 plurality of tank walls, namely a rear tank wall 17, a front tank wall 18 opposite the rear tank wall 17, a bottom wall 19, a ceiling wall 20 opposite the bottom wall 19, and two longitudinal walls 21. The bottom wall 19 is located against the internal wall 5 of the bottom 20 4.

[0061] Apart from the bottom wall 19, the other tank walls 17, 18, 20, 21 are fixed to cofferdam 20 walls 22 which, with the internal wall 5 of the hull 3, form the bearing structure of the tank 2, as may be seen in Figures 2 to 4. The cofferdam walls 22 are formed by an internal skin 23, on which the tank walls 17, 18, 20, 21 are fixed, and an external skin 24 which is spaced apart from the internal skin 23. Stiffeners 25 are placed inside the cofferdam wall 22 on the internal skin 23 and the external skin 24 in order to rigidify each of the skins 23, 25 24.

[0062] The tank 2 is placed in the hull 3 so that one of the cofferdam walls 22 separates the 30 engine room 14 and the rear tank wall 17, as shown in Figure 2. The engine room 14 is located here against the internal wall 5 of the bottom 4 at the rear of the ship 1 with respect to the longitudinal direction L of the ship 1.

30 [0063] Each tank wall 17-21 has a multilayer structure comprising, from the exterior to the interior of the tank, a secondary thermal insulating barrier, a secondary sealing membrane located against the secondary thermally insulating barrier, a primary thermal insulating barrier located against the secondary sealing membrane, and a primary sealing membrane located against the primary thermally insulating barrier and intended to be in contact with

10

20

30

40

50

the liquefied combustible gas. By way of example, such tanks with membranes are described particularly in Patent Applications WO2019239048, WO14057221, FR2691520 and FR2877638. Tanks with membranes may in particular be constructed according to the GTT Next1®, Mark V®, Mark III® and NO96® technologies developed by the Applicant.

5 [0064] As may be seen in Figure 2, there is a tank connection space 26 on top of the ceiling wall 20, this tank connection space 26 being enclosed by cofferdam walls 22. The tank connection space 26 has in particular a dome structure 27, via which the fuelling pipe 28 in particular extends through the ceiling wall 20 in order to fill the tank 2 with liquefied combustible gas. This tank connection space 26 is a secured space where the pipes 10 passing through the ceiling wall 20 are connected to the other equipment of the ship, for example tank valves.

15 [0065] The ship 1 is also equipped with a fuel preparation room 29, visible in Figures 5 and 6, which is located adjacent to one of the longitudinal walls 21 of the tank 2 and to the engine room 14. The fuel preparation room 29 is in particular equipped with a device for conditioning the combustible gas in order to adapt the pressure and the temperature of the combustible gas to values suitable for the propulsion system 15.

20 [0066] The tank 2, the cofferdam walls 22 and the tank connection space 26 are thus dimensioned so as to be located under the main loading/unloading deck 8, as illustrated in Figure 2. This is because in the exemplary design of Figure 2, the highest of the 25 cofferdam walls 22, namely the one located above the tank connection space 26, is located at the level of the fourth deck, that is to say one of the storage decks 9. The structure of the tank 2 and its equipment, such as the tank connection space 26, thus have no effect on the design of the main loading/unloading deck 8.

25 [0067] Figures 3 and 4 represent two embodiments of the positioning and dimensioning of the tank 2 with respect to the bearing pillars 11.

30 [0068] In these Figures 3 and 4, the decks, from the first to the fifth, the tank 2 as well as one of the bearing pillars 11 of the first row of pillars may be seen. Since the design is symmetrical in the transverse direction T, only one half of the cross section of the ship 1 has been represented. Thus, in this exemplary design illustrated in Figures 3 and 4, the second deck and the fourth deck, which are storage decks 9, are decks that can be moved in the height direction H whereas the third deck and the fifth deck, which are respectively a storage deck 9 and the main loading/unloading deck 8, are decks which are fixed in the height direction H. The fixed decks are designed so that they can withstand a greater load in comparison with the mobile decks.

10

20

30

40

50

[0069] In the first embodiment of Figure 3, the tank 2 and the longitudinal cofferdam walls 22 are located in the transverse direction T between the two rows of pillars 12, 13. This is because, as illustrated, the longitudinal cofferdam wall 22 is located against one of the bearing pillars 11 of the first row of pillars 12. The structure of the tank 2 and the cofferdam walls 22 thus have no effect on the design and the positioning of the bearing pillars 11. In another embodiment (not illustrated), while continuing to be framed by the two rows of pillars 12, 13, the longitudinal cofferdam walls 22 may be arranged at a distance from the rows of pillars 12, 13.

10

[0070] In the second embodiment of Figure 4, one of the bearing pillars 11 of the first row of pillars 12 is located in one of the longitudinal cofferdam walls 22, namely against the internal skin 23. Thus, the structure of the tank 2 and the cofferdam walls 22 have no effect on the design and the positioning of the bearing pillars 11. Furthermore, in comparison with the first embodiment, it is possible here to obtain a tank whose transverse dimension is increased maximally without affecting the positioning of the bearing pillars 11. The width gain of the tank 2 is substantially equal to the transverse dimension of the longitudinal cofferdam walls 22.

20

[0071] In another embodiment (not illustrated), one of the bearing pillars 11 of the first row of pillars 12 may be located in one of the longitudinal cofferdam walls 22, namely against the external skin 24. Thus, as before, the structure of the tank 2 and the cofferdam walls 22 have no effect on the design and the positioning of the bearing pillars 11.

[0072] It may thus be seen that the bearing pillars 11 of each row 12, 13 are substantially aligned in the longitudinal direction L.

[0073] Figures 5 and 6 represent a cross section of a ship 1 making it possible to illustrate all the bearing pillars 11 of each row of pillars 12, 13, as well as the arrangement of the tank 2 and of the cofferdam walls 22 with respect to these bearing pillars 11.

25

[0074] Specifically, as may be seen in the detail view of Figure 6, in this embodiment three bearing pillars 11 of each row of pillars 12, 13 are arranged in the longitudinal cofferdam walls 22. The number of bearing pillars in the cofferdam walls 22 depends on the length of the ship 1, the total number of pillars, as well as the length of the tank 2 in the longitudinal direction L.

30

[0075] Referring to Figure 7, this is a view of a roll-on/roll-off ship 1 having a sealed and thermally insulating tank 2 mounted in the hull 3 of the ship 1. In a manner known per se, pipelines for fuelling the ship may be connected by means of suitable connectors to a maritime or port terminal in order to transfer an LNG fuel load to the tank 2.

40

50

[0076] Figure 7 represents an example of a maritime terminal comprising a fuelling station 75, an underwater pipe 76 and an onshore installation 77. The fuelling station 75 is a fixed offshore installation comprising a mobile arm 74 and a tower 78, which supports the mobile arm 74. The mobile arm 74 carries at least one flexible tube 79 which can be connected to the pipeline for fuelling the ship. The orientable mobile arm 74 adapts to all gauges of ships. A connecting pipe (not represented) extends inside the tower 78. The fuelling station 75 makes it possible to fill the roll-on/roll-off ship 1 with LNG fuel from the onshore installation 77. The latter comprises liquefied gas storage tanks 80 and connecting pipes 81 connected by the underwater pipe 76 to the fuelling station 75. The underwater pipe 76 makes it possible to transfer liquefied gas between the fuelling station 75 and the onshore installation 77 over a large distance, for example 5 km, which makes it possible to keep the roll-on/roll-off ship 1 at a large distance from the shore during the fuelling operations.

10

[0077] In order to generate the pressure necessary for transferring the liquefied gas, pumps on board the ship 1 and/or pumps fitted in the onshore installation 77 and/or pumps fitted in the fuelling station 75 are used.

15

[0078] Although the invention has been described in connection with several particular embodiments, it is clear that it is in no way limited thereto and that it comprises all the technical equivalents of the means described as well as their combinations, if the latter fall within the scope of the invention.

20

[0079] The use of the verb "comprise" or "include" and its conjugated forms does not exclude the presence of elements or steps other than those mentioned in a claim.

[0080] In the claims, any reference in parentheses should not be interpreted as a limitation of the claim.

30

40

50

Claims

[Claim 1] Roll-on/roll-off ship (1) comprising:

- a hull (3) having a double-walled bottom (4) and an external deck (7) spaced apart from the bottom (4) in a height direction (H), the double-walled bottom (4) comprising an internal wall (5) and an external wall (6),
5
- a plurality of intermediate decks located between the bottom (4) and the external deck (7) of the hull (3), the plurality of intermediate decks including a main loading/unloading deck (8) and one or more storage decks (9),
10
- bearing pillars (11), each bearing pillar (11) having a lower end fixed to the bottom (4) of the hull (3) and extending in the height direction (H) so as to pass through and support the intermediate decks, the bearing pillars (11) being arranged in at least a first row of pillars (12) and a second row of pillars (13), the bearing pillars (11) of a given row being spaced apart from one another in a longitudinal direction (L) of the ship,
15
- an engine room (14) located in the hull (3) and comprising a propulsion system (15),
20
- a sealed and thermally insulating tank (2) for storing a liquefied combustible gas, which is intended to supply the combustible gas to the propulsion system (15), and
- a cofferdam wall (22) separating the engine room (14) from the tank (2), wherein the tank (2) is located in the height direction (H) between the main loading/unloading deck (8) and the internal wall (5) of the bottom (4) of the hull (3),
25
- and wherein the tank (2) is located in a transverse direction (T) of the ship between the first row of pillars (12) and the second row of pillars (13), the transverse direction (2) being perpendicular to the longitudinal direction (L) and to the height direction (H) of the ship.
30

[Claim 2] Roll-on/roll-off ship (1) according to Claim 1, wherein the tank (2) is located at the middle of the ship in the transverse direction (T).

[Claim 3] Roll-on/roll-off ship (1) according to Claim 1 or Claim 2, wherein the ship includes a tank connection space (26), with tank valves and at least one dome structure being located in the tank connection space (26), the tank connection space (26) being located between a ceiling wall of the tank and the main loading/unloading deck (8) in the height direction (H).

40

50

[Claim 4] Roll-on/roll-off ship (1) according to one of Claims 1 to 3, wherein the tank (2) has a longitudinal dimension extending in the longitudinal direction from the cofferdam wall to a front part of the ship.

5 [Claim 5] Roll-on/roll-off ship (1) according to one of Claims 1 to 4, wherein the cofferdam wall is a rear cofferdam wall (22), and wherein the tank has a rear tank wall (17) separated from the engine room (14) by the rear cofferdam wall (22), a front tank wall (18) spaced apart from the rear tank wall (17) along the longitudinal direction (L) of the ship, a bottom tank wall (19) preferably located against the internal wall (5) of the bottom (4) of the hull (3), a ceiling tank wall (20) spaced apart from the bottom tank wall (19) along the height direction (H), and two longitudinal tank walls (21).

10 [Claim 6] Roll-on/roll-off ship (1) according to Claim 5, wherein the longitudinal tank walls (21) are each fixed to a longitudinal cofferdam wall (22), each longitudinal cofferdam wall (22) preferably comprising an internal skin (23) and an external skin (24) spaced apart from the internal skin (23) in the transverse direction (T) of the ship.

15 [Claim 7] Roll-on/roll-off ship (1) according to Claim 6, wherein at least one bearing pillar (11) of the first row of pillars (12) is located in one of the longitudinal cofferdam walls (22) and/or at least one bearing pillar (11) of the second row of pillars (13) is located in the other of the longitudinal cofferdam walls (22).

20 [Claim 8] Roll-on/roll-off ship (1) according to one of Claims 1 to 7, wherein the tank (2) has a plurality of tank walls (17, 18, 19, 20, 21), each tank wall (17, 18, 19, 20, 21) having a multilayer structure comprising, from the exterior to the interior of the tank (2), a secondary thermal insulating barrier, a secondary sealing membrane located against the secondary thermally insulating barrier, a primary thermal insulating barrier located against the secondary sealing membrane, and a primary sealing membrane located against the primary thermally insulating barrier and intended to be in contact with the liquefied combustible gas.

25 [Claim 9] Transfer system for a liquefied combustible gas, the system comprising a roll-on/roll-off ship (1) according to one of Claims 1 to 8, insulated pipelines (79, 76, 81) arranged so as to connect the tank (2) installed in the hull of the roll-on/roll-off ship (1) to a floating or onshore storage facility (77), and a pump for delivering a flow of cold liquid product

10

20

30

40

30 through the insulated pipelines from the floating or onshore storage facility to the tank of the roll-on/roll-off ship (1).

5 [Claim 10] Method for fuelling a roll-on/roll-off ship (1) according to one of Claims 1 to 8, wherein a liquefied combustible gas is conveyed through insulated pipelines (79, 76, 81) from a floating or onshore storage facility (77) to the tank of the roll-on/roll-off ship (1).

50

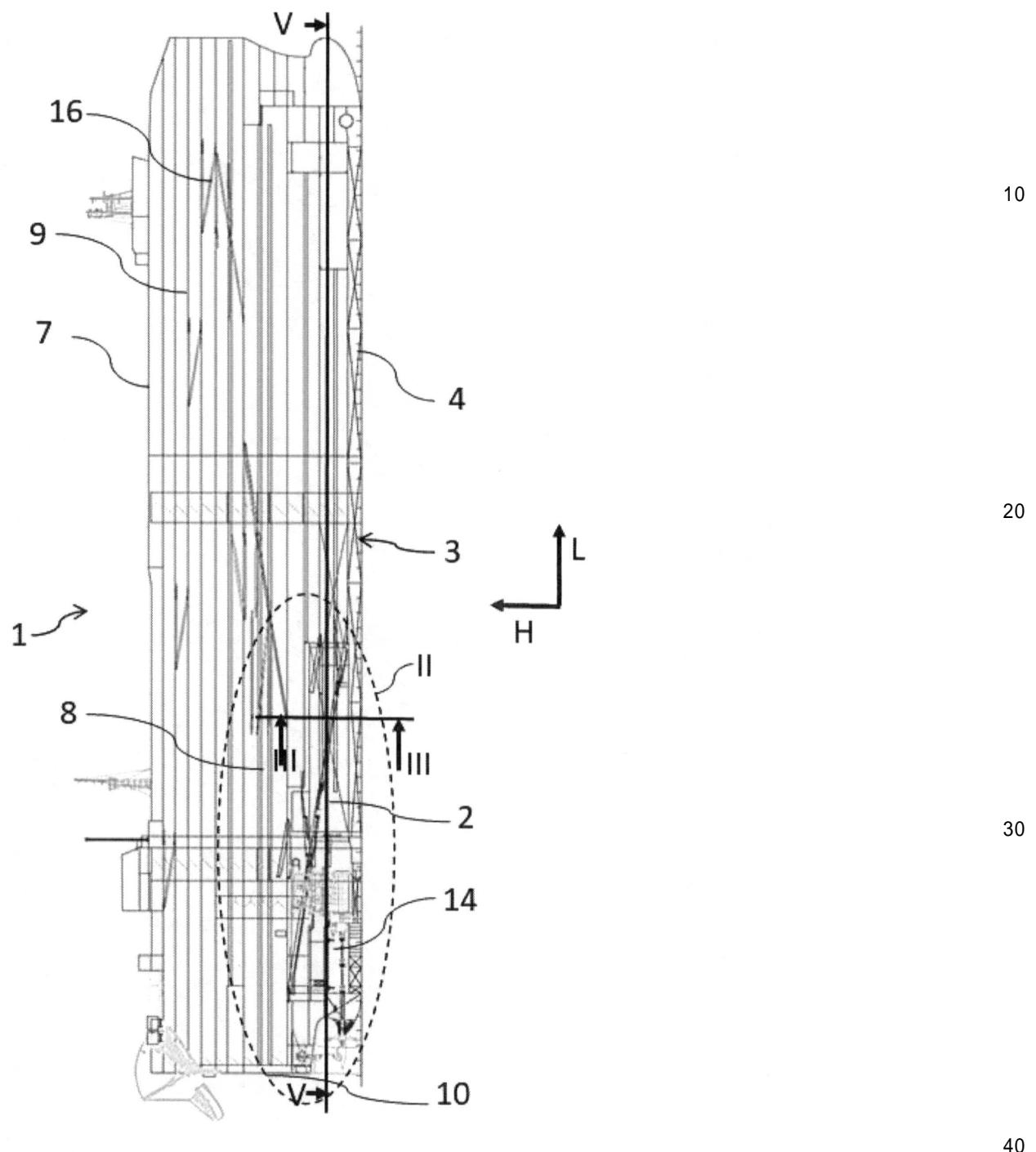
Abstract

The invention relates to a roll-on/roll-off ship (1) comprising:

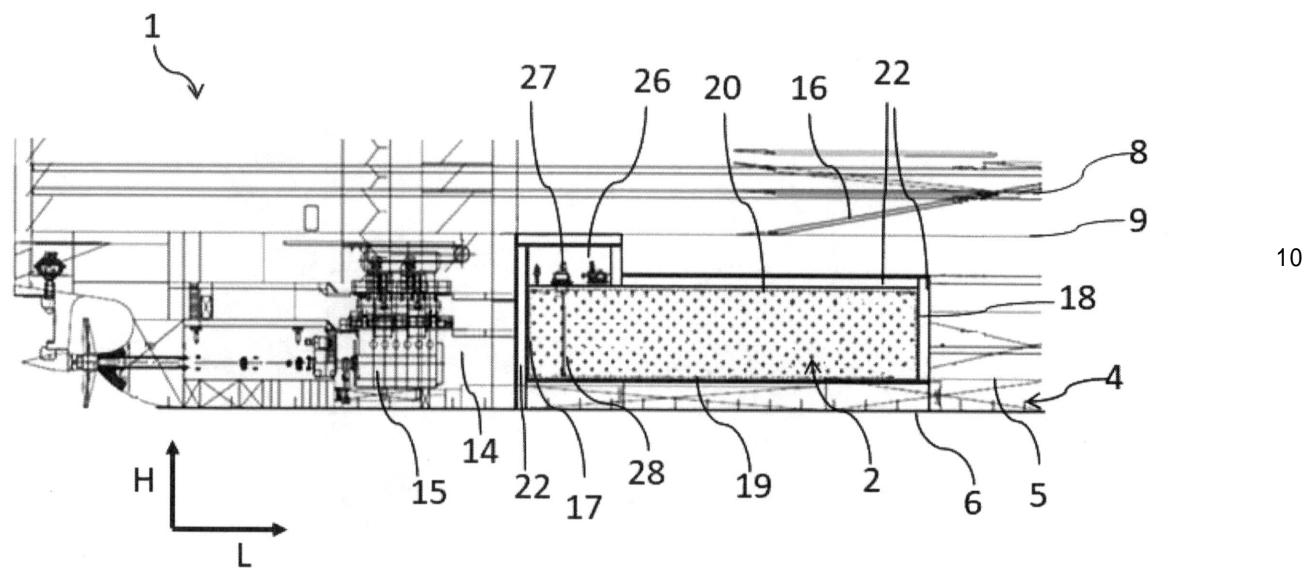
- a hull (3) having a double-walled bottom (4),
- a plurality of intermediate decks including a main loading/unloading deck (8),
- at least one loading/unloading ramp,
- bearing pillars (11) extending in the height direction (H),
- an engine room,
- a sealed and thermally insulating tank (2) with membranes for storing a liquefied combustible gas, which is intended to supply the combustible gas to the propulsion system, wherein the tank (2) is located in the height direction below the main loading/unloading deck (8) and against the internal wall (5) of the bottom, and wherein the tank (2) is located in a transverse direction (T) of the ship between the first row of pillars (12) and the second row of pillars (13).

10

Figure for the Abstract: Fig. 5

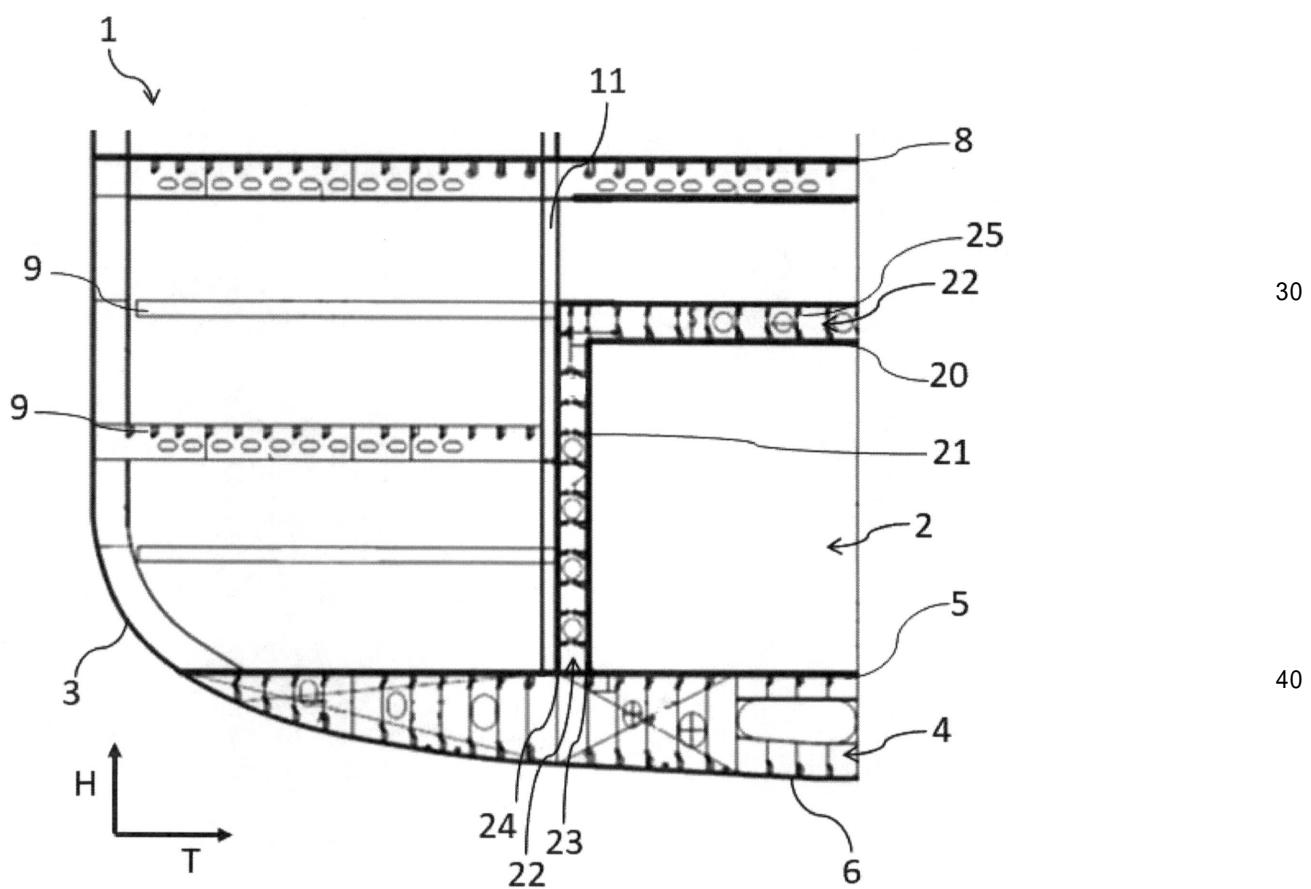

20

30

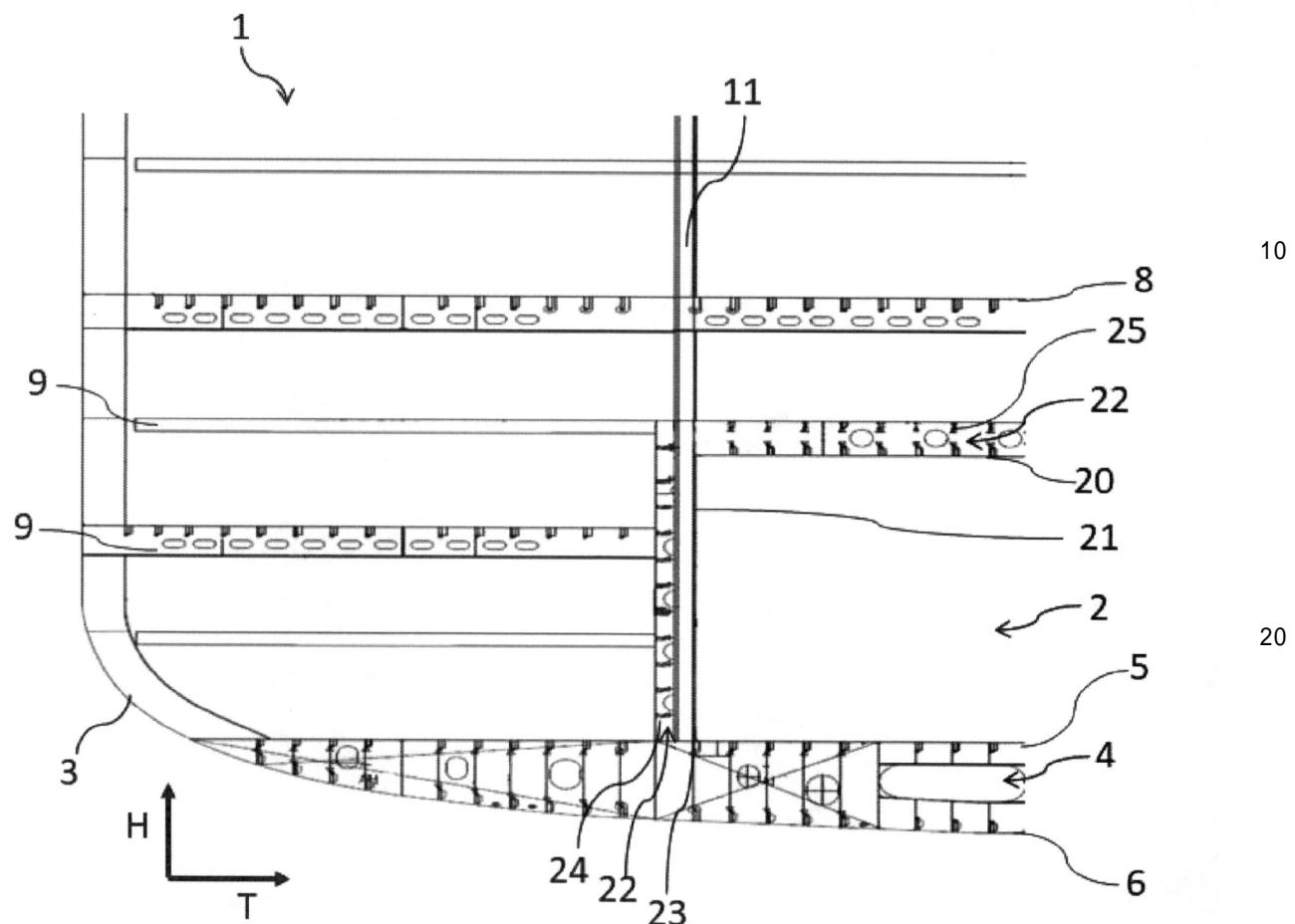

40

50

[Fig. 1]



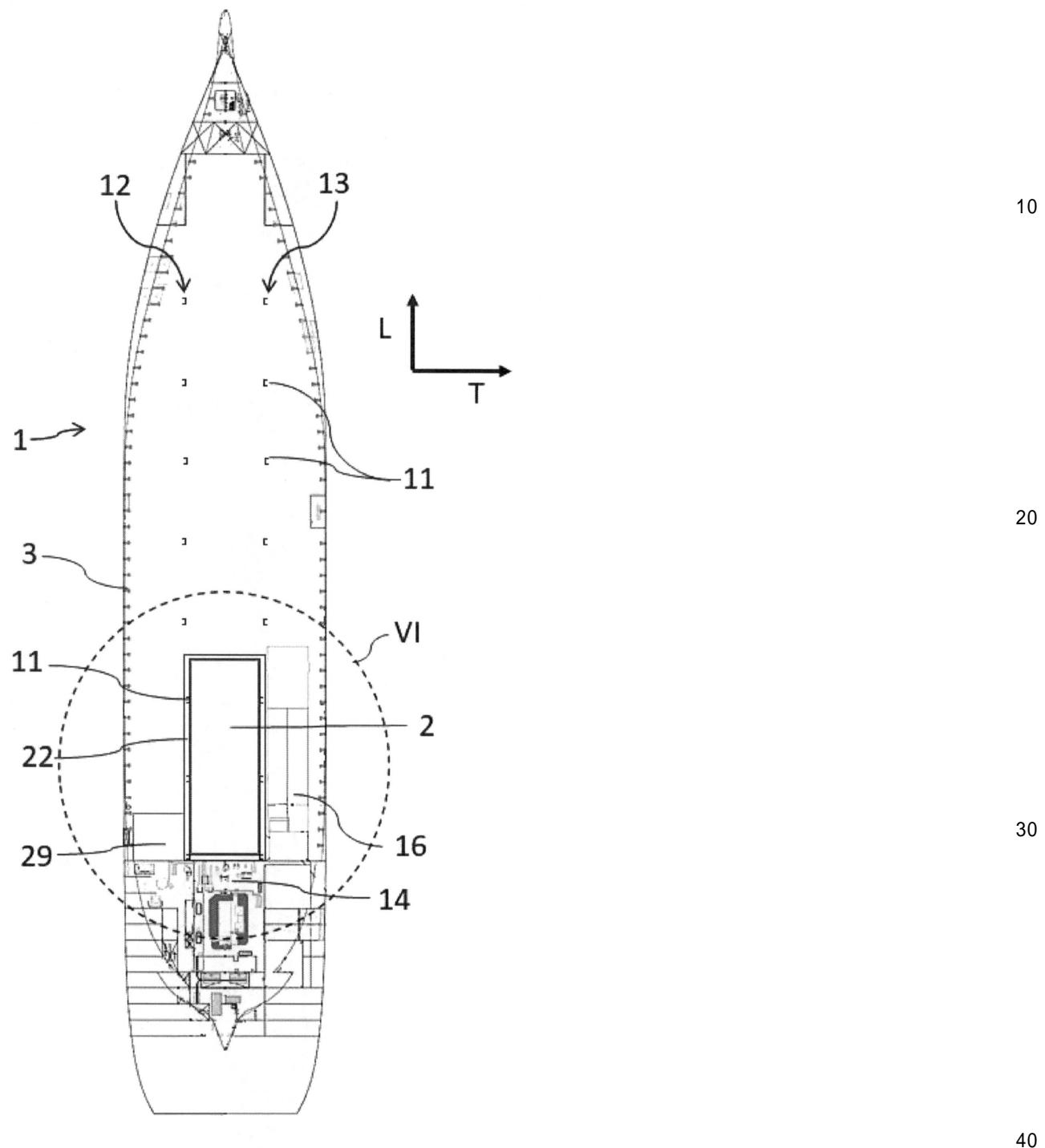
[Fig. 2]


20

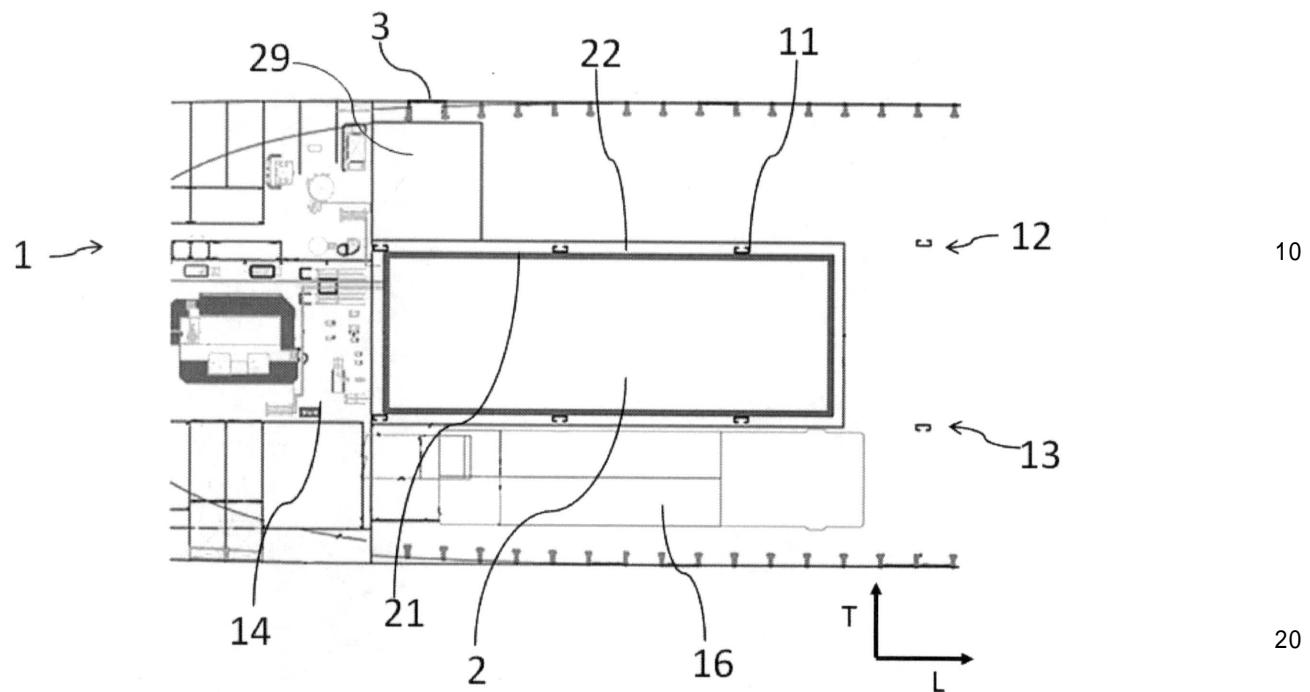
[Fig. 3]

50

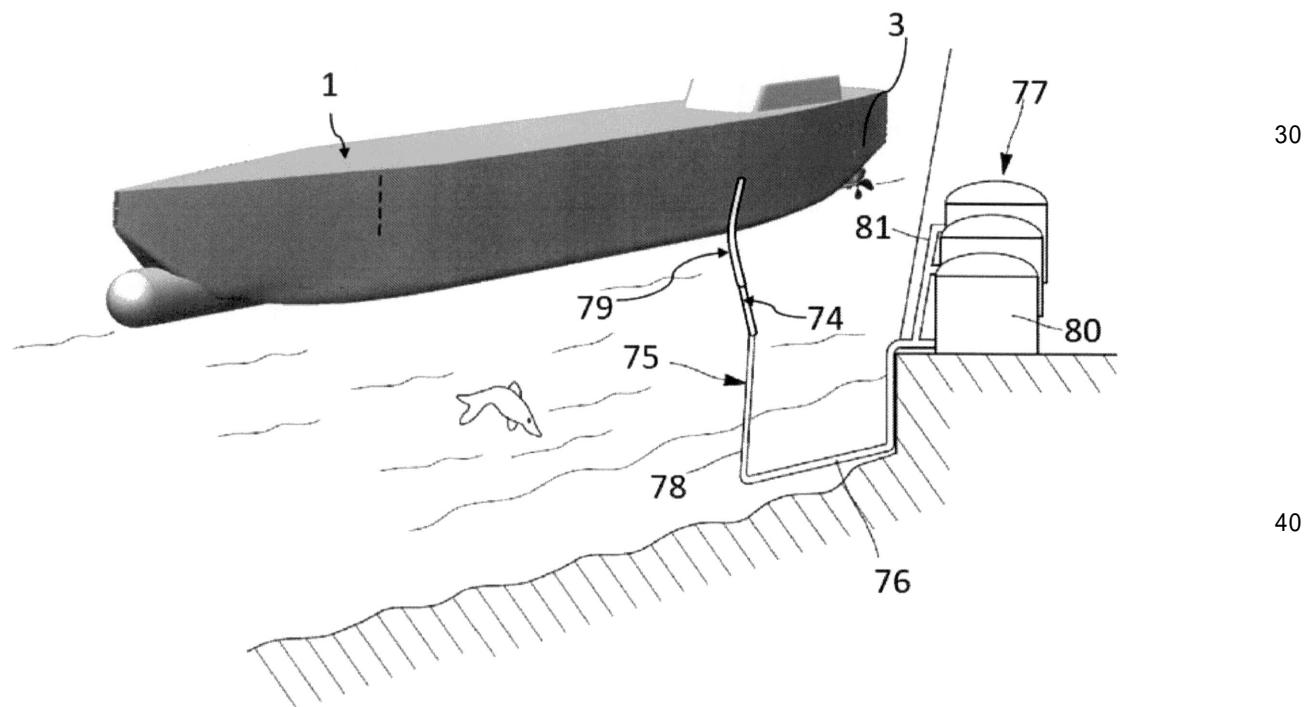
[Fig. 4]



30


40

50


[Fig. 5]

[Fig. 6]

[Fig. 7]

フロントページの続き

ヤズ

(72)発明者 ジャン - ギヨーム メルゾー
フランス国 78470 サン レミ レ シュヴルーズ ルート ドゥ ヴェルサイユ 1 ギャズトラ
ンスポート エ テクニギャズ

(72)発明者 ヨーナス マーテネン
フィンランド国 20250 トゥルク ポスティカトゥ 2 デルタマリン リミテッド

(72)発明者 ユーソ レウナモ
フィンランド国 20250 トゥルク ポスティカトゥ 2 デルタマリン リミテッド

(72)発明者 クリストイアン カナーピ
フィンランド国 20250 トゥルク ポスティカトゥ 2 デルタマリン リミテッド