

REVISED VERSION

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
4 May 2017 (04.05.2017)

(10) International Publication Number
WO 2017/075540 A9

(51) International Patent Classification:
A61K 31/7088 (2006.01) *A61P 25/28* (2006.01)
A61K 38/43 (2006.01) *A61P 25/00* (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:
PCT/US2016/059587

(22) International Filing Date:
28 October 2016 (28.10.2016)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
62/248,713 30 October 2015 (30.10.2015) US

(71) Applicant: **ULTRAGENYX PHARMACEUTICAL INC.** [US/US]; 60 Leveroni Court, Novato, California 94949 (US).

(72) Inventors: **KAKKIS, Emil**; 546 Biscayne Drive, San Rafael, California 94901 (US). **VELLARD, Michel Claude**; 2 San Marino Court, San Rafael, California 94901 (US). **SWISTOWSKI, Andrzej**; 1813 Hanford Street, Petaluma, California 94954 (US).

(74) Agents: **WU, Nan** et al.; Cooley LLP, 1299 Pennsylvania Avenue, NW Suite 700, Washington, District of Columbia 20004-2400 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))

[Continued on next page]

(54) Title: METHODS AND COMPOSITIONS FOR THE TREATMENT OF AMYLOIDOSIS

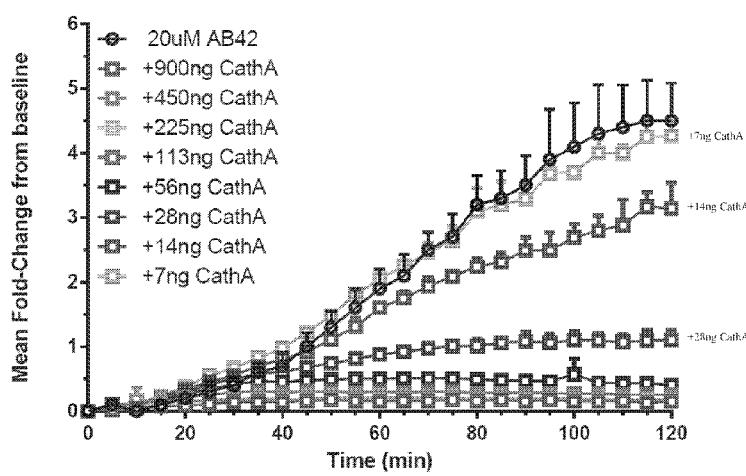


FIG. 4A

(57) Abstract: Methods and compositions for the treatment or prevention of amyloidosis are provided. In some embodiments, the methods comprise administering to the subject a therapeutically effective amount of at least one catabolic enzyme or a biologically active fragment thereof. Such methods and compositions may be employed to reduce, prevent, degrade and/or eliminate amyloid formation in the lysosome and/or extracellularly.

WO 2017/075540 A9

Published:

- *with international search report (Art. 21(3))*
- *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))*
- *with sequence listing part of description (Rule 5.2(a))*

(88) Date of publication of the revised international search report:

6 July 2017

(15) Information about Correction:

see Notice of 6 July 2017

METHODS AND COMPOSITIONS FOR THE TREATMENT OF AMYLOIDOSIS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Application Serial No. 62/248,713, filed October 30, 2015, which is herein incorporated by reference in its entirety for all purposes.

TECHNICAL FIELD

[0002] The present invention relates to compositions and methods suitable for the prevention or treatment of amyloidosis. For instance, catabolic enzymes are provided to reduce, prevent, or eliminate amyloid formation.

DESCRIPTION OF TEXT FILE SUBMITTED ELECTRONICALLY

[0003] The contents of the text file submitted electronically herewith are incorporated herein by reference in their entirety: A computer readable format copy of the Sequence Listing (filename: ULPI_034_01US_SeqList_ST25.txt, date recorded: October 21, 2016, file size: 146 kilobytes).

BACKGROUND

[0004] Amyloids are insoluble fibrous protein aggregates sharing specific structural traits, *e.g.*, a beta-pleated sheet. They arise from at least 18 inappropriately folded versions of proteins and polypeptides present naturally in the body. These misfolded structures alter their proper configuration such that they erroneously interact with one another or other cell components forming insoluble amyloid fibrils. They have been associated with the pathology of more than 20 serious human diseases. Abnormal accumulation of these amyloid fibrils in organs may lead to amyloidosis, and may play a role in various neurodegenerative disorders, as well as other disorders.

[0005] The formation of these fibrils involves a passage through the lysosome where the acidic environment allows the formation of the protein aggregates. The amyloids are then released from the cell by exocytosis or by cell lysis.

[0006] Trying to eliminate specific fibrils has been the objective of significant research on amyloidosis but without success. Current treatment of amyloidosis involves chemotherapy agents or steroids, such as melphalan and dexamethasone. However, such treatment is not

appropriate for all patients and is not effective in many cases due to its specificity. Therefore, there is a great need for alternatives that may safely and effectively prevent or treat diseases associated with amyloidosis.

[0007] The present invention solves the problem of how to prevent and stop the formation of excessive amyloids which have a very deleterious activity in the body. The present invention also solves the problem of specificity, and is applicable to different sources of amyloids and not restricted to a specific disease. The present invention also helps the degradation of already formed fibrils by keeping the lysosome more functional and ready to digest fibrils through endocytosis.

SUMMARY OF THE INVENTION

[0008] The present invention provides methods of treating or preventing amyloidosis in a subject. In some embodiments, the methods comprise administering to the subject a composition comprising a therapeutically effective amount of at least one catabolic enzyme or a biologically active fragment thereof.

[0009] In some embodiments, the catabolic enzyme is selected from the group consisting of protective protein/cathepsin A (PPCA), neuraminidase 1 (NEU1), tripeptidyl peptidase 1 (TPP1), cathepsin B, cathepsin D, cathepsin E, cathepsin K, and cathepsin L. In some embodiments, the catabolic enzyme acts to prevent the formation of and/or degrade amyloid within the lysosome, *i.e.*, intralyosomally. In other embodiments, the catabolic enzyme acts to prevent the formation of and/or degrade amyloid outside the cell, *i.e.*, extracellularly.

[0010] In some embodiments, the catabolic enzyme comprises a PPCA polypeptide, or a biologically active fragment thereof. In some embodiments, the PPCA polypeptide comprises an amino acid sequence with at least 85% sequence identity to SEQ ID NO: 2, 43, or 45, or a biologically active fragment thereof. In some embodiments, the PPCA polypeptide comprises the amino acid sequence of SEQ ID NO: 2, 43, or 45, or a biologically active fragment thereof.

[0011] In some embodiments, the methods comprise administering a composition comprising a vector, wherein the vector comprises a nucleotide sequence encoding at least one catabolic enzyme of the present invention. In some embodiments, the vector is a viral vector. In some embodiments, the catabolic enzyme is PPCA or a biologically active fragment thereof. In some embodiments, the administration of the PPCA catabolic enzyme comprises administration of a

vector encoding a nucleotide sequence having at least 85% identity to SEQ ID NO: 1, 42, or 44. In some embodiments, the nucleotide sequence comprises SEQ ID NO: 1, 42, or 44.

[0012] In some embodiments, the catabolic enzyme comprises a NEU1 polypeptide, or a biologically active fragment thereof. In some embodiments, the NEU1 polypeptide comprises an amino acid sequence with at least 85% sequence identity to SEQ ID NO: 4, or a biologically active fragment thereof. In some embodiments, the NEU1 polypeptide comprises the amino acid sequence of SEQ ID NO: 4, or a biologically active fragment thereof.

[0013] In some embodiments, the administration of the NEU1 catabolic enzyme comprises administration of a vector encoding a nucleotide sequence having at least 85% identity to SEQ ID NO: 3. In some embodiments, the nucleotide sequence comprises SEQ ID NO: 3.

[0014] In some embodiments, the catabolic enzyme comprises a TPP1 polypeptide, or a biologically active fragment thereof. In some embodiments, the TPP1 polypeptide comprises an amino acid sequence with at least 85% sequence identity to SEQ ID NO: 6, or a biologically active fragment thereof. In some embodiments, the TPP1 polypeptide comprises the amino acid sequence of SEQ ID NO: 6, or a biologically active fragment thereof.

[0015] In some embodiments, the administration of the TPP1 catabolic enzyme comprises administration of a vector encoding a nucleotide sequence having at least 85% identity to SEQ ID NO: 5. In some embodiments, the nucleotide sequence comprises SEQ ID NO: 5.

[0016] In some embodiments, at least two catabolic enzymes are administered to the subject. In some embodiments, the at least two catabolic enzymes are selected from protective protein/cathepsin A (PPCA), neuraminidase 1 (NEU1), tripeptidyl peptidase 1 (TPP1), cathepsin B, cathepsin D, cathepsin E, cathepsin K, and cathepsin L.

[0017] In some embodiments, the at least two catabolic enzymes comprise PPCA and NEU1.

[0018] In some embodiments, the catabolic enzyme is targeted to the cell lysosome. In other embodiments, the catabolic enzyme is modified to remain outside the cell, *i.e.*, the enzyme is modified to act extracellularly.

[0019] In some embodiments, the catabolic enzyme prevents the accumulation of and/or degrades amyloid in the cell lysosome. In other embodiments, the catabolic enzyme prevents the accumulation of and/or degrades amyloid outside the cell, *i.e.*, extracellularly.

[0020] In some embodiments, the present invention provides a composition comprising at least two catabolic enzymes, wherein the composition comprises at least one catabolic enzyme that is targeted to the cell lysosome and at least one catabolic enzyme that remains outside the

cell. In some embodiments, the catabolic enzymes are selected from protective protein/cathepsin A (PPCA), neuraminidase 1 (NEU1), tripeptidyl peptidase 1 (TPP1), cathepsin B, cathepsin D, cathepsin E, cathepsin K, and cathepsin L. In an exemplary embodiment, the present invention provides a composition comprising at least two catabolic enzymes, wherein the composition comprises a PPCA catabolic enzyme that is targeted to the cell lysosome and a PPCA catabolic enzyme that remains outside the cell.

[0021] In some embodiments, the methods further comprise the administration of one or more additional drugs for treating or preventing amyloidosis. In some embodiments, the one or more additional drugs is/are selected from melphalan, dexamethasone, prednisone, bortezomib, lenalidomide, vincristine, doxorubicin, and cyclophosphamide.

[0022] In some embodiments, the methods further comprise the administration of one or more drugs that acidifies the lysosome. In some embodiments, the drug that acidifies the lysosome is selected from an acidic nanoparticle, a catecholamine, a β -adrenergic receptor agonist, an adenosine receptor agonist, a dopamine receptor agonist, an activator of the cystic fibrosis transmembrane conductance regulator (CFTR), cyclic adenosine monophosphate (cAMP), a cAMP analog, and an inhibitor of glycogen synthase kinase-3 (GSK-3).

[0023] In some embodiments, the methods further comprise the administration of one or more drugs that modulates the lysosome. In an exemplary embodiment, the drug is Z-phenylalanyl-alanyl-diazomethylketone (PADK) or a PADK analog, or a pharmaceutically acceptable salt or ester thereof. In some embodiments, the PADK analog is selected from Z-L-phenylalanyl-D-alanyl-diazomethylketone (PdADK), Z-D-phenylalanyl-L-alanyl-diazomethylketone (dPADK), and Z-D-phenylalanyl-D-alanyl-diazomethylketone (dPdADK).

[0024] In some embodiments, the methods further comprise the administration of one or more drugs that promotes autophagy. In an exemplary embodiment, the drug is selected from an activator of peroxisome proliferator-activated receptor gamma coactivator 1- α (PGC-1 α), an inhibitor of Lysine (K)-specific demethylase 1A (LSD1), an agonist of Peroxisome proliferator-activated receptor (PPAR), an activator of Transcription factor EB (TFEB), an inhibitor of mechanistic target of rapamycin (mTOR), and an inhibitor of glycogen synthase kinase-3 (GSK3).

[0025] In some embodiments, the subject is further treated with stem cell transplantation.

[0026] In some embodiments, the administration is parenteral. In some embodiments, the administration is intramuscular, intraperitoneal, or intravenous.

[0027] In some embodiments, any one of the compositions and drugs provided herein comprise a pharmaceutically acceptable carrier.

[0028] In some embodiments, the subject is a mammal. In some embodiments, the subject is a human.

[0029] In some embodiments, the amyloidosis is light-chain (AL) amyloidosis.

[0030] In some embodiments, the AL amyloidosis involves one or more organs selected from the heart, the kidneys, the nervous system, and the gastrointestinal tract.

[0031] In some embodiments, the amyloidosis is amyloid-beta (A β) amyloidosis.

[0032] In some embodiments, the A β amyloidosis involves one or more organs selected from the brain, the nervous system, and/or involves various muscles, *e.g.*, muscles of the arms and legs. In some embodiments, the A β amyloidosis is associated with Alzheimer's disease. In some embodiments, the A β amyloidosis is associated with cerebral amyloid angiopathy. In some embodiments, the A β amyloidosis is associated with Lewy body dementia. In some embodiments, the A β amyloidosis is associated with inclusion body myositis.

BRIEF DESCRIPTION OF THE DRAWINGS

[0033] **FIG. 1A-B** shows the aggregation of synthetic A β 42 peptide and A β 15-36 peptide (negative control) monitored by Thioflavin-T (THT). FIG. 1A. Aggregation at physiological conditions. FIG. 1B. Aggregation at acidic pH.

[0034] **FIG. 2A-B** shows the aggregation of synthetic A β 42 peptide in vitro over a 24 hour time period as detected by western blot. FIG. 2A. 12% Bis-Tris gel, reducing conditions, probed with 6E10, a commercially available purified anti- β -amyloid antibody that is reactive to amino acid residues 1-16 of beta amyloid. FIG. 2B. 18% Tris-Glycine gel, reducing conditions, probed with 6E10.

[0035] **FIG. 3A-D** show that cathepsin A (interchangeably referred to herein as Cath A or PPCA) prevents the aggregation of A β 42 amyloid species. FIG. 3A. Activation of 90 ng cathepsin A by cathepsin L (full black circles). FIG. 3B. Activation of 450 ng cathepsin A by cathepsin L. FIG. 3C. Preventive effect of 90 ng PPCA on A β 42 aggregation and the inhibition of PPCA by the serine protease inhibitor, PMSF (phenylmethylsulfonyl fluoride). FIG. 3D. Preventive effect of 450 ng PPCA on A β 42 aggregation. A β 42 peptides were aggregated alone (open circles), with two concentrations of Cath A (open squares) and with combination of Cath

A + inhibitor PMSF (open triangles). Cath A only (full squares) and inhibitor PMSF only (full triangles) were incubated with THT reagent and served as negative controls.

[0036] **FIG. 4A-B** shows that Cath A (*i.e.*, PPCA) prevents the aggregation of A β 42 amyloid species in a dose-dependent manner. FIG. 4A. Graph showing A β 42 aggregation over 2 hours at pH5, 37°C with varying PPCA concentrations (7 ng to 900 ng) as measured by THT. A β 42 aggregation was measured alone and with serial dilutions of PPCA. Lines are labeled for clarity. FIG. 4B. Bar graph showing end-point (2 hrs) A β 42 aggregation.

[0037] **FIG. 5** shows that Cath A (*i.e.*, PPCA) prevents the aggregation of both high and lower molecular weight species of A β 42 amyloid. Treatment of 0.9 μ g A β 42 monomer with 500 ng PPCA is shown over a time period of 2 hours on an 18% Tris-Glycine gel, under reducing conditions, probed with 6E10.

[0038] **FIG. 6A-D** show that cathepsin B (Cath B) prevents the aggregation of A β 42 amyloid. FIG. 6A. Activation of 90 ng cathepsin B and its inhibition by the protease inhibitor E64. FIG. 6B. Activation of 450 ng cathepsin B and its inhibition by E64. FIG. 6C. Preventive effect of 90 ng cathepsin B on A β 42 aggregation and the lack inhibition by E64. FIG. 6D. Preventive effect of 450 ng cathepsin B on A β 42 aggregation and the lack inhibition by E64. A β 42 peptides were aggregated alone (open circles), with two concentrations of Cath B (open squares) and with combination of Cath B + inhibitor E64 (open triangles). Cath B only (full squares) and inhibitor E64 only (full triangles) were incubated with THT reagent and served as negative controls.

[0039] **FIG. 7A-B** shows that cathepsin B moderately prevents the aggregation of A β 42 amyloid species in a dose-dependent manner. FIG. 7A. Graph showing A β 42 aggregation over 2 hours at pH5, 37°C with varying cathepsin B concentrations (7 ng to 900 ng) as measured by THT. A β 42 aggregation was measured alone and with serial dilutions of cathepsin B. FIG. 7B. Bar graph showing end-point (2 hrs) A β 42 aggregation.

[0040] **FIG. 8** shows that cathepsin B prevents the aggregation of both low molecular weight species of A β 42 amyloid and degrades A β 42 in a time dependent manner. Treatment of 0.9 μ g A β 42 monomer with 200 ng cathepsin B is shown over a time period of 2 hours on an 18% Tris-Glycine gel, under reducing conditions, probed with 6E10

[0041] **FIG. 9** shows that cathepsin D prevents the aggregation of A β 42 amyloid as monitored by THT. A β 42 peptides were aggregated alone (empty circles) and with cathepsin D (empty squares) over period of 2 hours. Cathepsin D alone (triangles) was incubated with THT reagent and served as a negative control.

[0042] **FIG. 10** shows a western blot demonstrating that PPCA, cathepsin B, PPCA plus cathepsin B, and cathepsin D degrade high molecular weight oligomers/fibrils of A β 42 amyloid. Cathepsin D degrades low molecular oligomers and completely eliminates A β 42 monomers.

[0043] **FIG. 11** shows a western blot demonstrating a comparison in the detection of A β 42 oligomers and fibrils using an oligomer specific A11 antibody. A β 42 peptides were subjected to 7 day aggregation protocols specific for oligomers and fibrils. Reduction of oligomer form in fibril formation (line 9) indicates transition of oligomers into fibril form, which is not detected by oligomer specific A11 antibody.

[0044] **FIG. 12** shows a western blot demonstrating a comparison in the detection of A β 42 oligomers and fibrils using an oligomer and fibril specific E610 antibody. A β 42 peptides were subjected to 7 day aggregation protocols specific for oligomers and fibrils. Fibril formation was not detected in the oligomer specific protocol at day 7 (line 4). Reduction of oligomer form and appearance of fibril form (smear on line 9) was detected in the fibril formation protocol.

[0045] **FIG. 13** shows a western blot illustrating the enzymatic degradation of A β 42 oligomers as probed by the oligomer specific A11 antibody. Lines 1-6 contain day 9 oligomers aggregated at pH 7.0 at 25°C and additionally treated overnight at 37°C in enzyme specific pH. Lines 1-3 are not treated with enzymes. Lines 4-6 represent treatment with 90 ng of cathepsin A, B, and D, respectively. Line 8 contains day 9 oligomers aggregated at pH 7.0 at 25°C. Line 9 contains monomers at pH 7.0. Degradation of oligomers by 90 ng of cathepsin A is shown in line 4. 2 μ g of material was loaded on each line.

[0046] **FIG. 14** shows a western blot illustrating the enzymatic degradation of A β 42 fibrils as probed by the oligomer and fibril specific antibody E610. Lines 1-6 contain day 9 fibrils aggregated at pH 7.0 at 25°C and additionally treated overnight at 37°C in enzyme specific pH. Lines 1-3 are not treated with enzymes. Lines 4-6 represent treatment with 90 ng of cathepsin A, B, and D, respectively. Line 8 contains day 9 fibers aggregated at pH 7.0 at 25°C. Line 9 contains monomers at pH 7.0. Degradation of fibers and oligomers by 90 ng of cathepsin A is shown in line 4. Degradation of fibers by 90 ng of cathepsin B is shown in line 5. 2 μ g of material was loaded on each line.

[0047] **FIG. 15** shows a human A β 42 specific ELISA used to monitor the degradation of A β 42 monomers with cathepsin A. Treatment of A β 42 monomers with 90 ng of cathepsin A (striped bars) showed degradation from the C-terminus at various time points (0, 10, 30, 60, 120 min), which is reflected in loss of C-terminal capture by capturing antibody and in effect loss of

fluorescent signal. In contrast, A β 42 monomers not treated with cathepsin A showed lack of C-terminal degradation (solid bars), which is reflected in efficient antibody capture and strong fluorescent signal. An inhibitor of amyloid aggregation, phenol red was used in both cases to prevent peptide aggregation, which could affect capture by the C-terminal antibody in ELISA.

[0048] **FIG. 16A-B** show aggregation of A β 40 and A β 42 measured by THT assay. A β 40, A β 42, and A β 16 were co-incubated with ThT for 2h at 37°C to measure the kinetics of aggregation. A β 42 aggregates more efficiently and faster than A β 40. FIG. 16A. Graphical representation aggregation of A β peptides on a single scale. FIG. 16B. Graphical representation of A β 40 aggregation on a separate scale.

[0049] **FIG. 17A-C** show that simultaneous incubation of A β 40, Cath A, and THT shows no change in A β 40 aggregation. Increasing concentrations of Cath A were co-incubated with 15 μ M A β 40 and 2mM ThT for 2h at 37°C to measure how Cath A affected the kinetics of A β 40 aggregation. FIG. 17A. 900ng Cath A was co-incubated with A β 40 and THT. FIG. 17B. 1000ng Cath A was co-incubated with A β 40 and THT. FIG. 17C. 2250ng Cath A was co-incubated with A β 40 and THT.

[0050] **FIG. 18A-C** show that A β 40 pre-incubated with Cath A leads to loss of its aggregation potential as revealed by lack of THT fluorescence. A β 40 and 2500ng Cath A were first incubated for 30', 1h, and 2h at 37°C (FIG. 18A, 18B, and 18C, respectively). Reactions were then co-incubated with ThT for 2h at 37°C to measure how Cath A affected the kinetics of A β 40 aggregation.

[0051] **FIG. 19A-B** show detection of cleavage of A β 40 C-terminal end using a C-terminal capture antibody. A β 40 peptide was incubated for 2h at 37°C at pH5 with varying concentrations of Cath A. The reaction was transferred to an ELISA plate pre-coated with a C-terminal capture antibody and was co-incubated with N-terminal detection antibody overnight at 4°C. Error bars are referring to the standard deviation in the OD values. FIG. 19A. Recovery rate of undigested A β 40 in samples treated with increased concentrations of Cath A. FIG. 19B. Mean absorbance at 450 nm of samples in ELISA wells treated with increased concentrations of Cath A.

[0052] **FIG. 20A-C** show aggregation and degradation of A β 40 amyloid measured by Western Blot. FIG. 20A. Aggregation into amyloid species. A β 40 was incubated in either Fibril Buffer or Oligomer buffer at RT for 0-9 days. 2 μ g of A β 40 were loaded per lane on an 18% Tris-Glycine gel and transferred to a PVDF membrane. The blot was probed with an Anti-A β 40 C-terminal primary antibody (G2-10). A β 40 incubated with Cath A during fibril formation prevents

aggregation. A β 40 was co-incubated with Cath A in fibril buffer at RT for 0-9 days. To observe high molecular weight bands the gel in FIG. 20B was run on a 7.5% Tris-glycine gel and to see the low molecular weight bands gel in FIG. 20C was run on an 18% Tris-glycine gel. 2 μ g of A β 40 were loaded into each lane. Each gel was transferred to a PVDF membrane and probed with an Anti-A β 40 C-terminal primary antibody (G2-10).

DETAILED DESCRIPTION

[0053] As shown herein, the present inventors have discovered that various catabolic enzymes can be used to prevent the formation of and/or degrade various types of amyloid oligomers and fibrils. Because these oligomers and fibrils can contribute to the development of a variety of amyloid-associated diseases and disorders, the present invention is directed to methods and compositions for the treatment or prevention of amyloidosis in a subject.

[0054] Amyloids are insoluble fibrous protein aggregates sharing specific structural traits. The deposition of normally soluble proteins in this insoluble form can lead to cell death and tissue degeneration. To date, 18 different proteins and polypeptides have been identified in disease-associated amyloid deposits. *See* Westermark et al. ("Nomenclature of amyloid fibril proteins. Report from the meeting of the International Nomenclature Committee on Amyloidosis, August 8-9, 1998. Part 1." *Amyloid*. 1999 Mar; 6(1):63-6.), which is incorporated by reference in its entirety. The amyloid fibrils are long, straight, unbranched filaments about 40-120 \AA in diameter, which bind to physiological dyes such as Congo red and thioflavine T and are resistant to protease digestion.

[0055] As used herein, amyloidosis refers to a disease that results from accumulation of amyloids. Such diseases to be treated or prevented by the present invention include, but are not limited to, systemic AL amyloidosis, Alzheimer's Disease, Diabetes mellitus type 2, Parkinson's disease, Transmissible spongiform encephalopathy e.g. Bovine spongiform encephalopathy, Fatal Familial Insomnia, Huntington's Disease, Medullary carcinoma of the thyroid, Cardiac arrhythmias, Atherosclerosis, Rheumatoid arthritis, Aortic medial amyloid, Prolactinomas, Familial amyloid polyneuropathy, Hereditary non-neuropathic systemic amyloidosis, Dialysis related amyloidosis, Finnish amyloidosis, Lattice corneal dystrophy, Cerebral amyloid angiopathy, Cerebral amyloid angiopathy (Icelandic type), Sporadic Inclusion Body Myositis, Amyotrophic lateral sclerosis (ALS), Prion-related or Spongiform encephalopathies, such as Creutzfeld-Jacob, Dementia with Lewy bodies, Frontotemporal dementia with Parkinsonism,

Spinocerebellar ataxias, Spinocerebellar ataxia, Spinal and bulbar muscular atrophy, Hereditary dentatorubral-pallidoluysian atrophy, Familial British dementia, Familial Danish dementia, Non-neuropathic localized diseases, such as in Type II diabetes mellitus, Medullary carcinoma of the thyroid, Atrial amyloidosis, Hereditary cerebral haemorrhage with amyloidosis, Pituitary prolactinoma, Injection-localized amyloidosis, Aortic medial amyloidosis, Hereditary lattice corneal dystrophy, Corneal amyloidosis associated with trichiasis, Cataract, Calcifying epithelial odontogenic tumors, Pulmonary alveolar proteinosis, Inclusion-body myositis, Cutaneous lichen amyloidosis, and Non-neuropathic systemic amyloidosis, such as AL amyloidosis, AA amyloidosis, Familial Mediterranean fever, Senile systemic amyloidosis, Familial amyloidotic polyneuropathy, Hemodialysis-related amyloidosis, ApoAI amyloidosis, ApoAII amyloidosis, ApoAIV amyloidosis, Finnish hereditary amyloidosis, Lysozyme amyloidosis, Fibrinogen amyloidosis, Icelandic hereditary cerebral amyloid angiopathy, familial amyloidosis, and systemic amyloidosis which occurs in multiple tissues, such as light-chain amyloidosis, and other various neurodegenerative disorders. In exemplary embodiments, the amyloidosis is light-chain (AL) amyloidosis. In further exemplary embodiments, the AL amyloidosis involves one or more organs selected from the heart, the kidneys, the nervous system, and the gastrointestinal tract.

[0056] In some embodiments, the present invention provides methods and compositions for the treatment or prevention of a disease associated with amyloidosis in a subject, wherein the disease is associated with the formation of amyloid-beta (A β or Abeta) peptides. These peptides result from the amyloid precursor protein (APP), which is cleaved by beta secretase and gamma secretase to yield amyloid-beta. In some embodiments, the disease associated with the formation of amyloid-beta is selected from Alzheimer's Disease, cerebral amyloid angiopathy, Lewy body dementia, and inclusion body myositis.

[0057] In alternative embodiments, the present invention provides methods and compositions for the treatment or prevention of a disease associated with amyloidosis in a subject, wherein the disease is not associated with the formation of amyloid beta, *i.e.*, wherein the disease is a disease other than one associated with the formation of amyloid beta, *e.g.*, a disease other than Alzheimer's disease, cerebral amyloid angiopathy, Lewy body dementia, and inclusion body myositis.

[0058] In one embodiment, the disease associated with amyloidosis is light-chain (AL) amyloidosis. In another embodiment, the disease associated with amyloidosis is selected from Parkinson's Disease, Huntington's Disease, Rheumatoid arthritis, and a prion-related disease.

[0059] In some embodiments, the amyloidosis is a systemic amyloidosis. Systemic amyloidosis encompasses a complex group of diseases caused by tissue deposition of misfolded proteins that result in progressive organ damage.

[0060] As noted above, in some embodiments, the amyloidosis is light-chain (AL) amyloidosis (also known as, *i.e.* a.k.a., primary systemic amyloidosis (PSA) or primary amyloidosis). AL amyloidosis refers to a condition caused when a subject's antibody-producing cells do not function properly and produce abnormal protein fibers made of components of antibodies called light chains. In some embodiments, such light chains form amyloid deposits in one or more different organs which may cause or already caused damage to these organs. In some embodiments, the abnormal light chains are in blood and/or urine. In some embodiments, the abnormal light chains are "Bence Jones proteins". In some embodiments, the AL amyloidosis affects the heart, peripheral nervous system, gastrointestinal tract, blood, lungs and/or skin. Clinical features of AL amyloidosis also may include a constellation of symptoms and organ dysfunction that can include cardiac, renal, and hepatic dysfunction, gastrointestinal involvement, neuropathies and macroglossia.

[0061] In some embodiments, the amyloidosis is AA amyloidosis (a.k.a. secondary amyloidosis, AA), caused by deposited proteins called serum amyloid A protein (SAA). In some embodiments, the SAA protein is mainly deposited in the liver, spleen and/or kidney. In some embodiments, the AA amyloidosis leads to nephrotic syndrome. In some embodiments, the AA amyloidosis is caused by autoimmune diseases (e.g., Rheumatoid arthritis, Ankylosing spondylitis, or Crohn's disease and ulcerative colitis), Chronic infections (e.g., Tuberculosis, Bronchiectasis, or Chronic osteomyelitis), autoinflammatory diseases (e.g., Familial Mediterranean fever (FMF), Muckle-Wells syndrome (MWS), Cancer (e.g., Hodgkin's lymphoma, Renal cell carcinoma), and/or Chronic foreign body reaction (e.g., Silicone-induced granulomatous reaction).

[0062] In some embodiments, the amyloidosis is familial amyloidosis. In some embodiments, the familial amyloidosis is ATTR amyloidosis (a.k.a. or senile systemic amyloidosis) which is due one or more inherited amyloidosis, such as a mutation in the transthyretin (TTR) gene that produces abnormal transthyretin protein. In some embodiments, the familial amyloidosis is

caused by one or more mutation in apolipoprotein A-I (AApoAI), apolipoprotein A-II (AApoAII), gelsolin (AGel), fibrinogen (AFib), lysozyme (ALys), and/or Lect2.

[0063] In some embodiments, the amyloidosis is Beta-2 Microglobulin Amyloidosis (Abeta2m). Beta-2 microglobulin amyloidosis is caused by chronic renal failure and often occurs in patients who are on dialysis for many years. Amyloid deposits are made of the beta-2 microglobulin protein that accumulated in tissues, particularly around joints, when it cannot be excreted by the kidney because of renal failure.

[0064] In some embodiments, the amyloidosis is Localized Amyloidosis (ALoc). In some embodiments, localized amyloid deposits in the airway (trachea or bronchus), eye, or urinary bladder. In some embodiments, the ALoc is caused by local production of immunoglobulin light chains not originating in the bone marrow. In some embodiments, the ALoc is associated with endocrine proteins, or proteins produced in the skin, heart, and other sites. These usually do not become systemic.

[0065] In some embodiments, the amyloidosis occurs in the kidney of the subject. In some embodiments, the amyloidosis in the kidney is AA amyloidosis. In some embodiments, the AA amyloidosis leads to nephrotic syndrome. In some embodiments, the amyloidosis in the kidney is AL amyloidosis. In some embodiments, symptoms of kidney disease and renal failure associated with AL amyloidosis include, but are not limited to, fluid retention, swelling, and shortness of breath.

[0066] In some embodiments, the amyloidosis occurs in the heart of the subject. In some embodiments, the amyloidosis in the heart is AL amyloidosis. In some embodiments, the amyloidosis in the heart leads to heart failure and/or irregular heart beat.

[0067] In some embodiments, the amyloidosis occurs in the gastrointestinal tract of the subject. In some embodiments, symptoms of GI amyloidosis include, but are not limited to, esophageal reflux, constipation, nausea, abdominal pain, diarrhea, weight loss, and early satiety. In some embodiments, the amyloidosis occurs in the duodenum, stomach, colo-rectum, and/or esophagus.

[0068] In some embodiments, the treatment methods provided herein alleviate, reduce the severity of, or reduce the occurrence of, one or more of the symptoms associated with amyloidosis. Such symptoms include those symptoms associated with light-chain (AL) amyloidosis (primary systemic amyloidosis) and/or AA amyloidosis (secondary amyloidosis). In some embodiments, the symptoms include, but are not limited to, fluid retention, swelling,

shortness of breath, fatigue, irregular heartbeat, numbness of hands and feet, rash, shortness of breath, swallowing difficulties, swollen arms or legs, esophageal reflux, constipation, nausea, abdominal pain, diarrhea, early satiety, stroke, gastrointestinal disorders, enlarged liver, diminished spleen function, diminished function of the adrenal and other endocrine glands, skin color change or growths, lung problems, bleeding and bruising problems, fatigue and weight loss, decreased urine output, diarrhea, hoarseness or changing voice, joint pain, and weakness. In some embodiments, the symptoms are those associated with amyloid-beta (A β) amyloidosis. In some embodiments, the symptoms include, but are not limited to, common symptoms of Alzheimer's disease, including memory loss, confusion, trouble understanding visual images and spatial relationships, and problems speaking or writing.

[0069] According to the methods of the present invention, the term "subject," includes any subject that has, is suspected of having, or is at risk for having a disease or condition. Suitable subjects (or patients) include mammals, such as laboratory animals (e.g., mouse, rat, rabbit, guinea pig), farm animals, and domestic animals or pets (e.g., cat, dog). Non-human primates and human patients are also included. A subject "at risk" may or may not have detectable disease, and may or may not have displayed detectable disease prior to the prevention or treatment methods described herein. "At risk" denotes that a subject has one or more so-called risk factors, which are measurable parameters that correlate with development of any one of the diseases, disorders, conditions, or symptoms described herein. A subject having one or more of these risk factors has a higher probability of developing any one of the diseases, disorders, conditions, or symptoms described herein than a subject without these risk factor(s). In some embodiments, the subject is a mammal. In some embodiments, the subject is a human. In some embodiments, the subject is a human diagnosed as having amyloidosis or disease/symptom caused by or associated with amyloidosis. In some embodiments, the subject is a human suspected to have amyloidosis. In some embodiments, the subject is a human having high risk of developing amyloidosis. In some embodiments, the subject is an amyloidosis patient with one or more diseases/conditions/symptoms as described herein.

[0070] The terms "treating" and "treatment" as used herein refer to an approach for obtaining beneficial or desired results including clinical results, and may include even minimal changes or improvements in one or more measurable markers of the disease or condition being treated. A treatment is usually effective to reduce at least one symptom of a condition, disease, disorder, injury or damage. Exemplary markers of clinical improvement will be apparent to persons

skilled in the art. Examples include, but are not limited to, one or more of the following: decreasing the severity and/or frequency one or more symptoms resulting from the disease, diminishing the extent of the disease, stabilizing the disease (e.g., preventing or delaying the worsening of the disease), delay or slowing the progression of the disease, ameliorating the disease state, decreasing the dose of one or more other medications required to treat the disease, and/or increasing the quality of life, etc.

[0071] "Prophylaxis," "prophylactic treatment," "prevention," or "preventive treatment" refers to preventing or reducing the occurrence or severity of one or more symptoms and/or their underlying cause, for example, prevention of a disease or condition in a subject susceptible to developing a disease or condition (e.g., at a higher risk, as a result of genetic predisposition, environmental factors, predisposing diseases or disorders, or the like).

[0072] The present invention provides methods of treating or preventing amyloidosis in a subject. In some embodiments, the methods comprise administering to the subject a composition comprising a therapeutically effective amount of at least one catabolic enzyme or a biologically active fragment thereof. In some embodiments, the methods comprise increasing the expression, activity, and/or concentration of at least one catabolic enzyme in the subject. Increasing the expression, activity, and/or concentration of a given catabolic enzyme may be accomplished at the genomic DNA level, transcriptional level, post-transcriptional level, translational level, and/or post-translational level, including but not limited to, increasing the gene copy number, mRNA transcription rate, mRNA abundance, mRNA stability, protein translation rate, protein stability, protein modification, protein activity, protein complex activity, etc. Increasing the concentration of a given catabolic enzyme may further be accomplished by administering to the subject a composition comprising a therapeutically effective amount of at least one catabolic enzyme or a biologically active fragment thereof. As used herein, the term catabolic enzyme refers not only to the natural form the enzyme, but also any purified, isolated, synthetic, recombinant, and functional variants, fragments, chimeras, and mutants of the natural enzyme.

[0073] In some embodiments, the at least one catabolic enzyme is selected from the non-limiting group consisting of protective protein/cathepsin A (PPCA), neuraminidase 1 (NEU1), tripeptidyl peptidase 1 (TPP1), cathepsin B, cathepsin D, cathepsin E, cathepsin K, and cathepsin L.

[0074] In some embodiments, the at least one catabolic enzyme is PPCA (a.k.a. Protective Protein Cathepsin A, PPGB, Carboxypeptidase C, EC 3.4.16.5, GSL, GLB2, Carboxypeptidase

Y-Like Kininase, NGBE, carboxypeptidase-L, Protective Protein For Beta-Galactosidase (Galactosialidosis), deamidase, Beta-Galactosidase, Lysosomal Carboxypeptidase A, Beta-Galactosidase Protective Protein, Lysosomal Protective Protein, Protective Protein For Beta-Galactosidase, Urinary Kininase, EC 3.4.168, or Carboxypeptidase L) is classified both as a cathepsin and a carboxypeptidase.

[0075] In some embodiments, the at least one catabolic enzyme is PPCA. PPCA is a glycoprotein that associates with the lysosomal enzymes beta-galactosidase and neuraminidase to form a complex of high-molecular-weight multimers. The formation of this complex provides a protective role for stability and activity. It is protective for β -galactosidase and neuraminidase. In some embodiments, the PPCA can be a natural, synthetic, or recombinant protein. In some embodiments, the PPCA polypeptide comprises an amino acid sequence with at least about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity to SEQ ID NO: 2, 43, or 45. In some embodiments, the PPCA polypeptide comprises the amino acid sequence of SEQ ID NO: 2, 43, or 45.

[0076] In some embodiments, the at least one catabolic enzyme is Neuraminidase 1 (NEU1, a.k.a. sialidase 1, lysosomal sialidase, EC 3.2.1.18, Acetylneuramyl Hydrolase, SIAL1, Lysosomal Sialidase, exo-alpha-sialidase, NANH, sialidase-1, or G9 Sialidase) is a lysosomal neuraminidase enzyme. NEU1 is an enzyme that cleaves terminal sialic acid residues from substrates such as glycoproteins and glycolipids. In some embodiments, the NEU1 can be a natural, synthetic, or recombinant protein. In some embodiments, the NEU1 polypeptide comprises an amino acid sequence with at least about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity to SEQ ID NO: 4. In some embodiments, the NEU1 polypeptide comprises the amino acid sequence of SEQ ID NO: 4.

[0077] In some embodiments, the at least one catabolic enzyme is Tripeptidyl peptidase 1 (TPP1, Spinocerebellar Ataxia, Autosomal Recessive 7, CLN2, SCAR7, Growth-Inhibiting Protein 1, Cell Growth-Inhibiting Gene 1 Protein, Lysosomal Pepstatin Insensitive Protease, Tripeptidyl Aminopeptidase, Tripeptidyl-Peptidase 1, LPIC, Lysosomal Pepstatin-Insensitive Protease, or EC 3.4.14.9). TPP1 is an enzyme that cleaves N-terminal tripeptides from substrates and has weaker endopeptidase activity. In some embodiments, the TPP1 can be a natural, synthetic, or recombinant protein. In some embodiments, the TPP1 polypeptide

comprises an amino acid sequence with at least about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity to SEQ ID NO: 6. In some embodiments, the TPP1 polypeptide comprises the amino acid sequence of SEQ ID NO: 6.

[0078] In some embodiments, the at least one catabolic enzyme is Cathepsin B (a.k.a. EC 3.4.22.1, CPSB, Amyloid Precursor Protein Secretase, Cysteine Protease, APPS, APP secretase, or EC 3.4.22). Cathepsin B is a lysosomal cysteine protease composed of a dimer of disulfide-linked heavy and light chains, both produced from a single protein precursor. In some embodiments, the Cathepsin B can be a natural, synthetic, or recombinant protein. In some embodiments, the Cathepsin B polypeptide comprises an amino acid sequence with at least about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity to SEQ ID NO: 8, 47, 49, 51, 53, 55, or 57. In some embodiments, the Cathepsin B polypeptide comprises the amino acid sequence of SEQ ID NO: 8, 47, 49, 51, 53, 55, or 57.

[0079] In some embodiments, the at least one catabolic enzyme is Cathepsin D (a.k.a. EC 3.4.23.5, CTSD). Cathepsin D refers is a lysosomal acid protease active in intracellular protein breakdown. In some embodiments, the Cathepsin D can be a natural, synthetic, or recombinant protein. In some embodiments, the Cathepsin D polypeptide comprises an amino acid sequence with at least about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity to SEQ ID NO: 68. In some embodiments, the Cathepsin D polypeptide comprises the amino acid sequence of SEQ ID NO: 68. In some embodiments, the Cathepsin D polypeptide harbors one or more modifications relative to the amino acid sequence of SEQ ID NO: 68. In certain embodiments, the Cathepsin D polypeptide comprises the amino acid sequence of SEQ ID NO: 68, wherein the polypeptide harbors a modification at an amino acid position selected from position 58 (A to V), position 229 (F to I), position 282 (G to R), and position 383 (W to C).

[0080] In some embodiments, the at least one catabolic enzyme is Cathepsin E (a.k.a. EC 3.4.23.34, CTSE). Cathepsin E is a lysosomal aspartyl protease. In some embodiments, the Cathepsin E can be a natural, synthetic, or recombinant protein. In some embodiments, the Cathepsin E polypeptide comprises an amino acid sequence with at least about 70%, 71%, 72%,

73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity to SEQ ID NO: 69, 70, or 71. In some embodiments, the Cathepsin E polypeptide comprises the amino acid sequence of SEQ ID NO: 69, 70, or 71. In some embodiments, the Cathepsin E polypeptide harbors one or more modifications relative to the amino acid sequence of SEQ ID NO: 69, 70, or 71. In certain embodiments, the Cathepsin E polypeptide comprises the amino acid sequence of SEQ ID NO: 69, wherein the polypeptide harbors a modification at an amino acid position selected from position 82 (I to V) and position 329 (T to I).

[0081] In some embodiments, the at least one catabolic enzyme is Cathepsin K (a.k.a. EC 3.4.22.38, CTSO, Pycnodynatosi, PYCD, Cathepsis O, PKND, Cathepsin X). Cathepsin K is a lysosomal cysteine protease involved in bone remodeling and resorption, defined by its high specificity for kinins. In some embodiments, the Cathepsin K can be a natural, synthetic, or recombinant protein. In some embodiments, the Cathepsin K polypeptide comprises an amino acid sequence with at least about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity to SEQ ID NO: 10. In some embodiments, the Cathepsin K polypeptide comprises the amino acid sequence of SEQ ID NO: 10.

[0082] In some embodiments, the at least one catabolic enzyme is Cathepsin L (a.k.a. MEP, CTSL, EC 3.4.22.15, CATL, Major Excreted Protein). Cathepsin L is a lysosomal endopeptidase enzyme which is involved in the initiation of protein degradation. Its substrates include collagen and elastin, as well as alpha-1 protease inhibitor, a major controlling element of neutrophil elastase activity. In some embodiments, the Cathepsin L can be a natural, synthetic, or recombinant protein. In some embodiments, the Cathepsin L polypeptide comprises an amino acid sequence with at least about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity to SEQ ID NO: 12, 59, 61, 63, 65, or 67. In some embodiments, the Cathepsin L polypeptide comprises the amino acid sequence of SEQ ID NO: 12, 59, 61, 63, 65, or 67.

[0083] In some embodiments, the administration comprises the administration of a nucleotide sequence encoding at least one catabolic enzyme of the present invention.

[0084] As used herein, the terms “polynucleotide”, “polynucleotide sequence”, “nucleic acid sequence”, “nucleic acid fragment”, “nucleotide sequence,” and “isolated nucleic acid fragment”

are used interchangeably herein. These terms encompass nucleotide sequences and the like. A polynucleotide may be a polymer of RNA or DNA that is single- or double-stranded, that optionally contains synthetic, non-natural or altered nucleotide bases. A polynucleotide in the form of a polymer of DNA may be comprised of one or more segments of cDNA, genomic DNA, synthetic DNA, or mixtures thereof. Nucleotides (usually found in their 5'-monophosphate form) are referred to by a single letter designation as follows: "A" for adenylylate or deoxyadenylylate (for RNA or DNA, respectively), "C" for cytidylate or deoxycytidylate, "G" for guanylylate or deoxyguanylylate, "U" for uridylylate, "T" for deoxythymidylate, "R" for purines (A or G), "Y" for pyrimidines (C or T), "K" for G or T, "H" for A or C or T, "I" for inosine, and "N" for any nucleotide.

[0085] As used herein, the term "chimeric" or "recombinant" when describing a nucleic acid sequence or a protein sequence refers to a nucleic acid or a protein sequence that links at least two heterologous polynucleotides or two heterologous polypeptides into a single macromolecule, or that re-arranges one or more elements of at least one natural nucleic acid or protein sequence. For example, the term "recombinant" can refer to an artificial combination of two otherwise separated segments of sequence, e.g., by chemical synthesis or by the manipulation of isolated segments of nucleic acids by genetic engineering techniques.

[0086] As used herein, a "synthetic nucleotide sequence" or "synthetic polynucleotide sequence" is a nucleotide sequence that is not known to occur in nature or that is not naturally occurring. Generally, such a synthetic nucleotide sequence will comprise at least one nucleotide difference when compared to any other naturally occurring nucleotide sequence. It is recognized that a genetic regulatory element of the present invention comprises a synthetic nucleotide sequence. In some embodiments, the synthetic nucleotide sequence shares little or no extended homology to natural sequences. Extended homology in this context generally refers to 100% sequence identity extending beyond about 25 nucleotides of contiguous sequence. A synthetic genetic regulatory element of the present invention comprises a synthetic nucleotide sequence.

[0087] As used herein, an "isolated" or "purified" nucleic acid molecule or polynucleotide, or biologically active portion thereof, is substantially or essentially free from components that normally accompany or interact with the nucleic acid molecule or polynucleotide as found in its naturally occurring environment. Thus, an isolated or purified nucleic acid molecule or polynucleotide is substantially free of other cellular material or culture medium when produced

by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized.

[0088] In some embodiments, the methods comprise administering to the subject a composition comprising an expression vector (interchangeably referred to herein as a vector), wherein the vector comprises a polynucleotide sequence encoding at least one catabolic enzyme. In some embodiments, the methods comprise administering to the subject a composition comprising at least one expression vector comprising an expression cassette of coding genes.

[0089] In some embodiments, the expression vector is a viral vector. Accordingly, in the some embodiments, the methods of the present invention comprise administering to the subject a composition comprising at least one viral vector comprising a polynucleotide sequence encoding at least one catabolic enzyme. In some embodiments, the expression cassette, the expression vector, or the viral vector further comprises one or more nucleotide sequences encoding a signal peptide. In some embodiments, the signal peptide is an intralysosomal localization peptide.

[0090] A nucleotide sequence encoding at least one catabolic enzyme can be delivered to a subject through any suitable delivery system, such as those described by Rolland (Pharmaceutical Gene Delivery Systems, ISBN: 978-0-8247-4235-5, 2003), which is incorporated by reference in its entirety. In some embodiments, the delivery system is a viral system, a physical system, and/or a chemical system.

[0091] In some embodiments, the delivery system to deliver a nucleotide sequence encoding at least one catabolic enzyme is a viral system. In some embodiments, an adenovirus vector is used (see, Thrasher et al., Gene therapy: X-SCID transgene leukaemogenicity. *Nature*. 2006; 443(7109): E5–E6; Zhang et al., Adenoviral and adeno-associated viral vectors-mediated neuronal gene transfer to cardiovascular control regions of the rat brain. *Int J Med Sci*. 2013; 10(5): 607-616.). In some embodiments, an adeno-associated vector is used (see, Teramato et al., Crisis of adenoviruses in human gene therapy. *Lancet*. 2000; 355(9218): 1911–1912, Okada et al., Gene transfer targeting mouse vestibule using adenovirus and adeno-associated virus vectors. *Otol Neurotol*. 2012; 33(4): 655-659.). In some embodiments, a retroviral vector is used (see, Anson et al., The use of retroviral vectors for gene therapy-what are the risks? A review of retroviral pathogenesis and its relevance to retroviral vector-mediated gene delivery. *Genet Vaccines Ther*. 2004; 2(1): 9.; Frederic D. Retroviral integration and human gene therapy. *J Clin Invest*. 2007; 117(8): 2083-2086.). In some embodiments, a lentivirus vector is used (see, Goss et al., Antinociceptive effect of a genomic herpes simplex virus-based vector expressing human

proenkephalin in rat dorsal root ganglion. *Gene Ther.* 2001; 8(7): 551-556.; Real et al., Improvement of lentiviral transfer vectors using cis-acting regulatory elements for increased gene expression. *Appl Microbiol Biotechnol.* 2011; 91(6): 1581-91.). In some embodiments, a herpes simplex virus vector is used (see, Lachmann RH, Efstatouli S. The use of herpes simplex virus-based vectors for gene delivery to the nervous system. *Mol Med Today.* 1997; 3(9): 404-411; Liu S, Dai M, You L, Zhao Y. Advance in herpes simplex viruses for cancer therapy. *Sci China Life Sci.* 2013; 56(4): 298-305.). In some embodiments, a poxvirus vector is used (see, Moss B. Reflections on the early development of poxvirus vectors. *Vaccine.* 2013; 31(39): 4220-4222.). Each of the references is incorporated herein by reference in its entirety.

[0092] In some embodiments, the delivery system to deliver a nucleotide sequence encoding at least one catabolic enzyme of the invention is a physical system. In some embodiments, the physical systems include, but are not limited to jet injection, biolistics, electroporation, hydrodynamic injection, and ultrasound (see, Sirsi et al., Advances in ultrasound mediated gene therapy using microbubble contrast agents. *Theranostics.* 2012; 2(12): 1208-1222.; Naldini et al., In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. *Science.* 1996; 272(5259): 263-267; Panje et al., Ultrasound-mediated gene delivery with cationic versus neutral microbubbles: Effect of DNA and microbubble dose on in vivo transfection efficiency. *Theranostics.* 2012; 2(11): 1078-1091; Gao et al., Cationic liposome-mediated gene transfer. *Gene Ther.* 1995; 2(10): 710-722; Orio et al., Electric field orientation for gene delivery using high-voltage and low-voltage pulses. *J Membr Biol.* 2012; 245(10): 661-666.) Each of the references is incorporated herein by reference in its entirety.

[0093] In some embodiments, the delivery system to deliver a nucleotide sequence encoding at least one catabolic enzyme of the invention is a chemical system. The chemical systems include, but are not limited to calcium phosphate precipitation, liposomes and polymeric carriers.

[0094] In some embodiments, the chemical system is based on calcium phosphate precipitation, such as calcium phosphate nano-composite particles encapsulating DNA (see, Nouri et al. Calcium phosphate-mediated gene delivery using simulated body fluid (SBF). *Int J Pharm.* 2012; 434(1-2): 199-208; Bhakta et al. Magnesium phosphate nanoparticles can be efficiently used in vitro and in vivo as non-viral vectors for targeted gene delivery. *J Biomed Nanotechnol.* 2009; 5(1): 106-114).

[0095] In some embodiments, the chemical system to deliver a nucleotide sequence encoding at least one catabolic enzyme of the invention is based on liposomes. In some embodiments, the

liposomes are nano-sized. In some embodiments, liposomes conjugated with polyethylene glycol (PEG) and/or other molecules such as ligands and peptides can be used (see, Yang et al. Cationic nucleolipids as efficient siRNA carriers. *Org Biomol Chem.* 2011; 1(9): 291-296.).

[0096] In some embodiments, the chemical system to deliver a nucleotide sequence encoding at least one catabolic enzyme of the invention is based on polymeric carriers. In some embodiments, the polymeric carriers are conjugated to the gene to be delivered. In some embodiments, the polymeric carriers include, but are not limited to chitosan, polyethylenimine (PEI), polylysine, polyarginine, polyamino ester, Polyamidoamine Dendrimers (PAMAM), Poly (lactide-co-glycolide), and PLL, such as those described in Choi et al., Enhanced transfection efficiency of PAMAM dendrimer by surface modification with l-arginine. *J Control Release.* 2004; 3(99): 445-456; Pfeifer et al., Poly(ester-anhydride):poly(beta-amino ester) micro- and nanospheres: DNA encapsulation and cellular transfection. *Int J Pharm.* 2005; 304(1-2): 210-219; Anderson et al., Structure/property studies of polymeric gene delivery using a library of poly(beta-amino esters). *Mol Ther.* 2005; 3(11): 426-434; Hwang et al., Effects of structure of beta-cyclodextrin-containing polymers on gene delivery. *Bioconjugate Chem.* 2001; 2(12): 280-290; Kean et al., Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. *J Control Release.* 2005; 3(103): 643-653.

[0097] In some embodiments, administration of a catabolic enzyme comprises the administration of at least one catabolic enzyme polypeptide or fragment thereof of the present invention. As used herein, the terms “polypeptide” and “protein” are used interchangeably herein.

[0098] The invention also envisions and encompasses the use of functional variants or fragments of the intralysosomal catabolic enzyme described herein. As used herein, the phrase “a biologically active variant” or “functional variant” with respect to a protein refers to an amino acid sequence that is altered by one or more amino acids with respect to a reference sequence, while still maintains substantial biological activity of the reference sequence. The variant can have “conservative” changes, wherein a substituted amino acid has similar structural or chemical properties, e.g., replacement of leucine with isoleucine. The following table shows exemplary conservative amino acid substitutions.

Original Residue	Very Highly - Conserved Substitutions	Highly Conserved Substitutions (from the Blosum90 Matrix)	Conserved Substitutions (from the Blosum65 Matrix)
Ala	Ser	Gly, Ser, Thr	Cys, Gly, Ser, Thr, Val
Arg	Lys	Gln, His, Lys	Asn, Gln, Glu, His, Lys
Asn	Gln; His	Asp, Gln, His, Lys, Ser, Thr	Arg, Asp, Gln, Glu, His, Lys, Ser, Thr
Asp	Glu	Asn, Glu	Asn, Gln, Glu, Ser
Cys	Ser	None	Ala
Gln	Asn	Arg, Asn, Glu, His, Lys, Met	Arg, Asn, Asp, Glu, His, Lys, Met, Ser
Glu	Asp	Asp, Gln, Lys	Arg, Asn, Asp, Gln, His, Lys, Ser
Gly	Pro	Ala	Ala, Ser
His	Asn; Gln	Arg, Asn, Gln, Tyr	Arg, Asn, Gln, Glu, Tyr
Ile	Leu; Val	Leu, Met, Val	Leu, Met, Phe, Val
Leu	Ile; Val	Ile, Met, Phe, Val	Ile, Met, Phe, Val
Lys	Arg; Gln; Glu	Arg, Asn, Gln, Glu	Arg, Asn, Gln, Glu, Ser,
Met	Leu; Ile	Gln, Ile, Leu, Val	Gln, Ile, Leu, Phe, Val
Phe	Met; Leu; Tyr	Leu, Trp, Tyr	Ile, Leu, Met, Trp, Tyr
Ser	Thr	Ala, Asn, Thr	Ala, Asn, Asp, Gln, Glu, Gly, Lys, Thr
Thr	Ser	Ala, Asn, Ser	Ala, Asn, Ser, Val
Trp	Tyr	Phe, Tyr	Phe, Tyr
Tyr	Trp; Phe	His, Phe, Trp	His, Phe, Trp
Val	Ile; Leu	Ile, Leu, Met	Ala, Ile, Leu, Met, Thr

[0099] Alternatively, a variant can have “nonconservative” changes, e.g., replacement of a glycine with a tryptophan. Analogous minor variations can also include amino acid deletion or insertion, or both. Guidance in determining which amino acid residues can be substituted, inserted, or deleted without eliminating biological or immunological activity can be found using computer programs well known in the art, for example, DNASTAR software. For polynucleotides, a variant comprises a polynucleotide having deletions (i.e., truncations) at the 5' and/or 3' end; deletion and/or addition of one or more nucleotides at one or more internal sites in the reference polynucleotide; and/or substitution of one or more nucleotides at one or more sites in the reference polynucleotide. As used herein, a “reference” polynucleotide comprises a nucleotide sequence produced by the methods disclosed herein. Variant polynucleotides also include synthetically derived polynucleotides, such as those generated, for example, by using site directed mutagenesis but which still comprise genetic regulatory element activity. Generally,

variants of a particular polynucleotide or nucleic acid molecule, or polypeptide of the invention will have at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 91.5%, 92%, 92.5%, 93%, 93.5%, 94%, 94.5%, 95%, 95.5%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9% or more sequence identity to that particular polynucleotide/polypeptides as determined by sequence alignment programs and parameters as described elsewhere herein.

[0100] In some embodiments, a gene that can hybridize with the nucleic acid sequences encoding the catabolic enzymes of the present invention under stringent hybridization conditions can be used. The terms “stringency” or “stringent hybridization conditions” refer to hybridization conditions that affect the stability of hybrids, e.g., temperature, salt concentration, pH, formamide concentration and the like. These conditions are empirically optimized to maximize specific binding and minimize non-specific binding of primer or probe to its target nucleic acid sequence. The terms as used include reference to conditions under which a probe or primer will hybridize to its target sequence, to a detectably greater degree than other sequences (e.g. at least 2-fold over background). Stringent conditions are sequence dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. Generally, stringent conditions are selected to be about 5° C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of a complementary target sequence hybridizes to a perfectly matched probe or primer. Typically, stringent conditions will be those in which the salt concentration is less than about 1.0 M Na⁺ ion, typically about 0.01 to 1.0 M Na⁺ ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C for short probes or primers (e.g. 10 to 50 nucleotides) and at least about 60° C for long probes or primers (e.g. greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. Exemplary low stringent conditions or “conditions of reduced stringency” include hybridization with a buffer solution of 30% formamide, 1 M NaCl, 1% SDS at 37° C and a wash in 2×SSC at 40° C. Exemplary high stringency conditions include hybridization in 50% formamide, 1M NaCl, 1% SDS at 37° C, and a wash in 0.1×SSC at 60° C. Hybridization procedures are well known in the art and are described by e.g. Ausubel et al., 1998 and Sambrook et al., 2001. In some embodiments, stringent conditions are hybridization in 0.25 M Na₂HPO₄ buffer (pH 7.2) containing 1 mM Na₂EDTA, 0.5-20% sodium dodecyl sulfate at 45°C, such as 0.5%, 1%, 2%,

3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19% or 20%, followed by a wash in 5×SSC, containing 0.1% (w/v) sodium dodecyl sulfate, at 55°C to 65°C.

[0101] The definition of each catabolic enzyme includes sequences having high similarity or identity to the nucleic acid sequences and/or polypeptide sequences of the specific catabolic enzymes mentioned herein. As used herein, "sequence identity" or "identity" in the context of two nucleic acid or polypeptide sequences includes reference to the residues in the two sequences which are the same when aligned for maximum correspondence over a specified comparison window. When percentage of sequence identity is used in reference to proteins it is recognized that residue positions which are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties of the molecule. Where sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Sequences which differ by such conservative substitutions are said to have "sequence similarity" or "similarity." Means for making this adjustment are well-known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The scoring of conservative substitutions is calculated, e.g., according to the algorithm of Meyers and Miller, Computer Applic. Biol. Sci., 4:11-17 (1988).

[0102] The invention also includes biologically active fragments of the catabolic enzymes described herein. These biologically active fragments may comprise at least 10, 20, 50, 100, 150, 200, 250, 300, 350, 400, 450, or more amino acid residues and retain one or more activities associated with the catabolic enzymes described herein. Such fragments may be obtained by deletion mutation, by recombinant techniques that are routine and well-known in the art, or by enzymatic digestion of the catabolic enzyme(s) of interest using any of a number of well-known proteolytic enzymes. The invention further includes nucleic acid molecules which encode the above described variant enzymes and enzyme fragments.

[0103] In some embodiments, the methods comprise administering to the subject a composition comprising a therapeutically effective amount or prophylactically effective amount

of at least one catabolic enzyme. The term “therapeutically effective amount” as used herein, refers to the level or amount of one or more catabolic enzymes needed to treat amyloidosis, or reduce or prevent injury or damage, optionally without causing significant negative or adverse side effects. A “prophylactically effective amount” refers to an amount of a catabolic enzyme sufficient to prevent or reduce severity of a future disease or condition associated with amyloidosis when administered to a subject who is susceptible and/or who may develop amyloidosis or a condition associated with amyloidosis.

[0104] In some embodiments, instead of or in addition to administering a polynucleotide sequence encoding a catabolic enzyme of the present invention, the methods comprise administering a composition comprising a polypeptide comprising a catabolic enzyme of the present invention or a biologically active fragment thereof directly to the subject in need.

[0105] In some embodiments, the catabolic enzyme is targeted to the intralysosomal space. In some embodiments, the catabolic enzyme to be administered comprises one or more signals which help with sorting the polypeptide to lysosome. In some embodiments, the signal can be a lysosomal localization signal polypeptide, a monosaccharide (including derivatives), a polysaccharide, or combinations thereof.

[0106] In some embodiments, the signal is mannose-6 phosphate. A catabolic enzyme comprising a mannose-6 phosphate can be targeted to lysosomes with the help of a mannose-6 phosphate receptor.

[0107] In some embodiments, the signal is not dependent on mannose-6 phosphate. In some embodiments, the signal is a signal peptide. In some embodiments, the signal peptide is located at the N-terminal, the C-terminal, or elsewhere in the intralysosomal catabolic enzyme to be administered. In some embodiments, the signal peptides include, but are not limited to the DXXLL type (SEQ ID NO: 13), [DE]XXXL[LI] type (SEQ ID NO: 14), and YXXO type (SEQ ID NO: 15). See Bonifacino et al., Signals for sorting of transmembrane proteins to endosomes and lysosomes, *Annu. Rev. Biochem.* 72 (2003) 395–447; and Brualke et al. (Sorting of lysosomal proteins, *Biochimica et Biophysica Acta* 1793 (2009) 605–614), each of which is incorporated by reference in its entirety.

[0108] In some embodiments, the signal peptides belong to the DXXLL type, such as those identified in MPR300/CI-MPR (SFHDDSD~~E~~LL, SEQ ID NO: 16), MPR46/CD-MPR (EESEER~~D~~DHLL, SEQ ID NO: 17), Sortilin (GYHDDSD~~E~~LL, SEQ ID NO: 18), SorLA/SORL1 (ITGFSDDVPMV, SEQ ID NO: 19), GGA1 (1) (ASVSL~~L~~DEL~~M~~, SEQ ID

NO: 20), GGA1 (2) (ASSGLDDLDLL, SEQ ID NO: 21), GGA2 (VQNPSADRNLL, SEQ ID NO: 22), and GGA3 (NALSWLDEELL, SEQ ID NO: 23).

[0109] In some embodiments, the signal peptides belong to the [DE]XXXL[LI] type, such as those identified in LIMP-II (DERAPLI, SEQ ID NO: 24), NPC1 (TERERLL, SEQ ID NO: 25), Mucolipin-1 (SETERLL, SEQ ID NO: 26), Sialin (TDRTPLL, SEQ ID NO: 27), GLUT8 (EETQPLL, SEQ ID NO: 28), Invariant chain (Ii) (1) (DDQRDLI, SEQ ID NO: 29), and Invariant chain (Ii) (2) (NEQLPML, SEQ ID NO: 30).

[0110] In some embodiments, the signal peptides belong to the YXXO type, such as those identified in LAMP-1 (GYQTI, SEQ ID NO: 31), LAMP-2A (GYEQF, SEQ ID NO: 32), LAMP-2B (GYQTL, SEQ ID NO: 33), LAMP-2C (GYQSV, SEQ ID NO: 34), CD63 (GYEVM, SEQ ID NO: 35), CD68 (AYQAL, SEQ ID NO: 36), Endolyn (NYHTL, SEQ ID NO: 37), DC-LAMP (GYQRI, SEQ ID NO: 38), Cystinosin (GYDQL, SEQ ID NO: 39), Sugar phosphate exchanger 2 (GYKEI, SEQ ID NO: 40), and acid phosphatase (GYRHV, SEQ ID NO: 41).

[0111] In some embodiments, the catabolic enzyme is targeted to remain outside the cell, *i.e.*, the enzyme is modified to act extracellularly. In some embodiments, the catabolic enzyme to be administered lacks one or more signals that would otherwise target the polypeptide to the lysosome. In some embodiments, the catabolic enzyme lacks one or more mannose-6 phosphate (*i.e.*, M6P) signals, thereby precluding entry of the catabolic enzyme into the cell. In some embodiments, the catabolic enzyme is recombinantly engineered to lack one or more mannose-6 phosphate signal. Not bound by any theory, it is generally understood in the art that reduced M6P content lowers the binding affinity of a recombinant enzyme for M6P receptors and decreases its cellular uptake and thereby allows the enzyme to remain outside the cell.

[0112] Methods for reducing the M6P content of a recombinant protein, *e.g.*, a catabolic enzyme, are known in the art. *See, e.g.*, US Patent No. 8,354,105, which is herein incorporated by reference in its entirety. In some embodiments, the mannose content of a recombinant catabolic enzyme may be reduced by manipulating the cell culture conditions such that the glycoprotein produced by the cell has low-mannose content. As used herein, the term “low-mannose content” refers to catabolic enzyme composition wherein less than about 20%, less than about 15%, less than about 10%, less than about 8%, less than about 5%, less than about 4%, less than about 3%, less than about 2%, less than about 1%, or any values between any of

these preceding ranges, or even at 0% of the enzymes in the composition have more than 4 mannose residues (i.e., are species of M5 or greater).

[0113] In some embodiments, the present invention provides a composition comprising at least two catabolic enzymes, wherein the composition comprises at least one catabolic enzyme that is targeted to the cell lysosome and at least one catabolic enzyme that remains outside the cell. In some embodiments, the catabolic enzymes are selected from protective protein/cathepsin A (PPCA), neuraminidase 1 (NEU1), tripeptidyl peptidase 1 (TPP1), cathepsin B, cathepsin D, cathepsin E, cathepsin K, and cathepsin L. In an exemplary embodiment, the present invention provides a composition comprising at least two catabolic enzymes, wherein the composition comprises a PPCA catabolic enzyme that is targeted to the cell lysosome and a PPCA catabolic enzyme that remains outside the cell. In some embodiments, the ratio of the intralysosomal catabolic enzyme to the extracellular catabolic enzyme on a percentage basis within the composition is at least 5%:95%. In further embodiments, the ratio of the intralysosomal catabolic enzyme to the extracellular catabolic enzyme on a percentage basis within the composition is at least 10%:90%, at least 15%:85%, at least 20%:80%, at least 25%:75%, at least 30%:70%, at least 35%:65%, at least 40%:60%, at least 45%:55%, at least 50%:50%, at least 55%:45%, at least 60%:40%, at least 65%:35%, at least 70%:30%, at least 75%:25%, at least 80%:20%, at least 85%:15%, at least 90%:10%, or at least 95%:5%.

[0114] In some embodiments, the methods of the present invention comprise administering to the subject a composition comprising a therapeutically effective amount of at least two, three, or more catabolic enzymes. In some embodiments, the methods comprise increasing the expression, activity, and/or concentration of at least two, three, or more catabolic enzymes in the subject. In some embodiments, the methods comprise administering to the subject a composition comprising an expression cassette comprising one or more polynucleotide sequences encoding at least two, three, or more catabolic enzymes. In some embodiments, the methods comprise administering to the subject one or more expression cassettes comprising at least two, three or more polynucleotide sequences encoding at least two, three or more catabolic enzymes. In some embodiments, the methods comprise administering to the subject a therapeutically effective amount of a first catabolic enzyme, and an expression cassette comprising a polynucleotide sequence encoding a second catabolic enzyme. In some embodiments, two or more catabolic enzymes are selected from the group consisting of protective protein/cathepsin A (PPCA), neuraminidase 1 (NEU1), tripeptidyl peptidase 1

(TPP1), cathepsin B, cathepsin D, cathepsin E, cathepsin K, and cathepsin L. In some embodiments, at least two catabolic enzymes are PPCA and NEU1.

[0115] In some embodiments, administration of the at least one catabolic enzyme is employed to prevent the formation of amyloid. In other embodiments, administration of the at least one catabolic enzyme is employed to degrade amyloid that has already formed. In some embodiments, administration of the at least one catabolic enzyme is employed to prevent the formation of one or more amyloid oligomers. In some embodiments, administration of the at least one catabolic enzyme is employed to prevent the formation of one or more amyloid fibrils. In some embodiments, administration of the at least one catabolic enzyme is employed to degrade one or more amyloid oligomers after it has already formed. In some embodiments, administration of the at least one catabolic enzyme is employed to degrade one or more amyloid fibrils after it has already formed.

[0116] In some embodiments, the methods of the present invention provided herein further comprise administering a composition (e.g. a pharmaceutical composition) comprising at least one catabolic enzyme or fragment thereof with at least one additional drug for treating or preventing amyloidosis.

[0117] In some embodiments, the at least one additional drug is a steroid. In some embodiments, the steroid is dexamethasone, cortisone, hydrocortisone, methylprednisolone, prednisolone, prednisone, triamcinolone or any combination thereof.

[0118] In some embodiments, the at least one additional drug is a non-steroid agent. In some embodiments, such non-steroid agent is diclofenac, flufenamic acid, flurbiprofen, diflunisal, detopprofen, diclofenac, etodolac, fenoprofen, ibuprofen, indomethacin, ketoprofen, meclofenamate, mefenamic acid, meloxicam, nabumeone, naproxen sodium, oxaprozin, piroxicam, sulindac, tolmetin, celecoxib, rofecoxib, aspirin, choline salicylate, salsalate, and sodium and magnesium salicylate or any combination thereof.

[0119] In some embodiments, the at least one additional drug is a chemotherapy agent. In some embodiments, the chemotherapy agent is selected from the group consisting of cyclophosphamide (e.g., Cytoxan, Neosar) and melphalan (e.g., Alkeran).

[0120] In some embodiments, at least one additional drug is an anti-inflammatory medication, when the subject has inflammatory symptoms.

[0121] In some embodiments, the at least one additional drug is an antibiotic, when the subject has infection symptoms. In some embodiments, the infection is a chromic infection. In some embodiments, the infection is a microbial infection.

[0122] In some embodiments, the at least one additional drug is a Carbonic Anhydrase (CA) enzyme (e.g., CA-I, CA-II, CA-III, CA-IV, CA-V, CA-VI, and CA-VII) and/or agents that can increase the activity of a Carbonic Anhydrase enzyme in the subject.

[0123] In some embodiments, at least one additional drug is a disease modifying antirheumatic drug (DMARD). In some embodiments, the DMARD is cyclosporine, azathioprine, methotrexate, leflunomide, cyclophosphamide, hydroxychloroquine, sulfasalazine, D-penicillamine, minocycline, gold, or any combination thereof.

[0124] In some embodiments, the at least one additional drug is a recombinant protein. In some embodiments, the recombinant protein is ENBREL® (etanercept, a soluble TNF receptor) or REMICADE® (infliximab, a chimeric monoclonal anti-TNF antibody).

[0125] In some embodiments, the one or more additional drugs is/are selected from melphalan, dexamethasone, bortezomib, lenalidomide, vincristine, doxorubicin, cyclophosphamide and pomalidomide.

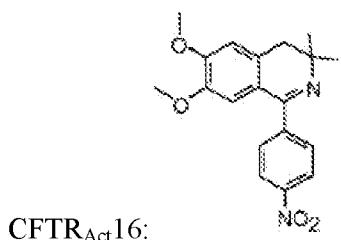
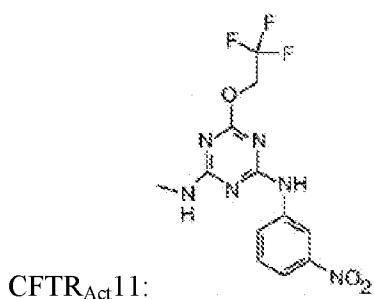
[0126] In some embodiments, the methods of the present invention further comprise the administration of one or more drugs that acidifies the lysosome. As used herein, drugs that acidify the lysosome are drugs capable of lowering the lysosomal pH of a target cell. Accordingly, in some embodiments, the present invention provides a method of treating or preventing amyloidosis in a subject comprising administering to the subject a composition comprising a therapeutically effective amount of at least one catabolic enzyme or a biologically active fragment thereof, wherein the subject is also administered one or more drugs that acidifies the lysosome. As described herein, when performing a combination therapy, the two or more drugs (e.g., a catabolic enzyme or a biologically active fragment thereof and a drug that acidifies the lysosome) can be administered simultaneously or sequentially in any order.

[0127] In some embodiments, the drug that acidifies the lysosome is selected from an acidic nanoparticle, a catecholamine, a β -adrenergic receptor agonist, an adenosine receptor agonist, a dopamine receptor agonist, an activator of the cystic fibrosis transmembrane conductance regulator (CFTR), cyclic adenosine monophosphate (cAMP), a cAMP analog, and an inhibitor of glycogen synthase kinase-3 (GSK-3).

[0128] In some embodiments, the drug that acidifies the lysosome is an acidic nanoparticle. Acidic nanoparticles have been shown to localize to lysosomes and reduce lysosomal pH. See Baltazar *et al.*, 2012, *PLoS ONE* 7(12): e49635 and Lee *et al.*, 2015, *Cell Rep.* 12(9): 1430-44, both of which are herein incorporated by reference in their entireties. In some embodiments, the acidic nanoparticle is a polymeric acidic nanoparticle. In some embodiments, the polymeric acidic nanoparticle is a poly (DL-lactide-co-glycolide) (PLGA) acidic nanoparticle. In a specific embodiment, the PLGA acidic nanoparticle comprises PLGA Resomer RG 503 H. In some embodiments, the PLGA acidic nanoparticle comprises PLGA Resomer RG 502 H. In other embodiments, the polymeric acidic nanoparticle is a poly (DL-lactide) (PLA) acidic nanoparticle. In a specific embodiment, the PLA acidic nanoparticle comprises PLA Resomer R 203 S. In some embodiments, the acid number of the acidic nanoparticle is between about 0.5 mg KOH/g to about 8 mg KOH/g. In some embodiments, the acid number of the acidic nanoparticle is between about 1 mg KOH/g to about 6 mg KOH/g. In some embodiments, the acid number of the acidic nanoparticle is selected from about 1 mg KOH/g, about 2 mg KOH/g, about 3 mg KOH/g, about 4 mg KOH/g, about 5 mg KOH/g, or about 6 mg KOH/g. In a specific embodiment, the acid number of the acidic nanoparticle is about 3 mg KOH/g. In some embodiments, the nanoparticle size is about 50 nm to about 800 nm. In some embodiments, the nanoparticle size is about 100 nm to about 600 nm. In a specific embodiment, the nanoparticle size is about 350 nm to about 550 nm. In a further specific embodiment, the nanoparticle size is about 375 nm to about 400 nm. In an exemplary embodiment, the acidic nanoparticle is spherical. In some embodiments, the nanoparticles are targeting a specific transport process in the brain, which enhance drug transport through the blood-brain barrier (BBB). In some embodiments, such transport processes include, but are not limited to: (1) nanoparticles open TJs between endothelial cells or induce local toxic effect which leads to a localized permeabilization of the BBB allowing the penetration of the drug in a free form or conjugated with the nanoparticles; (2) nanoparticles pass through endothelial cell by transcytosis; (3) nanoparticles are transported through endothelial cells by endocytosis, where the content is released into the cell cytoplasm and then exocytosed in the endothelium abluminal side; and (4) a combination of several of the mechanisms. In some embodiments, the receptors targeted by nanoparticles are transferrin and low-density lipo-protein receptors. In some embodiments, the targeting can be achieved by peptides, proteins, or antibodies, which can be physically and/or chemically immobilized on the nanoparticles. In some embodiments, the nanoparticles are coated with one

or more apolipoproteins, such as apolipoprotein AII, B, CII, E, and/or J (see, Kreuter et al., (2002, DOI: 10.1080/10611860290031877). For more nanoparticle-mediated brain drug delivery compositions and methods, see Saraiva et al. (Journal of Controlled Release, 2016, 235:34-37). Each of the references mentioned herein is incorporated by reference in its entirety.

[0129] In some embodiments, the drug that acidifies the lysosome is a catecholamine. Catecholamines have been shown to reduce lysosomal pH. See Liu et al., 2008, *Invest Ophthalmol Vis Sci.* 49(2): 772-780, which is herein incorporated by reference in its entirety. In some embodiments, the catecholamine is selected from epinephrine, metanephrine, synephrine, norepinephrine, normetanephrine, octopamine or norphenephrine, dopamine, and dopa. In exemplary embodiment, the catecholamine is selected from epinephrine, norepinephrine, and dopamine.



[0130] In some embodiments, the drug that acidifies the lysosome is a β -adrenergic receptor agonist. β -adrenergic receptor agonists have been shown to reduce lysosomal pH. See Liu et al., 2008, *Invest Ophthalmol Vis Sci.* 49(2): 772-780. Examples of β -adrenergic receptor agonists may be found in US Patent Publication No. 2012/0329879, which is herein incorporated by reference in its entirety. In some embodiments, the β -adrenergic receptor agonist is selected from isoproterenol, metaproterenol, formoterol, salmeterol, salbutamol, albuterol, terbutaline, fenoterol, and vilanterol. In an exemplary embodiment, the β -adrenergic receptor agonist is isoproterenol.

[0131] In some embodiments, the drug that acidifies the lysosome is an adenosine receptor agonist. Adenosine receptor agonists have been shown to reduce lysosomal pH. See Liu et al., 2008, *Invest Ophthalmol Vis Sci.* 49(2): 772-780. In an exemplary embodiment, the adenosine receptor agonist is a non-specific adenosine receptor agonist or an A_{2A} adenosine receptor agonist. Examples of A_{2A} adenosine receptor agonists may be found in US Patent Publication No. 2012/0130481, which is herein incorporated by reference in its entirety. In some embodiments, the adenosine receptor agonist is selected from 5'-N-ethylcarboxamidoadenosine (NECA), CGS21680, 2-phenylaminoadenosine, 2-[para-(2carboxyethyl)phenyl]amino-5'N-ethylcarboxamidoadenosine, SRA-082, 5'-N-cyclopropylcarboxamidoadenosine, 5'N-methylcarboxamidoadenosine and PD-125944.

[0132] In some embodiments, the drug that acidifies the lysosome is a dopamine receptor agonist. Dopamine receptor agonists have been shown to reduce lysosomal pH. See Guha et al., 2014, *Adv Exp Med Biol.* 801: 105-111, which is herein incorporated by reference in its entirety.

In some embodiments, the dopamine receptor agonist is selected from A68930, A77636, A86929, SKF81297, SKF82958, SKF38393, SKF89145, SKF89626, dihydrexidine, dinapsoline, dinoxyline, doxanthrine, fenoldopam, 6-Br-APB, stepholidine, CY-208243, 7,8-Dihydroxy-5-phenyl-octahydrobenzo[*h*]isoquinoline, cabergoline, and pergolide. In an exemplary embodiment, the dopamine receptor agonist is selected from A68930, A77636, and SKF81297. In a further exemplary embodiment, the dopamine receptor agonist is SKF81297, also known as 6-chloro-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-7,8-diol.

[0133] In some embodiments, the drug that acidifies the lysosome is an activator of the cystic fibrosis transmembrane conductance regulator (CFTR). Activators of CFTR have been shown to reduce lysosomal pH. *See* Liu *et al.*, 2012, *Am J Physiol Cell Physiol* 303: C160-9, which is herein incorporated by reference in its entirety. In some embodiments, the CFTR activator is selected from CFTR_{Act}01 to CFTR_{Act}17. *See* Ma *et al.*, *J Biol Chem* 277: 37235-37241. In an exemplary embodiment, the CFTR activator is selected from CFTR_{Act}11 and CFTR_{Act}16, having the following structures:

In some embodiments, the CFTR activator is co-administered with forskolin.

[0134] In some embodiments, the drug that acidifies the lysosome is cAMP or a cAMP analog. cAMP and/or cAMP analogs have been shown to reduce lysosomal pH. *See* Liu *et al.*, 2008, *Invest Ophthalmol Vis Sci* 49(2): 772-780. For instance, the cell-permeable analogs

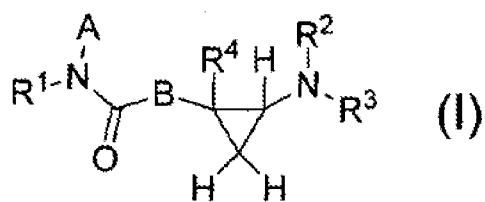
chlorophenylthio-cAMP (cpt-cAMP) and 8-bromo-cAMP have the ability to lower lysosomal pH in cells. In some embodiments, cAMP and/or a cAMP analog may be administered in a cocktail comprising 3-isobutyl-1-methylxanthine (IBMX) and forskolin. For example, in one embodiment, a cocktail comprising IBMX, forskolin, and cpt-cAMP may be administered to acidify the lysosome. In some embodiments, the cAMP analog is selected from 9-pCPT-2-O-Me-cAMP, Rp-cAMPS, 8-Cl-cAMP, Dibutyryl cAMP, pCPT-cAMP, N6-monobutyryladenosine 3',5'-cyclic monophosphate, and PDE inhibitors.

[0135] In some embodiments, the drug that acidifies the lysosome is an inhibitor of glycogen synthase kinase-3 (GSK-3). GSK-3 inhibitors have been shown to be effective in reducing the lysosomal pH. See Avrahami *et al.*, 2013, *Commun Integr Biol* 6(5): e25179, which is herein incorporated by reference in its entirety. For instance, the competitive GSK-3 inhibitor, L803-mts, has been shown to facilitate acidification of the lysosome by inhibiting GSK-3 activity, which acts to impair lysosomal acidification. Accordingly, in one embodiment, the inhibitor of GSK-3 is the cell permeable peptide, L803-mts (SEQ ID NO: 72). Suitable GSK-3 inhibitors may be found in US Patent Publication Nos. 2013/0303441 and 2015/0004255, which are herein incorporated by reference in their entireties. In some embodiments, the GSK-3 inhibitor is selected from 2'Z,3'E)-6-bromoindirubin-3'-acetoxime, TDZD-8 (4-Benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione), SB216763 (3-(2,4-Dichlorophenyl)-4-(1-methyl-1H-indol-3-yl), NP-103, 2-Thio(3-iodobenzyl)-5-(1-pyridyl)-[1,3,4]-oxadiazole, L803, L803-mts, and GF-109203X (2-[1-(3-Dimethylaminopropyl)indol-3-yl]-3-(indol-3-yl)maleimide) and pharmaceutically acceptable salts and mixtures thereof.

[0136] In some embodiments, the methods of the present invention further comprise the administration of one or more drugs that promotes autophagy. As used herein, drugs that promote autophagy can promote the intracellular degradation system that delivers cytoplasmic constituents to the lysosome. Accordingly, in some embodiments, the present invention provides a method of treating or preventing amyloidosis in a subject comprising administering to the subject a composition comprising a therapeutically effective amount of at least one catabolic enzyme or a biologically active fragment thereof, and one or more drugs that promotes autophagy. In some embodiments, the present invention provides a method of treating or preventing amyloidosis in a subject comprising administering to the subject a composition comprising a therapeutically effective amount of at least one catabolic enzyme or a biologically active fragment thereof, wherein the subject is also administered one or more drugs that acidifies

the lysosome and/or endosome, and one or more drugs that promotes autophagy. In some embodiments, the drug that acidifies the lysosome and/or endosome, and the drug that promotes autophagy can be the same drug, or different drugs. As described herein, when performing a combination therapy, the drugs (e.g., a catabolic enzyme or a biologically active fragment thereof, a drug that acidifies the lysosome and/or endosome, and/or a drug that promotes autophagy) can be administered simultaneously or sequentially in any order. Without wishing to be bound by any particular theory, a treatment of therapeutic catabolic enzyme or a biologically active fragment thereof with an agent that can cause lysosome and/or endosome acidification and/or an agent that can promote autophagy is capable of lowering pH to optimal conditions for enzymatic proteolysis, and improving lysosomal proteolysis power.

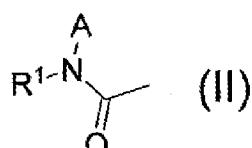
[0137] In some embodiments, autophagy promoting reagents include, but are not limited to reagents that directly or indirectly promote autophagy such as TFEB activators, PPAR agonists, PGC-1 α activators, LSD1 inhibitors, mTOR inhibitors, GSK3 inhibitors, etc.

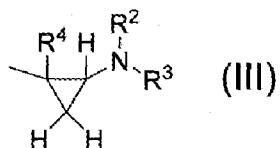

[0138] In some embodiments, the drug promotes autophagy via activation of Transcription factor EB (TFEB) pathway. TFEB is a master gene for lysosomal biogenesis. It encodes a transcription factor that coordinates expression of lysosomal hydrolases, membrane proteins and genes involved in autophagy. TFEB overexpression in cultured cells induced lysosomal biogenesis and increased the degradation of complex molecules. TFEB is activated by PGC-1 α and promotes reduction of htt aggregation and neurotoxicity.

[0139] In some embodiments, the drug that promotes autophagy via activation of TFEB pathway is an activator of TFEB. In some embodiments, such TFEB activator include, but are not limited to C1 (Song et al, 2016, Autophagy, 12(8):1372-1389), and 2-hydroxypropyl- β -cyclodextrin (Kilpatrick et al., 2015, PLOS ONE DOI:10.1371/journal.pone.0120819). Each of the references mentioned herein is incorporated by reference in its entirety.

[0140] In some embodiments, the drug that promotes autophagy via activation of TFEB pathway is an agent that can activate peroxisome proliferator-activated receptor gamma coactivator 1- α (PGC-1 α). In some embodiments, such activators of PGC-1 α include, but are not limited to, pyrroloquinoline quinone, resveratrol, R- α -lipoic acid (ALA), ALA /acetyl-L-carnitine (ALC), flavonoids, isoflavones and derivatives (e.g., quercetin, daidzein, genistein, biochanin A, and formononetin). See, Das and Sharma 2015 (CNS & Neurological Disorders - Drug Targets, 2015, 14, 1024-1030.) Each of the references mentioned herein is incorporated by reference in its entirety.

[0141] In some embodiments, the drug promotes autophagy via activation of peroxisome proliferator-activated receptor gamma coactivator 1- α (PGC-1 α) and/or Forehead box O3 (FOXO3). PGC-1 α is a master regulator of mitochondrial biogenesis. PGC-1 α interacts with the nuclear receptor PPAR- γ , which permits the interaction of this protein with multiple transcription factors. This protein can interact with, and regulate the activities of, cAMP response element-binding protein (CREB) and nuclear respiratory factors (NRFs). It provides a direct link between external physiological stimuli and the regulation of mitochondrial biogenesis, and is a major factor that regulates muscle fiber type determination. FOXO3 is a transcription factor that can be inhibited and translocated out of the nucleus on phosphorylation by protein such as Akt/PKB in the PI3K signaling pathway.

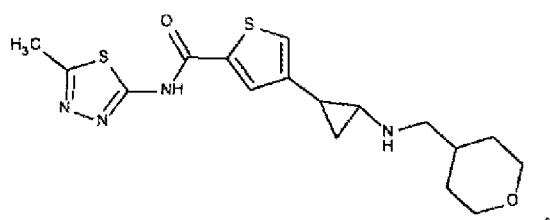

[0142] In some embodiments, a drug that promotes autophagy via PGC-1 α and/or FOXO3 activation is an inhibitor of Lysine (K)-specific demethylase 1A (LSD1). LSD1 is a flavin-dependent monoamine oxidase, which can demethylate mono- and bi- methylated lysines. LSD1 has roles critical in embryogenesis and tissue-specific differentiation. In some embodiments, such LSD1 inhibitors include, but are not limited to, 1-(4-methyl-1-piperazinyl)-2-[(1R*,2S*)-2-[4-phenylmethoxy)phenyl]cyclopropyl]amino]ethanone dihydrochloride (RN-1; Cui et al., 2015, Blood 2015 126:386-396), CBB1001-1009 (Wang et al., 2011, Cancer Res. 2011 Dec 1; 71(23): 7238-7249.), TCP, Pargyline, CGC-11047, and Namolone (Pieroni et al., 2015, European Journal of Medicinal Chemistry 92 (2015) 377e386), phenelzine analogues (Prusevich et al., ACS Chem. Biol. 2014, 9, 1284-1293), and those described in WO2015156417, which is herein incorporated by reference in its entirety. In some embodiments, one or more LSD1 inhibitors are used. In some embodiments, both RN-1 and a LSD1 inhibitor described in WO2015156417 are used. WO2015156417 describes inhibitors of LSD1 represented by formula:


Wherein, A is an optionally substituted heterocyclic group, or an optionally substituted hydrocarbon group; B is a ring selected from

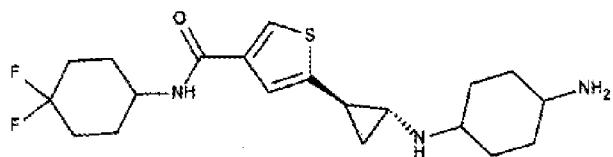
(1) a 5- or 6-membered aromatic heterocycle optionally fused with an optionally substituted 5- or 6-membered ring, and

(2) a benzene ring fused with an optionally substituted 5- or 6-membered ring, wherein the ring represented by B is optionally substituted, and binds, via two adjacent carbon atoms with one atom in between, to a group represented by the formula

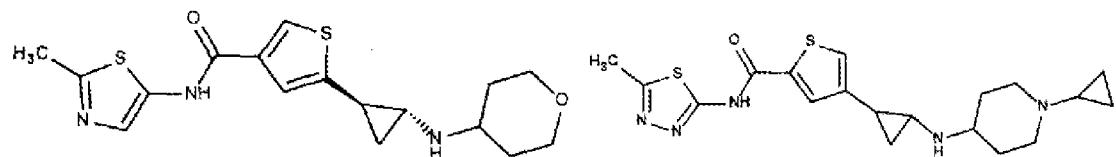
, and a group represented by the formula

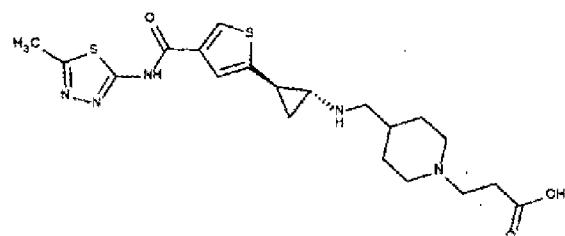


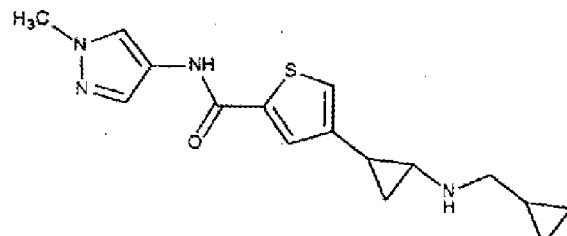
R^1 , R^2 , R^3 and R^4 are each independently a hydrogen atom, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group;

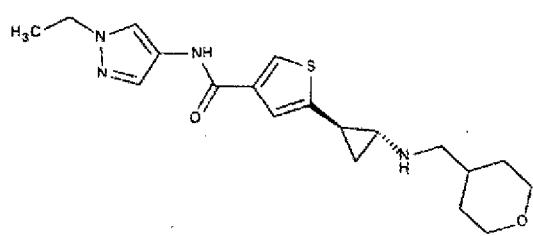

A and R^1 are optionally bonded with each other to form, together with the adjacent nitrogen atom, an optionally substituted cyclic group; and

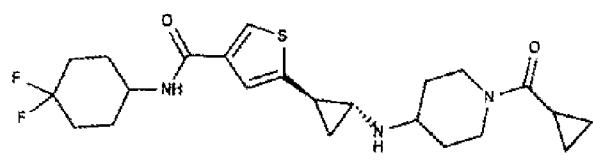
R^2 and R^3 are optionally bonded with each other to form, together with the adjacent nitrogen atom, an optionally substituted cyclic group, or a salt thereof. Such LSD1 inhibitors are more specific with less side effect and good blood-brain barrier penetration.

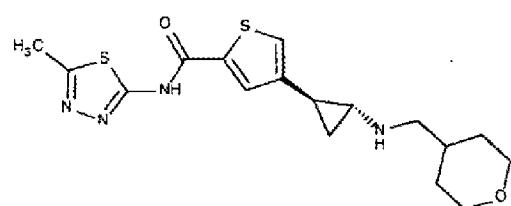

[0143] In some embodiments, the LSD1 inhibitors are selected from the group consisting of the following compounds (compounds 1-30), and salts, stereoisomers, geometric isomers, tautomers, oxynitrides, enantiomers, diastereoisomers, racemates, prodrugs, solvates, metabolites, esters, and mixtures thereof:

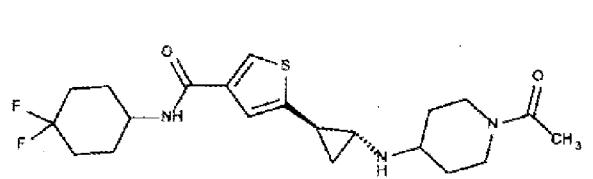

Compound 1


Compound 2 (cyclopropane: (1*R*,2*R*) cyclohexane: cis or trans)

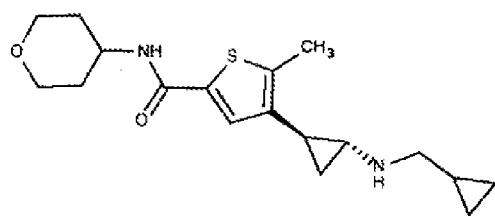

Compound 3


Compound 4

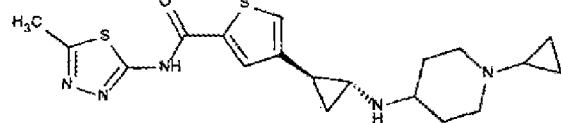

Compound 5


Compound 6

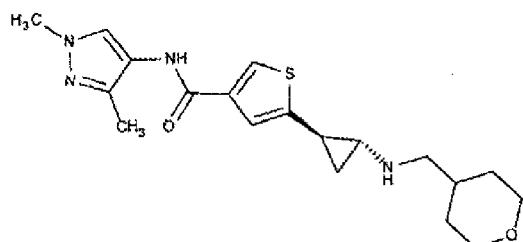
Compound 7

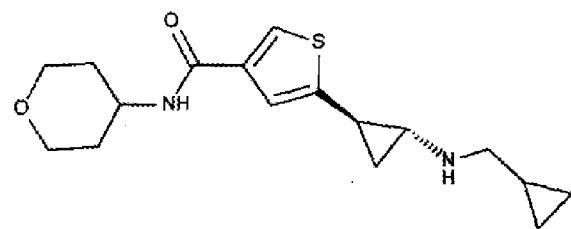


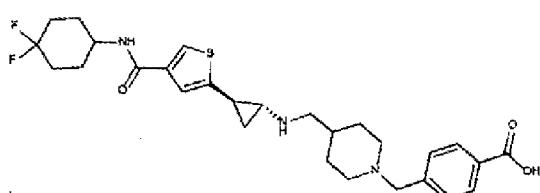
Compound 8

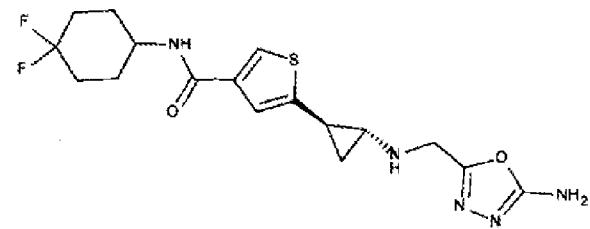


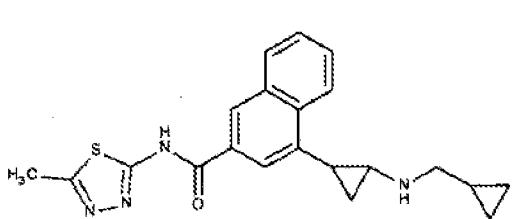
Compound 9

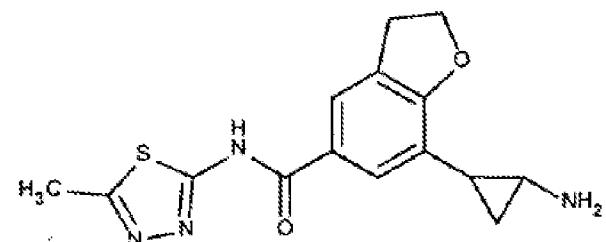

Compound 10

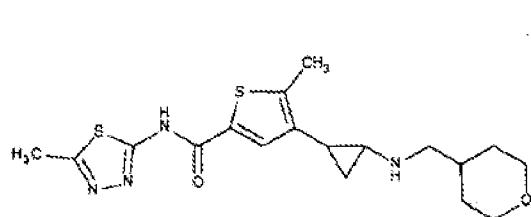

Compound 11

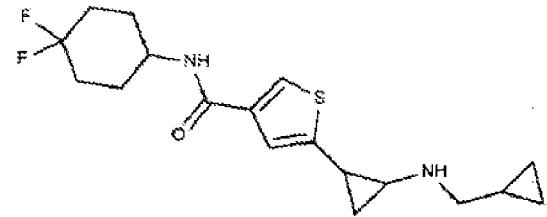

Compound 12

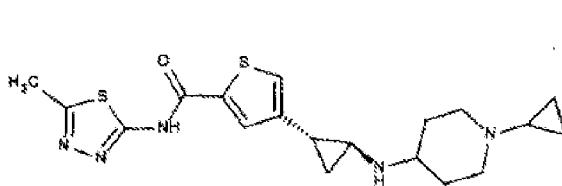

Compound 13

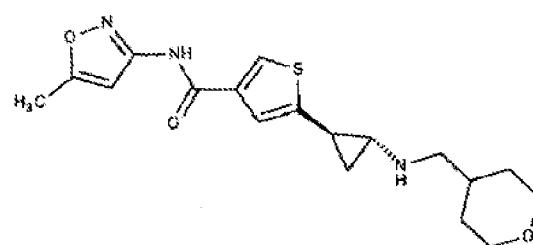

Compound 14

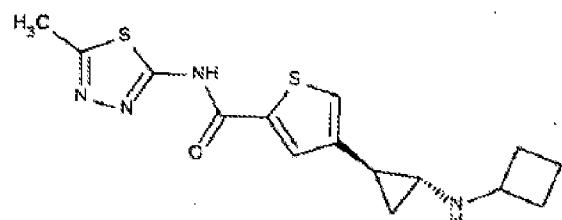

Compound 15

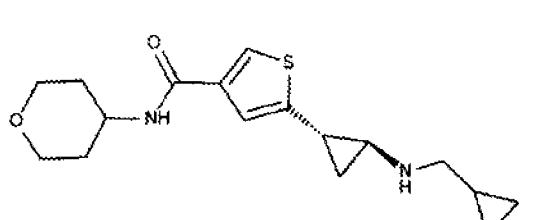

Compound 16

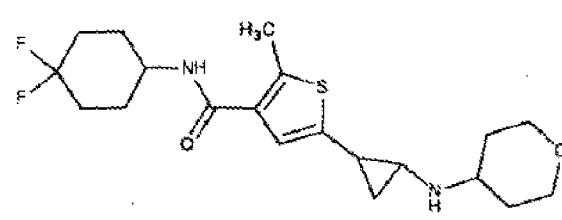

Compound 17

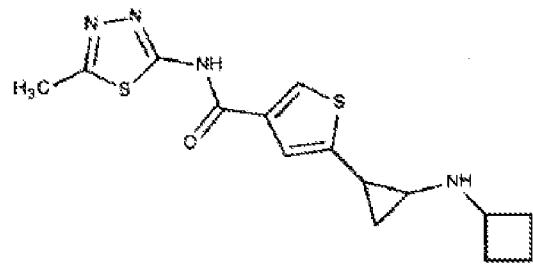

Compound 18

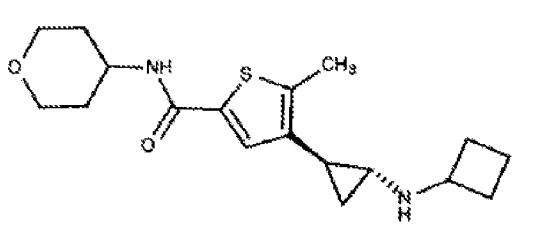
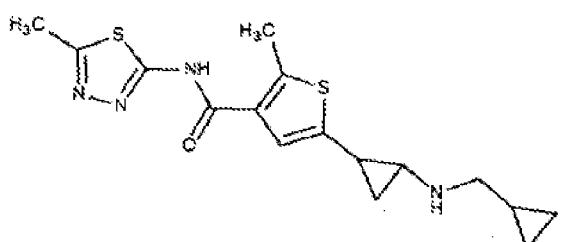

Compound 19

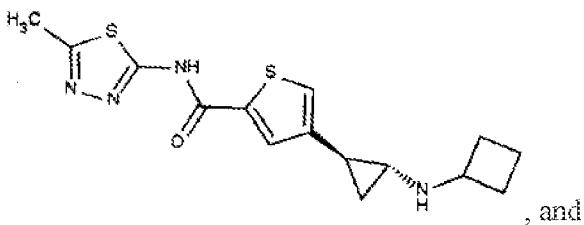

Compound 20


Compound 21

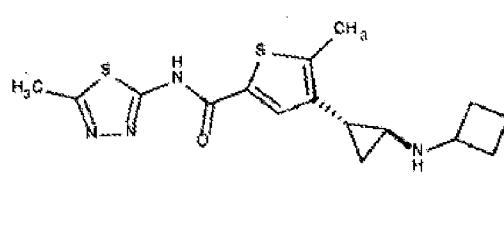

Compound 22


Compound 23



Compound 24


Compound 25

Compound 26



Compound 27

Compound 29

Compound 28

Compound 30

[0144] In one embodiment, the LSD1 inhibitor to be co-administered with a catabolic enzyme of the present invention or a biologically active fragment thereof is compound 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or any mixtures thereof.

[0145] In some embodiments, the drug is capable of modifying the activity of a regulator or a co-activator of PGC-1 α . Such regulators or co-activators of PGC-1 α include, but are not limited to, Parkin Interacting Substrate (PARIS), Sirtuin 1 (SIRT1), 5' AMP-activated protein kinase(AMPK), General control of amino acid synthesis protein 5 (GCN5), Nuclear respiratory factor 1, 2(NRF-1,2), Glycogen synthase kinase 3 β (GSK3 β), Peroxisome proliferator-activated receptor- α , β / δ , γ (PPAR- α , β / δ , γ), p38 mitogen-activated protein kinase (p38MAPK), Estrogen-related receptors (ERRs), myocyte enhancer factor-2 (MEF2), and Thyroid hormone receptor (TR), see Das and Sharma (CNS & Neurological Disorders - Drug Targets, 2015, 14, 1024-1030). Each of the references mentioned herein is incorporated by reference in its entirety.

[0146] In some embodiments, the drug that promotes autophagy is a Peroxisome proliferator-activated receptor (PPAR) agonist. PPARs are nuclear receptor proteins that function as transcription factors regulating the expression of genes. They are critical in the regulation of cellular differentiation, development, and metabolism and tumorigenesis.

[0147] In some embodiments, the PPAR is selected from PPAR α , PPAR β / δ , and PPAR γ . In some embodiments, the PPAR agonist is a PPAR α agonist, including but not limited to amphipathic carboxylic acids (e.g., clofibrate, gemfibrozil, ciprofibrate, bezafibrate, and fenofibrate), fibrate, ureidofibrate, oxybenzylglycine, triazolone, agonists containing a 2,4-dihydro-3H-1,2,4 triazole-3-one (triazolone) core (e.g., LY518674), BMS-687453, Wy-14643, GW2331, GW 95798, LY518674, and GW590735.

[0148] In some embodiments, the PPAR agonist is a PPAR β/δ agonist, including but not limited to GW501516 (Brunmair; *et al.* *Diabetologia*. 49 (11): 2713–22), L-165041, compound 7 (Burdick *et al.*, *Cell Signal* 2006, 18 (1), 9-20.), thiazole, bisaryl substituted thiazoles, non-TZD compounds (*e.g.*, L-165041), L-165041, compound 7 (Burdick *et al.*, *Cell Signal* 2006, 18 (1), 9-20), 38c (Johnson *et al.*, *J Steroid Biochem Mol Biol* 1997, 63 (1-3), 1-8), and oxazoles. Each of the references mentioned herein is incorporated by reference in its entirety.

[0149] In some embodiments, the PPAR agonist is a PPAR γ agonist, including but not limited to thiazolidinediones (TZDs or glitazones), glitazar, indenone, NSAIDs, dihydrocinnamate, β -carboxyethyl rhodamine, and those described in Corona and Duchen, 2016 (*Free Radical Biology and Medicine*, published online June 23, 2016). In some embodiments, the PPAR γ agonist is an endogenous or natural agonist. In some embodiments, the PPAR γ agonist is a synthetic agonist. In some embodiments, the PPAR γ agonist is selected from the group consisting of eicosanoids prostaglandin-A1, cyclopentenone prostaglandin 15-deoxy- $\Delta^{12, 14}$ – Prostaglandin J2 (15D-PGJ2), unsaturated fatty acids such as linoleic acid and sicosahexaenoic acid, nitroalkenes such as nitrated oleic acid and linoleic acid, oxidized phospholipids such as hexadecyl azelaoyl phosphatidylcholine and lysophosphatidic acid, non-steroidal anti-inflammatory drugs, such as flufenamic acid, ibuprofen, fenoprofen, and indomethacin, pioglitazone, GW0072, ciglitazone, troglitazone, rosiglitazone, isoglitazone, NC-2100 (Loiodice *et al.*, *Curr. Top. Med. Chem.* 2011, 11(7):819-39), SB-236636, tesaglitazar, farglitazar, GW1929, compound 14c (Haigh *et al.*, *Bioorg. Med. Chem.* 1999, 7(5):821-30), SP1818, ragaglitazar, metaglidasen, balaglitazone, and INT131. Each of the references mentioned herein is incorporated by reference in its entirety.

[0150] In some embodiments, the PPAR agonist binds to PPAR α , PPAR β/δ , and PPAR γ , such as bezafibrate, LY465608, indeglitazar, TIPP-204, GW693085, TIPP-401, and TIPP-703. In some embodiments, the PPAR agonist binds to PPAR α and PPAR γ , such as farglitazar, muraglitazar, tesaglitazar, GW409544, aleglitazar, MK-767, TAK-559, compound 18 (Kojo *et al.*, *J. Pharmacol. Sci.* 2003, 93 (3), 347-55), compounds 68, 70, 72, 76 (Felts *et al.*, *J. Med. Chem.* 2008, 51 (16), 4911-9.), metaglidasen, and S-2/S-4 (Suh *et al.*, *J. Med. Chem.* 2008, 51 (20), 6318-33.). In some embodiments, the PPAR agonist binds to PPAR β and PPAR γ , such as compound 23 (Martin *et al.*, *J. Med. Chem.* 2009, 52(21), 6835-50). More PPARs agonists are described in Nevin *et al.*, 2011 (*Current Medicinal Chemistry*, 2011, 18, 5598-5623). Each of the references mentioned herein is incorporated by reference in its entirety.

[0151] In some embodiments, the drug that promotes autophagy is an inhibitor of mechanistic target of rapamycin (mTOR). mTOR is a serine/threonine-specific protein kinase that belongs to the family of phosphatidylinositol-3 kinase (PI3K) related kinases (PIKKs), see Maiese et al. (Br J Clin Pharmacol, 82(5):1245–1266), which is herein incorporated by reference in its entirety. mTOR integrates the input from upstream pathways, including insulin, growth factors (such as IGF-1 and IGF-2), and amino acids, and also senses cellular nutrient, oxygen, and energy levels. In some embodiments, mTOR inhibitors include, but are not limited to, an antibody of mTOR, rapamycin and its analogs (e.g., temsirolimus (CCI-779), everolimus (RAD001), ridaforolimus (AP-23573), sirolimus, deforolimus), curcumin (Zhang et al., 2016, Oncotarget), curcumin analogs (Song et al. 2016, Autophagy, 12(8):1372-1389), ATP-competitive mTOR kinase inhibitors, mTOR/PI3K dual inhibitors (dactolisib, BGT226, SF1126, PKI-587 etc.), deptor (Maiese, Neural Regeneration Research. 2016;11(3):372-385.), and mTORC1/mTORC2 dual inhibitors (TORCdIs, such as sapanisertib (a.k.a. INK128), AZD8055, and AZD2014). Each of the references mentioned herein is incorporated by reference in its entirety.

[0152] In some embodiments, the drug that promotes autophagy is an inhibitor of Glycogen synthase kinase 3 (GSK3). GSK3 is a serine/threonine protein kinase that mediates the addition of phosphate molecules onto serine and threonine amino acid residues. In some embodiments, the GSK3 inhibitor is ATP-competitive. In some embodiments, the GSK3 inhibitor is non-ATP competitive. In some embodiments, GSK3 inhibitors include, but are not limited to, an antibody of GSK3, metal cations (e.g., beryllium, copper, lithium, mercury, and tungsten), marine organism-derived drugs (e.g., 6-BIO, dibromocantharelline, hymenialdesine, indirubins, meridianins, manzamine A, palinurine, tricantine), aminopyrimidines (e.g., CT98014, CT98023, CT99021, and TWS119), ketamine, arylindolemaleimide (e.g., SB-216763 and SB-41528), thiazoles (e.g., AR-A014418 and AZD-1080), paullones (e.g., Alsterpaullone, Cazpaullone, Kenpaullone), thiadiazolidindiones (e.g., TDZD-8, NP00111, NP031115, and tideglusib), halomethylketones (e.g., HMK-32), certain peptides (L803-mts), SB415286, SB216763, and CT99021 (Stretton et al., 2015, Biochem. J. (2015) 470, 207–221; Marchand et al., 2015, The Journal of Biological Chemistry, 290(9):5592-5605). Each of the references mentioned herein is incorporated by reference in its entirety.

[0153] In some embodiments, the methods of the present invention further comprise the administration of one or more drugs that modulates the lysosome. In some embodiments, drugs that modulate the lysosome may be capable of decreasing the level of Rab5a, a marker of early

endosomes. Accordingly, in some embodiments, the present invention provides a method of treating or preventing amyloidosis in a subject comprising administering to the subject a composition comprising a therapeutically effective amount of at least one catabolic enzyme or a biologically active fragment thereof, wherein the subject is also administered one or more drugs that modulates the lysosome. As described herein, when performing a combination therapy, the two or more drugs (e.g., a catabolic enzyme or a biologically active fragment thereof and a drug that modulates the lysosome) can be administered simultaneously or sequentially in any order

[0154] In some embodiments, the drug that modulates the lysosome is Z-phenylalanyl-alanyl-diazomethylketone (PADK) or a PADK analog, or a pharmaceutically acceptable salt or ester thereof. In some embodiments, the PADK analog is selected from Z-L-phenylalanyl-D-alanyl-diazomethylketone (PdADK), Z-D-phenylalanyl-L-alanyl-diazomethylketone (dPADK), and Z-D-phenylalanyl-D-alanyl-diazomethylketone (dPdADK). In some embodiments, the drug that modulates the lysosome is Z-phenylalanyl-phenylalanyl-diazomethylketone (PPDK) or a PPDK analog, or a pharmaceutically acceptable salt or ester thereof. An exemplary listing of suitable lysosome modulators may be found in US Patent Publication No. 2016/0136229, which is herein incorporated by reference in its entirety.

[0155] In some embodiments, when performing a combination therapy, the two or more drugs can be administered simultaneously or sequentially in any order. In some embodiments, when at least two drugs are administered sequentially, the duration between the two administrations can be about 1 minute, 5 minutes, 10 minutes, 20 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 2 days, three days, 1 week, 2 weeks, 3 weeks, 1 month, 2 months, 3 months, or more.

[0156] In some embodiments, the methods of the present invention further comprise a surgery to be performed on the subject. In some embodiments, the surgery is stem cell transplantation and/or organ transplantation. In some embodiments, the stem cell transplantation is autologous (e.g., stem cells derived from the subject).

[0157] In some embodiments, the methods further comprise providing a supportive treatment to the subject. In some embodiments, when the heart or kidneys of the subject are affected, the methods comprise taking a diuretic (water excretion pill), restricting the amount of salt in diet, and/or wearing elastic stockings and elevating their legs to help lessen the amount of swelling. In some embodiments, when the gastrointestinal tract is involved, dietary changes and certain medications can be tried to help symptoms of diarrhea and stomach fullness.

[0158] A pharmaceutical composition of the present invention can be administered to a patient by any suitable methods known in the art. In some embodiments, administration of a composition of the present invention may be carried out orally, parenterally, subcutaneously, intravenously, intramuscularly, intraperitoneally, by intranasal instillation, by implantation, by intracavitory or intravesical instillation, intraocularly, intraarterially, intralesionally, transdermally, aerosolically (e.g., inhalation) or by application to mucous membranes.

[0159] In some embodiments, a pharmaceutical composition of the present invention further comprises a pharmaceutically-acceptable carrier. When the term "pharmaceutically acceptable" is used to refer to a pharmaceutical carrier or excipient, it is implied that the carrier or excipient has met the required standards of toxicological and manufacturing testing or that it is included on the Inactive Ingredient Guide prepared by the U.S. Food and Drug administration.

[0160] Compositions intended for oral use may be prepared in either solid or fluid unit dosage forms. Fluid unit dosage form can be prepared according to procedures known in the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents and preserving agents in order to provide pharmaceutically elegant and palatable preparations. An elixir is prepared by using a hydroalcoholic (e.g., ethanol) vehicle with suitable sweeteners such as sugar and saccharin, together with an aromatic flavoring agent. Suspensions can be prepared with an aqueous vehicle with the aid of a suspending agent such as acacia, tragacanth, methylcellulose and the like.

[0161] Solid formulations such as tablets contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients that are suitable for the manufacture of tablets. These excipients may be for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents for example, corn starch, or alginic acid; binding agents, for example starch, gelatin or acacia, and lubricating agents, for example magnesium stearate, stearic acid or talc and other conventional ingredients such as dicalcium phosphate, magnesium aluminum silicate, calcium sulfate, starch, lactose, methylcellulose, and functionally similar materials. The tablets may be uncoated or they may be coated by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate may be employed.

[0162] Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin or olive oil. Soft gelatin capsules are prepared by machine encapsulation of a slurry of the compound with an acceptable vegetable oil, light liquid petrolatum or other inert oil.

[0163] Aqueous suspensions contain active materials in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients are suspending agents, for example sodium carboxymethylcellulose, methyl cellulose, hydropropylmethylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia: dispersing or wetting agents may be a naturally-occurring phosphatide, for example, lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example hepta-decaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. The aqueous suspensions may also contain one or more preservatives, for example ethyl, or n-propyl-p-hydroxy benzoate, one or more colouring agents, one or more flavoring agents or one or more sweetening agents, such as sucrose or saccharin.

[0164] Oily suspensions may be formulated by suspending the active ingredients in a vegetable oil, for example peanut oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. The oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide palatable oral preparations. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.

[0165] Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, for example sweetening, flavoring and colouring agents, may also be present.

[0166] Pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions. The oil phase may be a vegetable oil, for example olive oil or peanut oil, or a mineral

oil, for example liquid paraffin or mixtures of these. Suitable emulsifying agents may be naturally-occurring gums, for example gum acacia or gum tragacanth, naturally-occurring phosphatides, for example soy bean, lecithin, and esters or partial esters derived from fatty acids and hexitol, anhydrides, for example sorbitan monooleate, and condensation products of the said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monooleate. The emulsions may also contain sweetening and flavoring agents.

[0167] The pharmaceutical compositions may be in the form of a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to known art using those suitable dispersing or wetting agents and suspending agents that have been mentioned above. The sterile injectable preparation may also be a sterile injectable solution or a suspension in a non-toxic parentally acceptable diluent or solvent, for example as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables. Adjuvants such as local anaesthetics, preservatives and buffering agents can also be included in the injectable solution or suspension.

[0168] In some embodiments, the delivery systems suitable include time-release, delayed release, sustained release, or controlled release delivery systems. In some embodiments, a composition of the present invention can be delivered in a controlled release system, such as sustained-release matrices. Non-limiting examples of sustained-release matrices include polyesters, hydrogels (e.g., poly(2-hydroxyethyl-methacrylate) as described by Langer et al., 1981, *J. Biomed. Mater. Res.*, 15:167–277 and Langer, 1982, *Chem. Tech.*, 12:98–105), or poly(vinylalcohol)], polylactides (U.S. Pat. No. 3,773,919; EP 58,481), copolymers of L-glutamic acid and gamma ethyl-L-glutamate (Sidman et al., 1983, *Biopolymers*, 22:547–556), non-degradable ethylene-vinyl acetate (Langer et al., *supra*), degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT™ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(–)-3-hydroxybutyric acid (EP 133,988). In some embodiments, the composition may be administered using intravenous infusion, an implantable osmotic pump, a transdermal patch, liposomes, or other modes of administration. In one embodiment, a pump may be used (see Langer, *supra*; Sefton, *CRC Crit. Ref. Biomed. Eng.* 14:201 (1987); Buchwald et al., *Surgery* 88:507 (1980); Saudek et al., *N.*

Engl. J. Med. 321:574 (1989). In another embodiment, polymeric materials can be used. In yet another embodiment, a controlled release system can be placed in proximity to the therapeutic target, for example liver, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in *Medical Applications of Controlled Release*, supra, vol. 2, pp. 115-138 (1984). Other controlled release systems are discussed in the review by Langer (*Science* 249:1527-1533 (1990). In some embodiments, the composition may be administered through subcutaneous injection.

[0169] In some embodiments, the release of the composition occurs in bursts. Examples of systems in which release occurs in bursts includes, e.g., systems in which the composition is entrapped in liposomes which are encapsulated in a polymer matrix, the liposomes being sensitive to specific stimuli, e.g., temperature, pH, light or a degrading enzyme and systems in which the composition is encapsulated by an ionically-coated microcapsule with a microcapsule core degrading enzyme.

[0170] In some embodiments, the release of the composition is gradual/continuous. Examples of systems in which release of the inhibitor is gradual and continuous include, e.g., erosional systems in which the composition is contained in a form within a matrix and effusional systems in which the composition is released at a controlled rate, e.g., through a polymer. Such sustained release systems can be e.g., in the form of pellets, or capsules.

[0171] Other embodiments of the compositions administered according to the invention incorporate particulate forms, protective coatings, protease inhibitors or permeation enhancers for various routes of administration, such as parenteral, pulmonary, nasal and oral. Other pharmaceutical compositions and methods of preparing pharmaceutical compositions are known in the art and are described, for example, in "*Remington: The Science and Practice of Pharmacy*" (formerly "*Remingtons Pharmaceutical Sciences*"); Gennaro, A., Lippincott, Williams & Wilkins, Philadelphia, Pa. (2000). In some embodiments, the pharmaceutical composition may further include a pharmaceutically acceptable diluent, excipient, carrier, or adjuvant.

[0172] In some embodiments, the dosage to be administered is not subject to defined limits, but it will usually be an effective amount, or a therapeutically/pharmaceutically effective amount. The term "effective amount" refers to the amount of one or more compounds that renders a desired treatment outcome. An effective amount may be comprised within one or more doses, i.e., a single dose or multiple doses may be required to achieve the desired treatment

endpoint. The term “therapeutically/pharmaceutically effective amount” as used herein, refers to the level or amount of one or more agents needed to treat a condition, or reduce or prevent injury or damage, optionally without causing significant negative or adverse side effects. It will usually be the equivalent, on a molar basis of the pharmacologically active free form produced from a dosage formulation upon the metabolic release of the active free drug to achieve its desired pharmacological and physiological effects. In some embodiments, the compositions may be formulated in a unit dosage form. The term “unit dosage form” refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable pharmaceutical excipient.

[0173] In some embodiments, dosing regimen of a pharmaceutical composition of the present invention includes, without any limitation, the amount per dose, frequency of dosing, e.g., per day, week, or month, total amount per dosing cycle, dosing interval, dosing variation, pattern or modification per dosing cycle, maximum accumulated dosing, or warm up dosing, or any combination thereof.

[0174] In some embodiments, dosing regimen includes a pre-determined or fixed amount per dose in combination with a frequency of such dose. For example, dosing regimen includes a fixed amount per dose in combination with the frequency of such dose being administered to a subject.

[0175] In some embodiments, the at least one catabolic enzyme (e.g., PPCA, NEU1, TPP1, cathepsin B, cathepsin D, cathepsin E, cathepsin K, and/or cathepsin L) is administered at about 0.1 to 20 mg/kg daily, weekly, biweekly, monthly, or bi-monthly. In some embodiments, the at least one intralysosomal catabolic enzyme is administered at about 0.2 to 15 mg/kg, about 0.5 to 12 mg/kg, about 1 to 10 mg/kg, about 2 to 8 mg/kg, or about 4 to 6 mg/kg daily, weekly, biweekly, monthly, or bi-monthly.

[0176] Based on the suitable dosage, the at least one catabolic enzyme can be provided in various suitable unit dosages. For example, a catabolic enzyme can comprise a unit dosage for administration of one or multiple times per day, for 1-7 days per week, or for 1-31 times per month. Such unit dosages can be provided as a set for daily, weekly and/or monthly administration.

[0177] As will be appreciated by those skilled in the art, the duration of the treatment methods depends on the type of amyloidosis being treated, any underlying diseases associated with

amyloidosis, the age and conditions of the subject, how the subject responds to the treatment, etc.

[0178] In some embodiments, a person having risk of developing amyloidosis (e.g., a person who is genetically predisposed or previously had amyloidosis or associated diseases) can also receive prophylactic treatment of the present invention to inhibit or delay the development of amyloidosis and/or associated diseases.

[0179] The pharmaceutical composition of the present invention may also alleviate, reduce the severity of, or reduce the occurrence of, one or more of the symptoms associated with amyloidosis. In some embodiments, the symptoms are those associated with light-chain (AL) amyloidosis (primary systemic amyloidosis) and/or AA amyloidosis (secondary amyloidosis). In some embodiments, the symptoms include, but are not limited to, fluid retention, swelling, shortness of breath, fatigue, irregular heartbeat, numbness of hands and feet, rash, shortness of breath, swallowing difficulties, swollen arms or legs, esophageal reflux, constipation, nausea, abdominal pain, diarrhea, early satiety, stroke, gastrointestinal disorders, enlarged liver, diminished spleen function, diminished function of the adrenal and other endocrine glands, skin color change or growths, lung problems, bleeding and bruising problems, decreased urine output, diarrhea, hoarseness or changing voice, joint pain, and weakness. In some embodiments, the symptoms are those associated with amyloid-beta (A β) amyloidosis. In some embodiments, the symptoms include, but are not limited to, common symptoms of Alzheimer's disease, including memory loss, confusion, trouble understanding visual images and spatial relationships, and problems speaking or writing.

[0180] In some embodiments, the methods further comprise monitoring the response of the subject after administration to avoid severe and/or fatal immune-mediated adverse reactions due to over-dosage. In some embodiments, the administration of a pharmaceutical composition of the present invention is modified, such as reduced, paused or terminated if the patient shows persistent adverse reactions. In some embodiments, the dosage is modified if the patient fails to respond within about 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 1 week, 2 weeks or more from administration of first dose.

[0181] In some embodiments, a pharmaceutical composition of the present invention can ameliorate, treat, and/or prevent one or more conditions or associated symptoms described herein in a clinically relevant, statistically significant and/or persistent fashion. In some embodiments, administration of a pharmaceutical composition of the present invention provides

statistically significant therapeutic effect for ameliorating, treating, and/or preventing one or more symptoms of amyloidosis. In one embodiment, the statistically significant therapeutic effect is determined based on one or more standards or criteria provided by one or more regulatory agencies in the United States, e.g., FDA or other countries. In some embodiments, the statistically significant therapeutic effect is determined based on results obtained from regulatory agency approved clinical trial set up and/or procedure.

[0182] In some embodiments, the statistically significant therapeutic effect is determined based on a patient population of at least 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, or more. In some embodiments, the statistically significant therapeutic effect is determined based on data obtained from randomized and double blinded clinical trial set up. In some embodiments, the statistically significant therapeutic effect is determined based on data with a p value of less than or equal to about 0.05, 0.04, 0.03, 0.02 or 0.01. In some embodiments, the statistically significant therapeutic effect is determined based on data with a confidence interval greater than or equal to 95%, 96%, 97%, 98% or 99%. In some embodiments, the statistically significant therapeutic effect is determined on approval of Phase III clinical trial of the methods provided by the present invention, e.g., by FDA in the US.

[0183] In some embodiment, the statistically significant therapeutic effect is determined by a randomized double blind clinical trial of a patient population of at least 50, 100, 200, 300 or 350; treated with a pharmaceutical composition of the present invention, but not in combination with any other agent. In some embodiment, the statistically significant therapeutic effect is determined by a randomized clinical trial of a patient population of at least 50, 100, 200, 300 or 350 and using any commonly accepted criteria for amyloidosis symptoms assessment.

[0184] In general, statistical analysis can include any suitable method permitted by a regulatory agency, e.g., FDA in the US or China or any other country. In some embodiments, statistical analysis includes non-stratified analysis, log-rank analysis, e.g., from Kaplan-Meier, Jacobson-Truax, Gulliken-Lord-Novick, Edwards-Nunnally, Hageman-Arrindel and Hierarchical Linear Modeling (HLM) and Cox regression analysis.

[0185] The invention also provides packaged pharmaceutical compositions or kits. In some embodiments, the packaged pharmaceutical compositions or kits include a therapeutically effective amount of an intralysosomal catabolic enzyme or a formulation comprising an intralysosomal catabolic enzyme of the present invention described herein. In some embodiments, the compound or formulation can increase the expression, activity, and/or

concentration of at least one intralysosomal catabolic enzyme in a subject when the composition is administered to the subject. In some embodiments, the packaged pharmaceutical compositions or kits further comprise in combination with a label or insert advising that the pharmaceutical compound or formulation be administered in combination with a second agent for treating or preventing amyloidosis described herein.

[0186] In some embodiments, the packaged pharmaceutical compositions or kits further comprise a therapeutically effective amount of a second agent described herein. In some embodiments, the packaged pharmaceutical compositions or kits is packaged in combination with a label or insert advising that the second agent be administered in combination with the intralysosomal catabolic enzyme or the formulation comprising an intralysosomal catabolic enzyme, or the compound or formulation that can increase the expression, activity, and/or concentration of at least one intralysosomal catabolic enzyme in a subject.

[0187] As used herein, the term “label or insert” includes, but is not limited to all written, electronic, or spoken communication with the subject, or with any person substantially responsible for the care of the subject, regarding the administration of the compositions of the present invention. An insert may further include information regarding co-administration of the compositions of the present invention with other compounds or compositions. Additionally, an insert may include instructions regarding administration of the compositions of the present invention before, during, or after a meal, or with/without food.

[0188] The following examples illustrate various aspects of the invention. The examples should, of course, be understood to be merely illustrative of only certain embodiments of the invention and not to constitute limitations upon the scope of the invention.

EXAMPLES

Example 1: Degradative Effects of Intralysosomal Catabolic Enzymes on Synthetic Amyloid Species

[0189] In this example, an in vitro study is performed to illustrate that intralysosomal enzymes such as PPCA (*i.e.*, cathepsin A), cathepsin B, cathepsin D, and/or cocktail mixtures of two or more intralysosomal enzymes can be used for the treatment of amyloidosis. Without being bound by theory, it is hypothesized that delivery of PPCA, cathepsin B, cathepsin D, and other intralysosomal enzymes to lysosomes can assist in the degradation of abnormally accumulated

amyloid species, *e.g.*, A β -amyloid species before they can be transported into the extracellular space by exocytosis and be deposited as amyloid plaques.

[0190] This in vitro study shows the degradative effects of PPCA, cathepsin B, and cathepsin D on synthetic A β -amyloid species in a test tube.

[0191] First, in vitro aggregation assays of A β -amyloid species using synthetic A β -peptides is performed via a Thioflavin-T (THT) assay and western blot. FIG. 1 shows the aggregation of synthetic A β 42 peptide and A β 15-36 peptide (negative control) monitored by Thioflavin-T (THT) at physiological conditions (FIG. 1A) or an acidic pH (FIG. 1B). FIG. 2 shows the aggregation of A β 42 amyloid species over time 24 hours as detected by western blot.

[0192] Second, prevention of the aggregation of synthetic A β -amyloid species by proteolytic degradation using PPCA, cathepsin B, and cathepsin D is tested via a Thioflavin-T (THT) assay and western blot. FIG. 3 shows that cathepsin A (*i.e.*, PPCA) prevents the aggregation of A β 42 amyloid. FIG. 4 shows that PPCA prevents the aggregation of A β 42 amyloid in a dose dependent manner. FIG. 5 shows that PPCA prevents the aggregation of both high and low molecular weight species of A β 42 amyloid. FIG. 6 shows that cathepsin B prevents the aggregation of A β 42 amyloid. FIG. 7 shows that cathepsin B moderately prevents the aggregation of A β 42 amyloid in a dose dependent manner. FIG. 8 shows that cathepsin B prevents the aggregation of low molecular weight species of A β 42 amyloid and degrades A β 42 monomers in a time-dependent manner. FIG. 9 shows that cathepsin B prevents the aggregation of A β 42 amyloid.

[0193] Lastly, the ability of PPCA, cathepsin B, and cathepsin D to degrade pre-formed synthetic A β -amyloid species was tested. FIG. 10 shows that PPCA, cathepsin B, PPCA plus cathepsin B, and cathepsin D degrade high molecular weight oligomers/fibrils of A β 42 amyloid. Cathepsin D degrades low molecular oligomers and completely eliminates A β 42 monomers.

Example 1 Summary:

[0194] Experiments in Example 1 were designed to determine (1) whether the selected intralysosomal catabolic enzymes can prevent aggregation/formation of A β amyloid species (called prevention) and (2) whether the selected intralysosomal catabolic enzymes can degrade already pre-formed A β amyloid species (called degradation). Example 1 experiments have shown that A β 42 amyloid species can be aggregated in vitro using synthetic A β 42 peptides, and that this process can be monitored by THT assay (FIG. 1) and/or western blot analysis (FIG. 2).

The THT assay allows for the monitoring of dynamic changes in A β 42 aggregation upon treatment with degradative enzymes.

[0195] Data obtained from the experiments of Example 1 reveal that PPCA can efficiently prevent formation of A β 42 amyloid species as shown by THT assay (FIG. 3, FIG. 4) and western blot (FIG. 5), as well as degrade already pre-formed amyloid species (FIG. 10). Prevention of amyloid formation and degradation by PPCA was efficient, reproducible and showed concentration dependent dynamics (FIG. 4). Data obtained from experiments with cathepsin B showed moderate reduction in amyloid species formation as measured by THT (FIG. 6). Western blot analysis revealed that cathepsin B prevents aggregation of low molecular weight A β 42 species and degrades A β 42 monomers in a time dependent manner (FIG. 8). Experiments with the use of cathepsin D revealed strong prevention of aggregation of A β 42 species, measured by THT (FIG. 9). Cathepsin D also showed degradation of low molecular oligomers in pre-aggregated amyloid species and complete elimination A β 42 monomers (FIG. 10).

Example 2: Degradation of A β 42 Oligomers and Fibrils by Cathepsin A, B, and D

[0196] In this example, two protocols specific for oligomer and fibril formation were applied to aggregate amyloid material to investigate which forms of A β 42 species can be degraded by cathepsin A (PPCA), cathepsin B and cathepsin D. Aggregated oligomers and fibrils were then subjected to an enzymatic treatment followed by western blot analysis.

[0197] Initially, oligomers and fibrils were aggregated for a period of 7 days and material collected at different time points (days: 0, 1, 3 and 7) was subjected to SDS-PAGE electrophoresis followed by western blot analysis. In FIG. 11, A β 42 oligomers and A β 42 fibrils were probed with oligomer specific antibody (A11), which does not recognize monomeric and fibril A β 42 species. Various forms of oligomers were positively detected on western blot carrying material aggregated using both, oligomer formation and fibril formation protocols. A significant reduction in oligomer forms was observed at day 7 of fibril formation procedure (FIG. 11, line 9), indicating a time dependent transition from oligomers to fibrils, undetectable by A11 antibody. In FIG. 12, the same material as shown in FIG. 11 was probed with E610 antibody, which is specific for both oligomers and fibrils of A β 42. A lack of fibrils at day 7 was observed when oligomer formation protocol was applied (FIG. 12, line 4) and a strong appearance of fibrils at day 7 when fibril formation protocol was applied.

[0198] To study enzymatic degradation of oligomer species, A β 42 oligomers were first aggregated for 9 days at pH 7.0 at 25°C and then additionally incubated overnight at 37°C in various pH, optimal for each of enzymes used in the study (pH 5.0 Cathepsin A, B and pH 3.5 Cathepsin D), with and without addition of enzymes. Western blot was probed with oligomer specific A11 antibody (FIG. 13). Additional overnight aggregation of oligomers was observed at pH 5.0 as indicated by presence of higher molecular weight oligomers (lines 1, 2, 4, and 5) when compared to control line 9 (incubation for 9 days at 25°C). In contrast, this aggregation was not observed for oligomers incubated overnight at pH 3.5. Overnight treatment of oligomers with 90ng of cathepsin A at pH 5.0 and 37°C resulted in degradation of the lowest oligomer band (line 4). Treatment of oligomers with 90ng of cathepsin B and D did not reveal changes in intensity or size of oligomer band (lines 5, 6).

[0199] To study enzymatic degradation of fibril species, A β 42 fibrils were first aggregated for 9 days at pH 7.0 at 25°C and then additionally incubated overnight at 37°C in various pH, optimal for each of enzymes used in the study (pH 5.0 cathepsin A, B and pH 3.5 cathepsin D), with and without addition of enzymes. Western blot was probed with oligomer specific E610 antibody (FIG. 14). Additional overnight aggregation of fibrils was observed in all pHs applied, as indicated by the presence of stronger/darker smear (lines 1, 2, 3) when compared to control line 9 (incubation for 9 days at 25°C). Overnight treatment of fibrils with 90 ng of cathepsin A at pH 5.0 and 37°C resulted in reduction/degradation of the fibril smear as well as degradation of oligomer species (line 4 compared to line 1). Overnight treatment of fibrils with 90 ng of cathepsin B at pH 5.0 and 37°C resulted in weak reduction/degradation of the fibril smear (line 5 compared to line 2). Overnight treatment of fibrils with 90 ng of cathepsin D at pH 3.5 and 37°C did not result in visible reduction/degradation of fibril smear or oligomer bands.

Example 3: Degradation of A β 42 Monomers by Cathepsin A Monitored by ELISA

[0200] The purpose of this example is to assess whether cathepsin A can degrade A β 42 peptides (monomers).

[0201] In this example, an enzymatic treatment of peptides with 90 ng of cathepsin A was carried out for 0-2 hr at 37°C and pH 5.0. An identical experiment without the addition of cathepsin A was performed in parallel. In both cases, phenol red, an inhibitor of A β aggregation was used to prevent peptide aggregation into higher molecular weight species of amyloid. The effects of supplementation or lack of cathepsin A on A β 42 monomers were measured using

commercially available ELISA (SensoLyte® Anti-Human β -Amyloid (1-42) Quantitative ELISA, Colorimetric) at various time points (0, 10, 30, 60, 120 min). Sensolite ELISA consists of two antibodies: C-terminal capture antibody, which recognizes specifically human A β 42 peptide but not A β 40 or A β 41 and N-terminal detection antibody. Because Cathepsin A is a carboxyl peptidase, A β 42 monomers, if degraded, will be degraded from their C-terminus. This degradation would result in a lack of C-terminal amino acid 42 and in consequence lack of capture by C-terminus specific antibody, which should be visualized as a loss of fluorescent signal in ELISA. The ELISA read out for samples treated with cathepsin A revealed a loss of fluorescent signal already within first 10 min of treatment indicating degradation of A β 42 monomers from the C-terminus by cathepsin A (FIG. 15). Samples without supplementation of cathepsin A showed a strong fluorescent signal in ELISA indicating lack of C-terminal degradation in the absence of enzyme and thus efficient capture of A β 42 monomers by C-terminus antibody.

Example 4: Degradation of A β 40 amyloid species by Cath A

[0202] Aggregation experiments showed that A β 40 amyloid species can be aggregated in vitro using synthetic A β 40 peptides, and that this process can be monitored by THT assay (FIG. 16). When compared with aggregation of A β 42 peptides, A β 40 showed much slower and less efficient rate of aggregation (FIG. 16A).

[0203] Additional experiments were performed where THT assay was used to monitor dynamic changes in A β 42 & A β 40 aggregation upon treatment with degradative enzyme Cath A (FIG. 17). Initial experiment aimed to measure the effect of Cath A treatment on aggregation of both A β 42 & A β 40 peptides in real time. To achieve this, Cath A was simultaneously incubated with corresponding peptides and THT reagent in separate reactions at conditions optimal for Cath A proteolysis. The above experiment revealed that in contrast to A β 42 (FIG. 17A), aggregation of A β 40 amyloid is not affected by Cath A, in applied experimental settings, even when high concentration of enzyme is used (FIG. 17B, C). Second experiment was carried out to investigate whether the result of the initial experiment is due to lack of proteolysis of A β 40 by Cath A or whether the speed of such proteolysis is slower than the speed of A β 40 aggregation and therefore no changes in THT fluorescence could be observed. In this experiment A β 40 peptide was first incubated with Cath A for up to two hours in conditions optimal for Cath A proteolysis and followed by incubation with THT to measure aggregation. Obtained data

revealed that A β 40 peptide did not aggregate after pre-incubation with Cath A, proving its proteolysis (FIG. 18).

[0204] To prove that observed loss of aggregation by A β 40 peptide is caused by carboxypeptidase activity of Cath A, A β 40 peptide was incubated for two hours at 37°C at pH5 with varying concentrations of Cath A. Subsequently, the reaction was transferred to an ELISA plate pre-coated with a C-terminal capture antibody, specifically for A β 40 peptide only and was co-incubated with N-terminal detection antibody overnight at 4°. The results have shown progressively reduced binding of A β 40 peptide to C-terminal capture antibody with increasing concentration of Cath A (FIG. 19). This proves that C-terminus of A β 40 peptide was removed by carboxyterminal activity of Cath A.

[0205] Aggregation of A β 40 peptide into amyloid species was also monitored using Western Blot technique (FIG. 20A). We were able to aggregate A β 40 into high molecular weight fibrils but not oligomeric forms using aggregation process taking up to 9 days. An experiment was carried out in which A β 40 was simultaneously incubated Cath A for up to 9 days during the process of fibril formation. Obtained results revealed that Cath A significantly prevents formation of high molecular weight fibrils due to its proteolytic action on A β 40 amyloid (FIG. 20B). Reduction of levels of monomeric A β 40 form was also observed in this experiment (FIG. 20C).

[0206] Unless defined otherwise, all technical and scientific terms herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials, similar or equivalent to those described herein, can be used in the practice or testing of the present invention, the preferred methods and materials are described herein. All publications, patents, and patent publications cited are incorporated by reference herein in their entirety for all purposes.

[0207] The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention.

[0208] While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications and the application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the disclosure as come within

known or customary practice within the art to which the invention pertains and as may be applied to the essential features set forth and as follows in the scope of the appended claims.

Claims:

1. A method of treating or preventing amyloidosis in a subject comprising administering to the subject a composition comprising a therapeutically effective amount of at least one catabolic enzyme or a biologically active fragment thereof.
2. The method of claim 1, wherein the catabolic enzyme is selected from protective protein/cathepsin A (PPCA), neuraminidase 1 (NEU1), tripeptidyl peptidase 1 (TPP1), cathepsin B, cathepsin D, cathepsin E, cathepsin K, and cathepsin L.
3. The method of claim 2, wherein the catabolic enzyme is PPCA, or a biologically active fragment thereof.
4. The method of claim 3, wherein the PPCA polypeptide comprises an amino acid sequence with at least 85% sequence identity to SEQ ID NO: 2, 43, or 45, or a biologically active fragment thereof.
5. The method of claim 4, wherein administration of the PPCA polypeptide comprises administration of a viral vector comprising a nucleotide sequence having at least 85% identity to SEQ ID NO: 1, 42, or 44.
6. The method of claim 2, wherein the catabolic enzyme is NEU1, or a biologically active fragment thereof.
7. The method of claim 6, wherein the NEU1 polypeptide comprises an amino acid sequence with at least 85% sequence identity to SEQ ID NO: 4, or a biologically active fragment thereof.
8. The method of claim 7, wherein administration of the NEU1 polypeptide comprises administration of a viral vector comprising a nucleotide sequence having at least 85% identity to SEQ ID NO: 3.

9. The method of claim 2, wherein the catabolic enzyme is TPP1, or a biologically active fragment thereof.
10. The method of claim 9, wherein the TPP1 polypeptide comprises an amino acid sequence with at least 85% sequence identity to SEQ ID NO: 6, or a biologically active fragment thereof.
11. The method of claim 10, wherein administration of the TPP1 polypeptide comprises administration of a viral vector comprising a nucleotide sequence having at least 85% identity to SEQ ID NO: 5.
12. The method of claim 2, wherein the catabolic enzyme is cathepsin D, or a biologically active fragment thereof.
13. The method of claim 12, wherein the cathepsin D polypeptide comprises an amino acid sequence with at least 85% sequence identity to SEQ ID NO: 68, or a biologically active fragment thereof.
14. The method of claim 1, wherein at least two catabolic enzymes are administered.
15. The method of claim 14, wherein the catabolic enzymes are selected from protective protein/cathepsin A (PPCA), neuraminidase 1 (NEU1), tripeptidyl peptidase 1 (TPP1), cathepsin B, cathepsin D, cathepsin E, cathepsin K, and cathepsin L.
16. The method of claim 15, wherein the catabolic enzymes are PPCA and NEU1.
17. The method of claim 15, wherein the catabolic enzymes are PPCA and cathepsin D.
18. The method of any of the previous claims, wherein the catabolic enzyme acts to prevent the formation of and/or degrade amyloid within the lysosome.
19. The method of any of the previous claims, wherein the catabolic enzyme is targeted to the cell lysosome.

20. The method of any of claims 1-17, wherein the catabolic enzyme acts to prevent the accumulation of and/or degrade amyloid outside the cell.
21. The method of claim 20, wherein the catabolic enzyme is targeted to remain outside the cell.
22. The method of claim 21, wherein the catabolic enzyme lacks one or more signals that would otherwise target the polypeptide to the lysosome.
23. The method of claim 22, wherein the catabolic enzyme lacks one or more mannose-6 phosphate signals.
24. The method of any of the previous claims, wherein the subject is a mammal.
25. The method of claim 18, wherein the subject is a human.
25. The method of any of the previous claims, wherein the catabolic enzyme is administered parenterally.
26. The method of claim 25, wherein the catabolic enzyme is administered via an intramuscular, intraperitoneal, or intravenous route.
27. The method of any of the previous claims, wherein the composition comprises a pharmaceutically acceptable carrier.
28. The method of any of the previous claims, wherein the amyloidosis is light-chain (AL) amyloidosis.
29. The method of claim 28, wherein the AL amyloidosis involves one or more organs selected from the heart, the kidneys, the nervous system, and the gastrointestinal tract.

30. The method of any of claims 1-27, wherein the amyloidosis is amyloid-beta (A β) amyloidosis.

31. The method of claim 30, wherein the A β amyloidosis is associated one or more diseases selected from Alzheimer's disease, cerebral amyloid angiopathy, Lewy body dementia, and inclusion body myositis.

32. The method of any of the previous claims, further comprising the administration of one or more additional drugs for treating or preventing amyloidosis.

33. The method of claim 32, wherein the one or more additional drugs is selected from melphalan, dexamethasone, prednisone, bortezomib, lenalidomide, vincristine, doxorubicin, and cyclophosphamide.

34. The method of any of the previous claims, further comprising the administration of one or more drugs that acidifies the lysosome.

35. The method of claim 34, wherein the drug that acidifies the lysosome is selected from an acidic nanoparticle, a catecholamine, a β -adrenergic receptor agonist, an adenosine receptor agonist, a dopamine receptor agonist, an activator of the cystic fibrosis transmembrane conductance regulator (CFTR), cyclic adenosine monophosphate (cAMP), a cAMP analog, and an inhibitor of glycogen synthase kinase-3 (GSK-3).

36. The method of any of the previous claims, further comprising the administration of one or more drugs that modulates the lysosome.

37. The method of claim 36, wherein the drug that modulates the lysosome is Z-phenylalanyl-alanyl-diazomethylketone (PADK) or a PADK analog, or a pharmaceutically acceptable salt or ester thereof.

38. The method of claim 36, wherein the drug that modulates the lysosome is Z-phenylalanyl-phenylalanyl-diazomethylketone (PPDK) or a PPDK analog, or a pharmaceutically acceptable salt or ester thereof.
39. The method of any of the previous claims, further comprising the administration of one or more drugs that promotes autophagy.
40. The method of claim 39, wherein the drug that promotes autophagy is selected from an activator of peroxisome proliferator-activated receptor gamma coactivator 1- α (PGC-1 α), an inhibitor of Lysine (K)-specific demethylase 1A (LSD1), an agonist of Peroxisome proliferator-activated receptor (PPAR), an activator of Transcription factor EB (TFEB), an inhibitor of mechanistic target of rapamycin (mTOR), and an inhibitor of glycogen synthase kinase-3 (GSK3).
41. The method of claim 39, wherein the drug that promotes autophagy is also capable of acidifying lysosome and/or endosome.
42. The method of any of the previous claims, wherein the subject is further treated with stem cell transplantation.
43. A composition comprising at least two catabolic enzymes, wherein the composition comprises at least one catabolic enzyme that is targeted to the cell lysosome and at least one catabolic enzyme that remains outside the cell.
44. The composition of claim 43, wherein the catabolic enzymes are selected from protective protein/cathepsin A (PPCA), neuraminidase 1 (NEU1), tripeptidyl peptidase 1 (TPP1), cathepsin B, cathepsin D, cathepsin E, cathepsin K, and cathepsin L.
45. A method of treating or preventing amyloidosis in a subject comprising administering to the subject the composition of claim 43 or claim 44.
46. The method of claim 45, wherein the amyloidosis is light-chain (AL) amyloidosis.

47. The method of claim 45, wherein the amyloidosis is amyloid-beta (A β) amyloidosis.

48. The method of claim 47, wherein the A β amyloidosis is associated one or more diseases selected from Alzheimer's disease, cerebral amyloid angiopathy, Lewy body dementia, and inclusion body myositis.

FIG. 1A
AB42 aggregation in physiological pH
[200uM AB42]

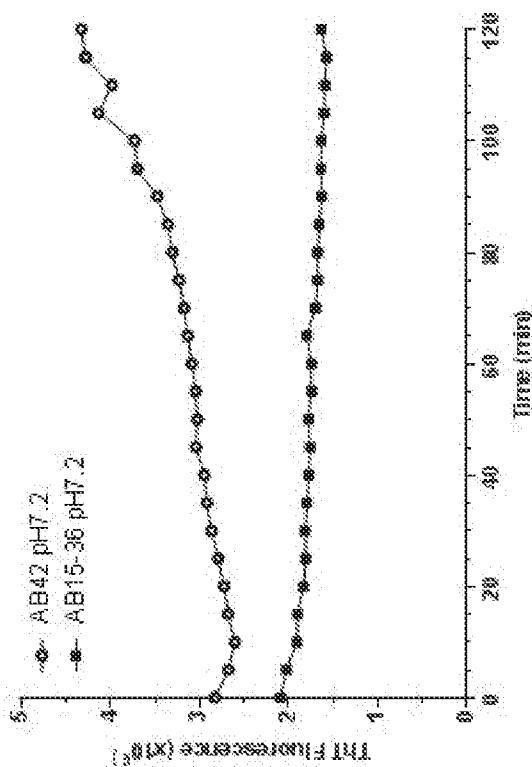
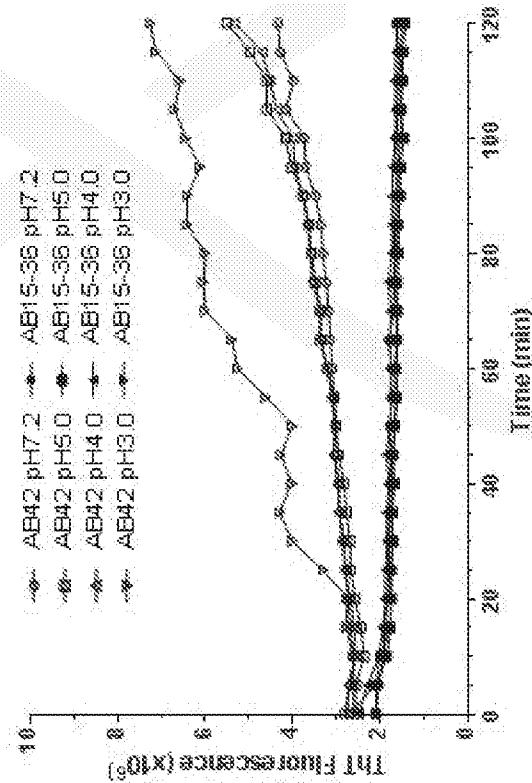
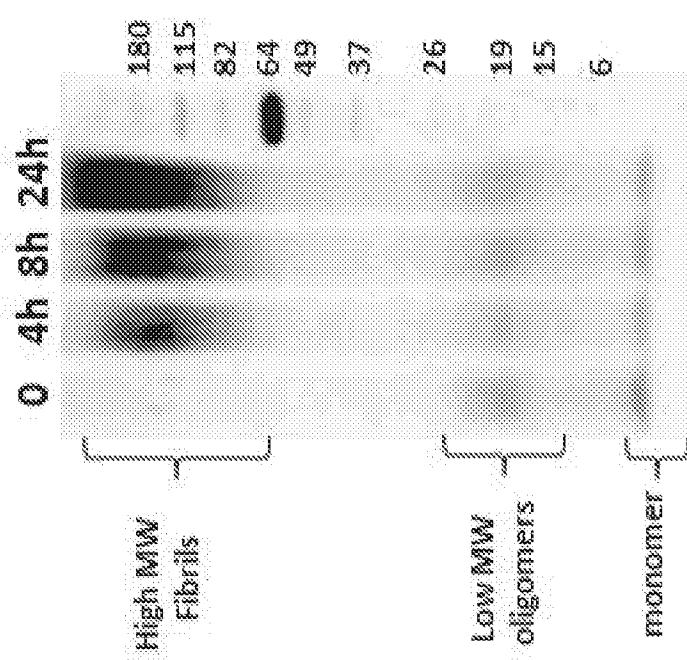


FIG. 1B

AB42 aggregation in acidic pH
[200uM AB42]

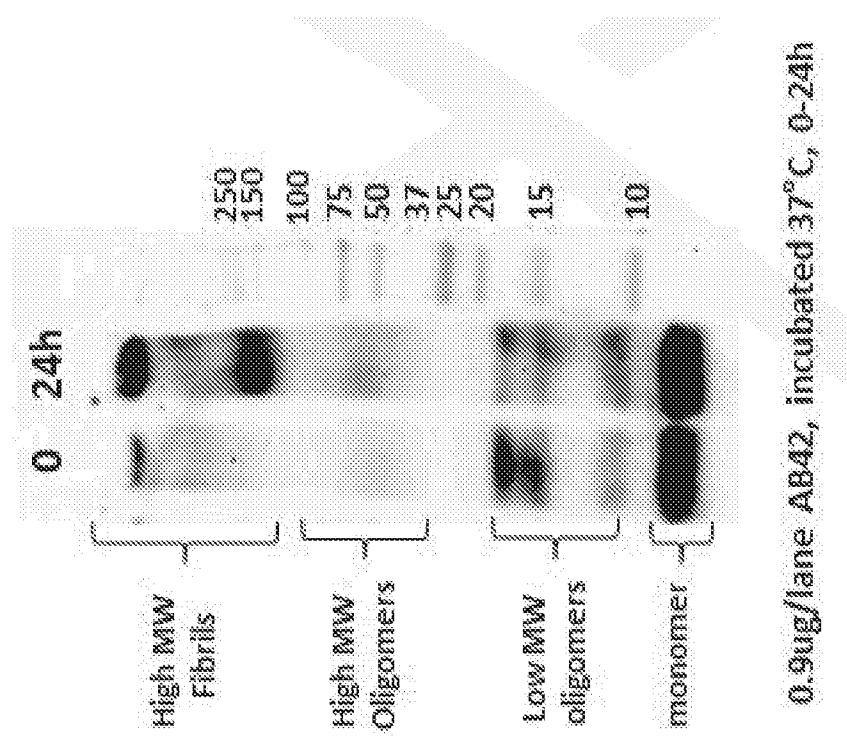
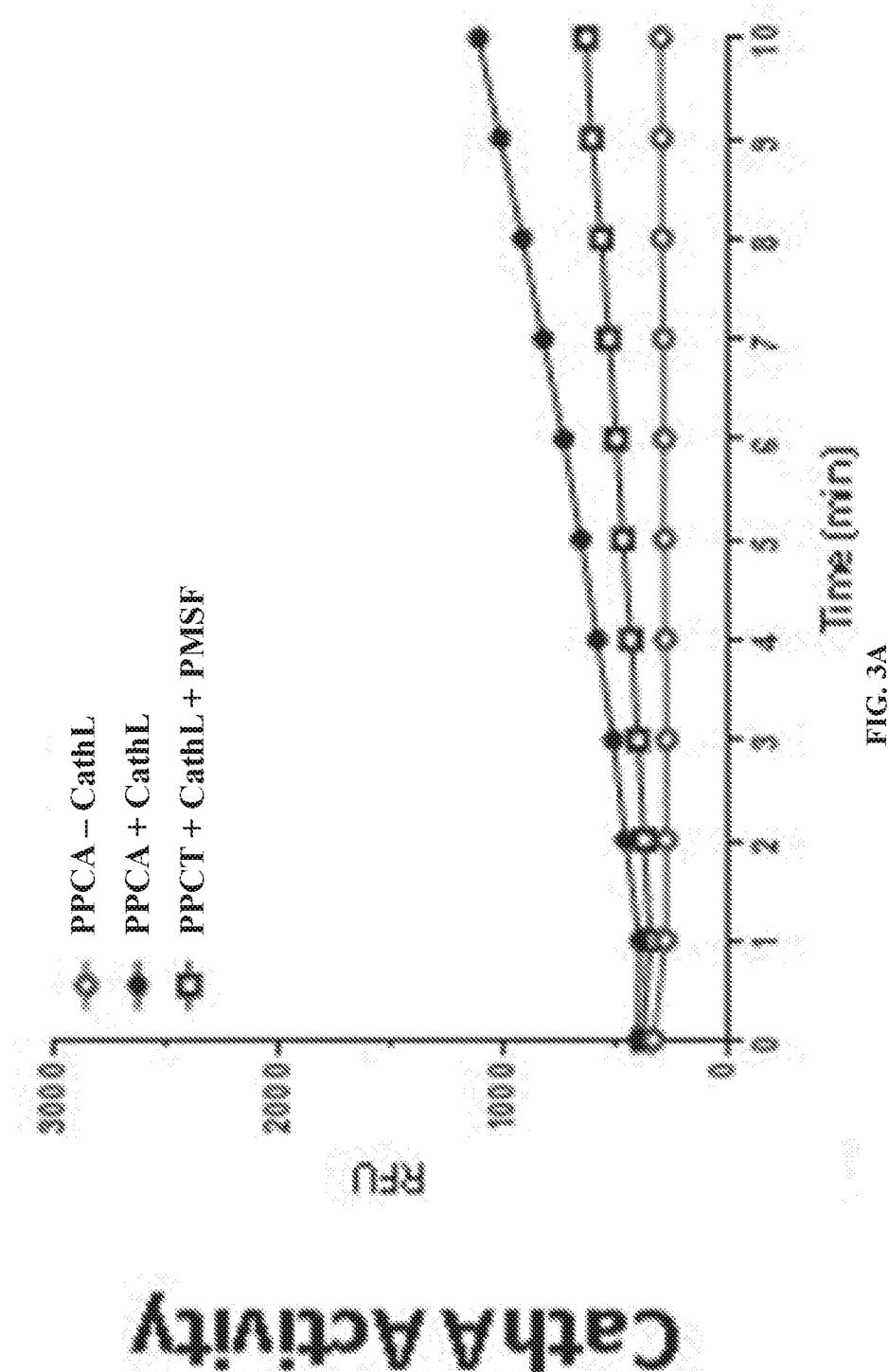
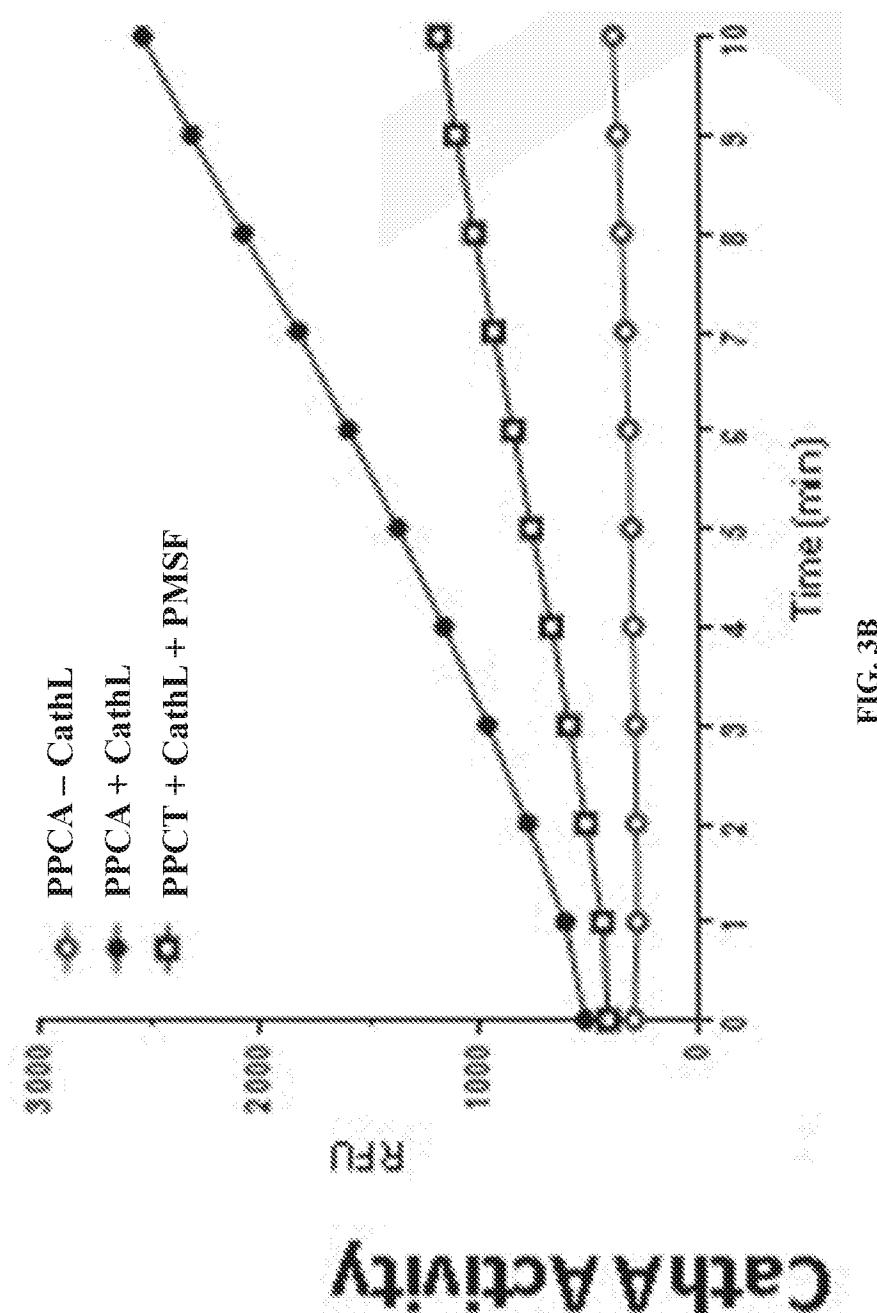

FIG. 1A-B

FIG. 2A


1.2ug/lane AB42, incubated 37°C, 0-24h


FIG. 2B

0.9ug/lane AB42, incubated 37°C, 0-24h

FIG. 2A-B

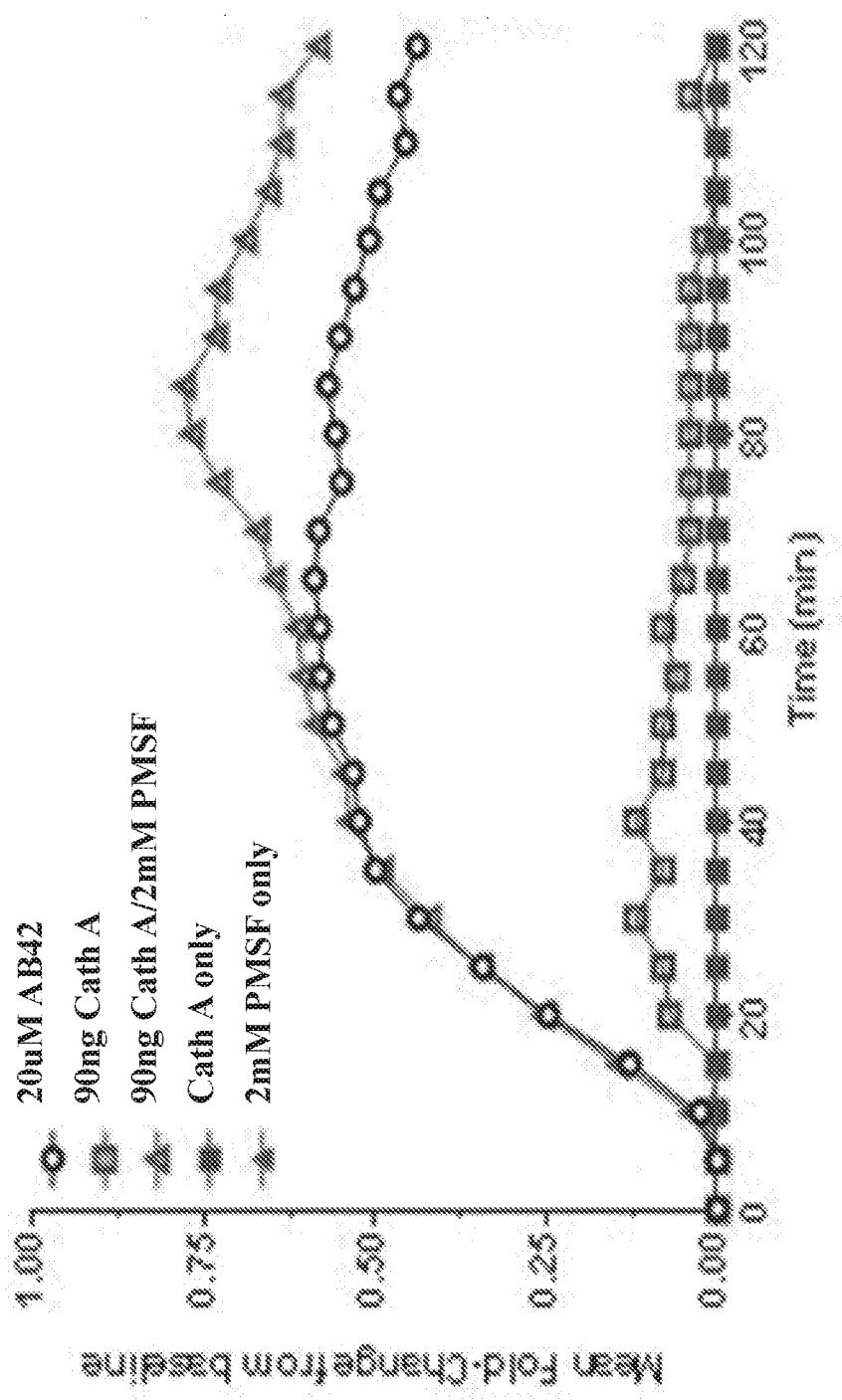
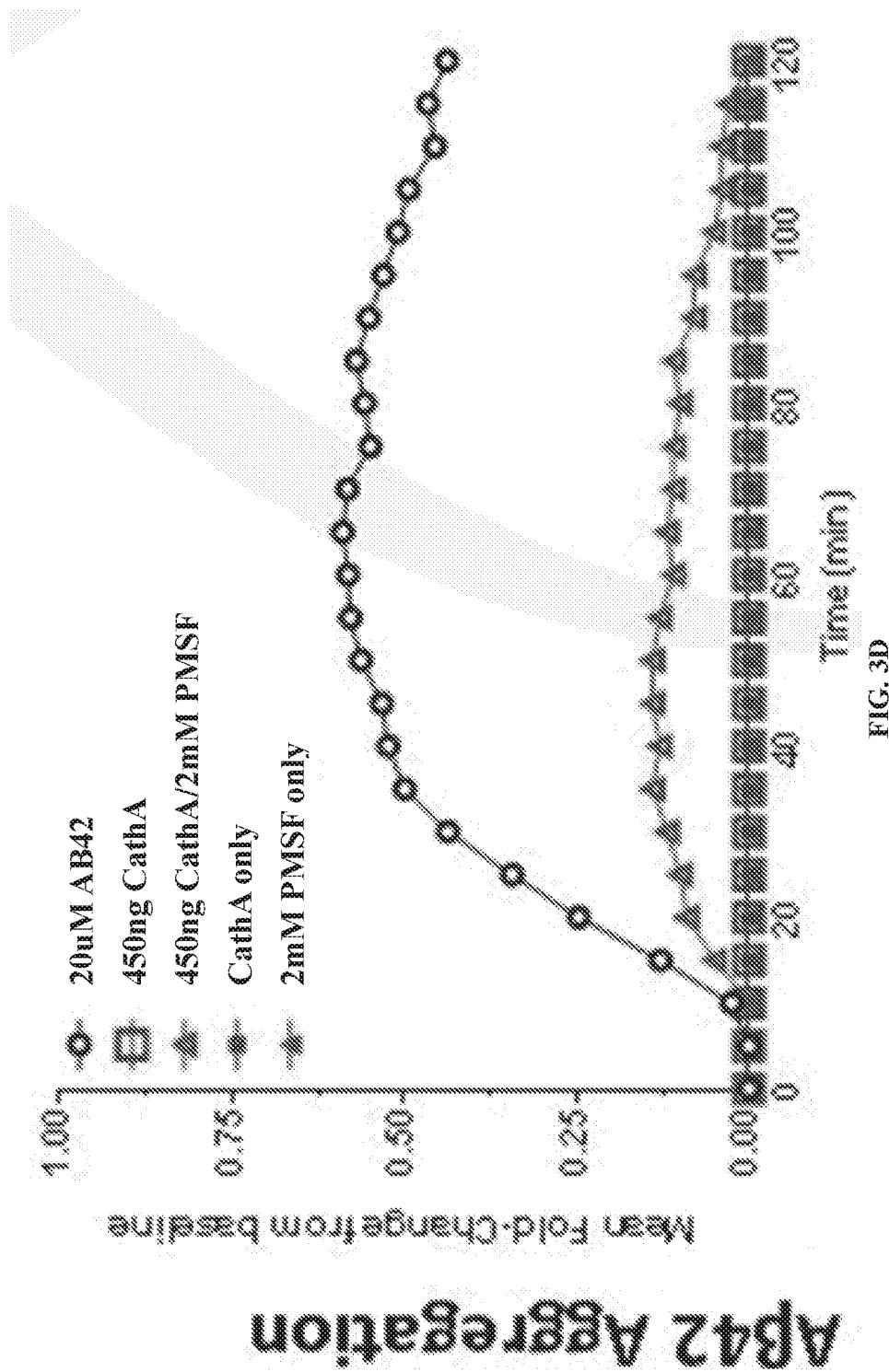



FIG. 3C

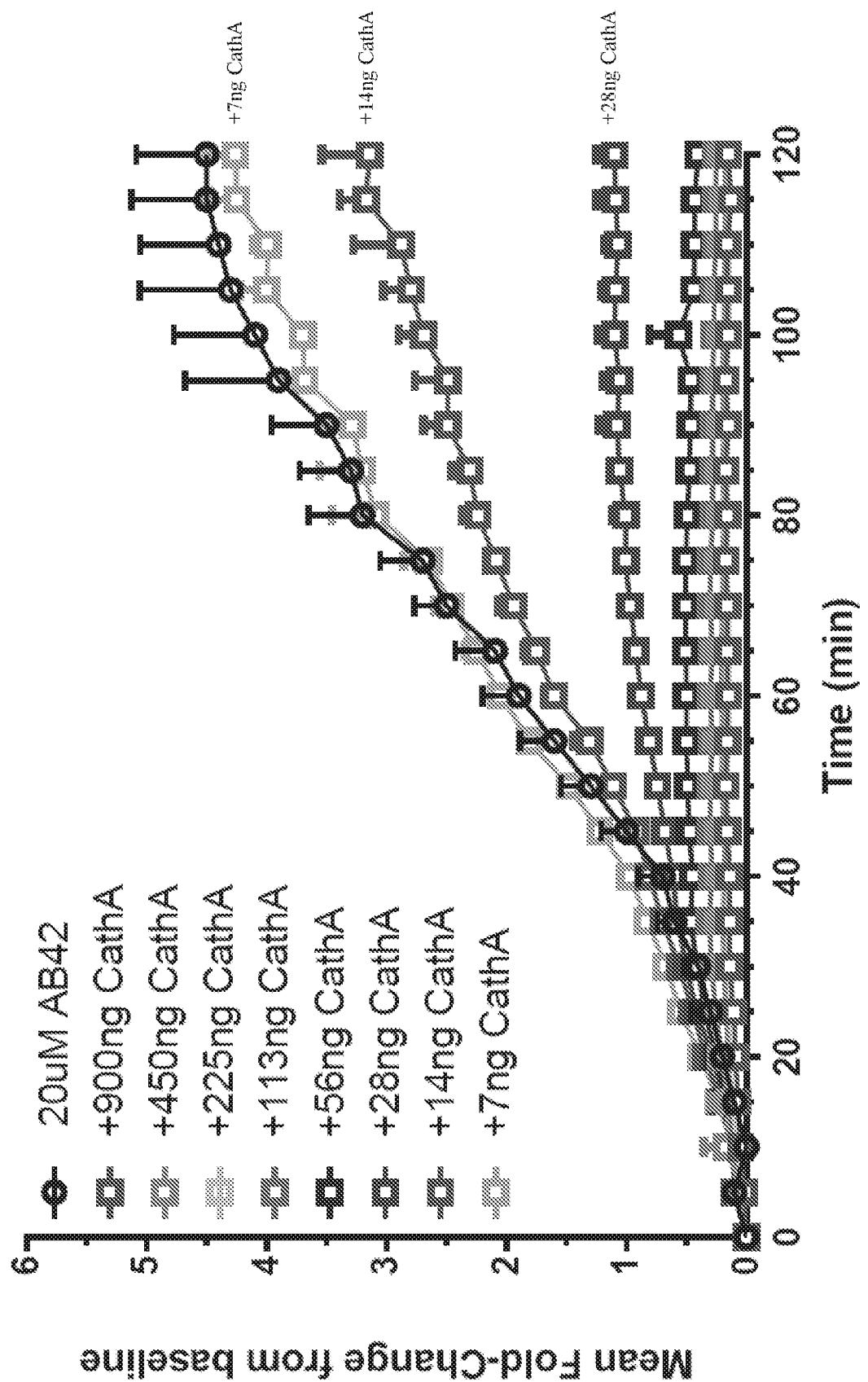


FIG. 4A

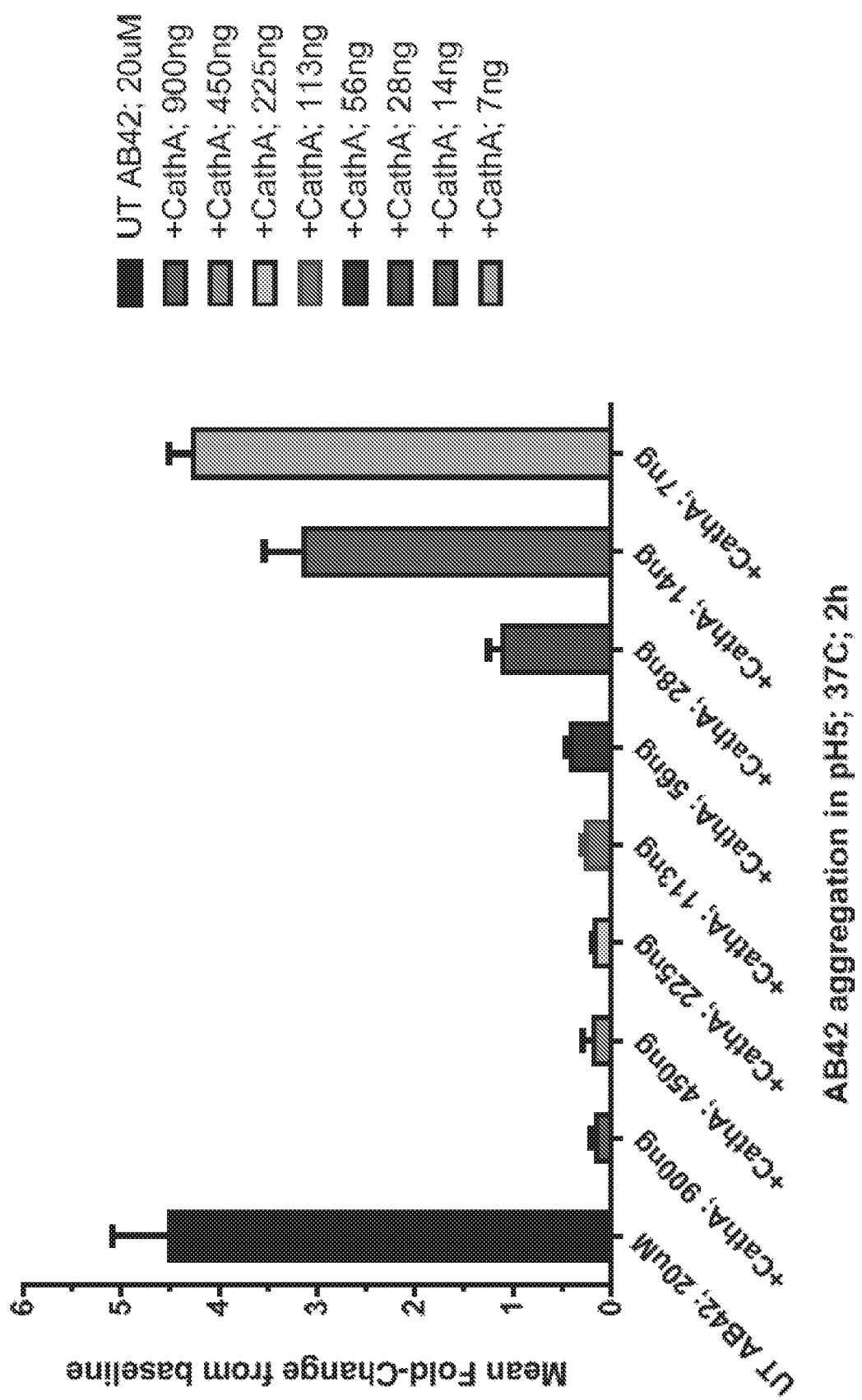


FIG. 4B

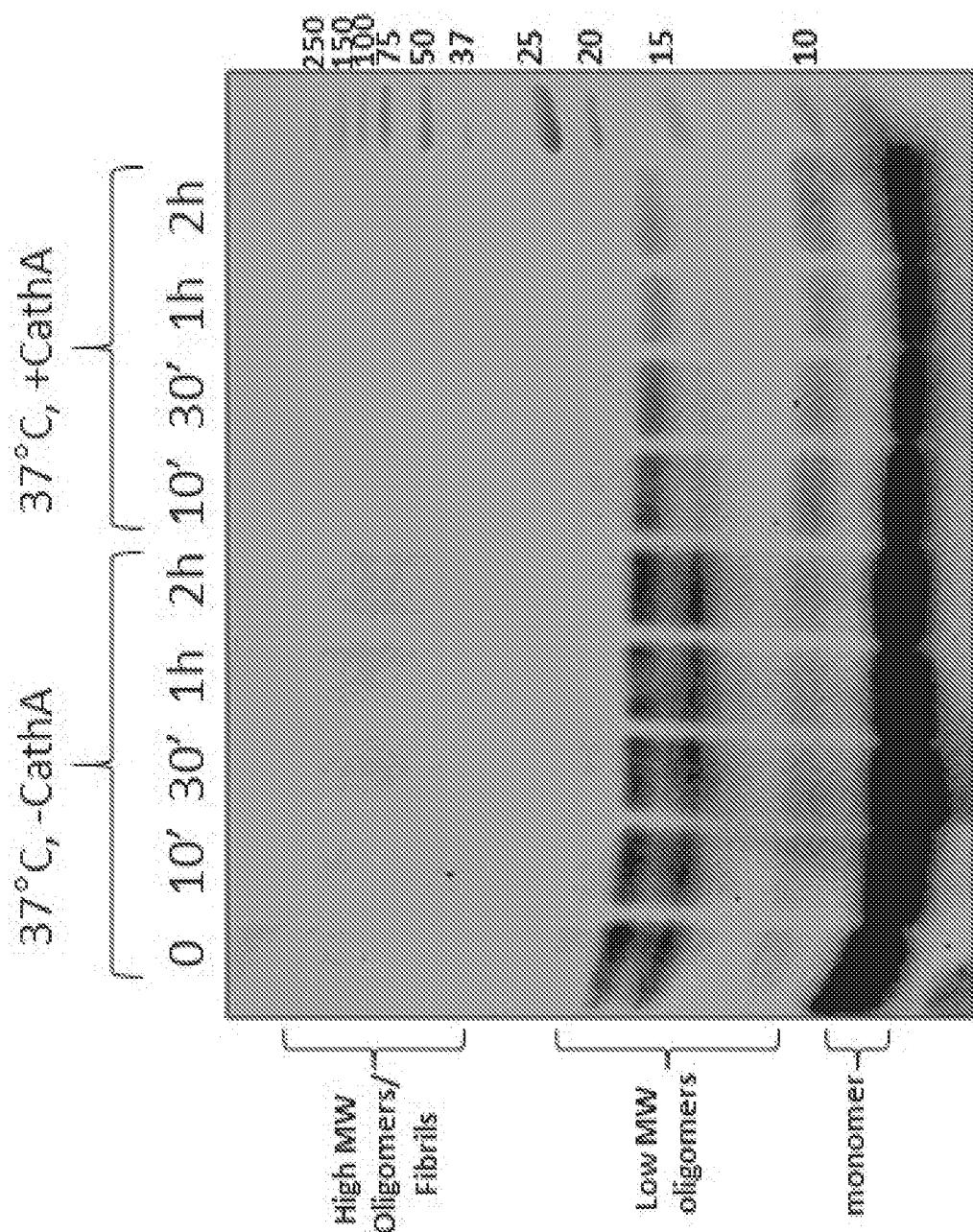


FIG. 5

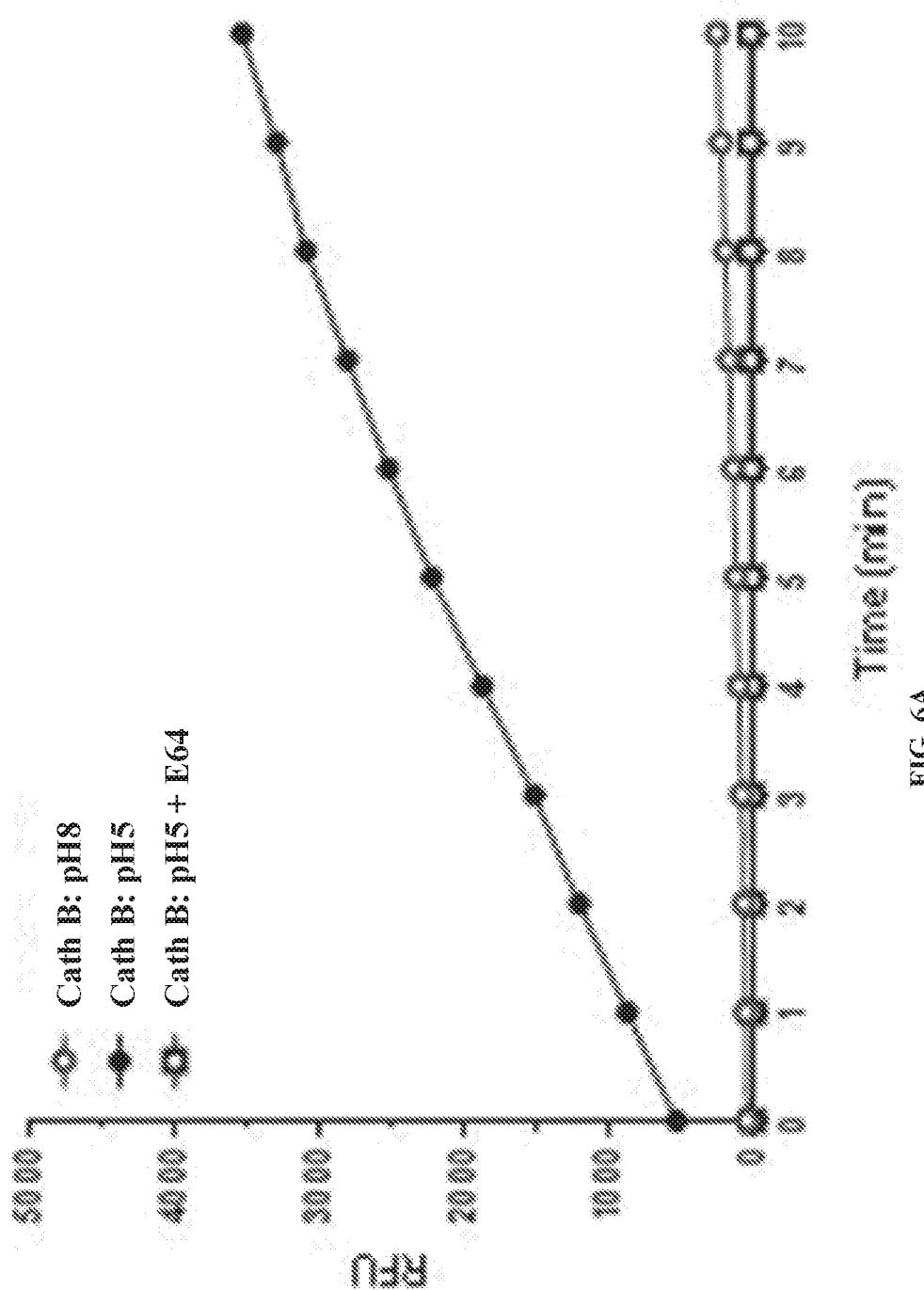
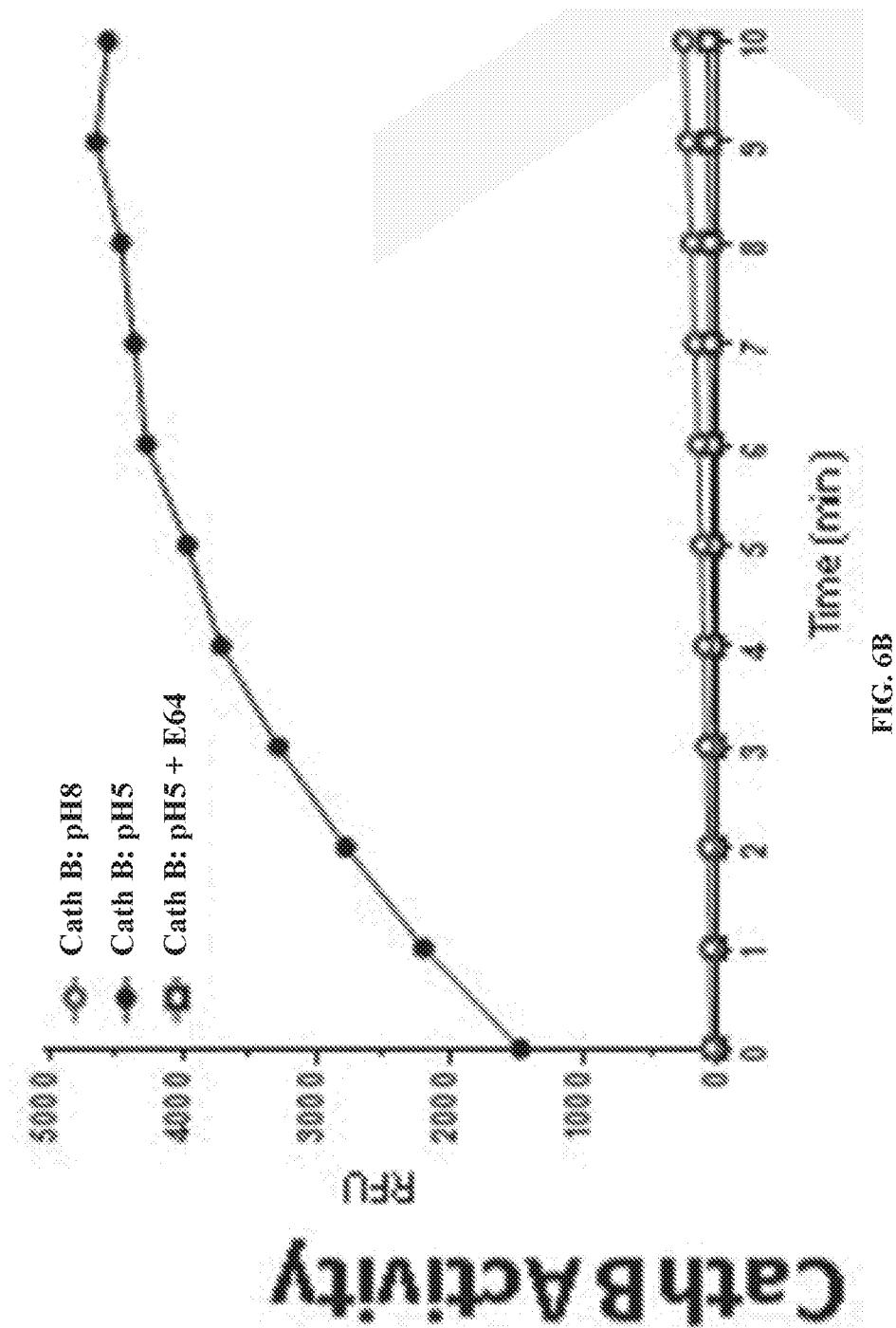



FIG. 6A

Cath B Activity

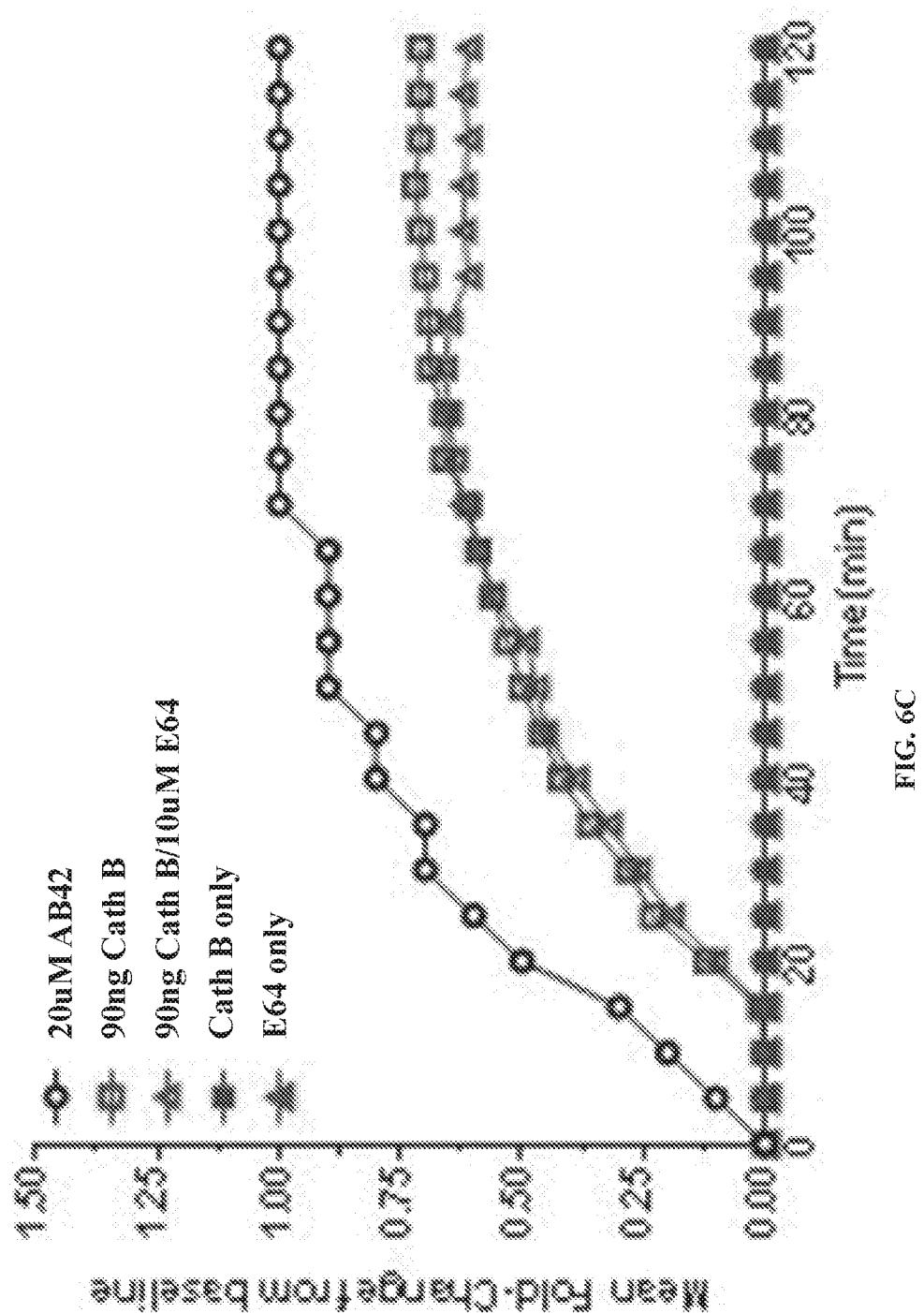
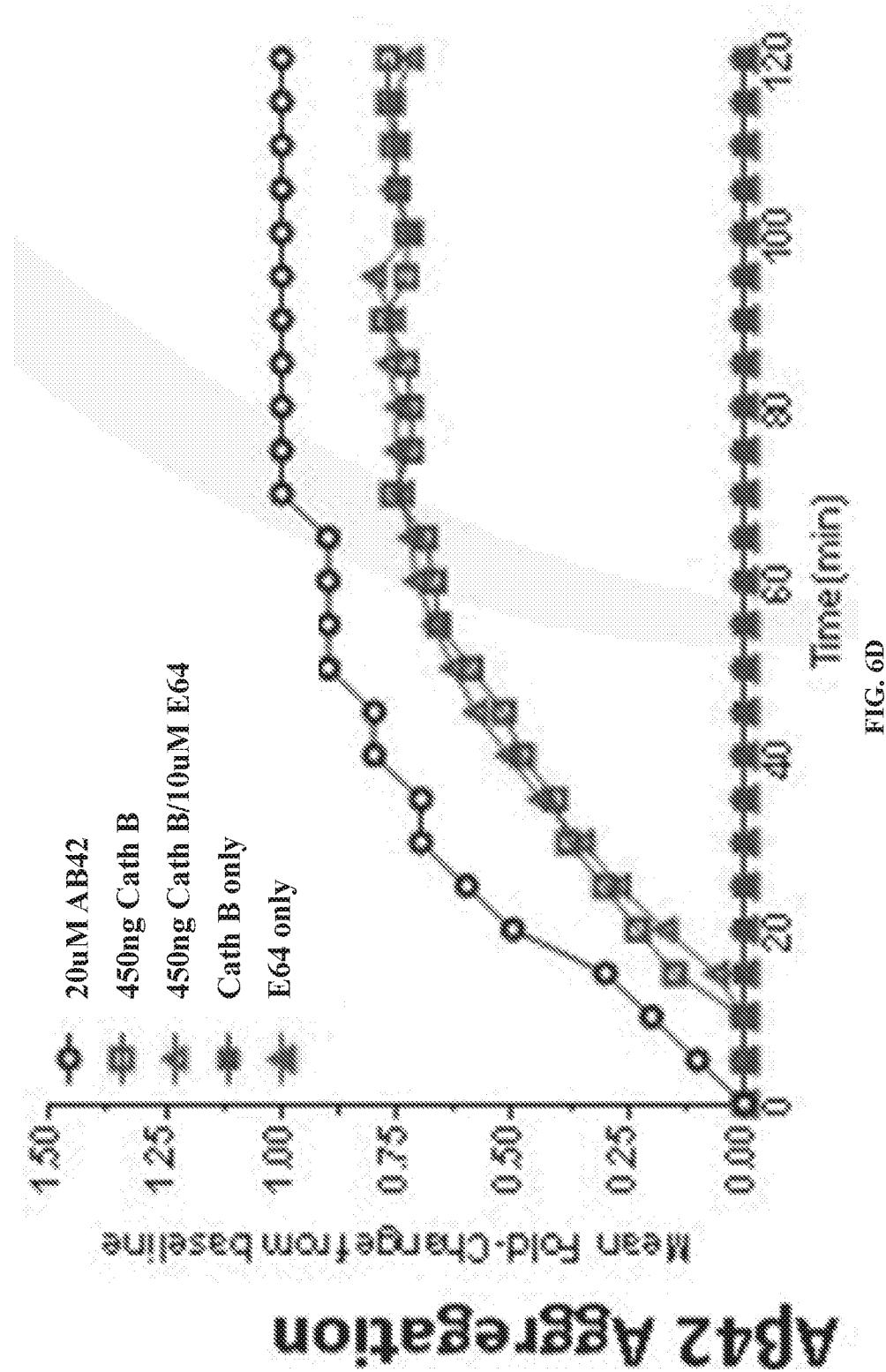
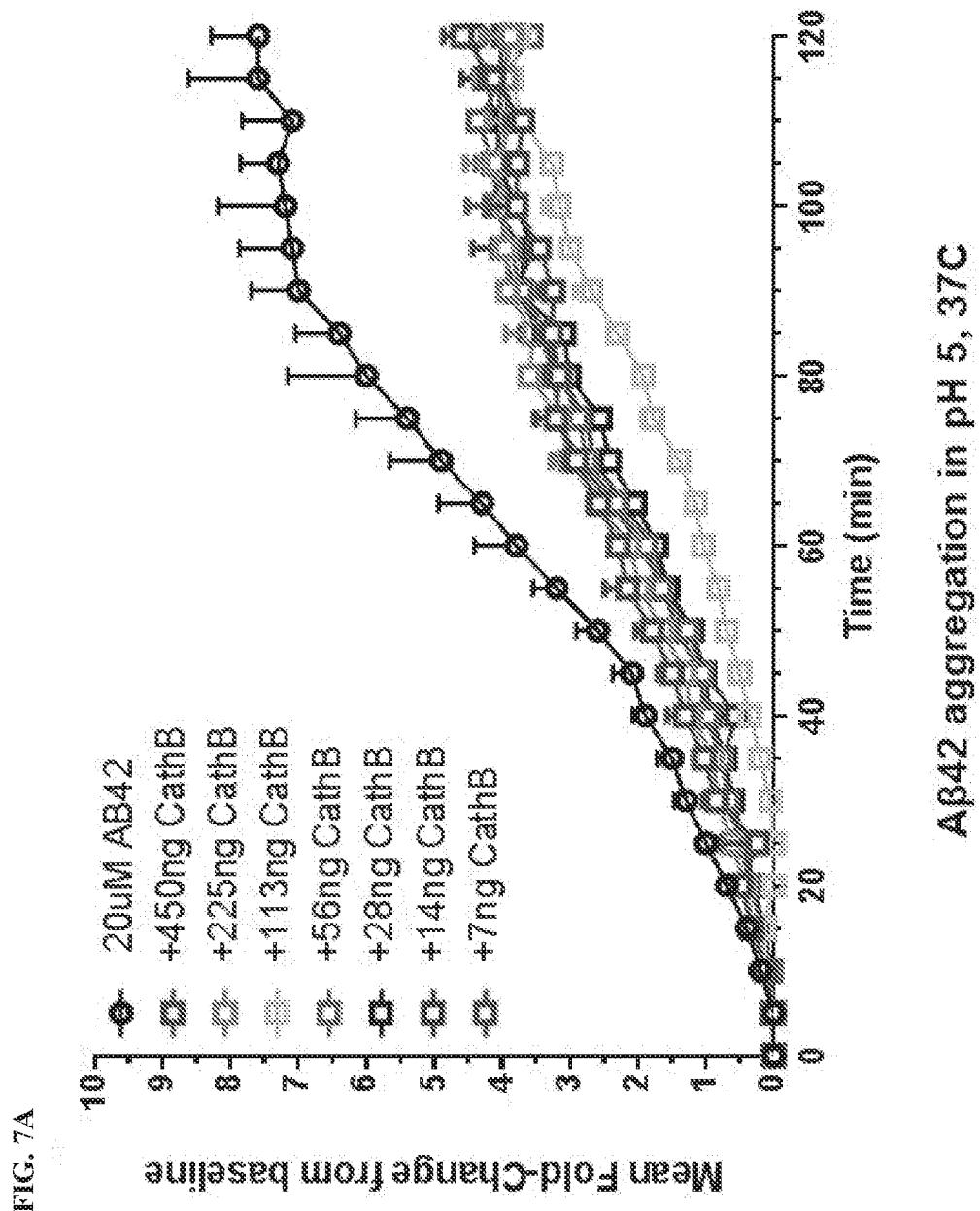




FIG. 6C

AB42 Aggregation

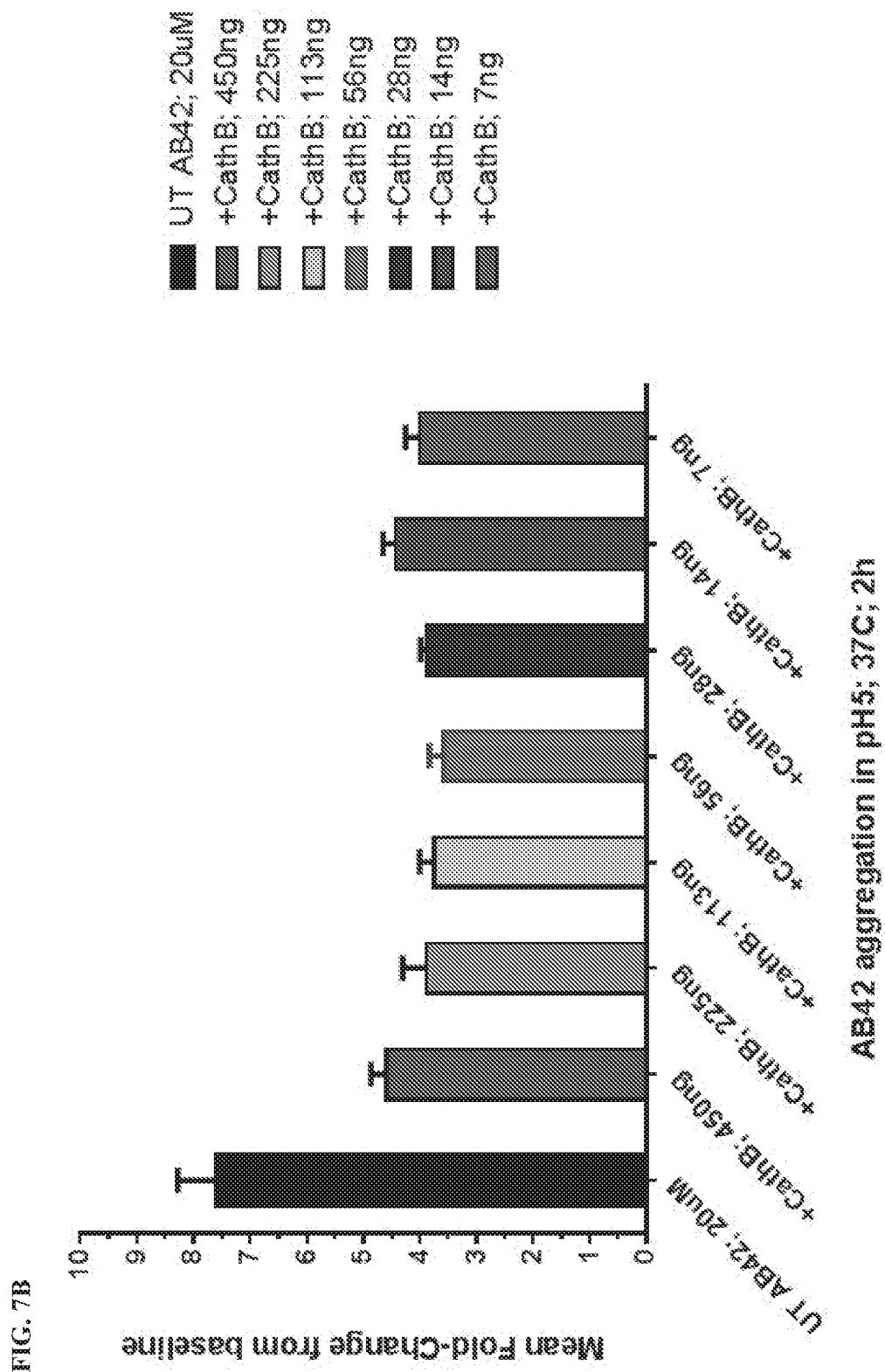


FIG. 7B

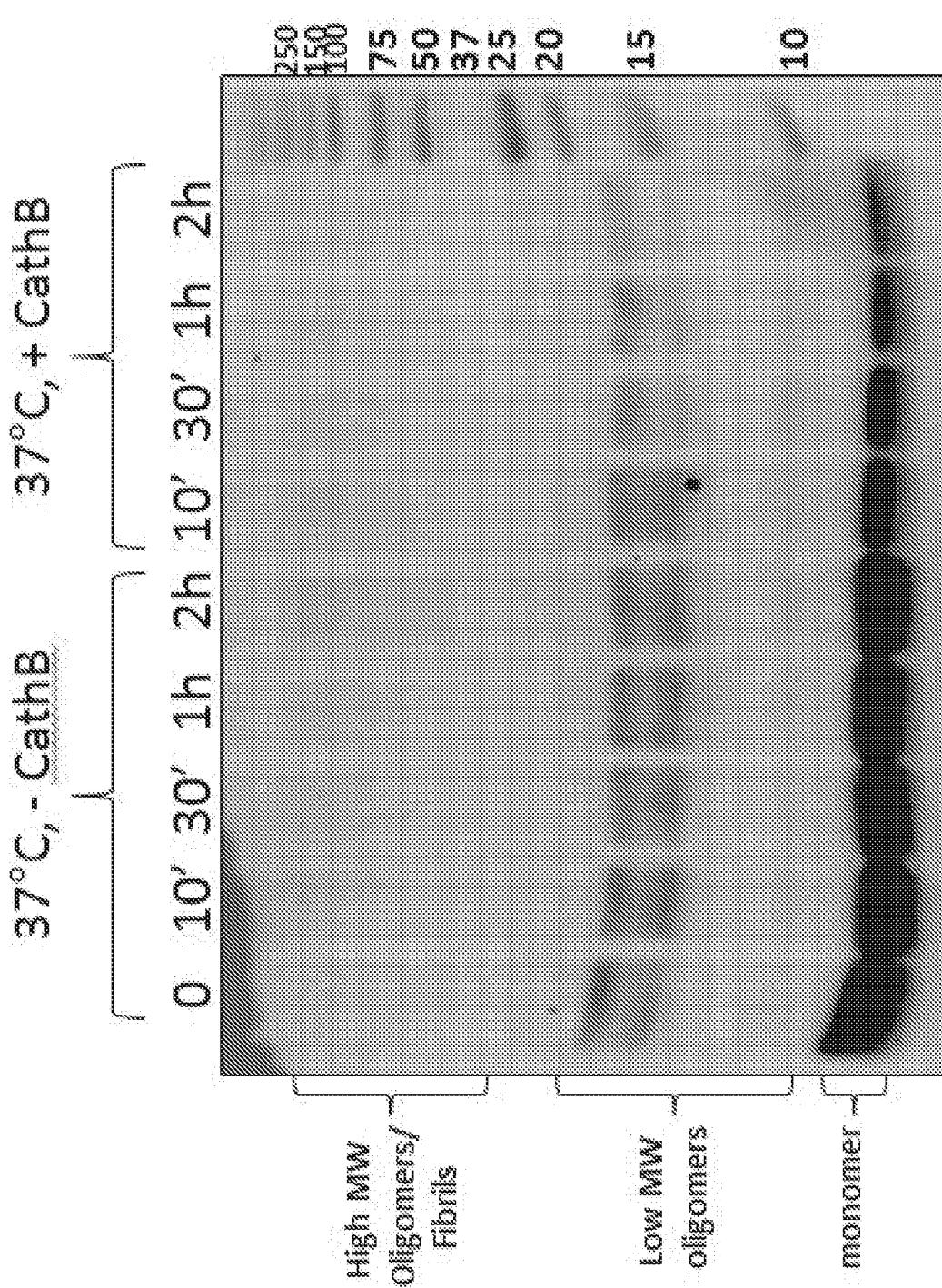


FIG. 8

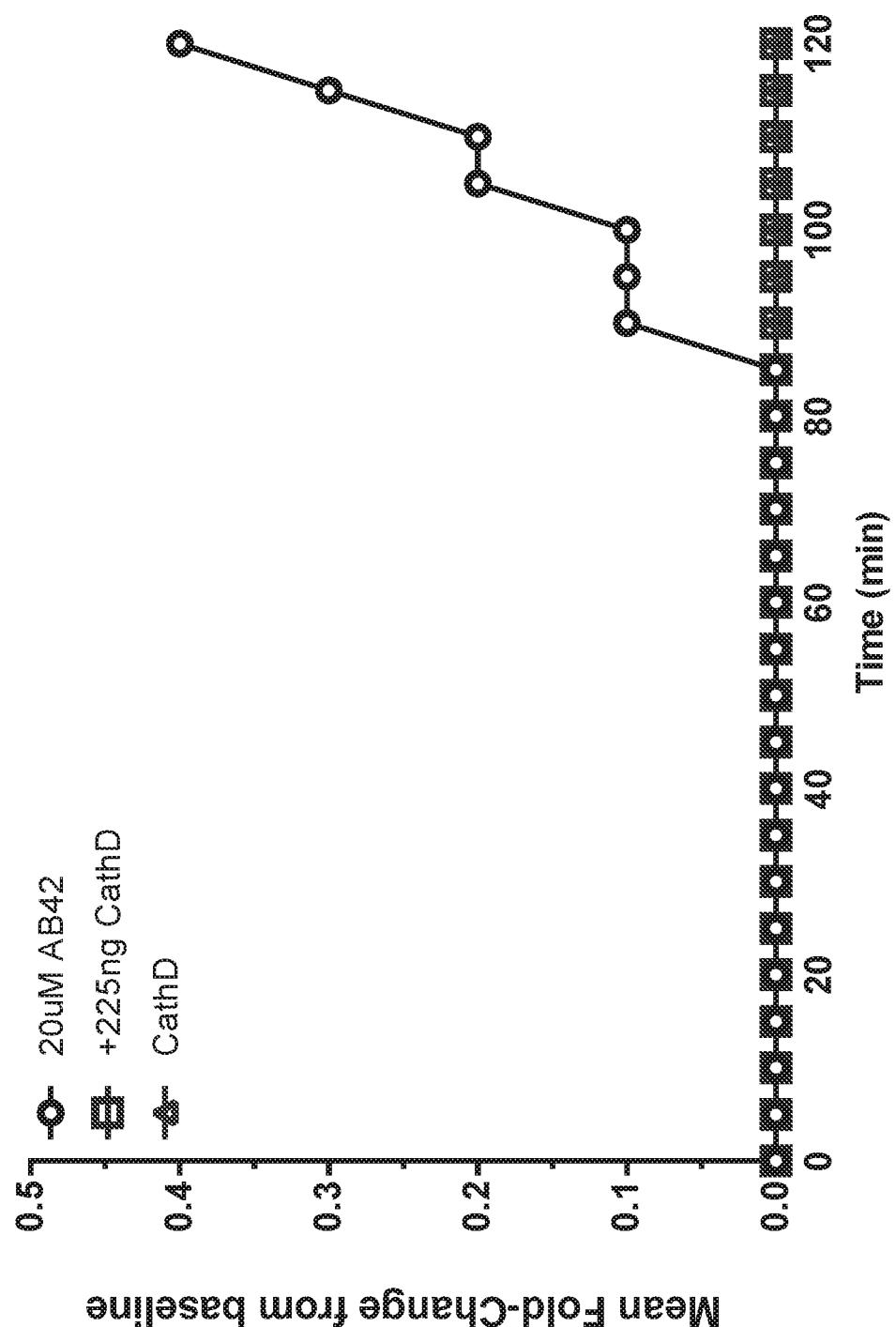


FIG. 9

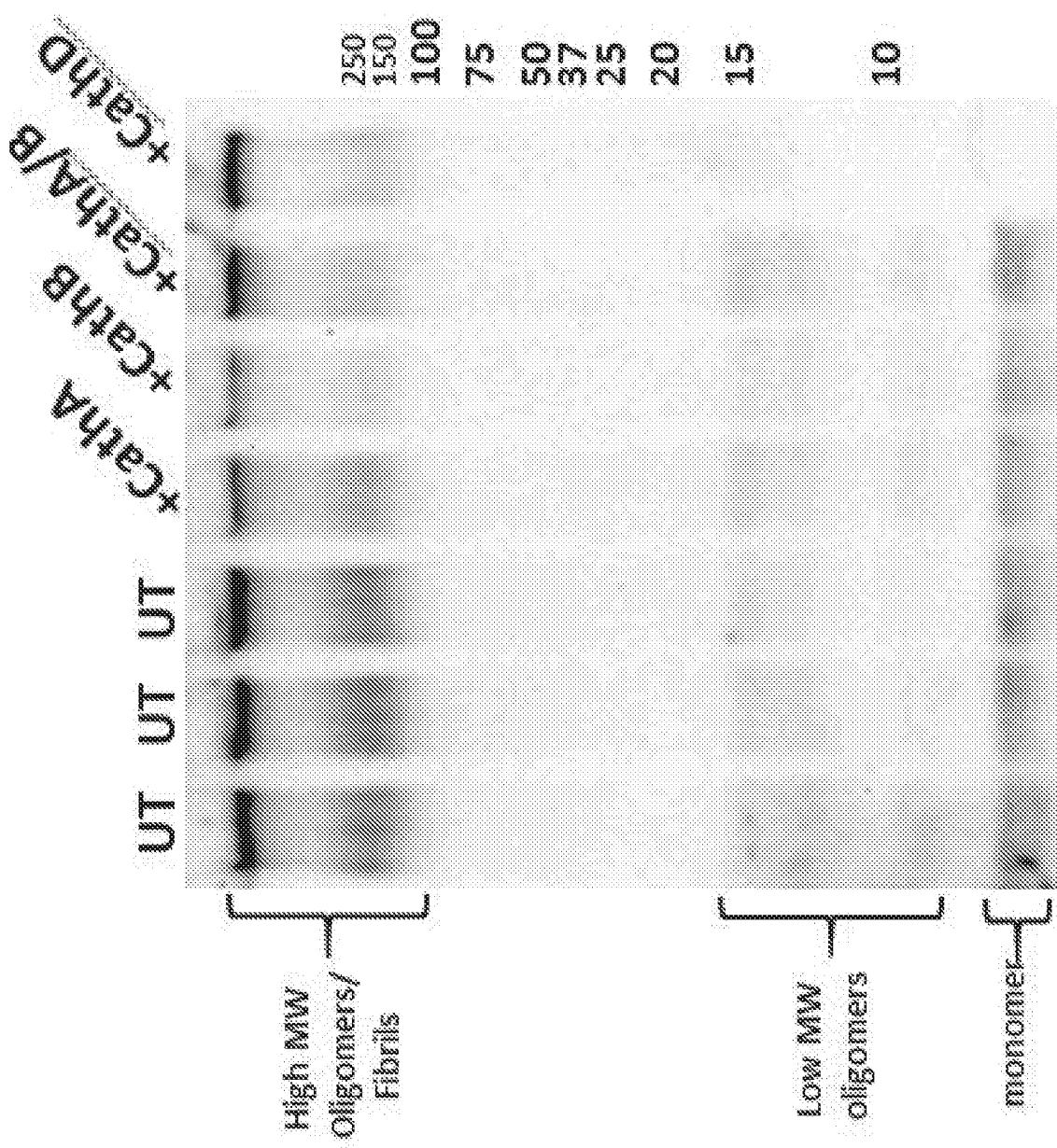


FIG. 10

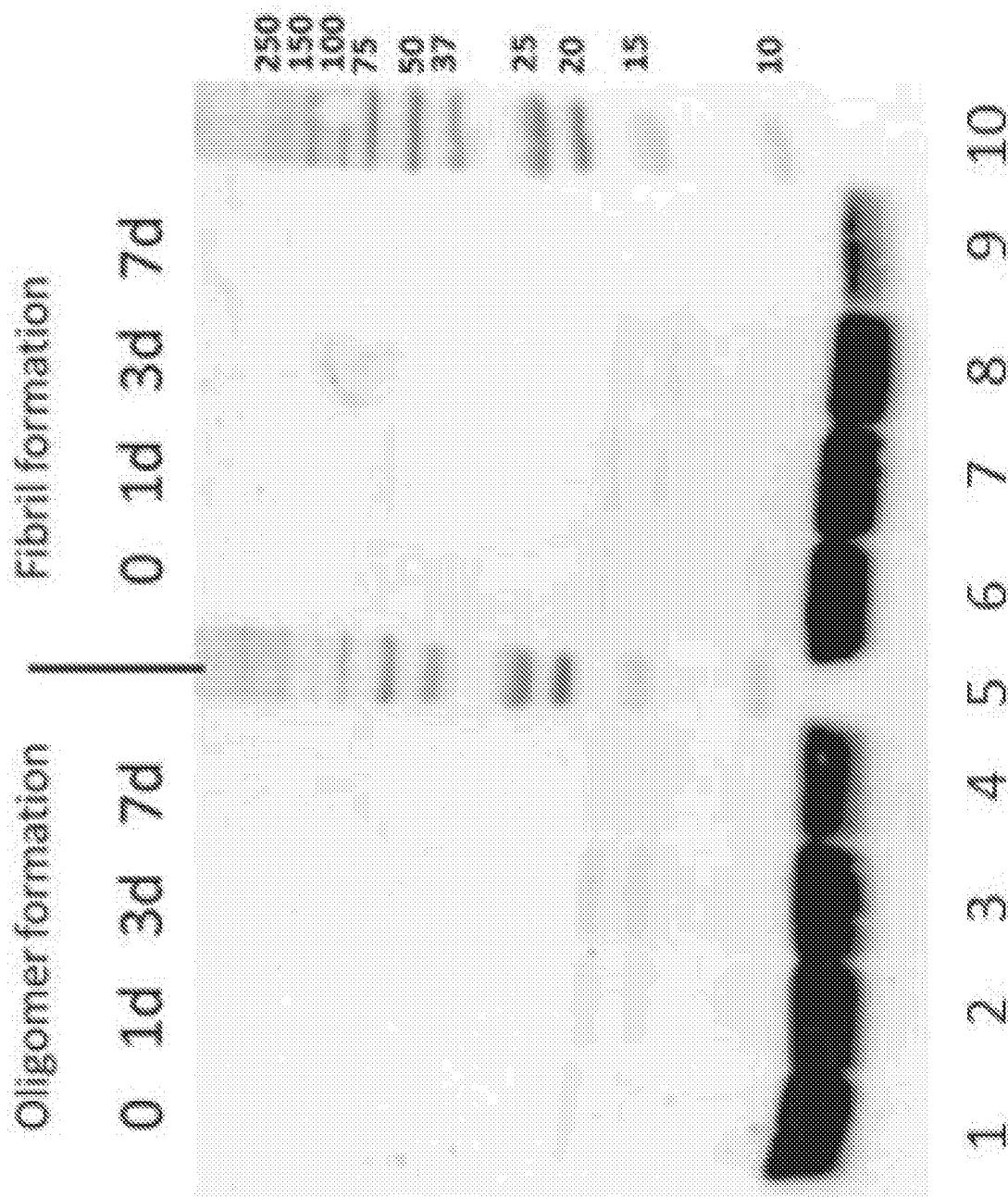
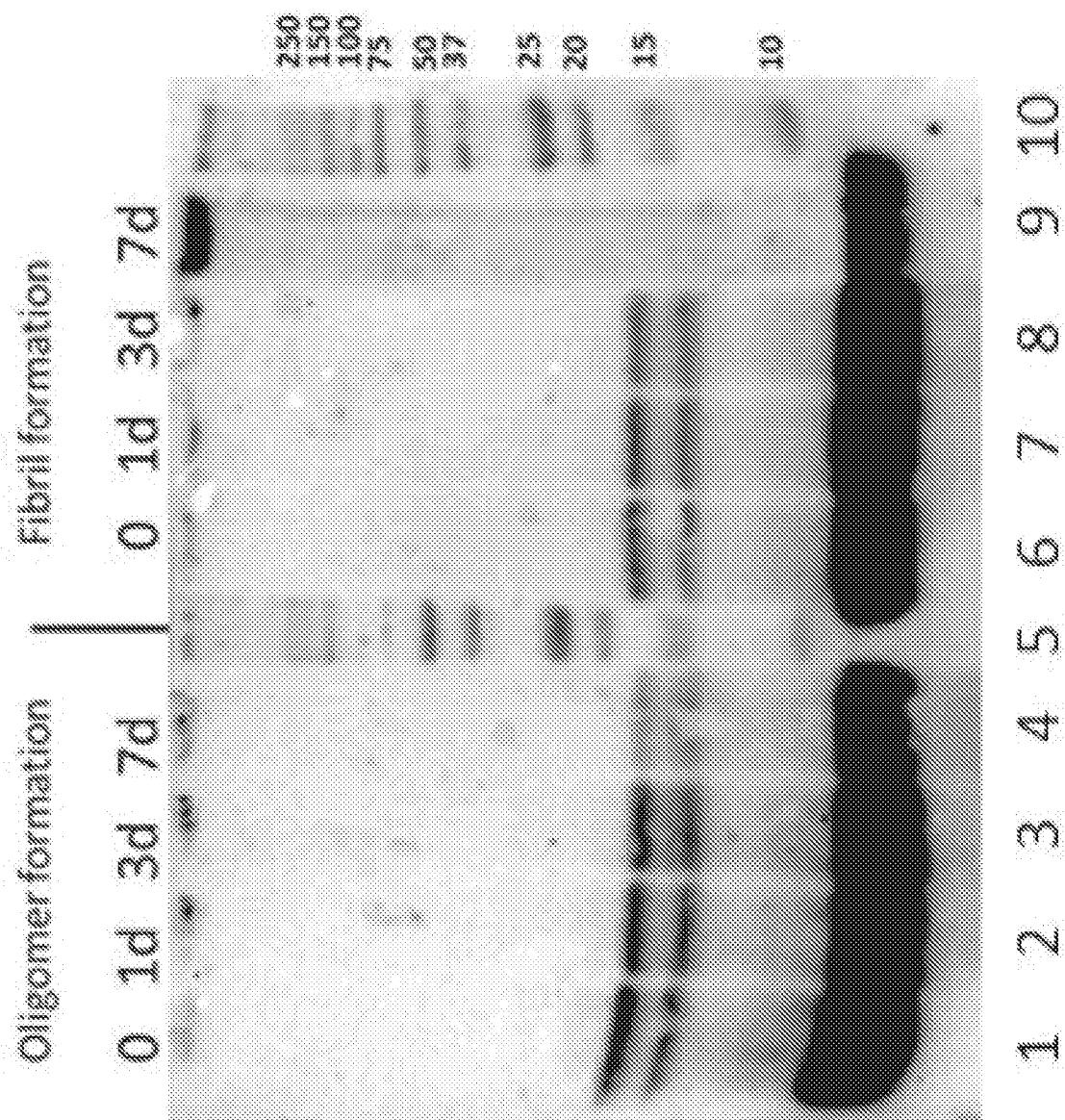



FIG. 11

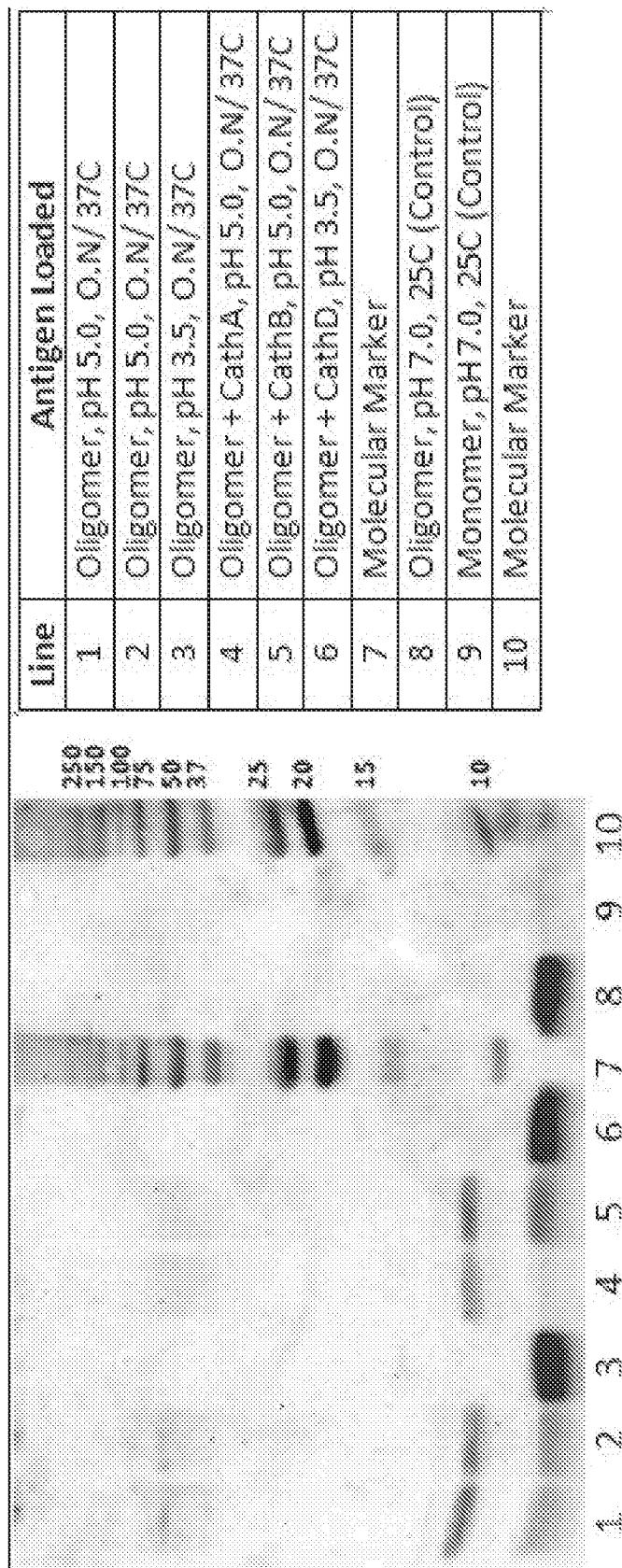


FIG. 13

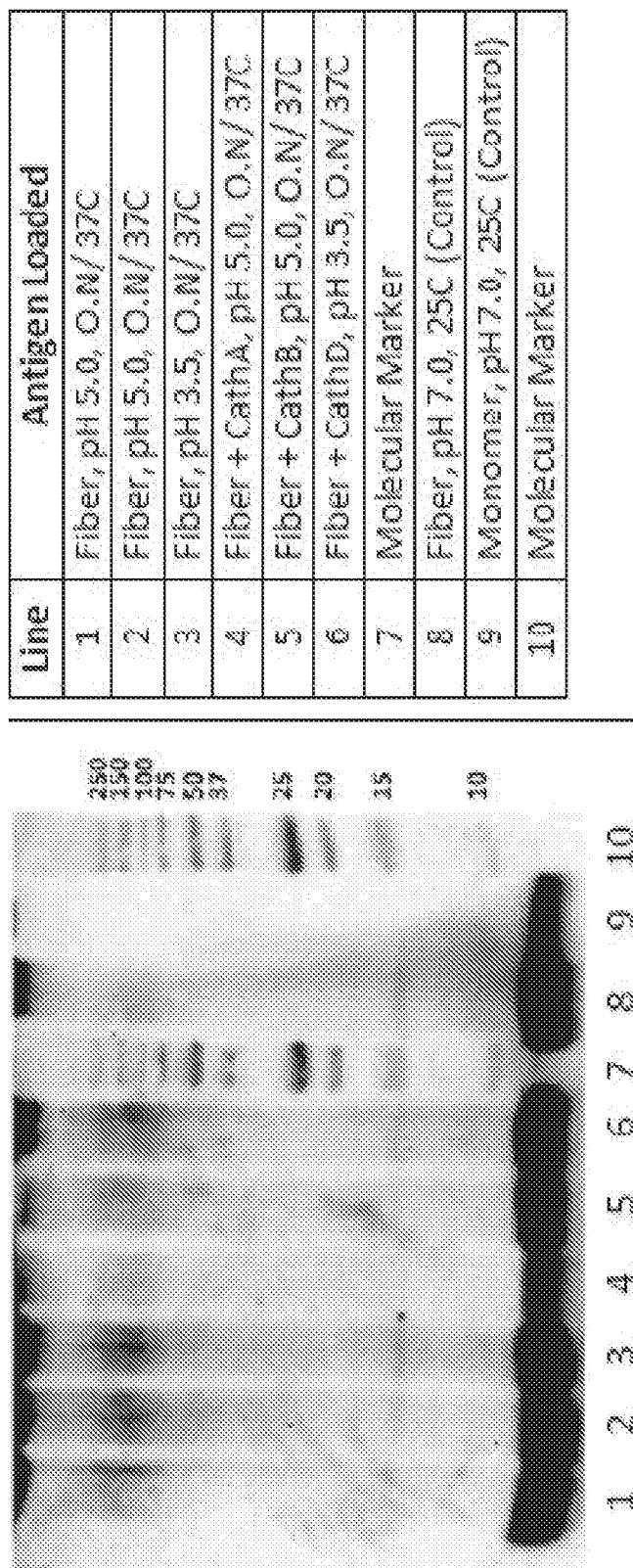


FIG. 14

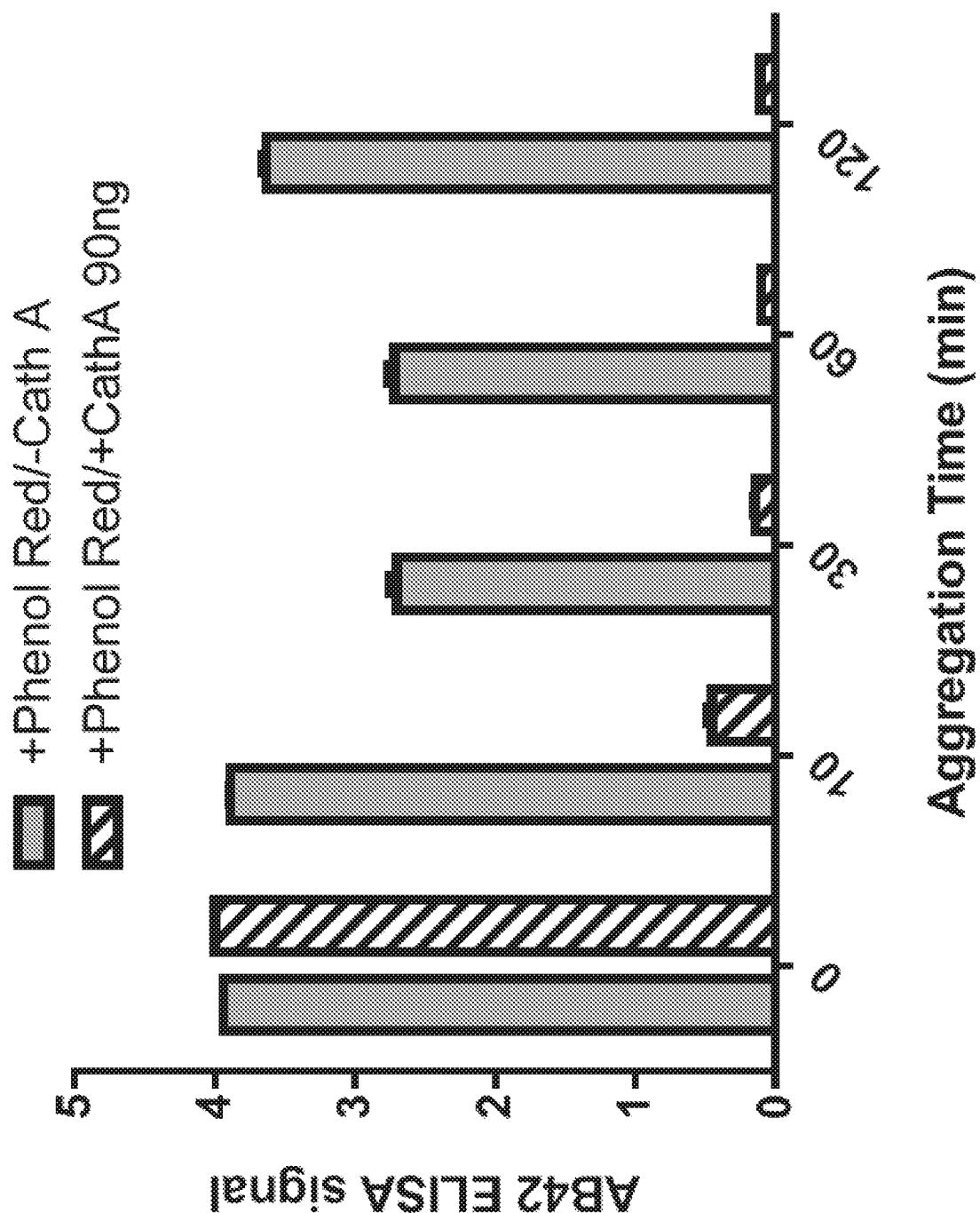


FIG. 15

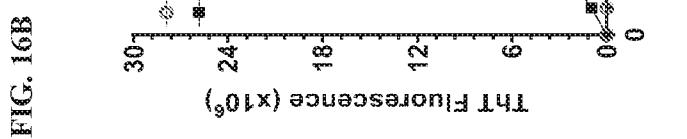
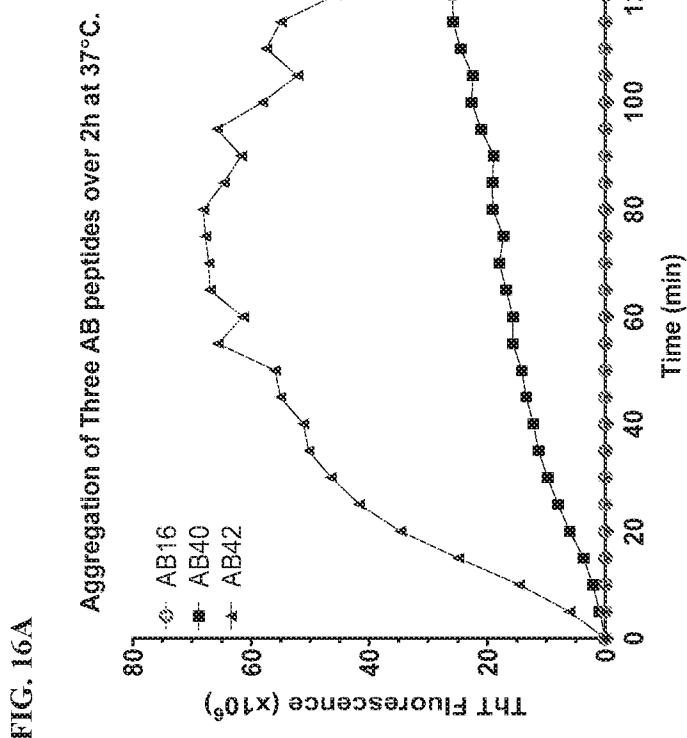



FIG. 16A-B

FIG. 17A

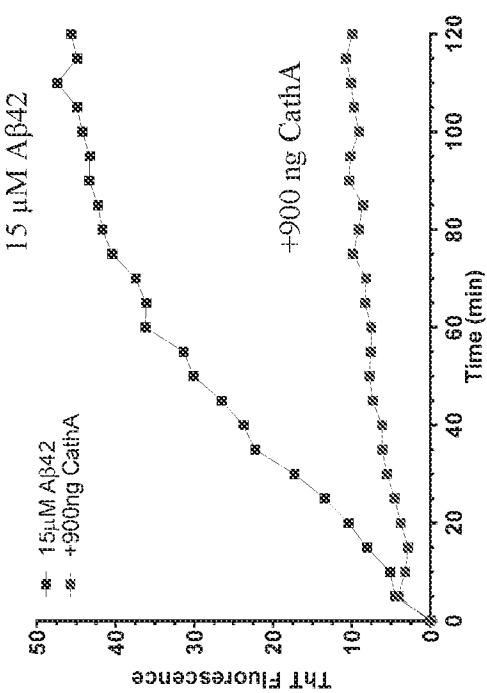


FIG. 17C

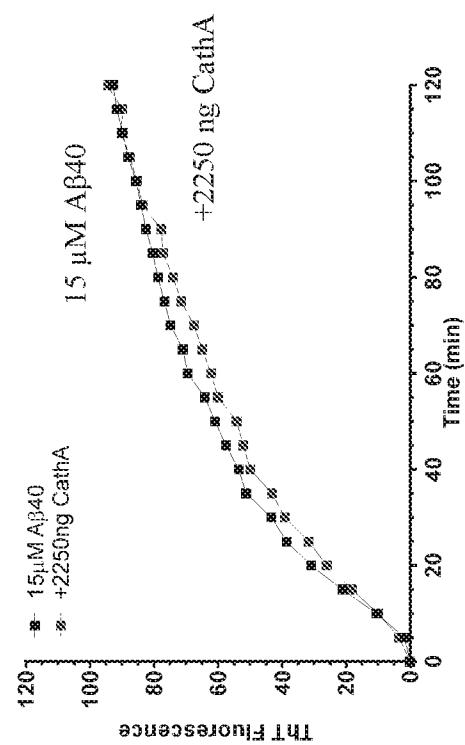


FIG. 17A-C

FIG. 17B

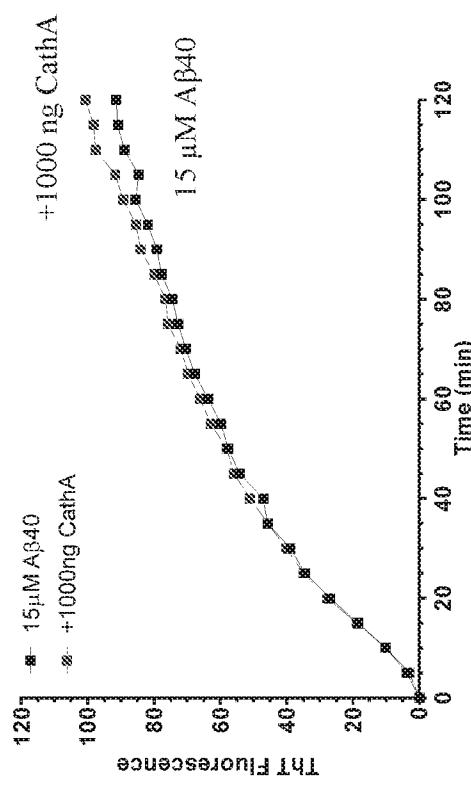


FIG. 18A

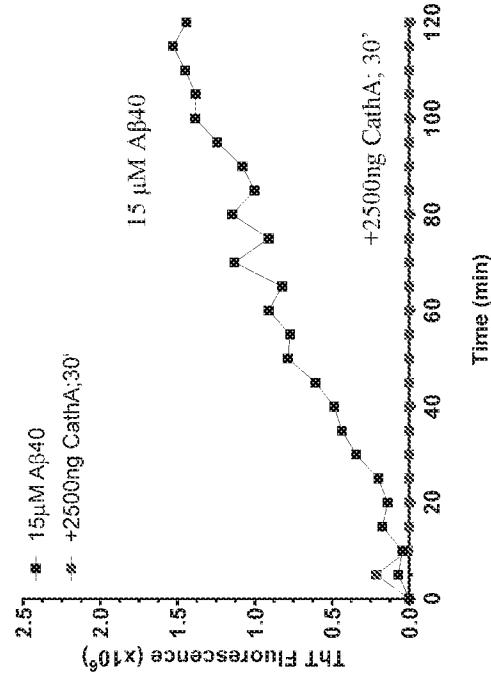


FIG. 18C

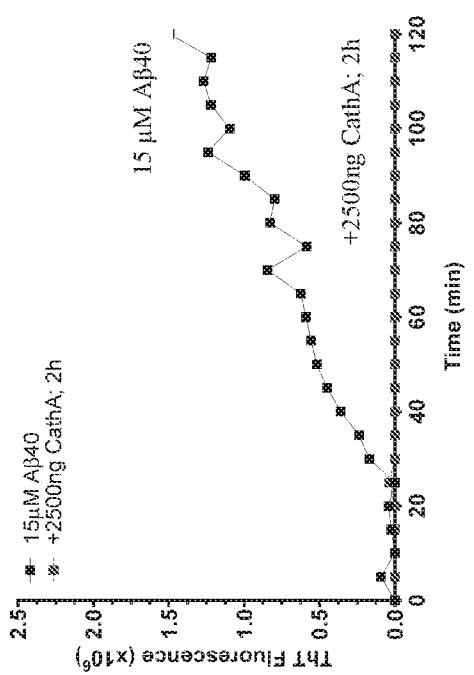
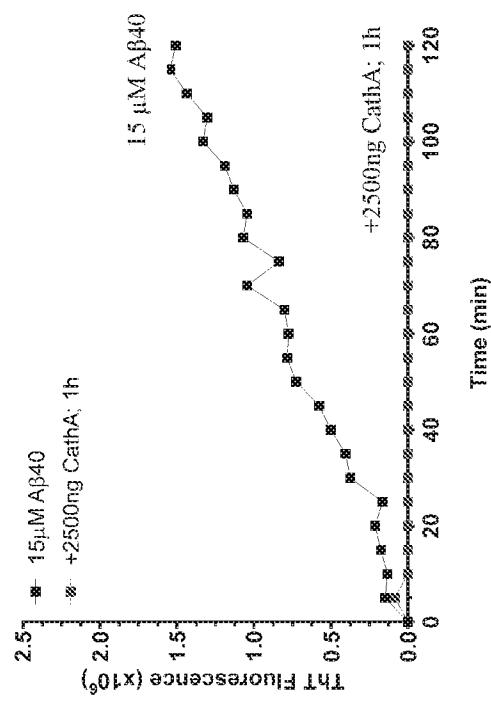



FIG. 18A-C

FIG. 18B

Time (min)

FIG. 19B

FIG. 19A

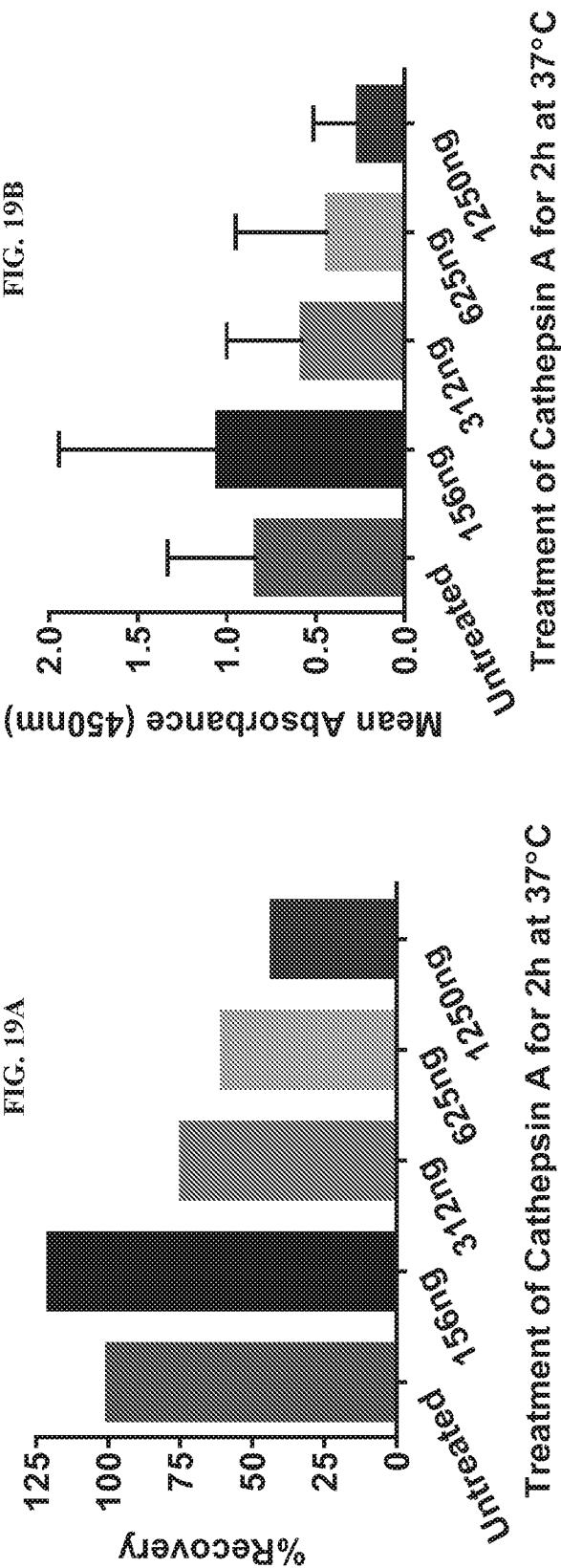


FIG. 19A-B

FIG. 20A

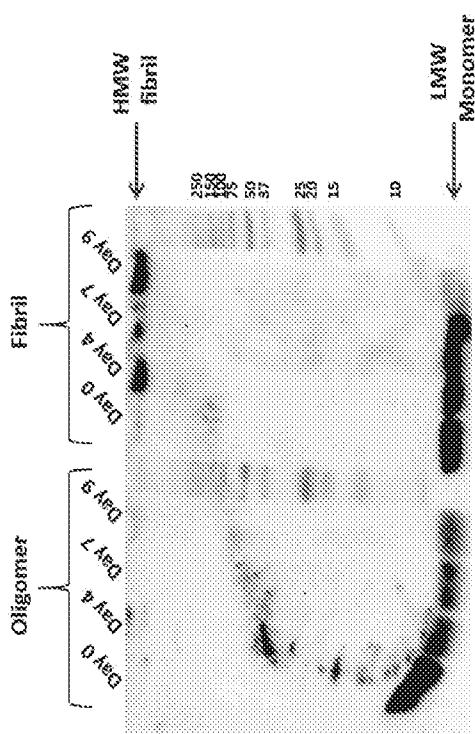


FIG. 20B

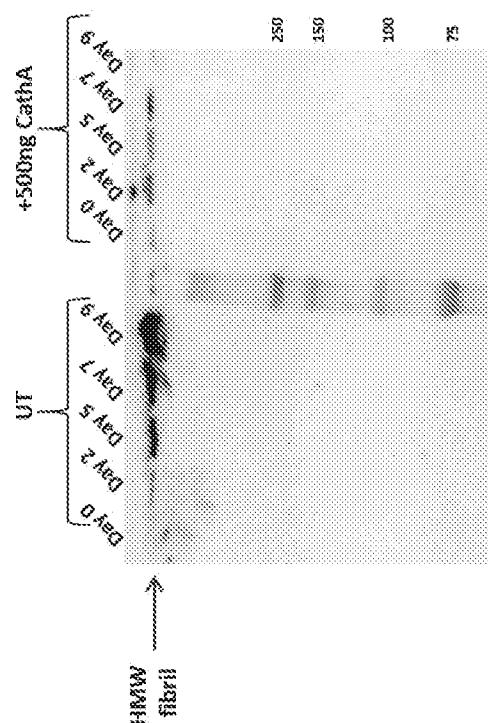


FIG. 20C

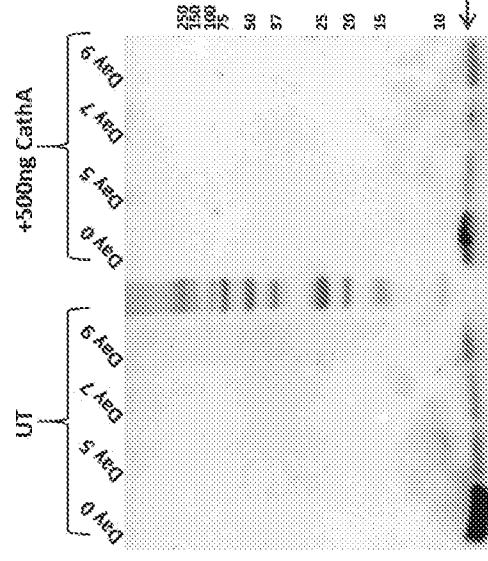


FIG. 20A-C

ULPI_034_01US_SeqList_ST25. txt
SEQUENCE LISTING

<110> Ultradenyx Pharmaceutical Inc.
Kakki S, Emi I D.
Vellard, Michel Claude
Swi stowski , Andrzej

<120> METHODS AND COMPOSITIONS FOR THE TREATMENT OF AMYLOIDOSIS

<130> ULPI -034/01US

<150> US 62/248, 713

<151> 2015-10-30

<160> 72

<170> PatentIn version 3.5

<210> 1

<211> 2254

<212> DNA

<213> Homo sapiens

<400> 1

agagtgcacc cgaatccacg ggctcgagg cagcagccat ctctcgcca tagggcaggc	60
cagctggcgc cggggctat tttggcgcc gggcaatgat ggtgaccgca aggccacatt	120
gtaaggcatt tccccctga ctcccttccc cgagcctctg cccgggggtc ctagcgccgc	180
tttctcagcc atccgccta caacttagcc gtccacaaca ggtatcatctg atcgcgtcg	240
cccggtctac gatctgcgag gcccgcggac cttgaccgg cattgaccgc caccgcccc	300
caggccgtg gggaccaaag aaggggcgaa aggaagactg tcacgtggcg ccggagttca	360
cgtgactcgt acacatgact tccagtcccc gggcgccctcc tggagagcaa ggacgcgggg	420
gagcagagat gatccgagcc gcgcgcgcgc cgctgttccct gctgctgctg ctgctgctgc	480
tgctagtgtc ctggcggtcc cgaggcgagg cagccccga ccaggacgag atccagcgcc	540
tccccggct ggccaagcag ccgtcttcc gccagactc cggtacactc aaaggctccg	600
gctccaagca cctccactac tggttgtgg agtcccagaa ggatcccag aacagccctg	660
tggtgcttt gctcaatggg ggtccggct gcagctact agatgggctc ctcacagagc	720
atggccctt cctggtccag ccagatggtg tcaccctgga gtacaacccc tattcttgg	780
atctgattgc caatgtgtt tacctggagt cccagctgg ggtggcttc tcctactccg	840
atgacaagtt ttatgcaact aatgacactg aggtcgcaca gagcaatttt gaggcccttc	900
aagatttctt ccgcctttt ccggagtaca agaacaacaa actttcctg accggggaga	960
gctatgctgg catctacatc cccaccctgg ccgtgctggt catgcaggat cccagcatga	1020
accttcaggc gctggctgtg ggcaatggac tctcctccta tgagcagaat gacaactccc	1080
tggtctactt tgcctactac catggccttc tggggAACAG gctttggct tctctccaga	1140
cccaactgctg ctctcaaaac aagtgtact tctatgacaa caaagacactg gaatgcgtga	1200
ccaatcttca ggaagtggcc cgcatgtgg gcaactctgg cctcaacatc tacaatctct	1260
atgccccgtg tgctggaggg gtgcccagcc attttaggtt tgagaaggac actgttgg	1320

ULPI_034_01US_SeqList_ST25.txt

tccaggattt	ggccaacatc	ttcaactcgcc	tgccactcaa	gcggatgtgg	catcaggcac	1380
tgctgcgctc	agggataaaa	gtgcgcattgg	accggccctg	caccaacaca	acagctgctt	1440
ccacctaccc	caacaacccg	tacgtgcgga	aggccctcaa	catcccggag	cagctgccac	1500
aatggacat	gtgcaacttt	ctggtaaact	tacagtaccg	ccgtctctac	cgaagcatga	1560
actcccagta	tctgaagctg	cttagctcac	agaaaatacca	gatccttatta	tataatggag	1620
atgtagacat	ggcctgcaat	ttcatggggg	atgagtggtt	tgtggattcc	ctcaaccaga	1680
agatggaggt	gcagcgccgg	ccctggtag	tgaagtacgg	ggacagcggg	gagcagattg	1740
ccggcttcgt	gaaggagttc	tcccacatcg	cctttctcac	gatcaagggc	gccggccaca	1800
tggttccac	cgacaagccc	ctcgctgcct	tcaccatgtt	ctcccgcttc	ctgaacaagc	1860
agccatactg	atgaccacag	caaccagctc	cacggcctga	tgcagccctt	cccagcctct	1920
cccgcttagga	gagtcctctt	ctaagcaaag	tgcccctgca	ggccgggttc	tgccgccagg	1980
actgccccct	tcccagagcc	ctgtacatcc	cagactggc	ccagggtctc	ccatagacag	2040
cctggggca	agtttagcact	ttattccgc	agcagttcct	aatggggtg	gcctggcccc	2100
ttctctgctt	aaagaatgcc	ctttatgatg	cactgattcc	atcccaggaa	cccaacagag	2160
ctcaggacag	cccacaggg	ggtgggtggac	ggactgtaat	tgatagattt	attatggaat	2220
taaattgggt	acagcttcaa	aaaaaaaaaa	aaaa			2254

<210> 2

<211> 498

<212> PRT

<213> Homo sapiens

<400> 2

Met	Thr	Ser	Ser	Pro	Arg	Ala	Pro	Pro	Gly	Gl u	Gl n	Gl y	Arg	Gly	Gly
1				5					10				15		

Al a	Gl u	Met	Ile	Arg	Al a	Al a	Pro	Pro	Pro	Leu	Phe	Leu	Leu	Leu	Leu
			20						25				30		

Leu	Leu	Leu	Leu	Leu	Val	Ser	Trp	Al a	Ser	Arg	Gly	Gl u	Al a	Al a	Pro
							35				40				45

Asp	Gl n	Asp	Gl u	Ile	Gl n	Arg	Leu	Pro	Gly	Leu	Al a	Lys	Gl n	Pro	Ser
	50				55					60					

Phe	Arg	Gl n	Tyr	Ser	Gly	Tyr	Leu	Lys	Gly	Ser	Gly	Ser	Lys	His	Leu
	65				70				75					80	

Hi s	Tyr	Trp	Phe	Val	Gl u	Ser	Gl n	Lys	Asp	Pro	Gl u	Asn	Ser	Pro	Val
				85					90					95	

Val	Leu	Trp	Leu	Asn	Gly	Gly	Pro	Gly	Cys	Ser	Ser	Leu	Asp	Gly	Leu
				100				105					110		

ULPI_034_01US_SeqList_ST25.txt

Leu Thr Glu His Gly Pro Phe Leu Val Glu Pro Asp Glu Val Thr Leu
115 120 125

Gl u Tyr Asn Pro Tyr Ser Trp Asn Leu Ile Ala Asn Val Leu Tyr Leu
130 135 140

Gl u Ser Pro Ala Gly Val Glu Phe Ser Tyr Ser Asp Asp Lys Phe Tyr
145 150 155 160

Ala Thr Asn Asp Thr Glu Val Ala Glu Ser Asn Phe Glu Ala Leu Glu
165 170 175

Asp Phe Phe Arg Leu Phe Pro Glu Tyr Lys Asn Asn Lys Leu Phe Leu
180 185 190

Thr Glu Glu Ser Tyr Ala Gly Ile Tyr Ile Pro Thr Leu Ala Val Leu
195 200 205

Val Met Glu Asp Pro Ser Met Asn Leu Glu Glu Leu Ala Val Glu Asn
210 215 220

Gl y Leu Ser Ser Tyr Glu Glu Asn Asp Asn Ser Leu Val Tyr Phe Ala
225 230 235 240

Tyr Tyr His Glu Leu Leu Glu Asn Arg Leu Trp Ser Ser Leu Glu Thr
245 250 255

His Cys Cys Ser Glu Asn Lys Cys Asn Phe Tyr Asp Asn Lys Asp Leu
260 265 270

Gl u Cys Val Thr Asn Leu Glu Glu Val Ala Arg Ile Val Glu Asn Ser
275 280 285

Gl y Leu Asn Ile Tyr Asn Leu Tyr Ala Pro Cys Ala Glu Glu Val Pro
290 295 300

Ser His Phe Arg Tyr Glu Lys Asp Thr Val Val Val Glu Asp Leu Glu
305 310 315 320

Asn Ile Phe Thr Arg Leu Pro Leu Lys Arg Met Trp His Glu Ala Leu
325 330 335

Leu Arg Ser Glu Asp Lys Val Arg Met Asp Pro Pro Cys Thr Asn Thr
340 345 350

Thr Ala Ala Ser Thr Tyr Leu Asn Asn Pro Tyr Val Arg Lys Ala Leu
355 360 365

Asn Ile Pro Glu Glu Leu Pro Glu Trp Asp Met Cys Asn Phe Leu Val
370 375 380

ULPI_034_01US_SeqList_ST25.txt

Asn Leu Gln Tyr Arg Arg Leu Tyr Arg Ser Met Asn Ser Gln Tyr Leu
385 390 395 400

Lys Leu Leu Ser Ser Gln Lys Tyr Gln Ile Leu Leu Tyr Asn Gly Asp
405 410 415

Val Asp Met Ala Cys Asn Phe Met Gly Asp Glu Trp Phe Val Asp Ser
420 425 430

Leu Asn Gln Lys Met Glu Val Gln Arg Arg Pro Trp Leu Val Lys Tyr
435 440 445

Gly Asp Ser Gly Glu Gln Ile Ala Gly Phe Val Lys Glu Phe Ser His
450 455 460

Ile Ala Phe Leu Thr Ile Lys Gly Ala Gly His Met Val Pro Thr Asp
465 470 475 480

Lys Pro Leu Ala Ala Phe Thr Met Phe Ser Arg Phe Leu Asn Lys Gln
485 490 495

Pro Tyr

<210> 3
<211> 2088
<212> DNA
<213> Homo sapiens

<400> 3	
gagctacttg aagaccaatt agagtccggg aagcgccgcg gggcctccag accggggcgg	60
gcttaagggt gacatctgcg cttaaaggg tccgggtcag ctgactcccg actctgtgga	120
gtctagctgc cagggtcgcg gcagctgcgg ggagagatga ctggggagcg acccagcacg	180
gcgcctccgg acagacgctg gggccgcgg attctggct tctggggagg ctgtagggtt	240
tgggtgttttgcgcgatctt cctgctgctg tctctggcag cctcctggtc caaggctgag	300
aacgacttcg gtctggtgca gcccgtggg accatggagc aactgctgtg ggtgagcggg	360
agacagatcg gctcagtgga cacccgcgc atcccgtca tcacagccac tccgcggggc	420
actcttctcg ccttgctga ggcgaggaaa atgtcctcat ccgtatgaggg ggccaagttc	480
atcgccctgc ggaggtccat ggaccaggc agcacatggt ctcctacagc gttcattgtc	540
aatgatgggg atgtccccga tggctgaac cttggggcag tagtggcga tggatggaca	600
ggagtagtat ttctttcta ctccctttgt gctcacaagg cccgctgcca ggtggctct	660
accatgttgg tatggagcaa ggatgtatgttgcgcgcgcgcgcgcgcgcgcgcgcgcgcgc	720
ctggatatttgcactgaatgttgc	780
gagccacggaggcccttcatgtgttgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgc	840
ttctgtctcc tcagcgatgtatgttgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgcgc	900

ULPI_034_01US_SeqList_ST25. txt

atcccctacg	gtcagccaa	gcagggaaat	gatttcaatc	ctgatgaatg	ccagccctat	960
gagctcccag	atggctcagt	cgtcatcaat	gcccggaaacc	agaacaacta	ccactgccac	1020
tgccgaattg	tcctccgcag	ctatgatgcc	tgtgatacac	taaggccccg	tgatgtgacc	1080
ttcgaccctg	agctcgtgga	ccctgtggta	gctgcaggag	ctgtagtcac	cagctccggc	1140
attgtcttct	tctccaaccc	agcacatcca	gagttccgag	tgaacctgac	cctgcgtatgg	1200
agcttcagca	atggtaccc	atggcgaaa	gagacagtcc	agctatggcc	aggccccagt	1260
ggcttattcat	ccctggcaac	cctggagggc	agcatggatg	gagaggagca	ggccccccag	1320
ctctacgtcc	tgtatgagaa	aggccgaaac	cactacacag	agagcatctc	cgtggccaaa	1380
atcagtgtct	atgggacact	ctgagctgt	ccactgccac	aggggtattc	tgccttcagg	1440
actctgcctt	caggaacacg	ggtctgtaga	gggtctgctg	gagacgcctg	aaagacagtt	1500
ccatcttcct	ttagactcca	gccttggcaa	aatcaccc	cctttaccag	gaaatact	1560
tcctttagga	ctgaaagcta	ggcgtcctct	cccacaaaaa	agtccctgccc	tcatctgaga	1620
atactgtctt	tccatatggc	taagtgtggc	cccaccaccc	tctctgccc	ccgggacat	1680
tgattggtcc	tgtcttgggc	aggcttagt	agctgtagaa	ttgaatcaat	gtgaactcag	1740
ggaactgggg	aaggctgagc	ctccctttt	gtgttgcgt	aagataaccg	acagggtgg	1800
tgaaagtccc	cagatggcag	gatatttgg	ttcagagtaa	ggacttaggt	caccaccat	1860
actgactatc	aatcaaaaatg	ttttaactt	aaaattttt	atgaaggata	atgaatattt	1920
gtagagtctc	tatggttctg	tcaatgcaca	tcttcgtgtc	tgtttccctc	atgtatcctt	1980
gtgagcctgg	gtgagttctg	gggagagacc	tgatgtgcgt	actgcctgtg	aaaatctgac	2040
tttggcaaat	caaattcctct	tttcctttt	aaaaaaaaa	aaaaaaaaa		2088

<210> 4

<211> 415

<212> PRT

<213> Homo sapiens

<400> 4

Met	Thr	Gly	Gl u	Arg	Pro	Ser	Thr	Al a	Leu	Pro	Asp	Arg	Arg	Trp	Gly
1			5					10						15	

Pro	Arg	Ile	Leu	Gly	Phe	Trp	Gly	Gly	Cys	Arg	Val	Trp	Val	Phe	Al a
								25							

Al a	Ile	Phe	Leu	Leu	Leu	Ser	Leu	Al a	Al a	Ser	Trp	Ser	Lys	Al a	Glu
								35				45			

Asn	Asp	Phe	Gly	Leu	Val	Gln	Pro	Leu	Val	Thr	Met	Glu	Gln	Leu	Leu
						55					60				

Trp	Val	Ser	Gly	Arg	Gln	Ile	Gly	Ser	Val	Asp	Thr	Phe	Arg	Ile	Pro
					70					75				80	

ULPI_034_01US_SeqList_ST25.txt

Leu Ile Thr Ala Thr Pro Arg Gly Thr Leu Leu Ala Phe Ala Glu Ala
85 90 95

Arg Lys Met Ser Ser Ser Asp Glu Gly Ala Lys Phe Ile Ala Leu Arg
100 105 110

Arg Ser Met Asp Gln Gly Ser Thr Trp Ser Pro Thr Ala Phe Ile Val
115 120 125

Asn Asp Gly Asp Val Pro Asp Gly Leu Asn Leu Gly Ala Val Val Ser
130 135 140

Asp Val Glu Thr Gly Val Val Phe Leu Phe Tyr Ser Leu Cys Ala His
145 150 155 160

Lys Ala Gly Cys Gln Val Ala Ser Thr Met Leu Val Trp Ser Lys Asp
165 170 175

Asp Gly Val Ser Trp Ser Thr Pro Arg Asn Leu Ser Leu Asp Ile Gly
180 185 190

Thr Glu Val Phe Ala Pro Gly Pro Gly Ser Gly Ile Gln Lys Gln Arg
195 200 205

Glu Pro Arg Lys Gly Arg Leu Ile Val Cys Gly His Gly Thr Leu Glu
210 215 220

Arg Asp Gly Val Phe Cys Leu Leu Ser Asp Asp His Gly Ala Ser Trp
225 230 235 240

Arg Tyr Gly Ser Gly Val Ser Gly Ile Pro Tyr Gly Gln Pro Lys Gln
245 250 255

Glu Asn Asp Phe Asn Pro Asp Glu Cys Gln Pro Tyr Glu Leu Pro Asp
260 265 270

Gly Ser Val Val Ile Asn Ala Arg Asn Gln Asn Asn Tyr His Cys His
275 280 285

Cys Arg Ile Val Leu Arg Ser Tyr Asp Ala Cys Asp Thr Leu Arg Pro
290 295 300

Arg Asp Val Thr Phe Asp Pro Glu Leu Val Asp Pro Val Val Ala Ala
305 310 315 320

Gly Ala Val Val Thr Ser Ser Gly Ile Val Phe Phe Ser Asn Pro Ala
325 330 335

His Pro Glu Phe Arg Val Asn Leu Thr Leu Arg Trp Ser Phe Ser Asn
340 345 350

ULPI_034_01US_SeqList_ST25.txt

Gly Thr Ser Trp Arg Lys Glu Thr Val Gln Leu Trp Pro Gly Pro Ser
 355 360 365

Gly Tyr Ser Ser Leu Ala Thr Leu Glu Gly Ser Met Asp Gly Glu Glu
 370 375 380

Gln Ala Pro Gln Leu Tyr Val Leu Tyr Glu Lys Gly Arg Asn His Tyr
 385 390 395 400

Thr Glu Ser Ile Ser Val Ala Lys Ile Ser Val Tyr Gly Thr Leu
 405 410 415

<210> 5

<211> 3540

<212> DNA

<213> Homo sapiens

<400> 5

ggtgtggaa tatagagctc atgtgatccg tcacatgaca gcagatccgc ggaaggcag	60
aatggactc caagcctgcc tccttagggct cttgccctc atcctctctg gcaaatgcag	120
ttacagcccg gagcccgacc agcggaggac gctgccccca ggctgggtgt ccctggcccg	180
tgcggaccct gaggaagagc tgagtctcac cttgccctg agacagcaga atgtgaaag	240
actctcgag ctggcagg ctgtgtcgg tccagctct cctcaatacg gaaaatacct	300
gaccctagag aatgtggctg atctggtag gccatccccca ctgaccctcc acacggtgca	360
aaaatggctc ttggcagccg gagcccgaaa gtgccattct gtgatcacac aggacttct	420
gacttgctgg ctgagcatcc gacaaggaga gctgctgctc cctggggctg agtttcatca	480
ctatgtggaa ggacctacgg aaacccatgt tgtaagggtcc ccacatccct accagttcc	540
acaggcattt gccccccatg tggactttgt gggggactg caccgttttc ccccaacatc	600
atccctgagg caacgtctg agccgcagg gacaggact gtaggcctgc atctgggggt	660
aacccctct gtatccgta agcatacaa cttgacctca caagacgtgg gctctggcac	720
cagaataac agccaagct gtgccagtt cctggagcag tatttccatg actcagacct	780
ggctcagttt atgcgcctct tcggtgccaa cttgcacat cagggatcag tagccgtgt	840
ggttggacaa cagggccggg gccggccgg gattgaggcc agtctagatg tgcagtacct	900
gatgagtgtt ggtgccaaca tctccacatg ggtctacagt agccctggcc ggcacatgt	960
acaggagccc ttccctgcagt ggctcatgt gctcagtaat gagtcagccc tgccacatgt	1020
gcatactgtg agctatggag atgatgagga ctccctcagc agcgcctaca tccagcgggt	1080
caacactgag ctcatgaagg ctgccgctcg gggctcacc ctgctttcg cctcaggtga	1140
cagtggggcc ggggttttgt ctgtctctgg aagacaccag ttccggcccta cttccctgc	1200
ctccagcccc tatgtcacca cagtggagg cacatccctc caggaacctt tcctcatcac	1260
aatgaaatt gttgactata tcagtggtgg tggcttcagc aatgtgttcc cacggccttc	1320
ataccaggag gaagctgtaa cgaagttcct gagctctagc ccccacctgc caccatccag	1380

ULPI_034_01US_SeqList_ST25.txt

ttacttcaat	gccagtggcc	gtgcctaccc	agatgtggct	gcactttctg	atggctactg	1440
ggtggtcagc	aacagagtgc	ccattccatg	ggtgtccgga	acctcggcct	ctactccagt	1500
gtttgggggg	atcctatcct	tgatcaatga	gcacaggatc	cttagtggcc	gccccctct	1560
tggcttctc	aacccaaggc	tctaccagca	gcatggggca	ggactctttg	atgtaacccg	1620
tggctgccat	gagtcctgtc	tggatgaaga	ggtagagggc	cagggtttct	gctctggtcc	1680
tggctggat	cctgtaacag	gctgggaac	acccaacttc	ccagcttgc	tgaagactct	1740
actcaacccc	tgacccttgc	ctatcaggag	agatggcttgc	tcccctgccc	tgaagctggc	1800
agttcagtcc	cttattctgc	cctgttgaa	gccctgctga	accctcaact	attgactgct	1860
gcagacagct	tatctcccta	accctgaaat	gctgtgagct	tgacttgact	cccaacccta	1920
ccatgctcca	tcatactcag	gtctccctac	tcctgcctta	gattcctcaa	taagatgctg	1980
taactagcat	ttttgaatg	cctctccctc	cgcatctcat	ctttctcttt	tcaatcaggc	2040
ttttccaaag	ggttgtatac	agactctgtg	cactattca	cttgatattc	attcccaat	2100
tcactgcaag	gagacctcta	ctgtcaccgt	ttactcttgc	ctaccctgac	atccagaaac	2160
aatggcctcc	agtgcatact	tctcaatctt	tgctttatgg	cctttccatc	atagttgcc	2220
actccctctc	cttacttagc	ttccaggtct	taacttctct	gactactctt	gtcttcctct	2280
ctcatcaatt	tctgcttctt	catggatgc	tgaccttcat	tgctccattt	gtagattttt	2340
gctcttctca	gtttactcat	tgtccctgg	aacaaatcac	tgacatctac	aaccattacc	2400
atctcactaa	ataagacttt	ctatccaata	atgattgata	cctcaaatgt	aagatgcgtg	2460
atactcaaca	tttcatcgtc	cacccccc	accccaaaca	attccatctc	gtttcttctt	2520
ggtaaatgat	gctatgcttt	ttccaaccaa	gccagaaacc	tgtgtcatct	tttcacccca	2580
ccttcaatca	acaagtcctc	aatcaacaag	tcctactgac	tgcacatctt	aaatatatct	2640
ttatcagtcc	acaagtcctt	ccaattata	ttcccaagta	tatctagaac	ttatccactt	2700
atatccccac	tgctactacc	ttagtttagg	gctatattct	ctgaaaaaaa	agtgtcctta	2760
cttcctgcca	atccccaaagt	catctccag	agtaaaatgc	aaatccatc	aggccacttg	2820
gatgaaaacc	cttcaaggat	tactggatag	aattcaggct	ttccctcca	gcccccaatc	2880
atagctcaca	aacccctt	gctattgtt	cttaagtaaa	aaatcatttt	tcctccccc	2940
tccccaacc	ccaaggaact	ctcaactcttgc	ctcaagctgt	tccgtcccct	taccacccct	3000
gatacaactg	ccaggttaat	ttccagaatt	cttgcagac	tcagttcaga	agtcacccctc	3060
tttcgtgaat	gtttgattc	cctgaggcta	ctttatttg	gtatggctga	aaaatccat	3120
attttctaaa	caaaacctgt	ttgaatcttgc	gttctgat	ggactaggag	agagactggg	3180
tcaagtaagc	ttatccct	gaggctgttt	cctcgctgt	taagtgtgaa	tatcaatacc	3240
tgccttcat	aatcaccagg	gaataaagtg	gaataatgtt	gataacagtg	cttggcacct	3300
ggaagtaggt	ggcagatgtt	aacgccttc	ctcccttgca	ctgcgcccc	tgtgcctacc	3360
tctagcatttgc	taacgaccac	gtagtattga	aatggccagt	ttacttgtct	gccttccttt	3420

ULPI_034_01US_SeqList_ST25.txt

ccaagaccgt	tggtgcctag	aggactagaa	tcgtgtccta	tttaactttg	tgttcccagg	3480										
tcctagctca	ggagttggca	aataagaatt	aatgtctgc	tacaccgaaa	accaaaaaaa	3540										
<210> 6																
<211> 563																
<212> PRT																
<213> Homo sapiens																
<400> 6																
Met	Gly	Leu	Gln	Ala	Cys	Leu	Leu	Gly	Leu	Phe	Ala	Leu	Ile	Leu	Ser	
1								10						15		
Gly	Lys	Cys	Ser	Tyr	Ser	Pro	Glut	Pro	Asp	Gln	Arg	Arg	Thr	Leu	Pro	
							25						30			
Pro	Gly	Trp	Val	Ser	Leu	Gly	Arg	Ala	Asp	Pro	Glut	Glut	Glut	Leu	Ser	
							40						45			
Leu	Thr	Phe	Ala	Leu	Arg	Gln	Gln	Asn	Val	Glut	Arg	Leu	Ser	Glut	Leu	
						55					60					
Val	Gln	Ala	Val	Ser	Asp	Pro	Ser	Ser	Pro	Gln	Tyr	Gly	Lys	Tyr	Leu	
65										75				80		
Thr	Leu	Glut	Asn	Val	Ala	Asp	Leu	Val	Arg	Pro	Ser	Pro	Leu	Thr	Leu	
								85					95			
His	Thr	Val	Gln	Lys	Trp	Leu	Leu	Ala	Ala	Gly	Ala	Gln	Lys	Cys	His	
				100				105					110			
Ser	Val	Ile	Thr	Gln	Asp	Phe	Leu	Thr	Cys	Trp	Leu	Ser	Ile	Arg	Gln	
							115						125			
Ala	Glut	Leu	Leu	Leu	Pro	Gly	Ala	Glut	Phe	His	His	Tyr	Val	Gly	Gly	
						135					140					
Pro	Thr	Glut	Thr	His	Val	Val	Arg	Ser	Pro	His	Pro	Tyr	Gln	Leu	Pro	
145										155				160		
Gln	Ala	Leu	Ala	Pro	His	Val	Asp	Phe	Val	Gly	Gly	Leu	His	Arg	Phe	
									165				175			
Pro	Pro	Thr	Ser	Ser	Leu	Arg	Gln	Arg	Pro	Glut	Pro	Gln	Val	Thr	Gly	
							180						190			
Thr	Val	Gly	Leu	His	Leu	Gly	Val	Thr	Pro	Ser	Val	Ile	Arg	Lys	Arg	
							195					205				
Tyr	Asn	Leu	Thr	Ser	Gln	Asp	Val	Gly	Ser	Gly	Thr	Ser	Asn	Asn	Ser	
							210				220					

ULPI_034_01US_SeqList_ST25.txt

Gln Ala Cys Ala Gln Phe Leu Glu Gln Tyr Phe His Asp Ser Asp Leu
225 230 235 240

Ala Gln Phe Met Arg Leu Phe Gly Gly Asn Phe Ala His Gln Ala Ser
245 250 255

Val Ala Arg Val Val Gly Gln Gln Gly Arg Gly Arg Ala Gly Ile Glu
260 265 270

Ala Ser Leu Asp Val Gln Tyr Leu Met Ser Ala Gly Ala Asn Ile Ser
275 280 285

Thr Trp Val Tyr Ser Ser Pro Gly Arg His Glu Gly Gln Glu Pro Phe
290 295 300

Leu Gln Trp Leu Met Leu Leu Ser Asn Glu Ser Ala Leu Pro His Val
305 310 315 320

His Thr Val Ser Tyr Gly Asp Asp Glu Asp Ser Leu Ser Ser Ala Tyr
325 330 335

Ile Gln Arg Val Asn Thr Glu Leu Met Lys Ala Ala Ala Arg Gly Leu
340 345 350

Thr Leu Leu Phe Ala Ser Gly Asp Ser Gly Ala Gly Cys Trp Ser Val
355 360 365

Ser Gly Arg His Gln Phe Arg Pro Thr Phe Pro Ala Ser Ser Pro Tyr
370 375 380

Val Thr Thr Val Gly Gly Thr Ser Phe Gln Glu Pro Phe Leu Ile Thr
385 390 395 400

Asn Glu Ile Val Asp Tyr Ile Ser Gly Gly Gly Phe Ser Asn Val Phe
405 410 415

Pro Arg Pro Ser Tyr Gln Glu Glu Ala Val Thr Lys Phe Leu Ser Ser
420 425 430

Ser Pro His Leu Pro Pro Ser Ser Tyr Phe Asn Ala Ser Gly Arg Ala
435 440 445

Tyr Pro Asp Val Ala Ala Leu Ser Asp Gly Tyr Trp Val Val Ser Asn
450 455 460

Arg Val Pro Ile Pro Trp Val Ser Gly Thr Ser Ala Ser Thr Pro Val
465 470 475 480

Phe Gly Gly Ile Leu Ser Leu Ile Asn Glu His Arg Ile Leu Ser Gly
485 490 495

ULPI_034_01US_SeqList_ST25.txt

Arg Pro Pro Leu Gly Phe Leu Asn Pro Arg Leu Tyr Glu Glu His Glu
 500 505 510

Ala Gly Leu Phe Asp Val Thr Arg Gly Cys His Glu Ser Cys Leu Asp
 515 520 525

Gl u Gl u Val Gl u Gl y Gl n Gl y Phe Cys Ser Gl y Pro Gl y Trp Asp Pro
 530 535 540

Val Thr Gl y Trp Gl y Thr Pro Asn Phe Pro Ala Leu Leu Lys Thr Leu
 545 550 555 560

Leu Asn Pro

<210> 7
 <211> 3783
 <212> DNA
 <213> Homo sapiens

<400> 7		
ggggcggggc cgggagggta cttagggccg gggctggccc aggctacggc ggctgcaggg	60	
ctccggcaac cgctccggca acgccaaccg ctccgctgcg cgcaggctgg gctgcaggct	120	
ctcggctgca ggcgtgggt gatctaggat ccggcttcca acatgtggca gctctggcc	180	
tccctctgct gcctgctgggt gttggccaat gcccggagca ggccctcttt ccatcccctg	240	
tcggatgagc tggtaacta tgtcaacaaa cggaaatacca cgtggcaggc cgggcacaac	300	
ttctacaacg tggacatgag ctacttgaag aggctatgtg gtaccttcct gggtggccc	360	
aagccacccc agagagttat gtttaccgag gacctgaagc tgcctgcaag cttcgatgca	420	
cgggaacaat ggccacagtg tcccaccatc aaagagatca gagaccaggc ctccctgtggc	480	
tcctgctggg ctttcggggc tggtaagcc atctctgacc ggatctgcat ccacaccaat	540	
gcgcacgtca gcgtggaggt gtcggcggag gacctgctca catgctgtgg cagcatgtgt	600	
ggggacggct gtaatggtgg ctatcctgct gaagcttggaa acttctggac aagaaaaggc	660	
ctggtttctg gtggcctcta tgaatccat gtagggtgca gaccgtactc catccctccc	720	
tgtgagcacc acgtcaacgg ctcccggccc ccatgcacgg gggagggaga taccggcaag	780	
tgttagcaaga tctgtgagcc tggctacagc ccgacccatca aacaggacaa gcactacgga	840	
tacaattcct acagcgtctc caatagcgag aaggacatca tggccgagat ctacaaaaac	900	
ggccccgtgg agggagctt ctctgtgtat tcggacttcc tgctctacaa gtcaggagtg	960	
taccaacacg tcaccggaga gatgatgggt ggccatgcca tccgcattcc gggctgggaa	1020	
gtggagaatg gcacacccta ctggctgggt gccaactcct ggaacactga ctggggtgac	1080	
aatggcttct taaaataact cagaggacag gatcactgtg gaatcgaatc agaagtggtg	1140	
gctggaaattc cacgcaccga tcagtaactgg gaaaagatct aatctgccgt gggcctgtcg	1200	
tgccagtcct gggggcgaga tcggggtaga aatgcatttt attctttaag ttcacgtaag	1260	

ULPI_034_01US_SeqList_ST25.txt

atacaagttt cagacagggc	ctgaaggact ggattggcca	aacatcagac ctgtcttcca	1320
aggagacaa gtcctggcta	catcccagcc tgtggttaca	gtgcagacag gccatgtgag	1380
ccaccgctgc cagcacagag	cgtccttccc cctgttagact	agtgccgtag ggagtacctg	1440
ctgccccagc tgactgtggc	ccccctccgt atccatccat	ctccaggag caagacagag	1500
acgcaggaat ggaaagcgg	gttcctaaca ggtgaaagt	tccccatca gttccccag	1560
tacctccaag caagtagctt	tccacatttgc acgaggagag	acggtgttgg	1620
gagcccttg gagaacgcca	gtctcccagg cccctgcat	ctatcgagtt tgcaatgtca	1680
caacctctct gatcttgc	tcagcatgat tcttaatag	aagttttatt tttcgtgca	1740
ctctgcta atgtgggtg	agccagtgga acagcggag	acctgtgcta gttttacaga	1800
ttgcctcctt atgacgcggc	tcaaaaggaa accaagtgg	caggagttgt ttctgacc	1860
ctgatctcta ctaccacaag	gaaaatagtt taggagaac	cagctttac tgttttgaa	1920
aaattacagc ttcaccctgt	caagtttaca aggaatgcct	gtgccaataa aagtttctc	1980
caacttgaag tctactctga	tggatctca gatccttgc	cactgcctat agacttgt	2040
ctgctgtctc tctttgtccc	tgcagagaat cacgtcctgg	aactgcatgt tcttgcact	2100
cttgggactt catcttaact	tctcgctgcc ccagccatgt	tttcaaccat ggcattcc	2160
ccccaaattag ttccctgtca	tcctcgtaa ccttcttgt	aagtgcctgg taagcttgc	2220
cttgcttaag aactcaaaac	atagctgtgc tctattttt	tgtgttggt gtgactgaca	2280
gagttagatt ccgtctccca	ggctggagtg cagtggcgcc	ttctcagctc actgcaac	2340
gcagccctcct agattcaagc	gattctcctg cttcagcc	ccgagtagct gggatgac	2400
gcactcacca atatgcctgg	gtaatttttg tatttttaag	tacatacagg atttaccat	2460
gttggccagg ctatTTCAA	actccggcc tcaggtggc	tgccctgcctc agcctccaa	2520
agtgttgggaa ttacaggcgt	gagccactgg gcccgcctg	tatttttat cagccacaaa	2580
tccagcaaca agctgaggat	tcaagtcata aaacaggctt	ggtgtcttg tgatctcaca	2640
taaccaagat gctacccgt	gggaaccac atccccctgg	atgcctccca gccttggtt	2700
gggctggagt cagggcctgt	atacagtatt ttgaatttgc	atgccactgg tttgcattgc	2760
tggtcaggaa ctctagtgt	ttgcatagcc ctggttaga	aacatgttat agcagttctt	2820
ggtatagagc aaactagaag	aaccagcaat cattccactg	tcctgccaag gtacacctca	2880
gtactccct tcccaactga	agtggatga ggctagctc	ttccaaaagc attcaagtt	2940
ggcttctgat gtgactcaga	attaggaac cagatgt	atcaaataag ctctgaaaat	3000
ctgaggaaca ttgttagaaa	ggttgttaa gcatcttta	agtgccatga tgagcataac	3060
agccggccgt cgtggctcac	gcctgtaatc ccagcactt	gggaggccaa ggtggagga	3120
tgacaaggc	aggatcaa gaccagcctg	gccaacatgc tgaacaccta	3180
aaataaaaaa attagctgg	catggtggca catgcctgt	atcccagcta cttggaggc	3240
tgaggcagga gaatcgctt	aaccggag	gcggagttg cagtgagcca	3300

ULPI_034_01US_SeqList_ST25.txt

agtgcactcc	agcctcggtg	acagcgcaag	gctccgtctc	aataattaaa	aaaaaaaaaaa	3360
aaaaaaaaaa	ggccgggcgc	agtggctcaa	gcctgtaatc	ccagcacttt	gggaggctga	3420
ggcgggcaga	tcacctgagg	tcaggagttt	tgagatcagc	ctggcaaca	cggtaaaacc	3480
ccatctctac	taaaaataca	aaattagcca	agcatgctgg	cacatgcctg	taatcccagc	3540
tactcgggag	gctgaggtac	gagaatcgct	tgaacctggg	aggcagagga	tgcagtgagc	3600
cgagatcagc	ccattgcact	ccagcctggg	ggacaagagt	aatctgtgt	ctcacaaaaa	3660
aaaaaaaaagaa	aaagaaagat	gcttaacaaa	ggttaccata	agccacaaat	tcataaccac	3720
ttatccttcc	agtttcaagt	agaatatatt	cataacctca	ataaagttct	ccctgctccc	3780
aaa						3783

<210> 8

<211> 339

<212> PRT

<213> Homo sapiens

<400> 8

Met Trp Glu Leu Trp Ala Ser Leu Cys Cys Leu Leu Val Leu Ala Asn
1 5 10 15

Ala Arg Ser Arg Pro Ser Phe His Pro Leu Ser Asp Glu Leu Val Asn
20 25 30

Tyr Val Asn Lys Arg Asn Thr Thr Trp Glu Ala Gly His Asn Phe Tyr
35 40 45

Asn Val Asp Met Ser Tyr Leu Lys Arg Leu Cys Gly Thr Phe Leu Gly
50 55 60

Gly Pro Lys Pro Pro Glu Arg Val Met Phe Thr Glu Asp Leu Lys Leu
65 70 75 80

Pro Ala Ser Phe Asp Ala Arg Glu Glu Trp Pro Glu Cys Pro Thr Ile
85 90 95

Lys Glu Ile Arg Asp Glu Gly Ser Cys Gly Ser Cys Trp Ala Phe Gly
100 105 110

Ala Val Glu Ala Ile Ser Asp Arg Ile Cys Ile His Thr Asn Ala His
115 120 125

Val Ser Val Glu Val Ser Ala Glu Asp Leu Leu Thr Cys Cys Gly Ser
130 135 140

Met Cys Gly Asp Gly Cys Asn Gly Gly Tyr Pro Ala Glu Ala Trp Asn
145 150 155 160

Phe Trp Thr Arg Lys Gly Leu Val Ser Gly Gly Leu Tyr Glu Ser His
165 170 175

ULPI_034_01US_SeqList_ST25. txt

Val Gly Cys Arg Pro Tyr Ser Ile Pro Pro Cys Glu His His Val Asn
 180 185 190

Gly Ser Arg Pro Pro Cys Thr Gly Glu Gly Asp Thr Pro Lys Cys Ser
 195 200 205

Lys Ile Cys Glu Pro Gly Tyr Ser Pro Thr Tyr Lys Glu Asp Lys His
 210 215 220

Tyr Gly Tyr Asn Ser Tyr Ser Val Ser Asn Ser Glu Lys Asp Ile Met
 225 230 235 240

Ala Glu Ile Tyr Lys Asn Gly Pro Val Glu Gly Ala Phe Ser Val Tyr
 245 250 255

Ser Asp Phe Leu Leu Tyr Lys Ser Gly Val Tyr Glu His Val Thr Gly
 260 265 270

Gl u Met Met Gly Gly His Ala Ile Arg Ile Leu Gly Trp Gly Val Gl u
 275 280 285

Asn Gl y Thr Pro Tyr Trp Leu Val Ala Asn Ser Trp Asn Thr Asp Trp
 290 295 300

Gly Asp Asn Gly Phe Phe Lys Ile Leu Arg Gly Glu Asp His Cys Gly
 305 310 315 320

Ile Glu Ser Glu Val Val Ala Gly Ile Pro Arg Thr Asp Glu Tyr Trp
 325 330 335

Gl u Lys Ile

<210> 9
 <211> 1825
 <212> DNA
 <213> Homo sapiens

<400> 9		
acacatgctg catacacaca gaaacactgc aaatccactg cctccttccc tcctccctac		60
ccttccttct ctcagcattt ctatccccgc ctcctcctct tacccaaatt ttccagccga		120
tcactggagc tgacttccgc aatcccgatg gaataaatct agcaccctg atggtgtgcc		180
cacactttgc tgccgaaacg aagccagaca acagattcc atcagcagga tgtggggct		240
caaggttctg ctgctacctg tggtagctt tgctctgtac cctgaggaga tactggacac		300
ccactggag ctatggaaga agacccacag gaagcaatat aacaacaagg tggatgaaat		360
ctctcggcgt ttaatttggg aaaaaaacct gaagtatatt tccatccata accttgaggc		420
ttctcttggt gtccatacat atgaactggc tatgaaccac ctgggggaca tgaccagtga		480

ULPI_034_01US_SeqList_ST25.txt	
agagggtggtt	cagaagatga
ctggactcaa	agtaccctg
tctcattccc	gcagtaatga
caccctttat	atcccagaat
gggaaggtag	agccccagac
tctgtcgact	atcgaaagaa
aggatatgtt	actcctgtca
aaaatcaggg	tcagtgttgt
tcctgttggg	cttttagctc
tgtgggtgcc	ctggagggcc
aactcaagaa	gaaaactggc
aaactctaa	atctgagtc
ccagaaccta	gtggattgtg
tgtctgagaa	tgtggctgt
ggaggggct	acatgaccaa
tgccttccaa	tatgtgcaga
agaaccgggg	tattgactct
gaagatgcct	accatatgt
gggacaggaa	gagagttgta
tgtacaaccc	aacaggcaag
gcagctaaat	gcagaggta
cagagagatc	cccgagggga
atgagaaagc	cctgaagagg
gcagtggccc	gagtggacc
tgtctctgt	gccattgatg
caagcctgac	ctccttccag
ttttacagca	aaggtgtgta
ttatgtgaa	agctgcaata
gcgataatct	gaaccatgcg
gttttggcag	tgggatatgg
aatccagaag	gaaaacaagc
actggataat	taaaaacagc
tggggagaaaa	actggggaaa
caaaggatat	atcctcatgg
ctcgaaataa	gaacaacgccc
tgtggcattt	ccaacctggc
cagttcccc	aagatgtgac
tccagccagc	caaatccatc
ctgctcttcc	atttcttcca
cgttgtgca	gtgtacat
gcactttgga	agggagttgg
tgtgttattt	ttgaagcaga
tgttgtgata	ctgagattgt
ctgttcagtt	tcccccattt
tttgtgcttc	aatgtatcct
tcctacttt	cttctctcca
cccatgacct	ttttcactgt
ggccatcagg	actttccctg
acagctgtgt	actcttaggc
taagagatgt	gactacagcc
tgccctgac	tgtgttgtcc
cagggctgat	gctgtacagg
tacaggctgg	agatttcac
ataggtttaga	ttctcattca
cgggactagt	tagcttaag
caccctagag	gactaggta
atctgacttc	tcacttcata
agttcccttc	tatatcctca
aggttagaaat	gtctatgttt
tctactccaa	ttcataaaatc
tattcataag	tcttggtac
aagtttacat	gataaaaaaga
aatgtgattt	gtttccctt
ctttgcactt	ttgaaataaa
gtatttatct	cctgtctaca
gtttaataaa	tagcatctag
tacacattca	aaaaaaaaaa
aaaaaaa	aaaa

<210> 10
<211> 329
<212> PRT
<213> Homo sapiens
<400> 10

Met Trp Glu Leu Lys Val Leu Leu Leu Pro Val Val Ser Phe Ala Leu
1 5 10 15

Tyr Pro Glu Glu Ile Leu Asp Thr His Trp Glu Leu Trp Lys Lys Thr
20 25 30

His Arg Lys Glu Tyr Asn Asn Lys Val Asp Glu Ile Ser Arg Arg Leu
35 40 45

Ile Trp Glu Lys Asn Leu Lys Tyr Ile Ser Ile His Asn Leu Glu Ala
50 55 60

ULPI_034_01US_SeqList_ST25. txt

Ser Leu Gly Val His Thr Tyr Glu Leu Ala Met Asn His Leu Gly Asp
65 70 75 80

Met Thr Ser Glu Glu Val Val Glu Lys Met Thr Gly Leu Lys Val Pro
85 90 95

Leu Ser His Ser Arg Ser Asn Asp Thr Leu Tyr Ile Pro Glu Trp Glu
100 105 110

Gly Arg Ala Pro Asp Ser Val Asp Tyr Arg Lys Lys Gly Tyr Val Thr
115 120 125

Pro Val Lys Asn Glu Gly Glu Cys Gly Ser Cys Trp Ala Phe Ser Ser
130 135 140

Val Gly Ala Leu Glu Gly Glu Leu Lys Lys Lys Thr Gly Lys Leu Leu
145 150 155 160

Asn Leu Ser Pro Glu Asn Leu Val Asp Cys Val Ser Glu Asn Asp Gly
165 170 175

Cys Gly Gly Gly Tyr Met Thr Asn Ala Phe Glu Tyr Val Glu Lys Asn
180 185 190

Arg Gly Ile Asp Ser Glu Asp Ala Tyr Pro Tyr Val Gly Glu Glu Glu
195 200 205

Ser Cys Met Tyr Asn Pro Thr Gly Lys Ala Ala Lys Cys Arg Gly Tyr
210 215 220

Arg Glu Ile Pro Glu Gly Asn Glu Lys Ala Leu Lys Arg Ala Val Ala
225 230 235 240

Arg Val Gly Pro Val Ser Val Ala Ile Asp Ala Ser Leu Thr Ser Phe
245 250 255

Glu Phe Tyr Ser Lys Gly Val Tyr Tyr Asp Glu Ser Cys Asn Ser Asp
260 265 270

Asn Leu Asn His Ala Val Leu Ala Val Gly Tyr Gly Ile Glu Lys Gly
275 280 285

Asn Lys His Trp Ile Ile Lys Asn Ser Trp Gly Glu Asn Trp Gly Asn
290 295 300

Lys Gly Tyr Ile Leu Met Ala Arg Asn Lys Asn Asn Ala Cys Gly Ile
305 310 315 320

Ala Asn Leu Ala Ser Phe Pro Lys Met
325

ULPI_034_01US_SeqList_ST25. txt

<210> 11
 <211> 1730
 <212> DNA
 <213> Homo sapiens

<400> 11						
ggcgggtgccg	gccgaaccca	gacccgaggt	tttagaaagca	gagtcaggcg	aagctggcc	60
agaaccgcga	cctccgcaac	ctttagcgcc	atccgtggag	tgcgcctgcg	cagctacgac	120
cgcagcagga	aagcgccgcc	ggccaggccc	agctgtggcc	ggacaggac	tggaagagag	180
gacgcggctcg	agtaggtgtg	caccagccct	ggcaacgaga	gcgtctaccc	cgaactctgc	240
tggcctttag	gtggggaaagc	cggggaggc	agttgaggac	cccgcgagg	cgcgtactg	300
gttgagcggg	caggccagcc	tccgagccgg	gtggacacag	gttttaaaac	atgaatccta	360
cactcatcct	tgctgcctt	tgcctggaa	ttgcctcagc	tactctaaca	tttgatcaca	420
gttttagaggc	acagtggacc	aagtggagg	cgatgcacaa	cagattatac	ggcatgaatg	480
aagaaggatg	gaggagagca	gtgtggaga	agaacatgaa	gatgattgaa	ctgcacaatc	540
aggaatacag	ggaagggaaa	cacagttca	caatggccat	gaacgcctt	ggagacatga	600
ccagtgaaga	attcaggcag	gtgtatgat	gttttcaaaa	ccgtaagccc	aggaagggga	660
aagtgttcca	ggaacctctg	ttttatgagg	cccccagatc	tgtggattgg	agagagaaag	720
gctacgtgac	tcctgtgaag	aatcagggtc	agtgtggttc	ttgttgggct	tttagtgcta	780
ctggtgctct	tgaaggacag	atgttccgga	aaactggag	gcttatctca	ctgagtgagc	840
agaatctggt	agactgctct	gggcctcaag	gcaatgaagg	ctgcaatgg	ggcctaattgg	900
attatgcttt	ccagtatgtt	caggataatg	gaggcctgga	ctctgaggaa	tcctatccat	960
atgaggcaac	agaagaatcc	tgttaagtaca	atcccaagta	ttctgttgct	aatgacaccg	1020
gctttgtgga	catccctaag	caggagaagg	ccctgtatgaa	ggcagttgca	actgtggggc	1080
ccatttctgt	tgctattgtat	gcaggtcatg	agtccctcct	gttctataaa	gaaggcattt	1140
attttgagcc	agactgttagc	agtgaagaca	tggatcatgg	tgtgctggtg	gttggctacg	1200
gatttgaaag	cacagaatca	gataacaata	aatattggct	ggtgaagaac	agctggggtg	1260
aagaatgggg	catgggtggc	tacgtaaaga	tggccaaaga	ccggagaaac	cattgtggaa	1320
ttgcctcagc	agccagctac	cccactgtgt	gagctggtg	acggtgatga	ggaaggactt	1380
gactggggat	ggcgcgtgc	tgggaggaat	tcatcttcag	tctaccagcc	cccgctgtgt	1440
cggatcacaca	ctcgaatcat	tgaagatccg	agtgtgatgtt	gaattctgtg	atatttcac	1500
actggtaaat	gttacctcta	ttttaattac	tgctataat	agtttataat	tattgattca	1560
cttactgact	ttgcattttc	gttttaaaa	ggatgtataa	attttacct	gtttaataaa	1620
aatttaattt	caaatgttagt	ggtggggctt	ctttctat	ttgatgcact	gaattttgt	1680
gtaataaaaga	acataattgg	gctctaagcc	ataaaaaaaa	aaaaaaa		1730

<210> 12

ULPI_034_01US_SeqList_ST25. txt

<211> 333

<212> PRT

<213> Homo sapiens

<400> 12

Met Asn Pro Thr Leu Ile Leu Ala Ala Phe Cys Leu Gly Ile Ala Ser
1 5 10 15

Ala Thr Leu Thr Phe Asp His Ser Leu Glu Ala Glu Trp Thr Lys Trp
20 25 30

Lys Ala Met His Asn Arg Leu Tyr Gly Met Asn Glu Glu Gly Trp Arg
35 40 45

Arg Ala Val Trp Glu Lys Asn Met Lys Met Ile Glu Leu His Asn Glu
50 55 60

Glu Tyr Arg Glu Gly Lys His Ser Phe Thr Met Ala Met Asn Ala Phe
65 70 75 80

Gly Asp Met Thr Ser Glu Glu Phe Arg Glu Val Met Asn Gly Phe Glu
85 90 95

Asn Arg Lys Pro Arg Lys Glu Lys Val Phe Glu Glu Pro Leu Phe Tyr
100 105 110

Glu Ala Pro Arg Ser Val Asp Trp Arg Glu Lys Gly Tyr Val Thr Pro
115 120 125

Val Lys Asn Glu Gly Glu Cys Gly Ser Cys Trp Ala Phe Ser Ala Thr
130 135 140

Gly Ala Leu Glu Gly Glu Met Phe Arg Lys Thr Gly Arg Leu Ile Ser
145 150 155 160

Leu Ser Glu Glu Asn Leu Val Asp Cys Ser Gly Pro Glu Glu Asn Glu
165 170 175

Gly Cys Asn Gly Gly Leu Met Asp Tyr Ala Phe Glu Tyr Val Glu Asp
180 185 190

Asn Gly Gly Leu Asp Ser Glu Glu Ser Tyr Pro Tyr Glu Ala Thr Glu
195 200 205

Glu Ser Cys Lys Tyr Asn Pro Lys Tyr Ser Val Ala Asn Asp Thr Gly
210 215 220

Phe Val Asp Ile Pro Lys Glu Glu Lys Ala Leu Met Lys Ala Val Ala
225 230 235 240

Thr Val Gly Pro Ile Ser Val Ala Ile Asp Ala Gly His Glu Ser Phe
245 250 255

ULPI_034_01US_SeqList_ST25. txt

Leu Phe Tyr Lys Glu Gly Ile Tyr Phe Glu Pro Asp Cys Ser Ser Glu
260 265 270

Asp Met Asp His Gly Val Leu Val Val Gly Tyr Glu Phe Glu Ser Thr
275 280 285

Gl u Ser Asp Asn Asn Lys Tyr Trp Leu Val Lys Asn Ser Trp Gl y Gl u
290 295 300

Gl u Trp Gl y Met Gly Gl y Tyr Val Lys Met Ala Lys Asp Arg Arg Asn
305 310 315 320

Hi s Cys Gl y Ile Ala Ser Ala Ala Ser Tyr Pro Thr Val
325 330

<210> 13

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> signal peptide

<220>

<221> misc_feature

<222> (2)..(3)

<223> Xaa can be any naturally occurring amino acid

<400> 13

Asp Xaa Xaa Leu Leu
1 5

<210> 14

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> signal peptide

<220>

<221> misc_feature

<222> (3)..(5)

<223> Xaa can be any naturally occurring amino acid

<400> 14

Asp Gl u Xaa Xaa Xaa Leu Leu Ile
1 5

<210> 15

<211> 4

<212> PRT

<213> Artificial Sequence

<220>

<223> signal peptide

<220>

<221> misc_feature

<222> (2)..(3)

<223> Xaa can be any naturally occurring amino acid

<220>

<221> MI SC_FEATURE

<222> (4)..(4)

<223> Xaa may be an amino acid with a bulky hydrophobic side chain, such as Ile, Phe, Leu, Val, and Met

<400> 15

Tyr Xaa Xaa Xaa
1

<210> 16

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<223> signal peptide

<400> 16

Ser Phe His Asp Asp Ser Asp Glu Asp Leu Leu
1 5 10

<210> 17

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<223> signal peptide

<400> 17

Glu Glu Ser Glu Glu Arg Asp Asp His Leu Leu
1 5 10

<210> 18

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<223> signal peptide

<400> 18

Gly Tyr His Asp Asp Ser Asp Glu Asp Leu Leu
1 5 10

<210> 19

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

ULPI_034_01US_SeqList_ST25.txt

<223> signal peptide

<400> 19

Ile Thr Gly Phe Ser Asp Asp Val Pro Met Val
1 5 10

<210> 20

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<223> signal peptide

<400> 20

Ala Ser Val Ser Leu Leu Asp Asp Glu Leu Met
1 5 10

<210> 21

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<223> signal peptide

<400> 21

Ala Ser Ser Gly Leu Asp Asp Leu Asp Leu Leu
1 5 10

<210> 22

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<223> signal peptide

<400> 22

Val Glu Asn Pro Ser Ala Asp Arg Asn Leu Leu
1 5 10

<210> 23

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<223> signal peptide

<400> 23

Asn Ala Leu Ser Trp Leu Asp Glu Glu Leu Leu
1 5 10

<210> 24

<211> 7

<212> PRT

<213> Artificial Sequence

ULPI_034_01US_SeqList_ST25. txt

<220>
<223> signal peptide

<400> 24

Asp Glu Arg Ala Pro Leu Ile
1 5

<210> 25
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> signal peptide

<400> 25

Thr Glu Arg Glu Arg Leu Leu
1 5

<210> 26
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> signal peptide

<400> 26

Ser Glu Thr Glu Arg Leu Leu
1 5

<210> 27
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> signal peptide

<400> 27

Thr Asp Arg Thr Pro Leu Leu
1 5

<210> 28
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> signal peptide

<400> 28

Glu Glu Thr Glu Pro Leu Leu
1 5

<210> 29
<211> 7

ULPI_034_01US_SeqList_ST25.txt

<212> PRT
<213> Artificial Sequence

<220>
<223> signal peptide

<400> 29

Asp Asp Glu Arg Asp Leu Ile
1 5

<210> 30
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> signal peptide

<400> 30

Asn Glu Glu Leu Pro Met Leu
1 5

<210> 31
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> signal peptide

<400> 31

Gly Tyr Glu Thr Ile
1 5

<210> 32
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> signal peptide

<400> 32

Gly Tyr Glu Glu Phe
1 5

<210> 33
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> signal peptide

<400> 33

Gly Tyr Glu Thr Leu
1 5

ULPI_034_01US_SeqList_ST25.txt

<210> 34
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> signal peptide

<400> 34

Gly Tyr Gln Ser Val
1 5

<210> 35
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> signal peptide

<400> 35

Gly Tyr Glu Val Met
1 5

<210> 36
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> signal peptide

<400> 36

Ala Tyr Gln Ala Leu
1 5

<210> 37
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> signal peptide

<400> 37

Asn Tyr His Thr Leu
1 5

<210> 38
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> signal peptide

<400> 38

Gly Tyr Gln Arg Ile
1 5

ULPI_034_01US_SeqList_ST25.txt

<210> 39
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> signal peptide

<400> 39

Gly Tyr Asp Glu Leu
1 5

<210> 40
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> signal peptide

<400> 40

Gly Tyr Lys Glu Ile
1 5

<210> 41
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> signal peptide

<400> 41

Gly Tyr Arg His Val
1 5

<210> 42
<211> 2300
<212> DNA
<213> Homo sapiens

<400> 42
agagtgcacc cgaatccacg ggctcgagg cagcagccat ctctcgcca tagggcaggc 60
cagctggcgc cggggctat tttggcggc gggcaatgat ggtgaccgca aggcgacatt 120
gtaaggcatt tccccctga ctcccttccc cgagcctctg cccgggggtc ctagcgccgc 180
tttctcagcc atcccgcccta caacttagcc gtccacaaca ggatcatctg atcgctgctg 240
cccgggctac gatctgcgag gcccgcggac cttgaccgg cattgaccgc caccgcccc 300
caggtccgta gggaccaaag aaggggcggg aggaagactg tcacgtggcg ccggagttca 360
cgtgactcgt acacatgact tccagtcccc gggcgccctcc tggagagcaa ggacgcgggg 420
gagcagaggt gagctggcac cggaggctgg agggatccc cgagcccggg atcgatgatc 480
cgagccgcgc cgccgcccgt gttcctgctg ctgctgctgc tgctgctgct agtgtccctgg 540

ULPI_034_01US_SeqList_ST25. txt

gcgtcccgag	gchgaggcagc	ccccgaccag	gacgagatcc	agcgctccc	cgggctggcc	600
aagcagccgt	cttccgcca	gtactccggc	tacctcaaag	gctccggctc	caagcacctc	660
cactactggt	ttgtggagtc	ccagaaggat	cccgagaaca	gccctgtggt	gctttggctc	720
aatgggggtc	ccggctgcag	ctcactagat	gggctcctca	cagagcatgg	ccccttcctg	780
gtccagccag	atggtgtcac	cctggagtagc	aacccttatt	cttggaatct	gattgccaat	840
gtgttatacc	tggagtcccc	agctggggtg	ggcttctcct	actccgatga	caagtttat	900
gcaactaatg	acactgaggt	cgcccagagc	aattttgagg	cccttcaaga	tttcttccgc	960
ctctttccgg	agtacaagaa	caacaaactt	ttcctgaccg	gggagagcta	tgctggcatc	1020
tacatcccc	ccctggccgt	gctggatcg	caggatccc	gcatgaacct	tcaggggctg	1080
gctgtggca	atggactctc	ctcctatgag	cagaatgaca	actccctggt	ctactttgcc	1140
tactaccatg	gccttctgg	gaacaggctt	tggtcttctc	tccagaccca	ctgctgctct	1200
caaaacaagt	gtaacttcta	tgacaacaaa	gacctggaat	gcgtgaccaa	tcttcaggaa	1260
gtggcccgca	tcgtggcaaa	ctctggcctc	aacatctaca	atctctatgc	cccggtgct	1320
ggaggggtgc	ccagccat	tttagtatgag	aaggacactg	ttgtggtcca	ggatttgggc	1380
aacatcttca	ctcgccctgcc	actcaagcgg	atgtggcatc	aggcactgct	gchgctcagg	1440
gataaagtgc	gcatggaccc	cccctgcacc	aacacaacag	ctgcttccac	ctacctcaac	1500
aaccctgtacg	tgcggaaaggc	cctcaacatc	ccggagcagc	tgccacaatg	ggacatgtgc	1560
aactttctgg	taaacttaca	gtaccggcg	ctctaccgaa	gcatgaactc	ccagttatctg	1620
aagctgctta	gctcacagaa	ataccagatc	ctattatata	atggagatgt	agacatggcc	1680
tgcaatttca	tggggatga	gtggtttg	gattccctca	accagaagat	ggaggtgcag	1740
cgcggccct	ggttagtgaa	gtacggggac	agcggggagc	agattgccgg	cttcgtgaag	1800
gagttctccc	acatgcctt	tctcacgatc	aaggcgccg	gccacatggt	tcccaccgac	1860
aagcccctcg	ctgccttcac	catgttctcc	cgcttcctga	acaagcagcc	atactgatga	1920
ccacagcaac	cagctccacg	gcctgatgca	gcccctccca	gcctctcccg	ctaggagagt	1980
cctcttctaa	gcaaagtgcc	cctgcaggcc	gggttctgcc	gccaggactg	cccccttccc	2040
agagccctgt	acatcccaga	ctgggcccag	ggtctccat	agacagcctg	ggggcaagtt	2100
agcactttat	tcccgcagca	gttccctgaat	ggggtggcct	ggcccttct	ctgcttaaag	2160
aatgccctt	atgatgcact	gattccatcc	caggaaccca	acagagctca	ggacagccca	2220
cagggaggtg	gtggacggac	tgttaattgat	agattgatta	tggaattaaa	ttgggtacag	2280
cttcaaaaaaa	aaaaaaaaaa					2300

<210> 43
 <211> 480
 <212> PRT
 <213> Homo sapiens

 <400> 43

ULPI_034_01US_SeqList_ST25.txt

Met Ile Arg Ala Ala Pro Pro Pro Leu Phe Leu Leu Leu Leu Leu Leu
1 5 10 15

Leu Leu Leu Val Ser Trp Ala Ser Arg Gly Glu Ala Ala Pro Asp Glu
20 25 30

Asp Glu Ile Glu Arg Leu Pro Gly Leu Ala Lys Glu Pro Ser Phe Arg
35 40 45

Glu Tyr Ser Gly Tyr Leu Lys Gly Ser Gly Ser Lys His Leu His Tyr
50 55 60

Trp Phe Val Glu Ser Glu Lys Asp Pro Glu Asn Ser Pro Val Val Leu
65 70 75 80

Trp Leu Asn Glu Gly Pro Gly Cys Ser Ser Leu Asp Glu Leu Leu Thr
85 90 95

Glu His Glu Pro Phe Leu Val Glu Pro Asp Glu Val Thr Leu Glu Tyr
100 105 110

Asn Pro Tyr Ser Trp Asn Leu Ile Ala Asn Val Leu Tyr Leu Glu Ser
115 120 125

Pro Ala Glu Val Glu Phe Ser Tyr Ser Asp Asp Lys Phe Tyr Ala Thr
130 135 140

Asn Asp Thr Glu Val Ala Glu Ser Asn Phe Glu Ala Leu Glu Asp Phe
145 150 155 160

Phe Arg Leu Phe Pro Glu Tyr Lys Asn Asn Lys Leu Phe Leu Thr Glu
165 170 175

Glu Ser Tyr Ala Glu Ile Tyr Ile Pro Thr Leu Ala Val Leu Val Met
180 185 190

Glu Asp Pro Ser Met Asn Leu Glu Glu Leu Ala Val Glu Asn Glu Leu
195 200 205

Ser Ser Tyr Glu Glu Asn Asp Asn Ser Leu Val Tyr Phe Ala Tyr Tyr
210 215 220

His Glu Leu Leu Glu Asn Arg Leu Trp Ser Ser Leu Glu Thr His Cys
225 230 235 240

Cys Ser Glu Asn Lys Cys Asn Phe Tyr Asp Asn Lys Asp Leu Glu Cys
245 250 255

Val Thr Asn Leu Glu Glu Val Ala Arg Ile Val Glu Asn Ser Glu Leu
260 265 270

ULPI_034_01US_SeqList_ST25.txt

Asn Ile Tyr Asn Leu Tyr Ala Pro Cys Ala Gly Gly Val Pro Ser His
 275 280 285

Phe Arg Tyr Glu Lys Asp Thr Val Val Val Glu Asp Leu Gly Asn Ile
 290 295 300

Phe Thr Arg Leu Pro Leu Lys Arg Met Trp His Glu Ala Leu Leu Arg
 305 310 315 320

Ser Gly Asp Lys Val Arg Met Asp Pro Pro Cys Thr Asn Thr Thr Ala
 325 330 335

Ala Ser Thr Tyr Leu Asn Asn Pro Tyr Val Arg Lys Ala Leu Asn Ile
 340 345 350

Pro Glu Glu Leu Pro Glu Trp Asp Met Cys Asn Phe Leu Val Asn Leu
 355 360 365

Gln Tyr Arg Arg Leu Tyr Arg Ser Met Asn Ser Gln Tyr Leu Lys Leu
 370 375 380

Leu Ser Ser Gln Lys Tyr Gln Ile Leu Leu Tyr Asn Gly Asp Val Asp
 385 390 395 400

Met Ala Cys Asn Phe Met Gly Asp Glu Trp Phe Val Asp Ser Leu Asn
 405 410 415

Gln Lys Met Glu Val Gln Arg Arg Pro Trp Leu Val Lys Tyr Gly Asp
 420 425 430

Ser Gly Glu Gln Ile Ala Gly Phe Val Lys Glu Phe Ser His Ile Ala
 435 440 445

Phe Leu Thr Ile Lys Gly Ala Gly His Met Val Pro Thr Asp Lys Pro
 450 455 460

Leu Ala Ala Phe Thr Met Phe Ser Arg Phe Leu Asn Lys Gln Pro Tyr
 465 470 475 480

<210> 44

<211> 2208

<212> DNA

<213> Homo sapiens

<400> 44

agagtgcacc cgaatccacg ggctcgagg cagcagccat ctctcgcca tagggcaggc	60
cagctggcgc cggggctat tttggcggc gggcaatgat ggtgaccgca aggcacatt	120
gtaaggcatt tccccctga ctccctccc cgagcctctg cccgggggtc ctagcgccgc	180
tttctcagcc atccgccta caacttagcc gtccacaaca ggatcatctg atcgctgctg	240
cccggtac gatctgcgag gcccgcggac cttgaccgg cattgaccgc caccgcccc	300

ULPI_034_01US_SeqList_ST25. txt

caggtccgta	gggaccaaag	aaggggcggg	aggaagactg	tcacgtggcg	ccggagttca	360
cgtgactcgt	acacatgact	tccagtc(ccc	gggcgcctcc	tggagagcaa	ggacgcgggg	420
gagcagagat	gatccgagcc	gcgcgc(ccgc	cgctgttcct	gctgctgctg	ctgctgctgc	480
tgcttagtgtc	ctggcggtcc	cgaggcgagg	cagccccga	ccaggacgag	atccagcgcc	540
tccccggct	ggccaagcag	ccgtcttcc	gccagactc	cgcttaccc	aaaggctccg	600
gctccaagca	cctccactac	tggtttgtgg	agtccagaa	ggatcccgag	aacagccctg	660
tggtgcttgc	gctcaatggg	ggtcccgct	gcagctact	agatgggctc	ctcacagagc	720
atggccctt	cctgattgcc	aatgttttat	acctggagtc	cccagctggg	gtgggcttct	780
cctactccga	tgacaagttt	tatgcaacta	atgacactga	ggtcgccca	agcaattttg	840
aggcccttca	agatttcttc	cgccttttc	cgaggtacaa	gaacaacaaa	ctttcctga	900
ccggggagag	ctatgctggc	atctacatcc	ccaccctggc	cgtgctggc	atgcaggatc	960
ccagcatgaa	ccttcagggg	ctggctgtgg	gcaatggact	ctcctcctat	gagcagaatg	1020
acaactccct	ggtctacttt	gcctactacc	atggccttct	gggaaacagg	ctttggtctt	1080
ctctccagac	ccactgctgc	tctaaaaca	agtgtactt	ctatgacaac	aaagacctgg	1140
aatgcgtgac	caatcttcag	gaagtggccc	gcatcgtggg	caactctggc	ctcaacatct	1200
acaatctcta	tgccccgtgt	gctggagggg	tgcccagcca	tttaggtat	gagaaggaca	1260
ctgttgtgt	ccaggatttg	ggcaacatct	tcactcgct	gccactcaag	cggatgtggc	1320
atcaggcact	gctgcgtca	gggataaaag	tgcgcattga	ccccccctgc	accaacacaa	1380
cagctgcttc	cacctaccctc	aacaacccgt	acgtgcggaa	ggccctcaac	atcccgagc	1440
agctgccaca	atgggacatg	tgcaacttcc	tggtaaactt	acagtaccgc	cgtctctacc	1500
gaagcatgaa	ctcccagtt	ctgaagctgc	ttagctcaca	gaaataccag	atcctattat	1560
ataatggaga	tgttagacatg	gcctgcaatt	tcatggggga	ttagtggttt	gtggattccc	1620
tcaaccagaa	gatggaggtg	cagcgccggc	cctggtagt	gaagtacggg	gacagcgggg	1680
agcagattgc	cggcttcgt	aaggagttct	cccacatcgc	ctttctcagc	atcaagggcg	1740
ccggccacat	ggttcccacc	gacaagcccc	tcgctgcctt	caccatgttc	tcccgttcc	1800
tgaacaagca	gccatactga	tgaccacagc	aaccagctcc	acggcctgat	gcagcccctc	1860
ccagcctctc	ccgcttaggag	agtctcttc	taagcaaagt	gccctgcag	gccgggttct	1920
gccgccagga	ctgccccctt	cccagagccc	tgtacatccc	agactgggcc	cagggctctcc	1980
catagacagc	ctgggggcaa	gttagcactt	tattcccgca	gcagttcctg	aatgggtgg	2040
cctggccctt	tctctgctta	aagaatgccc	tttatgtgc	actgattcca	tcccaggaac	2100
ccaacagagc	tcaggacagc	ccacagggag	gtggtgacg	gactgttaatt	gatagattga	2160
ttatggaaatt	aaattgggta	cagttcaaa	aaaaaaaaaa	aaaaaaaaaa		2208

<210> 45
<211> 481
<212> PRT

ULPI_034_01US_SeqList_ST25. txt

<213> Homo sapiens

<400> 45

Met Thr Ser Ser Pro Arg Ala Pro Pro Gly Glu Glu Gly Arg Gly Gly
1 5 10 15

Ala Glu Met Ile Arg Ala Ala Pro Pro Leu Phe Leu Leu Leu
20 25 30

Leu Leu Leu Leu Val Ser Trp Ala Ser Arg Gly Glu Ala Ala Pro
35 40 45

Asp Glu Asp Glu Ile Glu Arg Leu Pro Gly Leu Ala Lys Glu Pro Ser
50 55 60

Phe Arg Glu Tyr Ser Gly Tyr Leu Lys Gly Ser Gly Ser Lys His Leu
65 70 75 80

His Tyr Trp Phe Val Glu Ser Glu Lys Asp Pro Glu Asn Ser Pro Val
85 90 95

Val Leu Trp Leu Asn Gly Gly Pro Gly Cys Ser Ser Leu Asp Gly Leu
100 105 110

Leu Thr Glu His Glu Pro Phe Leu Ile Ala Asn Val Leu Tyr Leu Glu
115 120 125

Ser Pro Ala Glu Val Glu Phe Ser Tyr Ser Asp Asp Lys Phe Tyr Ala
130 135 140

Thr Asn Asp Thr Glu Val Ala Glu Ser Asn Phe Glu Ala Leu Glu Asp
145 150 155 160

Phe Phe Arg Leu Phe Pro Glu Tyr Lys Asn Asn Lys Leu Phe Leu Thr
165 170 175

Gly Glu Ser Tyr Ala Glu Ile Tyr Ile Pro Thr Leu Ala Val Leu Val
180 185 190

Met Glu Asp Pro Ser Met Asn Leu Glu Glu Leu Ala Val Glu Asn Glu
195 200 205

Leu Ser Ser Tyr Glu Glu Asn Asp Asn Ser Leu Val Tyr Phe Ala Tyr
210 215 220

Tyr His Glu Leu Leu Glu Asn Arg Leu Trp Ser Ser Leu Glu Thr His
225 230 235 240

Cys Cys Ser Glu Asn Lys Cys Asn Phe Tyr Asp Asn Lys Asp Leu Glu
245 250 255

ULPI_034_01US_SeqList_ST25.txt

Cys Val Thr Asn Leu Glu Val Ala Arg Ile Val Gly Asn Ser Gly
260 265 270

Leu Asn Ile Tyr Asn Leu Tyr Ala Pro Cys Ala Gly Gly Val Pro Ser
275 280 285

His Phe Arg Tyr Glu Lys Asp Thr Val Val Val Glu Asp Leu Gly Asn
290 295 300

Ile Phe Thr Arg Leu Pro Leu Lys Arg Met Trp His Glu Ala Leu Leu
305 310 315 320

Arg Ser Gly Asp Lys Val Arg Met Asp Pro Pro Cys Thr Asn Thr Thr
325 330 335

Ala Ala Ser Thr Tyr Leu Asn Asn Pro Tyr Val Arg Lys Ala Leu Asn
340 345 350

Ile Pro Glu Glu Leu Pro Glu Trp Asp Met Cys Asn Phe Leu Val Asn
355 360 365

Leu Glu Tyr Arg Arg Leu Tyr Arg Ser Met Asn Ser Glu Tyr Leu Lys
370 375 380

Leu Leu Ser Ser Glu Lys Tyr Glu Ile Leu Leu Tyr Asn Gly Asp Val
385 390 395 400

Asp Met Ala Cys Asn Phe Met Gly Asp Glu Trp Phe Val Asp Ser Leu
405 410 415

Asn Glu Lys Met Glu Val Glu Arg Arg Pro Trp Leu Val Lys Tyr Glu
420 425 430

Asp Ser Gly Glu Glu Ile Ala Glu Phe Val Lys Glu Phe Ser His Ile
435 440 445

Ala Phe Leu Thr Ile Lys Glu Ala Glu His Met Val Pro Thr Asp Lys
450 455 460

Pro Leu Ala Ala Phe Thr Met Phe Ser Arg Phe Leu Asn Lys Glu Pro
465 470 475 480

Tyr

<210> 46
<211> 3945
<212> DNA
<213> Homo sapiens

<400> 46
ggggcgggc cgggagggtta ctttagggccg gggctggccc aggctacggc ggctgcaggg

60

ULPI_034_01US_SeqList_ST25.txt

ctccggcaac	cgctccggca	acgccaaccg	ctccgctgca	cgaggctgg	gctgcaggct	120
ctcgctgca	gcgctggct	ggtgtcagt	ggtgcacca	cggtcacgg	cagcctcagc	180
caccagatg	taagcgatct	ggtcccacc	tcagcctccc	gagtagtgca	ttcaggccta	240
tggagagcag	cttgcgtgg	ctggcctgc	agtacctgg	ttgcatagat	gattggcagg	300
tggatctagg	atccggcttc	caacatgtgg	cagctctgg	cctccctctg	ctgcctgctg	360
gtgttggcca	atgcccggag	caggccctct	ttccatcccc	tgtcgatga	gctggtaac	420
tatgtcaaca	aacggaatac	cacgtggcag	gccgggcaca	acttctacaa	cgtggacatg	480
agctacttga	agaggctatg	tggtaccttc	ctgggtggc	ccaagccacc	ccagagagtt	540
atgtttaccg	aggacctgaa	gctgcctgca	agttcgatg	cacgggaaca	atggccacag	600
tgtcccacca	tcaaagagat	cagagaccag	ggctcctgtg	gctcctgctg	ggccttcggg	660
gctgtggaag	ccatctctga	ccggatctgc	atccacacca	atgcgcacgt	cagcgtggag	720
gtgtcggcgg	aggacctgct	cacatgctgt	ggcagcatgt	gtggggacgg	ctgtaatgg	780
ggctatcctg	ctgaagctt	gaacttctgg	acaagaaaag	gcctggttt	tggtggcctc	840
tatgaatccc	atgtagggt	cagaccgtac	tccatccctc	cctgtgagca	ccacgtcaac	900
ggctcccgcc	ccccatgcac	gggggaggga	gatacccca	agtgtagcaa	gatctgtgag	960
cctggctaca	gccgaccta	caaacaggac	aagcaactacg	gatacaattc	ctacagcgtc	1020
tccaatagcg	agaaggacat	catggccgag	atctacaaaa	acggcccggt	ggagggagct	1080
ttctctgtgt	attcggactt	cctgctctac	aagtcaaggag	tgtaccaaca	cgtcaccgg	1140
gagatgatgg	gtggccatgc	catccgcattc	ctgggctgg	gagtggagaa	tggcacaccc	1200
tactggctgg	ttgccaactc	ctggaacact	gactgggtg	acaatggctt	ctttaaaata	1260
ctcagaggac	aggatcaactg	tggaatcgaa	tcagaagtgg	tggctggaat	tccacgcacc	1320
gatcagact	gggaaaagat	ctaattctgcc	gtgggcctgt	cgtgccagtc	ctggggcga	1380
gatcggggta	gaaatgcatt	ttattctta	agttcacgta	agatacaagt	ttcagacagg	1440
gtctgaagga	ctggattggc	caaacatcag	acctgtcttc	caaggagacc	aagtccctggc	1500
tacatcccag	cctgtggta	cagtgcagac	aggccatgtg	agccaccgct	gccagcacag	1560
agcgtccttc	cccctgtaga	ctagtgccgt	agggagttacc	tgctgcccc	gctgactgt	1620
gccccctccg	tgatccatcc	atctccaggg	agcaagacag	agacgcagga	atggaaagcg	1680
gagttcctaa	caggtgaaa	gttccccat	cagttcccc	agtagctcca	agcaagtagc	1740
tttccacatt	tgtcacagaa	atcagaggag	agacggtggt	gggagccctt	tggagaacgc	1800
cagtctccca	ggccccctgc	atctatcgag	tttgcatagt	cacaacctct	ctgatctgt	1860
gctcagcatg	attcttaat	agaagtttta	tttttcgtg	cactctgcta	atcatgtgg	1920
tgagccagt	gaacagcggg	agacctgtgc	tagtttaca	gattgcctcc	ttatgacgcg	1980
gctcaaaagg	aaaccaagt	gtcaggagtt	gtttctgacc	caactgatctc	tactaccaca	2040
aggaaaatag	tttaggagaa	accagtttt	actgttttg	aaaattaca	gcttcaccct	2100

ULPI_034_01US_SeqList_ST25.txt

gtcaagttaa	caaggaatgc	ctgtgccaat	aaaagtttc	tccaacttga	agtctactct	2160	
gatggatct	cagatcctt	gtcactgcct	atagacttgt	agctgctgtc	tctcttgc	2220	
cctgcagaga	atcacgtcct	ggaactgcat	gttcttgcga	ctttgggac	ttcatcttaa	2280	
cttctcgctg	ccccagccat	gtttcaacc	atggcatccc	tcccccaatt	agttccctgt	2340	
catccctgctc	aaccttctct	gtaagtgcct	ggtaagtttgc	cccttgctta	agaactcaaa	2400	
acatagctgt	gctctat	tttgggttg	ttgtgactga	cagagtgaga	ttccgtctcc	2460	
caggctggag	tgcagtggcg	ccttctcagc	tcactgcaac	ctgcagcctc	ctagattcaa	2520	
gcgattctcc	tgcttcagcc	ttccgagtag	ctggatgac	aggcactcac	caatatgcct	2580	
ggtaattttt	tgtat	tttta	agtacataca	ggatttcacc	atgttggcca	ggctagttc	2640
aaactcccg	cctcaggtgg	tctgcctgcc	tcagcctccc	aaagtgttgg	gattacaggc	2700	
gtgagccact	ggccctgccc	tgtat	tttttta	atcagccaca	aatccagcaa	caagctgagg	2760
attcagctca	taaaacaggc	ttgggtctt	ggtgatctca	cataaccaag	atgctacccc	2820	
gtgggaacc	acatccccct	ggtgatctc	cagccttgg	ttggctgga	gtcagggcct	2880	
gtatacagta	ttttgaattt	gtatgccact	ggtttgcat	gctggtcagg	aactctagtg	2940	
ctttgcata	ccctggttt	gaaacatgtt	atagcagttc	ttggataga	gcaaactaga	3000	
agaaccagca	atcattccac	tgtcctgcca	aggtacacct	cagtaactccc	cttcccaact	3060	
gaagtggat	gaggctagct	cttccaaaaa	gcattcaagt	ttggcttctg	atgtgactca	3120	
gaatttagga	accagatgct	agatcaaata	agctctgaaa	atctgagga	catttagga	3180	
aaggttgtt	aagcatctct	taagtgccat	gatgagcata	acagccggcc	gtcgtggctc	3240	
acgcctgtaa	tcccagcact	ttgggaggcc	aaggtggag	gatgacaagg	tcaggagttc	3300	
aagaccagcc	tggccaacat	gctgaaacct	cacctctact	aaaaatacaa	aaattagctg	3360	
ggcatggtg	cacatgcctg	taatcccagc	tacttggag	gctgaggcag	gagaatcgct	3420	
tgaacccgg	aggcggaggt	tgcagtgagc	caagacagt	ccagtgcact	ccagcctcg	3480	
tgacagcgca	aggctccgtc	tcaataatta	aaaaaaaaaa	aaaaaaaaaa	aggccgggc	3540	
gcagtggctc	aagcctgtaa	tcccagcact	ttgggaggct	gaggcgggca	gatcacctga	3600	
ggtcaggagt	tttgagatca	gccttggcaa	cacggtaaaa	ccccatctct	actaaaaata	3660	
caaaattagc	caagcatgct	ggcacatgcc	tgtatccca	gctactcggg	aggctgaggt	3720	
acgagaatcg	cttgaacctg	ggaggcagag	gatgcagt	gccgagatca	cgccattgca	3780	
ctccagcctg	ggggacaaga	gtaatctgt	gtctcaccaa	aaaaaaaaag	aaaaagaaaag	3840	
atgcttaaca	aaggttacca	taagccacaa	attcataacc	acttacccctt	ccagttcaa	3900	
gtagaatata	ttcataacct	caataaagtt	ctccctgctc	ccaaa		3945	

<210> 47
 <211> 339
 <212> PRT
 <213> Homo sapiens

ULPI_034_01US_SeqList_ST25. txt

<400> 47

Met Trp Gln Leu Trp Ala Ser Leu Cys Cys Leu Leu Val Leu Ala Asn
 1 5 10 15

Ala Arg Ser Arg Pro Ser Phe His Pro Leu Ser Asp Glu Leu Val Asn
 20 25 30

Tyr Val Asn Lys Arg Asn Thr Thr Trp Gln Ala Gly His Asn Phe Tyr
 35 40 45

Asn Val Asp Met Ser Tyr Leu Lys Arg Leu Cys Gly Thr Phe Leu Gly
 50 55 60

Gly Pro Lys Pro Pro Gln Arg Val Met Phe Thr Glu Asp Leu Lys Leu
 65 70 75 80

Pro Ala Ser Phe Asp Ala Arg Glu Gln Trp Pro Gln Cys Pro Thr Ile
 85 90 95

Lys Glu Ile Arg Asp Gln Gly Ser Cys Gly Ser Cys Trp Ala Phe Gly
 100 105 110

Ala Val Glu Ala Ile Ser Asp Arg Ile Cys Ile His Thr Asn Ala His
 115 120 125

Val Ser Val Glu Val Ser Ala Glu Asp Leu Leu Thr Cys Cys Gly Ser
 130 135 140

Met Cys Gly Asp Gly Cys Asn Gly Gly Tyr Pro Ala Glu Ala Trp Asn
 145 150 155 160

Phe Trp Thr Arg Lys Gly Leu Val Ser Gly Gly Leu Tyr Glu Ser His
 165 170 175

Val Gly Cys Arg Pro Tyr Ser Ile Pro Pro Cys Glu His His Val Asn
 180 185 190

Gly Ser Arg Pro Pro Cys Thr Gly Glu Gly Asp Thr Pro Lys Cys Ser
 195 200 205

Lys Ile Cys Glu Pro Gly Tyr Ser Pro Thr Tyr Lys Gln Asp Lys His
 210 215 220

Tyr Gly Tyr Asn Ser Tyr Ser Val Ser Asn Ser Glu Lys Asp Ile Met
 225 230 235 240

Ala Glu Ile Tyr Lys Asn Gly Pro Val Glu Gly Ala Phe Ser Val Tyr
 245 250 255

Ser Asp Phe Leu Leu Tyr Lys Ser Gly Val Tyr Gln His Val Thr Gly
 260 265 270

ULPI_034_01US_SeqList_ST25. txt

Gl u Met Met Gl y Gl y His Ala Ile Arg Ile Leu Gl y Trp Gl y Val Gl u
 275 280 285

Asn Gl y Thr Pro Tyr Trp Leu Val Ala Asn Ser Trp Asn Thr Asp Trp
 290 295 300

Gl y Asp Asn Gl y Phe Phe Lys Ile Leu Arg Gl y Gl n Asp His Cys Gl y
 305 310 315 320

Ile Gl u Ser Gl u Val Val Ala Gl y Ile Pro Arg Thr Asp Gl n Tyr Trp
 325 330 335

Gl u Lys Ile

<210> 48
 <211> 3902
 <212> DNA
 <213> Homo sapiens

<400> 48		
ggggcggggc cgggagggt a cttagggccg gggctggccc aggctacggc ggctgcaggg	60	
ctccggcaac cgctccggca acgccaaccg ctccgctgca cgccaggctgg gctgcaggct	120	
ctcggctgca ggcgtgggtg tcttcaggcc tatggagagc agcttgcgtg ggctgggcct	180	
gcagttacctg gtttgcatac atgattggca ggtggcagc acgggaagg acctgtgagt	240	
ggccaaacctg gttcagggtg atctaggatc cggcttccaa catgtggcag ctctggcct	300	
ccctctgctg cctgctgggtg ttggccaatg cccggagcag gccctcttccatccctgt	360	
cggatgagct ggtcaactat gtcaacaaac ggaataccac gtggcaggcc gggcacaact	420	
tctacaacgt ggacatgagc tacttgaaga ggctatgtgg taccttcctg ggtggccca	480	
agccacccca gagagttatg tttaccgagg acctgaagct gcctgcaagc ttcatgcac	540	
ggaaacaatg gccacagtgt cccaccatca aagagatcag agaccaggc tcctgtggct	600	
cctgctggc cttcggggct gtggaaagcca tctctgaccg gatctgcac cacaccaatg	660	
cgcacgtcag cgtggagggtg tcggcggagg acctgctcac atgctgtggc agcatgtgt	720	
gggacggctg taatggtggc tatcctgctg aagcttgaa cttctggaca agaaaaggcc	780	
tggtttctgg tggcctctat gaatccatg tagggtgcag accgtactcc atccctccct	840	
gtgagcacca cgtcaacggc tcccgcccc catgcacggg ggagggagat acccccaagt	900	
gtagcaagat ctgtgagcct ggctacagcc cgacctacaa acaggacaag cactacggat	960	
acaattccta cagcgtctcc aatagcgaga aggacatcat ggccgagatc tacaaaaacg	1020	
ccccctgga gggagcttcc tctgtgtatt cggacttcct gctctacaag tcaggagtgt	1080	
accaacacgt caccggagag atgatgggtg gccatgccat ccgcattcctg ggctggggag	1140	
tggagaatgg cacaccctac tggctgggtt ccaactcctg gaacactgac tggggtgaca	1200	

ULPI_034_01US_SeqList_ST25.txt		
atggcttctt	taaaatactc	1260
ctggaattcc	acgcaccgat	1320
gccagtcctg	ggggcgagat	1380
tacaagttc	agacagggtc	1440
ggagaccaag	tcctggctac	1500
caccgctgcc	agcacagagc	1560
tgccccagct	gactgtggcc	1620
cgcaggaatg	ttcctaacag	1680
acctccaagc	aagtagctt	1740
agccctttgg	agaacgcccag	1800
aacctctctg	atcttgtct	1860
tctgctaattc	atgtgggtga	1920
tgccctccta	tgacgcggct	1980
tgatctctac	taccacaagg	2040
aattacagct	tcaccctgtc	2100
aacttgaagt	ctactctgtat	2160
tgctgtctct	cttgcctcct	2220
ttgggacttc	atcttaactt	2280
cccaattagt	tccctgtcat	2340
ttgcttaaga	actcaaaaca	2400
agttagattc	cgtctccag	2460
cagccctcta	gattcaagcg	2520
cactcaccaa	tatgcctggg	2580
ttggccaggc	tagttcaaa	2640
gtgttggat	tacaggcgtg	2700
ccagcaacaa	gctgaggatt	2760
aaccaagatg	ctacccctgt	2820
ggctggagtc	agggcctgta	2880
gtatagagca	aactagaaga	2940
tactccctt	cccaactgaa	3000
gcttctgtatg	tgactcagaa	3060
tgaggaacat	tgttaggaaag	3120
gccggccgtc	gtggctcacg	3180
	cctgtatcc	3240
	cagcacatttgc	

ULPI_034_01US_SeqList_ST25.txt

gacaaggta	ggagttcaag	accagcctgg	ccaacatgct	gaaacctcac	ctctactaaa	3300
aatacaaaaa	ttagctggc	atggtggcac	atgcctgtaa	tcccagctac	ttgggaggct	3360
gaggcaggag	aatcgcttga	accgggagg	cggaggttgc	agtgagccaa	gacagtgc	3420
gtgcactcca	gcctcggtga	cagcgcaagg	ctccgtctca	ataattaaaa	aaaaaaaaaa	3480
aaaaaaaaag	gccgggcgca	gtggctcaag	cctgtaatcc	cagcactttg	ggaggctgag	3540
gcgggcagat	cacctgaggt	caggagttt	gagatcagcc	ttggcaacac	ggtgaaaccc	3600
catctctact	aaaaataca	aattagccaa	gcatgctggc	acatgcctgt	aatcccagct	3660
actcgggagg	ctgaggtacg	agaatcgctt	gaacctggga	ggcagaggat	gcagtgagcc	3720
gagatcacgc	cattgcactc	cagcctgggg	gacaagagtg	aatctgtgtc	tcaccaaaaa	3780
aaaaaaagaaa	aagaaagatg	cttaacaaag	gttaccataa	gccacaaatt	cataaccact	3840
tatccttcca	gttcaagta	gaatatattc	ataacctcaa	taaagttctc	cctgctccca	3900
aa						3902

<210> 49

<211> 339

<212> PRT

<213> Homo sapiens

<400> 49

Met	Trp	Gln	Leu	Trp	Ala	Ser	Leu	Cys	Cys	Leu	Leu	Val	Leu	Ala	Asn
1				5				10					15		

Ala	Arg	Ser	Arg	Pro	Ser	Phe	His	Pro	Leu	Ser	Asp	Gl	u	Leu	Val	Asn
								25						30		

Tyr	Val	Asn	Lys	Arg	Asn	Thr	Thr	Trp	Gln	Ala	Gly	Hi	s	Asn	Phe	Tyr
							35					40				45

Asn	Val	Asp	Met	Ser	Tyr	Leu	Lys	Arg	Leu	Cys	Gly	Thr	Phe	Leu	Gly
						50				60					

Gly	Pro	Lys	Pro	Pro	Gln	Arg	Val	Met	Phe	Thr	Gl	u	Asp	Leu	Lys	Leu
					65				75					80		

Pro	Ala	Ser	Phe	Asp	Ala	Arg	Gl	u	Gln	Trp	Pro	Gln	Cys	Pro	Thr	Ile
								85						95		

Lys	Gl	u	Ile	Arg	Asp	Gln	Gly	Ser	Cys	Gly	Ser	Cys	Trp	Ala	Phe	Gly
						100			105				110			

Ala	Val	Gl	u	Ala	Ile	Ser	Asp	Arg	Ile	Cys	Ile	His	Thr	Asn	Ala	Hi
								115				125				

Val	Ser	Val	Gl	u	Val	Ser	Ala	Gl	u	Asp	Leu	Leu	Thr	Cys	Cys	Gly	Ser
								130				135			140		

ULPI_034_01US_SeqList_ST25.txt

Met Cys Gly Asp Gly Cys Asn Gly Gly Tyr Pro Ala Glu Ala Trp Asn
145 150 155 160

Phe Trp Thr Arg Lys Gly Leu Val Ser Gly Gly Leu Tyr Glu Ser His
165 170 175

Val Gly Cys Arg Pro Tyr Ser Ile Pro Pro Cys Glu His His Val Asn
180 185 190

Gly Ser Arg Pro Pro Cys Thr Gly Glu Gly Asp Thr Pro Lys Cys Ser
195 200 205

Lys Ile Cys Glu Pro Gly Tyr Ser Pro Thr Tyr Lys Glu Asp Lys His
210 215 220

Tyr Gly Tyr Asn Ser Tyr Ser Val Ser Asn Ser Glu Lys Asp Ile Met
225 230 235 240

Ala Glu Ile Tyr Lys Asn Gly Pro Val Glu Gly Ala Phe Ser Val Tyr
245 250 255

Ser Asp Phe Leu Leu Tyr Lys Ser Gly Val Tyr Glu His Val Thr Gly
260 265 270

Gl u Met Met Gly Gly His Ala Ile Arg Ile Leu Gly Trp Gly Val Gl u
275 280 285

Asn Gly Thr Pro Tyr Trp Leu Val Ala Asn Ser Trp Asn Thr Asp Trp
290 295 300

Gly Asp Asn Gly Phe Phe Lys Ile Leu Arg Gly Glu Asp His Cys Gly
305 310 315 320

Ile Glu Ser Glu Val Val Ala Gly Ile Pro Arg Thr Asp Glu Tyr Trp
325 330 335

Gl u Lys Ile

<210> 50
<211> 3871
<212> DNA
<213> Homo sapiens

<400> 50		
ggggcggggc cgggagggtt ctttagggccg gggctggccc aggctacggc ggctgcagg	60	
ctccggcaac cgctccggca acgccaaccg ctccgctgcg cgccaggctgg gctgcaggct	120	
ctcggctgca gcgctggct ggtgtcagt ggtgcacca cggctcacgg cagcctcagc	180	
cacccagatg taagcgatct ggttcccacc tcagcctccc gagtagtggta tcttaggatcc	240	
ggcttccaaat atgtggcagc tctgggcctc cctctgtgc ctgctgggtgt tggccaaatgc	300	

ULPI_034_01US_SeqList_ST25.txt

ccggagcagg ccctttcc atccctgtc ggatgagctg gtcaactatg tcaacaaacg	360
gaataccacg tggcaggccg ggcacaactt ctacaacgtg gacatgagct acttgaagag	420
gctatgtggt accttcctgg gtgggcccaa gccacccag agagttatgt ttaccgagga	480
cctgaagctg cctgcaagct tcgatgcacg ggaacaatgg ccacagtgtc ccaccatcaa	540
agagatcaga gaccaggcgt cctgtggctc ctgctggcc ttcggggctg tggaaagccat	600
ctctgaccgg atctgcatcc acaccaatgc gcacgtcagc gtggaggtgt cggcggagga	660
cctgctcaca tgctgtggca gcatgtgtgg ggacggctgt aatggtggct atcctgctga	720
agcttggAAC ttctggacAA gaaaaggcct ggTTTCTGGT ggCCTCTATG aatcccatgt	780
agggtgcaga ccgtactcca tccctccctg tgagcaccac gtcaacggct cccggcccc	840
atgcacgggg gagggagata ccccaagtg tagcaagatc tgtgagcctg gctacagccc	900
gacctacaaa caggacaagc actacggata caattcctac agcgtctcca atagcgagaa	960
ggacatcatg gccgagatct acaaaaacgg ccccgTggag ggagctttct ctgtgtattc	1020
ggacttcctg ctctacaagt caggagtgt accaacacgtc accggagaga tggatgggtgg	1080
ccatgccatc cgcatccctgg gctggggagt ggagaatggc acaccctact ggctgggtgc	1140
caactcctgg aacactgact ggggtgacaa tggcttcttt aaaatactca gaggacagga	1200
tcactgtgga atcgaatcag aagtgggtggc tggaaattcca cgcaccgatc agtactggga	1260
aaagatctaa tctgccgtgg gcctgtcgtg ccagtccctgg gggcgagatc ggggtagaaa	1320
tgcattttat tcttaagtt cacgtaaat acaagttca gacagggctt gaaggactgg	1380
attggccaaa catcagacct gtcttccaag gagaccaagt cctggctaca tcccagcctg	1440
tggttacagt gcagacagggc catgtgagcc accgctgcca gcacagagcg tccttcccc	1500
tgttagactag tgccgttaggg agtacctgtc gcccagctg actgtggccc cctccgtat	1560
ccatccatct ccagggagca agacagagac gcaggaatgg aaagcggagtt tcctaaccagg	1620
atgaaagttc ccccatcaat tcccccaatgta cctccaagca agtagctttc cacattgtc	1680
acagaaatca gaggagagac ggtgtggga gcccTTggaa gaacGCCAGT ctcccaggcc	1740
ccctgcattt atcgagttt caatgtcaca acctctgtc tcttgcgtc agcatgattc	1800
ttaatagaa gttttatTTT ttctgtcact ctgctaattca tgtgggtgag ccagtggAAC	1860
agcgggagac ctgtgttagt tttacagatt gcctcTTTat gacgcggctc aaaaggaaac	1920
caagtggta ggagttttttt ctgacccact gatctctact accacaagga aaatagttt	1980
ggagaaacca gcttttactg ttttggAAA attacagctt caccctgtca agttaacaag	2040
gaatgcctgt gccaataaaa gttttctcca acttgaagtc tactctgtatg ggatctcaga	2100
tccttgcata ctgcctatacg acttgcgtat gctgtcttc ttgtccctg cagagaatca	2160
cgtccctggaa ctgcatttttcc ttgcgtactt tggacttca tcttaacttc tcgctgcccc	2220
agccatgttt tcaaccatgg catccctccc ccaattagtt ccctgtcatc tcgtcaacc	2280
ttctctgtaa gtgcctggta agcttgcctt tgcttaagaa ctcaaaacat agctgtgtc	2340

ULPI_034_01US_SeqList_ST25. txt

tattttttg ttgttgtgt	gactgacaga	gtgagattcc	gtctccagg	ctggagtgca	2400
gtggcgccctt	ctcagctcac	tgcaacctgc	agcctcctag	attcaagcga	2460
tcagccttcc	gagtagctgg	gatgacaggc	actcaccaat	atgcctgggt	2520
tttttaagta	catacaggat	ttcaccatgt	tggccaggct	agtttcaaac	2580
agggtgtctg	cctgcctcag	cctcccaaag	tgttgggatt	acaggcgtga	2640
cctgcctgt	tttttatca	gccacaaatc	cagcaacaag	ctgaggattc	2700
acaggcttgg	tgtcttggtg	atctcacata	accaagatgc	taccccgtgg	2760
ccccctggat	gccctccagc	cttgggttgg	gctggagtca	gggcctgtat	2820
gaatttgtat	gccactggtt	tgcattgctg	gtcaggaact	ctagtgcctt	2880
ggtttagaaa	catgttatag	cagttcttgg	tatagagcaa	actagaagaa	2940
ttccactgtc	ctgccaaggt	acacctcagt	actcccttc	ccaactgaag	3000
ctagctctt	ccaaaagcat	tcaagtttgg	cttctgtatgt	gactcagaat	3060
gatgctagat	caaataagct	ctgaaaatct	gaggaacatt	gtagggaaagg	3120
atctctaag	tgccatgtatg	agcataacag	ccggccgtcg	tggctcacgc	3180
agcactttgg	gaggccaagg	tgggaggatg	acaaggtcag	gagttcaaga	3240
caacatgctg	aaacctcacc	tctactaaaa	atacaaaaat	tagctggca	3300
tgcctgtaat	cccgactact	tgggaggctg	aggcaggaga	atcgcttcaa	3360
ggaggttgca	gtgagccaag	acagtgccag	tgcactccag	cctcgggtgac	3420
tccgtctcaa	taattaaaaa	aaaaaaaaaa	aaaaaaaaagg	ccgggcgcag	3480
ctgtaatccc	agcactttgg	gaggctgagg	cgggcagatc	acctgaggtc	3540
agatcagcct	tggcaacacg	gtgaaacccc	atctctacta	aaaatacaaa	3600
catgctggca	catgcctgta	atccagcta	ctcgggaggc	tgaggtacga	3660
aacctggag	gcagaggatg	cagtgagccg	agatcacgccc	attgcactcc	3720
acaagagtga	atctgtgtct	caccaaaaaa	aaaaagaaaa	agaaagatgc	3780
ttaccataag	ccacaaattc	ataaccactt	atccttccag	tttcaagtag	3840
taacctcaat	aaagttctcc	ctgctcccaa	a		3871

<210> 51
 <211> 339
 <212> PRT
 <213> Homo sapiens

<400> 51

Met Trp Glu Leu Trp Ala Ser Leu Cys Cys Leu Leu Val Leu Ala Asn
 1 5 10 15

Ala Arg Ser Arg Pro Ser Phe His Pro Leu Ser Asp Glu Leu Val Asn
 20 25 30

ULPI_034_01US_SeqList_ST25.txt

Tyr Val Asn Lys Arg Asn Thr Thr Trp Gln Ala Gly His Asn Phe Tyr
35 40 45

Asn Val Asp Met Ser Tyr Leu Lys Arg Leu Cys Gly Thr Phe Leu Gly
50 55 60

Gly Pro Lys Pro Pro Gln Arg Val Met Phe Thr Glu Asp Leu Lys Leu
65 70 75 80

Pro Ala Ser Phe Asp Ala Arg Glu Gln Trp Pro Gln Cys Pro Thr Ile
85 90 95

Lys Glu Ile Arg Asp Gln Gly Ser Cys Gly Ser Cys Trp Ala Phe Gly
100 105 110

Ala Val Glu Ala Ile Ser Asp Arg Ile Cys Ile His Thr Asn Ala His
115 120 125

Val Ser Val Glu Val Ser Ala Glu Asp Leu Leu Thr Cys Cys Gly Ser
130 135 140

Met Cys Gly Asp Gly Cys Asn Gly Gly Tyr Pro Ala Glu Ala Trp Asn
145 150 155 160

Phe Trp Thr Arg Lys Gly Leu Val Ser Gly Gly Leu Tyr Glu Ser His
165 170 175

Val Gly Cys Arg Pro Tyr Ser Ile Pro Pro Cys Glu His His Val Asn
180 185 190

Gly Ser Arg Pro Pro Cys Thr Gly Glu Gly Asp Thr Pro Lys Cys Ser
195 200 205

Lys Ile Cys Glu Pro Gly Tyr Ser Pro Thr Tyr Lys Gln Asp Lys His
210 215 220

Tyr Gly Tyr Asn Ser Tyr Ser Val Ser Asn Ser Glu Lys Asp Ile Met
225 230 235 240

Ala Glu Ile Tyr Lys Asn Gly Pro Val Glu Gly Ala Phe Ser Val Tyr
245 250 255

Ser Asp Phe Leu Leu Tyr Lys Ser Gly Val Tyr Gln His Val Thr Gly
260 265 270

Glu Met Met Gly Gly His Ala Ile Arg Ile Leu Gly Trp Gly Val Glu
275 280 285

Asn Gly Thr Pro Tyr Trp Leu Val Ala Asn Ser Trp Asn Thr Asp Trp
290 295 300

ULPI_034_01US_SeqList_ST25.txt

Gly Asp Asn Gly Phe Phe Lys Ile Leu Arg Gly Glu Asp His Cys Gly
305 310 315 320

Ile Glu Ser Glu Val Val Ala Gly Ile Pro Arg Thr Asp Glu Tyr Trp
325 330 335

Gl u Lys Ile

<210> 52
<211> 3857
<212> DNA
<213> Homo sapiens

<400> 52	
ggggcggggc cgggagggt a cttagggccg gggctggccc aggctacggc ggctgcagg	60
ctccggcaac cgctccggca acgccaaccg ctccgctgca cgcaggctgg gctgcaggct	120
ctcggctgca ggcgtgggtg tcttcaggcc tatggagagc agcttgcgtg ggctgggcct	180
gcagttacctg gtttgcata gatgattggca ggtggatcta ggatccggct tccaacatgt	240
ggcagctctg ggcctccctc tgctgcctgc tgggtgtggc caatgcccgg agcaggccct	300
ctttccatcc cctgtcggat gagctggta actatgtcaa caaacggaa accacgtggc	360
aggccgggca caacttctac aacgtggaca tgagctactt gaagaggcta tgtggtacct	420
tcctgggtgg gcccaagcca cccagagag ttatgttac cgaggacctg aagctgcctg	480
caagcttcga tgcacggaa caatggccac agtgcctccac catcaaagag atcagagacc	540
agggctcctg tggctcctgc tggccttcg gggctgtgg a gccatctct gaccggatct	600
gcatccacac caatgcgcac gtcagcgtgg aggtgtcgcc ggaggacctg ctcacatgt	660
gtggcagcat gtgtggggac ggctgtatg gtggctatcc tgctgaagct tggaacttct	720
ggacaagaaa aggcctggtt tctggtgcc tctatgaatc ccatgttaggg tgcagaccgt	780
actccatccc tccctgttag caccacgtca acggctcccg gccccatgc acggggagg	840
gagatacccc caagtgttagc aagatctgtg agcctgctca cagccccgacc tacaacagg	900
acaagcacta cgatataat tcctacagcg tctccaatag cgagaaggac atcatggccg	960
agatctacaa aaacggcccc gtggagggag ctttctctgt gtattcggac ttctgctct	1020
acaagtcaagg agtgtaccaa cacgtcaccg gagagatgtat gggtgccat gccatccgca	1080
tcctgggctg gggagtggag aatggcacac cctactggct ggttgccaa tcctggaaca	1140
ctgactgggg tgacaatggc ttcttaaaa tactcagagg acaggatcac tgtggatcg	1200
aatcagaagt ggtggctgga attccacgca ccgatcagta ctggaaaag atctaattctg	1260
ccgtgggcct gtcgtgccag tcctggggc gagatcgaaa tagaaatgca ttttattctt	1320
taagttcacg taagatacaa gttcagaca ggtctgaag gactggattt gccaaacatc	1380
agacctgtct tccaaggaga ccaagtccctg gctacatccc agcctgtgg tacagtgcag	1440
acaggccatg tgagccaccg ctgccagcac agagcgtcct tccccctgta gacttagtgcc	1500

ULPI_034_01US_SeqList_ST25. txt	
gtagggagta	cctgctgcc cagctgactg tggccccc tcgtatccat ccatctccag
ggagcaagac	agagacgcag gaatggaaag cgagttcct aacaggatga aagttcccc
atcagttccc	ccagtagcc caagcaagta gctttccaca tttgtcacag aaatcagagg
agagacggtg	ttgggagccc tttggagaac gccagtcct caggccccct gcatctatcg
agtttgcatt	gtcacaacct ctctgatctt gtgctcagca tgattctta atagaagttt
tatttttcg	tgcactctgc taatcatgt ggtgagccag tggAACAGCG ggagacctgt
gctagttta	cagattgcct cttatgacg cggtcaaaa gggAACCAAG tggtcaggag
ttgtttctga	cccactgatc tctactacca caaggaaaat agtttaggaa aaaccagtt
ttactgtttt	tgaaaaattt cagttcacc ctgtcaagtt aacaaggaat gcctgtgcc
ataaaagttt	tctccaactt gaagtctact ctgtatggat ctcatcct ttgtcactgc
ctatagactt	gtagctgctg tctcttttgc tccctgcaga gaatcacgtc ctggaactgc
atgttcttc	gactcttggg acttcatctt aacttctgc tgccccagcc atgtttcaa
ccatggcatc	cctccccaa ttagttccct gtcatcctcg tcaaccttct ctgtaagtgc
ctggtaagct	tgcccttgct taagaactca aaacataagct gtgctctatt tttttgtgt
tgttgtact	gacagagtga gattccgtct cccaggctgg agtgcagtgg cgccctctca
gctcactgca	acctgcagcc tccttagattt aagcgattct cctgcttcag ccttcggagt
agctggatg	acaggcactc accaatatgc ctggtaatt ttgttatttt taagtacata
caggattca	ccatgttgc caggctagtt tcaaactccc ggccctcaggt ggtctgcctg
cctcagccctc	ccaaagtgtt gggattacag gcgtgagcca ctggccctg cctgttatttt
ttatcagcca	caaattccagc aacaagctga ggattcagct cataaaacag gcttgggtgc
ttggtgatct	cacataacca agatgctacc ccgtggggaa ccacatcccc ctggatgcc
tccagccctt	gtttgggctg gagtcaggc ctgtatacag tattttgaat ttgtatgcc
ctggtttgca	ttgctggtca ggaactctag tgctttgcatt agccctgggt tagaaacatg
ttatagcgt	tcttggtata gagcaaacta gaagaaccag caatcattcc actgtcctgc
caaggtacac	ctcagtagtc ccctccccaa ctgaagtggg atgaggctag ctcttccaa
aagcattcaa	gtttggcttc tggatgtact cagaatttag gaaccagatg cttagatcaa
taagctctga	aaatctgagg aacattgttag gaaaggttt ttaagcatct ctttaagtgcc
atgatgagca	taacagccgg ccgtcggtgc tcacgcctgt aatcccagca ctttgggagg
ccaaggtggg	aggatgacaa ggtcaggagt tcaagaccag cctggccaac atgctgaaac
ctcacctcta	ctaaaaatac aaaaatttc tggtcatggt ggcacatgcc tggatcccc
gctacttggg	aggctgaggc aggagaatcg cttgaacccg ggaggcggag gttgcagtga
gccaagacag	tgccagtgc ctccagccctc ggtgacagcg caaggctccg tctcaataat
aaaaaaaaaa	aaaaaaaaaa aaaaggccgg ggcgcgtggc tcaagcctgt aatcccagca
ctttgggagg	ctgaggcggg cagatcacct gaggtcagga gttttgagat cagccttggc

ULPI_034_01US_SeqList_ST25.txt

aacacggta	aacccatct	ctactaaaaa	tacaaaatta	gccaaggatg	ctggcacatg	3600
cctgtaatcc	cagctactcg	ggaggctgag	gtacgagaat	cgcttgaacc	tgggaggcag	3660
aggatgcagt	gagccgagat	cacgccattg	cactccagcc	tggggacaa	gagtgaatct	3720
gtgtctcacc	aaaaaaaaaa	agaaaaagaa	agatgcttaa	caaaggttac	cataagccac	3780
aaattcataa	ccacttatcc	ttccagttc	aagtagaata	tattcataac	ctcaataaaag	3840
ttctccctgc	tcccaa					3857

<210> 53

<211> 339

<212> PRT

<213> Homo sapiens

<400> 53

Met	Trp	Gln	Leu	Trp	Ala	Ser	Leu	Cys	Cys	Leu	Leu	Val	Leu	Ala	Asn
1				5				10					15		

Ala	Arg	Ser	Arg	Pro	Ser	Phe	His	Pro	Leu	Ser	Asp	Gl u	Leu	Val	Asn
							25					30			

Tyr	Val	Asn	Lys	Arg	Asn	Thr	Thr	Trp	Gln	Ala	Gly	His	Asn	Phe	Tyr
						35		40			45				

Asn	Val	Asp	Met	Ser	Tyr	Leu	Lys	Arg	Leu	Cys	Gly	Thr	Phe	Leu	Gly
50						55				60					

Gly	Pro	Lys	Pro	Pro	Gln	Arg	Val	Met	Phe	Thr	Gl u	Asp	Leu	Lys	Leu
65					70				75					80	

Pro	Ala	Ser	Phe	Asp	Ala	Arg	Gl u	Gln	Trp	Pro	Gln	Cys	Pro	Thr	Ile
								85					95		

Lys	Gl u	Ile	Arg	Asp	Gln	Gly	Ser	Cys	Gly	Ser	Cys	Trp	Ala	Phe	Gly
							100		105			110			

Ala	Val	Gl u	Ala	Ile	Ser	Asp	Arg	Ile	Cys	Ile	His	Thr	Asn	Ala	His
							115				125				

Val	Ser	Val	Gl u	Val	Ser	Ala	Gl u	Asp	Leu	Leu	Thr	Cys	Cys	Gly	Ser
						130		135			140				

Met	Cys	Gly	Asp	Gly	Cys	Asn	Gly	Gly	Tyr	Pro	Ala	Gl u	Ala	Trp	Asn
145					150				155					160	

Phe	Trp	Thr	Arg	Lys	Gly	Leu	Val	Ser	Gly	Gly	Leu	Tyr	Gl u	Ser	His
					165				170			175			

Val	Gl y	Cys	Arg	Pro	Tyr	Ser	Ile	Pro	Pro	Cys	Gl u	His	His	Val	Asn
							180		185			190			

ULPI_034_01US_SeqList_ST25.txt

Gly Ser Arg Pro Pro Cys Thr Gly Glu Gly Asp Thr Pro Lys Cys Ser
 195 200 205

Lys Ile Cys Glu Pro Gly Tyr Ser Pro Thr Tyr Lys Glu Asp Lys His
 210 215 220

Tyr Gly Tyr Asn Ser Tyr Ser Val Ser Asn Ser Glu Lys Asp Ile Met
 225 230 235 240

Ala Glu Ile Tyr Lys Asn Gly Pro Val Glu Gly Ala Phe Ser Val Tyr
 245 250 255

Ser Asp Phe Leu Leu Tyr Lys Ser Gly Val Tyr Glu His Val Thr Gly
 260 265 270

Glu Met Met Gly Gly His Ala Ile Arg Ile Leu Gly Trp Gly Val Glu
 275 280 285

Asn Gly Thr Pro Tyr Trp Leu Val Ala Asn Ser Trp Asn Thr Asp Trp
 290 295 300

Gly Asp Asn Gly Phe Phe Lys Ile Leu Arg Gly Glu Asp His Cys Gly
 305 310 315 320

Ile Glu Ser Glu Val Val Ala Gly Ile Pro Arg Thr Asp Glu Tyr Trp
 325 330 335

Glu Lys Ile

<210> 54
 <211> 3982
 <212> DNA
 <213> Homo sapiens

<400> 54	
aggcccgggg ctggccagg ctacggcggc tgcagggctc cggcaaccgc tccggcaacg	60
ccaaccgctc cgctgcgcgc aggctggct gcaggctctc ggctgcagcg ctggctgg	120
gtgcagtggc ggcaccacgg ctcacggcag cctcagccac ccagatgtaa ggcatctgg	180
tcccaccta gcctcccgag tagatacttc tgaaaataga aatgtatgact ctggatgca	240
aacgttggct gtcctatgta taaggagatg gctttcacg ctcccagtga ctgaggaagt	300
ttctccaga tggcgctgct ctgagcctgg tgcagggctgg atctaggatc cggcttccaa	360
catgtggcag ctctgggcct ccctctgctg cctgctggc ttggccatg cccggagcag	420
gccctcttc catccccgtt cggatgagct ggtcaactat gtcaacaaac ggaataccac	480
gtggcaggcc gggcacaact tctacaacgt ggacatgagc tacttgaaga ggctatgtgg	540
tacttcctg ggtgggcccc agccacccca gagagttatg ttaccgagg acctgaagct	600
gcctgcaagc ttcgatgcac gggacaatg gccacagtgt cccaccatca aagagatcag	660

ULPI_034_01US_SeqList_ST25. txt

agaccagggc	tcctgtggct	cctgctgggc	cttcggggct	gttgaagcca	tctctgaccg	720
gatctgcac	cacaccaatg	cgcacgtcag	cgtggaggtg	tcggcggagg	acctgctcac	780
atgctgtggc	agcatgtgtg	gggacggctg	taatggtggc	tatcctgctg	aagcttggaa	840
cttctggaca	agaaaaggcc	tggtttctgg	tggcctctat	gaatcccattg	tagggtgcag	900
accgtactcc	atccctccct	gtgagcacca	cgtcaacggc	tcccggccccc	catgcacggg	960
ggagggagat	accccaagt	gtagcaagat	ctgtgagcct	ggctacagcc	cgacacctaa	1020
acaggacaag	cactacggat	acaattccta	cagcgtctcc	aatagcgaga	aggacatcat	1080
ggccgagatc	tacaaaaacg	gccccgtgga	gggagcttc	tctgtgtatt	cggacttcct	1140
gctctacaag	tcaggagtgt	accaacacgt	caccggagag	atgatgggtg	gccatgccat	1200
ccgcatcctg	ggctggggag	tggagaatgg	cacaccctac	tggctggttg	ccaactcctg	1260
gaacactgac	tggggtgaca	atggcttctt	taaaatactc	agaggacagg	atcaactgtgg	1320
aatcgaatca	gaagtggtgg	ctggaattcc	acgcaccgat	cagtactggg	aaaagatcta	1380
atctgccgtg	ggcctgtcgt	gccagtccctg	ggggcgagat	cggggtagaa	atgcatttta	1440
ttcttaagt	tcacgtaaga	tacaagtttc	agacagggtc	tgaaggactg	gattggccaa	1500
acatcagacc	tgtcttccaa	ggagaccaag	tcctggctac	atcccagcct	gtggttacag	1560
tgcagacagg	ccatgtgagc	caccgctgcc	agcacagagc	gtccttcccc	ctgttagacta	1620
tgccctgttag	gagtacctgc	tgccccagct	gactgtggcc	ccctccgtga	tccatccatc	1680
tccagggagc	aagacagaga	cgcaggaatg	gaaagcgag	ttcctaacag	gatgaaagtt	1740
ccccccatcag	ttccccccagt	acctccaagc	aagtagcttt	ccacatttgc	cacagaaatc	1800
agaggagaga	cggtgttggg	agccctttgg	agaacgccag	tctcccaggc	cccctgcata	1860
tatcgagttt	gcaatgtcac	aacctctctg	atcttgct	cagcatgatt	ctttaataga	1920
agttttat	tttctgtcac	tctgctaattc	atgtgggtga	gccagtggaa	cagcgggaga	1980
cctgtgttag	ttttacagat	tgcctcctta	tgacgcggct	caaaaggaaa	ccaagtggc	2040
aggagttgtt	tctgaccac	tgtatctctac	taccacaagg	aaaatagttt	aggagaaaacc	2100
agcttttact	gtttttgaaa	aattacagct	tcaccctgtc	aagttAACAA	ggaatgcctg	2160
tgccaataaa	agttttctcc	aacttgaagt	ctactctgtat	gggatctcag	atccttgc	2220
actgcctata	gacttgttagc	tgctgtctct	ctttgtccct	gcagagaatc	acgtcctgga	2280
actgcatgtt	cttgcgactc	ttgggacttc	atcttaactt	ctcgctgccc	cagccatgtt	2340
ttcaaccatg	gcatccctcc	cccaattagt	tccctgtcat	cctcgtaac	cttctctgt	2400
agtgcctggt	aagcttgc	ttgcttaaga	actcaaaaca	tagctgtct	ctatTTTTT	2460
gttgttgg	tgactgacag	agtgagattc	cgtctccag	gctggagtg	agtggcgcc	2520
tctcagctca	ctgcaacctg	cagcctccta	gattcaagcg	attctcctgc	ttcagccttc	2580
cgagtagctg	ggtgacagg	cactcacca	tatgcctggg	taatTTTGT	atTTTAAAGT	2640
acatacagga	tttcaaccatg	ttggccaggc	tagttcaaa	ctcccgccct	caggtggct	2700

ULPI_034_01US_SeqList_ST25. txt

gcctgcctca	gcctccaaa	gtttggat	tacaggcgtg	agccactggg	ccctgcctgt	2760
atttttatc	agccacaaat	ccagcaacaa	gctgaggatt	cagctataa	aacaggcttg	2820
gtgtcttgg	gatctcacat	aaccaagatg	ctacccgtg	ggaaaccaca	tccccctgga	2880
tgccctccag	ccttggttt	ggctggagtc	agggcctgta	tacagtattt	tgaatttgt	2940
tgccactggt	ttgcattgct	ggtcaggaac	tctagtgc	tgcata	tggttttagaa	3000
acatgttata	gcagttctt	gtatagagca	aactagaaga	accagcaatc	attccactgt	3060
cctgccaagg	tacacctcag	tactccc	cccaactgaa	gtggtatgag	gctagctt	3120
tccaaaagca	ttcaagttt	gcttctgatg	tgactcagaa	tttaggaacc	agatgctaga	3180
tcaaataagc	tctgaaaatc	tgaggaacat	tgttagaaag	gtttgttaag	catctttaa	3240
gtgccatgat	gagcataaca	gccggccgtc	gtggctcacg	cctgtatcc	cagcactt	3300
ggaggccaag	gtgggaggat	gacaagg	ggagttcaag	accagcctgg	ccaacatgct	3360
gaaacctcac	ctctactaaa	aataaaaaaa	ttagctggc	atgg	atgcctgt	3420
tcccagctac	ttgggaggct	gaggcaggag	aatcgctt	acc	cgaggttgc	3480
agtgagccaa	gacagtgc	gtgcactcca	gcctcggt	cagcgaagg	ctccgtctc	3540
ataattaaaa	aaaaaaaaaa	aaaaaaaaag	gccggcgca	gtggctcaag	cctgtatcc	3600
cagcactt	ggaggctgag	gcggcagat	cac	caggagttt	gagatcagcc	3660
ttggcaacac	ggtgaaaccc	catctact	aaaaataca	aattagccaa	gcatgctggc	3720
acatgcctgt	aatcccagct	actcggagg	ctgaggtacg	agaatcgctt	gaac	3780
ggcagaggat	gcagtgagcc	gagatcacgc	cattgcactc	cagcctggg	gacaagagt	3840
aatctgtgtc	tcaccaaaaa	aaaaaagaaa	aagaaagatg	cttaacaa	gttaccataa	3900
gccacaaatt	cataaccact	tatccttcca	gtttcaagta	gaatata	at	3960
taaagttctc	cctgctcca	aa				3982

<210> 55

<211> 339

<212> PRT

<213> Homo sapiens

<400> 55

Met Trp Glu Leu Trp Ala Ser Leu Cys Cys Leu Leu Val Leu Ala Asn
1 5 10 15

Ala Arg Ser Arg Pro Ser Phe His Pro Leu Ser Asp Glu Leu Val Asn
20 25 30

Tyr Val Asn Lys Arg Asn Thr Thr Trp Glu Ala Glu His Asn Phe Tyr
35 40 45

Asn Val Asp Met Ser Tyr Leu Lys Arg Leu Cys Glu Thr Phe Leu Glu
50 55 60

ULPI_034_01US_SeqList_ST25.txt

Gly Pro Lys Pro Pro Gln Arg Val Met Phe Thr Glu Asp Leu Lys Leu
65 70 75 80

Pro Ala Ser Phe Asp Ala Arg Glu Gln Trp Pro Gln Cys Pro Thr Ile
85 90 95

Lys Glu Ile Arg Asp Gln Gly Ser Cys Gly Ser Cys Trp Ala Phe Gly
100 105 110

Ala Val Glu Ala Ile Ser Asp Arg Ile Cys Ile His Thr Asn Ala His
115 120 125

Val Ser Val Glu Val Ser Ala Glu Asp Leu Leu Thr Cys Cys Gly Ser
130 135 140

Met Cys Gly Asp Gly Cys Asn Gly Gly Tyr Pro Ala Glu Ala Trp Asn
145 150 155 160

Phe Trp Thr Arg Lys Gly Leu Val Ser Gly Gly Leu Tyr Glu Ser His
165 170 175

Val Gly Cys Arg Pro Tyr Ser Ile Pro Pro Cys Glu His His Val Asn
180 185 190

Gly Ser Arg Pro Pro Cys Thr Gly Glu Gly Asp Thr Pro Lys Cys Ser
195 200 205

Lys Ile Cys Glu Pro Gly Tyr Ser Pro Thr Tyr Lys Gln Asp Lys His
210 215 220

Tyr Gly Tyr Asn Ser Tyr Ser Val Ser Asn Ser Glu Lys Asp Ile Met
225 230 235 240

Ala Glu Ile Tyr Lys Asn Gly Pro Val Glu Gly Ala Phe Ser Val Tyr
245 250 255

Ser Asp Phe Leu Leu Tyr Lys Ser Gly Val Tyr Gln His Val Thr Gly
260 265 270

Gl u Met Met Gly Gly His Ala Ile Arg Ile Leu Gly Trp Gly Val Gl u
275 280 285

Asn Gly Thr Pro Tyr Trp Leu Val Ala Asn Ser Trp Asn Thr Asp Trp
290 295 300

Gly Asp Asn Gly Phe Phe Lys Ile Leu Arg Gly Gln Asp His Cys Gly
305 310 315 320

Ile Glu Ser Glu Val Val Ala Gly Ile Pro Arg Thr Asp Gln Tyr Trp
325 330 335

Glu Lys Ile

<210> 56
 <211> 4086
 <212> DNA
 <213> Homo sapiens

<400> 56
 caggaccgcc gagggaggcg cctgcgagga agagctcgcc cggtccgga gactgctgcc 60
 tgggaccgcg ctcccagcgc ctgggcctcg gtgtctccgg gccaaactgc cgacataatc
 gcatctgccg gcatctatcc tcggtttatt tccccctcat tgcaaggat ttgcctggcc 120
 aacttctgc gcaagatccc acgcaattcc tgggacccca gaagacaggt cctgttgaag
 aacaggaatc tggcactggg tggctgggg aggaagccgc acggtgttac atccataaac 240
 aggaagagaa accagacagc gaaaccaaga ggcgaatggg cgattggatg ccgggggg
 gaaggccggg ggcgcaccct gctcctggac tccagtaaag ggaggccggg cagactccct 420
 gggcgccac ctccccctcg gtggatctag gatccggctt ccaacatgtg gcagctctgg
 gcctccctct gctcctgct ggttgtggcc aatgcccgg a caggccctc tttccatccc 480
 ctgtcgatg agctggtaa ctatgtcaac aaacggaata ccacgtggca ggccgggcac
 aacttctaca acgtggacat gagctactt aagaggctat gtggtaacctt cttgggtggg 600
 cccaagccac cccagagagt tatgttacc gaggacctga agctgcctgc aagcttcgat
 gcacgggaac aatggccaca gtgtcccacc atcaaagaga tcagagacca gggctccgt 780
 ggctcctgct gggccttcgg ggctgtggaa gccatctctg accggatctg catccacacc
 aatgcgcacg tcagcgtgga ggtgtcgccg gaggacctgc tcacatgctg tggcagcatg
 tgtggggacg gctgtatgg tggctatcct gctgaagctt ggaacttctg gacaagaaaa 960
 ggcctggttt ctggtggcct ctatgaatcc catgtagggt gcagaccgtt ctccatccct
 ccctgtgagc accacgtcaa cggtcccg ccccatgca cgggggaggg agatacccc 1080
 aagtgtgca agatctgtga gcctggctac agccccacct acaaacagga caagcactac
 ggatacaatt cctacagcgt ctccaatagc gagaaggaca tcatggccga gatctacaaa 1200
 aacggcccg tggagggagc tttctctgt tattcgact tcctgctcta caagtcagga
 gtgtaccaac acgtcaccgg agagatgtg ggtggccatg ccatccgcat cctggctgg
 ggagtggaga atggcacacc ctactggctg gttgccaact cctggaaacac tgactgggt
 gacaatggct tctttaaaat actcagagga caggatcact gtggaatcga atcagaagtg
 gtggctggaa ttccacgcac cgatcgtac tggaaaaga tctaattctgc cgtggccctg
 tcgtgccagt cctggggcg agatcggtt agaaatgcat tttattcttt aagttcacgt
 aagatacaag tttcagacag ggtctgaagg actggattgg ccaaacatca gacgtgtt 1560
 ccaaggagac caagtccctgg ctacatccca gcctgtgggtt acagtgcaga caggccatgt
 gagccaccgc tgccagcaca gagcgtcctt cccctgttag actagtgcgc tagggagtac 1620
 1680
 1740

ULPI_034_01US_SeqList_ST25.txt

ULPI_034_01US_SeqList_ST25.txt

accccatctc tactaaaaat acaaattag ccaagcatgc tggcacatgc ctgtaatccc	3840
agctactcg gaggctgagg tacgagaatc gcttgaacct gggaggcaga gcatgcagt	3900
agccgagatc acgccattgc actccagcct gggggacaag agtgaatctg tgtctcacca	3960
aaaaaaaaaa gaaaaagaaa gatgcttaac aaaggttacc ataagccaca aattcataac	4020
cacttatcct tccagttca agtagaatat attcataacc tcaataaaagt tctccctgct	4080
cccaaa	4086
<210> 57	
<211> 339	
<212> PRT	
<213> Homo sapiens	
<400> 57	
Met Trp Gln Leu Trp Ala Ser Leu Cys Cys Leu Leu Val Leu Ala Asn	
1 5 10 15	
Ala Arg Ser Arg Pro Ser Phe His Pro Leu Ser Asp Glu Leu Val Asn	
20 25 30	
Tyr Val Asn Lys Arg Asn Thr Thr Trp Gln Ala Gly His Asn Phe Tyr	
35 40 45	
Asn Val Asp Met Ser Tyr Leu Lys Arg Leu Cys Gly Thr Phe Leu Gly	
50 55 60	
Gly Pro Lys Pro Pro Gln Arg Val Met Phe Thr Glu Asp Leu Lys Leu	
65 70 75 80	
Pro Ala Ser Phe Asp Ala Arg Glu Gln Trp Pro Gln Cys Pro Thr Ile	
85 90 95	
Lys Glu Ile Arg Asp Gln Gly Ser Cys Gly Ser Cys Trp Ala Phe Gly	
100 105 110	
Ala Val Glu Ala Ile Ser Asp Arg Ile Cys Ile His Thr Asn Ala His	
115 120 125	
Val Ser Val Glu Val Ser Ala Glu Asp Leu Leu Thr Cys Cys Gly Ser	
130 135 140	
Met Cys Gly Asp Gly Cys Asn Gly Gly Tyr Pro Ala Glu Ala Trp Asn	
145 150 155 160	
Phe Trp Thr Arg Lys Gly Leu Val Ser Gly Gly Leu Tyr Glu Ser His	
165 170 175	
Val Gly Cys Arg Pro Tyr Ser Ile Pro Pro Cys Glu His His Val Asn	
180 185 190	

ULPI_034_01US_SeqList_ST25.txt

Gly Ser Arg Pro Pro Cys Thr Gly Glu Gly Asp Thr Pro Lys Cys Ser
 195 200 205

Lys Ile Cys Glu Pro Gly Tyr Ser Pro Thr Tyr Lys Glu Asp Lys His
 210 215 220

Tyr Gly Tyr Asn Ser Tyr Ser Val Ser Asn Ser Glu Lys Asp Ile Met
 225 230 235 240

Ala Glu Ile Tyr Lys Asn Gly Pro Val Glu Gly Ala Phe Ser Val Tyr
 245 250 255

Ser Asp Phe Leu Leu Tyr Lys Ser Gly Val Tyr Glu His Val Thr Gly
 260 265 270

Glu Met Met Gly Gly His Ala Ile Arg Ile Leu Gly Trp Gly Val Glu
 275 280 285

Asn Gly Thr Pro Tyr Trp Leu Val Ala Asn Ser Trp Asn Thr Asp Trp
 290 295 300

Gly Asp Asn Gly Phe Phe Lys Ile Leu Arg Gly Glu Asp His Cys Gly
 305 310 315 320

Ile Glu Ser Glu Val Val Ala Gly Ile Pro Arg Thr Asp Glu Tyr Trp
 325 330 335

Glu Lys Ile

<210> 58
 <211> 1587
 <212> DNA
 <213> Homo sapiens

<400> 58	
ggcggtgccg gccgaaccca gacccgaggt tttagaagca gagtcaggcg aagctggcc	60
agaaccgcga cctccgcaac cttgagcggc atccgtggag tgcgcctgcg cagctacgac	120
cgcagcagga aagcgccgcc ggcaggccc agctgtggcc ggacagggac tggaaagagag	180
gacgcggtcg agtaggtttt aaaacatgaa tcctacactc atccttgctg cctttgcct	240
ggaaattgcc tcagctactc taacattga tcacagtttta gaggcacagt ggaccaagtg	300
gaaggcgatg cacaacagat tatacgcat gaatgaagaa ggatggagga gagcagtgtg	360
ggagaagaac atgaagatga ttgaactgca caatcagggaa tacagggaa ggaaacacag	420
cttcacaatg gccatgaacg ctttggaga catgaccagt gaagaattca ggcaggtgt	480
aatggcttt caaaaccgta agcccaggaa gggaaagtg ttccaggaac ctctgtttta	540
tgaggcccc agatctgtgg attggagaga gaaaggctac gtgactcctg tgaagaatca	600
gggtcagtgt ggttcttgtt gggcttttag tgctactggt gctcttgaag gacagatgtt	660

ULPI_034_01US_SeqList_ST25. txt

ccggaaaact	gggaggctta	tctcactgag	tgagcagaat	ctggtagact	gctctggcc	720
tcaaggcaat	gaaggctgca	atggtggcct	aatggattat	gctttccagt	atgttcagga	780
taatggaggc	ctggactctg	aggaatccta	tccatatgag	gcaacagaag	aatcctgtaa	840
gtacaatccc	aagtattctg	ttgctaata	gaccggctt	gtggacatcc	ctaagcagga	900
gaaggccctg	atgaaggcag	ttgcaactgt	ggggccatt	tctgttgcta	ttgatgcagg	960
tcatgagtcc	ttcctgttct	ataaagaagg	catttatttt	gagccagact	gtagcagtga	1020
agacatggat	catggtgtgc	tggtggttg	ctacggattt	gaaagcacag	aatcagataa	1080
caataaaat	tggctggtga	agaacagctg	gggtgaagaa	tggggcatgg	gtggctacgt	1140
aaagatggcc	aaagaccgga	gaaaccattt	tggaaattgc	tcagcagcca	gctacccac	1200
tgtgtgagct	ggtggacggt	gatgaggaag	gacttgactg	gggatggcgc	atgcatggga	1260
ggaattcatc	ttcagtctac	cagccccgc	tgtgtcgat	acacactcga	atcattgaag	1320
atccgagtgt	gatttgaatt	ctgtgatatt	ttcacactgg	taaatgttac	ctctatttt	1380
attactgcta	taaataggtt	tatattattt	attcacttac	tgactttgca	tttcgtttt	1440
taaaaggatg	tataaatttt	tacctgttta	aataaaattt	aatttcaaat	gtagtggtgg	1500
ggcttcttc	tatffffat	gcactgaatt	tttgtgtaat	aaagaacata	attgggctct	1560
aagccataaa	aaaaaaaaaa	aaaaaaaaaa				1587

<210> 59

<211> 333

<212> PRT

<213> Homo sapiens

<400> 59

Met	Asn	Pro	Thr	Leu	Ile	Leu	Ala	Ala	Phe	Cys	Leu	Gly	Ile	Ala	Ser
1				5					10				15		

Ala	Thr	Leu	Thr	Phe	Asp	His	Ser	Leu	Glu	Ala	Gln	Trp	Thr	Lys	Trp
			20				25					30			

Lys	Ala	Met	His	Asn	Arg	Leu	Tyr	Gly	Met	Asn	Glu	Glu	Gly	Trp	Arg
			35			40					45				

Arg	Ala	Val	Trp	Glu	Lys	Asn	Met	Lys	Met	Ile	Glu	Leu	His	Asn	Gln
		50			55					60					

Glu	Tyr	Arg	Glu	Gly	Lys	His	Ser	Phe	Thr	Met	Ala	Met	Asn	Ala	Phe
65				70					75				80		

Gly	Asp	Met	Thr	Ser	Glu	Glu	Phe	Arg	Gln	Val	Met	Asn	Gly	Phe	Gln
			85			90						95			

Asn	Arg	Lys	Pro	Arg	Lys	Gly	Lys	Val	Phe	Gln	Glu	Pro	Leu	Phe	Tyr
			100				105					110			

ULPI_034_01US_SeqList_ST25.txt

Gl u Al a Pro Arg Ser Val Asp Trp Arg Gl u Lys Gl y Tyr Val Thr Pro
115 120 125

Val Lys Asn Gl n Gl y Gl n Cys Gl y Ser Cys Trp Al a Phe Ser Al a Thr
130 135 140

Gl y Al a Leu Gl u Gl y Gl n Met Phe Arg Lys Thr Gl y Arg Leu Ile Ser
145 150 155 160

Leu Ser Gl u Gl n Asn Leu Val Asp Cys Ser Gl y Pro Gl n Gl y Asn Gl u
165 170 175

Gl y Cys Asn Gl y Gl y Leu Met Asp Tyr Al a Phe Gl n Tyr Val Gl n Asp
180 185 190

Asn Gl y Gl y Leu Asp Ser Gl u Gl u Ser Tyr Pro Tyr Gl u Al a Thr Gl u
195 200 205

Gl u Ser Cys Lys Tyr Asn Pro Lys Tyr Ser Val Al a Asn Asp Thr Gl y
210 215 220

Phe Val Asp Ile Pro Lys Gl n Gl u Lys Al a Leu Met Lys Al a Val Al a
225 230 235 240

Thr Val Gl y Pro Ile Ser Val Al a Ile Asp Al a Gl y His Gl u Ser Phe
245 250 255

Leu Phe Tyr Lys Gl u Gl y Ile Tyr Phe Gl u Pro Asp Cys Ser Ser Gl u
260 265 270

Asp Met Asp His Gl y Val Leu Val Val Gl y Tyr Gl y Phe Gl u Ser Thr
275 280 285

Gl u Ser Asp Asn Asn Lys Tyr Trp Leu Val Lys Asn Ser Trp Gl y Gl u
290 295 300

Gl u Trp Gl y Met Gl y Gl y Tyr Val Lys Met Al a Lys Asp Arg Arg Asn
305 310 315 320

His Cys Gl y Ile Al a Ser Al a Al a Ser Tyr Pro Thr Val
325 330

<210> 60

<211> 1626

<212> DNA

<213> Homo sapiens

<400> 60

ggcggtgccg gccgaaccca gacccgaggt tttagaagca gagtcaggcg aagctggcc 60

agaaccgcga cctccgcaac cttgagcggc atccgtggag tgcgcctgcg cagctacgac 120

cgcagcagga aagcgccgcc ggccaggccc agctgtggcc ggacagggac tggaagagag 180

ULPI_034_01US_SeqList_ST25.txt

gacgcggctcg	agtaggtgt	caccagccct	ggcaacgaga	gcgtctaccc	cgaactctgc	240
tggcctttag	gttttaaaac	atgaatccta	cactcatcct	tgctgcctt	tgcctggaa	300
ttgcctcagc	tactctaaca	ttttagtcaca	gttttagaggc	acagtggacc	aagtggaaagg	360
cgatgcacaa	cagattatac	ggcatgaatg	aagaaggatg	gaggagagca	gtgtgggaga	420
agaacatgaa	gatgattgaa	ctgcacaatc	aggaatacag	ggaaggggaaa	cacagcttca	480
caatggccat	gaacgcctt	ggagacatga	ccagtgaaga	attcaggcag	gtgtgaatg	540
gctttcaaaa	ccgtaagccc	aggaaggggaa	aagtgttcca	ggaacctctg	ttttatgagg	600
cccccagatc	tgtggattgg	agagagaaag	gctacgtgac	tcctgtgaag	aatcagggtc	660
agtgtggttc	ttgttgggct	tttagtgcta	ctggtgctct	tgaaggacag	atgttccgga	720
aaactggag	gcttatctca	ctgagtgagc	agaatctggt	agactgctct	gggcctcaag	780
gcaatgaagg	ctgcaatgg	ggcctaattgg	attatgttt	ccagttatgtt	caggataatg	840
gaggcctgga	ctctgaggaa	tcctatccat	atgaggaac	agaagaatcc	tgttaagtaca	900
atcccaagta	ttctgttgct	aatgacacccg	gcttttgga	catccctaag	caggagaagg	960
ccctgatgaa	ggcagttgca	actgtggggc	ccattttctgt	tgctattgtat	gcaggtcatg	1020
agtccttcct	gttctataaa	gaaggcattt	atttttagcc	agactgttagc	agtgaagaca	1080
tggatcatgg	tgtgctgg	gttggctacg	gatttgaag	cacagaatca	gataacaata	1140
aatattggct	ggtgaagaac	agctggggtg	aagaatgggg	catgggtggc	tacgtaaaga	1200
tggccaaaga	ccggagaaac	catgtggaa	ttgcctcagc	agccagctac	cccactgtgt	1260
gagctggtgg	acggtgatga	ggaaggactt	gactggggat	ggcgcatgca	tgggaggaat	1320
tcatcttcag	tctaccagcc	cccgctgtgt	cgatcacaca	ctcgaatcat	tgaagatccg	1380
agtgtgattt	gaattctgt	atatttcac	actggtaaat	gttacctcta	ttttaattac	1440
tgctataat	aggtttat	tattgattca	cttactgact	ttgcattttc	gtttttaaaa	1500
ggatgtataa	attttacct	gtttaataa	aatttaattt	caaatgttagt	ggtggggctt	1560
ctttctat	ttgatgcact	gaattttgt	gtaataaaga	acataattgg	gctctaagcc	1620
ataaaaa						1626

<210> 61

<211> 333

<212> PRT

<213> Homo sapiens

<400> 61

Met Asn Pro Thr Leu Ile Leu Ala Ala Phe Cys Leu Gly Ile Ala Ser
1 5 10 15

Ala Thr Leu Thr Phe Asp His Ser Leu Glu Ala Glu Trp Thr Lys Trp
20 25 30

Lys Ala Met His Asn Arg Leu Tyr Gly Met Asn Glu Glu Gly Trp Arg
35 40 45

ULPI_034_01US_SeqList_ST25. txt

Arg Ala Val Trp Glu Lys Asn Met Lys Met Ile Glu Leu His Asn Glu
50 55 60

Gl u Tyr Arg Gl u Gl y Lys His Ser Phe Thr Met Ala Met Asn Ala Phe
65 70 75 80

Gl y Asp Met Thr Ser Gl u Gl u Phe Arg Gl n Val Met Asn Gl y Phe Gl n
85 90 95

Asn Arg Lys Pro Arg Lys Gl y Lys Val Phe Gl n Gl u Pro Leu Phe Tyr
100 105 110

Gl u Ala Pro Arg Ser Val Asp Trp Arg Gl u Lys Gl y Tyr Val Thr Pro
115 120 125

Val Lys Asn Gl n Gl y Gl n Cys Gl y Ser Cys Trp Ala Phe Ser Ala Thr
130 135 140

Gl y Ala Leu Gl u Gl y Gl n Met Phe Arg Lys Thr Gl y Arg Leu Ile Ser
145 150 155 160

Leu Ser Gl u Gl n Asn Leu Val Asp Cys Ser Gl y Pro Gl n Gl y Asn Gl u
165 170 175

Gl y Cys Asn Gl y Gl y Leu Met Asp Tyr Ala Phe Gl n Tyr Val Gl n Asp
180 185 190

Asn Gl y Gl y Leu Asp Ser Gl u Gl u Ser Tyr Pro Tyr Gl u Ala Thr Gl u
195 200 205

Gl u Ser Cys Lys Tyr Asn Pro Lys Tyr Ser Val Ala Asn Asp Thr Gl y
210 215 220

Phe Val Asp Ile Pro Lys Gl n Gl u Lys Ala Leu Met Lys Ala Val Ala
225 230 235 240

Thr Val Gl y Pro Ile Ser Val Ala Ile Asp Ala Gl y His Gl u Ser Phe
245 250 255

Leu Phe Tyr Lys Gl u Gl y Ile Tyr Phe Gl u Pro Asp Cys Ser Ser Gl u
260 265 270

Asp Met Asp His Gl y Val Leu Val Val Gl y Tyr Gl y Phe Gl u Ser Thr
275 280 285

Gl u Ser Asp Asn Asn Lys Tyr Trp Leu Val Lys Asn Ser Trp Gl y Gl u
290 295 300

Gl u Trp Gl y Met Gl y Gl y Tyr Val Lys Met Ala Lys Asp Arg Arg Asn
305 310 315 320

ULPI_034_01US_SeqList_ST25.txt

His Cys Gly Ile Ala Ser Ala Ala Ser Tyr Pro Thr Val
325 330

<210> 62
<211> 1567
<212> DNA
<213> Homo sapiens

<400> 62
ggcggtgccg gccgaaccca gacccgaggt tttagaagca gagtcaggcg aagctggcc 60
agaaccgcga cctccgcaac cttgagcgc atccgtggag tgccctgcg cagctacgac 120
cgcagcagga aagcgccgcc ggccaggccc agctgtggcc ggacaggac tggaagagag 180
gacgcggtcg agttttaaaa catgaatcct acactcatcc ttgctgcctt ttgcctggga 240
attgcctcag ctactctaac atttgatcac agtttagagg cacagtggac caagtggaaag 300
gcatgcaca acagattata cggcatgaat gaagaaggat ggaggagagc agtgtggag 360
aagaacatga agatgattga actgcacaat caggaataca gggaaaggaa acacagcttc 420
acaatggcca tgaacgcctt tggagacatg accagtgaag aattcaggca ggtatgaat 480
ggcttcaaa accgtaagcc caggaagggg aaagtgttcc aggaacctct gttttatgag 540
gccccagat ctgtggattt gagagagaaa ggctacgtga ctccgtgaa gaatcagggt 600
cagtgtggtt ctgtttgggc ttttagtgc actggtgctc ttgaaggaca gatgttccgg 660
aaaactggga ggcttatctc actgagttag cagaatctgg tagactgctc tggcctcaa 720
ggcaatgaag gctgcaatgg tggccataatg gattatgctt tccagttatgt tcaggataat 780
ggaggcctgg actctgagga atcctatcca tatgaggcaa cagaagaatc ctgtaagttac 840
aatcccaagt attctgtgc taatgacacc ggcttggg acatccctaa gcaggagaag 900
gccctgatga aggcagttgc aactgtgggg cccatttcgt ttgctattga tgcaggtcat 960
gagtccttcc tggctataa agaaggcatt tattttgagc cagactgttag cagtgaagac 1020
atggatcatg gtgtgctgggt ggttggctac ggatttgaaa gcacagaatc agataacaat 1080
aaatattggc tggtaagaa cagctgggt gaagaatggg gcatgggtgg ctacgtaaag 1140
atggccaaag accggagaaaa ccattgtgga attgcctcag cagccagcta ccccactgtg 1200
tgagctgggt gacggtgatg aggaaggact tgactggggta tggcgcatgc atgggaggaa 1260
ttcatcttca gtctaccagc ccccgctgtg tcggatacac actcgaatca ttgaagatcc 1320
gagtggtatt tgaattctgt gatatttca cactggtaaa tgttacctctt attttaattt 1380
ctgctataaa taggtttata ttattgattt acttactgac tttgcatttt cgtttttaaa 1440
aggatgtata aatttttacc tgtaataata aaatttaattt tcaaatgttag tggtggggct 1500
tctttcttatttttgcac tgaatttttg tgtaataaaag aacataatttggctcaagc 1560
cataaaaa 1567

<210> 63

ULPI_034_01US_SeqList_ST25. txt

<211> 333

<212> PRT

<213> Homo sapiens

<400> 63

Met Asn Pro Thr Leu Ile Leu Ala Ala Phe Cys Leu Gly Ile Ala Ser
1 5 10 15

Ala Thr Leu Thr Phe Asp His Ser Leu Glu Ala Glu Trp Thr Lys Trp
20 25 30

Lys Ala Met His Asn Arg Leu Tyr Gly Met Asn Glu Glu Gly Trp Arg
35 40 45

Arg Ala Val Trp Glu Lys Asn Met Lys Met Ile Glu Leu His Asn Glu
50 55 60

Glu Tyr Arg Glu Gly Lys His Ser Phe Thr Met Ala Met Asn Ala Phe
65 70 75 80

Gly Asp Met Thr Ser Glu Glu Phe Arg Glu Val Met Asn Gly Phe Glu
85 90 95

Asn Arg Lys Pro Arg Lys Glu Lys Val Phe Glu Glu Pro Leu Phe Tyr
100 105 110

Glu Ala Pro Arg Ser Val Asp Trp Arg Glu Lys Gly Tyr Val Thr Pro
115 120 125

Val Lys Asn Glu Gly Glu Cys Gly Ser Cys Trp Ala Phe Ser Ala Thr
130 135 140

Gly Ala Leu Glu Gly Glu Met Phe Arg Lys Thr Gly Arg Leu Ile Ser
145 150 155 160

Leu Ser Glu Glu Asn Leu Val Asp Cys Ser Gly Pro Glu Glu Asn Glu
165 170 175

Gly Cys Asn Gly Gly Leu Met Asp Tyr Ala Phe Glu Tyr Val Glu Asp
180 185 190

Asn Gly Gly Leu Asp Ser Glu Glu Ser Tyr Pro Tyr Glu Ala Thr Glu
195 200 205

Glu Ser Cys Lys Tyr Asn Pro Lys Tyr Ser Val Ala Asn Asp Thr Gly
210 215 220

Phe Val Asp Ile Pro Lys Glu Glu Lys Ala Leu Met Lys Ala Val Ala
225 230 235 240

Thr Val Gly Pro Ile Ser Val Ala Ile Asp Ala Gly His Glu Ser Phe
245 250 255

ULPI_034_01US_SeqList_ST25. txt

Leu Phe Tyr Lys Glu Gly Ile Tyr Phe Glu Pro Asp Cys Ser Ser Glu
260 265 270

Asp Met Asp His Gly Val Leu Val Val Gly Tyr Glu Phe Glu Ser Thr
275 280 285

Gl u Ser Asp Asn Asn Lys Tyr Trp Leu Val Lys Asn Ser Trp Gl y Gl u
290 295 300

Gl u Trp Gl y Met Gly Gl y Tyr Val Lys Met Ala Lys Asp Arg Arg Asn
305 310 315 320

His Cys Gl y Ile Ala Ser Ala Ala Ser Tyr Pro Thr Val
325 330

<210> 64
<211> 1141
<212> DNA
<213> Homo sapiens

<400> 64						
ggcgggtgccg	gccgaaccca	gacccgaggt	tttagaagca	gagtcaggcg	aagctggcc	60
agaaccgcga	cctccgcaac	cttgcggc	atccgtggag	tgccgcgtcg	cagctacgac	120
cgcagcagga	aagcgccgcc	ggccaggccc	agctgtggcc	ggacaggggac	tggaagagag	180
gacgcggctcg	agtaggtttt	aaaacatgaa	tcctacactc	atcccttgctg	ccttttgcct	240
ggaaattgcc	tca gctactc	taacatttga	tcacagtttta	gaggcacagt	ggaccaagtg	300
gaaggctgca	atggtggcct	aatggattat	gctttccagt	atgttcagga	taatggaggc	360
ctggactctg	aggaatccta	tccatatgag	gcaacagaag	aatcctgtaa	gtacaatccc	420
aagtattctg	ttgcta atgta	caccggcttt	gtggacatcc	ctaaggcagg	gaaggccctg	480
atgaaggcag	ttgcaactgt	ggggccctt	tctgttgcta	ttgatgcagg	tcatgagtcc	540
ttcctgttct	ataaagaagg	catttatttt	gagccagact	gtagcagtga	agacatggat	600
catggtgtgc	tggtgttgg	ctacggattt	gaaagcacag	aatcagataa	caataaatat	660
tggctggta	agaacagctg	gggtgaagaa	tggggcatgg	gtggctacgt	aaagatggcc	720
aaagaccgga	gaaaccattt	tggaaattgcc	tcagcagcca	gctaccccac	tgtgtgagct	780
ggtggacggt	gatgaggaag	gacttgactg	ggatggcgc	atgcatggga	ggaattcatc	840
ttcagtctac	cagccccccgc	tgtgtcgat	acacactcga	atcattgaag	atccgagtgt	900
gatttgaatt	ctgtgatatt	ttcacactgg	taaatgttac	ctctat tttta	attactgcta	960
taaataggtt	tatattttt	attcacttac	tgacttgca	tttcgtttt	taaaaggatg	1020
tataaaat tttt	tacctgttta	aataaaat t	aatttcaa at	gtagtggtgg	ggcttctt c	1080
tat tttt gat	gcactgaatt	tttgtgtaat	aaagaacata	atgggctct	aagccataaa	1140
a						1141

ULPI_034_01US_SeqList_ST25. txt

<210> 65
<211> 151
<212> PRT
<213> Homo sapiens

<400> 65

Met Asp Tyr Ala Phe Glu Tyr Val Glu Asp Asn Gly Gly Leu Asp Ser
1 5 10 15

Glu Glu Ser Tyr Pro Tyr Glu Ala Thr Glu Glu Ser Cys Lys Tyr Asn
20 25 30

Pro Lys Tyr Ser Val Ala Asn Asp Thr Gly Phe Val Asp Ile Pro Lys
35 40 45

Gln Glu Lys Ala Leu Met Lys Ala Val Ala Thr Val Gly Pro Ile Ser
50 55 60

Val Ala Ile Asp Ala Gly His Glu Ser Phe Leu Phe Tyr Lys Glu Gly
65 70 75 80

Ile Tyr Phe Glu Pro Asp Cys Ser Ser Glu Asp Met Asp His Gly Val
85 90 95

Leu Val Val Gly Tyr Glu Phe Glu Ser Thr Glu Ser Asp Asn Asn Lys
100 105 110

Tyr Trp Leu Val Lys Asn Ser Trp Gly Glu Glu Trp Gly Met Gly Gly
115 120 125

Tyr Val Lys Met Ala Lys Asp Arg Arg Asn His Cys Gly Ile Ala Ser
130 135 140

Ala Ala Ser Tyr Pro Thr Val
145 150

<210> 66
<211> 1401
<212> DNA
<213> Homo sapiens

<400> 66
acagctctgg acaggctgct tttcattttg gtgagtcct ccagttaccc cacgtgccct 60
gtttttctcc aggcacatcc ttggcctctt ccacagtcct tgggttttaa aacatgaatc
ctacactcat ctttgctgcc tttgcctgg gaattgcctc agtactctta acatttgatc 120
acagttttaga ggcacagtgg accaagtgg aaggcgatgca caacagatta tacggcatga
atgaagaagg atggaggaga gcagtgtgg agaagaacat gaagatgatt gaactgcaca 180
atcaggaata cagggaaagg aaacacagct tcacaatggc catgaacgccc tttggagaca
tgaccagtga agaattcagg caggtatgaa atggcttca aaaccgtaa cccaggaagg 240
300
360
420

ULPI_034_01US_SeqList_ST25.txt

ggaaagtgtt	ccaggaacct	ctgtttatg	aggcccccag	atctgtggat	tggagagaga	480
aaggctacgt	gactcctgtg	aagaatcagg	gtcagtgtgg	ttcttgttgg	gcttttagtg	540
ctactggtgc	tcttgaagga	cagatgttcc	ggaaaactgg	gaggcttatac	tcactgagtg	600
agcagaatct	ggttagactgc	tctggcctc	aaggcaatga	aggctgcaat	ggtggcctaa	660
tggattatgc	tttccagtat	gttcaggata	atggaggcct	ggactctgag	gaatccatc	720
catatgaggc	aacagaagaa	tcctgttaat	acaatccaa	gtattctgtt	gctaattgaca	780
ccggcttgt	ggacatccct	aaggcaggaa	aggccctgat	gaaggcagtt	gcaactgtgg	840
ggcccatatc	tgttgcattt	gatgcaggc	atgagtcctt	cctgttctat	aaagaaggca	900
tttattttga	gccagactgt	agcagtgaag	acatggatca	tgggtgtctg	gtgggtggct	960
acggatttga	aagcacagaa	tcagataaca	ataaatattt	gctggtaag	aacagctggg	1020
gtgaagaatg	gggcatgggt	ggctacgtaa	agatggccaa	agaccggaga	aaccattgtg	1080
gaattgcctc	agcagccagc	tacccactg	tgtgagctgg	tggacggtga	tgaggaagga	1140
cttgactggg	gatggcgcatt	gcatgggagg	aattcatctt	cagtctacca	gcccccgctg	1200
tgtcgatac	acactcgaat	cattgaagat	ccgagtgta	tttgaattct	gtgatatttt	1260
cacactggta	aatgttacct	ctatttat	tactgctata	aataggttt	tattattgt	1320
tcacttactg	actttgcatt	ttcgaaaa	aaaggatgta	taaattttt	cctgtttaaa	1380
taaaatttaa	tttcaaatgt	a				1401

<210> 67

<211> 333

<212> PRT

<213> Homo sapiens

<400> 67

Met Asn Pro Thr Leu Ile Leu Ala Ala Phe Cys Leu Glu Ile Ala Ser
 1 5 10 15

Ala Thr Leu Thr Phe Asp His Ser Leu Glu Ala Glu Trp Thr Lys Trp
 20 25 30

Lys Ala Met His Asn Arg Leu Tyr Glu Met Asn Glu Glu Glu Trp Arg
 35 40 45

Arg Ala Val Trp Glu Lys Asn Met Lys Met Ile Glu Leu His Asn Glu
 50 55 60

Gl u Tyr Arg Gl u Gl y Lys His Ser Phe Thr Met Ala Met Asn Ala Phe
 65 70 75 80

Gl y Asp Met Thr Ser Gl u Gl u Phe Arg Gl u Val Met Asn Gl y Phe Gl u
 85 90 95

Asn Arg Lys Pro Arg Lys Gl y Lys Val Phe Gl u Gl u Pro Leu Phe Tyr
 100 105 110

ULPI_034_01US_SeqList_ST25. txt

Gl u Al a Pro Arg Ser Val Asp Trp Arg Gl u Lys Gl y Tyr Val Thr Pro
115 120 125

Val Lys Asn Gl n Gl y Gl n Cys Gl y Ser Cys Trp Al a Phe Ser Al a Thr
130 135 140

Gl y Al a Leu Gl u Gl y Gl n Met Phe Arg Lys Thr Gl y Arg Leu Ile Ser
145 150 155 160

Leu Ser Gl u Gl n Asn Leu Val Asp Cys Ser Gl y Pro Gl n Gl y Asn Gl u
165 170 175

Gl y Cys Asn Gl y Gl y Leu Met Asp Tyr Al a Phe Gl n Tyr Val Gl n Asp
180 185 190

Asn Gl y Gl y Leu Asp Ser Gl u Gl u Ser Tyr Pro Tyr Gl u Al a Thr Gl u
195 200 205

Gl u Ser Cys Lys Tyr Asn Pro Lys Tyr Ser Val Al a Asn Asp Thr Gl y
210 215 220

Phe Val Asp Ile Pro Lys Gl n Gl u Lys Al a Leu Met Lys Al a Val Al a
225 230 235 240

Thr Val Gl y Pro Ile Ser Val Al a Ile Asp Al a Gl y His Gl u Ser Phe
245 250 255

Leu Phe Tyr Lys Gl u Gl y Ile Tyr Phe Gl u Pro Asp Cys Ser Ser Gl u
260 265 270

Asp Met Asp His Gl y Val Leu Val Val Gl y Tyr Gl y Phe Gl u Ser Thr
275 280 285

Gl u Ser Asp Asn Asn Lys Tyr Trp Leu Val Lys Asn Ser Trp Gl y Gl u
290 295 300

Gl u Trp Gl y Met Gl y Gl y Tyr Val Lys Met Al a Lys Asp Arg Arg Asn
305 310 315 320

His Cys Gl y Ile Al a Ser Al a Al a Ser Tyr Pro Thr Val
325 330

<210> 68
<211> 412
<212> PRT
<213> Homo sapiens

<400> 68

Met Gl n Pro Ser Ser Leu Leu Pro Leu Al a Leu Cys Leu Leu Al a Al a
1 5 10 15

ULPI_034_01US_SeqList_ST25. txt

Pro Ala Ser Ala Leu Val Arg Ile Pro Leu His Lys Phe Thr Ser Ile
20 25 30

Arg Arg Thr Met Ser Glu Val Gly Gly Ser Val Glu Asp Leu Ile Ala
35 40 45

Lys Glu Pro Val Ser Lys Tyr Ser Gln Ala Val Pro Ala Val Thr Glu
50 55 60

Gly Pro Ile Pro Glu Val Leu Lys Asn Tyr Met Asp Ala Gln Tyr Tyr
65 70 75 80

Gly Glu Ile Gly Ile Gly Thr Pro Pro Gln Cys Phe Thr Val Val Phe
85 90 95

Asp Thr Gly Ser Ser Asn Leu Trp Val Pro Ser Ile His Cys Lys Leu
100 105 110

Leu Asp Ile Ala Cys Trp Ile His His Lys Tyr Asn Ser Asp Lys Ser
115 120 125

Ser Thr Tyr Val Lys Asn Gly Thr Ser Phe Asp Ile His Tyr Gly Ser
130 135 140

Gly Ser Leu Ser Gly Tyr Leu Ser Gln Asp Thr Val Ser Val Pro Cys
145 150 155 160

Gln Ser Ala Ser Ser Ala Ser Ala Leu Gly Gly Val Lys Val Glu Arg
165 170 175

Gln Val Phe Gly Glu Ala Thr Lys Gln Pro Gly Ile Thr Phe Ile Ala
180 185 190

Ala Lys Phe Asp Gly Ile Leu Gly Met Ala Tyr Pro Arg Ile Ser Val
195 200 205

Asn Asn Val Leu Pro Val Phe Asp Asn Leu Met Gln Gln Lys Leu Val
210 215 220

Asp Gln Asn Ile Phe Ser Phe Tyr Leu Ser Arg Asp Pro Asp Ala Gln
225 230 235 240

Pro Gly Gly Glu Leu Met Leu Gly Gly Thr Asp Ser Lys Tyr Tyr Lys
245 250 255

Gly Ser Leu Ser Tyr Leu Asn Val Thr Arg Lys Ala Tyr Trp Gln Val
260 265 270

His Leu Asp Gln Val Glu Val Ala Ser Gly Leu Thr Leu Cys Lys Glu
275 280 285

ULPI_034_01US_SeqList_ST25. txt

Gly Cys Glu Ala Ile Val Asp Thr Gly Thr Ser Leu Met Val Gly Pro
290 295 300

Val Asp Glu Val Arg Glu Leu Glu Lys Ala Ile Gly Ala Val Pro Leu
305 310 315 320

Ile Glu Gly Glu Tyr Met Ile Pro Cys Glu Lys Val Ser Thr Leu Pro
325 330 335

Ala Ile Thr Leu Lys Leu Gly Gly Lys Gly Tyr Lys Leu Ser Pro Glu
340 345 350

Asp Tyr Thr Leu Lys Val Ser Glu Ala Gly Lys Thr Leu Cys Leu Ser
355 360 365

Gly Phe Met Gly Met Asp Ile Pro Pro Pro Ser Gly Pro Leu Trp Ile
370 375 380

Leu Glu Asp Val Phe Ile Gly Arg Tyr Tyr Thr Val Phe Asp Arg Asp
385 390 395 400

Asn Asn Arg Val Gly Phe Ala Glu Ala Ala Arg Leu
405 410

<210> 69

<211> 401

<212> PRT

<213> Homo sapiens

<400> 69

Met Lys Thr Leu Leu Leu Leu Leu Leu Val Leu Leu Glu Leu Gly Glu
1 5 10 15

Ala Glu Gly Ser Leu His Arg Val Pro Leu Arg Arg His Pro Ser Leu
20 25 30

Lys Lys Lys Leu Arg Ala Arg Ser Glu Leu Ser Glu Phe Trp Lys Ser
35 40 45

His Asn Leu Asp Met Ile Glu Phe Thr Glu Ser Cys Ser Met Asp Glu
50 55 60

Ser Ala Lys Glu Pro Leu Ile Asn Tyr Leu Asp Met Glu Tyr Phe Gly
65 70 75 80

Thr Ile Ser Ile Gly Ser Pro Pro Glu Asn Phe Thr Val Ile Phe Asp
85 90 95

Thr Glu Ser Ser Asn Leu Trp Val Pro Ser Val Tyr Cys Thr Ser Pro
100 105 110

ULPI_034_01US_SeqList_ST25.txt

Ala Cys Lys Thr His Ser Arg Phe Gln Pro Ser Gln Ser Ser Thr Tyr
115 120 125

Ser Gln Pro Gly Gln Ser Phe Ser Ile Gln Tyr Gly Thr Gly Ser Leu
130 135 140

Ser Gly Ile Ile Gly Ala Asp Gln Val Ser Ala Phe Ala Thr Gln Val
145 150 155 160

Gl u Gly Leu Thr Val Val Gly Gln Gln Phe Gly Gl u Ser Val Thr Gl u
165 170 175

Pro Gly Gln Thr Phe Val Asp Ala Gl u Phe Asp Gly Ile Leu Gly Leu
180 185 190

Gly Tyr Pro Ser Leu Ala Val Gly Gly Val Thr Pro Val Phe Asp Asn
195 200 205

Met Met Ala Gln Asn Leu Val Asp Leu Pro Met Phe Ser Val Tyr Met
210 215 220

Ser Ser Asn Pro Glu Gly Gly Ala Gly Ser Gl u Leu Ile Phe Gly Gly
225 230 235 240

Tyr Asp His Ser His Phe Ser Gly Ser Leu Asn Trp Val Pro Val Thr
245 250 255

Lys Gln Ala Tyr Trp Gln Ile Ala Leu Asp Asn Ile Gln Val Gly Gly
260 265 270

Thr Val Met Phe Cys Ser Glu Gly Cys Gln Ala Ile Val Asp Thr Gly
275 280 285

Thr Ser Leu Ile Thr Gly Pro Ser Asp Lys Ile Lys Gln Leu Gln Asn
290 295 300

Ala Ile Gly Ala Ala Pro Val Asp Gly Gl u Tyr Ala Val Gl u Cys Ala
305 310 315 320

Asn Leu Asn Val Met Pro Asp Val Thr Phe Thr Ile Asn Gly Val Pro
325 330 335

Tyr Thr Leu Ser Pro Thr Ala Tyr Thr Leu Leu Asp Phe Val Asp Gly
340 345 350

Met Gln Phe Cys Ser Ser Gly Phe Gln Gly Leu Asp Ile His Pro Pro
355 360 365

Ala Gl y Pro Leu Trp Ile Leu Gly Asp Val Phe Ile Arg Gln Phe Tyr
370 375 380

ULPI_034_01US_SeqList_ST25.txt

Ser Val Phe Asp Arg Gly Asn Asn Arg Val Gly Leu Ala Pro Ala Val
385 390 395 400

Pro

<210> 70
<211> 396
<212> PRT
<213> Homo sapiens

<400> 70

Met Lys Thr Leu Leu Leu Leu Leu Val Leu Leu Glu Leu Gly Glu
1 5 10 15

Ala Gln Gly Ser Leu His Arg Val Pro Leu Arg Arg His Pro Ser Leu
20 25 30

Lys Lys Lys Leu Arg Ala Arg Ser Gln Leu Ser Glu Phe Trp Lys Ser
35 40 45

His Asn Leu Asp Met Ile Gln Phe Thr Glu Ser Cys Ser Met Asp Gln
50 55 60

Ser Ala Lys Glu Pro Leu Ile Asn Tyr Leu Asp Met Glu Tyr Phe Gly
65 70 75 80

Thr Ile Ser Ile Gly Ser Pro Pro Gln Asn Phe Thr Val Ile Phe Asp
85 90 95

Thr Gly Ser Ser Asn Leu Trp Val Pro Ser Val Tyr Cys Thr Ser Pro
100 105 110

Ala Cys Lys Thr His Ser Arg Phe Gln Pro Ser Gln Ser Ser Thr Tyr
115 120 125

Ser Gln Pro Gly Gln Ser Phe Ser Ile Gln Tyr Gly Thr Gly Ser Leu
130 135 140

Ser Gly Ile Ile Gly Ala Asp Gln Val Ser Val Glu Gly Leu Thr Val
145 150 155 160

Val Gly Gln Gln Phe Gly Glu Ser Val Thr Glu Pro Gly Gln Thr Phe
165 170 175

Val Asp Ala Glu Phe Asp Gly Ile Leu Gly Leu Gly Tyr Pro Ser Leu
180 185 190

Ala Val Gly Gly Val Thr Pro Val Phe Asp Asn Met Met Ala Gln Asn
195 200 205

Leu Val Asp Leu Pro Met Phe Ser Val Tyr Met Ser Ser Asn Pro Glu
Page 66

ULPI_034_01US_SeqList_ST25. txt
210 215 220

Gly Gly Ala Gly Ser Glu Leu Ile Phe Gly Gly Tyr Asp His Ser His
225 230 235 240

Phe Ser Gly Ser Leu Asn Trp Val Pro Val Thr Lys Gln Ala Tyr Trp
245 250 255

Gln Ile Ala Leu Asp Asn Ile Gln Val Gly Gly Thr Val Met Phe Cys
260 265 270

Ser Glu Gly Cys Gln Ala Ile Val Asp Thr Gly Thr Ser Leu Ile Thr
275 280 285

Gly Pro Ser Asp Lys Ile Lys Gln Leu Gln Asn Ala Ile Gly Ala Ala
290 295 300

Pro Val Asp Gly Glu Tyr Ala Val Glu Cys Ala Asn Leu Asn Val Met
305 310 315 320

Pro Asp Val Thr Phe Thr Ile Asn Gly Val Pro Tyr Thr Leu Ser Pro
325 330 335

Thr Ala Tyr Thr Leu Leu Asp Phe Val Asp Gly Met Gln Phe Cys Ser
340 345 350

Ser Gly Phe Gln Gly Leu Asp Ile His Pro Pro Ala Gly Pro Leu Trp
355 360 365

Ile Leu Gly Asp Val Phe Ile Arg Gln Phe Tyr Ser Val Phe Asp Arg
370 375 380

Gly Asn Asn Arg Val Gly Leu Ala Pro Ala Val Pro
385 390 395

<210> 71

<211> 363

<212> PRT

<213> Homo sapiens

<400> 71

Met Lys Thr Leu Leu Leu Leu Leu Val Leu Leu Glu Leu Gly Glu
1 5 10 15

Ala Gln Gly Ser Leu His Arg Val Pro Leu Arg Arg His Pro Ser Leu
20 25 30

Lys Lys Lys Leu Arg Ala Arg Ser Gln Leu Ser Glu Phe Trp Lys Ser
35 40 45

His Asn Leu Asp Met Ile Gln Phe Thr Glu Ser Cys Ser Met Asp Gln
50 55 60

ULPI_034_01US_SeqList_ST25. txt

Ser Ala Lys Glu Pro Leu Ile Asn Tyr Leu Asp Met Glu Tyr Phe Gly
65 70 75 80

Thr Ile Ser Ile Gly Ser Pro Pro Gln Asn Phe Thr Val Ile Phe Asp
85 90 95

Thr Gly Ser Ser Asn Leu Trp Val Pro Ser Val Tyr Cys Thr Ser Pro
100 105 110

Ala Cys Lys Thr His Ser Arg Phe Gln Pro Ser Gln Ser Ser Thr Tyr
115 120 125

Ser Gln Pro Gly Gln Ser Phe Ser Ile Gln Tyr Gly Thr Gly Ser Leu
130 135 140

Ser Gly Ile Ile Gly Ala Asp Gln Val Ser Val Glu Gly Leu Thr Val
145 150 155 160

Val Gly Gln Gln Phe Gly Glu Ser Val Thr Glu Pro Gly Gln Thr Phe
165 170 175

Val Asp Ala Glu Phe Asp Gly Ile Leu Gly Leu Gly Tyr Pro Ser Leu
180 185 190

Ala Val Gly Gly Val Thr Pro Val Phe Asp Asn Met Met Ala Gln Asn
195 200 205

Leu Val Asp Leu Pro Met Phe Ser Val Tyr Met Ser Ser Asn Pro Glu
210 215 220

Gly Gly Ala Gly Ser Glu Leu Ile Phe Gly Gly Tyr Asp His Ser His
225 230 235 240

Phe Ser Gly Ser Leu Asn Trp Val Pro Val Thr Lys Gln Ala Tyr Trp
245 250 255

Gln Ile Ala Leu Asp Asn Met Leu Trp Ser Val Pro Thr Leu Thr Ser
260 265 270

Cys Arg Met Ser Pro Ser Pro Leu Thr Glu Ser Pro Ile Pro Ser Ala
275 280 285

Gln Leu Pro Thr Pro Tyr Trp Thr Ser Trp Met Glu Cys Ser Ser Ala
290 295 300

Ala Val Ala Phe Lys Asp Leu Thr Ser Thr Leu Gln Leu Gly Pro Ser
305 310 315 320

Gly Ser Trp Gly Met Ser Ser Phe Asp Ser Phe Thr Gln Ser Leu Thr
325 330 335

ULPI_034_01US_SeqList_ST25.txt

Val Gly Ile Thr Val Trp Asp Trp Pro Gln Gln Ser Pro Lys Glu Gly
340 345 350

Pro Cys Val Cys Ala Cys Leu Ser Asp Arg Pro
355 360

<210> 72
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> Substrate competitive inhibitor, L803-mts

<220>
<221> MI SC_FEATURE
<222> (11)..(11)
<223> May be N-terminal ly myristoylated

<220>
<221> MI SC_FEATURE
<222> (11)..(11)
<223> May be a phosphorylated residue

<400> 72

Gly Lys Glu Ala Pro Pro Ala Pro Pro Gln Ser Pro
1 5 10