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REGULARIZED LEAST SQUARES CLASSIFICATION/REGRESSION

RELATED APPLICATIONS
[0001] This application claims the benefit of U.S. Provisional Application No. 60/721,753,
filed September 28, 2005, titled “Making Regularized Least Squares Practical,” and U.S.
Utility  Application ~ No.  11/535,921, titled  “Regularized  Least  Squares
Classification/Regression,” which are herein incorporated in their entirety by reference.
FIELD OF THE INVENTION
[0002] The invention relates to machine learning, and more particularly, to fast regularized
least squares classification/regression.
BACKGROUND OF THE INVENTION
[0003] Given a dataset S = (%, ) (%, ),...,(55", y,) of n points in d dimensions, the

inductive learning task is to build a function f (J?) that, given a new point X, can predict the

associated y value. A common framework for solving such problems is Tikhonov
regularization (Evgeniou et al., 2000), in which the following minimization problem is

solved:

o VUG )+ A

Here, H is a Reproducing Kernel Hilbert Space or RKHS (Aronszajn, 1950) with associated
kernel function K, ” f ||i is the squared norm in the RKHS, A is a regularization constant

controlling the tradeoff between fitting the training set accurately and forcing smoothness of f
(in the RKHS norm), and (7 (%), y) is a loss function representing the price paid when ¥ is
seen and f(%) is predicted, but the actual associated value is y. Different choices of V give
rise to different learning schemes (Evgeniou et al., 2000). In particular, the hinge loss
V(£(%),y) = max (1- 3£ (%),0) induces the well-known support vector machine, also referred
to as SVC (Vapnik, 1998), while the square loss ¥(f(%),»)=(f(%)- ) induces a simple
regularized least squares classifier (Wahba, 1990).
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[0004] For a wide range of loss functions, including the square loss, the so-called
Representer Theorem proves that the solution to the Tikhonov minimization problem will

have the following form (Scholkopf et al., 2001; Wahba, 1990):

]

fa(f)= ZciK(i:', J?i)

i=1
The Representer Theorem reduces the infinite dimensional problem of finding a function in

an RKHS to the n-dimensional problem of finding the coefficients ¢;. For Regularized Least

Squares (RLS), the loss function is differentiable, and simple algebra shows that the
coefficients ¢ can be found by solving the linear system (K +Anl )c =y, where, via a
commonly used and accepted notational short-cut, K is the » by n matrix satisfying
K, =K(%,%,).

[0005] The RLS algorithm has several attractive properties. It is conceptually simple, and
can be implemented efficiently in a few lines of MATLAB code. It places regression and
classification in exactly the same framework (i.e., the same code is used to solve regression
and classification problems). Intuitively, it may seem that the squared loss function, while
well-suited for regression, is a poor choice for classification problems when compared to the
hinge loss. In particular, given a point ()?, y= 1), the square loss penalizes f (f)= 10and
f (5c’)= —9 equally, while the SVMs hinge loss penalizes only the latter choice. However,

across a wide range of problems, the regularized least squares classifier (RLSC) performs as
well as the SVM (Rifkin, 2002; Rifkin & Klautau, 2004).
[0006] On the other hand, for large datasets and non-linear kernels, RLS has a serious

problem as compared to the more popular SVM. In more detail, direct methods for solving

RLS manipulate the entire kernel matrix and therefore require 0(;13) time and (even worse)

0(n2) space. These problems can be alleviated by using iterative methods such as conjugate
gradient, which require only matrix-vector products. However, recomputing the kernel
matrix at each iteration requires 0(712d ) work, which can be prohibitive if d is large. The
SVM, on the other hand, is quite attractive computationally, as the flat loss function for
correctly classified points induces a sparse solution in which all the correctly classified points
have zero coefficients ¢;. Kernel products between pairs of training points both of which are

correctly classified at all times during training are never computed by state-of-the-art SVM
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algorithms. In practice, SVM algorithms generate only a small fraction of the kernel matrix,
making SVMs much more suited than RLS to large non-linear problems.

[0007] In more detail, when a [linear kernel K(:?,-,J‘cj)=;?,.-;?j is used, the relative

effectiveness of SVMs and RLSCs is reversed. Solving an RLSC problem for ¢ becomes an
O(nd®) time and O(nd) memory problem, either directly using the Sherman-Morrison-
Woodbury formula or iteratively via conjugate gradient (Golub & Van Loan, 1996). The
SVM is also somewhat faster, but the difference is not as dramatic, because state-of-the-art
SVM algorithms are coordinate ascent algorithms that work at the boundary of the feasible
region, optimizing a few coefficients while holding the rest fixed, and therefore require
explicit entries of the kernel matrix K. Some attempts at interior point SVMs, which can be
represented in terms of matrix-vector products and could therefore take full advantage of the
savings offered by a linear kernel, have been made (Fine & Scheinberg, 2001). However,
these approaches have not yet achieved the same performance as state-of-the-art linear SVMs,
and RLS classification remains the fastest way to train a regularized linear classifier.

[0008] What is needed, therefore, are techniques that make using regularized least squares

more practical.
SUMMARY OF THE INVENTION

[0009] One embodiment of the present invention provides a computer implemented
methodology for regularized least squares (RLS) classification/regression. The method
includes receiving a training set of data, and computing a matrix decomposition using the
training set (e.g., eigendecomposition or SVD). The method further includes receiving a
plurality of regularization parameters, and computing coefficients for each regularization
parameter using the matrix decomposition. The method continues with computing a leave-
one-out (LOO) error for each of the regularization parameters, and selecting the regularization
parameter with the lowest LOO error. The method may further include predicting future data
points based on at least one of coefficients ¢ or a hyperplane function w associated with the
selected regularization parameter. In one particular case, computing a matrix decomposition
using the training set includes computing a singular value decomposition (SVD) using the
training set, wherein the SVD is the matrix decomposition. In another particular case,
computing a matrix decomposition using the training set includes forming a kernel matrix
using the input training set, and computing an eigendecomposition of the kernel matrix,

wherein the eigendecomposition is the matrix decomposition. In one such case, the kernel
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matrix is represented explicitly, and the method includes storing the kernel matrix. In another
such case, the kernel matrix is represented explicitly, and the method computes the LOO error
for all the regularization parameters in O + n’d) time and O(n?) space, where n is the
number of points in d dimensions of the training set. In another such case, the kernel matrix

is an n by n matrix K satisfying K =K(J?,.,5c'j) and having a form

2
% - %)
i J
K (3?, X; )= exp mryrat where x is a vector of data points included in the training set and
o

\ o is a user-selected bandwidth parameter. Alternatively, the kernel matrix can be represented
using, for example, matrix vector products (particularly if the matrix is too large to store all at
once). In one such case, the matrix vector products are approximated using an Improved Fast
Gauss Transform (IFGT).

[0010] Another embodiment of the present invention provides a machine-readable medium
(e.g., one or more compact disks, diskettes, servers, memory sticks, or hard drives) encoded
with instructions, that when executed by one or more processors, cause the processor to carry
out a process for regularized least squares (RLS) classification/regression. This process can
be, for example, similar to or a variation of the previously described method.

[0011] Another embodiment of the present invention provides a regularized least squares
(RLS) classification/regression system. The system functionality (e.g., such as that of the
previously described method or a variation thereof) can be implemented with a number of
means, such as software (e.g., executable instructions encoded on one or more computer-
readable mediums), hardware (e.g., gate level logic or one or more ASICs), firmware (e.g.,
one or more microcontrollers with I/O capability and embedded routines for carrying out the
functionality described herein), or some combination thereof. In one particular case, the
system is implemented in a computing environment such as a desktop or laptop computer,
with an executable RLS classification module or set of modules stored therein.

[0012] The features and advantages described herein are not all-inclusive and, in particular,
many additional features and advantages will be apparent to one of ordinary skill in the art in
view of the figures and description. Moreover, it should be noted that the language used in
the specification has been principally selected for readability and instructional purposes, and

not to limit the scope of the inventive subject matter.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0013] Figure 1 is a block diagram illustrating a computing environment configured in
accordance with an embodiment of the present invention.

[0014] Figure 2 is a block diagram illustrating a regularized least squares (RLS)
classifier/regression module configured accordance with an embodiment of the present
invention.

[0015] Figures 3a-d each illustrates accuracy of an RLS classifier/regression over a range of
o and A, in accordance with an embodiment of the present invention.

[0016] Figure 4 illustrates ||K - FGT(K)||/||K]| for an example dataset, where p is the order
of the polynomial expansion, in accordance with an embodiment of the present invention.
[0017] Figure 5 illustrates an RLS classification/regression methodology configured in
accordance with an embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0018] Techniques are disclosed that make using regularized least squares (RLS) more
practical, and in particular, that decrease computational burdens associated with conventional
techniques.

General Overview

[0019] In one embodiment of the present invention, a regularized least squares classifier
(RLSC) is provided. As is known, classifiers are programmed or otherwise configured to
receive input values (such as values of an object’s features or a situation’s characteristics),
and to produce as an output a discrete label related to those input values. Face recognition,
object tracking, room navigation, medical image analysis, and voice recognition are example
applications in which classification is applied. Classifiers may be implemented as fixed
classifiers or learning classifiers. In addition, note that the techniques described herein can
also be applied to RLS regression problems, as will be appreciated in light of this disclosure.

[0020] As previously explained, the loss function for RLS is differentiable, and coefficients
¢ can be found by solving the linear system (K + Anl ) ¢ =y, where K is the n by n matrix

satisfying K, = K(J?,.,J_c j). In accordance with an embodiment of the present invention,
- _n2
%, - %)

Gaussian kernels of the form K (3?, X j)= exp Py are considered, where G is a user-
o
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selected bandwidth parameter. Other implementations will be apparent in light of this
disclosure. The RLS algorithm has several attractive properties, including coding simplicity
(using MATLAB or other suitable computing environments/software packages) and its

applicability to both regression and classification problems. In addition, RLS has an explicit,

closed-form formula for the LOO error £, (%), where S’ = S —¥,, the training set with the

i" point removed. Previous iterative methods for solving RLS have not been able to take
advantage of the direct formula for computing the LOO values, which uses explicitly the
diagonal of the inverse regularized kernel matrix. Some SVM solvers allow one to compute
(Rifkin, 2002) or bound (Joachims, 1999) the LOO, but computing it exactly is
computationally costly and bounding it introduces additional error which can be substantial.
As discussed herein, for moderate to small datasets, LOO can be effectively used as a “gold
standard” for cross-validation: it is almost unbiased and the variance associated with a
procedure such as 10-fold cross-validation can be quite high, with different partitionings of
the dataset yielding substantially different results. For large datasets, LOO is less important,
but still desirable and can be used as discussed herein.

[0021] Thus, one embodiment of the present invention makes RLS more practical by
showing how, for several RLS related tasks, the regularization parameter A can be varied over
a wide range of values for very little computational cost, simultaneously building classifiers
and computing their LOO values on the training set. The choice of A in a regularization
scheme is an important one, as a poor choice can lead to an inaccurate classifier. Because
RLS (and SVM) are frequently used in a “model selection” framework, the ability to consider
a large number of A values simultaneously translates directly into computational savings. The
difference is especially important when RLS is used as a component in a feature selection
problem (e.vg., face or object recognition), or when it is also necessary to select kernel
hyperparaméters. One methodology described herein begins with, for moderate size problems
(where the O(n*) kernel matrix can be stored and manipulated), finding both the “solution” ¢
and the LOO values for a large number of values of A with a slowdown of only a small
constant factor (about 3) compared to solving for a single A “directly.” Then, the
methodology is used to conduct large-scale experiments on a number of benchmark datasets,
where both ¢ and A are varied over a wide range, to show via empirical observation that

accurate classification can often be obtained using quite large values of 0. Also discussed
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herein is how to exploit the ability to make o large to solve large problems, and a number of
computational examples.

System Architecture

[0022] Figure 1 is a block diagram illustrating a computing environment 10 configured in
accordance with an embodiment of the present invention.

[0023] As can be seen with this example, the computing environment 10 includes a
processor 101 operatively coupled via a bus 119 to a memory 107, a storage device 103 for
storing an RLS classifier module 105 (and other executable code, such as an operating system
and applications), a keyboard 113, a graphics adapter 109, a pointing device 117, and a
network adapter 115. A display 111 is operatively coupled to the graphics adapter 109.

[0024] The processor 101 may be any processor or set of processors capable of executing
various operating systems (e.g., UNIX) and applications/drivers (e.g., MATLAB) of the
computing environment 10. Numerous suitable processors (e.g., Intel Pentium, MAC G4 or
G5 processors, AMD K processors, as well as any co-processors and other typical computing
optimizations such as on-board caches) can be used, as will be apparent in light of this
disclosure. The memory 107 may be, for example, firmware ROM, RAM, and/or flash
memory, and holds instructions and data used by the processor 101 (e.g., 512 MByte or
higher). The storage device 103 is a hard disk drive in one embodiment (e.g., 10 GByte or
higher), but can also be any other device capable of persistently storing data, such as a
memory stick and/or a solid-state memory device. The storage device 103 can hold multiple
files containing executable code and/or data, as is typically done. The computing
environment 10 operates to load an executable file into memory 107 and execute it using the
processor 101. In the embodiment shown, the RLS classifier module 105 is stored in storage
device 103 as executable code, and is loaded into memory 107 for execution by the processor
101 as one or more processes.

[0025] The files stored on the storage device 103 can be, for example, in the MATLAB
format (sometimes referred to as M-files). Other file formats may also be stored on storage
device 103, such as .EXE files, .DLL files, .INI files and any other file types necessary for the
computing environment to properly operate. Such files are typical of computing
environments that employ Microsoft operating systems. Other file formats, such as those
utilized by Apple Macintosh afid UNIX based computers will be apparent in light of this

disclosure.
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[0026] The pointing device 117 may be a mouse, track ball, or other such user input device,
and is used in combination with the keyboard 113 to allow the user to interact with the
computing environment 10 (e.g. input data and respond to prompts), as is typically done. The
graphics adapter 109 displays images and other information on the display 111. The network
adapter 115 communicatively couples the computing environment 10 with an external
network such as the Internet or LAN, or combination thereof (e.g., via conventional wired or
wireless technology), if so desired and as is typically done.

[0027] The computing environment 10 is adapted to execute computer program modules for
providing RLS functionality described herein, including those of RLS classifier module 105.
Structure and functionality of the RLS classifier module 105 will be discussed in further
detail with reference to Figures 2 through 5. As will be apparent in light of this disclosure,
the computing environment 10 can be implemented via processing systems such as a general
purpose desktop or laptop computer, or a special-purpose processing system configured to
carryout the RLS classification (or RLS regression) as described herein. In one particular
case, the computing environment 10 is implemented with an IBM T42 laptop with a 1.7 GHz
Pentium-M processor and 2 GBytes of RAM. Other computationally intensive processes can
be limited as needed to reserve processing power for RLS processing as discussed herein,
although a standard user desktop environment can also be running.

RLS Classifier/Regression Module

[0028] Figure 2 is a block diagram illustrating modules within the RLS classifier/regression
module 105 configured in accordance with an embodiment of the present invention.

[0029] As can be seen, module 105 includes an input module 201, a kernel matrix generator
203, an eigendecomposition/SVD module 205, a coefficient (¢) computation module 207, a
leave-one-out (LOO) error computation module 209, a regularization parameter (1) selection
module 211, a prediction module 213, and an output module 215. In one particular
embodiment, each of these modules is implemented with executable software (e.g., C, C++,
or other suitable instruction set) for providing the specified functionality. Note, however, that
such modules can also be implemented in hardware (e.g., gate-level logic), firmware (e.g.,
microcontroller configured with embedded routines for carrying out each module’s
functionality), or some combination thereof. It will be understood in light of this disclosure
that the modules illustrated herein represent one embodiment of the present invention. Other

embodiments may include additional and/or different modules and functionality. Likewise,
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other embodiments may lack modules described herein and/or distribute the described KL
functionality among the modules in a different manner.
[0030] The input module 201 is programmed or otherwise configured to receive a training
set of data. This data is used to train the RLS classifier/regression module 105 for use in a
given application (such as face or voice recognition). This dataset can be represented as
S =(x, Y )%y Yooes (%, » y,) of n points in d dimensions. As previously indicated, the
inductive learning task is to build a function f (J—C) that, given a new point X , can predict the
associated y value. The input module 201 may be further configured to format and structure
the input dataset as needed (if at all), in preparation for generating the kernel matrix
generation of pairwise distances. The kernel matrix generator 203 is programmed or
otherwise configured to form a kernel matrix (K) of the pairwise distances, where the kernel
matrix K is size O(n2). Note that the kernel matrix generator 203 does not apply to the case
of a linear kernel, where a singular value decomposition process can be used, in accordance
with one embodiment of the present invention, and as will be discussed in turn.
[0031] For an RLSC algorithm in accordance with an embodiment of the present invention,
the leave-one-out (LOO) error values are given explicitly via the formula:
G'Y
LOOerror = W
c
" diag (67)
As can be seen, the LOO values can be computed given the training weights ¢ (also referred
to as coefficients c; in general, ¢ represents training points on the functional expansion) and
the diagonal of the inverse of the regularized kernel matrix G. Given the eigendecomposition
K = OAQ', c(\) can be computed in O(r%). LOO error can also be computed in O(n2) time.
A single entry of G(A)~! can be computed in O(n) time, as will be discussed with reference to
module 207. Thus, diag(G™!) can be computed, and compute LOO error, in O(n2) time.
[0032] The coefficient ¢ computation module 207 is programmed or otherwise configured
to receive a collection of regularization parameters (1), and to compute coefficients ¢ for each
M\ using the matrix decomposition computed by module 205. In more detail, for a given A,
module 207 operates to compute the associated ¢ and diag(G 1 by exploiting the fact that

adding M to K shifts all the eigenvalues by 2, but does not change the associated eigenvectors:
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(K +A) =V (A+A)V". In one particular embodiment, the coefficient ¢ computation module

207 operates to apply the following formulae to compute ¢ for each A:

¢ = VA+M)'P7'y

' = lola+ay'e),
< Qiijk
;AkkH»

Thus, it takes O(n3) to solve a single RLS problem for c¢. If an eigendecomposition of K is
computed, ¢() can be computed and ||[LOO error (A)|| over a quite fine grid of A, at basically
no additional cost. Applying these techniques uses O(n3) time and O(n2) memory.

[0033] The eigendecomposition/SVD module 205 is programmed or otherwise configured
to compute the eigendecomposition of the kernel matrix K. Alternatively, or in addition to
(and for the case of a linear kernel), the eigendecomposition/SVD module 205 can be
configured to compute the singular value decomposition (SVD) of the data matrix (the
training set of data).

[0034] With respect to the special case of a linear kernel k(X,,X;) =X P X ;> assume we

are in R4, with d < n. If d > n, then ignore the fact that the kernel is linear, and use the

eigendecomposition approach previously discussed. Assuming d < n, then define the matrix

X to contain the entire training set, with one data point per row: the it row of X'is X;. Note

that this is a mathematical notation decision; not a decision about how to represent data on
disk or in memory. With this convention, X has n rows and d columns. With a linear kernel,
f@ = Yek(X,%)
the function being learned is linear as well: = l c' Xx , where the hyperplane w
= w'x
is defined to be X?c. New points can be classified in O(d) time, using w, rather than having to
compute a weighted sum of n kernel products (which will usually cost O(nd) time). Further
assume that the n by d data matrix X has full column rank and economy-size singular value
decomposition X = USVY, where U'U = VV* = V'V = I;. Note that UU* # I,)), and S is a
positive semi-definite diagonal matrix of singular values. The kerel matrix X is given by K
= XXt = (USVi)(VSUY) = US?Ut. Expressions can be derived for the expansion coefficients c,
the hyperplane function w, and the LOO error values. In accordance with one embodiment of
the present invention, one set of formulas is obtained by directly using the relevant formulas

for nonlinear LOO, but assuming we have the SVD:

10
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c = (K+AD7'Y
- US?U* + A Y
= U +ADUY+AUULY
w = X'c
= PSU'(US* + AN U'Y+ AU ULY) . Computing the SVD takes O(nd?)

= VS(S? + A U'Y
diag(G™) diag(U(S* + AU + 7'ULUY)
diag(U(S? + AU + (I -UU"))

Il

time and O(#d) memory. Once U is computed, ¢ and diag(G™1) can be obtained, for a given
value of A, in O(nd) time. Note that when n >> d, this represents an enormous savings, in that
a good A can be found in time O(nd?) rather than time O(n3). For large datasets in high
dimensions, there may be difficulty in fitting the dataset in memory. Also, although it is in
principle possible to compute SVDs out of core or in parallel on a computing cluster, tools for
doing so are not readily at hand. Thus, an alternate linear algebraic view of linear RLS is
provided here, in accordance with an embodiment of the present invention. In particular, with

a linear kernel, a hyperlane is being found, so the RLS problem can be phrased directly in
terms of w, rather than c: min L(w) =%||Y *Xw”z +§HW“§ Taking the derivative with
weR

respect to W, % =X'Xw-X'Y+Aw, and setting to zero  implies

w =  (X'X+A)7'XY
= VES*+ADV'XY
(= V(S*+ AV (VSU)Y)

(= VS(S+AD)'V'U'Y) . ¥V and $2 can be obtained from an eigendecomposition of
+

the d by d X*X. Additionally, U = XVS~/, so any expression involving U can be written as
XVS~1. One advantage of this formulation is that it is not too difficult to write parallel or out-
of-core programs for forming X’X or X?y. In this approach, the most time consuming step is
the formation of the covariance matrix X°X, which takes O(nd2) time, after which its

eigendecomposition can be taken in O(d3) time. This approach is computationally feasible
given the ability to work with d by d matrices, although it does involve some infrastructure

effort to form XX and X?y. In practice, when dealing with linear functions where » >> d and

11
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using the covariance method described herein, it may be preferable just to find w(A), and
validate via a holdout set, rather than computing U = X¥V:§~! as required to compute ¢ and
diag(G-1). The SVD and covariance based approaches have the same (asymptotic)
computational complexity. However, note that the SVD approach may be more numerically
stable.

[0035] Once the eigendecomposition of the kernel matrix X (or the SVD of the data matrix)
is computed by module 205, for a particular choice of A, module 207 operates to form ¢ and
diag(G ™) as previously discussed. The leave-one-out (LOO) error computation modﬁle 209
is programmed or otherwise configured to receive the collection of regularization parameters

(A), and to compute the LOO error for each A (e.g., LOO error =E_765:1_))' The
iag

regularization parameter (1) selection module 211 is programmed or otherwise configured to
then select the A with the lowest LOO error (e.g., based on comparison of values).

[0036] The prediction module 213 is programmed or otherwise configured to predict future
data points based on the RLS function associated (e.g., based on expansion coefficients ¢ or
hyperplane function w) associated with the best A. The output module 215 is programmed or
otherwise configured to output an RLS prediction based on an input data set. The output
module 215 may be further configured to format and structure the output prediction data as
needed (if at all), in preparation for displaying or otherwise reporting that data.

[0037] The time savings provided by this embodiment (relative to direct approaches) is best
illustrated with an example. In more detail, and with reference to Table 1, consider the 4192
point, 14 dimension Galaxy Dim dataset. For both the full dataset and a random subset of
half the dataset, the LOO error values were computed using both the conventional direct
method and an eigenvalue decomposition in accordance with an embodiment of the present
invention, and compare the timings. The timing results reported in Table 1 are approximate
(e.g., +/- 5%), and the order of timings that are close may vary accordingly. All times
reported are the average of at least 5 runs; the variance was never large compared to the
mean. All times reported are elépsed wall-clock times; there was no swapping to disk, and

system time was never more than a small fraction of total time.
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Number of points

2048 4092
Direct Solve 12.4 106.0
Eigenvalue Decomposition 28.1 268.6
Time per A 0.4 1.7
Total Time, 25 As, Direct 310.0 2650.0
Total Time, 25 As, Eigenvalue Decomposition 38.1 311.1
Ratio, 25 s _ 8.1 8.5
Ratio, o As 31.0 62.5

Table 1: Timings (in seconds) for computing LOO values using direct linear algebra on the
Galaxy Dim dataset. ‘

[0038] As can be seen, for problems of this size (e.g., 2048 to 4092 points), when three or
more As are considered, the eigenvalue approach to LOO error computation in accordance
with an embodiment of the present invention has an advantage, and this advantage grows as
the number of As increases. As the problem size grows, the relative advantage of the
eigenvalue decomposition grows (for sufficiently many As), because the per A cost is o)
rather than O(#’). Note that although both the direct approach and the full
eigendecomposition are O(@n), for this range of #, a factor of about 8 (slightly more at 8.1 for
2048 points and 8.5 for 4092 points) is paid in time to double the problem size, likely due to
memory hierarchy issues. The total time used to compute the LOO values for 25 different As
was 38.1 seconds for a 2048 point subset of the data, and 311.1 seconds for the entire 4192
point dataset. The algorithms discussed here use O(n*) space, so are suitable for moderate-
sized datasets. Techniques suitable for large datasets will be discussed in turn.

Varying g and A ,

[0039] For purposes of demonstrating its effectiveness, an embodiment of the RLS
classifier/regression module 105 was implemented as discussed herein and used to perform
large-scale experiments in which, for a given dataset, the bandwidth parameter o is varied
through a range of values, and the LOO values are computed for each o value for a large
number of regularization parameters .. The experiment results are shown for four datasets in
Figures 3a, 3b, 3c, and 3d, respectively. Other datasets can be used as well, such as those

from the UCI machine learning repository (UCI = University of California at Irvine; see, for
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example, http://www.ics.uci.edu/~mlearn/MLRepository.html), with similar results. In the
labeled vertical lines in Figure 3a-d, note that m represents the smallest entry in the kernel
matrices.

[0040] A number of interesting observations can be drawn from these Figures 3a, 3b, 3c,
and 3d. For instance, there is a wide range of values of ¢ for which an accuracy equivalent or
very close to the best accuracy can be obtained, with a proper choice of A. In addition, an
accurate classification/regression can often be obtained with a very large o. In particular, o
can be chosen so that all entries of the kernel matrix are quite close to 1 (e.g., .9999 or
greater). Also, in order to successfully classify with large o, A must be quite small. It is
important to know the limits of numerical formulas.

[0041] An empirical approach can be used to performance test the RLS classifier/regression
module 105, where two different tests are performed to check the accuracy of the LOO
computation. The first test is a spot check, where for some small subset of the data, each
point x is explicitly removed from the training set, a classifier is built on the rest of the data,
and the classifier is tested on x. The other check is to perturb the data slightly, where all
values (the training data, the y values, A and ¢) are perturbed by multiplying each number by
an independent random variate of the form (1 + ¢), where € is a Gaussian random variable
with mean 0 and variance 10™°. Using both of these approaches, the accuracy reflected in
Figures 3a, 3b, 3¢, and 3d is acceptable. However, the accuracy decreases as A gets smaller.
In general, LOO values at A < le-11 may provide an unacceptable accuracy level, depending
on the given application.

[0042] This ability to classify successfully with such large o is unexpected, as intuition that
RLSC (and SVM) work primarily as a weighted local scheme, in which classification of a test
point is determined primarily by a moderate number of close points. In a large o scheme, the
farthest point has nearly as much impact as the closest. The following section discusses how
to exploit the large o to solve large-scale regularized least squares classifier (and regression)
problems rapidly and accurately, in accordance with various embodiments of the present
invention.

Large Problems, Large ¢

[0043] For large problems, representing the kernel matrix K explicitly may not be practical
due to memory constraints. One approach is to use conjugate gradient (CG), which requires
only the ability to multiply a vector by the kernel matrix K. The CG algorithm cannot be used
directly to solve for multiple As in the equation (K + Anl )c =y. Rather, the vector x by
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which matrix K is multiplied by depends on A. However, In accordance with one partcuiat
embodiment of the present invention, the CG can be multiplexed. In more detail, consider a
factorization K = QTQ', where Q is orthonormal and T is symmetric tridiagonal (this
factorization is the first step in modern eigenvalue decompositions). The Lanczos process

constructs O and T iteratively. Specifically, if @ = (g1 ... gr) and

@ B 0 - 0 0)
B oo, By 0 0
T 0 B, a - 0 0
O O O ar-l ﬂr-l
0 0 o - ﬂr-l a,

then Q and T are computed (in exact arithmetic) by the recurrence

ak=7= O
k-1

ak = q1,<1<qk (2)
Xy = qu - Clqu - ﬂk—lqk—l (3)
B =, @

where [, = ||x0 “ ,0 40 = 0 and x, is an arbitrary non-zero vector. When the process is carried

out for 7 steps, the resulting O is the orthogonal basis that would be given by Gram-Schmidt

orthonormalization of the sequence of vectors x,, Kxo, K *xy,...K '™ x, , a Kyrlov subspace.

[0044] If xo =y, then x = OT '0Y is the rth iterative solution to Kx = y by the conjugate
gradient method. Additionally, under a diagonal shift K — K + A, the quantities computed
by equations 1, 2, 3, 4 become O, T — O,T + A, and thus x = Q(T + M)‘J Q'y is the #h
iterative solution to (K + AD)x = y. Therefore, only one accurate Lanczos tridiagonalization is
needed to obtain solutions to many As. These solutions can be obtained rapidly, because

multiplying by or solving a linear system with a tridiagonal matrix requires only linear time.
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[0045] A similar approach can be used to compute LOO values. In more detail,
diag(K(K+\)™") can be approximated, based on the partial tridiagonalization of X, as

diag(QTQ'( QTQ*+ M)™):

(org'+a)" =0T+ M) O
1 ,
+EU—QQ)

0TQ(0TQ' +M)" = OT(T +M)" Q'
Thus, to compute a single element of diag(QTQ(QTQ' + )™, a row of Q can be multiplied
by (T + )" and then dot the result by the same row of Q, in O(r) time per element. The
total time to find the approximate diag(X(XK + A at the #M iteration given Q and T'is O(nr“).
In practice, a slightly slower but simpler approach can be used where a full

eigendecomposition of T is formed. The cost is O(nr + ), and the difference is not

noticeable because 7 is much smaller than /7 .

[0046] Rounding errors tend to cause a loss of orthogonality among the ¢, , Thus, a
straightforward implementation of equations 1, 2, 3, 4 suffers from instabilities. However,
the ARPACK (Lehoucq & Sorensen, 1996; Lehoucq et al., 1997) library provides a
numerically stable version of the Lanczos process (it is a stable implementation of the
Amnoldi process, of which the Lanczos process is a special case); this library is used in the
experiments discussed herein.

[0047] The math described here applies regardless of 0. However, there are at least two
reasons that it is useful to use as large a ¢ as possible, both relating to the structure of K.
With a Gaussian kernel and points in general position, K is full rank for any o, in exact
arithmetic. However, the larger o is, the faster K’s spectrum decays, the easier it is to
approximate K with a matrix of low rank, and the easier it is to form an accurate matrix-
vector product Kx in less than O(n’) time. Much of the previous work on making nonlinear
RLS classification fast (Smola & Scholkopf, 2000; Willams & Seeger, 2000) has focused on
such approximations, but have not made the connection that a large o regime makes these
approximations much more tractable. For large o, there are a number of simultaneous
advantages. For instance, fewer matrix-vector products are needed to perform regularized
least squares classification, due to the rapidly decaying eigenstructure of K, and

approximating the matrix-vector product Kx is much easier.
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Improved Fast Gauss Transform (IFGT)
[0048] The Improved Fast Gauss Transform (IFGT) can be used to form (approximate)

‘matrix-vector products Kx, in accordance with one embodiment of the present invention.
Other approaches, such as the Nystrom method, can also be used. The IFGT picks a set of
centers and computes the matrix-vector product Kx using a sum of truncated Hermite
expansions around the centers. For purposes herein, the IFGT is treated mostly as a black box

— it is given a matrix 4, a vector x, and a parameter p, and the IFGT returns a “pth

order”
approximation to Ax. Performing a single p™ order IFGT takes O(nd”) time and O(nd’) space;
under the assumption that only a constant number of iterations of CG is required, the resulting
algorithm will be O(rd”) in both time and space. When d” << n, this can be a very effective
scheme.

[0049] Yang et al. perform experiments showing that, for a fixed, small o, the IFGT
converges slowly but eventually in the polynomial order p. Yang also shows that the running
time of the IFGT for small p (p = 1, 2) is quite attractive. However, Yang does not consider
varying o or . Rather, Yang uses a single value of ¢ for each dataset (.5d), and does not

specify . The same datasets in Yang are considered herein, but performance is achieved that

is uniformly better (and often substantially so) because a good ¢ is found and the appropriate

A is chosen. Recalling that the norm of an operator 4 is defined as max"vllzlllAv , consider the

relative norms of the operator (K — IFGT(K)) and K operator norms are computed, for
example, by performing 20 iterations of an Arnoldi process to find to high accuracy the
largest eigenvalue of the operator. The Arnoldi is used rather than the Lanczos process
because the IFGT is asymmetric: in general, y’ * IFGT(x) # IFGT(y)’ - x. In Figure 4, this
relative norm is plotted over a wide range of sigmas and p =1, 2, 3 for the Galaxy Dim
dataset. Note that the performance of the RLS classifier with IFGT (in accordance with one
embodiment of the present invention) gets better with increasing order and increasing o, with
the curve eventually flattening as floating-point accuracy limits are reached (e.g., 1016),
Experiments

[0050] Once again, consider the Galaxy Dimdataset. Galaxy Dimis especially suited
to this example because of its size (4192 points); it is large enough to allow one to reasonably
see the asymptotics by playing with a subset of it, but small enough to allow one to compare
methods that do and do not need the entire kernel matrix K. Recall from Table 1 that the total
time used to compute the LOO values for 25 different As was 38.1 seconds for a 2048 point
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subset of the data, and 311.1 seconds for the entire 4192 point dataset. Using the methods
described herein, with the matrix vector multiply implemented using a 3" order IFGT and o =
100, the same computation uses only 19.3 seconds for the 2048 point subset, and 38.3
seconds for the entire 4192 point dataset. The results were essentially identical — for all &
>= le-11, no more than 2 points were classified differently by the full eigenvalue
decomposition and the IFGT-based method, in accordance with one embodiment of the
present invention. The timing is essentially linear: the IFGT is linear in the dataset size, but
slightly more iterations were required for convergence for the larger dataset. Lower order
IFGTs use substantially less time per IFGT iteration, but may provide insufficient accuracy.
[0051] Now, consider the 8124 point, 22 dimensional dataset Mushroom, for which it is
typically not practical to work directly with the entire kernel matrix. Using the RLS with
IFGT approach described herein, the LOO values are computed for this dataset over a range
of A (e.g., 10-16 to 10*16), for ¢ = 100, in 260 seconds. The best A was computed to be le-11,
leading to a LOO accuracy of 88.8%. For a 4062 point subset of the data, only 137 seconds
of work were needed; again, note that the RLS with IFGT algorithm is essentially linear time.
Methodology
[0052] Figure 5 illustrates an RLS classification/regression methodology configured in
accordance with an embodiment of the present invention. The method can be carried out, for
example, by the RLS ’classiﬂcation/regression module 105 previously discussed with
reference to Figures 1 and 2.
[0053] The method includes receiving 501 a training set of data. It the case of a linear
kernel, step 503 is skipped and the method continues to step 505. Otherwise, the method
continues with forming 503 a kernel matrix of pairwise distances using the input training set.
Note that the method may further include receiving an actual dataset to be processed, once the
RLS classifier/regression module is trained as described herein.
[0054] The method continues with computing 505 the eigendecomposition of the kernel
matrix, or computing 505 the SVD of the data matrix (in the case of a linear kernel), as
previously explained. One particular embodiment of the present invention is adapted to
carryout both eigendecomposition and SVD (e.g., user-configurable). The method further
includes receiving 507 a collection of regularization parameters (A). The range and resolution
of the A collection, which can be provided manually (e.g., input by user) or automatically
(e.g., read from a previously stored filed or hard coded or computed dynamically based on

user input specifying a target range and resolution) will depend on factors such as the desired
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accuracy and robustness of the classifier. In one particular embodiment, the collection of As
ranges from 10716 to 10+16 and includes a resolution of 200 to 400 intermediate A values
evenly spaced therebetween. Such a broad range allows for convergence (e.g., ranges from
too small to too big) and provides sufficient resolution without requiring excessive
computation to achieve that convergence.

[0055] The method continues with computing 509 coefficients (c) for each A using the
matrix decomposition computed in step 505 (whether using eigendecomposition or SVD). In

one particular embodiment, and as previously explained, the coefficients ¢ can be computed
using: ¢ = V(A + M)‘1 7'y, as previously explained. Alternatively, can be computed using:

c=U(S*+AI)'U'Y + X'U,U'Y (for the linear kernel case). Note that diag(G "1y can also

be computed here, as previously discussed. Once the coefficients ¢ are computed, the method
continues with computing 511 the LOO error for each of the As in the collection.

[0056] The method continues with selecting 513 the A with the lowest LOO error. As
previously explained, this selection of the appropriate X is not trivial and enables an accurate
classifier. The method may then proceed with predicting 515 future data points based on the
RLS function associated with the best A (€.g., based on coefficients ¢ or hyperplane function
w associated with the best A). The actual classification application (i.e., what is being
predicted, such as face, objects, sounds, etc) or regression application (i.e., size of number
being predicted, such as lifespan, salary, etc) can vary, as will be apparent in light of this
disclosure.

[0057] Further recall that two approaches for rapid LOO RLS processing over a range of A
can be used, in accordance with two embodiments of the present invention: an o’ + n’d)
time, O(n”) memory approach for small to moderately sized datasets, and an O(nd’) time,
O(nd’) memory (where p is the order of the IFGT used) approach for large datasets that
employs large o. !

[0058] The foregoing description of the embodiments of the invention has been presented
for the purposes of illustration and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifications and variations are possible
in light of this disclosure. For instance, if only finding accurate c is desired and diag(G™) not
needed, then a larger tolerance can be used on the Lanczos process described herein, or a
smaller 0. However, a large o is desirable so that the spectrum of K decays rapidly and the

IFGT is accurate; but large ¢ implies small A, which implies a low tolerance on our Lanczos
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process. Thus, appropriate trades must be considered. In addition, the view of an RLS
classifier with a Gaussian kernel (as discussed herein) as a largely local learning scheme is
dependent on small or moderate o; for large o, the farthest point has nearly the same impact as
the closest. Furthermore, and in considering the asymptotics of an RLS classifier, note that as

¢ — % and A — 0, the RLS classifier converges into a certain polynomial classification

. A ) .
scheme, whose order depends on the rate at which — — 0. Likewise, note that the
o

techniques described herein can be equally applied to both RLS classification and RLS
regression problems. It is intended that the scope of the invention be limited not by this

detailed description, but rather by the claims appended hereto.
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CLAIMS

What is claimed is:
1. A computer implemented methodology for regularized least squares (RLS)
classificatior/regression, comprising:
receiving a training set of data;
computing a matrix decomposition using the training set;
receiving a plurality of regularization parameters;
computing coefficients for each regularization parameter using the matrix
decomposition;
computing a leave-one-out (LOO) error for each of the regularization parameters; and
selecting the regularization parameter with the lowest LOO error.
2. The method of claim 1 further comprising:
predicting future data points based on at least one of coefficients ¢ or a hyperplane
function w associated with the selected regularization parameter.
3. The method of claim 1 wherein computing a matrix decomposition using the
training set includes:
computing a singular value decomposition (SVD) using the training set, wherein the
SVD is the matrix decomposition.
4. The method of claim 1 wherein computing a matrix decomposition using the
training set includes:
forming a kernel matrix using the input training set; and
computing an eigendecomposition of the kernel matrix, wherein the
eigendecomposition is the matrix decomposition.
5. The method of claim 4 wherein the kernel matrix is represented explicitly, the
method further comprising:
storing the kernel matrix.
6. The method of claim 4 wherein the kernel matrix is represented explicitly, and
the method computes the LOO error for all the regularization parameters in O + n’d) time

and O(n?) space, where 7 is the number of points in d dimensions of the training set.
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7. The method of claim 4 wherein the kernel matrix is an n by n matrix K

_ — 12
% - %,

, where x is a vector

2

satisfying K, = K(J?,., fj) and having a form K(f, 3?1.)= exp Py
of data points included in the training set and o is a user-selected bandwidth parameter.

8. A machine-readable medium encoded with instructions, that when executed by
one or more processors, cause the processor to carry out a process for regularized least
squares (RLS) classification/regression, the process comprising:

receiving a training set of data;

computing a matrix decomposition using the training set;

receiving a plurality of regularization parameters;

computing coefficients for each regularization parameter using the matrix

decomposition;

computing a leave-one-out (LOO) error for each of the regularization parameters; and

selecting the regularization parameter with the lowest LOO error.

9. The machine-readable medium of claim 8 further comprising:

predicting future data points based on at least one of coefficients ¢ or a hyperplane

function w associated with the selected regularization parameter.

10.  The machine-readable medium of claim 8 wherein computing a matrix
decomposition using the training set includes:

computing a singular value decomposition (SVD) using the training set, wherein the

SVD is the matrix decomposition.

11.  The machine-readable medium of claim 8 wherein computing a matrix
decomposition using the training set includes:

forming a kernel matrix using the input training set; and

computing an eigendecomposition of the kernel matrix, wherein the

eigendecomposition is the matrix decomposition.

12.  The machine-readable medium of claim 11 wherein the kernel matrix is
represented explicitly, the process further comprising:

storing the kernel matrix.

13.  The machine-readable medium of claim 11 wherein the kernel matrix is

represented explicitly, and the process computes the LOO error for all the regularization
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parameters in O(n® + n’d) time and O(n) space, where n is the number of points in d
dimensions of the training set.

14. The machine-readable medium of claim 11 wherein the kernel matrix is an n

e
by n matrix K satisfying K =K(J?i,f j) and having a form K(y?, X j)= exp —XIT;& ,
where x is a vector of data points included in the training set and o is a user-selected
bandwidth parameter.

15. A regularized least squares (RLS) classification/regression system,
comprising:

an input module for receiving a training set of data;

1 a matrix decomposition module for computing a matrix decomposition using the
training set;

a coefficient computation module for receiving a plurality of regularization parameters
and computing coefficients for each regularization parameter using the matrix
decomposition;

a LOO error computation module for receiving the plurality of regularization
parameters and computing a leave-one-out (LOO) error for each of the
regularization parameters; and

a regularization parameter selection module for selecting the regularization parameter
with the lowest LOO error.

16.  The system of claim 15 further comprising:

a prediction module for predicting future data points based on at least one of
coefficients ¢ or a hyperplane function w associated with the selected
regularization parameter.

17. The system of claim 15 wherein the matrix decomposition module for
computing a singular value decomposition (SVD) using the training set, wherein the SVD is
the matrix decomposition.

18.  The system of claim 15 further comprising:

a kernel matrix generator for forming a kernel matrix using the input training set;

wherein the matrix decomposition module for computing a matrix decomposition
using the training set is for computing an eigendecomposition of the kernel

matrix, wherein the eigendecomposition is the matrix decomposition.
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19.  The system of claim 18 wherein the kernel matrix is represented explicitly, the
system further comprising:

a memory for storing the kernel matrix.

20.  The system of claim 18 wherein the kernel matrix is represented explicitly, and
the system computes the LOO error for all the regularization parameters in O’ + n’d) time

and O(n?) space, where 7 is the number of points in  dimensions of the training set.

21.  The system of claim 18 wherein the kernel matrix is an n by n matrix K
_ — 112
- - . - %% .
satisfying K; = K (xl., X j.) and having a form K (x, X; )= exp meyeat where x is a vector
o2

of data points included in the training set and ¢ is a user-selected bandwidth parameter.
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