OFFICE DE LA PROPRIETE
INTELLECTUELLE DU CANADA

OPIC CIPO

ProrERTY OFFICE

(72) LEAVITT, William 1., US
(72) CLEMSON, Conrad R.., US
(72) SOMERS, Jeffrey S., US

(72) CHAVES, John M, US

(72) BARBERA, David R., US
(72) CLAYTON, Shawn A., US
(71) STRATUS COMPUTER, US

(s1y Int.CL.° GOGF 11/16, GO6F 11/30, GOGF 11/22

(30) 1996/06/05 (08/658,563) US

(12) (19) (CA) Demande-Application

CANADIAN INTELLECTUAL

(2D (A 2,257,5 11
86) 1997/06/05
37 1997/12/11

54y PROCEDES ET DISPOSITIF DE TRAITEMENT DE DONNEES
NUMERIQUES POUR L’ISOLATION DE DEFAUTS
(54) DIGITAL DATA PROCESSING METHODS AND APPARATUS

FOR FAULT ISOLATION

l4c 14b

180

IS/

(57) L invention concerne un dispositif de traitement de
données a isolation de défauts comprenant plusieurs
unités fonctionnelles (12-18) relices par plusieurs bus
(20a-20d) pour les communications point a point. Ces
unités (12-18) contrélent les bus (20a-20d) auxquels
elles sont reliées et s’informent réciproquement en cas
d’erreurs de communications au niveau du bus. Elles
(12-18) peuvent entrer simultanément dans une phase
d’isolation d’erreur, par exemple suite 4 une erreur de
bus signalée par une de ces unités. Outre la signalisation
des erreurs de bus, ces unités fonctionnelles indiquent les
défauts 1’échelon de 1'unité (ou de la "carte") si elles
décelent un défaut dans leur fonctionnement propre. On
prévoit chaque unité (12 ou 14) des fonctions d’isolation
d’erreur signalant un défaut selon les critéres suivants: (1)
I'unité a indiqué une erreur de signal de retour lice & son
fonctionnement propre; (ii) 'unité considérée ou une
autre unité a signalé une erreur de bus pendant la phase
d’isolation d’erreur; et/ou (iii) toute autre unité
fonctionnelle a signalé que son propre fonctionnement
était défectueux durant la phase d’isolation d’erreur.

I*I Industrie Canada Industry Canada

i2¢ 12b

(57) A fault-isolating digital data processing apparatus
includes plural functional units (12-18) that are
interconnected for point-to-point communications by a
plurality of buses (20a-20d). The functional units (12-18)
monitor the buses (20a-20d) to which they are attached
and signal the other units in the event there are bus
communication errors. The functional units (12-18) can
simultaneously enter into an error isolation phase, e.g., in
response to a bus error signalled by one of the units. In
addition to signalling bus errors, the functional units can
signal unit-level (or "board") faults when they detect
fault in their own operation. Each unit (12 or 14) includes
error isolation functionality that signals a fault based on
(1) whether that unit (12 or 14) signalled a loopback error
with respect to its own operation; (i1) whether that unit or
another unit signalled a bus error during the error
isolation phase; and/or (ii1) whether any other functional
unit signalled that it was faulty during the error isolation
phase.

CA 02257511 1998-12-03

CORRECTED
VERSION*
PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 97/46941

GO6F 11/00, 11/34, 11/08, 11/16, 11722 | Al . o
(43) International Publication Date: 11 December 1997 (1 1.12.97)

(21) International Application Number: PCT/US97/09781 | (81) Designated States: AU, CA, JP, European patent (AT, BE,
CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
(22) International Filing Date: S June 1997 (05.06.97) PT, SE).
(30) Priority Data: Published
08/658,563 S June 1996 (05.06.96) Us With international search report.

Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of

(71) Applicant: STRATUS COMPUTER [US/US]; S5 Fairbanks amendments.
Boulevard, Marlboro, MA 01752 (US).

(72) Inventors: LEAVITT, William, I.; 180 Grove Street, Lexing-
ton, MA 02173 (US). CLEMSON, Conrad, R.; 1 Bowdoin
Street, Shrewsbury, MA 01545 (US). SOMERS, Jeffrey, S,
1 Scott Lane, Northboro, MA 01532 (US). CHAVES, John,
M.; 7 Cornish Drive, Hudson, MA 01749 (US). BARBERA,
David, R.; 15 Hapgood Road, Worcester, MA 01605 (US).
CLAYTON, Shawn, A.; 22 Lee Street #2, Worcester, MA
01602 (US).

(74) Agent: POWSNER, David, J.; Choate, Hall & Stewart,
Exchange Place, 53 State Street, Boston, MA 02109 (US).

(54) Title: DIGITAL DATA PROCESSING METHODS AND APPARATUS FOR FAULT ISOLATION

14 10 12
) ;)
140 120
14¢ 14b 12¢ 12b
20d 20b
N— — —_—— e — 7/
20¢ | E_LCH_ 20e 200 -—
— — — u
a N :
[22¢] (223]
18¢ 18b [221] 16¢ 16b (220]
21b 2la
[224] [22:]
|1Ba Eﬂ 160 @
A
!B/ 16

(587) Abstract

A fault-isolating digital data processing apparatus includes plural functional units (12-18) that are interconnected for point-to-point
communications by a plurality of buses (20a-20d). The functional units (12-18) monitor the buses (20a-20d) to which they are attached and
signal the other units in the event there are bus communication errors. The functional units (12-18) can simultaneously enter into an error
isolation phase, e.g., in response to a bus error signailed by one of the units. In addition to signalling bus errors, the functional units can
signal unit-level (or "board") faults when they detect fault in their own operation. Each unit (12 or 14) includes error isolation functionality
that signals a fault based on (i) whether that unit (12 or 14) signalled a loopback error with respect to its own operation; (ii) whether that
unit or another unit signalled a bus error during the error isolation phase; and/or (iii) whether any other functional unit signalled that it was

faulty during the error isolation phase.

*(Referred to in PCT Gazette No. 12/1998, Section i)

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781
DIGITAL DATA PROCESSING METHODS: AND APPARATUS FOR FAULT ISOLATION

Reference to Related Applications

This application is a continuation in part of United States Patent Application Serial No.
08/309,210, filed September 20, 1994, the teachings of which are incorporated herein by

reference.
R X (C ioht

The disclosure of this patent document contains material which is subject to copyright
protection. The owner thereof has no objection to facsimile reproduction by anyone of the
patent document or of the patent disclosure, as it appears in the United States Patent and
Trademark Office patent file or records, but otherwise reserves all rights under copyright
law.

Background of the Invention

The invention disclosed and claimed herein relates to digital data processing and, more
particularly, to methods and apparatus for fault detection and isolation.

A shortcoming of many conventional digital data processors is their inability to detect and
isolate a range of data transfer and operational faults. Personal computers and workstations,
for example, are typically configured to detect only a single class of data transfer faults, such
as, parity errors. When detected, such a fault can cause the computer or workstation to hait
operation, or "crash.” Larger computer systems often incorporate error-correcting codes to
detect and correct single-bit errors. These systems can be equipped to continue operation

even in the event of fault.

Computer systems marketed and described in pﬁor patents to the assignee hereof are capable
of both detecting, correcting, and continuing operation after faults. U.S. Patent No.
4,750,177, for example, discloses a fault-tolerant digital data processor having a first
functional unit, such as a central processor, with duplicate processing sections coupled to a
common system bus for identically processing signals received from other functional units,

-1-

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

such as the memory or peripheral device controlier. In addition to checking the received
data, the first functional unit compares the output generated by the sections while one of
them -- the so-called “drive” section -- transmits processed data to the bus. When the
section outputs do not agree, the functional unit drives an error signal onto the bus and takes
itself off-line. According to the patent, a functional unit such as a central processor can
have a redundant partner that is constructed and operates identically to the original. In such
a configuration, if one of the partners is taken off-line due to error, processing continues

with the partner.

According to U.S. Patent No. 4,931,922, also assigned to the assignee hereof, redundant
peripheral control units, each with duplicate processing sections, control the latching of data
and signaling of errors vis-a-vis data transfers with attached peripheral devices. For this
purpose, data signals applied to the peripheral device bus by either the control units or
peripheral devices are captured and compared by processing sections within each control
unit. The results of those comparisons are shared between the controllers. If the
comparisons indicate that the data captured by both control units agrees, then control units
generate a “strobe” signal that causes the data to be latched. If the units do not agree after
successive retries, the control units withhold issuance of the “strobe” signal and enter an

error-handling state for determining the source of the error.

Co-pending, commonly assigned U.S. Patent Application 07/926,857 discloses, in one
aspect, a digital data processing system having dual, redundant processor elements, each
including dual, redundant processing sections that operate in lock-step synchronism. Failure
detection stages in each section assemble signals generated by that section into first/second
and third/fourth groups, respectively. Normally, signals in the first group match those of the
third group, while the signals in the second group match those of the fourth group. The
groups are routed between the sections along conductor sets separate from the system bus.
To detect fault, each stage compares a respective one of the groups with its counterpart. If
either stage detects a mismatch, it signals an error to its respective processing section, which

can take the corresponding processor element off-line.

While the above-mentioned patents and patent applications describe systems with high
degrees of fault detection and fault tolerance, such capabilities are not required for all digital

-2-

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

data processing systems. While fault tolerance can be sacrificed in more moderately priced
systems, fault detection cannot be. Indeed, in systems that lacking fault tolerance, it is

desirable not only to detect fault, but to isolate its source.

An object of this invention, therefore, is to provide digital data processing apparatus and
methods with improved fault-detecting capabilities.

A related object is to provide such apparatus and methods with fault isolation capabilities,
i.e., that of detecting functional units that are the sources of faults and taking those units off-
line.

Further objects of the invention are to provide such apparatus and methods that can be

readily implemented without excessive cost.

A related object is to provide such apparatus and methods as can be implemented in high-
speed hardware elements, such as ASIC’s.

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Summary of the Invention

The aforementioned objects are among those met by the invention, which provides in one
aspect fault-isolating digital data processing apparatus including plural functional units that
are interconnected for point-to-point communications by a plurality of buses. A system with
two central processing units (CPU’s) and two input/output (I/0) interface units, for example,
can employ six bidirectional buses to couple each unit to the others. The functional units
monitor the buses to which they are attached and signal the other units in the event there are
bus communication errors. Thus, for example, if one of the functional units detects a parity
or error correcting code (ECC) error during the transmission of data, that unit can signal a

bus error the other units.

The functional units can simultaneously enter into an error isolation phase, e.g., in response
to a bus error signalled by one of the units. During this phase, each unit transmits test data
(e.g., predetemined patterns of 0’s and 1’s) onto at least one of its attached buses. Though
more than one unit can transmit test data at a time, only one unit can do so on a given bus.
For example, in a system with two CPU’s and two 1/O interface units, both CPU’s can
simultaneously drive test data over the buses that couple them to the interface units. Later in

the phase, both I/O units can drive test patterns to the CPU’s back over those same buses.

The functional units continue to monitor the buses and to signal bus errors while the test data
is being transmitted. Each unit does this not only when another is transmitting test data on a
common, point-to-point bus, but also when the unit itself is driving such test data. The latter
affords each unit the opportunity to perform a loopback comparison to match the data that it
intended to drive onto a bus with that actually “received” from the bus through monitoring.
For example, in a system as described above, each CPU monitors its buses for error while
the 1/O units are driving test data and, in addition, while the CPU itself is driving such data.
Moreover, each CPU compares the test data that it intended to drive on the bus with that

which it receives from the bus.

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

In addition to signalling bus errors, the functional units can signal unit-level (or “board”)
faults when they detect fault in their own operation. To this end, each unit includes error
isolation functionality that signals a fault based on (i) whether that unit signalled a loopback
error with respect to its own operation; (ii) whether that unit or another unit signalled a bus
error during the error isolation phase; and/or (iii) whether any other functional unit signaled
that it was faulty during the error isolation phase. By way of example, in a system as
described above, a CPU can signal the others that it is faulty if it detects a loopback
comparison mismatch while driving test data onto the buses. By way of further example,
that CPU can signal the others that it is fauity if it and the other functional units detect a bus
error during a phase when that CPU drives test data, but not when the I/O units drive test
data onto that bus. A unit that determines itself fault can, in addition to signalling the other
units, take itself off-line.

According to further aspects of the invention, any of the foregoing functional units can
include a processing section that generates data for communication to another unit and that
includes dual interfaces for applying that data to the associated buses. The interfaces,
referred to as the “drive side” and “check side” interfaces, apply to the buses complimentary
portions of each datum generated by the processing section. In the foregoing example, a
CPU can use dual interface sections to drive one half of each datum generated by its

processing section onto the buses.

The drive side and check side interfaces also receive data driven to the buses, whether by
that functional unit or another. With respect to data driven by the functional unit, data
received by drive and check sides can be matched against the data intended to be driven by
the unit for purposes of the loopback comparison. Thus, for example, portions of a word
received from the bus by the check side interface can be compared with the portions which
had been applied by that interface as part of a “loopback drive check.” Likewise, the other
portions of a word received from the bus by the check side interface can be compared against
those which had been applied by the other interface (i.e., the drive side interface) as part of a

“loopback compare check.”

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Still further aspects of the invention provide methods for fault-isolating digital data processor
operation paralleling the processes described above.

These and other aspects of the invention are evident in the drawings and in the description

that follows.

CA 02257511 1998-12-03
WO 97/46941 PCT/US97/09781

Brief Description of the Drawings

A more complete understanding of the invention may be attained by reference to the
drawings, in which:

Figure 1 depicts a digital data processing system employing the invention;

Figure 2 depicts the data buses of an "Xbus" according to the invention;

Figure 3 depicts the control buses of an Xbus;

Figure 4 depicts a bit numbering scheme for an Xbus;

Figures 5 and 6 illustrate simple word, read and line write transactions on an Xbus;

Figure 7 depicts the phases of an operation on an Xbus;

Figure 8 depicts the effect of bus BUSYs on the basic bus cycle of an Xbus;

Figure 9 depicts the effect of bus errors on an Xbus;

Figure 10 depicts the basic state machine and state transitions for a bus handler used in

connection with an Xbus;

Figure 11 depicts the interconnection between the Xbus and two functional units, or boards,

connected therewith;

Figure 12 depicts self-checking parity logic used in connection with an Xbus;

Figure 13 depicts loopback connectivity used in connection with practice of the invention;

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Figures 14 and 15 depict the timing and latching associated with the breaking of boards in

connection with practice of the invention;

Figure 16 depicts the timing of board breaking in response to loopback errors according to a

practice of the invention;

Figure 17 depicts timing of board breaking in response to heuristic or arbitrary breaking in

accord with a practice of the invention;
Figure 18 depicts partitioning of the Xbus in accord with a practice of the invention;

Figure 19 depicts circuitry for routing board_not_broken in connection with practice of the

invention;
Figure 20 depicts the routing of information lines in accord with practice of the invention;

Figure 21 depicts routing of 3-way voted lines in connection with practice of the invention;

and

Figure 22 depicts error checking logic in accord with practice of the invention.

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Detailed Description of the Illustrated Embodiment

Figure 1 depicts a digital data processing system 10 according to one practice of the
invention. The system 10 includes multiple functional units, namely, central processing unit
(CPU) 12, CPU 14, input/output (I/O) unit 16 and I/O unit 18. Each CPU 12, 14 is coupled
to each /O unit 16, 18 via buses 20A - 20D, as illustrated. These buses can include data
lines, as well as control lines. CPU 12 is also coupled to CPU 14 via bus 20E, while I/O
unit 16 is coupled to I/O unit 18 via bus 20F. These buses include control lines, although
they can also include data lines. Each functional unit includes a processing section, 12A,
14A, 16A, 18A, respectively, and two interface sections 12B, 12C, 14B, 14C, 16B, 16C,
18B, 18C, respectively, as shown in the drawing. In a preferred embodiment, each
functional unit is contained on a printed circuit board that couples to a bus backplane in the

system cabinet (not shown) in the conventional manner.

The processing sections 12A, 14A carry out conventional functions associated with central
processing units, e.g., instruction execution. To this end, the processing sections 12A, 14A
can include conventional microprocessors or other central execution units (not shown), as
well as other conventional elements (e.g., on-board memory) typically employed for those
functions. Interface sections 12B, 12C (constituting the drive side and check side interfaces
for unit 12) transfer information between associated processing section 12A and buses 20A,
20B, 20E which couple CPU 12 with IO units 16, 18 and with CPU 14. Likewise, interface
sections 14B, 14C (constituting the drive side and check side interfaces for unit 14) transfer
information between processing section 14A and buses 20C, 20D, 20E which couple CPU 14
to those same I/O units 16, 18, and to. CPU 12.

1/0 units 16, 18 serve as bridges to peripheral device buses 21A - 21D and, in turn, to
peripheral devices 22A - 22D, as illustrated. In the illustrated embodiment, peripheral
device buses 21A - 21D operate in accord with the industry standard PCI Bus Specification.
Peripheral devices 22A - 22P are also PCI compatible. I/0 units 16, 18 can include
processing sections 16A, 18A, respectively, for carrying out administrative tasks, if any,
required by the I/O units in their roles as PCI bridges. Interface sections 16B, 16C

-9-

CA 02257511 1998-12-03
WO 97/46941 PCT/US97/09781

(constituting the drive and check sides of unit 16) and, 18B, 18C (constituting the drive and
check sides of unit 18) provided in each of the I/O units 16, 18, respectively, transfer
information between buses 20A - 20D and buses 21A - 21D. This includes converting
transferred information to and from the PCI protocol used by buses 21A - 21D. Although
each pair of interface sections 16B, 16C and 18B, 18C interface with a respective pair of
internal buses 20A, 20D and 20B, 20C, respectively, the sections 16B, 16C, 18B, 18C
interface dedicated PCI buses 21A, 21B, 21C, 21D, respectively, as illustrated.

Though the illustrated I/O units 16, 18 serve as PCI bridges, those skilled in the art will
appreciate that the invention has application to I/O units capable of interfacing and/or
controlling peripherals that communicate via any protocol. More generally, it will be
appreciated that, although the illustrated functional units are central processing units and I/O
units, the invention can be applied to any class of functional units, e.g., central processing

units, memory units, I/O units, communications units, etc.

In operation, the CPU’s 12, 14 drive information to I/O units 16, 18 over their respective
buses 28A - 20D, and vice versa. Each of the units 12 - 18 also monitor the buses to which
they are attached and signal the other units in the event that there are bus communication
errors. Thus, for example, if CPU 12 detects a parity error or an error correcting code
(ECC) error during a transmission of data to 1/O units 16, 18 over data lines in buses 20A,
20B, respectively, CPU 12 can signal that bus error to the I/0O units over control lines in
buses 20A, 20B. CPU 12 can also signal a bus error to CPU 14 over bus 20E. The other
functional units 14 - 18 can likewise signal bus errors in the event they detect erroneous

transmissions over their respective buses.

In response to a bus error signal by any of the functional units 12 - 18, each functional unit
enters into an error isolation phase. During this phase, each of the units 12 - 18 transmits
patterns of test data onto its respective buses 20A - 20F while, at the same time, monitoring
those buses for error. For example, in response to a bus error signaled by I/O unit 18,
CPU 12 can drive test patterns onto buses 20A, 20B, while CPU 14 simultaneously transmits

test patterns on buses 20C, 20D. During these transmissions, each of the functional units

- 10 -

CA 02257511 1998-12-03
WO 97/46941 PCT/US97/09781

12 - 18 monitor the buses 20A - 20D for parity and ECC errors, while CPU’s 12, 14
perform loopback checking on their respective buses 20A, 20B and 20C, 20D, respectively.
Once the CPU’s 12, 14 have completed their test cycles, I/O units 16, 18 take their turns at
driving test data onto the buses.

The functional units continuq to monitor their respective buses 20A - 20D and to signal bus
errors while the test data is being transmitted. Each unit 12 - 18 does this not only when
another unit is transmitting data on a common bus, but also when the unit itself is driving
such data. This permits the units to perform loopback comparisons to match the data that it
intended to drive onto a bus with that actually received from the bus through monitoring.
For example, while CPU 12 is driving test data onto buses 20A, 20B, it simultaneously
compares data values received from those buses to ensure that they are identical with the

" driven data. As during normal operation, the functional units 12 - 18 signal bus errors to
one another in the event that they detect communications faults during the error isolation

phase.

In addition to signaling bus errors, each of the functional bus errors 12 - 18 can generate a
default (or "broken") if it detects that its own operation is faulty. Thus, whenever a
functional unit 12 - 18 detects a loopback error, it will signal the others that it is broken.
Furthermore, if any of the units 12 - 18 detect a bus error when it drives test data onto the
bus, but not when another unit drives such data, the unit can signal the others that it is
broken -- so long as none of the other units has, first, signaled broken, e.g., as a result of its
own loopback error. By way of example, CPU 12 will signal the other functional units 14 -
18 that it is broken if CPU 12 detects a bus error during a cycle when it is driving test data
onto buses 20A, 20B, but not when I/O units 16 - 18 are driving test data onto those buses.
On detecting that it is faulty, any of the functional units 12 - 18 can take itself of-line.

A more complete understanding of the construction and operation of the illustrated
embodiment may be attained by reference to the section that follows, in which digital data
processing system 10 is referred to as "Polo," buses 20A - 20F are referred to as the
"Xbus," buses 21A - 21D are referred to as the "Ibuses," CPU 12 is referred to as "CPU1,"

211 -

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

CPU 14 is referred to as "CPUO," I/O unit 16 is referred to as "PCI Bridge 1" or "PCIB 1,"
1/O unit 18 is referred to as "PCI Bridge 0" or "PCIB 0."

Bus Naming Convention

The Xbus actually consists of 4 data buses and 12 control buses, which are named as
described below.

Data Bus Naming Convention

Figure 2 shows a block diagram of the 4 data buses in the Xbus system. The number for the
bus is taken from the CPU slot number shown in the illustration; therefore data buses
connected to CPU 0 end in 0 and data buses connected to CPU 1 end in 1. The letter for the
bus is determined by whether or not the bus is a crisscross bus (i.e. connects an even slot
number to an odd slot number) or a straight bus (i.e. connects an even to an even or an odd
to an odd slot). Based on this convention, CPU 0 has connections to data bus A0 and BO.
CPU 1 has connections to data bus Bl and Al. PCI Bridge 0 has connections to data bus A0
and B1. PCI Bridge 1 has connections to BO and Al. In the illustrated embodiment, the
PCI bridge cards do not run in lock-step.

Control Bus Naming Convention

Figure 3 shows a block diagram of the control buses in the Xbus system. The control
naming convention for the backplane signals uses the signal name followed by the source of
the signal and then the destination of the signal. The naming convention for the associated
ASIC pins uses the signal name, the direction (in or out), and the connection (n for neighbor,
o for opposite, and p for peer). Examples of this naming convention are shown in Figure 3.
Table 1 lists the names of all control buses in the Xbus.

-12-

Bit Numbering

CA

02257511 1998-12-03

WO 97/46941 PCT/US97/09781
Table 1. Control Bus Names
Control Bus Control Bus Control Bus ASIC Driving ASIC Receiving

Source Destination Name Pin Name Pin Name

CPUO CpPU 1 control 0_1 control_out_p control_in_p
CPU 0 PCIB 0 control_0_2 control_out_n control_in_n
CPU O PCIB 1 control 0 3 control_out o control_in_o
CPU 1 CPU O control_1 0 control_out_p control_in_p
CPU 1 PCIB 0 control_1 2 control_out_o control_in_o
CPU 1 PCIB 1 control_1_3 control_out n control_in_n
PCIB 0 CPU 0O control 2 0 control_out_n control _in_n
PCIB 0 CPU 1 control 2 1 control_out_o control_in_o
PCIB 0 PCIB 1 control 2 3 control_out_p control_in_p
PCIB 1 CPUO control: 3 0 control_out_o control_in_o
PCIB 1 CPU 1 control_3_1 control_out_n control_in_n
PCIB 1 PCIB 0 control_3_2 control_out_p control_in_p

Figure 4 shows a description of the bit numbering scheme used on the Xbus.

Terminology

bus cycle--the 24MHz (~41.67 ns) building block from which all Xbus operations are built. A
bus cycle is the time which a valid logic level driven by one board on the backplane is seen
by all other boards. Two bus cycles compose a bus phase, 4 bus phases compose a bus

operation, and one or more bus operations compose a bus transaction.

-13-

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

bus phase—-the 12MHz (~ 83.3ns, 2 bus cycle) building block from which all bus operations
are constructed. There are logically 11 types of bus phases on the Xbus; "Arb", "Info",
"Post1", and "Post2" are the phases that occur during normal operation. When an error is
detected, the special phases "Errorl"”, "CPU test", "CPU Post", "IO Test", "IO Postl”, "10
Post2", and "Error2" are inserted in the protocol for fault isolation. (The error phases are
sometimes collectively referred to as "Post3"). During each bus phase it is possible to
transmit two sets of information on a physical set of backplane lines (i.e. "double pumping")
though this is not done for all bus phases and/or signals.

bus operation--A bus operation is the basic unit of address and data transmission and
checking on the Xbus. It is generally composed of at least 4 phases: an Arb phase followed
by Info, Postl and Post2 phases. Bus errors cause the insertion of the error phases after
Post2 and increase the number of phases required to complete a bus operation. Bus
operations may consist of muitiple info transmissions in the case of a block transfer. A bus

operation can be thought of as a full one way transfer on the Xbus.

bus sub-operation--A bus sub-operation is an operation initiated by a bus master during
subsequent phases of a block transfer. Sub-operations always carry data and BUSYs are
ignored. It is generally composed of 4 phases: an Arb phase during which grant inhibit is
used, followed by Info, Postl and Post2 phases. Bus errors may increase the number of
phases required to complete a bus sub-operation. A sub-operation is differentiated from an
operation in that a bus operation for a block transfer consists of the first transfer plus a
number of sub-operations consisting of mulitiple data transfers.

bus transaction--a complete high level exchange of information on the Xbus. Examples
include reads and writes. A read transaction between CPU and PCIB is composed of a
minimum of two bus operations; one operation provides the address and function code, and
one or more operations provide the return data. A write transaction to a PCIB is composed
of a minimum of two operations; one operation provides address and function code, and one

or more additional operations provide the data.

- 14 -

CA 02257511 1998-12-03
WO 97/46941 PCT/US97/09781

Figures 5 and 6 illustrate the terminology surrounding simple word read and line write

transactions.

Bus Master--A board that has won arbitration. This board drives the info lines in the info

phase of the bus operation. A bus master can be a transaction master or a transaction slave.

Bus Slave--A board that has determined the info lines carry information that it must receive.

A bus slave can be a transaction master or a transaction slave.

CD different read—-A read in which the C and D side ASICs each provide half the data e.g.
when reading error status registers. Loopback checking of the bytes driven by the other side

is suppressed.
Cyclops--The Xbus to Ibus interface ASIC on the CPU board in the Polo system.

echo transaction--The second half of a peer-to-peer bus transaction between CPUs. Send
and echo transactions are not split; grant inhibit is used to ensure that no other transactions

occur between the send and echo. This is to prevent re-ordering.

EFQ--Eviction-Flush Queue. This queue exists only on CPU boards. Refer to the Cyclops
(Bus Interface) Specification for details.

EFQ-Freeze State--Set via bit 19 of the Bus Interface State Register. This mode only exists
on CPU boards. When in this mode, a board will busy all accesses directed to its EFQ

except those from its partner unless it is a data return of any size.
Fast Duplexing--Fast duplexing is a form of duplexing in which no memory is updated.

This is done when both boards are coming up for the first time as opposed to updating a new

board from a running OS.

-15 -

CA 02257511 1998-12-03
WO 97/46941 PCT/US97/09781

Freeze-State—Set via bit 14 of the Bus Interface State Register. This mode only exists on
boards that can be duplexed. When in this mode, a board will busy all accesses directed to
its RWQ except those from its partner.

Gambit--The Xbus to PCI ASIC on the PCI Bridge card. It interfaces to the Xbus and the
PCI bus.

IO virtual address (IOVA)--An IOVA is an address generated by a PCI card. This address
is transmitted across the Xbus to the Cyclops ASIC. Inside the cyclops ASIC, the address is
translated into a valid system address. The IOVA is used to provide fault tolerance. It

guarantees that a PCI card will generate a correct address range.

Jloopback checking--This is when an ASIC checks that the value it sees on a pin is equal to
the value it thinks should be on the pin during normal operation.

loopcheck operation--This is when the bus ASICs drive test patterns of 55/AAs as part of

the error protocol in order to determine the site of a fault.

peer to peer transaction--A two part transaction between two CPUs. The Xbus does not
have fully interconnected data buses, and transfers between the two CPU boards must occur
in two steps: first a send between the CPU and the PCIBs), then an echo from the PCIB(S)
to all of the CPU(s). The requesting CPU drives a complete transaction on its A and B
buses. The PCIBs look at the address, and determines whether the transaction is directed to
the CPUs. If it is, they buffer the transaction in order to repeat the transaction on their A &
B buses once Post2 of the last info phase has passed with no bus errors. In this way, both
CPUs see the transaction at the same time. Peer to peer transactions between CPU boards

require a minimum of four operations.

RWQ--Read/Write Queue. This queue exists only on CPU boards. Refer to the Cyclops
(Bus Interface) Specification for details.

- 16 -

CA 02257511 1998-12-03
WO 97/46941 PCT/US97/09781

Regurgitated Info--A regurgitated info is a Cougar [Conrad, what is Cougar?] generated
cycle used during the update process. It is generated by the update-on-line board and
transmitted to the update off-line board. It is unique because an update off-line board accepts
info cycles even if the base address does not match the base address of the board.

send transaction--The first half of a peer-to-peer bus transaction between CPUs.

single side operation--An operation with data supplied entirely by either the C or D ASIC;
e.g. a read from a PCI card. Loopback checking is performed only by the side supplying the
data.

TRID--Transaction identifier. This is a unique binary number used to tie together two bus
operations during a split transaction and to identify the source for write transactions (TRIDs
on write transactions are strictly for debug). A TRID is unique only while a given
transaction is still outstanding and will be re-used for later transactions by a transaction-
master. Note that trid bits 02-00 are used for the slot number of the transaction-master and
trid bits 06-04 are generated by an on-board master - thus allowing a board to have 8 unique
masters with transactions outstanding. Trid bit 03 is a new bit for Polo that indicates the
format of the address; a zero indicates a Jetta style system address is being transmitted and a
one indicates an IOVA (I/0 Virtual Address) format is on the backplane. The IOV A address
needs to be translated into a system address via the map RAM.

Transaction Master--The specific resource on a board that generated a transaction. The

transaction master is responsible for generating the TRID of the transaction.

Transaction Slave--The board on which a transaction was directed towards, i.e. a board in

which the function code and address of a bus operation has decoded to.

-17-

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781
Xbus Signal Description

The following section describes in detail the various signals that comprise the Xbus. A

functional description is included for each type of signal, though not for every individual

signal (for example: there is a TRID field for all 4 buses, however there is only one

description that covers both). The following rules were used in creating the signal names:

. all lower-case characters

. the * " is a delimiter when it is not at the end of a signal name

" the *_" at the end of the signal name indicates that the signal is low-true

. _a indicates A_bus signals

" _b indicates B_bus signals

= _X_, _y_,and _z_are used for the three low-true signals on a triplicated net
= [n:m] is used to describe a multi-bit field

Signal Description

The bused signals are implemented as four point-to-point bidirectional signals. The ability to
drive these signals is controlled through an arbitration network. These signals are protected
by a single parity bit that accompanies the bus. The buses are interconnected so that each
CPU is connected to both PCI bridge boards and each PCI bridge board is connected to both
CPUs. Error recovery is accomplished through the XBus error protocol.

The control signals are organized in a set of point to point unidirectional buses. Each of
these buses is ECC protected. These buses carry control signals which are not governed
through arbitration. Unlike the bused signals, there is a control bus in each direction
between every board. This is necessary in order to ensure the single bus view of the system.
. For example, if one PCI bridge card sees a bus error, that information must be transmitted to
all three other boards in order for the boards to all perform the error sequence.

=18 -

CA 02257511 1998-12-03
WO 97/46941 PCT/US97/09781

The bused signals and control signals are double pumped at 24MHz each cycle. That is,
they carry different data during the first and second 24Mhz bus cycles that make up a single
phase. All buses and control signals are active high on the backplane.

A small number of reset and broken related control signals are buffered by the 26S10
transceiver and replicated for three way voting. These signals are active low on the
backplane.

The Info Bus

The following signals are collectively referred to as the info bus. Although there are actually
4 sets of these signals (a0,al,b0,bl), for simplicity’s sake only the a0 version is listed. For
example, when the TRID field is described, it should be understood that there are actually 4
TRID buses: trid_a0, trid_b0, trid_al, and trid_bl.

Table 2. Xbus Bidirectional Buses
signal width description

info_a0[31:0] 128 Xbus info bus - Info is driven during the info phase
(32x4) of a bus operation by the current bus master. This
field may contain either an address (physical address
or virtual index with function code) or data, depending
on the fund op control line.

trid_a0[6:0] 28 Xbus transaction id (TRID) - The trid lines carry the
(7x4) TRID (transaction ID) during the first cycle of a

phase. During the second cycle, it carries the number
of phases remaining, the first op bit, and cache

coherency bits.

-19-

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781
signal width description
func_op_a0_ 1 Xbus func_op - This line carries the func_op_ signal

which indicates that the current information on the
info bus contains a function code that should be
decoded. This signal is low true so that an idle bus
will indicate that a function needs to be decoded, and
thus a no-op function. This bit is valid during an info
phase and is protected by parity along with the lower
half of the info field. During the second cycle, it is
unused (driven to logic O on the backplane).

parity_a0 1 Xbus parity - This parity signal covers all of the
bidirectional signals on a bus; info, trid, func_op_.

TOTAL 158

The Control Bus

This section describes the control signals. There are actually 12 control buses, but again
only one is described here. The names of the twelve control buses are listed in Table 1,
above. For simplicity of documentation, the control bus is identified by bit numbering,
similar to the trid field. However, since the meaning of the control bus bits is very

significant, each one is described in detail here.

The control buses are protected by a single bit correction, double bit detection ECC code.

Table 3. Control Bus Signals

signal width description

-20-

WO 97/46941

control[0]

12
(12x1)

CA 02257511 1998-12-03

PCT/US97/09781

bus_req and ack - During the first half of the phase, this bit
is used for bus_req. During the second half of the phase,
this bit is used for ack.

During the first half of the phase, this bit is driven by a
board when it is requesting the bus. As described in later
sections, the bus uses a distributed arbitration model loosely
based on the Golfbus. Each board in the system drives the
bus_req and tests all of other boards bus_req signals to
determine who will drive the info signals during the next
phase.

During the second cycle of the phase, this bit is used to
acknowledge a bus transaction. Ack is asserted in Post2 by
the target board of the transaction. This signal is the result
of an address decode, so it is only valid in Post2 of an
operation that is transferring an address. Ack provides an
indication of whether or not a transaction is progressing.
This is relevant in a Polo system, since a PCI card may go

away resulting in a no ack for a ping operation.

Acks in Polo system also let a PCI Bridge know that a
CPU’s map RAM has mapped a PCI initiated access to a
valid CPU address. If a PCIB’s read or write is not Aed,
the PCI slot that initiated the access may or may not be set
off-line depending on bits in the Gambit’s configuration
register.

Writes from the CPU to the PCIB are acked to facilitate
debug, but are otherwise unused. A peer to peer CPU write
is not ACKed by the PCIBs, but the echoed operation is

-21-

WO 97/46941

control[1]

12
(12x1)

CA 02257511 1998-12-03

PCT/US97/09781

grant_inh and main_int - During the first half of the phase,
this bit is used for grant_inh, during the second half of the

phase, this bit is used for main_int.

During the first cycle, the grant inhibit control bit is driven
by the current bus master to extend the info cycles when the
bus master is moving a block of data. The arbitration logic
will not issue a grant to any other board when a board is

driving the signal. This ensures that the current bus master

will retain ownership of the bus for another cycle.

During the second half of the cycle, this bit is used to signal
a maintenance interrupt. Maintenance Interrupt indicates that
some board in the system is requesting attention from the
software maintenance process. Any board in the system may
drive this signal during the second half of a bus phase
regardless of bus mastership. All boards in the system will
sample maintenance interrupt and use it to reset their

arbitration priority.

-22-

WO 97/46941

control[2]

12
(12x1)

CA 02257511 1998-12-03

PCT/US97/09781

bus_err_a and busy - Assertion of this signal during the
first half of Post2 signals that a bus error was detected on
the info bus associated with this particular control bus
(n,0,p). Any operation in Arb, Info, or Postl will be
aborted. Operations in Post2 are suspended while the error

protocol runs, and then will return to the Info phase.

The CPU initiator of a peer-to-peer operation must track the
entire operation to see whether the cycle is errored in either

the send or echo portion of the transaction.

Assertion of this signal during the second half of Post2
indicates to the bus master that the operation should be
aborted and re-tried at a later time.

Busy is ignored for the send portion of a peer-to-peer
operation. The CPU initiator of a peer-to-peer operation
must track the entire operation to see whether the cycle is
busied.

-23-

WO 97/46941

control{3]

12
(12x1)

CA 02257511 1998-12-03

PCT/US97/09781

bus_err_b and funny_state - Assertion of this signal during
the first half of Post2 signals that a bus error was detected
on the B bus connected to this board. Any operation in Arb,
Info, or Postl will be aborted. Operations in Post2 are
suspended while the error protocol runs, and then will return
to the Info phase.

The CPU initiator of a peer-to-peer operation must track the
entire operation to see whether the cycle is errored in either

the send or echo portion of the transaction.

During the second half of the cycle, this bit is used to signal
that a board has just gone unbroken. The board will
continue to assert this signal until it has seen eight phases
without a bus error occurring. At that point the board will
stop asserting this signal. Then all other boards will treat
this board as an active, responding board. This prevents a
board that is going unbroken from responding to bus errors

in the middle of an error sequence that is alreeidy underway.

-24 -

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

control[7:4] 48 checkbits - The top 4 bits of the control bus are checkbits
(12x4) generated from the lower 4 bits of control signals.

The checkbit algorithm is:

control{4] = control[0]"control{1]"control[2];

control[5] = control[0]*control[1]"control[3]};

control[6] = control{0]"control{2]“control{3];

control[7] = control[1]"control[2]"control[3];
TOTAL 108
The Voted Signals
The voted signals are the only signals through 26510 transceivers. These signals are point to
point and terminated at each end, so that insertion of an unpowered board does not disturb

the termination (and timing) of a net in use. Only the _x_ versions are listed; there are _y_
and _z_ signals making up the triplet.

- 25 -

WO 97/46941

signal
reset 0 1 x_,
reset 0 2 x ,
reset 0 3 x ,
reset 1 0 x_,
reset 1 2 x_,

reset_ 1 3 x ,

board_not_broken 0_1_x
board_not_broken_0_2_x
board_not_broken_0_3_x
board_not_broken_1_0_x
board_not_broken_1_2_x
board_not_broken_1_3_x
board_not_broken_2_0_x
board_not_broken_2_1_x
board_not_broken_2_3_x
board not_broken_3 0_x
board_not_broken_3_1_x
board_not_broken_3_2_x

Sync_x_

even_online X_,
odd_online_x_

CA 02257511 1998-12-03

PCT/US97/09781

Table 4. 3-Way Voted Signals

total

18
(2x3x3)

36
(4x3x3)

(1x3)

(2x3)

description

reset - There are separate 3-way voted triplets
from each CPU to the other three boards in the
system. When a RECC needs to reset the
system, all lines go active. When a CPU wants
to reset another board, only the lines going to

that board are active.

broken status - This three way voted signal is
driven from each board to each other board. It
is driven when a board is alive and not broken in
the system and is used to determine which buses
are active. The C-side ASICs drive the signals
and the D-side ASICs drive the output enables
for the 26S10s. This organization guarantees
that board_not_broken is deasserted whenever
either side of the board thinks that the board is
broken. The receiving board votes the x, y, and
z signals. CPUO in slot0Q drives
board_not_broken[0], etc.

sync status - These signals are on the CPU only
and are used when synchronizing a pair of CPUs
to enter the duplexed state.

on-line status - These signals are on the CPU
only and are used by the CPU boards to
communicate to each other which CPU board(s)
are in the on-line state. Even_online_ is asserted
when the CPU in slot O is on-line; odd_online_
is asserted when CPU in slot 1 is on-line.

- 26 -

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

signal total description

TOTAL 63

Other Control Signals

able 5. Mi 0 ntrol
lot_ida 2 slot id - The slot ID signals are hard wired on the
slot_idb backplane for each slot. There is one duplicated slot

id. Since the slots are dedicated in Polo, it is only
necessary to determine if a board is in an even or an
odd slot. These two bits will be registered and
checked by each ASIC at reset and will not be
sampled again. If an error is detected at reset, the
board will break and hence will never be capable of
being brought on-line.

xb_clk8 1 system clock - This is the system clock received by
the Sentry clock chip and used to generate the board
clocks. It is generated by the backplane clock
oscillator. This clock runs at 8MHz, so every board
in the system will be in sync with each other and there
will be no need for additional synchronization clocks
to be passed along the backplane. The clock is pulse
width modulated so that 4Mhz can be generated.

slot0_ta_d, 4 ta signals - These "ta" signals are only present on
slot0_ta_c_, CPU boards and are sent between a duplexed board
slotl_ta_d, pair for early detection of the boards going out of
slotl ta ¢_ lockstep.

TOTAL 7

-27-

CA 02257511 1998-12-03
WO 97/46941 PCT/US97/09781

Xbus Protocol

Overview

The Xbus is a point-to-point synchronous, pipelined, multiplexed address/data, error
detecting bus with split-transaction capabilities. Function-code, address and data are parity
and loop-back checked. Control lines are ECC protected and loop-back checked. Three-way

voting is implemented on the reset, clock, and broken indicator lines.

The bus supports word accesses and has a block transfer capability for support of cache line
accesses. The Xbus has a logical 32-bit wide data/address bus.

Bus Operation

The basic component of all Xbus transactions is the operation. An operation is composed of
four phases as illustrated in Figure 7: arb, info, postl, and post2. Two information transfers
can occur on the bus during each phase; this is referred to as "double pumping". The double
pump frequency is approximately 24MHz. The figure illustrates the logical activity on the
bus. All information is directly registered in the ASICs without any external buffers.

The phases are used as follows:

Aarb phase: Boards drive their arbitration request lines during the first half (cycle)
of the arbitration phase. During the second half they determine whether they won
arbitration and prepare for the info phase.

Info phase: For non-IOVA address transfers, boards drive the virtual index, function
code, remote/coherent bits, and byte enables during the first half of the info phase
and the physical address during the second half. For IOVA address transfers (IOVA
bit in the trid is true), boards drive the IOVA during the first half of the info phase
and deterministic data with good parity during the second half; the physical address is

-28 -

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

gotten from the I/O address map RAM look-up. For data transfers, data is driven
during both the first and second halves of the cycle. Note that non-cache consistent
address transfers need not supply a virtual index through the driven information must
be deterministic and parity will be computed across it.

Postl phase: During this phase, boards are determining whether any error conditions
existed with the info phase and whether there is need to BUSY the operation. CPU
boards map the device index portion of the IOVA to obtain the full physical address
and virtual index of an I/0 board’s transfer for IOVA address transfers.

Post2 phase: Any board detecting an error with the info phase drives the error lines
during the first half. If a board does get errored, it next goes to the error sequence
phases to determine the source of the error. Any board detecting the need to BUSY
an address/function code driven during the info phase drives BUSY during the second
cycle of this phase. It is also during this phase that accesses are acknowledged.

Bus Busies

Figure 8 illustrates the effect of bus BUSYs on the basic bus cycle. As shown in the figure,
BUSY has no effect on a bus operation during any phase except for post2; a BUSY during
post2 will cancel the bus operation. Note that busys for multiple cycle bus operations, such
as block transfers, have the special rules. Should a cycle be both BUSYed and ERRORed,
the ERROR takes precedence.

Bus Errors
Figure 9 shows the effect of bus errors on the basic bus cycle. As shown in that figure, the

board that was transmitting during the error automatically gets the first available info cycle

following execution of the error protocol. The arbitration is ignored in the previous cycle.

-29.

CA 02257511 1998-12-03
WO 97/46941 PCT/US97/09781

Since the Xbus has no transceivers, the loopcheck phase of the Golfbus error protocol
(Post4) has been modified to allow each board an opportunity to verify its transmit and
receive capabilities. This has resulted in new states being added to the bus error operation.

These states are described below:

Errl: The Errl state is entered on the cycle after a bus error is detected. This state is used

to allow for time to turn off the info bus before the loopback checks are performed. A board

that is in its info phase during Errl will disable its output enables half way through the
phase.

CPUTest: The CPUTest state is used to test the CPU’s ability to drive patterns on the
Xbus. On the first cycle of the phase the CPU will drive 55 on the info bus, 55 on the trid
bus, 1 on the parity line and 0 on the func_op line. On the second cycle of the phase the
CPU will drive AA on the info bus, 2A on the trid bus, O on the parity line and 1 on the
func_op line.

CPUPost: The CPUPost state is used to turn the bus around between the CPU’s loopback
check and the 1/0 boards loopback check. This phase is also used as a Postl cycle for the
CPU’s loopback pattern.

IOTest: The IOTest state is used to test the I/O board’s ability to drive patterns on the
Xbus. On the first cycle of the phase the 1/O board will drive 55 on the info bus, 55 on the
trid bus, 1 one the parity line and O on the func_op line. On the second cycle of the phase
the I/O board will drive AA on the info bus, 2A on the trid bus, O on the parity line and 1
on the func_op line. Bus errors from the CPUTest phase are reported during this phase.
This information is used to evaluate the bus, CPU, and I/O board at the end of the error
sequence. The last /O ASIC to drive the data bus drives the bus during the IOTest phase.

IOPast: The IOPostl state is used to evaluate the IOTest data.

- 30 -

CA 02257511 1998-12-03
WO 97/46941 PCT/US97/09781

IOPost: The IOPost2 state is used to transmit any bus errors from the IOPostl1 state. This

information will be used to make an intelligent decision about how to deal with the error.

Err2: The Err?2 state is used to evaluate the information from the loopback checks. Bus
errors from CPUPost and IOPost2 as well as information shared between the C and D sides
of each board are used to determine what course of action to take. This set of actions will
be described later in this section.

Figure 10 shows the basic state machine and state transitions for the bus error handler. The
key challenge for the bus error algorithm on the Xbus is to diagnose errors so that system
operation can continue. Unlike previous systems that use duplicated buses to allow all
functional units a guaranteed path for communications, when the Xbus removes a bus from
service, it must also remove one of the two units attached to that bus. In some cases, the
right thing to do is obvious. In other cases, it is not. The following sections analyze various

faults, how they are handled and how they manifest themselves.
Bus Error Broken Conditions

At this point it would be helpful to classify the different types of conditions that cause a
board to go broken when a bus is detected bad.

o loopback on control - C and D ASICs must always agree on what to drive on the
control lines, including whether or not to assert bus error. If one ASIC asserts bus
error and the other side does not, the board breaks.

o loopback on data - C and D ASICs must always agree on what to drive on the
duplicated info lines. When driving CD same data, ASICs compare the data they
drive with the data they receive. An ASIC asserts bus error on parity errors when
receiving data, and parity errors and loopback errors when driving data. Loopbacks
checking is disabled when a board drives "CD different” data, such as the contents of
error reporting registers or data from PCI cards. The board breaks if the two sides

disagree on which bytes have or do not have errors.

-31-

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

o arbitrary - Break the designated board in Err2 when there are bus errors signaled
during CPUtest and IOtest and no board has broken by the end of Iopost2. This is
called an arbitrary shoot because the fault is most likely on the backplane, so it is
arbitrary as to which of the two boards connected to the faulty bus to break.
Typically, the CPU is set broken, so that the system can continue with all of its I/O
available, but if bit 21 of the Bus Interface State register is set then the PCIB board
will be the designated board.

. heuristic - a board breaks itself during Err2 if there is a bus error when it drives, but
no bus error when the other board drives, and the other board did not break by the
end of IOPOST2.

Xbus Fault Analysis

In order to understand various faults and what they can mean, it is important to present a
detailed block diagram of the Xbus interconnect. Figure 11 shows the interconnect for a
typical Xbus line.

The black dots in figure 11 represent the connectors to the backplane. For fault tolerance
and fault isolation reasons, it is important that the boards should be routed so that the etch
between the D-side and the C-side runs through the connector connection. This limits the
amount of etch on each board that cannot be isolated to a minimum. On the CPU board, one
ASIC both drives and receives a given net while the other ASIC only receives that net. On
the I/0 board, each ASIC can potentially drive every net. The CPU ASICs are always in
lockstep and therefore each ASIC is capable of sharing the data out load. However on the
1/O board, each ASIC connects to a different PCI bus 5o a signal ASIC may need to drive
the entire Xbus. There are cases in normal operation when only one CPU ASIC will drive
the entire bus.

-32-

CA 02257511 1998-12-03
WO 97/46941 PCT/US97/09781

Fault Conditions

The following sections identify all known fault conditions and describe their handling. Refer
to Figure 11 to determine the location of the fault site indicated. That figure depicts two
functional units (or board), e.g., units 12 and 16, as well as their respective drive and check
sides 12B , 12C, 16B, 16C.

CPU Board Faulty Input Circuit - CPU Driving

° fault site 31

° break via loopback on control fault

This fault deals with a fault in the input section of one of the CPU ASICs. In this case, the
fault occurred during or just before a cycle in which the CPU drove the info bus. The error
is detected when the CPU drives the bus. The ASIC with the faulty circuit will signal a bus
error during the Post2 phase of the cycle and the other side ASIC will not. The board will
go broken and drive bus error during Errl. The error sequence will be executed, and the

operation will be retied by the partner CPU with no error.

CPU Board Faulty Input Circuit - /O Board Driving

. fault site 31
. break via loopback on control fault

This fault deals with a fault in the input section of one of the CPU ASICs. In this case the
fault occurred during or just before a cycle in which the I/O board drove the info bus. If the
error is a multi-bit error that evades the parity logic, the error will be caught internal to the
CPU board and the CPU board will go broken. If the error is a single bit error the faulty
ASIC will detect a bus error during the Postl phase of the transfer. The ASIC will drive bus
error during Post2 of the transfer and the other side of the board will not. The board will

-33-

CA 02257511 1998-12-03
WO 97/46941 PCT/US97/09781

break with a loopback on control failure in the next phase. After the error sequence, the
operation will be retried by the partner CPU with no error.

CPU Board Different Data C-Side and D-Side

° fault site 32
o break via loopback on data fault

This fault deals with an internal CPU fault that results in different data being driven out of
each ASIC. The error is detected when the CPU drives the bus. The C and D ASICs will
trade error status and disagree on where the error is during Postl; both C and D -sides will
see an error on bytes the other side drives but no error on the bytes it drives. The board

will go broken and drive bus error during Post2. The error sequence will be executed and

the operation will be retried by the partner CPU with no error.

CPU Board Faulty Output Circuit - Buffer to Pad Fault

° fault site 33
° break via heuristic broken

This is a fault in the output section of the CPU ASIC resulting from an output driver circuit
fault that blows in a manner that causes an internal open between the output driver and the
ASIC pad, while not disrupting the functionality of the input receiver. All ASICs on the bus
will detect a bus error during the Postl phase of the transfer. The ASICs will drive bus error
during Post2 of the transfer. All ASICs will detect a bus error during the CPUPost phase.
No bus errors are detected during the Iopostl phase. The CPU board will go broken during
Err2 based on the fact that it detected a bus error when it drove the bus, no bus error when

the /O board drove the bus and the I/O board did not go broken after its error sequence.

-34-

CA 02257511 1998-12-03
WO 97/46941 PCT/US97/09781

CPU Board Open - CPU Board Driving

L fault site 34
o break via loopback on data fault

This fault results from an open due to either a broken etch or a lifted pin on he CPU board.
The routing is very important for this class of fault. The etch between the C-side and the D-
side should be routed through the connector pin. This limits the possibility that an open on
the CPU board is mistaken to be an open on he backplane. In this case the fault occurred
during or just before a cycle in which the CPU drove the info bus. The error is detected
when the CPU drives the bus. During the Postl phase, the driving ASIC will not see an
error but the checking ASIC will signal a compare error. During Post2 the board will go
broken and drive bus error. The operation will be retried by the partner CPU with no error

after the error sequence.
CPU Board Open - I/O Board Driving

° fault site 34
® break via loopback on control

This fault results from an open due to either a broken etch or a lifted pin on the CPU board.
The routing is very important for this class of fault. The etch between the C-side and the D-
side should be routed through the connector pin. This limits the possibility that an open on
the CPU board is mistaken to be an open on the backplane. In this case the fault occurred
during or just before a cycle in which the I/O board drove the info bus. The ASIC with the
open between it and the connector will detect a bus error during Postl. During Post2 one
ASIC will assert bus error and the other will not, causing the board to break. The operation
will be retried by the partner CPU without any error after the error sequence.

-35-

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

CPU Board Short

° fault site 34
° break via arbitrary broken

This fault deals with a short on the CPU board. When the fault occurred and who was
driving the info bus during the fault are not relevant to this class of fault. During Postl of
the transfer all ASICs on the bus will detect a bus error. The ASICs will drive bus error
during Post2 of the transfer. Both ASICs on the CPU will detect a loopback error during the
CPUPost phase and the ASICs on the I/O board will signal a bus error during IOTest. The
ASICs will detect a bus error during the Iopostl phase and signal a bus error during
I0Post2. During Err2 the designated board will go broken based on the fact that it has
detected bus errors during the error sequence and no other boards went broken after the error

sequence.

Backplane Open Etch

° fault site 35
° break via arbitrary broken

When the fault occurred and who was driving the info bus during the fault are not relevant
issues for this class of fault. During Postl of the transfer some ASICs on the bus will detect
a bus error and drive bus error during Post2. Both ASICs on the I/O board will detect a bus
error during CPUPost. The CPU ASICs will detect a bus error during IOpostl. During
Err2, the designated board will go broken based on the fact that it has detected bus errors

during the error sequence and no other board went broken during that error sequence.

Backplane Short

] fault site 35
° break via arbitrary broken

- 36 -

CA 02257511 1998-12-03
WO 97/46941 PCT/US97/09781

When the fault occurred and who was driving the info bus during the fault are not relevant
issues for this class of fault. All ASICs on the bus will detect a bus error during Postl and
drive bus error during Post2. All ASICs on the bus will detect a bus error during CPUPost
and IOPostl. During Err2, the designated board will go broken based on the fact that it has
detected bus errors during the error sequence and no other board went broken during the

error sequence.
1I/0 Board Faulty Input Circuit

] fault site 36
° break via loopback on control

This fault deals with a fault in the input section of one of the I/O Board ASICs. For this
particular fault, it is irrelevant who was driving the backplane when the fault was detected.
The faulty ASIC will detect a bus error during Postl. During Post2 of the transfer, the
faulty ASIC will drive bus error and the other ASIC will not, causing the board to go
broken. If it was a CPU initiated request the operation will be retried by the CPU with no
error after the error sequence. If it was a request initiated by the I/O board, then the request
will be dropped.

/0 Board Output Circuit Fault - Buffer to Pad

® fault site 37

° break via heuristic broken

This is a fault in the output section of the I/0 board ASIC. This class of fault results from
an output driver circuit fault that blows in a manner that causes an internal open between the
output driver and the ASIC pad, while not diérupting the functionality of the input receiver.
All ASICs on the bus will detect a bus error during Postl of the transfer and drive bus error
during Post2. No error is detected during the CPUPost phase. The 1/0 ASICs will detect a
bus error during IOpostl. During Err2 the 1/O board will go broken based on the fact that it

-37-

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

has detected a bus error when it drives the bus, no bus error when the CPU board drove the

bus and the CPU board did not go broken after its error sequence.

I/O Single-side Access - ASIC Parity Gen. Fault

. fault site 38
. break via internal parity generator broken

A fault in the parity generation logic during single side accesscs (data driven entirely by
either the C or D ASIC) could cause the system to bus error forever. The otherside ASIC
doesn’t know the data, and has no way of checking the parity. For this reason, the info bus
parity generation is duplicated and selfchecking inside of the Gambit ASICs.

VO Single-side Access - ASIC PCI Data Path Fault

° fault site 38
° break each PCI slot due to checksum and may RAM errors

This is a fault within the ASIC’s PCI data path. This hardware is not running in lockstep
with the other side of the board and therefore is not self-checking. Eventually bad addresses
produced by the PCIB will cause map RAM errors and/or data checksum errors in the CPU
ASIC. The CPU ASIC noACKs accesses that cause map RAM errors, and the PCIB sets
off-line the PCI slot that originated the noACKed cycle based on an option bit in the
Configuration register in page zero of SAM compatible I/O space. Eventually, all PCI slots
handled by the detective ASIC will be set broke. In the meantime corrupted I/0 data is
detected by checksums and handled by higher level protocols.

T/O Non-single-side Access, Different C-D Data

° fault site 38
° break via loopback on data

- 38-

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

This fault deals with an internal I/O board fault that results in different data being driven out
of each Gambit ASIC during a regular (not single-side) read return. Each ASIC will
disagree with the data driven by the other side and the board will break with a loopback on
data error. The error sequence will be executed and the operation will be retried by the
CPU and get noACKed.

I/O Board Open

° fault site 39
o break via loopback on control

This fault deals with an open, either from a broken etch or a lifted pin on the I/O board.

The routing is very important for this class of fault. The etch between the C-side and the D-
side should be routed through the connector pin. This limits the possibility that an open on
the 170 board is mistaken to be an open on the backplane. The driving ASIC sees no errors
and the outside ASIC asserts bus error; the board breaks the following phase with a loopback
on control fault. After the error sequence the operation will be retried with no error and get
noACKed.

I/O Board Short

L fault site 39
° break via arbitrary broken

This fault deals with a short on the I/0 board. When the fault occurred and who was driving
the info bus during the fault are not relevant issues for this class of fault. During Postl of
the transfer all ASICs on the bus will detect a bus error and then drive bus error during
Post2. All ASICs on the bus signal a bus error during CPUpost and IOpostl. During Err2,
the designated board will go broken based on the fact that it has detected bus errors during

the error sequence and the other board did not go broken after its error sequence.

-39-

CA 02257511 1998-12-03
WO 97/46941 PCT/US97/09781

Transient Fault

® fault site anywhere

o action depending on fault site and timing

This fault deals with a transient fault. A transient fault is defined as a fault that is detected,
but cannot be reproduced by the error sequence. If the fault is on the driving board and it is
caught by loopback check, that board will go broken. If this is not the case then no board
will break until Err2, then the designated board will go broken.

Slow Driver Fault

] fault site 34, 39
° possibly break the wrong board with a loopback on control fault

When an ASIC with a marginally slow driver drives the bus, four ASICs clock in data from
the net while the net is changing. Due to differences in speed between ASICs from different
lots, its possible that some of the ASICs will detect a bus error, and some won’t, resulting in
a loopback on control fault. This may result in one or both of the boards on the bus going

broken.

Board Not Broken Generation

The board_not_broken_out signal is generated by all boards. If a board is going to break the
normal operation is for the board to assert bus error. All boards will enter the error
sequence and the board that was going to break will de-assert board_not_broken_out during
the error sequence. It is possible that a board could break without asserting bus error. This
could only happen if there is a problem with asserting bus error on the d-side gate array (for
instance the clock line going to the flip-flop that produces the control signal (bus error)

opens).

- 40 -

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Arbitrary Breaking

There are a series for cases mentioned before that error logic cannot determine where the
fault is. For these cases the goal is to not use the bus that the two boards are connected to.
The default is to break the CPU board (designated board). This makes sense because there is
a partner running in lock-step so no connectivity is lost. It is possible that the CPU board
will break but the fault really lies with the PCIB. The only way this will pose a problem is
if the failure in the PCIB effects the other bus that is still connected and is being used.
Normally it is the CPU board that is the designated board.

- 4] -

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Xbus Fault Tolerance

The goal for fault tolerance on the Xbus is for no single point of failure to cause a system
crash or allow a transaction to complete without transmitting the correct data. A single point

of failure could be any component, any signal, or any pin on a component.

The Xbus fault tolerance scheme assumes that one of the components connected to the bus is
always responsible for hard bus errors. To this end, the design has been simplified around
the assumption that when an error occurs, an offending board, or Field Replaceable Unit
(FRU), will be removed from service. This extends to include all buses that the FRU is
connected. Thus when an Xbus fault occurs the faulted bus service is removed taking at
least one FRU with it.

Both sides of the CPU board drive signals to the bus and both sides of the board perform
various checks to ensure that the board is functioning normally. This is identical to the
Golfbus methodology. The PCIB board behaves differently; both sides of the board drive
and check the bus when driving data from Xbus related IO registers, and when driving data
originating on a simplexed PCI card, only one ASIC drives and checks the entire width of
the bus.

Info Bus Protection

The info bus is protected by parity and loopback checking. However there is no A to B bus
cross checking by anyone on the bus other than the bus master. When a PCIB is bus master
only one of the two buses attached to a given CPU module will be active because the PCIBs
do not duplex and therefore the bus from the PCIB that did not win arbitration must be idle.
Likewise the PCIBs cannot know if two duplexed CPU modules are driving the bus or a
single simplexed CPU has ownership (two simplexed CPUs could have started arbitration at
the same instant). Thus receivers on the Xbus will only listen to the bus that is driven by the
module that won arbitration.

- 42 -

CA 02257511 1998-12-03
WO 97/46941 PCT/US97/09781

Parity

Parity is generated and transmitted across each of the physical buses. The 32 bit bus, trid
field, and funcop bits are all covered by a single parity bit. The purpose of the parity check
is to protect against etches that open between the transmitter and receiver. Boards in the
system check the transmitted parity that they receive with parity that they generate

themselves.

A bus error is signaled on any parity error. The bus_err signals are also effected by other
error checking that is described later in this document. In an effort to simplify these
descriptions the reader may assume that the actual error signals are a logical OR’ing of the

various outputs from different checking blocks.

Both the C and the D-sides of the boards will perform the check and compare results
individually and decide on any action that must be taken. In the event that the two sides of a
board do not agree upon the statute of a bus cycle, the board will break in the following

cycle in one of two ways.

° The D-side of the board detected an error and the C-side did not. In this case the D-
side will drive a bus error and the C-side will disagree with what the D-side has done
and break the board. Here the transaction is errored and repeated, but the broken
board should no longer be checking and the transaction will complete.

° The C-side of the board detected an error and the D-side did not. Here the C-side
will once again break the board, but this time because it expected to see an error on
the bus and didn’t.

The transaction will complete normally and the bad board will be removed from service.
CPU boards compute parity in both C and D ASICs and break if a defect arises in one side’s
parity generators. Most of the transfers from a PCIB board, however, originate from a PCI

bus connected to a single Gambit ASIC. When the Gambit drives this single sided data, it

- 43 -

CA 02257511 1998-12-03
WO 97/46941 PCT/US97/09781

drives all the bits on the Xbus, and an error in the simplexed parity generator would hang the
system. Fortunately, there is no need to duplicate the entire Gambit ASIC, only the parity

generation section.

Referring to Figure 12, a fault at site 41 causes erroneous data to be transmitted with correct
parity. This will be detected by higher level checksums. A fault at site 42 will cause the
board to break with a data loopback fault. A fault at site 43 will cause the board to break
with a parity geperator fault. A fault at site 44 or 45 will break the board with either a data
loopback fault or a parity generator fault.

Loopback Checking

The loopback correctivity is shown in Figure 13. On normal accesses (non-CD different,
non-single sided), each side of the board drives half of each field to the bus and receives all
of both busses. Thus there are two checks that each ASIC can do on the data returning from
the bus.

1: Does the returning data match the data that was driven from this ASIC. This
will be known as the loopback drive check.

2: Does the returning data match the data that was driven by the other ASIC.
This will be known as the loopback compare check.

Two error signals are generated inside of each ASIC for each physical bus that it is driving.
In order to know the true state of the board each side of the board must know the results of
the comparisons on the other side as well as the comparisons it has done. Thus two signals
are passed in each direction, as shown in figure 13, so that the each side may correctly

determine the state of the board.

CA 02257511 1998-12-03
WO 97/46941 PCT/US97/09781

Each ASIC will determine whether the data on the bus is faulted or not, as well as if this
board is broken or not. Table 4 below shows what combinations of the loopback signals for
each bus indicate that the board is broken.

Table 4. Board Broken Matrix for a Single Bus

drive_err from comp_err from
my drive_err my comp_err the other side the other side brd_broken
of the board of the board

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

- 45 -

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

A double bus error will be asserted and the not_broken signal de-asserted if a condition
exists that should break the board. In addition a bus error will be asserted for any condition
where a compare error of any type has occurred and the board has not broken. The bus

error will only be on the bus while the error is detected.

Loopback on CD Different Accesses

When an ASIC drives data from a CD different register on the bus, it performs loopback
checking only on the trid, func_op_, and parity lines. It asserts bus error if it sees an error,

and will go broken according to table 4.

Loopback on Single-side Accesses

When a Gambit ASIC drives single-side data from the PCI it performs loopback checking on
all of the bits; it does this only for the purpose of asserting bus error, not to see if it should
go broken. It will not break according to table 4, because the cmp_err and drive_err signals
from the otherside are invalid. However, if the driving ASIC sees a bus error, and the
otherside ASIC does not (parity received good), the board will break due to a loopback on

control fault.

Loop_ck_ops

Loop_ck_ops are used during the error sequence to make intelligent choices about the state of
various boards and the buses that they are attached to. A loop check op is a cycle in which a
board drives an alternating pattern of AA’s and 55’s on the backplane. The board evaluates
the pattern and similar patterns driven by boards on the other end of the bus. Based on this
information, bus state is altered.

- 46 -

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Contro! Bus Protection

The Xbus collects control signals into a series of point-to-point unidirectional signals
protected by an ECC code. Each board drives a separate control bus to each of the other
boards.

There are two completely independent types of checks performed:

1: Every ASIC corrects for any single point failures (shorts, opens, dead drivers
or receivers) with a single error correcting, double error detecting ECC code.
Single bit failures cause a maintenance interrupt and are logged, but otherwise
have no effect.

2: If a driving board detects a double bit error on the outgoing control signals it
will attempt to assert bus error and then it will break in the error sequence (it
will break regardless of its ability to drive bus error). If a receiving board
detects a double bit error on any incoming control signals it will attempt to
assert bus error then it will break in the error sequence. If the error was
actually on one board and only one board saw the error then the correct board
will break. If the error was such that both boards saw it then both boards will
break. This is to limit the possibility that data gets corrupted.

Three-way Voted Signal Protection

Some broken and reset related control signals on the Xbus are triplicated and voted. The
reset and board_not_broken_out signals are buffered through transceivers because they must
be valid during power up or power down events. The CPU signal sync_out is buffered
through transceivers to reduce ASIC pin count. The CPU signal my_online_out is sourced
directly by the ASIC as a cost reduction.

- 47 -

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

The D-side ASIC drives signals to the transceivers and to the C-side ASIC. The C-side of
the board checks what was driven by the D-side with what it thinks should have been driven.
If the C-side disagrees with the D-side the board breaks.

Each ASIC that receives a three-way voted signal will perform a majority voting algorithm
on the three signals to determine the value. In normal operation all three lines will be the
same. If there is a fault on one of the three lines (either on the backplane or on the board),
two of the three lines still will agree.

When a voting error occurs, the device detecting the fault should send a maintenance
interrupt and log which transceiver has the non-unanimous vote. The logged information is
stored in the Vote Error Transceiver Status register(s) and will not be over-written until the
status register is explicitly re-enabled by software.
Error Reporting
A number of errors can be detected by a board’s bus interface logic:
1: A loopback error that breaks the board. This specifically refers to loopback
errors on the info, parity, TRID, and func_op signals which are seen by one
side of the board and not the other during bus cycles in which the board drove

the bus.

2: A disagreement between the two-sides of a board on whether a three-way
voted signal should be driven.

3: A parity error on the bus, either on a cycie where the local board was driving

the bus or another board was driving the bus.

4: A loopback error on the bus.

- 48 -

CA 02257511 1998-12-03
WO 97/46941 PCT/US97/09781

5: A three way voter error in which not all three signals are in agreement.

6: Any bus error signaled by any board in the system.

7: A thermal fault (high temperature detected on the board).

Some of the above errors may break a board (e.g. #31 and 32), some may cause a bus error
to be generated (e.g. #33,34 and 36), and some have no effect on normal machine operation
(e.g. #37). The Xbus interface contains two classes of status registers to record information
surrounding the above errors: Broken Status and Error Status. Broken Status registers are
only activated when a board goes broken, and are designed to pinpoint the logic that set
broken. Error Status registers are for reporting non-fatal errors such as faults on the
backplane. All of the Error Status registers are updated simultaneously on any bus error
signaled by the system, or a voter or thermal error on the board. Specifically, when all

error reporting is enabled, any of the above errors cause:

1 A maintenance interrupt to be generated.

2: The type of error condition to be stored.

In the above case, subsequent error state recording and the resulting maintenance interrupts
are disabled until explicitly re-enabled.

It is not always optimal that all the above errors trigger the error registers and generate a
maintenance interrupt. The reporting of new errors can be effectively blocked by an
excessive number of reports on a known error. Hence, it is possible to tum off error

latching due to different sources:

1: Perform error latching and maintenance interrupts on all errors.
2: Inhibit error latching and maintenance interrupts of incoming three-way voter
. €rrors.

- 49 -

CA 02257511 1998-12-03
WO 97/46941 PCT/US97/09781

3: Inhibit error latching and maintenance interrupts on thermal failure related

€ITOIS.

The error latching disable bits inhibit those faults from triggering the error registers.
However, if a disabled error is present and non-disabled error occurs, both errors will be

recorded in the error registers.

Producing Errors

The Cyclops and Gambit gate arrays have specific registers which allow software to produce

various errors on the Xbus.

The basic logic to produce an error consists of XOR gates on all the info, trid, func_op,
parity, control lines going out and all the same lines coming in. One input on the XOR is
the data line the other input is the error line and the output is the resultant data. If the error
line is high the data coming out will be in error. If the error line is low then the data
coming out will be in the form of a loopback error. If the data is errored on the input and
the output then the error will be in the form of a bus error since it will not be a loopback

C€ITOr.

Table 5 shows all the error cases and the necessary settings from a hardware point of view to
produce the error. ’Receive error’ means the XOR gate on the receive side is inverting.
*Transmit error’ means the XOR gate on the transmit side is inverting. The category
describes if the error occurs only on a particular pattern match or if the error occurs just

after the register is written. For many cases it would be possible to produce an error with

- 50 -

CA 02257511 1998-12-03
WO 97/46941 PCT/US97/09781

different cases than those described below. The goal is to only produce the error in one manner.

Table 5. Error Settings

CP d r

Type of Error Category D-Side C-Side

CPU Board Faulty Input Circuit - CPU Immediate receive error no error

Driving

CPU Board Faulty Input Circuit - I/0 Data Match receive error no error

Board Driving

CPU Board Different Data C-Side and D- Immediate transmit error no error

Side /receive error

CPU Board Faulty Output Circuit - Buffer Immediate transmit error no error

to Pad Fault

CPU Board Open - CPU Board Driving Immediate no error receive error

CPU Board Open - I/O Board Driving Data Match receive error no error

CPU Board Short Immediate transmit error no error

Bac e I

Type of Error Category D-Side C-Side

Backplane Open Etch Data Match CPU and IO CPU and IO
board board
transmit error receive error
/receive error

Backplane Short Immediate =~ CPU and 10 CPU and IO
board board
transmit error no error

- 51 -

CA 02257511 1998-12-03

WO 97/46941
10 Board Error
Type of Error Category
1/0 Board Faulty Input Circuit Immediate
1/0 Board Output Circuit Fault - Buffer to Immediate
Pad
1I/0 Single-side Access - ASIC Parity Immediate
Gen. Fault
I/O Single-side Access - ASIC PCI Data Immediate
Path Fault
I/0 Non-single-side Access, Different C- Immediate
D Data
1/0 Board Open Immediate
1/0 Board Short Immediate
Transient Error

Transient Fault

Bus Busy

PCT/US97/09781
D-Side C-Side
receive error no error
transmit error no error
parity gen. no error,
fault
bad address no error
transmit error no error

freceive error

no €rror

transmit error

receive error

no €rror

This causes a bus error, but when the error

sequence is executed there will be no error.

This fault will not produce a maint. int. from
this board, but all the other boards will assert

maint. int.

Bus Busy

‘This causes a bus busy.

-52-

CA 02257511 1998-12-03
WO 97/46941 PCT/US97/09781

Board Breaking Timing

Note in the figures Figures 14 - 17, Info_O’s shows the time the info bus is driven to zero
assuming that the bus is not already tristated from this side, xcever_disable shows the time
the drivers from the broken board are disabled from the bus. Bus error is also shown when
valid on the Xbus.

Board Breaking and Information Latching

There are several status bits in the Broken Status register on each board to determine the
reason a board went broken. These bits are frozen after a broken condition occurs and will
remain frozen until after a cold reset. All bits in the common register are straight forward
with the exception of board_specific_set_broken. Board specific logic may have several
reasons to assert this signal and may also have a similar register for the reasons it has
asserted this signal. If board_specific_broken is set in the common register, the board
specific broken register will contain the real reason the board asserted the
board_specific_set_broken signal. If a board breaks for a reason other than board specific
broken, the board_specific_broken bit will not be set in the broken status register.
However, board_specific_set_broken may have been asserted after the original broken
condition. This would have caused the board specific broken status register to latch and hold
a reason it had set broken. It is important to understand that because the
board_specific_broken bit is not set in the common status register, this was not the reason
the board went broken. The reason the board went broken is logged in the broken status
register and the board specific status register may be ignored.

In the timing diagram of Figures 14 and 15, someone_set_broken is the logical OR of the
following signals:

cold_reset, warm_reset, slot_parity_error_set_broken, control_or_3way_vote_sig_error,
asic_specific_set_broken, ecc_dbl_error_in. In addition Gambit contains the following

signals: break_pcib, xb_parity_gen_set_broken. The board will break if any broken signal

-53-

CA 02257511 1998-12-03
WO 97/46941 PCT/US97/09781

is asserted on any phase (i.e. any 48mhz edge). my_set_broken_reg is the equivalent of
otherside_set_broken_reg on the other ASIC. my_set_broken_reg is ORed with

otherside_set_broken_reg to create set_broken_sync.

The common broken status register is frozen when latched_broken_status is true. Note, All
status signals for the I/O register have the same timing as broken.

Note the bus error driven on the bus at the time the board went broken. This timing is

important.
Board Breaking Timing on Info Loopback Error

As shown in Figure 16, if a loopback error occurs that will break the board, bus_error will
be asserted in POST?2 and the board will break in ERR1. Both ASICs will know of the error
because of there are four lines for each info bus that communicate loopback status between

the ASICs (cmp_err_in, cmp_err_out, drive_err_in, drive_err_out.
Board Breaking Timing on Heuristic or Arbitrary Broken.

As shown in Figure 17, boards that break due to a Heuristic or an Arbitrary broken will

participate in the entire error sequence and then deassert board_not_broken in ERR2.

-54-

CA 02257511 1998-12-03
WO 97/46941 PCT/US97/09781

Xbus Physician Partitioning

This section gives a high level overview of the physical partitioning for the interface ASICs
to the Xbus. It describes the components necessary to interface to the Xbus as well as a
functional description of how the interface is intended to operate. The fault tolerant strategy
is also described.

Info Bus Partitioning

As shown in figure 18, the C and D ASICs on the CPU board each drive half of the bits on
the info bus when they are bus master. The C and D ASICs on the PCIB drive either half or
all of the bits, depending on the type of transfer. During normal accesses, they drive half
the bits as shown; during single-side accesses, they drive all of the bits, including the parity
bit.

Control Signal Partitioning

The D-side ASICs drive the control buses, and both C and D-side ASICs check.

Xbus Voted Signal Partitioning

The 3-way voted signals in a Polo system have varying topologies depending on function. In
general, each ASIC on a board drives half of the 3-way voted signals originating on a board,
and the other side ASIC sits at the end of the net and checks what is driven.

Figure 19 shows the 3-way voted signals for board_not_broken_routing. Each transceiver

section (shown as a NAND gate or inverter) of a 3 way voted triplet is in a separate
package, to prevent a single failure from disturbing more than one bit of the triplet.

-55-

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Signal Routing

The bidirectional info buses are routed point to point between boards. On each board,
separate traces run from the connector to each ASIC; this allows the error protocol to
determine if a fault is in the backplane or in the board. Series resistors are used to control
signal quality, nd CMOS levels re used for increased noise margin and reduced susceptibility
to cross-talk. Figure 20 shows the routing of info lines.

As shown in Figure 21, the three way voted signals are routed as separate point to point
connections. The reset_x, y ,z _ signals are driven by the CPU boards, wire-ORed on
the backplane, and received by all boards. The board __not__broken__ signal is driven by a
single board and received by all boards. These signals are drive by normal 4mA drivers of
the ASIC, and buffered by 26510 trancseivers. The voted signals are terminated with a pull-
up and isolation diode on both the receiver and driver side. This means that it is possible for
there to be one or two pull ups on the line. However, whenever the line is being used for

activity signailing, there are exactly two terminators, one at either end of the line.

Functional Description

Figure 22 is a block diagram of the error check logic used by the ASIC’s. The Error
Checking and Registering logic performs two basic functions. It controls most functions or
error checking and it registers incoming and outgoing Xbus signals. The error checking
function performs the following tasks:

. ECC generation and checking/correcting

. Parity generation and checking

. Loopback checking

. Three-way voting

. Controls error protocol (includes decisions on breaking board)

- 56 -

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781
. Provides logic for error insertion
. Records error information

The registering logic performs the following tasks:

. registers incoming bus signals

o registers outgoing bus signals

° combines (logical ’or’) neighbor, opposite, peer versions of registered ECC corrected
control signals coming into the ASIC with the delayed outgoing corresponding signal
to produce a combined control signal for intemal ASIC module use

The Xbus can be broken into four classes of signals when discussing error checking:

Xbus Signals: these signals are protected by one parity bit, this detects an odd number of
errors. During normal accesses the D-side gate array drives approximately half of the
signals and the C-side drives the other half. Please refer to Section 11.1 on page 96 for
more detail on the signals that are driven by D-side and C-side. The D-side checks the data
it has driven (loopback drive check) and the D-side checks the data that the C-side had
driven with the D-side would have driven (loopback compare check). During single sided
accesses (PCIB only) the driving ASIC drives all of the bus signals. The driving ASIC can
do a loopback drive check but the other ASIC cannot do a loopback compare check because
it has no knowledge of the exact data being driven.

Control Bus Signals: these signals are protected by four bits of ECC, this detects a double
bit error and can correct a single bit error. The D-side drives the signals and the C-side

does the loopback compare check. The D-side does the loopback drive check.

Voted signals: these signals are triplicated and protected by three-way voting, this allow for
one out of the three lines to be in error. The D-side drives the signals and the C-side does

-57-

CA 02257511 1998-12-03
WO 97/46941 PCT/US97/09781

the loopback compare check. The D-side does the loopback drive check. The one exception
to D-side driving all signals is the board_not_broken_signal. The C-side will drive the
board_not_broken_signal and the D-side will drive the enable for the
board_not_broken_signal.

Miscellaneous signals: The slot id signals are duplicated and they are in disagreement the
board will break.

Figure 10 shows the Bus Error flow chart, summarizing the foregoing. A further
understanding of the invention and of the construction and operation of the illustrated
embodiment may be attained by references to the Appendices filed hereiwth.

Summary
Described above is a digital data processing system meeting the aforementioned goals.
Those skilled in the art will appreciate that the illustrated embodiment is but one example of

the invention and that other embodiments incorporating modifications thereto fall within the

scope of the invention, of which we claim:

-58-

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

This document contains confidential and proprietary information of Stratus Computer,
inc., and any reproduction, disclosure, or use in whole or in part is expressly

prohibited, except as may be specifically authorized by prior written agreement or
permission of Stratus.

Polo Programming Guide

JED-00152
“A SAM is a logical concept”
Jeffrey Somers
Gregory Green
Michael Homberg
Conrad Clemson
Will Leavitt
Joe Lamb
26 December 1995

Revision: 3.2

Notice:
Released Version

(¢) Stratus Computer, Inc. 1995

Appendix I 59

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781
Polo Software Progran..aing Guide Stratu. ompany Confidential
1. REVISION HISLONY .eevuoreeressmssnsensismsesassssaseastasmasssmsasssstasnsssiastasssssssssessessenss 7
1.1 (DD ISSUES . eeesessssssssssssssersssesonssesssasssssmss s s S mE T T 7
1.1.1 Polo UPS cOmMmMUNICAtONS .cceerseecaeses revessssssesssesanasartssarseaaeraneantas 7
2. INrOQUCHION..ccueersmsasssansassasssnmasssnsessssennenane eeseeesesessessssssassiesesasasnesersasssssntas 8
2.1 Applicable DOCUMENtS ...cvuecssrvense ceerneneesesensasaes reeresesessessessssssssenensassnenes 8
211 Stratus AppHCable DOCUMENES cccuemrusmmsmenrecmsmnsnssusssasssnscasemsesensenesss 8
2.1.2 Other Applicable Documents.... reeeeessnsessmsanssbestserarasaines 8
22 TOIITUNOIOGY «vvveersessrrrsssessansssersssessssssssssssssscsssssssssasssersssssssmassasamses s s 8
3. Functional OVEIVIEW......ccceseeerissanaesasessensenases tevesesssssseesesumsesssessananesesesasaes 10
a1 Polo Functional Overview ... eevosssasssseneesesssnsesansesaen .12
311 LOQICA! SUMMAMY wecrruvsssiossssssmssasssssorsssssssmassmsssssassesstanssessssessssstimnsssss e ssss 12
3.1.2 PhySICAl SUMMANY woveeuseressssmssnasssussssmmnssmmsenassasasssmmssesss oo 12
3.2 Jetta/FTIO Functional Overview- . - 15
321 LOGICA! SUMMAIY vvruuarersmsessnssrussessmsssnssssssansisssssessassss s sossssessmmsasss s ooes 15
322 PhySICal SUMIMATY cecerussserssmsensssmsssssssssssssisssssssssmmsssiemmast s sansises s sssssss 15
3.3 Jetta/HSC2 FUNCHONAI OVEIVIBW cecuruunrmsrmassssassssasemmassrssssssssssnasssassassssssmass st 16
3.3.1 LOQICal SUMMANY c.covueuersansaracsmsasesnsnarasscseass teeessenessresssssssstessasenaraseses 16
3.3.2 PRySICAl SUMMAIY coovvererssuasssmsssssersmasmsnsesrmsssesssmssssssss s e 16
4 Xbus/Golfbus t0 PCl ADAress Mapping ... cesssesmsrersacnsnarassamsmsssssssasseses 17
41 AQOIESSING OVEIVIBW .eccoumrrrsrssssssssssessssssssassssssssssssemsssissmsasssssesssassas s oo 17
4.2 ACAIESS RE-MAPPING w.revesrescsssnsmmssesssssssssrsssssssssirsssassassmssesssinassassasesssim s sessssssesss 18
4.3 Per-Space Ordering Of /O ACCESSES ceuruuussrrmmmmmssssemmsrsssssmisesmmsssesms s 18
4.4 Address Decode . SRR R 18
4.4.1 Per-Slot /O Space (Local, Paired, Non-Paired)-ceuesesammsmsnencersnsoraes 20
4.42 GlODAl BroadCastsceecsscsesmsnsasusessssasuansasasanaenenees westessressasestassanerenn 21
4.4.3 egal/ADNOIMAl /O ACCESSES wuruusersussrssmarusnsensensamssssmsssasssasessrems sttt 21
4.5 PCIB MIO/IOBus Compatible System ACArESS MEP ..ovueeenrmnemessrsasssasosssansesnenss 22
45.1 10Bus or Xbus to PC! Local BUS REQUESTS «.oveeuecrrasemensssssensmssessasasnesseses 24
452 MIO Compatible REgIStEr SPACE emuesersenssussessenssenssmacmssassssssenseasesseess 25
453 10Bus Compatible /O Space Map........covereescesessmsssassusmsaseossenassraseasesaesss 25
4.5.3.1 SAM 1O AQAreSS SPACE...cereessismssnsmsrosnasssasasmansssssstsesssssstess 26
454 10Bus Compatible Memory Space MAD .oeecmvammancossesasarsnensess ..28
5. Xbus/Golfous PCI to Xbus/Golfous Address MaPPING c.ceremeeeseessssnnsassnsnses 29
5.1 Software View Of RE-MAPPING .cuwrecrusemmmmamssssessmassssmmmsesassssassansssssessseni s sasss 29
5.2 Polo Re-mapping... . 29
5.3 PCI Memory and 1/O Address Mapping ..iv...esrsssassessemmsssussensorssasmemmeesss K
53.1 PClto Xbus/Golfbus /O Requests teoeesseemesnsessesesasbessassssrseasessanerse 31
532 PClto Xbus Memory Requests reevasssaesssnasenraassserarasarasbesnasens 32
5.4 AQArESS RE-TMAPPING ceoveeeussersssnsssessessssssmsmmasessssasnssasemssasessssassaasmssnsssmssastonssss s ees 33
5.4.1 Systom AJAress GENeration ... ssessesrassseemsssssmassemsssssmmmssierrs st a3
5.4.1.1 Polo System Address GENETAHON .cveveecsnersnsnnsssomsanssssanssasssess 34
5.4.12 HSC2 System AdAress GEnerationocac-secussserasersesseseess 35
5.42 |0 Address Table Entry INVAlIJAE ...ceeememseuseneamssnarasmasaseasimsmsmmsmsemssers 35
5.4.3 AQCress Efror ChECKING ... cccemmmsenssssenssussesmsmsssasrasmssssmsssmmsssemmsmnesssess 35
5.4.3.1 10 Device ADAress CRECKSUM . .ciuercesssemsmsunessasssnsestasacasasss 36
5.4.32 Out of Bound AcCESS CNEBCK....cuesimrmaennssasensssimmensassrasasasasssess 36
5.4.4 CONOl BILS ceoecereuecsisnsersessasassssmmssasssssasmammasasussasssuasssinsanss s ssesssssss a7
5.4.4.1 Valid ENLTY Dt 1eevemeenrmmernrensssssssnmsocasmasnssusassssasssesmsensessssesensess 37
5.4.42 Data Pre-read.....ceveceseseseenes . rveeseesensssssrranrans 37
29 December 1995 2

WO 97/46941

Polo Software P .gramiming Guide

CA 02257511 1998-12-03

PCT/US97/09781

S .atus Company Confidential

5.4.4.2.1 Coherency Restricions.....ccceeeeeiierciireninns 37

54.43 Lock Cycle etesesssssasssesanisesaesnnsrnsennaes 38

5444 Swap 32 bit Endian. 38

5.4.4.5 Incoherent MeMOry ACCESSccuvvmmersecrsneessraaseacssnnnes 38

5.5 Software Map Management........cccceeierrsscnsmssernemsscssssssesersrssasssssasssasasarsesssssasnes 39
5.6 Byte Alignment.........ccevcevnvieennns ttaessesesesseessasesesssnrsstastnianat s ne s nar hsranerasorns 39
6. Interrupts ..coovcevvennnnnen. eeereesasessemteseeeeeeasasssntttbeRESEIeaessesanateresssebbanasnntesesbnntes 42
6.1 PCIB/HSC2 INBITUPLS......cccercmeresnssssssssnssssnosonsssessnnsssssssssasessatassasssnssansansssasenssasns 42
B.1.1 INITOGUCHON ...oeeereeeenrcrecnescrrscssiessenssssnsssssessesrssnesssssssnesssssssonsesssstarassannns 42

6.1.2 Implementation goais 42

6.1.3 Hardware Implementation.......cccciinemncreressrsssesssssssssssancsrsnesssisssssenasss 42

6.1.4 Suggested Software iImplementation 44

7 BOOt e ciiiiieeceieieerereiiieteenentasesassareassnssssenssnsassansasssssesassrsssssssssasnanssrenvarnanas 45
741 Boot Alternatives.........ccccceveereerscrinas 45
7.1.1 Baby BIO BOOL......ccccovrineinrinensnnsscssnssnsensvessossnsssssnasens “ .45

7.1.2 Bio Firmware on Raid Controlier Bootccceevccermieersseensreniiniunccsnsanennne 45

7.1.3 CPU Prom Resident PCl Card BoOtccovuererensieniinrnnrncsininnscnacsennaas 45

7.1.4 Expansion ROM Resident PCl Card BoOL.cooucmvurceerrneeerersercssnnnnene 46

7.1.5 x86 Emulator PCl Card BOOL.cccecumrmrnecscecrcssensninseresssessssnnesnsssnassanns 46

7.1.6 PCMCIA Flash PROM Based BOOL......cccecemvevmessnssnsanrsnnssenissnsrasssasons 46

7.1.7 CONCIUSIONS ..vecvmeneerreaesesseenesensnssstasssssssssssssssrasssssssssensssssesnssnsasssssassnsssassss 46

7.1.8 OPEN BOOL.....coiemirercnrisnciisssssessssnticissssssmesssnssssssasssansssasnsssansasssessansas 47

7.2 PCI BOO PIOCESS «.vvrrenerecsescmsssncntsscssnssssassseasssssssnsstssessssssssssssasssssssasssasssssssasssssns 47
7.2.1 Find and Configure the Boot SAM... .47

7.2.2 Configure PCMCIA Bridge Chipcccvemrseernrssessesnsarenssssssanssnannasasensases 48

7.2.3 Configure PCMCIA BUScocierienemrmsncscncescsassssssssnsamssensvesssserssssssnssns 49

7.2.4 Configure PCMCIA Flash Card.......ccccsmmeerssmenrsuccrenmrsnnsscssessessrssesasans 50

8. PCl ConfiQUrationcccccreiceecsemsnienississnsesssmnsossansssmssnissnesnssessssssssssssasans 51
8.1 PCI Configuration Register Space eeeserreearaarrer s s satseaatensesnanesensrases .51
8.1.1 Gambit PCl Configuration SPace........cceccsessssnmmsscssssssssncsssrssssssnesessassssnns 51

8.1.2 PCI Adapter Configuration Space...... etveneeerisseseresaneenarassssarantssesens 53

8.1.3 PCI Configuration space header description 54

8.2 Proposed configuration SBQUENCEccecveisressseessesessecassssssonsssnasseassnsessesassorsessans 56
8.3 OS Based full system Configuration..........ccceeescessneserecssisssnsssansnssnnsssssessessas 56
8.4 PCl device deteCtion.....cuvemeeeecesriensnressnesonsenssonns 56
8.5 PCl Address formation 57
8.5.1 Configuration cycle generation........... 57

8.5.2 Special cycle generation......... 57

8.5.3 Polo/HSC2 Configuration Address Generation 58

8.6 Muiti-function Adaptors tecessnsnueasaiesasesassissssastessnnariasassesssnares 59
8.7 SAM and PCI Adaptor Configurationccesessecensscassesssesssassasccssssanseas 59
8.7.1 Base AdAress REQISIErSciccrcemrcrerarsenessenssssessonsnnissnsssscssosersassassasss 59

8.8 PCl AQAress SPACE ..occuiimrmreccrrcrirecsssissssosessanssrassssssssassssssssessassssassssassosssessssssasanass 60
8.9 .PCIl Bus Target and Master ADOIMSc.cccreessennnoscascesacsossnsossnsas ..60
8.9.1 PCI Bus Fault Detection and Tolerance61

B.10 On LiNG AdAS cciiiciiiiiimmmerece et ieetossonrancvncaceractssssassssacossssassssans ssassssnesssssasasssonnae 61
8.11 On Ling FAHUIES ...cccvveiiicnnissencrsssessecsssnmssssnssnsessssssnees reneresaresannes 61
B.12 BOArd rMOVAL ...ccoiicrireciiiscctiiissiesssssesissssirsssssisestesssersssssssessisssassssssansessnsnssaasnnn 61
8.13 SpeCial REQUITEIMENLS. ..ccccvoreicenresimrnesararsansssssssstoserasssssssssonmasssessnssassnsassassssnsnas 61
29 December 1995 3

CA 02257511 1998-12-03

WO 97/46941

Polo Software Prograrnming Guide

PCT/US97/09781

Stratus « ympany Confidential

8.13.1 LOCK FEQUIFEIMIBNTS couvueuereriecussunmanrananssssissesensnssnasassssas s easensansass e ssses 62

9. PCIB Maintenance & DIiagnoStiCSscueweirermmmmeuemsmsmsnsnarsmsssesisesasannseess 63
9.1 OVEIVIBW ..ecearrerarmarsnssosnsesssnesesnssasssessesissassmss nssssssasastasessassssmsnsssstssnssasststasessusesssnses 63

9.2 ID) PrOMS .vevecsrrsereesesesssaseesessssssssmssnssssbssssismamsssnanssssessisasassasasasissseninsasussnsesussssenes 63

9.2.1 FAUIL LOGQING ovrvrrrrersenassennsescasssmssusasssmassassenssrsassasassssssnasasnstsnesssassssiass 63

9.2.1.1 POIB coveeereeeessersssssssesasssnssssnssasassnsssttssasaosar iasmssnsassssansasnsiesssenss 63

9.2.12 HS G2 v eveceveeensssssssasssassssssssvas nssmtsssasmansasssssstassasasssasscasacss 64

9.2.2 1O POWES SUPPIY FAUMS ..ccoeeeecmrrsuennmersnennesssnsnnansssensistssnsasussusasasesseses 65

8.3 INSErHON & REMOVAIS...ccccrrerrisrersmmssmsessssssessnssnsssnasorsibessnsnsasssssamnssasatnsassasssasssenes 65

0.3.1 PCIB AEVICES cueueeeeessenvarssnsssmamsensssssismssnnsmssssassmssssnansssssssssssssssatasssssisessess 65

0.3.2 POI0 POl HEVICES ceccueucrimemssniressensessaiseammesssmssssaseasnsasassasasmasasnsasmasssisssscses 66

9.4 RESEL OVEIVIEW ..cevevrreerereasasmssssessssessasssssnsessassessmasasssastarssssasasasasissatssssssessarsstssssess 66

0.4.1 POIO RESELS ..ceeerereesessssrcnmsssssersassssnsessssssnssstassiassninansasssnssssstsssunsssentasess 66

9.4.1.1 CPU Reset............66

9.4.1.2 POIB connevoeeeeseceessrasonsossesssassmsssnsessasssssaasssenssamssssasssstsansssesussases 67

9.4.1.3 POl CAIOSueeneessersersesassssssnssesssmsatsassssnnassansssssssnsssnesnnssarsies 69

0.4.2 HSC2 RESEIS ..vermcarscasorsssesesssnsssmmsarsssrsssssasassasassnasanssrmsasssssssissansnasasassssenss 70

9.4.2.1 HO G2 coonmeeecerrecssensssmessssssessnmmsssnesstesssatsessssasssnsssasnssnisonsessnsosss 70

9.4.22 PCl cards......ccceeees eeesereeeasesssessrasesassncssssansesnaas 71

9.5 Determining the source of a Maintenance Interrupt ... 72

9.6 FAUIS & EITOIS cou.evvereuesresensssnssssssssssmssssssssssosnessnnanesssssssssasssaamanssatsssssnsssnsssessussss 72

0.6.1 PCI CArd fAUIS cuevecencuracncscnsssensusacsssnsemsasansasssasaiasanasssssstamssasanasanusassssssces 72

0.6.2 POl DUS fAUMS covveereaemeersermsssresssmsrscssssesssnsasnsassnsssasamssassossssnssmassasnimsisesesss 73

9.6.2.1 PERRE.....ccoeesmsaeasesrersssssasesssrarassmtsssssasansrassssssssasamnssarseassesses 73

9.6.2.2 SERRH.....oceceecerrerrosarsascssmsssosssasstosssassnnensassasssssstsssissssssatoisses 73

9.6.2.3 Polo(Gambrt)/HSCZ(Mrrage) Emor 10gQiC cuceieeereeneesecscaesnorsnsns 73

9.6.3 DiSK DUS fAUIS weeueureerrrrssnsmsasassssensnsasansssencasnsusssnensasssasssusssusssnssssiessasenes 76

9.6.3.1 LED INItialiZAtON .evereermerrenssssessesssssssarsasarsanansscsssssnsnsansesassess 76

9.6.3.2 Disk LED CONMTO!ceveverserssressnsssarsssstassssssasastosarssnmsansssssasans 76

9.6.3.3 Disk Insertion and REMOVAL.......ccceeesseesennssscrassssesssssaneasrsones 76

0.6.4 SCS! DUS fAUMS cuevemreerieremessnsassscssmsissarssasssnsssmsasmensusssasssanasssssarassssesess 77

9.6.5 PCIB/HSC2 fAUIS c.vovrecrerssarasmsssessosessssssmnansssessasasnsmssersssassssasanmsasasiosises 77

0.6.6 XDUS/GOIDUS fBUMS.....corvmreetarereonsmesinnsasannssesssnsanseasasmssmsmenrassasaserasanas 77

9.7 Diagnostics ...cccesrseeees oeeesssessesssesessessarseeerisesteRsOTItastIsRtssRns R st Rt RS aR e RS 77

.71 POICAID c.coerriererrransenssasissorsssamssasessassssnsasasassssssssnsasasssssisssasasansmssscnssess 77

0.7.2 PCOIB uoeeereemererrassessiseesessssssmassasssssssnsssansnssssssnsansassscses 77

10. ReCC Functionality On POIO ccecresicriimmmensscscssnscnmsmsasassssacnsasneasassesseases 78
10.1 REMOtE POWET CONMIOl c..cuueareasssesssarenssssasusssstasansasanasssassassssassmsamsmasrssssssssnsseasess 78

10.2 RS-4B5 DUS.uerserrseesmrscssssssssemsassssssnssssramsasnsansmsssssasasssassasssmsssssssmssmsassusissoseasstusesss 78

10.83 POWEHAI ceeeverseuerereremsssessacsensasatcsssristssssanssessstotasmsmesssassssesssssasmstsarsssssssasssonenasass 78

10.4 Clockcard, backpanel power SUPPIY fRIIUTES. ceereereessussmnsssenissesssssssnsstasnasenssesssesse 78

10.5 /O pOWET SUPPIY fAIUIES c.ccuucmeirreinemmrussrsisecnssrsamasenssmssassssssssssmmssnss s enssrmsessmsess 78

10.6 NVBAM . coerieiisersieesscsesensisioseasssrasssesssssssasassnssass sasssaasasssamssasssssssmsemstnasasisssssssssss 78

11, BOAId SHAIES...oceerseercmsirisersnsassasacsnssssrnssansnsssarassasesssassssssasassssasssases 79
11.1 PCIB Board States.......c.ccceeecrresaneas £ eevesesseesomeesssesssesesastssreissatetsesastiissnassnactsenee 79

112 HSC2 BT SIALES ..cucveeriersisirrnmessssssessasissamsansscssasassssssasacasessssssnsussasssssnssseeess 79

11.3 SAM BOAD SEAES ..ccvereurercararessssrsasesssssssssssmsnsssessasimsssmstasmsstassss s smsesssnsssss s 80

12, Register DEfINIIONS w.ovovcenicsreesinssssssstsmssassassssesssssesn e 82
12.1 XBus/Golfbus Bus Interface REGISIEISuiweeecrserminenranensersssanmmssesmsasnsseneiess 82

29 December 1995 4

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781
Polo Software F. . yramming Guide S..atus Company Confidential
122 Reading Registers with Different C/D Information (Polo Only)ccceeeicececeenee 82
12.3 Common Xbus/Golfbus Register Definitions (Polo Only) 83
12.3.1 ID Prom Instr............... eereerrrvssmeettesenseisssstsessasastsasnnnrssssrassannrse 85
12.3.2 1D PROM Address Data.....cccccecvuerirssnasscnsseninnsinsssssssasssacsssnssnses 86
12.3.3 BOArd RESEL...ccrcerrerressssssrtessiesveseiasssassincssssasssssisssssasessansstassssassasanas 88
12.3.4 Bus Interface State tereeessessestnntsnsersanattastaseaneseameaseasensasatene 90
12.3.5 Board Sync RegiSter.......c.cueeeircnecnsnsesnrcinnnns . veeemessnassssanas 93
12.3.6 LED Contro! eeeeeraseressnnosssrssnesens 95
12.3.7 SlotID vteseeereseenresanasteste st sas abernesasanesRteRsees 96
12.3.8 Read PiNg INBIVAL........cceinvcmriiinsnsncnesnnsssessessrsssssnnesssnnsssnrsasssmsancass 96
12.3.9 General Purpose Communications {7:0] eetesseerentersenssesansasssine 97
12.3.10 Memory Size/Location revrenesssessesessnssssesaerneass e rnasrnsansisanasarnn 97
12.3.11 TeSt CONMTOL c..eeerecnecrcssoncssessssserssarsssssssnserssasssnnes .97
12.3.12 Bus Interface Fault REPOMNG.......ccccuicrreisseresssssrsonssacssnessenssnssssssnsananas o8
12.3.13 Common Broken StatUS.........cccceversmssenrsscnsiesseensssersemnssasesssnassssosssassnnns 100
12.3.14 ASIC Specific Broken Status teeesseseterstseatesessnesnntsasannessnnraonssisetens 101
12.3.15 Bus info Error Status teersseeesetursaeserarassnessanasaastessanesranertese 102
12.3.16 MIiSC. EITOr StAMS «.cccvnieniriiscrimianisissecsscsennsssssmeenessseissnmesseserssassassassanens 103
12.3.17 Control Bus EImOr StatUS.......coceccirecenncnicnnecsinnccsntasnsessassesssansansesarsassas 104
12.3.18 BUS EIror Byte StAtUS ...cceeereeererrerierencersontnsassescssamssssssssssnssseessasssonsasasnes 105
12.3.18 Voter Error Transceiver StatUScccvererimncinnmnsssssstessssssnsssassssssisness 106
12.3.20 Bus ASIC Chip ReVISION.......ccceeerrnrraccremssnmerassccssssssssssnsssarssasesssensrssses 107
12.3.21 Performance COUMETcccceuienmressonsrssicsnisssenssannmsssesssssassarsssssssnsssasess 107
12.3.22 Performance Counter TrgI1:0]ccvecerrererccisssnsnsseissisneesinaniscsnessanenens 108
12.3.23 Performance Counter Mask{1:0]....c.cccoermrercmrrararonesccmssnsassssessancssnsssessass 108
12.3.24 Performance Counter CONtrol.........ccccvareaissnnessscesncssnmmescnmnnmnsasnissnenss 109
12.3.25 FAUIt BIt[1:0]...ccceeeeennrecresnacenessencansonessnsansressrsssecsnsaseassssssassarsansassssasestons 109
12.8.26 DAta MALICHuecirerrirerrcrncmecseesererssnsensrssesassessssssesonssasssarsnsarssassasssnan 110
12.3.27 EITOr CONOL ...couiiiiicnriiieiinninscriescsntinscnmssesscmssosossesasssnsassassossasessssssnsesans 110
12.4 CPU Specific Xbus Register Descnpnons ... 112
12.4.1 ASIC Specific CONfIQUIALoNc.cccvrveerecrrmcnsissansnssesisssseassiseeseasessess 112
12.4.2 O Address Map ErrOr 1.......ciimiceinimnasscsssscisasissesmnmsnsessssoses 112
12.4.3 1/O Address Map EITor O........eeececieerrirceneriessneessemrrossassssssssesssnsneases 1183
12.4.4 TIME Of DAY cirveirreinsnicniicniiensissscissmsmarssssssssssssrsossrsssnsassasssansssasssess 113
12.4.5 QUICKHME c..ciiiiiiaiiieiemtietimrsasasiiesssrosssastsssssnsssssstsssssssissssastaesensonsonssanas 114
12.4.6 Master Jiffy Counter erettsteessaseasssseesessnasasnasensastssnerantesstsianes 114
12.4.7 Jiffy Control teeeseneannesrssareanaesnasantsesssanasaarsssaeestte s e b et spessra et sRe bR RE RS 114
12.5 PCIB/HSC2 Specific Xbus Reglster Descnptlons 115
12.5.1 Gambit Maintenance Attention Request [31:0]cocccervervcruecsncsnsansanenne 115
12.5.2 10Bus Status estersansesnesserastensresnrsnresaisass 116
126 SAM interface Register Descnp’aons 117
12.6.1 SAM Interface ReGISters - PAQe 3c.cccveeeremmirnvrcsnsssnnssenmesssssnessansnns 119
12.6.1.1 Disk LED CONMIOL.....ccocceveeemecrecsseesnmesscsssssssssssssonssssassssssssene 119
12.6.12 Disk Status ...ccceveevmeececcrcrirsnnccnnn 119
12.6.1.3 Power Supply LEDccccevvncnriranne 121
12.6.1.4 Power Supply Status(Vanguard powe supply) 121
12.6.1.5 Fan Speed CONTOlveeerciierseesnneesecescesresssssane sonsaas 121
12.6.2 SAM Interface Registers Page 2 122
12.6.2.1 Address Table Command and IOVA Register......cccceceernenns 122
12.6.22 Address Table Data 2 RegiStercccccvremircnrcscnnssncasannasens 122
12.6.2.3 Address Table Data 1 Register123
12.6.2.4 Address Table Data 0 Registerc.cicinsennessncnisanennes 123
12.6.3 SAM interface Registers- Page 1.......ccecvaeerennn ..124
12.6.3.1 PCI CONfig_a0ar....cosmeesiiniconsisansncsissnsnssesssisnsssessessnessassenees 124
29 December 1995 5

63

CA 02257511 1998-12-03

WO 97/46941
PCT/USI7/09781
Polo Software Programming Guide Stratus _ompany Confidential
12.6.32 PClCONfIQ_JAA .coveeeurererniemmasrsessasmssmsunssssesssnssensnassisereses: 125
12.6.3.3 Test Control.............. vessessasanserseesssssstansarensensents 125
12.6.3.8 POl EMON cciiinicinnsesssssimssnsnssasmscenssnsmsasmmsssenanessssssasnsennses 126
12.6.3.5 PCIIOVA Error venesesvermssnnee .127
12.6.3.6 SAM Status vemeescasassnssesnnes 127
12.6.3.7 Arbitration Freeze Count Max. VAIUE cveeereeresueassssnasennionssness 128
12.6.38 Host Request FIFO Timeout Value Register w.ccnnicennnne 128
12.6.4 SAM Interface Registers - Page 0 . 129
12.6.4.1 B0Ard RESEL.....crrearescecrissersssmnnesnescrsamasmassasenssses 129
12.6.4.2 LED COMIOL..ccvveerreaescsrassscrsmnmnsrssssosssssmmsssscssasanscasissnisssessess 130
12.6.4.3 SAM Host Interrupt Bit.....ccccceeeeecee. veeneee 130
12.6.4.4 SAM INtEITUPt MASK cccemriecscsressanarsmnusessssinssnenonnsasnsssensaces 131
12.6.4.5 SAM Interrupt Source reessmsessssasessuensetessosnasassntsntsnssannes 131
12.6.46 SAM Host interrupt Address POINEYeceemucuscuscrssermassenes 131
12.6.4.7 SAM Host Interrupt Table Pointer 2 oeeccreeenrnenssssenisssensensens 131
12.6.4.8 SAM Host interrupt Table POINEr #1ccuemmsessmscrsmnaess 131
12.6.4.9 SAM Configuration ... reeseveemaserasesnaresnase 132
12.6.4.10 PCI IO Space Offset . 132
12.6.4.11 PCl MEMOry OffSEL.....cccvuemmenmncniccsisasnsnsmsnscsnsasnsnsmonmsesscesss 132
12.6.4.12 Bus Interface State avmecenesessasennen 132
29 December 1995 6

66

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software F. jramming Guide . atus Company Confidential

1. Revision History
Rev 0.0: April 26, 1994
Created.

Rev 1.0: Aug 8, 1994

« Many updates for software

Rev 1.1: Aug 10,1994

. Updates from internal review for sections up to interrupts.
Rev 2.0:

+ Release Version

Rev 2.2: March 21, 1995

+ FTIO updates

Rev 3.0: July 19, 1995

« Removed obsolete FTIO information
Rev 3.1: September 14 1995

« HSC2 Updates

Rev 3.2: SDecember 26, 1995
- intemal Review HSC2

1.1 Open Issues

Open Polo related issues are also tracked in problem under pci_common. This list refiects open
issues that will not be closed for the current release of the specification along with a justification for
the issues to remain open.

Open HSC2 related issues are tracked in problem under hsc2_issues. This list tracks unresoived
issues during the deveiopment cycle of the HSC2 project.

1.1.1 Polo UPS communications

Polo will specify, support and qualify an external UPS solution. The actual vendor selection for the
UPS has not occurred yet. Only vendors with an RS-232 interconnect are being considered. When
the vendor has been selected, the section on UPS support will be updated to provide the
communications specifications.

26 December 1995 7

65

CA 02257511 1998-12-03

WO 97/4694
o4l PCT/US97/09781

Polo Software Programming Guide Stratus . ompany Confidential

2. Introduction

This specification is the Polo Programming Guide for the Polo PCIB based system. it provides
both the functional model for the hardware and the software detailed design specifications. itis
intended to be the primary working modet for the programming guide, and it specifies the software
visible hardware impiementation.

2.1 Applicable Documents

2.1.1 Stratus Applicable Documents

+ Cougar Specification, JED-0005

. Xbus Functional Specification, JED-0155

.« Cyclops ASIC Functional Specification, JED-0159
. Gambit ASIC Functional Specification, JED-0160
. Polo Product Specification, JED-0151

. Polo Backplane Specification, JED-0158

. Xbus Functional Specification, JED-0155

. Mirage ASIC Functional Specification, JED-01??

2.1.2 Other Applicable Documents
. PCi Local Bus Specification

Rev-2.0, Aprit 30, 1993

PC! Special Interest Group
. PCl System Design Guide

Rev-1.0, September 8, 1993

PC! Special Interest Group

. PCMCIA 2.1/JEIDA 4.1 Specification

2.2 Terminology

« Cyclops - The Polo Ibus to Xbus ASIC. This ASIC contains many of the features of the Gofer
ASIC.

. Gambit- The PCIB based PCl/Xbus interface ASIC.
. Mirage - The HSC2 based PCl/Gbus interface ASIC.

. GBI - Gotfbus(Xbus) Interface ASIC. This is the Gofer in Jetta systems and the Cyclops in
Polo systems. '

. Flash ram - Flash RAM in this specification refers to a PCMCIA fiash ram card. The flash ram
card is used for boot functionality.

. FTIO - FTIO is the name for the overall /O subsystem that encompasses the MIO board, the
fault tolerant /O bus, and the SAM and PCl cards.

. Gofer- The Jetta based GBI ASIC.

. HSC2 - The Jetta Golfbus/PCl interface board

. IOVA - /O virtual address.

. 10Bus - The fault-tolerant bus between the MIO board and the SAM modules.

. MIO - The Jetta Golfbus/IOBus interface board.

. OpenBoot-Thisisa proposed standard interface for booting any OS from a PCl card. ltis

independent of the operating system, the system hardware and the microprocessor. This
standard is still under negotiation.

26 December 1995 8

4

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Piuyramming Guide « .atus Company Confidential

. Polo - The new low end system. The Polo system is fully described in the Polo Product
Specification.

« PCI - Peripheral Component interface; PC Bus under development by Intel and others as a
standard for PCs. The expectation is that peripheral device controller chip sets will be
available which can reside directly on the PCl bus

. PCIB - The Polo equivalent of a SAM module.

. PCMCIA - PC Memory Card International Association. PCMCIA is an industry standard bus
which is used for boot functionality on Polo and FTIO.

. PMI - Processor/Memory Interface ASIC. This is the Cougar in Jetta and Polo systems

. SAM - Stratus Adapter Module - A Jetta-based board which provides the fauit-tolerant multi-
drop interface to the IOBus. SAM is a generic term for I0Bus adapter (not just PCI board
adapters). This specification deals only with the SAM/PCI version of the SAM adapter.

. TRID - Transaction ID - This binary number provides an identifier for Golfbus and Xbus
operations.

26 December 1995 9

61

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Polo Software Programming Guide Stratus Company Confidential

3. Functional Overview

Figure 1 below shows a block diagram of a one SAM bucket system that both the FT1O, HSC2,
and Polo systems present to software. This diagram is meant to show only the programming
model and not the actual implementation.

For a Polo system, software should view the system as a 4 slot Golfbus based system. There are
Mercury CPUs in slot 0 and 1 and MIO IO boards in slots 2 and 3. The MIOs in a Polo system will
never be in a duplexed state.The MIO can connect to one PCI bucket with up to 16 SAMs in it.

For an FTIO system, there can be CPUs in slots 0-3. MIOs can reside in slots 2-11. The system
can support muttiple MIOs. Each MIO can support 1 to 64 SAM cards residing in 1to 4 SAM
buckets.

For an Jetta based HSC2 system, there can be CPUs in slots 0-3 and MIOs can reside in slots 4-
11. The MIOs in a Jetta system will never be in a duplexed state. The MIO can connect to 1 PCl
bucket with up to 4 SAMs in it.

Throughout the document, many of these basic blocks are referred to in both Polo and FTIO
descriptions. Although mentioned in the terminology section, several of these components are
extremely important in understanding of how both systems work and present a compatible view to
software. For this reason, these blocks are described below. in some cases, these units are real
hardware, in others these blocks are pure abstractions, representative of potential hardware, or
merely first instantiations of potential hardware.

29 December 1995 . 10

CA 02257511 1998-12-03

WO 97/46941

PCT/US97/09781
Polo Software F.wgramming Guide wuatus Company Confidential
Figure 1. Logical High Level Diagram of the Polo and FTIO System
Mercury CPU Board
Golfbus/
Xbus
I0Bus
MIO 10 Board
SAMO SAM 8
SAM 1 SAM 9
SAM 2 SAM 10
SAM 3 SAM 11
SAM 4 SAM 12
SAM S5 SAM 13
SAM 6 SAM 14
SAM7 SAM 15

Mercury CPU board: the mercury CPU board is the first CPU board in the Jetta product family.
The Mercury CPU board is expected to be the first CPU board in the FTIO product. While a
modification of this CPU is used in Polo, it is identical from a software perspective to the Mercury
CPU. When the term CPU or Mercury CPU is used in this document it refers to either the Polo or
FTIO CPU and any follow on CPU product.

FLASH Card: PCMCIA card containing Flash (non-volatile) memory. Information can be organized
as an ATA disk or as memory.

FTIO: Fault-Tolerant 10 subsystem consisting of an MIO pair, |OBus, Repeater pair, SAM and
SAM backpane!l. The subsystem offers fault-tolerant connectivity to an open bus standard, namely
PCL.

Golfbus/Xbus/System Bus: FTIO and Polo use different system buses. Golfbus is the Jetta
system bus. Xbus is the Polo system bus. Except for M&D these buses are identical from a
software perspective. The M&D differences are derived form the different approach the buses
must take to bus errors. Golfbus, Xbus, and system bus are used interchangeably in this
document to refer to the system bus interconnect.

I0Bus: |0 Bus is a Fault Tolerant 10 bus unique to the FTIO implementation of the system. This
bus is transparent to software except for M&D handling of error conditions.

29 December 1995 11

69

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Polo Software Programming Guide Stratu. _ompany Confidential

MIO: MIO is the FTIO intertace board which connects the system bus to the 10Bus. in the FTIO
subsystem this is a single board dupiexable unit. In the Polo system, the MIO is an abstraction.
Although not implemented as a unique board, its software visible aspects are implemented in
diferent components of the system.

PCI Bus: the PCl bus is an Intel designed peripheral bus which is used as the industry standard
1O bus for both FTIO and Polo.

PCI Card: A PC! card is a 3rd party card which interaces to the PCI bus and an 1/O specific
intertace. A PCI card is the 1/O adaptor for both systems.

PCIB: A PCIB (PCI Bridge) is unique to Polo. The PCIB performs the functions of the FTIO MIO,
{OBus, and SAM. It is invisible to software, except from an M&D standpoint.

PCMCIA: Personal Computer Memory Card Interface Association. interface Standard used
typically for lap tops and notebook pcs for memory and i/o devices. The cards are 54mm wide by
85.6 mm long (credit card size). The cards are available in 3 heights, 3.3mm, 5.0mm and 10.5mm.

SAM: The SAM is the interface and control unit for the PCl cards. In the FTIO system, the SAM s
a hot pluggable card which performs isolation and fautt tolerance for the PCI cards. in the Polo
system, the SAM is an abstraction for the logic and software visible aspects of PCl card control. In
this document, the term SAM applies to the software visible features associated with control and
fault tolerance with respect to the PCl bus.

SAM Repeater: The SAM repeater is a unique SAM which interfaces to a PCMCIA bus. in the
FTIO this card also performs some jow level electrical and M&D functions.

3.1 Polo Functional Overview

The Polo Product is a Jetta Mercury and FT10 only based system. From a high leve!, some of the
key features of the CPU board are:

. PA7100 Based Microprocessor, 72 o 96 Mhz, 256KB or 1M data and instruction cache.
. 1 0r2 microprocessors per board
. 128MB, 256MB, 512MB or 1GB of DRAM memory.

This implementation of the MIO subsystem has the following key features:

. Standard VO Bus support (PCl)
. 1to 16 PCI cards supported.

3.1.1 Logical Summary

Figure 1 aboveis a jogical diagram of the overall system. As pointed out, many of the specific
features, SAM, 1OBus, and MIO, are abstracted in the Polo system.

3.1.2 Physical Summary

While the logical view of the system is that of a standard Golfbus machine, the physical view is
very cifferent. figure 2 below illustrates an averview of the Polo system.

There are two major logical components that will be designed by Stratus in this figure. The first
major component is the mother board consisting of the Mercury coré (snoop subsystem, cougar, 1

29 December 1995 12

Yo

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software . sogramming Guide otratus Company Confidential

or 2 Lisbon memory cards, and on or 2 logical PA modules) and ReCC. The new ASIC on the
motherboard, the Cyclops ASIC, contains all software visible aspects of the Gofer and MIO
Golfbus ASICs. From a software perspective, the Golfbus is inside Cyclops. As explicitly defined in
later sections, all internal registers are either implemented or will return intelligent responses to
software operations.

The second major component is the PCl interface board. This board contains two instances of the
CPU-PCl interface ASICs, the Gambit ASIC. Each Gambit acts as the interface between the CPU
and one PCI bus. Each Gambit emulates the functionality of 4 SAM cards (one for each PCI slot).

The interconnect between the CPU boards and the PCI interface boards is a set of cross-couple
buses. These buses are fault detecting, but not correcting. The buses look like a hybrid Golfous
and are named the Xbus. A compiete description of the bus interface can be found in the Xbus
Functional Specification. Memory updates, Regurgitated infos, and other CPU to CPU traffic is run
across the Xbus.

in Polo, the MIOs will always appear to be simplexed. All accesses can be performed to either slot
2 or slot 3 address space, but must be performed as non-paired accesses. Paired accesses will be
responded to as TBD. Just don't do it...

29 December 1995 13

i

WO 97/46941

CA

Polo Software Programming Guide

02257511 1998-12-03

PCT/US97/09781

Stratus uompany Confidential

Figure 2. Polo System Overview

Board 0 Board 1
Power Supply Power Supply
Non-FT power for board 0 Non-FT power for board 1
Cooling Unit Cooling Unit
Non-FT cooling for board 0 & PCI Non-FT cooling for board 1 & PCI

}-Bus I-Bus
Cyclops Cyclops
Array Array
CPU (MAP) - CPU (MAP)
Xbus .
PCi Siot 3 — , o Cl SlOt 3
PCI Slot 2 1 _pcisiot2
PCl Slot 1 PCli Slot 1
PCI-PCMCIA PCLPCMCIA
Gambit Asic | D-side D-side |Gambit Asic
—1 2 | I
PCMCIA i . PCMCIA
PO | [gambitASIC C-side C-side|cambit asic fleeh ram
PCIB PCIB
PCISIOt 4 e e PCI Slot 4
PCISIOtS cmmed e PCi Slot 5
j
PCISIOl6 aumend e PCI Sl0t 6
PCISION7 el L. Pcisiot?
Power Supply Power Supply

Non-FT power for
PCl slots and disk

Non-FT power for
- PCl stots and disk

29 December 1995

qu

14

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Programming Guide L. atus Company Confidential

3.2 Jetta/FTIO Functional Overview

The FTIO project was cancelled mid-project. Although it is no longer a planned project, there was
a tight compatibility goal between polo and FTIO. The remnants of this remain in the design. For
this reason, the following sub-sections are included in the specification to provide background to
the reader.

This FTIO/MIO/SAM implementation has the tollowing key features:

. Standard I/O bus support (PC! and PCMCIA).
« Up to 64 SAMs (Total of Repeaters plus SAMs)

3.2.1 Logical Summary

The logical view of the FTIO sub-system is consistent with Figure 1.

3.2.2 Physical Summary

FTIO is a standard Jetta Golfbus interface Sub-system. There are four major logical components
that will be designed by Stratus in this figure. The first major component is the MIO primarily
consisting of the IF ASIC. The IF ASIC provides a bridging function between the Golfbus and the
IOBus. There is no processor or memory resident on MIO.

The second major component is the Repeater. The Repeater boards receive the point-to-point
differential ECL 10Buses and converts the levels to BTL for use in the multi-drop SAM backplane.
The Repeaters provide power for the SAM backplane termination and also re-broadcast the
differential ECL 10Buses to allow daisy-chaining up to 4 SAM chassis. (Each SAM chassis
contains 2 Repeaters and up to 14 SAMs) Each Repeater consists of ECL and BTL bus
transceivers and an IAM ASIC. The IAM ASIC provides the host-bridging function from 10Bus to
PCI Local bus. The |AM aliso provides Repeater specific support when used in the Repeater
mode. The Repeater uses a 3-way voted clock generation circuit. The Repeaters also support a
type i or It PCMCIA interface.

The third major component is the SAM. Each SAM consists of BTL bus transceivers and an IAM
ASIC. The IAM ASIC provides the host-bridging function from 10Bus to PC! Local bus. Each SAM
supports a single 32-bit PCi slot. The 1AM provides system memory protection for bus mastering
PC! adapters and also SAM specific support when used in the SAM mode (as opposed to repeater
mode). The SAM uses a 3-way voted clock generation circuit.

The fourth component is the SAM Backplane/SAM clock board combination. The SAM backplane
is a 16 slot backpanel which supports 2 Repeater and 14 SAMs. The backpanel will conduct the
bulk power to each SAM and Repeater, eliminating the need for bus bars. The backpanel will also
provide the cable attaches for the 10Bus cables, bulk power connections, CDC connections and a
JTAG port for scanning each slot individually. The backplane will also have connectors for
mounting the SAM clock board. The SAM clock board will provide point-to-point triplicated clocks
to each SAM and Repeater board. The first iteration of the clock board will be a high-reliability
model. A follow-on project can replace the high-reliability clock with a fault-tolerant clock. The
high-reliability clock cannot be replaced on-line.

29 December 1985 15

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Polo Sottware Programming Guide Stratus Company Confidential

3.3 Jetta/HSC2 Functional Overview

The HSC2 project started during first release of Polo hardware. One of the goals of HSC2 is
software compatiblity with Polo for use in Jetta-12 and Jetta-6 configurations. Sections of this
document are being updated to highlight differences and give the reader insight

The Jetta/HSC2 impiementation has the following key features:

. Standard /O bus support (PCl and PCMCIA).
. 1 to 4 PCl cards supported per Jetta slot.

3.3.1 Logical Summary

Figure 1. is a logical diagram of the overall system. As pointed out, many of the specific features;
SAM, I0Bus, and MIO are abstracted in the Jetta/HSC2 system.

3.3.2 Physical Summary

The logical and physical view of the system is that of a standard Golfbus machine. Figure 3 below
illustrates an overview of the Jetta/HSC2 system. '

Figure 3. HSC2 System Overview

Mercury CPU Board

Goltbus

HSC2 ___PpCiSlot3

L__PCiSiot2
PCI Slot 1

Mirage ASIC

PCI-PCMCIA

Mirage ASIC

PCMCIA
fiash ram

The major component that will be designed by Stratus is the HSC2 Jetta 1/O board. The HSC2is a
simplexed board so all accesses must be performed as non-paired accesses.

The new ASIC on the HSC2 board, the Mirage ASIC. contains all the software visible aspects of
the MIO Golfbus ASIC and also emulates the functionality of 4 SAM cards (one for each PCi slot).

29 December 1995 16

3

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software F.ugramming Guide wvatus Company Confidential

4. Xbus/Goifbus to PCl Address Mapping

This section outiines many aspects of addressing on the Polo PCIB and Jetta HSC2 systems. The
overall high level address map is presented and PCIB/HSC2 specific aspects are outlined. The
address translation map is presented and its outline and management are discussed.

4.1 Addressing Overview

The Polo system address map is designed to preserve maximum compatibility with the Golfbus
address map. As such, it preserves the support for 15 logical slots, etc. even though Polo is a fixed
configuration of two CPU boards and two I/O boards.

The PA7100's address map is broken down into two segments, main memory and 1/O space. Al of
main memory is cacheable and all of VO space is non-cacheable. There are no limitations as to
what virtual address is mapped into what physical I/O space.

Figure 4. PA7100 Physical Address Map

0x00000000
0xF0000000
Main Memory
Address
Space
OxFFFFFFFF
OxFFFFFFFF

By mapping /O space into the virtual address space and using the same page translation
mechanism as that employed for memory, the PA7100 architecture allows the flexibility for non-
privileged users to be given access to some regions of 1/0 space without compromising system
security. All duplexed boards’ I/O register definitions can be accessed through local, paired, non-
paired, and global space and all simplexed boards’ I/O register definitions can be accessed
through local, non-paired, and global space. MIO mirrors it's Goltbus registers so that they can be
accessed in “freeze space” to allow a CPU controlling the duplexing process to access MIO’s
registers while MIO is in freeze state.

- Local Space - Resource is local (same-board) to the requester and theretore does not require
an Xbus/Golfbus cycle. Registers such as CPU interval Timers, interrupt & Mask Registers are
good examples of frequently accessed registers that are optimally handled locally. When a
board is off-line it can only access and test /O on-board through local space.

29 December 1995 17

BB

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Polo Software Programming Guide Stratus Gompany Confidential

. Non-Paired Space - I/O space is accessed explicitly by stot number. Note that boards that are
duplexed are required to go through the motions on non-paired I/O but only the addressed slot
will perform the write for write operations or drive data onto the XbusGolfbus for read
operations.

. Paired Space - /O space is accessed explicitly by slot number; however the least significant
bit, which differentiates the even/odd slot of a duplexed pair, is ignored. There are registers in
I/O space that are not allowed to be read through paired space such as a per-board broken
status register.

. Global Broadcast Space - Global /O space is defined as write-only space (software needs to
entforce this). It's primary purpose is to provide a means of broadcasting synchronous
commands to multiple boards in the backplane simultaneously.

. Freeze Space (Paired and Unpaired) - This “MIO only” space resides at offset 7FExxxx and
allows a CPU that is handling the duplexing of the MIOs to access the Golfbus I/O registers
while MIO is in freeze state. Normal paired and unpaired accesses (offset 7EFxxxx) get
busied.

4.2 Address Re-mapping

Polo/HSC2 use address re-mapping to protect the system from errors caused by simplexed /O
devices. Note that the /O Virtual Address or IOVA format used by Polo & HSC2 systems differs
from the IOVA format used on BIO systems.

In HSC2 systems the IOVA is translated into a system address inside the Mirage ASIC on the
HSC2 board. The Map RAM is also internal to the Mirage ASIC which is self-checking.

In Polo, all system accesses from the I/O ASICs are performed using the IOVA (10 virtual
address); these are mapped to the final Xbus style physicalvirtual index addresses (CPU
addresses) by a map RAM in the Cyclops ASIC. Both IOVA and CPU addresses are passed on
the backplane, with a bit in the trid field distinguishing between them.

4.3 Per-Space Ordering of /O Accesses

10 accesses requiring the Xbus/Golfbus (accesses to paired, non-paired, or global space) are

ordered relative to each other for a given processor. I/O accesses to local space are only ordered
relative to other local /O accesses from the same processor. in particular, if a write to a register in
global space is followed by a read of that register in local space, itis possible for the read to occur
before the write takes place. Verification of global writes should be performed by non-paired reads.

There is no ordering guaranteed between I/O space accesses and memory space accesses. A
mechanism for making VO accesses sequential to memory accesses is board specific and
described in the relevant board specifications.

4.4 Address Decode

The Golfous VO address map used by Polo and HSC2 systems is subdivided into 16 segments of
16Mbytes each. The first 15 segments correspond to Slots 0-14 in the backplane; slot 15is
reserved to map local and global I/O Addresses. A Polo system looks to the programmer like a
four slot Golfbus backplane. Note that the slot identifier field of the /O address is inverted to allow
local address space to begin at absolute address 0xF0000000 which corresponds to the boot
address issued by the PA7100 upon being released from reset.

29 December 1995 18

6

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Pi.yramming Guide Luatus Company Confidential

Figure 5. Physical /O Address Decode.

31 2827 24 23 0

Where: S855 is the slot # inverted:

1111 -> Slot #0
0000 -> Slot #15

Each slot with the exception of slot 15 is subdivided into paired and non-paired space which
effectively halves their logical address space from 16Mbytes to 8Mbytes. All registers on
duplexable boards are addressable through either paired or non-paired space. Accesses to paired
space on a non-duplexable board are ignored.

29 December 1995 19

T

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781
Polo Software Programming Guide Stratus wompany Confidential
Figure 6. Physical /O Slot Decode
0xF0000000
0xFO000000 53:22
PER-SLOT (8 Mbytes)
0000 0xFO7FFFFF
0xF 100! 0800000
Slot 14 Global o
Space
{8 Mbytes)
0xF2000000 Slot 13 OxFOFFFFFF
0xF 3000000
Slot 12
0xF400000
N%n-PaIred xF4000000
ace
0xF4000000 Sot 11 p
® gaired
ace
® P
OxFAFFFFFF
0xFB000000
Slot 4 ®
]
0xFC000000 OxF D000000
Slot 3 Non-Paired
Space
0xFD000000
X Slot 2 OxFD7FFFFF
0xFD800000
OxFEO0D000 g:iar:g X
Siot 1
Z OxFDFFFFFF
0xFF000000
Slot 0

4.4.1 Per-Slot /0 Space (Local, Paired, Non-Paired)

In general the view of XbusGolfbus VO space is identical whether it is addressed through local,
non-paired, or paired space. All board 1/O registers will reside in the last 16 pages of /O space and
each board in the Polo/HSC2 architecture will have a common set of registers that reside on the
last physical page of the per-siot 1/0 segment to simplify the M&D (Maintenance & Diagnostic)
interface. Additionally the last 1 Mbyte segment of a board's address space can be touched via
global broadcast write operations, which are described in greater detail in the next section.

29 December 1995 20

23

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software : .uogramming Guide wtratus Company Confidential

Figure 7. /O Space Map

RESERVED

DxFOBF0000 - Global Broadcast

Reserved OxF?7F0000 - Non-Paired Space
per-board xF?FFO000 - Paired Space
8MB 1O register
Definition

v¢64KB VO Registers — xFOBFFO00 - Global Broadcast

Golfbus VO 0xF?7FF000 - Non-Paired Space
Registers OxF?FFF000 - Paired Space

? = inverted board slot #

4.4.2 Global Broadcasts

Global broadcasts are write-only and are visible to all boards through slot 15 as illustrated in figure
6. Global broadcasts can be issued to all boards simuitaneously in the backplane or to classes of
boards such as all CPU/MEM slots. Globa! broadcast operations must be architected in such a
manner that all boards that receive them perform the operation synchronously relative to one
another. Figure 8 below indicates the decoding for global broadcasts.

Figure 8. Xbus/Golfbus Global I/O decode

31 2827 242322 2018

CCC = Command Type

000 = Broadcast to all Boards
001 = Broadcast to CPU/Memory Boards
010-111 = Reserved for Other Board Classifications

4.4.3 lliegal/Abnormal /O Accesses

Table 1 summarizes the behavior of various types of illegal/abnormal /O accesses. Note that as
described in section 12.1 on page 82, though all common registers are 32 bits, they are spaced at
64 bit (8 byte) intervals to aid future board designs which may make use of 64-bit internal buses.

29 December 1995 21

19

CA 02257511 1998-12-03

WO 97/46941

Polo Software Programming Guide

PCT/US97/09781

Stratus _ompany Confidential

Also note that the common logic provides an indication to board specific logic that a read access
has timed out/no-ACKed, or that a write access has failed (i.e. a simplex source broke after
successfully driving info but before driving data). Different boards handle these conditions in

different ways. Mercury boards for example:

. return 0's and signal LPMC's (HP-PA low priority machine checks) for timed-outyNACKed

reads

« do nothing for failed writes other than to write 0's or nothing (per the table below).

Table 1. lilegal/Abnormal I/O Registers

. Non-Bus ASIC
Bus ASIC Registers registers
32-bit read on an odd 32-bit boundary return 0's if within a unsupported
page that has other
registers, else
NACKed
sub 32-bit read 32-bits returned 32-bits returned. Byte
enabled bytes guar-
anteed to be valid, all
byes guaranteed to
be deterministic.
32-bit write on an odd 32-bit boundary ignored unsupported
sub 32-bit write ignored ignored for ASIC /O,
performed as speci-
fied by byte enables
for PCI 1/O.
failed write (i.e. a write from a simplex board ignored ignored
which breaks after successfully driving
address but before driving data)
write to non-existent register ignored ignored for ASIC /O,

PCI will Master Abort

read of a non-existent register

return 0's if within a
page that has other
registers, else
NACKed

Can return 0's if the
address decodes to a
page that has others
registers, else,
NACKed, PCI will
Master Abort

4.5 PCIB MIO/IOBus Compatible System Address Map

All of the MIO compatible address space can be addressed directty through the Xbus/Golfous o
space. Each I/0O boards’ address space can be accessed directly via set size windows, where the
base address of the window can be programmed individually on each board.

The Polo version of the MIO compatible map is a subset of the map presented in the following

sections. As previously stated the Polo appears to software as a system with simplexed MIOs in

slots 2 and 3.

29 December 1995

3o

WO 97/46941

CA 02257511 1998-12-03

Polo Software Pruyramming Guide

PCT/US97/09781

Suatus Company Confidential

The Polo PCIB and Jetta HSC2 will only operate in simplexed mode. All IOBus/PCl slots are
decoded according to the address map defined bellow.

Figure 9 shows the MIO/IOBus compatible address map in context of the Xbus address space.

Figure 9. MIO/IOBus Compatible Address Map in Xbus/Golfbus Space

16MB of Slot-? IO Space (figure 6)

- MIO/IOBus compatible
OXF?FFFFFF -~ = Non
X Noxwl_rﬁ_d_o: I:a-lr:d; Addr. Address Map 8 MB
Paired Space OXF?7FFFFF or OXE7EERH WI“ e
OxF7800000 00 or OxF7FF0000
OXF?7FFFFF <. : :
. ~ : Reserved :
Non-paired . : :
Space O0XF7600000 or OXF7E00000 & :
OxF 2000000 Y IOBuUS —
AN 10 Space 2MB
400000 or ©xF7C00000
7« inverted Xous Sio # S IOBus — AMB
0t-0 = Ox K Memory Space
Stot-3 = 0xC 0xF?000000 or OxF?7800
The breakdown of the Xbus/Golfbus address bits is illustrated in table 2.
Table 2. Xbus/Golfbus address decoding
Xbus/Golfbus Address bits
Address Space
31:28 | 27:22 23 22:20 19:16
4'hF | islot | P/INP | 3'h7 4'hF MIO Registers
4hF | tsiot | PINP | 3'h7 4'hE MIO Registers (freeze space) - Mirrored area that
aliows access while MIO is in freeze state
4'hF | !slot | P/NP | 3'h7 4'h0-D | Reserved
4'hF | islot | P/NP | 3'h6 XXXX Reserved
4'hF tslot P/NP | 3'h5-4 | xxxx Access to SAM 10 Space (32K direct - 16K IAM 10/
16K PCL10)
(Address bits 31:15 are re-mapped before further
usage.)
4'hF | islot | P/NP | 3'h3-0 § xxxx Access to SAM Memory Space (64K direct PCl
Memory)
{Address bits 31:16 are re-mapped before further
usage.)

MIO Compatible Register Space:

.+ Theregister space includes all registers of the I/O board, including the standard Xbus/Golfbus
I/O registers, the ASIC registers, and the ID PROM space. Many register locations will be
commonly defined for all I/O boards. See section 4.5.2 for details.

29 December 1995

3

23

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Polo Software Programming Guide Stratus wompany Confidential

10Bus Compatibte VO Space:

. This space includes registers and memory on the PCIB/HSC2; a portion of this address space
’ will be turned into /O cycles on the PCI bus. Only a 32 KB window of the PCIB/HSC2 /O
space can be accessed from the Xbus/Golfbus at a time. The base offset of the window can
pe changed on the Mirage or Gambit. See section 4.5.3.

{0Bus Compatible Memory Space:

. Access to the memory space portion of the I0Bus compatible address space will be tumed
into memory cycles on the PCI bus. Only a 64 KB window of the PCIB/HSC2 memory space
can be accessed from the Xbus/Golfbus at a time. The base offset of the window can be
changed on the Mirage or Gambit. See section 4.5.4.

4.5.1 |10Bus or Xbus to PCI Local Bus Requests

Base address registers have to be set up in either the Mirage or Gambit ASIC and in the PC!
configuration space of the PC! adapter card in order to allow {/O or memory (non-configuration)
accesses to the PCl adapter across the PCl local bus from the Goflbus/Xbus. One set of registers
(and hence one 1/O and memory window) exists for every PCI stot. Figure 10 illustrates a high-
level view of this mapping process.

Figure 10. SAM address window scheme

GolfBus/Xbus gﬂégrec:smg:atge SAM compatible PCI
per-siot 1O space 8MB) address space address space
-- o = MlOa
. 10Bus -7 s
, address
b e ’ 39{‘_1\ window
. . memory L.
N space® }--~
. IOBus -
N memory R ¢ 32KB window
A Y b - 4
4 space L .
I s .
* gMB paired, BMB non-paired D AMB window

PC| Memory offset register

Direct memory accesses to the PCl adapter must be made through the 64KB SAM memory space
window which can be shifted through the entire 32-bit adapter memory address space. /O
accesses to a PCl adapter likewise must be done through the 32 KB SAM /O space window. The
adapter card has to be programmed to respond to a specific memory or /O area where it will be
addressed by the system. Each adapter type may have different memory or /O range
requirements. These requirements can be determined from the base address registers in the
adapter's PCI configuration space. The PCI Memory Offset register of the Mirage of Gambit ASIC
has to be set to point to the bottom of the selected memory range of the PCI adapter. The memory
can start anywhere in the 4GB address range on a 64KB boundary. Also, the PCI 10 Space Offset
register of the Mirage or Gambit ASIC has to be set to point to the bottom of a 32KB window within
the /O range of the PCl adapter. See the specific PCl adapter card's specification and section 4.5,
PCIB MIO/IOBuUs Compatible System Address Map, for more on this. Thus the procedure for
accessing either memory of I/O space on an adapter card is: '

29 December 1995 24

3L

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software rogramming Guide stratus Company Confidential

. initialize PCI Memory or I/O Space Offset register in the bridge (Mirage or Gambit) to the
bottom of a 64KB (memory) or 32KB (I/0) window.

. initialize PCI Memory or I/O Space Offset register in the PCI adapter.
.« access memory or /O window through Golfbus/Xbus I/O space (section 4.5). Any access to

the PC! address windows is interpreted as legitimate access using whatever address happens
to be in the Offset Registers.

At a minimum the software should guarantee that the PCI slot memory space windows and the
host bridge memory space do not overiap for any group of four PCl slots assigned to a single PCIB
card. Figure 11 shows an example for a group of four PCl adapters. All four PCI adapters reside
on the same PC! bus so care has to be taken in laying out the address windows.

Figure 11. PCI Bus Memory Space Map

32-bit PCI
System Memory Address Map

SAM Slot-n Memory Space m

Host Bridge
Configura
Memory Space

SN T

Memory Space dow:
NSONUOSONANNNNNN
PCl slot 3 PC! Memory offset |

1631?#
1s'hoKoooi W -— el
[PCI Memory offset register Memory Space v MRSOW
16'hFFFFA e PCl slot 1 PCI Memory offset |
64KB o
16'h00001 . Wndow W
[[PCTMemory offset register \

EINSNSSNNNNNY] - = NOT MAPPED

4.5.2 MIO Compatible Register Space

0xF%6F0000 - OXxFY%6FFFFF: Xbus/Golfbus common and MIO specific compatible registers,
including access to the ID PROM. For a detailed register address map and description see section
12.

The ‘%' is equal to the inverted Xbus/Golfbus siot number. The addresses listed are for non-paired
space, for paired space addresses change bit 23 from a zero to a one.

4.5.3 10Bus Compatible I/O Space Map

The following 10Bus Compatible I/O Device address map allows for 64 addressable)/O slots per
I0Bus. The address space is divided to I/O Space and Memory Space.

The Polo system only supports slots 0 to 15. The other 48 slots behave as un-populated slots in a

29 December 1985 25

B3

CA 02257511 1998-12-03

WO 97/46941

PCT/US97/09781
Polo Software Programming Guide Stratus . .mpany Confidential
Polo system.

The HSC2 system only supports slots 0 to a. The other 60 slots behave as un-populated siots in a
HSC2 system.

Figure 12. 10Bus Compatible /O Space

GoltBus address I0OBus Address Space

OxF%5FFFFF

32 KB :888“;2?‘ 63
e

32 KB :8%‘;3?‘ 62
0xF%5F0000
SERERTTE v '
0xF%420000 : :
OxF9%41FFFF spkg | 10Bus Siot3

IO Space
0xF%418000
OxFY%417FFF 1OBus Slot 2
' 32 KB 10 Space % = g\veged 0Gcl;lfbus/Xbus Slot #
0xF%410000 lot-0 = Ox
OxFY%40FFFF 32 KB IOBus Slot 1 Slot-3 = 0xC
0xF%408000 10 Space The addresses listed are for
OxF%407FFF 1OBus Slot 0 non-paired space, for paired
32 KB space addresses change bit 23

0xF%400000 10 Space from a zero to a one.

Table 3 illustrates the Xbus/Golfbus address formation for the 10Bus compatible I/O space shown
in the figure above. The slot field in the address is the inverted Xbus slot number.

Note that SAM/PC! slots 16 to 63 do not exist and the MIO compatible space exists in Xbus slots 2
and 3. Furthermore the Polo PCIB does not support duplexing so it will not respond to paired
space accesses.

Note that SAM/PCI slots 4 to 63 do not exist and the MIO compatible space exists in HSC2
Furthermore the Jetta HSC2 does not support duplexing so it will not respond to paired space
accesses.

Table 3. I0Bus compatible /O space slot and offset bit positions

6

it slot SAM
number

offset into 32K 10 Space

a. paired/ non paired bit

4.53.1 SAM /O Address Space

SAM /O space is divided up into two spaces (see figure 13).

29 December 1995 26

B

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Prugramming Guide Suatus Company Confidential

PCI VO Space: The PCI Local bus can support a full 4GB of I/0 space, but the historical maximum
is 64KB due to x86 limitations. Access to the 64KB PCI I/O Space is made through a 16 KB
window defined as SAM PCI/IO Space. Accesses to the SAM PCI/IO Space are passed along to
the PC! bus with the I/O Read or /O Write function codes. The position of this 16 KB window can
be changed on the16 KB boundary via the PC! /0 Space Offset Register. The base I/O address of
the PC! adapter must align with the PC! 1/O Space Offset Register of the Mirage or Gambit ASIC.
A read that maps to the PCI /O space of the SAM and generates a PCl cycle that does not map to
the 1/O space of an adapter will cause a master abort and return zeros. The PCI bus read could
also map to the I/0 space of the next adapter if the I/O spaces of the adapters are contiguous.

When a sub word access is made to PCI 10 space the byte enables are passed through from the
read. Since the address from the CPU will have 2'b00 in the address bits [1:0] these two address
bits need to be reconstructed from the byte enables as shown in table 4.

Table 4. Lower address bit construction

AD1 ADO C/BE3# C/BE2# C/BE1# C/BEO#
0 0 X X X 0
0 1 X X 0 1
1 0 X 0 1 1
1 1 0 1 1 1

SAM compatible Register Space: Operations to this 16 KB space provide access to SAM
compatible ASIC intemal registers. Reads to registers that are not implemented in this space
retumns zeros.

Figure 13. SAM I/O Space Map

PCI I/0 Address Map

SAM and PCt Slot-n 1/0 Space 2 A 16°hFFFF
16TEFF 4 ['sAM compatibie ASIC
16'h4000 Register Space 64 KB
16'h3FFF S
16 KB PCI/ 1O = -
16'h0000 -
-~ o
PCI /O Space Offset T~
pa = . | v 160000

The following table illustrates the formation of system bus addresses within the PCIB/SAM 1/O
address space.

Table 5. SAM Compatible Register System Address Formation

313 1711
1l o 2109876543210
R
1)1 System SAM/PCI Slot Offset
bus siot number
inverted
29 December 1985 27

gs

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Polo Software Programming Guide Stratus Lompany Confidential

a, paired space -> = 1; unpaired space -> =0
b. 1 = SAM compatible ASIC register space: 0 = PCI VO space

4.5.4 10Bus Compatible Memory Space Map

Once again the Polo system only supports 16 slots and the other 48 spaces behave as un-
populated slots in a Polo system.

Figure 14. 10Bus Compatible Memory Space

Xbus address IOBus Address Space
OxFe3FFFFF sakg | 10Bus Slot83
M
Srca I (Y Rt
avo | BRI
« 0xF9%3E0000 ry Spa
OXF%03FFFF 64 KB OB St |
Memory Space
0xF%030000 y opa % « inverted Golfbus/Xbus Slot #
OxF9%02FFFF ik | 10BusShot2 Slot-0 -k,
Memory Space =
OXEviOTFFFF OBus Siot 1
X u
64 KB Memory Space The addresses listed are for
0xF%010000 non-paired space, for paired
OxF%00FFFF 64 KB iOBus Slot 0 space addresses change bit 23
from a zero to a one.
0xF96000000 Memory Space .

Tabie 6 illustrates the Xbus/Golfbus address formation for the 10Bus compatible memory space
shown in the figure above. The siot field in the address is the inverted Xbus slot number.

Note that in Polo systems, SAM/PCI slots 16 to 63 do not exist and the MIO compatible space
exists in Xbus slots 2 and 3. Furthermore the Polo PCIB does not support duplexing so it will not
respond to paired space accesses gither.

Note that in HSC2 systems, SAM/PCl slots 4 t0 63 do not exist. Furthermore the Jetta HSC2 does
not support duplexing so it will not respond to paired space accesses either.

Table 6. IOBus compatible memory space slot and offset bit positions

3| al 2| 2] 2| 2| 2| 2] 2} 2| 2] 2 ARIRIRIRIGIRIRI IR
10987654321098765432109876543210
1} 1] 1} 1 tsiot 2| 0| 6 bitslot SAM offset into 64K memory space
{Xbus) number
a. paired/ non paired bit
29 December 1995 28

36

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Programming Guide Stratus Company Confidential

5. Xbus/Golfbus PCI to Xbus/Golfbus Address Mapping

The hardware takes a PC| generated address which we refer to as an {OVA and mapsittoa
system address.

5.1 Software View of Re-mapping
Figure 15 shows the software view of re-mapping.

Figure 15. IOVA to System Address Mapping

31 28 27 20 19 18151413 12 11 0

‘ i .
Chunk) lJpper device | Oheck | 2500| Page Line [11:0] IOVA

check
see Section 5.3.2 Ut:[c27s:20]

map ram entry

map Rafn index
10, 2,
7

jlf—
(1024 entries)

start adr range
checking

error

option bits

{ Virtual index ‘
refer to

Block Virtual Index(15:0] | line[11:5] re ge:tzon

31 v 12 11 F 0 Ybus

Physical Address[31:12] Line [11:0] | Address
Physical

« 1c = remote coherant (see Golfbus Functional Specitcation for details)

5.2 Polo Re-mapping

Polo supports both an addressing scheme compatible with Jetta based processors, 32 address
mode, and an addressing scheme compatible with Runway based processors, 40 bit mode. The
sequence starts with a PCl Address or IOVA. Gambit takes the IOVA and sends it across the
Xbus. Cyclops re-maps the address to a system address and sends it to the CPU via the IBUS.
Figure 16 illustrates the address re-mapping for the 32 bit address mode used by Jetta systems
and currently used in Polo systems. The line offset shown in the system virtual index ot figure 16 is
the line offset taken from the Xbus physical address driven during the Xbus IOVA cycle.

HSC2 supports only the 32 address mode compatible with Jetta based processors. The sequence

29 December 1995 29

3

CA

WO 97/46941

Polo Software Programming Guide

02257511 1998-12-03

PCT/US97/09781

Stratus wompany Confidential

starts with a PCI Address or IOVA. Mirage takes the IOVA and re-maps the address to a system
address and sends it to the CPU via the Golfbus. Figure 16 illustrates the address re-mapping for
the 32 bit address mode used by Jetta systems and currently used in Polo systems.

Figure 16. Polo System Address generation (32 bit address mode)

31 0
Address [31:0] IOVA
address Cyclops/Mirage
re-mapping
(Figure 15)
1b0
L(busleus address{31:0}
31 30 l 19 18 V 12 11 6543 0
System
Virtual index [11:0] line offset [11:5]; func rc | byteen Virtual
Index
31 ‘ 0
. System
G :
Xbus/Gbus Physical Address{31:0] Physical
Address

Figure 17 illustrates the address re-mapping used when 40 bit address mode is selected (Polo
only). This is the addressing mode that will be used by Runway systems and is included for
upward compatibility purposes. Bit 2 of the ASIC specific configuration register within the Cyclops
selects between 32 bit and 40 bit address mode. The made bit is driven on bit 31 of the virtual
address to indicate which scheme is being used.

29 December 1995

3%

30

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Programming Guide Suatus Company Confidential

Figure 17. Polo System Address generation (40 bit address mode)

31 0
Address [31:0] JIOVA (from PCIB)

XBus info

address Cyclops
re-mapping
(Figure 15)
1’b1
Xbus address[31:0
3'h0
130 ¥ 28 27 12 11 6543 0 System
:) func byte en Virtual
Virtual index {15:0] (trom Xbus)] © | {from Xbus)} index
31 ‘ 0 System
. . Physical
Xbus Physical Address{31:0] Address

5.3 PCl Memory and /O Address Mapping

The PCIB/HSC2 has no local memory space. All requests between the Xbus/Golfbus and the PCl
adapter are passed through the Gambit/Mirage ASIC. The address mapping between the two
buses can be best described according to the direction of the request.

5.3.1 PCl to Xbus/Golfbus I/O Requests

1/O Devices have the same view of the whole 4 GB Address Space as the boards on the Xbus/
Golfous do. Currently the need for a PCI adapter to generate PCI)/O space accesses is not
apparent. The Gambit/Mirage will issue a maintenance attention if a PC! card does an |/O space
access. This will happen through the Master Abort mechanism. The Gambit/Mirage will also
capture the address on the PCI bus which caused the master abort.

29 December 1995 31

155

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/69781

Polo Software Programming Guide Stratus uompany Confidential

Figure 18. 32-bit PCIB/HSC2 Memory Map

32-bit PCI
System Memory Space System Memory Address Map
32'hFFFF.FFFFA \W N 4 32hFFFRFFFF
\\ \ \ 1' 32'h2000.0000
A 32'hiFFF.FFFF
Golfous/Xbus .
256MB Memory Address ég?;?ass Main Memory 256M8B
Space Transiation p Space
— ¥ 32°h1000.0000
\\‘ A 32hOFFFFFFF
32°h0000.0000Y \]r
1
PCl slotn
PCl slot 3
PCl slot 2
PCl slot 1

¥ 32'h0080.0000

N 4 32'hO07F.FFFF
\ ;\%\\ ¥ 32'h0000.0000

5.3.2 PClto Xbus Memory Requests

The Gambit or Mirage ASIC only accepts 32-bit PCl memory addresses in a 256 MB window
(32°'hX000.0000-XFFF.FFFF). The 256 MB block is movabie on 256 MB boundaries as defined by
the base address registers in the PCI configuration space. The PC! adapter addresses this 256
MB window with the appropriate Chunk Address which is the high 4 bits of the IOVA. Memory
accesses created by the adapters that are not within this 256 MB block are terminated through the
Master Abort mechanism. There does exist the possibility of accessing a peers memory range on
Polo.

The base address registers for Gambit/Mirage and the PCI adapters must not create a conflict in
PCI space. Ali devices and this 256MB block must not overap in PCl address space. The
hardware cannot detect overiaps so the base registers must be set up correctly. The resulting
behavior will be unpredictable. The driver must also set up the address translation map using the
address table registers described in section 12.6.2 before any access from the PCl adapter can
take place. '

in a Polo system the 1/O virtual address (IOVA) is placed directly on the Xbus. Responding agents
on the Xbus are toid that the address on the Xbus is an IOVA by the requester’s having seta bitin
the Xbus TRID field. The responding agents then put the JOVA through their local address
translation mechanism to check and generate a standard Xbus address.

In a Jetta/HSC2 system. the IOVA to system address translation is done entirely with the Mirage
ASIC. The location of the address translation, whether in the Mirage as in HSC2 or in the
responding agent as in Polo,-is completely transparent from a software perspective.

Figure 18 shows an example of a PC! memory map with 4 adapters mapped. The Gambit/Mirage
PCI base address register is set to 32°'n1000.0000 and the limit is set to 32'h1FFF.FFFF. Thisis
the bridges 256 MB window to host memory. There are 1K 16 byte entries in the translation table

29 December 1995 32

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Frogramming Guide uratus Company Confidential

which are indexed by the I/O Virtual Address generated by the PCI adapter.

5.4 Address Re-mapping

Polo and HSC2 use address re-mapping to protect the system from errors caused by simplexed I/
O devices. Note that the /O Virtual Address or IOVA format used by Polo & HSC2 systems differs
from the IOVA format used in BIO and PKIO systems.

in Jetta systems the IOVA is translated into a system address inside the Mirage ASIC on the HSC2
board. The map RAM is also located inside the Mirage ASIC and the Mirage ASIC is self-checking.

in Polo, all system accesses from the /O ASICs are performed using the IOVA (1O virtual
address); these are mapped to the final Xbus style physical/virtual index addresses (CPU
addresses) by a map RAM in the Cyclops ASIC. Both IOVA and CPU addresses are passed on
the Xbus, with a bit in the trid field distinguishing between them.

The PCI adapters access main memory via the Xbus/Golfbus for command, data and status
transfers. The address generated by a PCl adapter originates from a non-self-checking source. It
has to be checked to protect self-checking (safe) memornies.

5.4.1 System Address Generation

There is an I/O Address Table allocated in internal memory. This memory resides within the
Cyclops ASIC for Polo systems and on the Mirage ASIC for HSC2 systems. In the table there isan
entry for each block allocated for I/O in system memory. An entry does not assume any addressing
method beyond the basic 16KB block size. It contains the starting virtual index, the starting
physical address, and the 12 bits of the ending physical address of the block. The next field is the
PCI slot number. This field is used to verify that only the expected sfot can access a particular
IOVA entry. Figure 19 illustrates the encading of this field. it is checked against the encoded slot
information in the TRID generated by the Gambit.

Figure 19. PCI Slot [3:0] IOVA Map Field Definition - Polo only

3 2 1 0
Side
Xbus siot PCI Slot generating Transaction Trid[6:5]
(slot 2 = 2, slot 3 =1 Dside=0 slot t:); - 00
equal to Xbus TRID{0] Xbus Trid[4] :&] : a
PCI Bus number slot 3 - 11

Note that the HSC2 system only uses the PCI Slot {1:0] bits. PC! Siot [3:2) bits are ignored and are
not saved in the Map RAM located inside the Mirage ASIC.

There are another four bits allocated for board specific options and a final bit to indicate validity of
the entry. Figure 20 shows an entry example using the Xbus/Golfbus address naming conventions.
Each implementation will drop unused bits for this table in hardware to reduce the RAM required.

29 December 1995 33

4\

CA 02257511 1998-12-03

WO 97/469
4 PCT/US97/09781

Polo Software Programming Guide Stratus Company Confidential

Figure 20. /O Address Table Entry/ Block

31 0
Block Starting Physical Address = Physical Cache Tag (31:12), Line Offset (11:2)

Block Virtual Index (15:0) Reserved Block Ending Address (11:2)

Reserved (2 bits) | PCI Slot{3:0] Reserved IC |SW| LK |PR{VA

VA = Valid Entry

OPTION BITS - see section 5.4.4
PR = Data Pre-read
LK = Lock Cycle
SW = Swap 16 or 32 bit Endian
IC = Incoherent Memory Access

This table will be indeterminate at power on. Software should walk through the tabie and invalidate
each entry. Software then must write a valid entry for each device index before any of its
respective IOVAs can be used. A maintenance attention will be generated if an entry is used
without the valid bit set.

This table is dynamically managed by the 1/O driver on a per command basis. The driver has 1o set
up the I/O address table entry for each block before an I/O command that requires memory access
can be initiated. The data block can be any size up to 16 KB. Upon command completion the o
address table entry has to be invalidated by the driver.

There is a map table entry for each 4K page (there can be up to 1024 re-mappabie 4K pages). The
page bits of the IOVA, bits 12 and 13 are used to address the map RAM. If the programmer wants
to allocate a page in PC! memory space larger than 4K with one device index there must be a map
entry for each 4K page. This scheme allows up to 4 contiguous 4K pages in PCl memory space
without forcing them to be contiguous in PA memory space.

The driver software gives the /O Virtual Address (IOVA) to a PCI adapter with every command.
The IOVA is the combination of the device index to the I/O address table entry, the page within the
device index and the starting Page Line Offsets[11:0] into the block. Figure 21 shows the IOVA for
a 32-bit PCl adapter card. it allows for a maximum of 1024 Entries in the 1/O Address Table. The
next two sections describe the step-by-step process used to create the system address.

Figure 21. 32-bit PCl adapter I/O Virtual Address

31 28 27 20 19 1615 14 13 12 11 0
Reserved Device index Checksum | 2'b00 | Page Line Offset{11:0]
max. 256 indexes 4 pages 4KB blocks

5.4.1.1 Polo System Address Generation

The Gambit will use the IOVA as is in an Xbus request cycle. The Cyclops in turn will take this
information and pass it to the address mapping logic where it applies the appropriate algorithm to
perform the checking and address mapping.

The /O device driver goes through the following steps to set up addresses for an /O block
transfer:

. Finds an available slot in the I/0 address table.

29 December 1995 34

gl

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Fiugramming Guide <watus Company Confidential

. Sets up the entry for the block in the I/O address table.
. Sets up the /O Virtual Address (IOVA) (including the generation of the checksumj.

When a PCl adapter initiates a transfer, the Polo system goes through the following steps of
address checking and re-mapping:

. Gambit ASIC gets the /O Virtual Address.

. Gambit checks that the access is to the Xbus memory range. If there is no match the access is
halted and the error state is generated. The Gambit does a master abort and causes a
maintenance attention pm the Xbus.

. Gambit checks the checksum within the IOVA and will cause a Target Abort if it is not OK. This
will also cause a maintenance attention.

. Gambit issues an Xbus cycle using the IOVA.

. Cyclops checks the IOVA against the /O address table entry for the device index and page. If
the valid bit is set and the IOVA’s page and line offset checks out against the entry's start and
stop addresses, the combination ot the entry and the IOVA's Line Offset{11:0] create the
system address. The Cyclops then looks at the system address to determine if the cycle was
directed to its memory space and behaves accordingly.

5.4.1.2 HSC2 System Address Generation

The Mirage will use the IOVA to perform the address map look-up. The address generated from
the look-up will in tum be used to generate the Golfbus address.

The /O device driver goes through the following steps to set up addresses for an 1/O block
transfer:

. Finds an available slot in the I/O address table.
. Sets up the entry for the block in the 1/0 address table.
« Sets up the /O Virtual Address (IOVA) (including the generation of the checksum).

When a PC! adapter initiates a transfer, the HSC2 system goes through the foliowing steps of
address checking and re-mapping:

. Mirage ASIC gets the /O Virtual Address.

. Mirage checks the checksum within the IOVA and will cause a Target Abort if it is not OK. This
wiil also cause a maintenance interrupt.

« Mirage checks the IOVA against the IO address table entry for the device index and page. It
the valid bit is set and the IOVA's page and line offset checks out against the entry’s starting
and ending addresses, the combination ot the entry and the IOVA's page and line offset{11:0]
create the system address. Otherwise the access is halted and the error state is generated.

5.4.2 10 Address Table Entry invalidate
Upon completion of the 1/O, the driver software has to invalidate the corresponding V/O address
table entry in the table. The table's entry is invalidated by simply clearing the valid bit. The entry

cache’s valid bit can be cleared by using the address table registers described in section 12.6.2. If
this index matches the entry cache’s index, the valid bit is cleared.

5.4.3 Address Error Checking

Three other address checking features are employed in addition to the index/entry validity check

29 December 1995

E\:{ 35

s

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Programming Guide Stratus wompany Confidential

as described in the next two sections.

5.4.3.1 10 Device Address Checksum

Even though the IOVA is re-mapped it is still used to index into the 1/O address table. This leaves a
smali possibility of an erroneously generated IOVA indexing into a valid, but incorrect table entry.
To reduce this probability there are four bits of checksum allocated in the IOVA to cover the index.
This number is generated by the driver software when setting up the IO Virtual Address. It is
checked by the Cyclops when the I/O device presents the IOVA for data access.

Supporting the 16K page size in PCl memory space impacts the fault tolerance. In order to keep
the 4-4K pages that make up the 16K page contiguous in PCI memory space, the 2 pages bits of
the IOVA bits [13:12] are not checked under the checksum. In the case of an error this could aliow
a controlier to write to the wrong 4K page within the 16K page. It you want coverage on these
two IOVA bits then only make one 4K page valid in the 16K page. Also note that this
reduces the number of usable table entries to 256.

The aigorithm to generate checksum (C) on the index (1) is the following:
C[0] = 1[0] A 1[4] MOVA[14]

C[1] = I[1] A 1[5) NIOVA[15]

Ci2] = l{2] ~ I[6]

Cl3] = I[3) A I{7]

This code will detect all single bit errors and all adjacent doublie, triple, and quad bit errors. Over all
the code detects 94% of all possible errors in the 8 bit index (table 7). Note: that the logic exclusive
ORs IOVA bits 14 and 15 into the check bits since they should be zero, this does not change the
outcome but makes insures that the addresses don't increment out of the 16K page.

Table 7. 4 Bit Parity On 8 Bits Fault Detection Summary

of faults # i‘:&ﬁ:ﬁ:‘?" #of utr;gﬁ;ected % of undetected faults
1 bit 8 0 0%
2 bit 28 4 14%
3 bit 56 0 0%
4 bit 70 6 9%
5 bit 56 0 0%
6 bit 28 4 14%
7 bit 8 0 0%
8 bit 1 1 100%
total: 255 15 6%

5.4.3.2 Out of Bound Access Check

The ASIC performing the address re-mapping checks to make sure that the physical address
[11:2] of the /O virtual address is larger or equal to the starting and smaller or equal to the ending
physical address [11:2] of the table entry on both read and write accesses. Thus checking is done
on 32 bit boundaries. This check is automatic. If you don’t want checking, set the starting and

29 December 1995 36

3\,

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software . gramming Guide —iratus Company Confidential

ending addresses at their limits.

5.4.4 Control Bits

There are five control bits in the address table entry as illustrated in figure 20 and described in the
following sections.

5.4.4.1 Valid Entry bit

The valid entry bit in the table entry indicates whether the entry is valid or not. The table should be
fully invalidated by initialization software at power on. This involves resetting the valid bit for each
of the 1024 entries in the table. When an IOVA is mapped software must write a corresponding
entry into the 10 map table with the proper system addresses and set the valid bit. If a device uses
an IOVA with an invalid entry the Xbus request will be no-ACKed resulting in the Gambit
performing a target abort and generating a maintenance attention.

5.4.4.2 Data Pre-read
This bit is ignored on writes.

In a HSC2 system the Mirage ASIC will perform a data pre-read from the host system if this bit is
set and the PC! adapter is performing a read. The Mirage will begin by reading a cache line for the
current request and then continue to read successive cache lines until the pre-read is completed.
The data pre-read will continue until the pre-read limit in the Mirage is full, the block ending
address is reached, or a cycle is issued from the PCI adapter that is not to the block being pre-
read. In the event of a non sequential address the pre-read data will be flushed. If this bit is not set
then the Mirage will only read the 32 bit memory word requested by the PC! adapter and nothing
else until an additional request is made. We may make use of the PC| commands read and read-
multiple.

in Polo. all memory accesses through the PCIB initiated by a PC! adapter are issued as 32 bit
reads on the Xbus. A full cache line is returned if pre-read is on, lock is off, the starting address is
on a cache line boundary, and the ending address of the cache line is less than the biock ending
address (if the starting address of the access is out of bounds then the access is illegal and not
responded to). If all of these conditions are not met on a legal access then the Cyclops will only
return 32 bits of data. The Polo system will only use this bit as a qualification for returning either 32
bits or a cache line on a read. The Gambit ASIC will accept either a word or a full cache line back
in response to a cache line read request.

5.4.4.2.1 Coherency Restrictions
software note:

improper use of the pre-read option can result in inconsistent data in the system. It is software’s
responsibility to guarantee data coherency by insuring that the PCI adaptor never receives “stale”
data from a pre-read buffer.

On an HSC2 system, pre-read data sits in the Mirage until one of the following conditions are met:

- The data has been completely read by the PCl adaptor

. The host updates the Map RAM and the map table entry matches the Map cache entry being
used by the Pre-read state machine.

29 December 1995 5 37
gs

CA 02257511 1998-12-03

WO 97/46
941 PCT/US97/09781

Polo Software Programming Guide Stratus ompany Confidential

. The host expiicitly flushes out the pre-read buffer by writing to flush pre-read data bit in the
Test Control Register.

Note that PCI adaptor writes while pre-read operations are taking place do not cause data
to be flushed from the Mirage even if the write transaction is to the same page as the data
pre-read.

5.4.4.3 Lock Cycle
This bit is ignored on writes.
The data pre-read bit is ignored and should be set to zero if the lock cycle bit is set to one.

in a HSC2 system any read access to the block will go out onto the Golfbus with a lock cycle
function code (a load/clear operation) if this bit is set. The data pre-read bit is ignored and shouid
be set to zero if the lock cycle bit is set to one.

in a Polo system the I/O address map RAM resides on the other side of the Xbus so the cycle will
not have a lock function code when it is on the Xbus. However if the 1/O address map look-up
reveals that the lock cycle option bit is set then the Cyciops will tumn the cycle from a cache line
read into a load/clear operation (semaphore lock). The Gambit ASIC will accept either a full cache
line or a 32 bit word back on a read access so the Cyclops will only send back the 32 bit word
provided by the load/clear. The data pre-read bit is ignored and should be set to zero if the lock
cycle bit is set to one.

Note: The swap bit must be tumned on when using the lock bit to avoid the possibility of
inconsistent swapping between two boards in a duplexed pair.

5.4.4.4 Swap 32 bit Endian

When this bit is set to a one the data associated with this IOVA address will be big/ittle endian byte
swapped. If this bit is set to a zero then there is no byte swapping is performed. Refer to section
5.6 for a detailed description of byte swapping and when this bit should be set.

5.4.4.5 Incoherent Memory Access

This bit allows software the option of generating incoherent (don’t snoop, don’t set remote tag) as
opposed to coherent (snoop, but don't set remote tag) Xbus/Golfous memory read and write
transactions. Refer to the section titled Remote/Coherent bits in the Xbus/Golfbus specification for
more details.

« 0 =coherent
« 1 =incoherent

in a HSC2 system, if this bit is setto a one then a read or write operation will go out on the bus with
the remote/coherent bits set to indicate an incoherent operation. If this option bit is set to zero then
the remote/coherent bits indicate a coherent cycle.

in a Polo system the snoop resuits will be ignored if this bit is set to a one. All reads and writes will
be issued from the PCIB with the remote/coherent bits indicating a coherent cycle. The remote/
coherent bits sent across the lbus will reflect the state of this bit.

29 December 1995 38

96

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software F..gramming Guide <.atus Company Confidential

5.5 Software Map Management

The four address table registers that controt reading and writing of the /O address map RAM (see
section 12.6.2) will require the use of locks to guarantee exclusive access. There is only one set of
these registers accessible from 16 different addresses so a single lock should be used to control
them.

5.6 Byte Alignment

The Gambit/Mirage is the interface from the big-endian byte order Xbus/Gotfbus to the little-endian
byte order PCI Bus. Significant endian issues exist within the PCI Bus as data structures (including
SCRIPTs code) are required to be in little-endian format while disk and tape data are required to
be in big-endian format (Stratus currently writes to disks (K105/K121) and tapes (K116) in big-
endian format).

Many data structures (including 82596 SCPB's) intermix 32-bit entities with 16-bit and 8-bit entities
which causes further byte ordering conversion issues.

The PCIB/HSC2 system does not attempt to resolve these endian issues, rather it supports a
method of moving data into and out of the PCI adapter with the byte swapping under software
control. This is configurable on a page by page basis through the option bits in the adaress map
(refer to section 5.4.4.4). It is the responsibility of software to resoive any remaining endian issues.

The Gambit’Mirage will aiways perform a byte swap on data going from the 10Bus/Xbus to the PC!
bus. When going from the PCI adapter to the Xbus the byte swapping is software programmable
via an option bit in the system 10 address table re-mapping entry. Figure 22 represents the byte
swapping performed for a little/big endian byte swap. A byte entering a specific byte lane (i.e. byte
0: big-endian) on one side (Xbus or PCI bus) will be sent back out on the same byte lane (byte O;
litle-endian) on the other side. Thus when a 32 bit word is byte swapped its format changes from
big to little endian or vice-versa so that the data is identical from a software perspective when
viewed from either the little endian (PCI) or big endian (Xbus) side of the system. This is the
default configuration and the one which should be used when moving data from/to disk and tape
devices. Programmable byte swapping is not supported for requests coming in from the Xbus/
Golfbus to the PCI bus - data is aiways byte swapped so that it appears the same in either format
to software.

29 December 1995 a9

Ir

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781
Polo Software Programming Guide Stratus —ompany Confidential
Figure 22. Little/Big Endian Byte Swap
. — increasing order
Golfbus data bits gy, 31 2423 1615 87 of significance
Big-Endian byte0 ! byte1 : byte2 | byt 3
(Golfbus) : : :

PCl bus data bits g, 31 ; 2423 { 16 15 K 0
Little-Endian byte3 | byte2 i bytel : byte0
(PC! bus) . : : :
-—- increasing order

of significance

Figure 23 represents the byte swapping performed when the option bit in the address field is
configured for no endian swapping. A byte on bits 7:0 traveling from the PCl Bus to the Xbus/
Golfbus will remain on bits 7:0. In this mode an integer will hold the same vaiue whether itis in PCl
memory or in system memary.

Figure 23. No Littie/Big Endian Byte Swap

- incrpas_ifir::gaorder
Golfbus/Xbus data bits 31 24 23 1615 87 of signjficance
Big-Endian byteO : byte1 | byte2 . byte3
(Golfbus/Xbus) : : :
PCl bus data bits __ 3! 2423 1615 87 0
Littie-Endian byte3 | byte2 | bytel [byte0
(PCl bus) A ; H : o
increasing o T
- of sieganilﬁc%noe

The following table illustrates the byte written or read based on the system bus byte enables. Note
that the big endian point of view is the standard system bus point of view and the one that should
be used when referencing the byte enables.

29 December 1995 40

93

WO 97/46941

CA

Polo Software ki ugramming Guide

02257511 1998-12-03

PCT/US97/09781

- .atus Company Confidential

Table 8. Big Endian to Littie Endian Byte Swap

Xbus/ big endian data (Xbus/Goltbus) littie endian data (PCl bus) l
Gﬁ'y'{’e"s bits bits bits bits bits bits bits
onubles | 3124 | 23..16 | 15...8 | 70 | 8124 | 23..16 | 15008 | 7o 0
8 bit operations
1000 | o 1 2 a | nc NC NC 0 |
0100 | 0 1 2 3 NC NC 1 NC
0010 0 1 2 3 NC 2 NC NC
0001 0 1 2 3 3 NC NC NC
16 bit operations
1100 | 0 1 2 3 NC NC 1 0
0110 | 0 1 2 3+ NC 2 1 NC |
oo11 | O 1 2 3 L 3 0 NC NC |
24 bit operation : I
1110 | 0 1 2 3 NC 2 1 0
o111 | o 1 2 34 3 2 1 NC<|
32 bit operations I
1111 0 1 2 3 l 3 2 1 0 |

a. NC = no change. writes - this byte holds the previous value; on reads this data is not valid.

Table 9 illustrates how various HSC2/PCIB data cycles are affected by byte swapping.

Table 9. Big/Little Endian Byte Swapping Based on Access Type

access type swapping performed
MIO/SAM compatible Xbus/ no swapping, registers accessible from Golfbus/Xbus only and
Golfbus registers stored in big-endian format

PC! adapter and bridge
configuration space registers

always swapped when read/written, only accessible from

Golfbus/Xbus.

Host access of PCl adapter

always swapped when read/written

PCI Access of Host Memory

Swapped (software controlied currently on a page basis, may

change on a controlier basis)

29 December 1995

99

41

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Polo Software Programming Guide Stratus wompany Confidential

6. Interrupts

Interrupts generated by cougar, ReCC, and Sable remain unchanged and are well specified in the
appropriate specs. This section defines the interrupt structures associated with the PCIB and HSC
subsystem.

6.1 PCIB/HSC2 interrupts

6.1.1 Introduction

The PCI bus specifies the mechanism through which PCI devices can interrupt the host. The PCI
interrupt mechanism defines 4 level sensitive interrupts, (INTA, INTB, INTC, and INTD). Three of
these interrupts (INTB, INTC, and INTD) can only be used by muiti-functional devices. Non-
multifunctional devices must use INTA. The interrupt output structures are defined to be open
drain signals with no restrictions on grouping together or interrupts. The implementation only
supports the one INTA# interrupt (actually a combination of alt four lines tied together in hardware).
This saves 3 pins and only marginally complicates software for multifunctional device drivers.

The HSC2/Polo interrupt scheme is based around the method that HP uses to implement
interrupts on the PA-RISC chip. The HP scheme is a transaction based interrupt architecture.
Interrupts are signalied by setting a bit in the EIR (External Interrupt Register) inside the PA chip.
In HSC2/Polo, interrupting devices may select to interrupt a specific processor or all processors by
writing to either one or all EIR registers.

6.1.2 Implementation goals

The specific goals of the PCIB/HSC2 interrupt scheme are:

. Directed Interrupt Capabilities

It should be possible to select the target hoston a per-PCl adapter basis. This allows for
selection of either a particular CPU or all CPUs on an individual SAM basis.

. Minimal host overhead

The host should not have to poll SAM modules in order to determine the source of the
interrupt.

. simultaneous interrupt support

Since multiple SAMs may share the same EIR bit, any implementation must be able to support
simuitaneous interrupts. Schemes that depend on only one interrupt being presented until that
interrupt is serviced are not acceptable.

« Simple
Complexity in either hardware or software is undesirable.

6.1.3 Hardware impiementation

in Polo/HSC2, there are some severe system limitations on how interrupts are managed within the
EIR register of the PA chips. Each PA can have 32 interrupts, but of these only a small number can
be allocated for a given siot. Without some kind of additional hardware support, it would be
necessary for the interrupt handier to poll all PC! adapters on the interrupt. This would not make
for very optimal performance.

26 December 1995 42
\A D

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software + ..gramming Guide wratus Company Confidential

For that reason, the hardware must implement more than a write to an EIR register to perform an
interrupt. In order to prevent poliing of all the PCI adapters, each SAM writes an interrupt into the
EIR register and to an OS specified byte (the Host interrupt table) in cacheable memory. The OS
can specify any location in memory for this byte. This allows the OS a great deat of flexibility. The
OS can then scan the table of interrupts at memory speeds to determine which PCI adapter
interrupted it. In the suggested software implementation, some possible architectures for this table
are discussed.

In order to implement this scheme, the hardware makes use of a series of registers, operations,
and memory tables. The software team shoutd evaluate this proposal to ensure that it is both
necessary and sufficient for their needs. Six registers have been implemented on the SAM for
hardware support of interrupts. See the corresponding register descriptions in section 12.6.4 on
page 129 for a bit-by-bit description.

SAM Interrupt Source Register{0]

This read only register reflects the state of the interrupt pins on the PC! bus. The signal is high
true and used to trigger interrupts. This bits reflects the synchronized value of the interrupt
signals on the PC! bus.

SAM Interrupt Mask Register{0]

This register is used to enable and disable individual interrupts in the interrupt source register.
Asserting a bit in this register enables interrupts in the interrupt source register to cause an
interrupt event.

SAM Host Interrupt Table Pointer{47:0]

This 48 bit address points to a location in memory that will be used as a tabie entry to identify
the interrupt source.

SAM Host interrupt Address Pointer{31:2)

This 32 bit /O address identifies an EIR register address. The interrupt bit register value will
be written into this register.

SAM Host Interrupt Bit Register{5:0]

Bits [4:0] of this register point to the bit to be set in the host interrupt register, EIR and bits 5:0
are written to the interrupt table pointer address. Bit 5 is always a one and functions as a valid
bit for the table entry.

interrupts are generated by either of two conditions:

Condition 1: If there is a zero to one transition on the interrupt bit, and the interrupt mask bit is set
to one, an interrupt action will be triggered.

Condition 2: If there is a zero 1o one transition on the interrupt mask bit, and the interrupt bit is set,
an interrupt action will be triggered.

The hardware performs an interrupt operation in the following manner:

Step 1: A byte write is performed to the address indicated by the SAM Host Interrupt Table
Pointer. This write is performed as a cacheable memory write, so the software must use a valid
memory address for this location, not an I/O address. The data pattern for the write is taken from

the ieast significant byte of the SAM Host interrupt bit register. No validity checks are performed on
the write.

26 December 1995 43
A A

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Polo Software Programming Guide Stratus . .npany Confidential

Step 2: A 32 bit /O write is performed to the address indicated by the SAM haost interrupt register
pointer. The data pattern written is all zeros except for the bit indicated by the SAM host interrupt
bit register. it is intended that the software set the address ot this write to point 10 either an
individual Cougar EIR register or to all CPUs’ Cougar EIR register.

No further interrupts will be transmitted to the host by this SAM until one of the 2 conditions listed
above is met.

These two writes are not atomic. Software running on the PA can make no assumptions
conceming timing of these two writes. Furthermore, it is possible for two SAMSs to perform these
operations at the same time. When this occurs, any mixing of write operations is possible between
the SAMs. If there is a common interrupt bit shared by the two SAMs, software must ensure that it
correctly decodes all of the interrupts. However, the writes are strong ordered on a per SAM basis,
that is the two writes from a particular SAM are guaranteed to be seen in the correct order.

For these reasons, it is suggested that software follow the algorithm below for decoding and
handling interrupts.

6.1.4 Suggested Software implementation

As part of the PCl interrupt handling mechanism, the OS must manage the host interrupt table
which consists of a one byte addressable piece of information per PCl adapter that is used by the
hardware. Since this table is in cacheable memory software must keep the virtual index up to date.
This is probably best accomplished through static allocation of the table. Since the SAM register
that contains the pointer to this byte is justified down to the byte, the software has a great deal of
flexibility in how they organize the host interrupt table. While there are a number of possible
organizations, the suggested implementation is to use one host interrupt table per system. This
table should be organized as 64 contiguous bytes of PCl interrupt information. This organization
allows for the fastest possible scan of the interrupt table. Optimally, all interrupts should be
directed to one of the CPUs local to the host interrupt table. That CPU can perform the steps
pelow and then delegate the servicing of the interrupt request to the appropriate CPU.

The order in which various operations associated with the interrupt handling are performed is also
important. Deviations from the suggested implementation may result in either extraneous null
interrupts or lost interrupts. The basic steps are outlined below:

Step 1: interrupt is received

Step 2: internal interrupts are masked.

Step 3: the appropriate bit in the EIR register is cleared.

Step 4: The host interrupt table is harvested for any pending interrupts.

Step 5: At this point, or later in the sequence, internal interrupts can be unmasked.

Step 6: Gambit or Mirage interrupt mask register is setto 0 (disabling Gambit or Mirage
interrupts).

Step 7: PCI card specific actions are performed to clear the interrupt.

Step 8: Gambit or Mirage interrupt mask register is set to 1 (enabling Gambit or Mirage interrupts).

Step 9: The interrupt is serviced.

26 December 1995) 44

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781
Polo Software + ..gramming Guide ~atus Company Confidential
7. Boot

This section of the spec outlines the boot process for booting an OS on either a Polo or HSC2
machine. The boot process consists of the operation of loading an OS image into main memory
and beginning normal OS execution. Before describing the boot methodology in detail, the boot
alternatives that have been considered will be described.

7.1 Boot Alternatives

PCl boot is a challenging opportunity for both systems. Since FTIO will be offered in an MIO only
configuration (i.e. no BIO) and Polo’s only configuration is a PCI only configuration. A methodology
for booting the OS in a PC! only configuration must be supported. A number of possible
approaches for accomplishing this task are outlined below.

7.1.1 Baby BIO Boot

The Baby Bio boot alternative assumes that Stratus commits to designing a BIO replacement with
a PCl intertace. If Stratus follows that approach, then the Baby BIO would be the only bootable
PCI device and all boot functions would be performed by the Baby BIO.

The major trade-off in considering boot alternatives is the balance of hardware effort and software
effort. A baby BIO approach to boot represents a trade-off that minimizes software effort at the
expense of hardware. in this approach, a PCI card would be designed that mimics that BIO
functionality but has a PCI interface instead of a Golfbus interface. Much of the BEHI and BIO
software could be recycied, and changes to the boot prom would be minimized. The baby BIO
would respond to a boot command in the same fashion that it does today.

A fundamental problem with this approach is that it probably could not be ready in time for initial
power on.

7.1.2 Bio Firmware on Raid Controlier Boot

This is a variation on the Baby BIO boot. In this alternative, Stratus would buy an i960 based raid
controller with 720 SCSI scripts processors and port the Bio firmware to it. In this approach, most/
all of the firmware would need to be re-written, but the CPU Prom and the BEHI could be
maintained.

This approach has the advantage of minimizing the hardware and boot prom effort. However, it is
not clear if this card exists. Also, the firmware effort would be very large.

7.1.3 CPU Prom Resident PCI Card Boot

In this boot alternative, the CPU PROM would contain all information and algorithms necessary to
perform a boot of either OS off of a given PCI card. Given that PCI cards are not very intelligent,
this may be a substantial amount of code. The advantage of this approach is that the system
would be able to boot off of any PCl device. There are several disadvantages to this approach.
Stratus would have to write PA7100 specific code for each boot device in the system. Every timea
new bootable device is released, a new boot loader would have to be written and qualified. Also,
every time that a new card is released, a new boot prom would have to be released as well.

26 December 1995 45
o3

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Polo Software Programming Guide Stratus wompany Confidential

7.1.4 Expansion ROM Resident PCI Card Boot.

A variation to the CPU Prom resident boot is to use a PCl card resident boot. This method makes
use of the expansion ROM on each PCl card. PCl cards have an expansion ROM that can be
used to store self-test, boot, and other code. Stratus could write PA7100 boot strapping code for
each PCl card that is supported that contains the required boot code. The CPU prom wouid only
need to know how to perform a generic ROM copy and then execute that code. This approach
requires a small madification to the CPU boot PROM, but it would require every new bootable PCI
card to have a special boot driver written for it. This work is expected to be substantial.

7.1.5 x86 Emulator PCI Card Boot.

A third variation on the boot from PCI card theme is to make use of not only the expansion ROM
on the PCI card, but the vendor provided boot code as well. This could be done by supporting an
x86 emulator in the CPU PROM. This emutator would then run the PCI BIOS code directly. The
advantage to this methodology would be that the installed base of PCI card code is primarily x86
code, and this would allow us to make the maximum use of that code. However, it wouid take
considerable work to support the emulator. Also, hardware changes must be made to support such
features as the DOS compatibility hole. Finally, the address mapping scheme may have to be
disabled to aliow for some address limitations in the PCI code.

7.1.6 PCMCIA Flash PROM Based Boot

A totally different variation on boot is to choose to never boot off of a PCI card. In order to
accomplish this boot method, a dedicated Flash PROM card would be used instead. This
functionality would be duplicated and located on a PCMCIA bus on each repeater in MIO and the
2 PCIB cards on Polo. The CPU Prom would configure the PCMCIA bus and then initiate the copy
of the boot-loader or OS into main memory. This approach has the advantage that the number of
boot devices that need to be supported is minimized. The boot process is kept simple. It has the
disadvantage that it requires some specialized hardware. Also, some new utilities will have to be
written to manage the OS images and the flash prom.

7.1.7 Conclusions

Table 10. summary of pros & cons

Bio CPU Expansio
Baby Bio | Firmnware | PROM | nROM | X85 pasr
Boot RAID Resident | Resident PCI Boot Boot
Boot PCl! Boot | PCI Boot

Hardware strong strong strong strong weak weak
effort negative positive positive positive negative negative
initial Prom weak weak strong weak strong weak
effort positive positive negative negative negative negative
subsequent strong weak strong strong strong strong

prom effort positive positive negative positive positive positive

26 December 1995 46

Aok

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Prugramming Guide Suatus Company Confidential

Table 10. summary of pros & cons

Bio CPU Expansio
Baby Bio | Firmware | PROM | nROM Er:jgtor Flasn
Boot RAID Resident | Resident PCI Boot Boot
Boot PCi Boot | PCI Boot
initial driver/ | weak strong strong strong strong weak
os effort positive negative negative negative negative negative
subsequent | strong weak strong strong weak strong
driver/OS positive positive negative | negative | positive positive
effort
cost strong strong strong strong strong weak

negative negative positive positive positive negative

The table above lists the potential pros and cons of each solution. The standing proposal is to use
the flash prom boot. This decision is based on the belief that the 2 closest alternatives to the flash
prom boot are the baby bio and the expansion prom boot. The baby bio minimizes the software
effort at the extreme expense of the hardware effort. While the expansion prom boot minimizes the
hardware effort at the extreme expense of the software effort. The flash prom alternative seems
like a good compromise.

7.1.8 Open Boot
A note on Open Boot...

Open boot is a proposed standard to allow for a processor and O/S independent boot process. Itis
currently unclear what direction this process is taking. We have currently chosen not to count on
open boot being available in the initial Polo/HSC2 time-frame. However, should this change, it may
be advantageous to reconsider some of our current directions.

7.2 PCIl Boot Process

7.2.1 Find and Configure the Boot SAM

Once the PROM has accomplished its normal initialization and is ready to boot the system, it
checks the boot list in the ReCC NVRAM. There should be two SAMs identified in the boot list as
primary and secondary bootable devices. The SAMs and PCI buses for the devices need to be
configured before they are used. The following steps are foliowed to do this:

1) Set the HSC2/PCIB on-line by writing to the HSC2/PCIB bus intertace state register.

2) Set the SAM on-line by writing to the SAM bus interface state register.

With both the PCIB and SAM on-line, PCI configuration cycles can be run to initialize the PCI bus.
The PCI configuration cycles ére accomplished by first writing to the PCI Configuration Address
register and then writing/reading to/trom the PCl Contiguration Data register. For Configuration
cycles to the bridge, the enable bit (bit 31) should be enabled, the bus number (bits 23:16) should

be 0, the device number (bits 15:11) should be 0, the function number (bits 10:8) should be 0, the
register number should be set to the register number for the desired configuration register, bits 1

26 December 1995 47

\../Q OS

CA 02257511 1998-12-03

WO 97/46941

PCT/US97/09781
Polo Software Programming Guide Stratus wumpany Confidential
and 0 should be 0.

WARNING: Configuration addressing is fittle endian. See the endian description for a discussion of
how endian works. The summary is that byte operations work with no intervention, 32 bit
operations must be byte swapped!

1) Perform a 32 bit read from configuration address O. Verify the manutacturer ID, 16 bit word at
jocation 00, is 1107h. Verify the Device ID, 16 bit word at locaticn 02, is 0700 for IAM or 0600 for
Gambit.

2) Perform a 16 bit write to location 04 of 16'h127. This write disables fast back-to-back enable,
enables SERR, disables ECRO, disable address stepping, enables parity efror responses,
disables VGA palette snooping, disables memory write and invalidate cycles, enables special
cycles, enables bus mastering, enables memory space and enables I/O space.

3) Pertorm a 16 bit write of location 06, the status register, verify thatitis 0.

4) Set the memory base address register to 0 by performing a 32 bit write of Oh to address 10h.
5) Set the disconnect timer to 0 by performing a byte write of 0 to 40h.

6) set the retry abort timer to 8 by performing a byte write of 8 to 41h.

7) set the trdy timer 10 20h by performing a byte write of 20h to 42h.

The bridge is now configured.

7.2.2 Configure PCMCIA Bridge Chip

Once the PCI bridge is configured it is necessary to configure the PCMCIA bridge chip by
performing a series of configuration reads and writes to the PCIMCI bridge. For these writes, the
enable bit (bit 31) should be enabled, the bus number (bits 23:16) should be 0, the device number
(bits 15:11) should be 1, the function number (bits 10:8) should be 0, the register number should
be set to the register number for the desired configuration register, bits 1 and 0 should be 0. The
PCMCIA bridge chip (PPEC) is a multifunctional device. However Polo only uses the first function.

1) Perform a 16 bit read of register 00h. Verify that the Vendor 1D is 8086h, intel.
2) Perform a 16 bit read of register 02h. Verify that the device ID is 1221h, ppec chip.

3) Perform a 16 bit write of 14bh to location 04h. This write disables fast back-to-back enable,
enables SERR, disables ECRO, disable address stepping, enables parity efror responses,
disables VGA palette snooping, disables memory write and invalidate cycles, disables special
cycles, disables bus mastering, enables memory space and enabies 1/O space.

4) Perform a 16 bit write of ¢800h to location 06h.

5) Initialize the PCI-PCMCIA bridge base address register. This register determines the starting
address of the PCMCIA index/data socket configuration registers in the PCI /O space. ltis
recommended that 0 is used is for the base address. This is accomplished by writing a 110

location 10h. After boot this base address can be deconfigured or moved out of the way for normal
operation.

6) setthe PCl Configuration control register. Perform a byte write of 39h to jocation 40h. This

26 December 1995 48

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software F. _gramming Guide ~-.atus Company Confidential

enables enhanced PCMCIA timing mode, enables PCMCIA read-prefetching buffers, enables
write posting butfers, set the PCI clock speed to 25Mhz.

7) set the PC! interrupt routing register. Perform a byte of 3h to location 50h. This routes both of
the PCMCIA interrupts to the interrupt line and disables interrupts from all other (unused PCMCIA)
sockets.

The PC! side of the PPEC chip should now be configured.

7.2.3 Configure PCMCIA Bus

The PPEC chip is run in mode0. This operational mode provides two fully buffered PCMCIA
sockets. Polo and HSC2 only populates socket A so all accesses should be performed to socket A
register and windows. Like the PCl side of the PPEC, the PCMCIA side requires some initial set
up. The set up is accomplished through performing /O writes to the PCl bus. The PCMCIA chip
uses an index port and a data port to access its registers. The index port is a byte located at the
base address loaded into the base address register in step 5 above. The data port is a byte
located at base address + 1. If the aigorithm was followed as outlined in step 5, then the base
address is at 0 in PC! /O space. If the algorithm was not followed, then you must do your own
translation. Writes can be performed to the PPEC chips by performing a 16 bit write with bits 7:0
corresponding to the desired register and bits 15:8 corresponding to the data. Reads may be
performed by performing a byte write to the index port and a byte read to the data port.

WARNING: this register and all descriptions are littie endian. Byte swapping must be performed if
anything other than byte operations are performed.

1) Configure the PCMCIA power. Perform a 16 bit write of 1000h to PCI I/O space Oh. This will
disable the output enable for the PCMCIA bus, tum off auto-powering, tumn the socket on to 5v,
and turn VPP on to 5v.

2) Enable the PCMCIA bus. Perform a 16bit write of 9000h. This write enables the PCMCIA output
enables for actual writes to the PCMCIA bus.

3) Set up the I/O window data side. The PCMCIA card has an 8 bit I/O bit data path. This is
configured by performing a 16 bit write of 1007h.

4) Setup I/0 window0. The PPEC chip contains two /0 space windows. The 1/O space is passed
directly through the PPEC chip. /O accesses are used to setup and control component
management registers starting at address 4000h. We will setup 4000h through 41ffh as the /O
space for the PCMCIA bus. These may be deconfigured after boot. Set the low byte start address
for /O window O by performing a 16 bit write of 4008h. Set the high byte start address for 1/O
window 0 by performing a 16 bit write of 0009h. Set the low byte stop address by performing a 16
bit write of ff0ah. Set the high byte stop address by performing a 16 bit write of 410bh.

5) Setup Memory Address Mapping Window 0. The PPEC contains 5 memory windows. The
memory windows are used for accessing the command register and the flash array itself. For
simplicity’s sake we will map this address space starting at 0 and running through the full 20MB
range. After boot, this address can be deconfigured. The window allows for a 16Mbyte region of
PCI address space to be mapped at one time, and for the full 64Mbyte region of PCMCIA space to
be mapped. the mapping granularity is a 4K page. We will setup a window of 16Mbytes of PCI
space and 16Mbytes of PCMCIA space and then reset the windows when we roli over 16Mbytes.
Set the system memory address mapping window 0 start low byte (bits 19:12) by performing a 16
bit write of 0010h. Set the system memory address mapping window 0 start high byte (bits 23:20)
by performing a 16 bit write of 8011h. Bit 7 of this write sets the data path to 16 bits, and bits 3:0

26 December 1995 49

A o)

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Polo Software Programming Guide Stratus Lompany Confidential

set address bits 23:20 to 0. Set the system memory address mapping window 0 stop low byte (bits
19:12) by performing a 16 bit write of ff12h. Set the system memory address mapping window 0
stop high byte (bits 23:20) by performing a 16 bit write of 6f13h. Bits 7:5 set the timing of the card
to 150ns. Bits 3:0 set the upper address to f. Setup the PCMCIA card offset address. This will
initially be 0. We will bump this up when we roll over the 16Mbyte region. Set the card memory
offset address 0 low byte register by performing a 16 bit write of 0014h. Set the card memory
offset address 0 high byte register by performing a 16 bit write 001 5h.

6) Enable the address mapping windows. Perform a 16 bit write of 4106h. This enables /0
window 0 and memory address window 0.

With these settings:
/O addresses 0 and 1 map to the PPEC chip.
I/O addresses 4000h - 41ffh map to PCMCIA /O space

Memory addresses 00000000h - ooffiftfh map to PCMCIA space.

7.2.4 Configure PCMCIA Flash Card.

The PCMCIA flash card is accessible as a slave on the PCMCIA bus. The card is organized into
an attribute space accessed through 1/O space and a memory space accessed through memory
space. The first step is to configure the 1/O space to the proper configuration.

1) Configure the voltage register by performing a byte write of 01h to 4000h. This sets VCC to 5v
and VPP to undriven.

2) turn on VPP generation by performing a byte write of 01h to register 410ch. This tums on the
internal VPP generator in the PCMCIA chip.

The card is now ready to be read for boot. This operation is started by performing a command
write. The command write sets the mode of the flash array. Perform a 16 bit write of hex ffit to
memory space Oh.

The card is now in read mode and memory reads will be processed directly to the array. The array
may be read in 32 bit chunks.

Notes:

This description did not describe setting up the Gambit/Mirage offset window registers to the PCI
bus. These must be setup.

This description did not explicily explain the reprogramming of the card offset register when the
prom rolis over the 16Mbyte PCi page.

Writing the PCOM is not described, and will be covered in a later revision of the spec.

26 December 1995 50

ADY

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Piugramming Guide uwatus Company Confidential

8. PCI Configuration

The Polo and HSC2 PCI bridge and adapters have to be configured. This will need to be done at
boot time. There are also configuration issues that need to be addresses when new devices are
plugged in, puiled out or when they fail.

PCl is defined to allow the PC to do an auto configuration. The PC BIOS discovers which devices
are on the PCl bus and configures the bridges and adapters. (There is some user intervention
required in some cases where it cannot be completely automatic - see PCI ECR Status document
dated 5/11/94.) When a configuration is complete the information is stored in non-volatile memory
and is used in subsequent boots as long as the same devices are present.

We need to support a configuration similar to the auto configuration done in PCs. Cards may have
swapped since the last boot. We also need to support hot-plug reconfiguration due to board
pseudo-hot plugs in the Polo and HSC2 systems.

8.1 PCl Configuration Register Space

Each PCl agent, including the host bridge within the Gambit/Mirage ASIC, has a 256-byte
configuration space. The first 64 bytes of this configuration space comprises the required PCl
configuration registers. These are a predefined header containing ID, status, command and other
information. The optional configuration space from 040h-FFh is available for use by bridges.
Gambi’Mirage will not use this area. All PCI adapters/agents must respond to the entire 256 byte
configuration space. All writes to undefined areas must have no effect and all reads to undefined
areas must return zeros.

The Gambit/Mirage AS!IC implements accesses to the configuration space using a method similar
to the PC/AT. Accesses to the 32 bit /O registers, config_addr and the config_data, defined in the
Gambit/Mirage V/O register space are used to generate PCI cycles with the Configuration Read or
Write function code. First an address is set up by writing to config_addr then a read or write is
done to config_data. See configuration section 8.5, PC! Address formation, for specifics on how

the config_addr decodes to the individual PC! devices on the PCI bus.

8.1.1 Gambit PCI Configuration Space

The PCI configuration space of Gambit/Mirage is not available to other agents on the PCl bus, but
only to Xbus generated requests. Accesses to these registers are made through the ‘config_addr’
and ‘config_data’ registers in Gambit IO Register Space. The Gambit PCI Configuration Space is
available as ‘Device Number 0’ for type ‘00’ accesses.

Table 11. Gambit/Mirage PCI Configuration Space Header

. Reset _—
Offset | Register Name | RW Value Description
00h Vendor ID R 1107h | Unique manutacturer (D - Stratus PCI 1D
02h Device ID R 0600h | Identifies the device as per vendor
29 December 1995 51

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Polo Software Programming Guide Stratus Cuinpany Confidential

Table 11. Gambit/Mirage PCl Configuration Space Header

Oftset | Register Name | R/W C::,eet Description

04h Command

[15:10) R 00h Reserved

) R 0 Fast back-to-back Enable

[8] RW J0 Global SERR# Enable. Discrete enables in ECRO.
M R 0 Wait cycle control - Address/Data Stepping
[6} RW |0 Parity Error Response Enable

[5] R 0 VGA Palette Snoop - Not used.

[4] R 0 Memory Write and invalidate - Not used.
31 RW |0 Special Cycles - Special Cycles.

2] R 1 Bus Master Enable

1] RW |0 Memory Space Enable

{0] R 0 1/O Space Enable

06h Status

(15] RW!' |0 Detected Parity Error.

[14] RW' |0 Signaled System Error.

[13) RW!' |0 Received Master-Abort.

(12 rRW' !0 Received Target-Abort.

[11] RW'!' {0 Signaled Target-Abort.

[10-9] R 01h DEVSEL# timing: 00=fast, 01=medium, 1 O=slow.
8] RW! {0 Data Parity Error Reported.

M R 0 Fast Back-to-Back Capable.

{6:0] 0 Reserved

R
08h Revision 1D R 0000h | |IAM Rev number.
R

09h Class Code 06h Bridge Device

0000h | Host Bridge (Gambit/Mirage)

oCh Cache Line R 00h Gambit’Mirage not supporting cache protocol.
Size

0Dh Latency Timer | R 0oh No Latency Timer.

OEh Header Type R oonh Header layout as per PC! spec.

OFh BIST R/W Built-In Self-Test

10h- Base Address | R/W Refer to section 6.2.5 PCl Specification Rev 2.0

27h

28h- Reserved

2Fh

30h Expansion R/W Refer to section 6.2.5 PCI Specification Rev2.0
ROM Base
Address

34h- Reserved

3Bh

3Ch interrupt Line R o0h Not implemented

29 December 1995 52

WO 97/46941

CA 02257511 1998-12-03

Polo Software I . .gramming Guide

PCT/US97/09781

- .atus Company Confidential

Table 11. Gambit/Mirage PCI Configuration Space Header

Offset | Register Name | R/W 3::1 eet Description
3Dh Interrupt Pin R 4h Not implemented
3Eh MIN_GNT 0 Not implemented
3Fh MAX_LAT R 0 Not implemented

8.1.2 PC! Adapter Configuration Space

The PCI configuration space of the mated PCI adapter is available to the Gambit/Mirage ASIC
across the PCI bus. Accesses to these registers are made through the ‘config_addr’ and

‘config_data’ registers in Gambit/Mirage |0 Register Space. The PCI Adapter Configuration Space
is available as ‘Device Number 1’ for type ‘00’ accesses. For adapter specific details on the
Configuration Space Header, refer to the PCl Specification Chapter 6 and the appropriate Adapter
Specification.

Table 12. PCl Adapter Configuration Space Header

Offset Register Name Description
00h Vendor ID Unique manufacturer iD
02h Device ID |dentifies the device as per vendor
04h Command
o6h Status
08h Revision ID Rev number.
09h Ciass Code Class of device
0Ah-0Bh | Sub-Class/Prog |.F. Sub Class / Programming Interface -
0Ch Cache Line Size Not supporting cache protocol.
0Dh Latency Timer Refer to section 6.2.4 PCI Specification Rev 2.0
1Eh Header Type Header layout as per PC! spec.
OFh BIST
10h-27h | Base Address Memory and 10 Ofiset Addresses as per PCl
spec.
28h-2Fh | Reserved
30h Expansion ROM Base Refer to section 6.2.5 PCI Specification Rev 2.0
Address
34h-38h | Reserved
3Ch interrupt Line identifies interrupt controlier input. Refer section
6.2.4 of the PCI Specification

29 December 1995

AAA

53

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781
Polo Sottware Programming Guide Stratus —vmpany Confidential
Table 12. PCI Adapter Configuration Space Header
Offset Register Name Description
3Dh interrupt Pin Identifies which INT# signal the PCI device
asserts
3tEh MIN_GNT Suggested Latency timer value
3Fh MAX_LAT Suggested value for tuning the PC! bus.

8.1.3 PCI Configuration space header description

These registers are defined in the configuration space for system bus/PCI host pridge and for
each PCI adapter in the system.

The Vendor ID field is read in each slot to check for card existence. it is a 2 byte field. The PC
spec. states that if the read returns 16'hFFFF this is an indication that the device does not exist.
On Polo/HSC2 the Xbus/Golfbus I/O read will be aborted and cleared out of the PING table in
Gambit/Mirage. This will resultin a PING timeout which will then cause a data return of zeroes with
an LPMC to be sent to the Cougar. The OS should search for available cards and not the driver
code. Otherwise the vendor ID should be checked for a valid Stratus supported device.

The next field read should be the Device /D. Again it should be checked against known devices for
the vendor. _

The Revision ID may have meaning in some cases. We need to see what specific adapters do
here and what significance the number holds.

The Header Type identifies the layout of bytes 10h through 3Fh and bit 7 indicates if the device is
a multi-function device. Type 00 is a normal card and type 01 is a PCI-PCI bridge header format.
The other encodings are reserved. If the device is multi-function the all of the function numbers
have to be polled for existence. It itis a PCI-PCI bridge there are additional type 01 configuration
cycies required to configure the tower level PCl buses

The Class Code field is a 6 byte field, the first two bytes indicate the base class (VGA, Mass
Storage, Network, Bridge...) The next two bytes are the Sub-class code (SCS!, IDE, Floppy...).
The next 2 bytes are the Programming interface which indicates a register level programming
interface for device independent software.

The Command register control the major functions of the PC! card. Writing all zeros to this register
logically disconnects the card from the PCI bus.

Bit 9 - Fast Back-to-Back Enable - Reset since Gambit/Mirage will not support it

Bit 8 - SERR# enable - This bit will be turned on.

Bit 7 - Wait cycle contro! - Reset to zero if writable.

Bit 6 - Parity Error Response - Set to enable parity checking

Bit 5 - VGA Palette snoop - Not supported

Bit 4- Memory Write and Invalidate - Not supported

Bit 3- Special Cycles - Reset to zero to disable. Hardware is capable if Software.
wants to tumn this on.

Bit 2- Bus Master - Setto 1

Bit 1- Memory Space - Setto 1

Bit 0- 10 Space - Setto 1 on adapters, Setto 0 on the bridge.

29 December 1985 54

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781
Polo Software Programming Guide swatus Company Confidential
The Status register

Bit 15 - Detected Parity Error
This bit indicates that a device detected a parity error. A Maintenance Interrupt is
generated from Gambit/Mirage. An adapter is responsible to report a parity error to
the system most likely via an interrupt to its driver.

Bit 14 - Signaled System Ermor
This bit gets set whenever a device asserts SERR# whichis a global error signal
directed to the Operating System. SERR# indicates an address parity error, data
parity errors on a special cycles or other non parity errors. SERR# will cause a
Maintenance Interrupt to be generated from Gambit/Mirage.

Bit 13 - Received Master Abort
Gambit/Mirage causes a Maintenance interrupt.
Adapter - TBD

Bit 12 - Received Target Abort
Gambit/Mirage causes a Maintenance Interrupt.
Adapter - TBD

Bit 11 - Signal Target Abort
Gambit/Mirage causes a Maintenance interrupt.
Adapter - TBD

Bit {10:9] - DEVSEL timing
00 - fast
01 - medium
10 - slow
These bits are read only and indicate the speed at which a device will decode
accesses to its address spaces. It can be used by the subtractive decode agent to
speed up selection. Gambit/Mirage does not do subtractive decode so the Master

will

have to use the Master Abort Mechanism.

Bit 8 - Data Parity Detected :
This bit is only set by a bus master when: 1. When the master asserts PERR# (on a
read transaction) or when a master sampies PERR# (on a write transaction) and 2.
The Parity error response bit is enabled.

Bit 7- Fast Back-to-Back Capable

The Cache Line Size register - This register only needs to be implemented on devices that are
participating in the caching protocol which we do not support.

The Latency Timer - register must be writable on all master devices that can burst more than two
data phases. It may be read only on devices that burst two or fewer data phases but must
contain the number 16 or less.

The Built-in Self Test (BIST) register

Bit 7 - BIST Capable

Bit 6 - Start BIST

Bits [5:4] - Reserved

Bits [3:0) - Completion code: 0 indicates test passed; non zero device specific failure codes.

The Interrupt Line register - Use of this register is TBD. In a PC it corresponds to the IRQ leve! of
the 8259.

The Interrupt Pin register - This register indicates which interrupt fine the device will use. it will
contain 0 if no interrupts are used. Polo will tie all interrupts to INTA#.

29 December 1995 : 55
ALY

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Polo Software Programming Guide Stratus Lompany Confidential

The MIN_GNT register - This register specifies how long a burst period the device needs
assuming a 33 MHz clock. This value should be the recommended Latency Timer value or
0 if there are no special requirements.

The MAX_LAT register - This register contains the time this device can wait for a grant. This
number is used to set the latency timers of other devices. There must be some algorithm/
equation but we don't know it.

8.2 Proposed configuration sequence

1. Boot system - See Section 7.
2. Start OS based config-for each PCI slot and sub-function
a. Device detection - Configure host bridge if it exists
b. Match device against requirements - then config the device
i. Run the post code on the devices Expansion ROM
ii. or Run the cards initialization code stored in the OS files system
iii. or Restore the previous configuration (unlikely to be choice, discussed later)
¢. Shut down any unknown/unconfigurable devices
d. Update host bridge configuration with new address information.
. Run any diagnostics on device
i. Expansion ROM based diagnostics
ii. or OS based diagnostics
f. Handle special configuration i.e. dual initiated scsi host ids etc.
g. Set up device drivers

8.3 OS Based full system Configuration

The PCI config_addr and config_data registers are in Gambit/Mirage and there is one register that
responds to the address corresponding to 4 SAMS. They map as follows:

MIO Polo HSC2

SAMO PCIB, Gambit C-side HSC2, Mirage
SAM 1 PCIB, Gambit C-side HSC2, Mirage
SAM 2 PCIB, Gambit C-side HSC2, Mirage
SAM 3 PCIB, Gambit C-side HSC2, Mirage
SAM 4 PCIB, Gambit D-side does not exist
SAMS PCIB, Gambit D-side does not exist
SAM 6 PCIB, Gambit D-side does not exist
SAM 7 PCIB, Gambit D-side does not exist

NOTE: To contro! access to these muilti-response register the OS needs to lock the group of 4
SAM registers since they are physically one register.

8.4 PCIl device detection

All PC! devices adaptors and bridges must implement the first 4 fields in the header, Vendor {D,
Device ID, Command and Status. The additiona! fields are optional but if used must be at the
appropriate memory address.

in a PC all possibie PCl slots must be polled to determine the configuration. The polling starts at
device 0. If a multi function device is detected the all other functions in the stot must be polied. Our
system will avoid polling since each SAM will supply a maintenance interrupt when it powers on or

29 December 1995 56

AAY

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Programming Guide Swatus Company Confidential

after a reset. When the OS is ready to configure the system it will reset all of the SAM slots. Each
existing SAM will supply a maintenance interrupt.

Polo and HSC2 have 4 PCl slots per PCl bus. There will be one maintenance interrupt per PCiB/
HSC2. Software must poll each PCIB/HSC2 slot for the existence of a PCl adapter. The PCI
adapters are addressed as though they are pseudo SAMs (see Section 8.5). Polo needs to check
each slot for multi-function adaptors see section 8.5.1.

8.5 PCl Address formation

Gambit/Mirage will format configuration addresses from config_addr as explained in the PCl rev
2.0 spec.

8.5.1 Configuration cycle generation

The hardware will compare the “Bus Number” frcm the address to the bridges secondary bus
number which in our system is 0. It will generate a type 0 configuration cycle when the “Bus
Number" is zero otherwise it will generate type 1 configuration cycle. When a type 1 configuration
cycle is created the lower 2 address bits AD[1 :0] need to be changed from 2'b00 to 2'b01.

For electrical reasons we require that the address for a configuration cycle be Pre-driven. Since
the address lines will be resistively coupled to the IDSEL lines going to the adapter the IDSEL
lines will have a low slew rate. The address must be stable TBD clocks before FRAME#.

8.5.2 Special cycle generation

When the config_addr register is loaded with the Device and Function numbers of all ones and the
Register number is zero the bridge is “Primed” for a special cycle. When our config_data register
gets written we generate a special cycle if the bus number equals zero. Otherwise we will send it
on as a config_write. Lower level PCI-PCI bridges that match the Bus number will then create
special cycles on their secondary buses.

29 December 1995 57
AAS

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Polo Software Programming Guide Stratus Lompany Confidential

Figure 24. Gambit/Mirage Bridge Translation config_addr type 00 -> PCI AD

config_addr
31 30 24 23 16 15 1110 87 2 1 0
Bus Device Function| Register ol o
Reserved Number Number | Number | Number

Enable bit

10 Space [16:15] PCI Address (31:11]
XX set AD 11 (Gambit host bridge)

00 set AD 12
01 set AD 13
10 set AD 14
Device Number - Only One ‘1’ Z‘ﬂ::ggrr‘ gﬁ%%ee: 0 0
31 PClI| AD 110 87 2 1 0

Figure 25. Bridge Translation config_addr type 01 -> PCI AD

config_addr

31 30 24 23 16 15 1110 87 2 1 0
Bus Device Function| Register ol o

Reserved Number Number | Number | Number

. Bus Device Function| Register
8'h00 Number Number | Number Nu?nber 011
31 24 23 15 1110 87 21 0

PCI AD

8.5.3 Polo/HSC2 Configuration Address Generation

Polo/HSC2 have 4 PCl buses with 4 PCI slots each. The devices will be numbered 1-4 on each
PCI bus. For type 00 configuration cycles the Gambit will form PCI address bits (31:11] from the
device number in the PCI config_addr register along with bits [16:15} of the Xbus/Golfbus 10
Space address from the cycle that accesses config_data to mimic which of the 4 pseudo SAMs is
being addressed. I the ‘Device Number' equals zero the bridge is accessed if it is non zero device
1 is accessed. Therefore device 1 should always written to config_addr to access an adapter. See
example below. The IDSEL[3:0] will be tied to AD[15:12) respectively again see section 3.6.4 of
the PC! spec for electrical details. Polo/HSC2 also needs to check each siot for multi-function
adaptors see Section 8.1.2.1.

29 December 1995 58
AAb

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Programming Guide Swatus Company Confidential

PCI Device Field 10 Space {16:15) PCl Address [31:11]

0 XX set AD 11 (Gambit/Mirage host bridge)
10 00 set AD 12
10 01 set AD 13
10 10 set AD 14
10 1 setAD 15

8.6 Multi-function Adaptors

A PCI adapter can have multiple functions on one card. For example SCSI and enet or multiple
SCS! ports. These sub functions are addressed through the function number field in the
config_addr register. All cards must use function number 0. If they have multipie functions then bit
7 of the Header Type configuration register indicates whether a device is a multi-function device.

If a multi-function device is detected all possible function numbers must be polied for existence.
The PCI spec. allows them to occupy any function number after function 0. Each function has its
own configuration header and therefore has to be configured into PCl address space as an
individual device.

8.7 SAM and PCI Adaptor Configuration

Once the bridge device is detected the bridge can be used for PCI configuration cycles to detect
resident PC! devices without any bridge configuration. Software then reads the header information
for PCI device 1. The PCI device needs to be mapped into PCl address space. First the software
has to determine how much memory and IO address space the device needs. This is done by
writing all ones to the base address registers and reading them back. The device will retum 0's in
all don't care bit positions effectively specifying the address space required.

Note: The typical device will have two base address registers in the header i.e. requiring one
memory range and one |O range. The low order bits distinguish between the memory and 1O. See
PC! local bus spec section 6.2.5.1. A

8.7.1 Base Address Registers

The number of high order bit that an adapter implements determines how big its memory space is.
For example Gambit/Mirage responds to 256 MB so it implements the 4 high address bits. If
software did not know how big the range was it could write all ones to this register and it would
read back f000_0000h indicating the size and the fact that it is a memory space base register. See
figure 26 and figure 27 for the formats of base registers.

29 December 1995 59

AAY

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Polo Software Programming Guide Stratus Company Confidential

Figure 26. Base Address Register for Memory

4 3 2 10

0
p b
Pretetchable
Type
Memory space indicator
Figure 27. Base Address Register for I/O
2 10
0f1

Reserved

10 space Indicator

8.8 PCl Address Space

Xbus/Golfbus addressing of PCl address space is well defined. Inside each SAMs address space
there is a 64KB memory window and a 32 KB 10 window from the Xbus/Golfous. The PCl card’s
memory may be much larger than these windows and the PC! card needs to mapped into a
complete range of PCI address space. Furthermore for Polo we need for these ranges to be non-
overlapping from SAM to SAM (remember that there are 4 pseudo SAMs per PCI bus in Polo).

This non-overtapping address space needs to be tracked by the configuration software. There are
a number of issues around this PCI address space related to board insertion/removal. When a
new board is added to the system its memory and 10 ranges have to be mapped so that it does not
overiap with any previously mapped devices. When a board is pulled it will leave holes in this PCI
address space. This brings up the need to defragment the PCI address range if new devices
cannot be mapped into the existing ranges.

(There are other alternative here like a fixed per slot ailocation which may not work due to large
possible memory and 10 ranges. The contiguous range has to work per PCI bus. Four separate
ranges can be tracked, one for each Polo PCI bus, or one per bucket if that is easier.)

8.9 PCI Bus Target and Master Aborts

The bus master detects a master abort when no target responds to its request. The master sets bit
13 in the its PC! configuration status register. The Bridge (Gambit/Mirage) also watches the PCl
bus for master aborts and sets a bit in its PCI Error register. This condition will cause a
maintenance interrupt if it is not masked off in the SAM 10 space Configuration register. If the

29 December 1995 60

A

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software F..gramming Guide ««atus Company Confidential

bridge acting as a master detects a master abort it sets bit 13 in the its PCI configuration status
register and may cause a maintenance interrupt if it is not masked off in the SAM 10 space
Configuration register.

A target signals a target abort when it gets an error on a transaction. The target sets bit 11 in its
PCI Configuration status register. The master sets bit 12 in its PC! Configuration status register. In
Polo and HSC2 the bridge is either the master or target in every transaction. The bridge is aware

of the abort and sends a maintenance interrupt again based on the mask bits in the SAM IO space
Configuration register.

8.9.1 PCI Bus Fault Detection and Tolerance

See M+D section 9.

8.10 On Line Adds

The PCI configuration will have to be updated when a Jetta/HSC2 or a Polo/PCl card is added to
the system. This mechanism is different for HSC2 and Polo.

Although the HSC2 board itself can be inserted, PCI cards themselves cannot as they are
connected on the HSC2 board via PMC (PCl Mezzanine Card) Adaptors.

Polo requires the PCl bay to be powered down tor a board insertion. When a bay comes back on
line after a power down the OS should go through a full configuration sequence.

8.11 On Line Failures

An on-line failure is a condition that breaks the SAM. These include SAM errors and PCI errors.
See the error registers in section 12.6.

1. Reset the failed device.
2. Check the failed device.
3. Configure it back into the same place it used to be.

8.12 Board removal
Polo requires the PCI bay to be powered down for a board removal.

Aithough the HSC2 board itselt can be removed, PCI cards themseives cannot as they are
connected on the HSC2 board via PMC (PCl Mezzanine Card) Adaptors

8.13 Special Requirements

On reads from bit encoded fields with reserved bits software may not rely on the value in these
fields. Software must use the appropriate masks. On writes software must read the register and
merge in the reserved bits to the new data to be written then write back the merged word.

We need a mechanism for programming and storing config information for PCl cards with user
selectable config. options. For example we need to change the SCSI host adapter id number for
the second host on a dual initiated bus. There is additional information on this topic in the PCl ECR
Status document dated 5/11/94.

29 December 1995 61
A A9

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Polo Software Programming Guide Stratus —ompany Confidential

When an expansion prom is decode enabled the software must not access the device through any
other base address registers. This is because PCI adapters may save gates and share the
address decoders for the expansion ROM with another base register.

See the byte order discussion in section 5.6.

8.13.1 Lock requirements

The page 2 SAM registers (section 12.6.2) need to be locked due to Polo multi registers. See
section 5.5 for more information on jocking these registers.

29 December 1995 62

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Programming Guide Swatus Company Confidential

9. PCIB Maintenance & Diagnostics

9.1 Overview

The Maintenance and Diagnostics (M&D) subsystem is a major part of the value-added in a
Stratus system. It is responsibie for managing the configuration of the machine as parts fail and
are replaced, and as the machine is upgraded on-line. It handies the reporting and logging of error
information, but does not attempt to diagnose the root cause of a system problem by interpreting
the error status..

Polo’s PCI subsystem consists of 1 to 14 PCI cards arranged in two 7 slot groups. Each group has
a controller card (the PCIB) bridging between the Xbus and two multi-siot PCl buses, anda
PCMCIA flash card on the PCIB. The HSC2 subsystem consists of at least one (simplexed) HSC2
board with 1 to 4 PCI cards. On Polo and HSC2, the “SAM" is just an abstraction in the address
space; 8 “SAMs” are implemented on a single PCIB card, 4 “SAMs" are implemented on a single
HSC2 board, and all power up and down simuitaneously. The only time new SAMs (PCI cards)
appear is when a PCIB/HSC2 is powered up.

9.2 ID Proms

There is a Jetta-style ID prom on the PCIB and HSC2 for tracking board revisions and for error
logging. The ID proms on the PCIB and HSC2 should not be programmed with information
conceming the PCl card in the SAM's PCl slot.

There are no Stratus ID PROMs on the PClt cards themselves; these boards are identified by
reading their PCl-defined configuration space. All PCI cards provide a Vendor ID (assigned by the
PC! Special interest Group to assure uniqueness), Device ID, and Revision ID. The PCl cards will
not contain individual serial numbers in an on-line readable format. Most PCI cards have bar-code
serialization only.

The Polo backplane ID Prom is accessed through the ReCC, identically to Jetta. Additionally, the
Polo I/O power supply has 8 bits of ID information in the register space of the gambit ASIC.

9.2.1 Fauit Logging

An important function of the 1D proms is the logging of fault information to aid in diagnosis when a
defective board is returned from the field. Each ID prom records faults in a 512 byte partition. The
partition initially starts out empty, and it is filled in a round-robin fashion as faults occur.

Note that PCl cards do not support memory dumping. Any information from a stuck PCI card must
be copied prior to resetting the card. Virtually all PCl cards zero memory on reset.

The following registers are logged for each board type. Note that different boards record different
registers.

9.2.1.1 PCIB

A single PCIB is a bridge to 8 PCl slots. Accordingly, the relevant per-siot SAM registers appear 8
times in the fault log. In the following table, ‘xxx’ takes on the hex values 404, 40C, 414, 41 C, 424,
42C,434, 43C. The tour config space registers are the first 4 DWORDs of the PCI config space in
the PCI card in the corresponding SAM; the M&D performing the logging must access them using

29 December 1995 ' 63
AN

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Polo Software Programming Guide ' Stratus Company Confidential

the PC! configuration space mechanism. None of the per-bus registers are judged useful for
diagnosing failures, and they are not included.

Table 13. PCIB registers logged

Offset Register Name size
——YFTFES [Board nesel
7FFFEOD Bus Interface State 32
7FFFC8 Slot ID 8
7FFF78: Gen. Purpose Comm [3:0] 32
7FFF60
7FFF38 Bus Interface Fault Reporting 16
7FFF30 Common Broken Status .16
7FFF28 ASIC Specific Broken Status 16
TFFF20 Bus Info Error Status 16
7FFF18 Misc Error Status 16
7FFF10 Control Bus Error Status 16
7FFFO8 Bus Error Byte Status 16
TFFFCO Voter Error Transceiver Status 16
TET008 | PCIB otlus 3
7FF000 PCIB Configuration 32
= XtDE | SAM PCI Erfor Register 3
XxxFB8 SAM Status 32
xxxFBO SAM Configuration 32
config space 00 | Device iD/Vendor iD 32
config space 04 | Status/Command 32
config space 08 | Class Code/Revision 1D 32
config space 0C | BIST/header/iatency timer/cache 32
line size

g.2.1.2 HSC2

A single HSC2 is a bridge to 4 PCl slots. Accordingly, the relevant per-siot SAM registers appear 4
times in the fault log. In the following table, xxx’ takes on the hex values 404, 40C, 414, and 41 C.
The four config space registers are the first 4 DWORDs of the PC! config space in the PCl card in
the corresponding SAM; the M&D performing the logging must access them using the PCI
configuration space mechanism. None of the per-bus registers are judged useful for diagnosing
failures, and they are not included.

29 December 1995 64
AL

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Piuyramming Guide Suatus Company Confidential

Table 14. HSC2 registers logged

Offset Register Name size
[™VEFTES | Board Reset B |
7TFFFEOD Bus Interface State 32
7FFFC8 Slot 1D 8
TFFF78: Gen. Purpose Comm {3:0} 32
7FFF60
7FFFas Bus Interface Fault Reporting 16
[~ 7FFF30 Common Broken Status 16 |
7FFF28 ASIC Specific Broken Status 16
7FFF20 Bus Info Error Status 16
7FFF18 Misc Error Status 16
7FFF10 Control Bus Error Status 16
7FFF08 Bus Error Byte Status 16
7FFF00 Voter Error Transceiver Status 16
o /TTo0B 1atus a2 |
7FF000 PCIB Contiguration 32
XXXl D8 SAM P! Error Register a2 |
xxxFB8 SAM Status 32
xxxFBO SAM Configuration 32
config space 00 | Device iD/Vendor 1D 32
config space 04 | Status/Command 32
config space 08 | Class Code/Revision ID 32 |
config space 0C | BiST/header/latency timer/cache 32
: line size

9.2.2 /0 Power Supply Faults

There are 2 status bits that identify that an 1O Power supply in a Polo system has failed. This
information will tentatively be stored in ReCC status registers. Specifically, /O power supply fault
status will be stored in the ReCC bus and Local fault status register (address 0xF0000B). Bit 2 will
be used for /O power supply 1 fault, and bit 1 will be used for IO power supply 0 fault.

9.3 Insertion & Removais

9.3.1 PCIB devices

Atter insertion, power-up and release of reset, a PCIB issues a maintenance interrupt to the host
CPU. The host then goes through the process of setting the board on-line:

. read the id prom and verify revision compatibility with the rest of the system
« setthe yellow ied on
- TBD

When the lid to one of the Polo PCl card bays is opened, the power to the PCIB and 8 associated
SAM slots (7 physical PCl slots and the fiash ROM,) is switched off. To software, this is identical to

29 December 1995 65
“A23

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Programming Guide Stratus wompany Confidential

a simplexed MIO being pulled from a system. In theory, if all disks are duplicated on different
controllers, and if comm is duplicated in both PCI bays as needed, opening a PCI bay lid on a
running system should cause no problems. However, it may be advantageous to include an M&D
function that quiesses all operation in a PCl bay in preparation for powering it down. From a
signalling standpoint, the yellow LED will be illuminated on the remaining power supply.

9.3.2 Polo PCl devices

In the Polo and HSC2 systems, there are no SAM wrapped around the PCI cards to provide hot
plugging. As a result, new PCI cards appear in the system only when a PCIB or HSC2 powers on,
and the code to add a PCI card is simply run after the code to add a PCIB/HSC2. In Polo thereis a
single MAP ram in the CPU board; in Jetta there are separate MAP rams in each HSC2.

9.4 Reset Overview
All Xbus/Gbus boards support at least two ievels of reset, a “warm” reset and a “cold” reset.

Cold reset resets as much state as possibie on a board. It is always applied to a board by
hardware upon first powering it up so that the C/D sides are sufficiently similar to permit operation
of the board without breaking.

Warm reset resets as little state as possible. It is intended to unwedge a broken board with
destroying as little state as possible so as to permit the diagnosis of fault conditions.

As part of the reset process, hardware first puts a board into the broken state and then about 1
microsecond later unbreaks the board. This has two consequences:

There is an approximately 1 microsecond period during reset that a board will not respond to
bus activity.

A board generates a maintenance interrupt when it breaks or unbreaks. This means that a
healthy unbroken board will generate two maintenance interrupts as part of reset process and
a broken board unbroken by reset will generate a single maintenance interrupt.

This next section will attempt to summarize the effect of reset on the major components of the
subsystems. For detailed bit-by-bit descriptions, please refer to Register Definitions on page 82 of
this document.

9.4.1 Polo Resets

9.4.1.1 CPU Reset

A Polo CPU can be warm or cold reset through two mechanisms. First, an Xbus reset can be
issued to a Polo CPU through an /O write across the Xbus to the CPU’s reset register. This will
cause a reset only to a non-broken CPU. Since broken boards do not respond to Xbus accesses,
a reset to a broken board will not reset it. Polo implements a second reset function designed to
reset a board regardless of its state. This is the suggested method for resetting boards in a Polo
system, afthough the Golfbus method is supported for compatibility. This reset is accomplished by
performing a local I/O write to the appropriate reset bits in the local Board Reset register. Setting
the appropriate bit in this register causes a reset to be performed using a special set of dedicated
three way voted lines on the Xbus. For more details on the protocol of this reset line, please refer
to the Xbus Functional Specification. This reset does allow for cold and warm resets to be
broadcast to any board in a Polo system, including CPUs.

29 December 1995 66
ALY

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Frogramming Guide Swatus Company Confidential

The effect of a reset on a CPU is identical to a reset on a Golfbus system and is documented in the
Golfbus Functional Specification.

9.4.1.2 PCIB

In the PCIB subsystem there is a 2 level hierarchy of resets. The two levels are the one MIO
compatible Xbus Board Register, and the eight page 0 SAM compatible Reset registers. Figure 28,
below shows a block diagram of the Resets relative to Polo.

29 December 1995 67
ATS

WO 97/46941

CA 02257511 1998-12-03

Polo Software Programming Guide

PCT/US97/09781

Stratus vompany Confidential

Figure 28. Polo PCIB reset Hierarchy

MIO Compatible Reset Register

warm reset 0

SAM 0 Page0 reset register

-
_,coid reset O

PCl siot 0 reset

’warm reset 1

SAM 1Page0 reset register

coid reset 1
PCl slot 1 reset

—-

warm reset 2

SAM 2 Page0 reset register

cold reset 2
PCl slot 2 reset

-~

warm reset 3

SAM 3 Page0 reset register

cold reset 3
PCI slot 3 reset

.

warm reset 4

SAM 4 Page0 reset register

cold reset 4
PCl slot 4 reset

-

warm reset 5

SAM 5 Page0 reset register

__.cold resetd
PCi slot 5 reset

warm reset 6

" SAM 6 Page0 reset register

_>cold reset 6
PC! slot 6 reset

cold reset

warm reset 7

SAM 7Page0 reset register

warm reset

et

coid reset 7
PCI slot 7 reset

-

The MIO compatible Xbus/Goltbus
Specification, allows for either a wa

reset the entire PCIB subsystem. From an FTIO standpoint, this reset is the equivalent of resetting

Board Register, documented in the Goltbus Functional
rm or cold reset to be performed. The effect of this reset isto

29 December 1995

ALD

68

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software } . .gramming Guide . .atus Company Confidential

an FTIO and every SAM connected to it. Warm and Cold resets leave the PCIB unbroken, off-line,
and with only the red LED on. Warm reset leaves most register state (particularly error register
state, PC! configuration space and the PCI boards themselves.) intact; Cold reset clears nearly
everything. This reset will reset the MIO compatible Xbus/Golfbus registers, all 8 sets of page O
per slot registers, both per bus registers, the two PCI buses connected to the PCIBs (cold reset
only), all PCI devices connected to the PCIB (cold reset only), both sets of PCI configuration space
information (cold reset only), and any associated state with the PCIB. This reset is intended to
allow for resetting of a broken PCIB. As with the CPU resets, this can be accomplished either
across the XBus or from a local CPU write. As with the CPU, the local write is the preferred
method.

The page 0 SAM compatible Board Reset Register is supported to alliow for resetting an individual
SAM. A reset to this register leaves the PCl slot in the Off-line not ready state.This reset resets the
pag0 SAM state for that slot, the PCI board in that slot (cold reset only), and any state associated
with that slot. This reset is intended to allow software to revive a dead PCl card, recover from a
single PC! card hang, and provide any compatibilities required between an FTIO system anda
Polo system with regard to reset functionality.

9.4.1.3 PCl cards

PCI cards are provided by third party vendors, and do not support the warm and cold flavors of
reset. All PCI cards implement a specified reset behavior for their PCl interface; the effects of reset
on the remainder of the card is card-specific.

Typically, resetting a PCl card clears all useful registers and zeros out on-board memory. Please
refer to the manufacturers specification for each PCl card.

This reset is accomplished by writing a PCl reset to the appropriate page 0 SAM compatible board
reset register. It has the effect of only resetting the PC! card and not effecting an SAM compatible
or PCIB board state.

29 December 1995 69
ALY

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Programming Guide Stratu. company Confidential

9.4.2 HSC2 Resets

9.4.2.1 HSC2

In the HSC2 subsystem there is a 2 level hierarchy of resets. The two levels are the one MIO

compatible Xbus Board Register, and the four page 0 SAM compatible Reset registers. Figure 28,
below shows a block diagram of the Resets relative to HSC2.

Figure 29. HSC2 PCIB reset Hierarchy

MIO Compatible Reset Register
warm reset 0
— SAM 0 Pageo ¢ reqist _>cold reset 0
age0 reset register
Rt g 9 PCI slot 0 reset
warm reset 1
SAM 1Page0 reset register __>cold reset 1
—> PCI slot 1 reset
warm reset 2
_>cold reset 2
SAM 2 Page0 reset register
> ’PCI slot 2 reset
icold reset ' warm reset 3
> SAM 3 Page0 reset register __>cold reset 3
— PCl siot 3 reset
warm reset

The MIO compatible Golfbus Board Register, documented in the Golfbus Functional Specification,
allows for either a warm or cold reset to be performed. The effect of this reset is to reset the entire
HSC2 subsystem. From an FTIO standpoint, this reset is the equivalent of resetting an FTIO and
every SAM connected to it. Warm and Coid resets leave the HSC2 unbroken, off-line, and with
only the red LED on. Warm reset leaves most register state (particularly error register state, PCl
configuration space and the PCI boards themselves.) intact; Cold reset clears nearly everything.
This reset will reset the MIO compatible Golfbus registers, all 4 sets of page 0 per slot registers,
both per bus registers, the PCI bus connected to the HSC2 (cold reset only), all PCI devices
connected to the HSC2 (cold reset only), the PCI configuration space information {cold reset only),

and any associated state with the HSC2. This reset is intended to aliow for resetting of a broken
HSC2.

The page 0 SAM compatible Board Reset Register is supported to aliow for resetting an individual
SAM. A reset to this register leaves the PCI slot in the Off-line not ready state.This reset resets the
pag0 SAM state for that siot, the PCI board in that slot (cold reset only), and any state associated
with that slot. This reset is intended to allow software to revive a dead PCI card, recover froma

29 December 1995 70
A3

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Programming Guide stratus Company Confidential

single PC! card hang, and provide any compatibilities required between an FTIO system and a
Polo system with regard to reset functionality.

9.4.2.2 PCl cards

PC! cards are provided by third party vendors, and do not support the warm and cold fiavors of
reset. All PC! cards implement a specified reset behavior for their PCl interface; the effects of reset
on the remainder of the card is card-specific.

Typically, resetting a PCI card clears all useful registers and zeros out on-board memory. Please
refer to the manufacturers specification for each PC! card.

This reset is accomplished by writing a PCl reset to the appropriate page 0 SAM compatible board
reset register. It has the effect of only resetting the PCI card and not effecting an SAM compatible
or HSC2 board state.

29 December 1995 71
Al9Y

CA 02257511 1998-12-03

WO 97/4694
! PCT/US97/09781

Polo Software Programming Guide Stratus Company Confidential

9.5 Determining the source of a Maintenance interrupt

Maintenance interrupts provide notice that there one or more conditions requiring action from the
M&D process. In general, it is impossible for software to distinguish between a single maintenance
interrupt, and multiple maintenance interrupts in quick succession. Upon seeing a maintenance

interrupt in a system, the following process can be used to determine the source(s) ot the interrupt.

if an Golfbus/Xbus board that was in the system is no longer visible to software then that
board generated a maintenance interrupt. (The recommended way of determining if an Xbus
board is unbroken is by reading the Bus iInterface Status Register; it is guaranteed to return
non-zero on a unbroken board). To get more detail on what happened to the board, it can be
reset and its Common Broken Status and ASIC Specific Broken Status registers examined. If
multiple reset attempts have no effect, the board was either removed or is too broken to be
read. The OS should then use the board presence information from the RECC to determine it
a board has been removed.

Golfbus/Xbus boards that have not broken or been removed from the system will have either
the “Bus Interface Maintenance Interrupt” bit or the “Board Logic Maintenance Interrupt’ bits
set in the their Bus Interface Reporting register it they activated maintenance interrupt.

if the “Bus Interface Maintenance Interrupt” bit is set, then Board Reset register may be read
to see if a maintenance interrupt was due to a board reset. Similarly, the Bus info Error Status
and Misc. Error status registers may be read to determine if the maintenance interrupt was
generated by any non-fatal errors (the board would be broken otherwise). If no bits are setin
either of these two registers, the maintenance interrupt was software generated.

If a “Board Logic Maintenance Interrupt” is seton a PCIB or HSC2, then the interrupt
originated from SAM slots associated with this board, or from a disk being inserted or removed
from the Storageworks disk shelf. The next step is to read the SAM Maintenance Attention
Request register. If any of bits 3-0 in SAM Maintenance Attention Request register is set, all
four PCI Bus Interface State register for SAM3 - SAMO should be read. If any of bits 11- 8 in
SAM Maintenance Attention Request register is set, all four PCI Bus Interface State register
for SAM7 - SAM4 should be read (Polo only).

in Polo, if a “Board Logic Maintenance Interrupt” is set on a Polo CPU, then the interrupt
originated from an IOVA map error and the IOVA Map Error 1 and 2 registers should be
examined (section 12.4.3 and section 12.4.2). The TRID can be used to determine the PCI
slot that sourced the Xbus IOVA operation. The IOVA map error maintenance interrupt can
also be masked from the IOVA Map Error 1 register.

The next step is to examine the SAM Status and Configuration registers for all PCl slots that

issued maintenance interrupts. Bits 7:21 specify various sources of maintenance interrupts;
only some bits are implemented in Polo & HSC2 systems.

On Polo systems, the final place to check is the Polo Disk Status register. This indicates
whether a maintenance interrupt was issued due to a disk swap event. Unfortunately, it does
not specify whether a disk was added or removed:; only that there was a change of state.

9.6 Faults & Errors

9.6.1 PCI card faults

Typically, there will be no Stratus style fault detection comparison logic on 3rd party PCI cards.
Some boards may compute check-sums or utilize parity on memory arrays, support for this level of
fault reporting is th< responsibility of the card driver. However, there should be an interface for
drivers to communicate a text string of fault information to the M&D, so it can be incorporated into

29 December 1995 72

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Programming Guide Stratus Company Confidential

the SYSERR log and be available to the CAC.

The presence or absence of a PCI card is indicated in the PCI config space Vendor ID register.
The PC! bridge will return a value of all 1s (an invalid vendor ID) on read accesses to configuration
space registers of non-existent devices.

9.6.2 PCI bus faults

9.6.2.1 PERR#

The PC! bus is protected by a single Even parity bit over 36 bits of information (32 address/data
and 4 C/BE). The parity is driven with the same timing as the address/data, but delayed by one
clock. All agents on the PCI bus must generate parity.

Data parity errors are indicated using the PERR# signal. Only the device which claims the cycle
may drive the PERR# signal on the PCI bus. The Gambit’Mirage ASIC will continuously monitor
PCl transactions and the state of the PERR# signal, regardless of the selected device. Any PCI
parity errors observed during non-Special Cycles will result in a maintenance interrupt action back
to the host CPU.

PERR# is a non-recoverable condition and causes a state reduction in the Gambit/Mirage ASIC
from on-line to off-line, not ready. This reduction in state will cause a maintenance interrupt. Iitis up
to software to test and bring the card back into service if it can.

9.6.2.2 SERR#

System errors which could be catastrophic are indicated on the SERR# signal. Any PCl agent
which detects a non-recoverable condition can assert SERR#. The Gambit/Mirage ASIC monitors
the state of the SERR# signal and will issue a maintenance interrupt up to the host processor for
any assertion of SERR#. The state of the SAM will then be reduced to Off-line, not ready. The
Gambit/Mirage ASIC does not generate target-abort for this case.

A PCI adaptor non-recoverable condition includes:

1. Address parity errors on all cycles.

2. Data parity errors on Special Cycles.

3. A catastrophic adapter faulit.

SERR# can be disabled via config space on all PCI devices (including the Gambit asics). All PCl
devices power-up with SERR# disabled:; it is up to M&D software to enable SERR# assertion.

9.6.2.3 Polo(Gambit)/HSC2(Mirage) Error logic

Polo(Gambit) detects several error conditions on PCI bus and takes different actions depending
upon error kind. Actions taken for different kind of error is given below.

1. Target Abort

if the bridge is current bus master, bring the SAM who drove the devsel ling to OFFLINE-NOT-
READY state. If this is a read access by host, return tailed op.

It the SAM is current bus master, bring the current bus master to OFFLINE-NOT-READY

29 December 1995 73
—\ AN

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781
Polo Software Programming Guide Stratus Lumpany Confidential
state.

Set the value in PCI Error register and PCl I0VA Ermor register.

2. Master Abort
If the bridge is current bus master, and this is a read access by host, return failed op.

If the SAM is current bus master, bring the current bus master to OF FLINE-NOT-READY
state. ’

Set the value in PCI Error register and PCI IOVA Emor register.

3. Parity Error

i the bridge is current bus master, bring the SAM who drove the devsel line to OFFLINE-NOT-
READY state.

1f the SAM is current bus master, bring the current bus master to OFFLINE-NOT-READY
state.

Set the value in PCI Error register and PCI IOVA Error register.
If the bridge is bus master and is reading from the SAM, failed op returned to the host.

If the bridge is bus master and is writing to SAM, it is up to the SAM to take appropriate
actions.

if the SAM is current bus master and is writing to the host, the transactions is dropped. No
transaction happens on X bus.

if the SAM is current bus master and is reading from the host, it is up to the SAM take
appropriate actions.
4, System Error

If the dont_break_on_serr bit is not set in test controt register, bring all SAMs to OFFLINE-
NOT_READY state. if the dont_break_on_serr bit setin test control register, nothing happens.
On power on, dont_break_on_serr bit is cleared.

Set the value in PCI Error register and PCl 10VA Error register.
if the bridge is bus master and is reading from SAM, failed op retumned to the host.

If the bridge is bus master and is writing to SAM, itis up to the SAM to take appropriate
actions.

It the SAM is current bus master and is writing to the host, the transactions is dropped. No
transaction happens on X bus.

If SAM is current bus master and reading from the host memory, the trahsaction is dropped.
No transaction happens on X bus. The SAM receives target abort.

Note: If the host read of PC! bus gets SERR and retry, but do not get SERR for retried
transaction, data is returned to the host. However PCI Error and PCI IOVA Error register is
updated. :

3 Out Error (TRDY timer error)

p bridge is current bus master, assert PCI reset to the SAM who drove the devsel line. If
is a read access by host, return failed op.

ét the value in PCI Error register and PCI IOVA Error register.

29 December 1995 74
AN

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Programming Guide Sturatus Company Confidential

6. Drive Check Error

-

Break PCIB/SAM board.
Set the value in PCI Error register and PCI IOVA Error register.

G.\Retry Count Error
Bring the SAM who drove the devsel line t \OFFLINE-NOT-READY staté,. If this is a read

ccess by host, retum failed op.

Set the value in PCI Error register and PCI IOVA Error register.
TRDY Tivreoor Ev-vev-
isConneet Count Emor

issue PCI reset to the SAM who drove the devsel line. If this is a read access by host, retum

Set the value in PCI Error register and PCI IOVA Error register.

9. Peer to Peer Error

Bring the current bus master to OFFLINE-NOT-READY state.
Set the value in PCI Error register and PCl IOVA Emor register.

10. Protocol Error

1.

If the-bridge is curre;lt bus master, issue PCl reset to the SAM who drove the devsel line. If this
is a read access by host, return failed op.

if the SAM is current bus master, issue PCI reset to the SAM.
Set the vaiue in PCI Error register and PCI IOVA Error register.

Note: If a PCIB is issued a warm reset while PCI traffic is in progress, a protocol error
may be detected by Gambit error logic.

In certain cases of protocol error, write buffer data in the Gambit ASIC goes on X bus
even if there is a protocol error. (e.g. A pci adapter does a write to gambit, but does not
assert irdy_ and deasserts frame_, causing a protocol error) .

Host Request FIFO Time-out Error

This error is detected when Host Request FIFO (inside Gambit ASIC) requesting to access
PCI bus fails to advance by the number of clock ticks specified in Host Request FIFO Time-out
value Register. In this case, PCIB broken so that CPU does not hang, waiting for data to
return from PCIB.

Break PCIB/SAM board.
Set the value in PC! Error register and PCI IOVA Error register.

Note: This error happens in some rare catastrophic condition(e.g. frame_ signal stuck
low on PCI bus). When this error condition happens, the PCI IOVA Error Register and
PCI Error Register may or may contain the info about the transaction that caused this
error, since it is impossible to figure out which transaction caused this error.

The PCI error logic in Gambit implements PC1 IOVA register and PCI Error register for diagnosing
errors. The PCI Error Register is read only by host. This register has arm/rearm control. This
register could be armed/rearmed by host. When PCI Error Register is armed, the PCl IOVA

29 December 1995 75

AD3

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Polo Software Programming Guide Stratus wompany Confidential

register contains the PCI bus address that caused error. When an error occurs, the PCl IOVA
register and PCl Error registers are frozen so that it holds the address that caused error.
Subsequent errors does not affect the register. It needs to be rearmed before it could store
address for next error. For description of PC IOVA register and PCI Error register, refer to section
13.5.5.

9.6.3 Disk bus faults

The DEC Storageworks disk solution provides the necessary features tor Stratus disk M&D. In
particular, Storageworks accomplishes live insertion, insertion/removal detection, and fault LEDs.
in order to perform these tasks DEC has implemented two basic features. The first one deals with
live insertion. Live insertion is accomplished through some current limiting and power sequencing.
it seems to work. The latter two features are accomplished through DEC’s fault bus. The fault bus
consists of a swap interrupt and an LED bus. Both of these features are impiemented on Polo.

There are a series of operations which should be performed by the M&D processes associated
with the various M&D features of the disk subsystem. These are discussed in the sections below.

9.6.3.1 LED Initialization

LED initiatization should be performed at power up time. The LED initialization routine provides a
simple way to tum off all of the LEDs. At power up time, the LED state is non-deterministic, and
must be set by setting/resetting each LED individually, or as a group by using the broadcast bit.
The broad cast is performed by setting (turn on LEDs) or clearing (to tum off LEDs) bit 4 and
setting bit 3 (the broadcast bit) in Disk LED Control register. This register is described in section
12.6.1.1 of this document. In a broadcast write to the disk LEDs, the SCSI device target ID (bits
2:0) are not meaningful. For example, to set all of the LEDs ina SCS! bus, a 18x would be written
to the register.

9.6.3.2 Disk LED Control

individual LED control is performed on an as needed basis by the software. Software has control

over one of the LEDs, the fault indicator, on the disk. in order to address a particular siot, bit 3 (the
broadcast bit) must be clear, bits 2:0 should be set to the SCS! device target ID, and bit 4 should

be set (to turn the LEDs on) or cleared (to turn the LEDs off) in the Disk LED Control register. This
register is described in section 12.6.1 1 of this document. The SCSI device target ID is the same

as the SCS! devices normal SCS! device number. For example, to set the led for SCSI device 2,a
012x would be written to the Register. to clear the LED for the sam device, a 002x would be written
to the register.

9.6.3.3 Disk Insertion and Removal

Finally, disk insertion or removal is detected through the swap has occurred bits. For the C-side
shelf, this is on bits 1 and 17 and for the D-side it is on bits 9 and 25 of the Disk Status register. If
the corresponding interrupt disable bit is cleared, then a maintenance interrupt will be generated
due to this event. The interrupt is cleared by clearing the appropriate bit in the register, bit 1 for C-
side interrupts, and bit 8 for D-side interrupts. The swap interrupt refiects only that a change has
occurred in the state of the disk shelf, the M&D software must perform a SCSI poll to determine
the nature of the change.

29 December 1995 76

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Programming Guide Stratus Company Confidential

9.6.4 SCSI bus faults

Faults on the SCS! bus are handied in a manner specific to the PCI card.
9.6.5 PCIB/HSC2 faults

9.6.6 Xbus/Golfbus fauits

Xbus faults reported by the PCIB/HSC2 are handied like those from any other Xbus/Golfous
board. Please refer to the Xbus/Golfbus Functional Specification for more information.

9.7 Diagnostics

9.7.1 PCI Card

The level of diagnostic support for the PCI cards will be consistent with the PCI Third-Party
Adapter Requirements Specification. Most PCI cards will be very highly integrated (consisting of 1
or a few chips), and all are anticipated to be very reliabie. In any case, they are non self-checking
components, and the system is protected from incorrect operation by higher level mechanisms:
address re-mapping, check-sums, and time-outs.

The system must be able to isolate faults down to a field replaceable unit. If it is not possible to

isolate taults to this level via the error reporting registers, specific fault isolation diagnostics will be
needed.

9.7.2 PCIB

The PCIB/HSC2 board has no local processor and an extremely low chip count. It will be tested
and diagnosed exclusively by scan.

29 December 1995 — | 77
ARS

CA 02257511 1998-12-03

W
O 97/46941 PCT/US97/09781

Polo Software Programming Guide Stratus Lompany Confidential

10. ReCC Functionality on Polo

This section describes key changes envisioned for the ReCC firmware on Polo. On Polo, itis a
goal to isolate the OS from many changes in the M&D subsystem that are particular to Polo.

10.1 Remote Power control

One feature on Jetta that is not supported on Polo is that ability to cycle power from the ReCC.
The Polo machine does not implement house keeping power or the power supply control
necessary to perform this function. Therefore it is not supported on Polo. ReCC firmware should
probabiy stub out this command set. It has been suggested that the ability to power down the
machine from the ReCC be supported. This feature would require spinning the else gate array on
the ReCC and therefor will not be supported.

10.2 RS-485 bus

Polo does not impiement the CDC. in the initial release of Polo there is no 485 bus devices. The
485 is in the system for future expansion but with no devices in the 485 system, it will not respond
to any polis. Therefore, the ReCC firmware should return intelligent response to M&D requests for
485 information.

10.3 Powerfail
Polo does not support powerfail. Polo’s solution to AC failures is accomplished through an
interconnect to an extemal UPS. The interconnection to the UPS will be documented in a later

release of this specification. It is expected to be RS-232, and it will be connected to the secondary
console when it is used.

10.4 Clockcard, backpanel power supply failures

The clock card and backpanel power supplies are not implemented in Polo, theretore there will be
no signalling of these faults.

10.5 1/0 power supply failures
The I/0 power supply fauit signals may be rooted in place of the backpanel power supply signals.

If these lines are activated it signals that the 1/O power supply has determined thata fault exists in
the /O power supply.

10.6 NVRAM

It would be preferable to replace the full functional EEPROM with flash prom. This may effect the
writing algorithm for the PROM.

29 December 1995 78

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Programfning Guide Swatus Company Confidential

11. Board States

This section describes the board states for the PCIB and SAM modules in the Polo system and the
HSC2 for the Jetta system.

11.1 PCIB Board States

The Polo PCIB module would gain little by supporting duplexed operation for the following
reasons:

1. All paired SAM space accesses, whether to memory or /O must be converted in hardware to
non-paired. This is because the Polo PCIB does not have the benefit of going through an MIO
before driving the Xbus so the two PCIB boards cannot know the same information.

2. Many of the registers in Gambit could only be accessed through paired space due their
definitions aiready.

The task of implementing a duplexabie PCIB in hardware would add work with little or no gain so
the PCIB can only be run in simplexed mode.

11.2 HSC2 Board States

The HSC2 is similar to the BIO in that it does not support duplexed operation. The HSC2 is similar
to the Polo PCIB in that it shares the SAM board states model detailed in SAM Board States on

page 80.

26 December 1995 — 79

ABY

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Programming Guide Stratus Company Confidential

11.3 SAM Board States
Figure 30. SAM-PCI Board State Transition

no efror state

Off-line
Not Ready

e

rearm_err_regs (clear errors)

arbiter enabiled

ONLINE

PCI error

Board States:

OFF-LINE - Not Ready
Board capable of receiving and responding to XBus/Golfbus requests, but is incapa-
ble of performing PC! adaptor initiated requests. There is non-zero error state in the
SAM.

This state indicates the occurrence of a .PCl Bus related hardware fault which was
detected by the checking logic. This state cannot be entered by a software set off-line
command as there must be non-zero error state in the SAM.

OFF-LINE - Ready
Board capable of receiving and responding to XBus/Golfbus requests but is incapa-
bie of performing PCl adaptor initiated requests. No error conditions are present.

This state is entered automatically after a cold or warm reset (provided there are no
“errors detected by the SAM) or when the error state of the chip is cleared via a Re-
arm Error Command. Also software can enter this state by either a set off-line com-
mand or by a clear on-line command.

ONLINE
Board capable of receiving and responding to XBus/Golfbus requests. Board capabie
of performing XBus/Golfous initiated PCI requests. PC! adapter enabled to post re-
quests.

26 December 1995 80

A>3

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Fogramming Guide otratus Company Confidential

Software can enter this state with a set on-line command to the Bus Interface Sate
Register provided there is a non-zero error state.

Figure 31. SAM board states.

/2]
o
Z
<
=
=
Q
®)
(/2]
=2
m
=
w
s
w
>
w
w
=
L
O
w
o

— o IPCI ADAPTER TARGET REQ.

-+ = -+ ofRESPOND TO SYTEM BUS COMANDS
-~ o o o]PCIADAPTER MASTER REQ.

= o © X JON-LINE
- = o XBIREADY

KEY:

o 1 — State bit true.

- 0 — State bit false.

e X — State bit true or faise.

26 December 1995 81

AD8

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Programming Guide Stratu.. company Confidential

12. Register Definitions

The following section outlines the I/0 space registers in the Polo system.

12.1 XBus/Golfbus Bus interface Registers

Al 10 registers in the Xbus/Goffbus interface are designed to be accessed as 32-bit registers so as
to be accessible by all devices on the bus. Wirites to any smalier data size Xbus/Golfbus registers
are ignored and reads returmn 32-pits even if a smaller size datum was accessed. Though all
registers are 32 bits, they are spaced at 64 bit (8 byte) intervals to aid future board designs which
may make use of 64-bit internal busses.

Writing any non-existent 10 register has no effect (i.e. unused addresses do not wrap around and
map to used addresses). Reading a non-existent 10 register either returns 0's or causes a NACK,
depending on the particular register. The read never has any side effects.

There are two types of |O registers supported in the Xbus interface in additional to interrupt
registers intended to mimic the HP-PA interrupt scheme:

1) read/write registers

These registers are readable/writable 32 bit registers for which no bit encoding occurs, i.e.
assuming hardware events have not altered any state, what is written to bit 0 is read from bit
0, what is written to bit 1 is read from bit 1, etc. For upward compatibility, unused bits should
always be written with 0's, though 1’s have no effect. Reads of unused bits always return 0's.

2) read/set/clear registers

Read/set/clear registers are used when individual bits need to be atomically updated. Reads
return 32 bits: writes specify one of the 32 bits to be either set or cleared. Specifically, writes
are performed by selecting one of the 32 read bits bit to be atomically set or cleared with the
five least significant bits (4:0) pointing to the bit and using the 8th least significant bit (7) to set
(=1) or clear (=0) the selected bit. For example, to set bit 2 of the read register, 00000082x is
written to the register. To clear bit 2 of the read register, 00000002x is written.

Unused bits always return 0's and for upward compatibility unused bits should always be
written with 0's, although writing 1°s has no effect.

3) read/clear registers

Read/clear registers are used when individual bits need to be atomically updated. Reads
return 32-bits; writes specify one of the 32 bits to be cleared. Specifically, writes are performed
by selecting one of the 32 read bits bit to be atomically cleared with the five least significant
bits (4:0) pointing to the bit and using the 8th least significant bit (7) clear (=0) the selected bit.
For example, to clear bit 2 of the read register, 00000002x is written. Attempts to set the
register will have no effect.

Unused bits always return 0's and for upward compatibility unused bits should always be
written with 0's, although writing 1's has no effect.

12.2 Reading Registers with Different C/D Information (Polo Only)

Note: This section does not apply to the HSC2 as there is no board processor to read the error
registers in local space.

There are certain C and D registers that can have different values (for example the error registers).
in a duplexed pair of boards the register values between board pair may also vary. There must be
a way of reading these registers via either the local or a remote processor.

29 December 1985 82

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Programming Guide stratus Company Confidential

These registers should not be read in local space because this could bring duplexed boards and/
or the C&D board halves out of lockstep when the register values are different.

The access to these registers is similar to unpaired reads in that part of the data checking has to
be ignored. During an unpaired read the board not providing the data has to ignore the checking
but go through the motions to remain in lockstep. In this case the concept is taken a little further.
Each board half (except the board half actually being read) goes through the motions but ignores
the error checking on the info; however the trid, func_op, and parity are still checked.

Since some of the bits are driven from the C-side and some are driven from the D-side and the
data from the two sides can difter, there is a complication in generating good parity. The solution to
this probiem is to place the differing error bits in the regions of the info bus that are driven by the
ASIC responding to the read (see figure 7). For exampie C-side error bits have to be in the region
7:0 or 23:16, and the D-side from 15:8 and 31:24. To get good parity each side drives the same
data on each of the bytes that the ASIC drives and puts zeros into the bytes that the ASIC does
not drive. This will result in an even number of ones in the parity chain.

These registers must be readable when the board is off-line which is not an issue because the
board responds to unpaired reads when it is off-line. There is a problem reading these registers if
the board is broken. When the board is broken, it cannot be read or written by software. To access
these registers on a broken board there must be a warm reset which brings the board to the off-
line state.

Figure 32. Bus Driver Definition

6 0 0 0
7
U Z

trid func_op Info Bus Parity

Bits are assigned starting from the least significant bit.

Driven by the D-side ASIC Driven by the C-side ASIC
during normal accesses, and during normal accesses, and
by the driving ASIC during by the driving ASIC during
single-side accesses. single-side accesses.

7/, Parity is driven by the D-side on the CPU.
It is driven by the D-side of the PCIB during normal accesses,
and by the driving ASIC during Single Side accesses.

12.3 Common Xbus/Golfbus Register Definitions (Polo Only)

Note: HSC2 supports the set of common Golfbus Registers. Refer to the Golfbus Specification for
details conceming the common Golfbus Registers for the HSC2 board.

The Xbus supports a set of common registers that are present on all Xbus boards. These are
modeled directly after the Golfbus interface registers, and preserve compatibility to the bit level
whenever possible. However, due to the different physical partitioning of the Polo system, there
are necessarily some changes. To ease the task of porting software to the Polo system, we define
four levels of compatibility for each register:

- exact: this register preserves exact read/write functionality with the Golfbus definition, and
may be programmed in exactly the same way. Examples inciude the ID PROM Address Data

29 December 1985 83
AL

WO 97/46941

CA

Polo Software Programming Guide

02257511 1998-12-03

PCT/US97/09781

Stratus company Confidential

register.

. usage change: this register is bit for bit identical
practice may be different. For exampie:

med to monitor the function codes on the backplane; however, the Xbus is 32 bits and

usage in
program
does not
. subset/super-set: the Xbus version of this registe
register. it may be programmed i
systems may not be supported in
that do not exist in a Golfbus board. An
does not have the equivalent of the bus obey,

« incompatible: thi
The Xbus/Golfbus compatibility column in table 15 indicates the level of compatibility with the

corresponding Golfbus register. Descriptions of the registers follow the table

use the Golfbus 64 bit backplane function codes.

Table 15. /0 Space Map.

n the same way,

to the corresponding Golfous register, but the
the performance monitor registers can be

r is a subset or super-set of the Golfous

but bit values that make sense in Golfbus
Xbus systems or visa-versa. it may also have additional bits
example is the Bus Interface State register: the Xbus
s0 setting the “obey_a" bit has no effect.

s register has new meanings and bit definitions in an Xbus system.

Oftset Register Name Type | C/D different ’g‘r’:g:t‘i’g;’i‘t‘ys
"TEEEES. | 1D PROM Instr Read/write | no exact
7FEEFO | 1D PROM Address Data Read/Write | no exact
7FFFE8S | Board Reset Read/Set/ no superset
Clear
7FFFEO | Bus Interface State Read/SeV/ no subset/superset
Clear
7FFFD8 | Board Sync Register Read Only | non- exact
deterministic;
data MUST
be discarded
7FFFDO | LED Control Read/Write | no exact
7FFFC8 | SlotiD Read Only | no exact
7EFFCO | Read Ping interval Read/Write | no exact
ZEFEBB | Set Interrupt/Interrupt Status Read/Write | no not impl.
7FFFB0 | Clear interrupt Wrteonly | no
7EEFAS | Set interrupt Mask/interrupt Read/Write | no not impl.
'} Mask
JEFFAO | Clear interrupt Mask Write only no not impl.
EFFo8. | Gen Purpose Comm [7:0] Read/Write | no exact
7FFF60
7EFF58 | Memory Size/Location Read/Write | no implemented for
S/W compatibility,
. but ignored by H/W
7EFF48 | Test Control Read/Sev | CD different | subset
Clear it difference
bit is set
7FFF40 | Party Test Read/Write | no not implemented
7EEF38 | Bus interface Fault Reporting Read/Set/ yes incompatible
) Clear
7EFF30 | Common Broken Status Read Only | yes incompatible
SFEE28 | ASIC Specific Broken Status | Read Only | yes incompatible
7FFF20 | Bus Info Error Status Read Only | yes subset
29 December 1995 84

WO 97/46941

CA

Polo Software Programming Guide

02257511 1998-12-03

PCT/US97/09781

stratus Company Confidential

Offset Register Name Type C/D different)é 2‘;%23::;;5
"YFEr18 | MisC Error Status eag only | yes subset
7FFF10 Control Bus Error Status Read Only | yes new register
7FFFO8 | Bus Error Byte Status Read Only | yes usage change
7FFFO0 | Voter Emror Transceiver Read Only | yes incompatible
Status
7FFEF8 | Bus ASIC Chip Revision Read Only | no new vaiues
7FFEF0 | Perf_Counter Read/Write | no exact
7FEEES: | Perf_Counter_Trig{1:0] Read/Write | no exact
7FFEED
7FFEDS:; | Perf_Counter_Mask{1:0] Read/Write | no exact
7FFEDO
7EFECS | Perf_Counter_Control Read/Set/ no exact
Clear
7FFECO: | Fault Bit[1:0] Read/Write | no new register
7FFEBS
7FFEBO | Data Match Read/Write | no new register
7FFEA8 | Error Control Read/Set no new register

General Warning: Many of these registers have bits which can be toggled during self-test and left
in varying legitimate states. Prior to or as part of duplexing, all bits must be ensured consistent.

Second General Waming: Several of the error reporting registers are “CD different” and can
legitimately contain data that is different between C and D sides of the board. They must only be
read via unpaired space, or they could break the board or hang the system.

The format of each register description is as follows. The paragraph header for each description
provides the register name. The bold faced text immediately following contains the register type,
address(es), reset states, and a listing of boards types it is present on.

12.3.1 ID Prom Instr
Type: Read/Write
Present on all Xbus boards
Warm and Cold have no effect on this register
Compatibility: exact

Oftset [22:0): 7TFFFF8

Writing to this register scans an instruction into the extemnal JTAG ID Prom logic. Reading this
register retuns the status of the scan. It is only used for initializing the 1D Prom logic after power-
up or reset.

31:8
7:0

Reserved

JTAG instruction/status for the external ABT 18245 scan register.
Refer to the next section for usage. Valid instructions are

SAMPLE_PRELOAD = 82x
EXTEST = 00x
Valid return status
OK_STATUS = B1x
29 December 1985 85

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781
Polo Software Programming Guide Stratus Company Confidential
12.3.2 1D PROM Address Data

Type: Read/Write o Oftset [22:0]: 7FFFFO

Present on all Xbus boards
Warm and Cold have no effect on this register
Compatibility: exact

31:28 1D prom opcode. This controls the WE_, CE_, and OE_lines of the ID Prom

id_READY = 6x
id_PRESENT_DATA = EX
id_WRITE = Ax
id_OFF = 7x
id_READ = 4%
27:20 ID Prom Data. On writes, this is the data to be written into the id prom. On reads, it is the
data returned
19:11 Reserved
10:0 1D Prom Address.

Every Xbus board has a 2Kx8 writable ID PROM. The PROM is intended to store various board
status information such as serial number, eco rev level, PCB rev level, etc.

The actual PROM used is the X2816C 2Kx8 EEPROM from Xicor. This part is accessed though a
JTAG compatible serial scan interface to save pins on the bus ASIC and to allow the part to be
accessible via the board's scan test logic. A Texas Instruments ABT18245 scannable buffer is
used to translate from the scan interface to the ID Proms broadside pins. More detail on the use of
this part is available in section 11.3.1 on page 98 (ID PROM Partitioning) in the Xbus Functional
Specification.

Logically, the ID PROM appears as two virtual 32-bit registers, an instruction register for sending
initialization commands to the ABT 18245 scan chip, and an address_data register for reading and
writing address/data pairs to the id prom itself. These two virtual registers are actually
implemented as a single 44 bit scan register in the ASIC. Writing to the instruction register initiates
an 8 bit instruction scan to the ABT 18245, and writing to the address_data register initiates a 44 bit
data scan which drives and samples the pins of the id prom. Reading the address_data register
returns the bits of the scan register corresponding to the address, data, and opcode fields.
Reading the instruction register returns an 8 bit value corresponding to the results of the
instruction scan. Note that there is only one scan register; a read of id prom instruction reg should
only follow a write to the id prom instruction, and a read of the id prom address data reg should
only follow a write to that address. Otherwise, deterministic gibberish will be retumed. Once
initialized, reads of the instruction and address_data registers will always return non-zero data; ifa
2ero is ever returmned, it is due to the target board going broken or a simplexed fault in the 1D prom
hardware.

The ID Prom hardware needs to be initialized after power-up or a warm or cold reset. Once it has
been initialized, the prom can be read or written. The ID prom is a fully random access device, with
no sectors or erase modes. When a single byte is written to the X2816C, the device begins an
internal programming cycle that takes ~5mS. While the programming cycle is in progress, bit[7] of
the byte written to the part will appear inverted when read: software needs to poll the device to

determine when the program cycle is finished. The ID prom has an endurance of 10,000 writes.

To initialize the ID Prom hardware:

ID_prom_instr = SAMPLE_PRELOAD; //10000_0082x)
ID_prom_instr = EXTEST; //(0000_0000x)
29 December 1985 86

Al

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781
Polo Software Programming Guide Stratus Company Confidential
if(ID_prom_instr != OK_STATUS); //7(0000_0081x)

“hardware failure in ID prom”
ID_prom_address_data = {id_OFF,28°'h0000000}

To read the 1D prom addresses start_addr to end_addr

ID_prom_address_data = {id_READ,8’'h00,start_addr}
for (i = start_addr; i<= end_addr; i++)
{
ID_prom_address_data = {id_READ,8'h00,i+1}
read_data[i] = ID_prom_address_data[27:20]

1
ID_prom_address_data = {id_OFF,28'h0000000}

To write mybyte to the ID prom address start_addr

ID_prom_address_data {id_PRESENT_DATA,mybyte,start_addr]}
ID_prom_address_data = {id_WRITE,mybyte,start_addr}
ID_prom_address_data {id_PRESENT_DATA,mybyte,start_addr}

/* poll to wait for programming cycle to complete */
ID_prom_address_data = {id_READ,8'h00,start_addr} /* once */
ID_prom_address_data {id_READ,8'h00,start_addr} /* again */

isbyte= ID_prom_address_data[27:20]
while (isbyte[7] != mybytel[7])
{
wait 1 mS
ID_prom_address_data = {id_READ,8’'h00,start_addr}
isbyte= ID_prom_address_data(27:20]
}
ID_prom_address_data = {id_OFF,28'h0000000)}

Note that two successive writes of the id_READ opcode are required before read data can be -
examined. This is because the boundary scan ring in the ABT 18245 acquires the data on its pins
before applying the new data. The first write acquires old data, then applies the id_READ opcode
and address to the ID Prom. The second write acquires the resuits of the read opcode and first
address, then applies the id_READ opcode (and optionally a new address).

Note that ID PROMs differ in contents from board to board. Boards operating in lock step should
always read and write them in an unpaired fashion. An unpaired read to an ID PROM belonging to
one of a duplex board pair causes both board's state machines to perform the actual read, though
only one board actually drives the bus with the read data. An unpaired write causes both board’s
state machines to go through the motions, though TCK is inhibited on the board not being written.

This JTAG scan occurs at 12 MHz, hence each write of these registers takes about 5 usec. The
bus ASIC circuitry automatically delays a subsequent access if an earlier initiated write is still in
progress. When the ID Prom is accessed via global, paired or non-paired space, other 10
accesses can take place while an ID prom access is in progress. When the ID prom is accessed
via Local space, alt other 1O space access to Bus Interface registers are held off until the access
compietes.

(1)
.

29 December 1995 _ . 87

CA 02257511 1998-12-03

WO 97/46941

Polo Software Programming Guide

PCT/US97/09781

Stratus Lompany Confidential

Figure 33. Internal Implementation of ASIC scan register

31 28 27 20 10

ctl data 0055§ reserved address

e
o X t

tdi t
—> A2 0 A1 B2 B1 —

31

reserved op/status

Waming: Because multiple processors/processes simu

interfere with each other, software must manage access to the ID PROM to ensure only a single

processor/process is accessing it at a time.

Waming: The ID PROMis a simplexed (non error protected) co
similar protection scheme should be utilized by software to ensure
from the 1D PROM. Also, because ID PROMs on partnered boards will have different

PROM Data registers should always be read in an non-paired fashion.

12.3.3 Board Reset
Type: Read/Set/Clear
Present on all Xbus boards

itaneously accessing the ID PROM may

mponent. A checksum or other
the integrity of the data read

Cold and warm reset affect this register as documented below

Compatibility: super-set

Polo boards have two resets, a cold reset applied to the board at

power up (or via software of

ReCC) and a warm reset applied via software or the ReCC once the machine is running. Cold

reset brings all registers to a known deterministic state, warm reset generally resets state
machines and cancels operations in progress but leaves as much of the register state untouched

as possible to aid in debug.

The activation of any of the bits in this register (exc
earlier driven on the board, not that a reset line is currently asserted. It should be noted that as

part of the normal reset process, the board goes broken for the duration of the reset puise, and

then unbroken when the reset de-asserts.

contents, 1D

Ofttset [22:0]: 7FFFE8

luding test cases) mean that a reset pulse' was

29 December 1995

Ahb

88

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Programming Guide Stratus Company Confidential

Cold resets clear all bits in this register except for the bit identifying the source of the cold reset,
warm resets leave bits in their current state (except for activating the bit that identifies the source
of the warm reset).

This is a Read/Set/Clear register, commands are performed by writing to this register with data bits
[4:0] pointing to a bit to set or clear and bit 7 determining whether the bit is set (=1) or cleared (=0).
Reading this register returns 32-bits. Setting either “Software initiated Cold Reset”’ or “Software
initiated Warm Reset" actually causes a reset, even if the bit was already set. Setting (to test the
register read path) the other bits cause the bits to go to 1, but no reset takes place.

Polo is different from Golfbus systems in that writing the Board Reset register of a broken board
across the bus has no effect. For this reason, Polo has 4 additional reset bits that when activated
send a reset puise to the corresponding slot. This reset is interpreted as a cold reset if it is three 4
Mhz periods long and as a warm reset if the pulse is two 4Mhz pulses long. Software initiated Cold
'Reset and Software Initiated Warm Reset still work as before when performed locally, and work
across the bus when the target board is unbroken.
31:13 These read bits/write encodings are reserved for additional board specific resets.
12 Cold Reset Slot 3

Writing to set one of these bits sends a cold reset pulse to the board in the corresponding

siot. These bits return 0 when read. These bits are only implemented in the CPU.

1 Cold Reset Slot 2
10 Cold Reset Slot 1

9 Cold Reset Slot 0

8 Warm Reset Slot 3
Writing to set one of these bits sends a warm reset pulse to the board in the corresponding
slot. These bits retum 0 when read. These bits are only impiemented in the CPU.
7 Warm Reset Slot 2
6 Warm Reset Slot 1
5 Warm Reset Siot 0
4 Software initiated Warm Reset
When reading this register, this bit =1 indicates that the board has received a software
generated warm reset since this bit was last cleared. Writing a 00000084x to this reg-
ister generates a warm reset puise on the board and sets this bit. Writing 00000004x
to this register clears this bit. The activation of either of the cold reset bits also clears
this bit.
3 Reset line initiated Warm Reset

When reading this register, bit 3 =1 indicates that the board has received a warm reset
from the reset line since this bit was last cleared. This bit is cleared by writing
00000003x to this register. The activation of either of the cold resset bits also clears
this bit. This bit can also be set by writing 00000003x to this register.

2 Resef line initiated Cold Reset

When reading this register, bit 2 =1 indicates that the board has received a reset line initi-
ated reset when the board was broken and therefore treated it as a cold reset. Writing
00000002x to this register clears this bit, as does a power up initiated or software ini-
tiated cold reset. When this bit is set by a reset line reset all other bits in this register
are cleared. This bit can also be set by writing 00000002x to this register.

ALY

CA 02257511 1998-12-03

WO 97/46941

PCT/US97/09781
Polo Software Programming Guide Stratus Company Confidential
1 Software initiated Cold Reset

When reading this register, bit 1 =1 indicates that the board has received a software gen-
erated cold reset since this bit was last cleared. Writing a 00000081x to this register
generates a cold reset puise on the board, sets this bit, and clears all other bits in this
register. Writing 00000001x to this register clears this bit, as does a power up initiat-
ed cold reset. This bit is NOT cleared by any wanm reset.

0 Cold Reset due to Power up

When reading this register, bit 0 =1 indicates that the board has received a power-up gen-
erated cold reset since this bit was last cleared. This bit is cleared by writing
00000000x to this register or by a software initiated cold reset. When this bitis set by
a power up reset all other bits in this register are cleared. This bit is NOT cleared by
any warm reset.

12.3.4 Bus Interface State
Type: Read/Set/Clear Oftset [22:0): 7FFFEO
Present on all Xbus boards
Cold and warm reset affect this register as documented below
Compatibility: subset/super-set

This is a Read/Sev/Clear register; commands are performed by writing to this register with data
bits [4:0) pointing to a bit to set or clear and bit 7 determining whether the bit is set (=1) or cleared
(=0). Reading this register returns 32-bits.

Note that since this register always retumns 1s in bit positions [3:1), reading this register will always
produce a non-zero result assuming the board is not broken. Stratabus boards used the iD PROM
for this purpose. Itis recommended that this register be used for that purpose on Xbus systems
due to the large latency of accessing the IDPROM,.

31:23 These read bits/write encodings are reserved for additional board specific purposes.
These bit positions always return 0's when read uniess assigned a board specific
purpose.

22 Force Peer-to-Peer Mode - When this bit is set the operations in the second column of ta-
bie 10, Peer to Peer and Non Peer-to-Peer Operations, will be tumed into peer-to-
peer cycle. Refer to section 6.8 for details. Warm or cold reset clears this bit.

21 Break PCIB board on backplane failure

When a failure on the backplane brings down a bus, it is necessary to break one of the two
boards connected to it. The defaultis 1o pbreak the CPU. When this bit is set, the PCIB
board is the one designated for preaking. This Polo feature is described in full detail
in section 6.4, Bus Erfrors, on page 44. This bit is cleared by cold reset.

20 Enhanced EFQ/RWQ Nesting Disable - this mode is not implemented in Polo (Polo
doesn't support enhanced nesting) - writes are ignored, reads return Zeros.

19 EFQ Freeze State

This bit only exists-on CPU boards. When set, the board busies any Xbus transaction de-
coded forthe Cyclops EFQ (Eviction Flush Queue) EXCEPT ititis a data return of
any size. When read, this bit will not appear set until the Cyclops’s EFQ is empty or is

currently being emptied onto the ibus. it is set in the following cases:

Set when an Xbus or local write of 00000093x is performed AND the board's Freeze
State bit is NOT set.

29 December 1995 a0

ALY

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software rogramming Guide Stratus Company Confidential

18

17

16

15

14

13

12

1

Set when an Xbus or local write of 00000093x is performed AND the board's Freeze
State bit is set AND all Cyclops and Cougar incoming R/W pipes are empty.

This bit is cleared by writing 00000013x, or by warm or cold reset. It is not cleared as a re-
sult of the board going broken.

Break Even Board on TA Failure

This bit only exists on duplexable boards. Setting this bit causes the even board to break
when a TA failure is detected; otherwise the odd board breaks. Software should set
this bit so that the most recently added board of a pair is the one that breaks during a
TA failure. The bit is set by writing 00000092x and cleared by writing 00000012x to
this register. Warm reset has no effect on this bit, cold reset clears it. This bit always
returns 0 on those boards which do not impiement it.

Simplexed mode - this mode is not implemented in Polo - writes are ignored, reads return
Zeros.

Nested OCU Op Disable - this mode is not implemented in Polo (Polo doesn't support
nested OCU operations) - writes are ignored, reads return zeros.

On-line For Dumping

This bit only exists on some boards which have system memory. Setting this bit permits
the memory from an otherwise off-line board to be read. The bit is set by writing
0000008Fx and cleared by writing 0000000Fx to this register. Cold and Warm reset
clear this bit. This bit always returns 0 on those boards which do not impiement it.

Freeze State

This bit only exists on some boards which can be duplexed. On CPU boards, it is used in
conjunction with the EFQ Freeze Mode bit. As outlined in detail in table 15 on page
72 in the Xbus Functional Specification, writing to set this bit (0000008Ex) causes a
board to busy all accesses directed to it except those from its partner untit the board
passes through the sync point. Writing 0000000Ex, Warm and cold reset coid reset
clear this bit. This bit always returns 0 on those boards which do not implement it.

Update Mode

This bit only exists on boards which have system memory and lock cycles. As outlined in
detail in table 15 on page 72 in the Xbus Functional Specification, when set this bit in-
dicates that the board is the “update” mode, a mode used during the board synchro-
nization procedure to update memory on a new board. When in this mode the on-line
board sends its otherwise local writes to the Xbus and the new partner board (in the
off-line/update mode) updates its memory from these writes. Writing to set this bit
(0000008Dx) puts a board in update mode. Writing 0000000Dx, Warm and cold reset
cold reset clear this bit. This bit always returns 0 on those boards which do not imple-
ment it.

Any CPU On-line

This bit indicates that some CPU board in the system is on-line. it reflects the state of the
cpu_oniine backplane signal and exists on all cpu/memory boards in the system. This
bit always returns 0’s on {0 boards. This bit is cleared whenever no CPUs are on-line
(e.g. a single on-line CPU going off-line or a by a system-wide coid reset that brings
all boards off-line). Writing to set (0000008Cx) or clear (0000000Cx) this bit has no
effect.

First CPU On-line
This bit exists on CPU boards only and is set if this board becomes the first in a system af-

29 December 1995 91

A4

CA 02257511 1998-12-03

WO 97/46941

PCT/US97/09781

Polo Software Programming Guide Stratus Company Confidential

10

o ;o N m ©

ter a cold reset to gain mastership by winning an arbitration cycle and being the first
to pass through the sync point. This bit is cleared by both cold reset warm reset. This
bit always returns 0 on non-CPU boards.

Leave Sync Point Jump Switch

Writing to set ant one of these bits (00000086, 00000087x, 00000088x, 00000089x, or
0000008AX respectively) clears the other bits and instructs the board what state it
should leave the sync point in. Regardiess of the state of these bits, any CPU board
which is the first on-line will leave the sync point simplex and clear all these bits. Ex-
cept for the first on-line case, it none of these bits are set, a board will not leave the
sync point.

These bits can be cleared by writing 00000006, 00000007x, 00000008x, 00000009x, or
0000000AX respectively. Warm reset has no effect on these bits, cold reset clears
them. Bits 7 and 8 exist only on boards which can be duplexed and always retumns 0s
on all other boards, bit 9 exists only on boards with system memory that can be put
on-line as just memory boards and always returns Os on other boards, bit 10 exists
only on boards which can “jump switch" and always returns 0s on all other boards.

A board reaching the sync point with bit 6 (Leave Sync Point Simplex) set will leave the
sync point simplex. Bits 7 and 8 (Leave Sync Point Fast Duplex and Leave Sync
Point Full Duplex) functionally are the same. A board will leave the sync point in a du-
plexed state only if its partner is also at the sync point with one of these bits set. Two
bits exist to provide software a differentiation between a “fast’ duplex (one where two
initialize but off-line boards are duplexed) and a “full’ duplex (one where an off-line
board is being synchronized to an on-line board). Bit 9 (Leave Sync Point On-line For
Dumping) is for a board to leave the sync point with only its memory on-ling, say fora
memory dump. Note the Xbus architecture puts the system at risk of crashing when
any simplex system memory is utilized. Bit 10 (Leave Sync Point Jump Switch) is to
support the jump switch feature wherein the on-line board goes off-line and is re-
placed by the previously off-line board.

Fore more information on these bits and there effect on board state see the Board Sync
Register on page 93.

Leave Sync. point on line for dumping - not implemented in Polo systems.
Leave Sync Point Full Duplex

Leave Sync Point Fast Duplex

Leave Sync. point simplex - not implemented in Polo systems.

Duplexed

This bit only exists on duplexable boards. As outlined in detail in table 15 on page 72 in
the Xbus Functional Specification, when set this bit indicates that the board and its
partner are in lockstep. This bit is set as a result of the boards leaving the sync point
in lockstep. The bit is cleared by cold and warm board resets, T/A failure, or by a
poard or its partner going Off-line or Broken. Writing this bit (00000085x or
00000005x) has no effect. This bit always returns Os on no-duplexable boards.

On-line

This bit equals 1 if the board is on-line. As outlined in detail in table 15 on page 72 in the
Xbus Functional Specification, an on-line poard is fully functioning from the system
perspective. Among other things, this means the board responds to all bus transac-
tions directed toward it, including paired reads. Writing to set this bit (00000084x) or
passing though the sync point (in some cases) prings a board on-line. Writing to clear
this bit {00000004x) and the board breaking bring it off-line. Both warm reset and coid

59 December 1995 ' 02

\/{ { 0

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781
Polo Software Programming Guide >wratus Company Confidential
reset clear this bit.

3 Obey Both

The Xbus changes obeys based on the source of a transaction, not in response 10 errors.
There is no need to set the obey state via software control. To maintain backwards
compatibility with the Xbus, writes to the obey bits have no effect and reads always
retum 1.

2 Obey B - not impiemented, retuns 1 on reads.
Obey A - not implemented, retumns 1 on reads.
0 Broken

This is a status bit used to indicate a hardware fault which has caused the two sides of the
board to behave differently. This bit is set automatically by hardware or by the writing
00000080x to this register. This bit, as well as the diagnostic broken bit in the Test
Control register, are cleared at the end of a cold or warm reset if the two sides are
equal or by writing 00000000x to this register. Resets are the preferred method for
unbreaking a board. When this bit is set the board cannot drive any external, (Xbus or
C-connector), signals. The board will still respond to writes addressed to it in 110
space, (if capable), and will continue to check data and address information which
would normally be transmitted to the bus. Whenever this bit is set by hardware a dou-
ble bus error will be issued to the bus to abort any potentially bad information that
may have been driven by this board. The act of clearing this bit generates a mainte-
nance interrupt.

12.3.5 Board Sync Register
Type: Read Only Oftset [22:0]: 7FFFD8
Present only on some duplexable Xbus boards
Cold and warm reset do not directly atfect this register
Compatibility: exact

WARNING: Reading this register may return non-deterministic data and can be different
side-to-side or board-to-board; it is important to discard whatever data is retumed as
soon as possible. Data left in registers can be pushed onto stack frames thus causing
system crashes if different.

A board reads this register to pass through the sync point. This data return may be delayed by
hardware and may have side effects. Reads of this register locally will cause the board to wait at
the sync point. Reads to this register from Xbus 10 will return Os immediately and no sync
procedure will take place.

It is possible to perform non-local |0 accesses to/from a board waiting at the sync point.

The specific actions resulting from a board passing through the sync paint (i.e. reading this
register locally) depend on the state of the board and system involved:

1 First CPU On-line: The first CPU board in a system to try to read the sync register (or a
the first CPU to win arbitration should muitiple CPUs simultaneously attempt this) will
pass through the sync point (i.e. have data retumed to it when reading this register)
and go on-line in a simplex state. Hardware then causes that board to assert the
cpu_online backplane signal, thereby notifying other CPU boards that one CPU
board has passed through the sync point.

Should the cpu_online backplane signal deactivate (say by the only on-line CPU

29 December 1995 93

A S|

CA 02257511 1998-12-03

WO 97/46941

PCT/US97/09781

Polo Software Programming Guide Stratus uompany Contfidential

2

3

4

breaking), another CPU board sitting at the sync point will be released in a similar
fashion.

Note that a board passing through the sync point in this fashion will leave the sync
point in a simplexed fashion regardless of the state of the “Leave Sync Point Sim-
plex”, “Leave Sync Point Fast Duplex”, “Leave Sync Point Full Duplex”, “Leave Sync
Point On-line For Dumping”, and “Leave Sync Point Jump Switch” bits in the Bus in-
terface State register. Should any of those bits have been set, they are cleared in this
case, thereby providing a mechanism for software to detect that the sync point was
passed through as first cpu on-line.

Duplexed: Should a poard's “Leave Sync Point Full Duplexed" or “Leave Sync Point Fast

Duplexed” bit in its Bus interface State register be set, it will leave the sync point in
lockstep with its partner when its partner reaches the sync point (assuming the part-
ner's not already there) and a read is performed of the sync register and that board's
“Leave Sync Point Full Duplexed’ or “Leave Sync Point Fast Duplexed” bits are set. if
a board is waiting at the sync point and its partner breaks, it will leave the sync point
Ondine/Simplexed. (Actually, the duplexed bit will be set and then cleared immediate-
ly when the hardware detects the partner is not on-line). Any other condition and the
board will remain stalled at the sync point.

A pair of boards can pass through the sync point duplexed when both are new to the
system (a “Fast Duplex") or when one board is already part of the system and a new
poard is being synchronized to it (a “Full duplex”). In the tormer case, the boards
were both in the off-line state prior to passing through the sync point (but there was
another CPU on-ling, allowing the boards to stall at the sync point), in the latter case
the “old’ board was in the On-line/Update/Freeze state and the “new” board was in
the Off-line/Update/Freeze state.

It is possible to put a board on-line duplexed when a board is already waiting at the
sync point. This is done by setting the “Leave Sync Point Full Duplexed or Leave
Sync Point Fast Duplexed’ bit on while the board is stalled at the sync point.

On-line/Simplexed: Should a board's “Leave Sync Point Simplexed” bit in its Bus Inter-

face State register be set, it will jeave the sync point, on-line but never duplexed. If
it's partner is on-line, it will stall until its partner is off-line. Note, if a board and its part-
ner both perform a go-on-line-simpiex at approximately the same time they will both
go on-line but not duplexed. lockstep is not guaranteed after leaving the sync point.
This condition is not supported on duplexable boards and Xbus transactions will con-
flict with each other because they will both be using the same TRID.

if a board's partner is at the sync point with a the “Leave Sync Point Full Duplexed’ or
“Leave Sync Point Fast Duptexed’ or “Leave Sync Point Jump Switch” bit set, the
board will pass through the sync point simplexed and not effect its partner in any way.
(The partner will remain at the sync point).

It is possible to put a board ondine simplexed when a board is already waiting at the
sync point. This is done by setting the “Leave Sync Point Simplexed’ bit on while the
board is stalled at the sync point.

On-line For Dumping: Should a board's “Leave Sync Point On-line For Dumping"” bit in

its Bus Interface State register be set, it will leave the sync point immediately with its
memory or-line but otherwise simplex and off-ine. it is planned that this mode be
used to support memory dumps. A board and its partner can be both “on-line for
dumping” but Xbus transactions initiated by these boards are not supported

29 December 1995 — /L 04

AD

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Programming Guide Stratus Company Confidential

it is possible to put a board On-line For Dumping when a board is aiready waiting at
the sync point. This is done by setting the “Leave Sync Point On-line For Dumping”
bit on while the board is stalled at the sync point.

5 Jump Switch: Shoutd a board’s “Leave Sync Point Jump Switch” bit in its Bus Intertace
State register be set, it will either leave the sync point on-line and simplex or off-line,
depending on whether it was on-line or off-line prior to passing through the sync
point. (If it was on-line it leaves off-line and if it was off-line, it leaves on-line.) itis

planned that this mode be used to support on-line upgrade of board with different
processor speeds or memory sizes.

12.3.6 LED Control

Type: Read/Write Offset [22:0]: 7FFFDO
Present on all Xbus boards

Cold and warm reset affect this register as documented below
Compatibility: exact

This register contains status/control of the LEDs on the board. There are three LEDs (red, yellow,
green) arranged like a stoplight on each board handie. The following table indicates their states
(disks and dumb devices are included for completeness). For more information on the LEDs, their

purpose and software mode!, see the appropriate sections of the maintenance and diagnostic
specification.

Table 16. LED States

Uit State Senice | DonotPul | InOperaton
No Power ’ OFF OFF OFF
Testing Cycle Cycle Cycle
Simplexed OFF ON ON
Broken ON OFF OFF
Duplexed OFF OFF ON
Lamp Test ON ON ON
Disk Drive Inserted OFF OFF BLINK
Disk Drive Spun Down OFF OFF OFF
Dumb device OK OFF N/A ON
Dumb Device Faulted ON N/A OFF
Dumb Device No Powers OFF N/A OFF

31:3 Reserved

These bits are reserved for future use. Writes to the register will have no effect. Reads of
this register will return zeros in these bits.

2 Red LED State

The red LED is turned on by hardware whenever the board is in the broken state. When

29 December 1995 _ 95
w1 S 5

CA 02257511 1998-12-03

W
0 97/46941 PCT/US97/09781

Polo Software Programming Guide Stratus Company Confidential

the board is not broken, writing this bit can tumn on (write a 1) or off (write a 0) the
LED. Note that hardware will not clear the LED when the board transitions from bro-
ken to not broken; that must be done by software. The red LED is set by warm and
cold reset.

2 Yeltow LED State

The yeliow LED on is used to indicate that a board may not be removed. It is transition-
driven: on duplexable boards, it is tumed on by hardware when the board transitions
from off-line to on-line-simplexed, or from on-line-duplexed to on-line-simplexed (due
to its partner breaking). It is turned off by hardware on the transition to duplexed or
broken: it is not cleared by the on-line->off-line transition. On non-duplexable boards,
the LED is set when the go on-line command is issued. The yellow LED may be set
or cleared by software at any time. The yeliow LED is cleared by warm and cold re-
set.

0 Green LED State

The green LED is turned on by hardware when the go on-line command is issued, and is
turned off when the board goes off-line or broken. These actions are state transition
driven. Only the transition causes hardware to set or clear the light. At any time, the
software may also set or clear the green led. The green LED is cleared by warm and
cold reset.

12.3.7 SlotID
Type: Read Only Offset [22:0]): 7FFFC8
Present on all Xbus boards
Cold and Warm Reset have no eftect on this register
Compatibility: exact

This register contains the 4 bits that indicate the physical siot position of this board. This is the slot
number address that this board will respond to for non-global /O accesses. Note that this register
is readable locally, when not duplexed (e.g. during diagnostics).

The 4 slot id bits are located in bits 3:0 of the slot id register. Bits 31:4 are unused and will return
zeros when read.

12.3.8 Read Ping interval
Type: Read/Write Ottset [22:0}: 7TFFFCO
Present on all Xbus based boards that can issue /O reads
Cold reset clears this register, warm reset has no effect
Compatibility: exact

31:1 Reserved
0 Read Ping interval

The value loaded into this bit determines the amount of time a read will be outstanding be-
fore a “Ping” bus transaction is sent on the Xbus to determine if there is still a target
that intends to respond to the request. Writing a one sets the read ping interval to 31
bus phases, or 2.667 microseconds. This value is provided for diagnostic and simula-
tion use only. Writing a zero sets the interval to 99.416 microseconds, or 1,193 bus
phases (the gefault). Cold reset clears this register; in normal operation there is no
need to touch this register.

This register is notimplemented on PCIB boards (since they cannot issue /O reads). When a read

20 December 1995) 96
ASh

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Frogramming Guide otratus Company Confidential

request is committed on the Xbus, i.e. the request is not terminated with BUSY or ERROR, a time-
out counter which was pre-loaded with either 31 or 1,193 is enabled. There is a single counter that
times the duration of the oldest request from a board that is outstanding; if a response is not
received before this counter reaches terminal count, a ping transaction is sent on the bus. Should
no acknowledge to the ping be received, the bus interface returns zeros and an error indicator to
the requestor. This error indication is a low priority machine check on the CPU board. If an
acknowledge to the ping operation is received, the time-out counter is reloaded according to the
contents of this register and the timeout count is restarted. If a response is returned before the
counter reaches terminal count, data is returned in the usual fashion.

A read of this register provides the most recently written data. Bits 31:1 are unused and will retum
zeros when read.

12.3.9 General Purpose Communications [7:0]
Type: Read/Write Oftset [22:0): 7FFF98:7FFF60
At least 4 present on all Xbus based boards, up to 8 on some.
Cold and warm reset affect these registers as documented below
Compatibility: exact

These registers are provided for any general communication desired by any resource on or off the
board. Because boards may have different needs that are not defined at this time, eight General
Purpose Communication registers are provided in IO space. Not all 8 registers are necessarily
implemented on all bus ASICs, but each board is required to have at least the first four (3:0).

Table 17. General Purpose Registers

Name Oftset [22:0] Cold Reset Warm Reset
GPRO 7FFF60 cleared cleared
GPR1 7FFF68 cleared no change
GPR2 7FFF70 cleared no change
GPR3 77FF78 cleared no change
GPR4:GPR7 7FFF80:7FFF98 | cleared no change
(unimplemented)

12.3.10 Memory Size/Location

Type: Read/Write Ottset [22:0): 7FFF58
Present only on Boards with Global System Memory

Cold reset clears this register, warm reset has no effect

Compatibility: implemented for software compatibility only

31:8 reserved
Writes have no effect; reads return zeros.

7:0 These bits are implemented for software compatibility with Jetta only. The bits are
read/write but have no effect on operation.

12.3.11 Test Control
Type: Read/Set/Clear Otfset [22:0): 7FFF48

29 December 1995 97

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Polo Software Programming Guide Stratus vompany Confidential

Present on all Xbus boards
Cold reset clears this register, warm reset has no effect
Compatibility: subset

This is a Read/Set/Clear register, commands are performed by writing to this register with data bits
[4:0}] pointing to a bitto setor clear and bit 7 determining whether the bit is set (=1) or cieared (=0).
Reading this register returns 32-bits.

31:7 Reserved.
6 D-side Difference Bit

When the D-side Difference Enable is set, reading this bit returns a 1 from the D side hard-
ware, and a 0 from the C side. This C-D difference can be used for testing compara-
tors internal to the board. This bit is cleared by cold reset.

5 D-side Difference Enable

Setting this bit enables the D-side difference bit. When it is enabled, the D-side difference
bit becomes a one on the D side bus ASIC, and remains a 0 in the C-side ASIC. This
bit is cleared by cold reset.

WARNING: Setting this bit and then reading this register will return ditferent data on
C vs. D sides of the board (via bit 6 below). This will break you if not read local-
ly.
4 Diagnostic_Broken

This bit provided to facilitate self-test. This bit is set whenever a condition that would set the
Broken bit of the Bus Interface State register occurs. However, it may be cleared inde-
pendently of the Broken Bit by writing 0000004x to this register. This permits testing of
various board features while the board remains Broken, preventing the testing from pol-
luting the Golfbus. This bit is also cleared by cold reset. Warm reset sets this bit, be-
cause it causes the board to go broken for the duration of the reset. Writing 00000084x
(which normally would set a bit) have no effect on this register. Clearing Broken (by writ-
ing to the Bus Interface State register) does not clear Diagnostic Broken.

Setting this bit enables the D-side difference bit. When it is enabled, the D-side difference
bit becomes a one on the D side bus ASIC, and remains a 0 in the C-side ASIC. This
bit is cleared by cold reset.

3:0 Reserved.

12.3.12 Bus Interface Fault Reporting
Type: Read/Set/Clear Offset [22:0]: 7FFF38
Present on all Xbus boards
Bit 1 set by cold and warm reset;
tor other bits cold reset clears this bit, warm reset has no effect
CD Ditferent: read via unpaired space
Compatibility: incompatible

This register controls the error latching and reporting around bus fauts. it also is used to rearm the
broken registers. There are five error registers: Bus Info Error Status, Misc. Error Status, Bus Error
Byte Status, Control Bus Error Status, and Voter Error Transceiver Status. All are latched when an
error is detected in the system. This register provides a means of disabling certain faults from
causing the “Error Latching” to occur, as a way of allowing new faults to be detected in the
presence of known, continuous faults. Maintenance interrupts are generated on the latching of a
fault: if a fault is disabled from causing error {atching, it is also disabled from causing a

29 December 1995 Iy 98
AT b

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Programming Guide Stratus Company Confidential

maintenance interrupt. An overview of the information supplied and how it is intended to be used is
provided in section 8.4, Error Reporting, on page 98.

Note that this register is both Read/Set/Clear and CD different. A single write to set or clear a bit
affects the C and D side bits, thus to set bits 3,11,19, and 27, itis only necessary to write
00000083x. It is not possible to write only the C or D side.

These bits indicate whether the various classes of faults cause the Error Registere to record state
(“Error Latching”) and generate a maintenance interrupt. The default is all zeros, i.e. any fault
causes a maintenance interrupt and all of the Error Registers to Update. Error Latched on Thermal
Faults Disabled suppresses Error Latching and the resulting maintenance interrupt due to Thermal
faults. However, if another class of fault occurs and a thermal fault is present, the thermal fault will
be present in the updated error register. Likewise, Error Latched on Incoming 3-Way Vote Fauit
Disabled, Error Latched on Control Bus Fault Disabled, and Error Latched on Clock Fauits
Disabled determine whether 3-way voter, Control bus errors, or clock faults trigger Error Latching
and maintenance interrupts.

*Error Latched on TA Problem Disabled (bits 5,21,13,28) is named “Error Latched on non-OBEYed
Bus Fault Disabled” on Golfbus systems. In Golfbus systems, this bit has two functions: disabling
error latching due to errors on the non-obeyed bus, and due to TA probiem. in the Xbus system,
only the TA problem functionality is retained, so the name of the bit has been changed for clarity.

31,15 D side Error Latched on Control Bus Faults Disabled

30,14 D side Error Latched on Clock Faults Disabled - CPU only
Clock faults only occur on CPU boards.

29,13 D side Error Latched on TA Problem Disabled* - CPU only
TA faults only occur on CPU boards.

28,12 D side Error Latched on Incoming 3-Way Vote Fault Disabled

27,41 D side Error Latchad on Thermal Faults Disabled - CPU only
Thermal fauits only occur on CPU boards.

26,10 D side Board Logic Maint int

This bit being set indicates that a maintenance interrupt was issued by the logic (excluding
the other bus interface) on this board. The appropriate on board register(s) should be
examined to determine the source of the interrupt. This bit is cleared by cold reset or
by writing to clear this bit (00000002x). This bit may be set (and a maintenance inter-
rupt generated) by writing 00000082x. Note: For Gambit ASIC, whenever the Gam-
bit specific logic sets this bit, bits 18 and 2(C side Board Logic Maint int) also
get set.

25,9 D side Bus interface Maint int

This bit being set indicates that a maintenance interrupt was issued from this bus interface
(including the clock chip and board logic maint int). Writing to set this bit causes a
maintenance interrupt to be pulsed on the bus though the read bit in this register re-
mains set until cleared. This bit is cleared by writing 00000001x to this register. Since
both warm and cold reset break and then unbreak a board (events which generate
maintenance interrupts), either warm or cold reset leave this bit set.

24,8 D side Error Data Recorded/Rearm Error and Broken Registers

When this bit =1, the following registers contain new information: Bus Info Error Status,
Misc. Error Status, Bus Error Byte Status, Control Bus Error Status, and Voter Error
Transceiver Status. Writing a 0 to this bit clears these registers and “rearms” them so

29 December 1995 99

A S

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Polo Software Programming Guide Stratus Company Confidential

that they will capture the state of the next applicable error condition. Clearing this bit
also “rearms” the Common Broken Status and ASIC Specific Broken Status registers.
Writing a 1 to this bit has no eftect.

23,7 C side Error Latched on Control Bus Faults Disabled

22,6 C side Error Latched on Ciock Faults Disabled - CPU only
21,5 C side Error Latched on TA Problem Disabled” - CPU only
20,4 C side Error Latched on Incoming 3-Way Vote Fault Disabled
19,3 C side Error Latched on Thermal Faults Disabled - CPU only

18,2 C side Board Logic Maint Int Note: For Gambit ASIC, whenever the Gambit specific
logic sets this bit, bits 26 and 10(D side Board Logic Maint int) also get set.

17,1 C side Bus Interface Maint Int
16,0 C side Error Data Recorded/Rearm Error and Broken Registers

12.3.13 Common Broken Status
Type: Read Only Ottset [22:0}: 7TFFF30
Present on all Xbus boards
Cold reset clears this register, warm reset has no effect
CD Different: read via unpaired space
Compatibility: incompatible

This register contains status bits from the broken logic comparators that are common to all Xbus
boards. it is cleared by cold reset (unless the board leaves cold reset broken). The contents of this
register are frozen when a board first goes broken, so that the only comparators that caused the
broken condition are flagged. This is so that comparators that miscompare further down the line
(after the error has rippled through the logic) do not obscure the cause of the original failure. This
register is re-armed via the Re-arm Error registers bit in the Bus Interface Fault Reporting register.

31,15 D-side saw control bus set broken

30,14 D-side saw DLL out-of-lock

29,13 D-side saw drive miscompare error on a or b bus (i.e. A C to D side info out miscompare)
28,12 D-side saw C-side bus ASIC set broken

27,11 D-side board logic (external to the bus ASIC) generated broken

26,10 D-side slot parity error

25,9 D-side ASIC saw drive miscompare error on 3-way voted line.

24,8 D-side Software set broken by command

23,7 C-side saw control bus set broken

226 C-side saw DLL out-of-lock

21,5 C-side saw drive miscompare error on A or B bus (i.e.a C to D side info out miscompare)
20,4 C-side saw D-siue bus ASIC set broken

19,3 C-side poard togic (external to the pus ASIC) generated broken

18,2 C-side slot parity error

17,1 C-side ASIC saw drive miscompare error on 3-way voted line.

29 December 1895 100

ASE

CA 02257511 1998-12-03

WO 97/46941

Polo Software Programming Guide

PCT/US97/09781

Suatus Company Confidential

16,0

12.3.14 ASIC Specific Broken Status

C-side Software set broken by command

Type: Read Only
Present on all Xbus boards

Oftset [22:0]): 7FFF28

Cold reset clears this register, warm reset has no effect
CD Different: read via unpaired space

Compatibility: incompatible

This register contains status bits from the broken logic comparators that are specific to a particular
Xbus ASIC. Itis cleared by cold reset (unless the board leaves cold reset broken). The contents of
this register are frozen when a board first goes broken, so that the only comparators that caused
the broken condition are flagged. This is so that comparators that miscompare further down the
line (after the error has rippled through the logic) do not obscure the cause of the original faiture.
This register is re-armed via the Re-arm Error registers bit in the Bus interface Fauit Reporting

register.

CPU ASIC (Cyclops):

31,15
30,14
29,13
28,12
27,11
26,10
25,9
24,8
23,7
22,6
21,5
20,4
19,3
18,2
17,1
16,0

Reserved

D-side Fan broken
D-side Sable broken
D-side Cougar broken
D-side TA broken
D-side IM OK broken
D-side Arbitrary broken.
D-side Heuristic broken
Reserved

D-side Fan broken
C-side Sable broken:
C-side Cougar broken
C-side TA broken
C-side IM OK broken
C-side Arbitrary broken.
C-side Heuristic broken

PCIB ASIC (Gambit):

31,15
30,14
29,13
28,12
27,1
26,10
25,9

Reserved

Reserved

Reserved

Reserved

D-side Gambit specific

D-side Xbus Parity generator fault
D-side Arbitrary broken.

29 December 1995

g

101

CA 02257511 1998-12-03

WO 97/4
146941 PCT/US97/09781

Polo Software Programming Guide Stratus Company Confidential

24,8 D-side Heuristic broken

23:7 Reserved.

22:6 Reserved.

21:5 Reserved.

20:4 Reserved.

19,3 C-side Gambit specific

18,2 C-side Xbus Parity generator fault
17,1 C-side Arbitrary broken.

16,0 C-side Heuristic broken

12.3.15 Bus info Error Status

Type: Read Only Oftset [22:0]: 7FFF20
Present on all Xbus boards

Cold reset clears this register, warm reset has no effect

CD Different: read via unpaired space

Compatibility: subset

Any bus error signaled by the system, or a voter, control bus, thermal, or clock error on this board
causes this register (and the other Error Latching registers) to freeze with state recorded for the
offending info phase. This includes both non-fatal and fatal (i.e. board preaking) errors. All bits in
this register correspond to the same info phase. Cold reset clears this register.

31,15 D-side some other board drove a the Bus B Error backplane signal and | did not.
30,14 reserved

29,13 D-side The bus error whose info was recorded was signaled by a different board
28,12 reserved

27,11 D-side ASIC saw parity error on B bus

26,10 D-side ASIC saw parity error on A bus

25,9 D-side ASIC saw loopback fault on the B bus on the info bits the D-side drove.
24,8 D-side ASIC saw loopback fault on the A bus on the info bits the D-side drove.
23,7 C-side some other board drove a the Bus A Error backplane signal and | did not.
22,6 reserved

21,5 C-side This board was bus master for the info.phase recorded

20,4 reserved

19,3 C-side ASIC saw parity error on B bus

18,2 C-side ASIC saw parity error on A bus

17,4 C-side ASIC saw joopback fauit on the B bus on the info bits the C-side drove.
16,0 C-side ASiC saw loopback fault o~ the A bus on the info bits the C-side drove.

This registar reports the various bus and compare fauits separately for the C side Bus ASIC and
the D-side ASIC.

29 December 1995 J 102
Lo

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Programming Guide wvatus Company Confidential

This register will not accurately refiect the state ot the errors if the board is in the “funny” state.
Since boards in the “funny” state do not enter the error sequence, it is not possible to track the
errors.

Al bits are updated upon the detection of an error and remain at the same state until the Error
Data Recorded/Rearm Error Registers bit of the Bus interface Fault Reporting Register is cleared.

12.3.16 Misc. Error Status
Type: Read Only Ofttset [22:0): 7FFF18
Present on all Xbus boards
Cold reset clears all bits except the Thermal faults bits.
Thermal fault is unaffected by any resets.
Warm reset has no effect on this register.
CD Ditterent: read via unpaired space
Compatibility: exact

The bit definitions for this register are identical to the Golfbus Specification definitions with one
difference: thermal and clock faults in Polo only occur on CPU boards so the bits associated with
those faults are CPU only.

28,12 D-side T/A problem (CPU/MEM board ONLY.)

27,11 D-side thermal fault bit O - under temperature (CPU/MEM board ONLY.)
26,10 D-side clock recovery chip status bit 1 (CPU/MEM board ONLY.)

25,9 D-side clock recovery chip status bit 0 (CPU/MEM board ONLY.)

24,8 D-side ASIC saw a three way voter failure

23,7 Reserved.

22,6 Reserved.

21,5 Reserved.

20,4 C-side T/A problem (CPU/MEM board ONLY.)

19,3 C-side thermal fault bit 1 - over temperature (CPU/MEM board ONLY.)
18,2 C-side clock recovery chip status bit 1 (CPU/MEM board ONLY.)

17,1 C-side clock recovery chip status bit 0 (CPU/MEM board ONLY.)

16,0 C-side ASIC saw a three way voter failure

There are two clock recovery chips on every board; each recovery chip has two pins which

indicate the status of the Backplane fault tolerant clock. The various combinations of these status
bits are indicated in table 18

The clock status bits will change off the falling edge of 24 MHz, therefore it is necessary for the
Bus Interface ASIC's to latch the status bits on the rising edge of 24 Mhz (phase12_3) to insure

29 December 1995 103

NG

CA 02257511 1998-12-03

wO

97/46541 PCT/US97/09781
Polo Software Programming Guide Stratus vompany Confidential
proper setup and hold time.

Table 18. Clock Status Definition

Clk Status<1:0> Definition

00 no fault

o1 Clock recovery chip detected a CLK A fault
10 Clock recovery chip detected a CLK B fault
11 Clock recovery chip detected a CLK C fault

Any change on a Thermal fault bit results in a maintenance interrupt (uniess disabled) and freezes
all registers. These two bits are from the thermal sensor on the board.

bit{0] Represents the under temperature pin(6) on the thermal sensor. (etch run to D ASIC.)
bit{1] Represents the over temperature pin(7) on the thermal sensor. (etch run to C ASIC.)

Table 19. Thermal fault Status Definition

T“e’:;‘:‘é: aul Definition
01 Board is within recommended operating temperature.
00 Board is warm, above recommended operating temperature.
10 Board is hot, customer should consider a shutdown.
11 Bad board hardware is causing this condition (illegal).

The T/A problem bit (Cyclops only bit) when set, represents that there is a non-fatal problem in the
T/A Hardware. The board or backplane could be at fault. This condition should be cleared up. If left
un-fixed, REAL T/A problems will not be handled correctly. This bit is masked off by the “Error
Latched on non-OBEYed Bus Fault Disabled” bit.

12.3.17 Control Bus Error Status
Type: Read Only Offset [22:0]: 7FFF10
Present on all Xbus boards
Cold reset clears this register, warm reset has no effect
CD Difterent: read via unpaired space
Compatibility: New Register

This register records the control bus error status to aid in fault isolation of a system experiencing
single or multiple bit errors on the control buses. All bits are updated upon any bus error signaled
by the system, o~ @ voter, control bus, thermal, or clock error on this board, and remain at the
same state until the Error Data Recorded/Rearm Error Registers bit of the Bus interface Fauit
Reporting register is cieared. Cold reset clears these registers.

The bits are set for poth singie vit (correctabile) and double bit (detectable, causes board broken)
errors. Check the Common Broken Status register - see if the error caused board broken.

31,15 Reserved

29 December 1995 i1 04

CA 02257511 1998-12-03

WO 97/46941

Polo Software Programming Guide

PCT/US97/09781

Stratus Company Confidential

30,14
29,13
28,12
27,11
26,10
25,9
24,8
23,7
22,7

21,5
20,4
19,3
18,2
17,1
16,0

Reserved

D-side saw error on control_out_p
D-side saw error on control_in_p

D-side saw error on control_out_o
D-side saw error on control_in_o

D-side saw error on control_out_n

D-side saw error on control_in_n
reserved

C-side arbitration out of sync with D-side.

This bit is set when the C side checking logic sees an unexpected value on the bus_req

control line driven by the D-side.
C-side saw error on control_out_p
C-side saw error on control_in_p
C-side saw error on control_out_o
C-side saw error on control_in_o
C-side saw error on control_out_n
C-side saw error on controi_in_n

12.3.18 Bus Error Byte Status

Type: Read Only
Present on all Xbus boards

Oftset [22:0]): 7FFF08

Cold reset clears this register, warm reset has no effect

CD Different: read via unpaired space
Compatibility: usage change

This register records the bus error status on a per-byte basis to facilitate debug. All bits are
updated upon any bus error signaled by the system, or a voter, control bus, thermal, or clock error
on this board, and remain at the same state until the Error Data Recorded/Rearm Error Registers
bit of the Bus Interface Fault Reporting register is cleared. Cold reset clears these registers.

The bits are interpreted as follows: If the board was the bus master (indicated in the Bus Info Error
Status register) at the time of the error, this register indicates which bytes had a loopback error. If
the board was not a bus master at the time of the bus error, these bits will be zero.

31,14
30,14
29,13
28,12
27,11
26,10
26,9

24,8

Reserved

Reserved

D-side saw error on trid or func_op
D-side saw error on parity

D-side saw error on info[31:24]
D-side saw error on info[23:16]
D-side saw error on info[15:8]
D-side saw error on info{7:0]

29 December 1995

105

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Programming Guide Stratus company Confidential

23,7 Reserved

226 Reserved

21,5 C-side saw error on trid or func_op
20,4 C-side saw error on parity

19,3 C-side saw error on info[31:24]
18,2 C-side saw error on info[23:16)}
17,1 C-side saw error on info[1 5:8)

16,0 C-side saw error on info[7:0]

12.3.19 Voter Error Transceiver Status

Type: Read Only Oftset [22:0]: 7FFF00
Present on all Xbus boards

Cold reset clears this register, warm reset has no effect

CD Ditferent: read via unpaired space

Compatibility: incompatible

These register records the status of the 3-way voting logic. All bits are updated upon any bus error
signaled by the system, or a voter, thermal, or clock error on this board, and remain at the same
state until the register is rearmed by the Error Data Recorded/Rearm Error Registers bit of the Bus
Intertace Fault Reporting register. Error latching and maintenance interrupts due to voter erors
can be suppressed by the Error Latched on incoming 3-Way Vote Fault Disabled bit in the Bus
Interface Fault Reporting register.

For a list of which signals go through each transceiver, please see Xbus Voted Signal Partitioning
on page 96. :

CPU ASIC (Cyclops):

31,15 Reserved, read as zero.

30,14 Reserved, read as zero.

29,13 D-side saw error on online_in

28,12 D-side saw error on reset

1,27 D-side saw error on sync_in

26,10 D-side saw error on board_not_broken_p
25,8 D-side saw error on board_not_broken_o
24,8 D-side saw error on board_not_broken_n
23,7 Reserved, read as zero.

22,6 Reserved, read as zero.

21,5 C-side saw error on online_in

20,4 C-side saw error on reset

19,3 C-side saw error on sync_in

18,2 C-side saw error on board_not_broken_p
17,1 C-side saw error on board_not_broken_o

29 December 1995 : 106

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Programming Guide wwatus Company Confidential

16,0 C-side saw error on board_not_broken_n
PCIB ASIC (Gambit):

31,15 Reserved, read as zero.

28,12 D-side saw error on reset_o

27,11 D-side saw error on reset_n

26,10 D-side saw error on board_not_broken_p
25,9 D-side saw error on board_not_broken_o
24,8 D-side saw emor on board_not_broken_n
23,7 Reserved, read as zero.

22,6 Reserved, read as zero.

21,5 Reserved, read as zero.

20,4 C-side saw error on reset_o

19,3 C-side saw error on reset_n

18,2 C-side saw error on board_not_broken_p
17,1 C-side saw error on board_not_broken_o
16,0 C-side saw error on board_not_broken_n

12.3.20 Bus ASIC Chip Revision
Type: Read Only Oftfset [22:0]: 7TFFEF8
Present on all Xbus boards
Cold and Warm reset have no effect
Compatibility: new values

This register returns a revision number of the ASIC. Note: this information should also be available
from the 1D PROM: it is included here to simplify tracking parts in the tab when the 1D PROM is not
stable.

Tabie 20. Bus ASIC Revision Numbers

. Bus ASIC VLS! part
Board chip Chip Revision number |
"CPU Cyclops 15t pass W Ep X i)
PCIB Gambit 1st pass . "00002777 W1277?

12.3.21 Performance Counter
Type: Read/Write Offset [22:0]: 7FFEFO
Present on CPU/MEM boards
Cold and warm reset Clear this register.
Compatibility: exact

A read of this register will return the value of this 32 bit performance counter. The counter may be
set to any value by writing to this register. This counter will increment every time the trigger
condition (as defined in perf_counter_trig, perf_counter_mask, perf_counter_trig_not_equal and
perf_counter_trig_enable) is encountered. This counter will never increment past the vaiue of
OFEFFEFFEX. If the counter were set to zero and the trigger condition was set to always

29 December 1995 107

AES

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Polo Software Programming Guide Stratus wompany Confidential

increment, the counter would reach the value of OFFFFFFFFx in 358.1 seconds (5.97 minutes).
This register may be read and written while the counter is enabled.

12.3.22 Performance Counter Trig[1:0]

Type: Read/Write Oftfset [22:0]: 7FFEEB:7FFEEO
Present on CPU/MEM boards

Cold and warm reset clear these registers.
Compatibility: exact

This register defines the trigger condition that will increment the performance counter. A trigger
condition is evaluated every 83.381361ns (one ~12MHZ Xbus phase). All Evaluations occur using
data that is “lined up” with the given Xbus bus operation. That is, function codes, physical address,
busy, error, ACK (etc.) are all delayed the correct amount so that all the information presented to
the trigger circuitry have meaning for that Xbus operation. Any bit may be masked to a don't care
using the perf_counter_mask registers (below).

See Perf_Counter_Mask for bit definitions.

12.3.23 Performance Counter Mask[1:0]

Type: Read/Write Offset [22:0}: 7FFED8:7FFEDO
Present on CPU/MEM boards

Cold and warm reset clear these registers.
Compatibility: exact

This register works in conjunction with the perf_counter_trig register above. Abitthatisaone ‘1'in
this register signifies you “don’t care” to evaluate this bit as part of the trigger. A bit that is a zero ‘0’
in this register signifies you wish to evaluate this bit as part of the trigger.

Pert_Counter_Trig[0]: (7FFEEO) OR Perf_Counter_Mask{0]: (7FFEDO)

31:26 Reserved.

26 xbus_error: Some board drove A or B bus error for this Xbus operation or this operation
was aborted due to a previous bus error. All above data could be wrong/invalid.

25 my_busy: This board drove busy for this Xbus operation.

24 xbus_busy: Some board drove busy for this Xbus operation.

23 my_ack: This board drove ACK for this Xbus operation.

22 xbus_ack: Some board drove ACK for this Xbus operation.

21 i_drove_bus: This board was bus master for this Xbus operation.
20 first_op: This is the first operation of a block transfer.

19 func_op: The info bus contains a valid function code, byte enables, RC and physical ad-
dress, else it is data.

18:12 tid{6:0): The 7 bit trid used on this bus operation.

11:6 function_code [5:0]: Needs qualification with func_op (bit 19).

5:4 remote coherent bits [1:0]: Needs qualification with func_op (bit 19).
3:0 byte_enables [3:0]: Needs qualification with func_op (bit 19).

Perf_Counter__Trig[1]: (7FFEES) OR Perf_Counter_Mask[1]: (7FFED8)

29 December 1995 108

ALk

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Programming Guide Stratus Company Confidential

31:0 physical_address[31:00]: Needs qualification with func_op.

12.3.24 Performance Counter Control
Type: Read/Set/Clear Oftfset [22:0]: 7FFECS8
Present on CPU/MEM boards
Cold and warm reset clears this register
Compatibility: exact

This is a Read/Set/Clear register, commands are performed by writing to this register with data bits
[4:0] pointing to a bit to set or clear and bit 7 determining whether the bit is set (=1) or cleared (=0).
Reading this register retumns 32-bits.

31:2 Reserved.
1 Perf_Counter_Trig_(on)_Not_Equal

This bit retumns a 1 if a board's performance counters are incrementing when the trigger
condition is not equal, otherwise it returns a 0. Writing to set this bit (00000081x) will
cause the counter trigger circuitry to increment the perf_counter whenever the trigger
condition (as defined in perf_counter_trig, perf_counter_mask) is NOT seen. Writing
to clear this bit (0000001x) will cause the perf_counter to increment when the trigger
condition is seen. This bit is cleared on cold and warm reset.

0 Perf_Counter_Enable

This bit returns a 1 if a board’s performance counter is enabled, otherwise it retums a 0.
Wiriting to set this bit (00000080x) will enable the performance counters and the per-
formance counters will increment every time the trigger condition (as defined in
perf_counter_trig, perf_counter_mask and perf_counter_trig_not_equal) is encoun-
tered. Writing to clear this bit (0000000x) disables any incrementing of the counter.
This bit is cleared on cold and warm reset.

12.3.25 Fault Bit[1:0]

Type: Read/Write Oftfset [22:0]: 7FFECO
Present on all Xbus boards 7FFEBSB

Cold reset clears this register, warm reset has no effect
Compatibility: new register

This register is used to generate errors on the Xbus or local to the board depending on the setting
of the Error Control register. Each bit in these registers corresponds to a bit on the info bus and the
controt bus. Setting that bit in the register will cause the corresponding bit on the bus to be
incorrect (inverted). The timing of when the bit is incorrect is based on the Error Control register
setting.

Fault Bit[0]: (7TFFECO)

31:0 Fault corresponding bit on info bus 31:0 for the first half of the phase
Fault Bit[1]: (7FFEBS)

24 Fault parity for the first half of the phase

23 Fault func_op for the first half of the phase

22:16 Fault trid[7:0] for the first half of the phase

15:12 Fault corresponding to checkbits 7:4 for second half of the phase

" Fault unused control(3]

29 December 1995 109

AbY

CA 02257511 1998-12-03

W
0 97/46941 PCT/US97/09781

Polo Software Programming Guide Stratus Company Confidential

10 Fault busy
Fault maint_int
Fault ACK
4 Fault corresponding to checkbits 7:4 for first half of the phase
Fault bus_em_b
Fault bus_err_a
Fault grant_inh

O - N W N ®O©

Fault bus_req

12.3.26 Data Match
Type: Read/Write Oftfset [22:0]: 7FFEBO
Present on ail Xbus boards
Cold reset clears this register, warm reset has no effect
Compatibility: new register

This register is used for the data matching capability of the error generation. This allows the user
to set a trigger and the error will not occur until a match is seen on the incoming info bus.

31:0 Data pattern to match against incoming info 31:0 for the first half of the phase

12.3.27 Error Control
Type: Read/Set Oftset [22:0]: 7FFEAS8
Present on all Xbus boards
Cold reset clears this register, warm reset has no effect
Compatibility: new register

Note: The Error Control register is a set/clear register, software can set one bitata time, but
cannot clear any bits. Bits are cleared by hardware once the error has been generated; also once
bit 0 is set no other bits can be changed by software because the error has already been initiated

This register is used to control the different types of errors seen on the system. There are three
modes of operation. The first is normal mode, no error will be produced on the system. The
second mode is immediate trigger. This causes an error after this register is written to and an
access is directed to the Xbus. The last mode is data match. This allows a trigger pattern to be set
in the Data Match register. The error will not occur until the pattern is seen on the incoming info
bus. The matching is done on the first half of the info phase. Note: it is important to set up the Fault
Bit[1:0} register and the Data Match register before this register is set. The types of errors that can
be produced corresponds directly to the cases described in section 6.4, Bus Errors, on page 44.

To produce an error, the first step is to decide which type of error is desired from table 8, Error
Types. Then, if the emor is a Data Match error the Data Match register must be initialized along
with the Fault Bit[1:0] register. If the error is immediate then the Fault Bit{1:0] register must be
initialized. If a transient error or a bus busy is desired the Data Match register must be initialized
but the Fault Bit{1:0] register does not have to be initialized. After necessary registers are
initialized the bit in the Error Control register should be set which comresponds to the error the user
is looking for. Then bit 0 of the Error Control register is set. If it is an immediate error then as soon
as the Xbus is accessed the error will occur. If the error is a data match error then it will not occur
until the data pattern is seen on the incoming info bus.

29 December 1995 110

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Programming Guide swratus Company Confidential

Once bit 0 is set and the error has occurred hardware will clear the bit that indicates the error and
it will aiso clear bit 0. The error will be asserted for as long as necessary to produce the particular
case. Therefore some cases require the error to occur during both CPUTest and IOTest where as
other cases will only require the fault to happen for one phase. Only one error is allowed with the

exception of the transient fault. There can be a transient fault on both buses. If more than one bit is
set, the lowest bit number will have priority. All bits will be cleared after the error is produced.

Table 21. Error Types

Bit Type of Error Case Category
0 | 0: normal operation 1: produce error Normal

1 | CPU Board Faulty Input Circuit - CPU Driving Case 1 Immediate
2 | CPU Board Faulty input Circuit - /O Board Driving Case 2 Data Match
3 | CPU Board Different Data C-Side and D-side Case 3 Immediate
4 | CPU Board Faulty Output Circuit - Buffer to Pad Fault | Case 4 Immediate
5] CPU Board Open - CPU Board Driving Case 5 immediate
6 | CPU Board Open - /O Board Driving Case 6 Data Match
7 | CPU Board Short Case 7 immediate
8 | Backplane Open Etch Case 8 Data Match
9 | Backplane Short Case 9 Immediate
10 | 1/O Board Fauity input Circuit Case 10 Immediate
11 | IYO Board Qutput Circuit Fault - Buffer to Pad Case 11 Immediate
12] I/0 Single-side Access - ASIC Parity Gen. Fault Case 12 Immediate
13 | I/0 Single-side Access - ASIC PCI Data Path Fault Case 13 Immediate
14 | 1/O Non-single-side Access, Different C-D Data Case 14 Immediate
15 | /0 Board Open Case 15 immediate
16 } 1/O Board Short Case 16 immediate
17 | Transient Fault Bus A Case 17 Data Match
18 | Transient Fault Bus B Case 17 Data Match
19 { Bus Busy Bus Case 18 Data Match

The following lines describe behavior that might not be expected with some of the error insertion
cases.

Case 17: the transient bus fault will not cause the faulting board to freeze its error registers, all
other boards will freeze their error registers

Case 18: busy will be asserted for two phases.

29 December 1995 111

A6 Y

CA 02257511 1998-12-03

WO 97/4694
1 PCT/US97/09781

Polo Software Programming Guide Stratus wompany Confidential

12.4 CPU Specific Xbus Register Descriptions

This section deals with the ASIC specific Xbus/Golfous registers found in the Polo/HSC2 ASICs.
Al of the registers in the board specific space with the exception of the /O Address Map Error
register are non-privileged registers. A description of all CPU specific Xbus registers can be found
following the table.

Table 22. Cyclops/Mirage Specific Register Map

Oftset (22:0] Register Name Type HSC2
7FF830 ASIC Specific Configuration Read/Set/Clear | Not Impl.
7FF828 I/O Address Map Emor 2 Read Only Iimpl.
7FF820 /0O Address Map Error 1 Read Only Impl.
7F38818 Jitfv Control Read Only Not impi.
7F&810 Master Jiffy Counter Read Only Not impl.
7F 8808 Quicktime Read Only Not Impl.
7F&800 Time of Day Read Only Not impl.

a. privileged space & = F: non-privileged space, & = E

Cyclops and Cougar (the other large ASIC on the CPU board) share the privileged page 7FF and
the non-privileged page 7FE with Cougar registers in the lower half of the pages in 000->7F8 and
Cyciops registers in the top half in 800 -> FF8. Table 23 iliustrates how the addresses for either
CPU Xbus specific or CPU Xbus common registers are formed.

Table 23. CPU Register System Address Formation

7 a. paired space -> = 1; unpaired space -> =0

12.4.1 ASIC Specific Configuration
Type: Read/Set/Clear Only in privileged page 7FF Ottset [22:0]: 7FF830
Cold reset clears this register, warm reset has no effect

31:2 reserved

2 IOVA address mode 1 = 40 bit mode, 0 = 32 bit mode, refer to section 5.2.
1 Fan Fault set broken disabled
0 Maintenance Interrupt disabled for IOVA errors.

12.4.2 1/O Address Map Error 1
Type: Read Only in privileged page 7FF Offset [22:0]: 7FF828
Cold reset clears this register, warm reset has no effect

31:0 IOVA Address - refer to figure 21.

29 December 1995 112

Ao

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software . «ogramming Guide stratus Company Confidential

12.4.3 1/0O Address Map Error 0
Type: Read Only in privileged page 7FF Oftfset [22:0]: 7FF820
Cold reset clears this register, warm reset has no effect

31:10 reserved.
10 JIOVA Out of bounds Access Error

9 IIOVA lllegal Slot Error - PCI slot accessing (from Xbus TRID) disagrees with PCl siot field
in the IOVA map entry.
8 I0VA Checksum Error.

IOVA Invalid Map Entry Error.
6:0 I0VA Trid (Xbus trid during 1st bus cycle of IOVA info phase).

12.4.4 Time Of Day
Type: Read/Write in Privileged page 7FF Oftset [22:0]: 7FF800
Read only in non-Privileged page 7FE Oftset {22:0]: 7FE800
Cold reset clears this register, warm reset has no effect

This register (and the following three) implement the user accessible time of day function on
Mercury. These registers are initialized through Global writes to page 7FF, and are read-only in the
user visible non-privileged page 7FE.

The time of day is maintained in a single 56 bit master counter that increments at 12MHz. For
compatibility with existing Stratus software, various slices of this counter are referred to by
different names. The time of day refers to the most significant 32 bits of the master counter: it
gives the current time in seconds.

Figure 34. Cyclops Master Counter

Bit 24 increments every second
‘ Bit 8 increments every 15.258789 usec

\

55 47 39 31 23 15 7

— 12 MHZ

il

31 0
| Time of Day ’ reload
vaive
31 0
' QuickTime . l
31 0
l Master Jiffty Counter ,
15 0
l Jiffy Time i

This register should only be written when the counter is stopped (Master Counter Enable bit in the
Jiffy Control register is off). This register is cleared by cold reset.

29 December 1995 113

AX|

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781
Polo Software Programming Guide Stratus wompany Confidential
12.4.5 Quicktime

Type: Read Only in Privileged page 7FF Offset [22:0]: 7FF808
Type: Read Only in non-privileged page 7FE Oftset [22:0]: 7FEB08

Cold reset clears this register, warm reset has no effect

A read-only view of bits 31:0 of the master counter. Bit 24 of quicktime increments once per
second.

12.4.6 Master Jiffy Counter
Type: Read/Write in Privileged page 7FF Oftset [22:0]: 7FF810
Read only in non-Privileged page 7FE Offset [22:0]: 7FEB10
Cold reset clears this register, warm reset has no effect

31:8 Jiffy Counter/Master Counter
This field contains bits 23:0 of the master 12MHz counter. Bits 31:16 are often re-
ferred to as the Jiffy Counter. A Jiffy interval is 15.258789 usec, or 2-'6 geconds.

7:0 Reload Value
This is the counter reload value. The ieast significant 8 bits of the master counter get
reloaded with the contents of this register when they roll over. The reload value is
programmabie to aflow accurate clock operation when the machine is running with a
different speed crystal; i.e. 12MHz is no longer really 12MHz. The reload value
should be set to 256 minus the number of 12MHz clock ticks in 15.258789 usec. In
systems with a standard clock this works out to 49 hex (73 decimal).

This register should only be written when the counter is stopped (Master Counter Enable bit in the
Jiffy Control register is off). This register is cleared by cold reset.

12.4.7 Jiffy Control
Type: Read/Set/Clear in Privileged page 7FF Offset [22:0]: 7FF818
Read only in non-Privileged page 7FE Oftset [22:0): 7FE818
Cold reset clears this register, warm reset has no eftect

31:1 Reserved

0 Master Counter Enable
When this bit is set, the master counter (and thus the Time of Day, Jiffy, and Quick-
time) increments normally. Clearing this bit stops the counter.

29 December 1995 114

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software t..gramming Guide wwatus Company Confidential

12.5 PCIB/HSC2 Specific Xbus Register Descriptions

These registers are the PCIB/HSC2 specific Xbus/Golfbus registers that reside in a PCIB/HSC2
board. Registers described here are implemented in the Gambit ASIC on the PCIB board. Refer to
section 4.5, PCIB MIO/IOBus Compatible System Address Map, for details on the address
mapping.

Table 24. PCIB/HSC2 Specific Xbus/Golfbus Register Map.

Offset [22:0] | Register Name Type
7FFECO - Reserved
7FF088
7FF080 Gambit Maint. Attention Req. [31:0] | Read/Set/Clear
7FFO78 - Reserved
7FF010
7FF008 I0Bus Status Register Read/Clear
7FFO00 - Reserved
7F0000

Table 25 illustrates the formation of system I/O addresses for the Xbus specific and Xbus common
registers found on the PCIB board. Note that the slot number is inverted. Polo PCIB boards do not
run duplexed so they will not respond to paired accesses.

Table 25. MIO Compatible Register System Address Formation

Oftfset from table 15 or table 24

a. paired space -> =]; unpaired space -> ~ 0, must be non-paired

Below is a register by register description of the Gambit/Mirage specific Xbus/Golfbus registers.
Note that registers are restricted to 32 bits and are spaced at 32 bit boundaries. The actual
register width varies according to its definition. Reads to any undefined holes in the address space
return undefined, but deterministic data. For writes, there is no effect.

The format of this information is either a bit number or a bit encoding and a functional name,
depending on the configuration of the register, followed by a description of the function of that bit
or bit encoding.

All registers are reset to zero uniess otherwise noted.

12.5.1 Gambit Maintenance Attention Request [31:0]
Type: Read/Set/Clear- C/D difterent Otfset [22:0]): 7FF0B0
Cold reset clears this register.
Warm reset and going through sync point have no effect.

This CD different register indicates which PCI slot (inciuding the Gambit and Mirage host bridges)
caused a maintenance interrupt. Note: in Polo, this is a C/D different register, but it ditfers
from other C/D different registers that bits 8, 9, 10, 11 and 12 are cleared by writing

29 December 1995 115
AT

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Polo Software Programming Guide Stratus —ompany Confidential

32°00000008, 32°"h00000009, 32'h0000000A,32°h0000000B and 32'h0000000C respectively.

31,15 Reserved

30,14 Reserved

29,13 Reserved

28,12 Host_bridge (D-side)
27,11 PClslot3

26,10 PClslot2

25,9 PClslot1

24,8 PClslot0

23,7 Reserved

22,6 Reserved

21,5 Reserved

20,4 Host_bridge (C-side) - Polo Only
19,3 PClslot 7 - Polo Only
18,2 PCl slot 6 - Polo Only
17,1 PClslot 5 - Polo Only
16,0 PCl slot 4 - Polo Only

12.5.2 10Bus Status
Type: Read/Clear Ottset [22:0]: 7FF008
Cold reset ciears this register.
Warm reset and going through sync point have no effect.

31:22 Reserved

21 Xbus/Golfbus Maintenenace Interrupt asserted due to PCIB/HSC2 Attention Request.
See the SAM Maintenance Attention Request Register for details.

20:0 Reserved

29 December 1995 116

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software F.wgramming Guide «atus Company Confidential

12.6 SAM Interface Register Descriptions

These registers are the I/O registers that reside on a SAM board from a software perspective. For
Polo, these registers exist either in the Cyclops ASIC on the CPU board or in the Gambit ASIC on
the PCIB board. For HSC2, these registers exist in the Mirage ASIC located on the HSC2 board.
Refer to section 4.5, PCIB MIO/IOBus Compatible System Address Map, for details on the
address mapping.

The SAM compatible ASIC’s register space is divided as follows. The 16k space is divided into
four 4k pages to simplify the decode of this region in the Cyclops Polo ASIC and Gambit Polo
ASIC.

Polo impiements a single Map RAM in the CPU, four sets of per bus registers (one set for each of
four PCI buses) and 16 sets of per slot registers (one set per each of 16 possible PC! slots). HSC2
implements a single Map RAM in the Mirage ASIC, one set of per bus registers and 4 sets ot per
slot registers (one set per each of 4 possible PCI siots).

All accesses alias to the appropriate physical register, although software locking is required to
prevent conflicts. See section 5.5 for software lock restrictions on these registers.

Table 26. SAM Compatible ASIC Register Map

Offset [13:12] Page Polo HSC2
2'h3 System Bus slot registers Gambit Mirage
2'n2 Map RAM registers Cyclops Mirage
2'h1 System Bus registers Gambit Mirage
2'h0 PCI slot reqgisters Gambit Mirage

Note that registers are restricted to 32 bits and are spaced at 64 bit boundaries. The actual
register width varies according to its definition. The byte significance of these registers is big-
endian. Reads to any undefined holes in the address space return zeros. For writes, there is no
effect. The following table iliustrates the formation of a SAM compatible I/O register space address
on the system bus.

All SAM registers are accessed through Xbus slots 2 and 3 in Polo systems. Accesses to
registers associated with PCI slot numbers greater than seven will not be responded to in
Polo systems.

Table 27. SAM Compatible Register System Address Formation

PCI Siot register offset from table 29, table
bus siot number 30, or table 31,
Inverted

a. paired space -> = 1; unpaired space -> =0
b. page offset from table 26

A bit by bit description foltows (bit 31 being most significant and bit zero being the least significant
bits). The format of this information is either a bit number or a bit encoding, depending on the

29 December 1995 117

NES

CA 02257511 1998-12-03

w
0 97/46941 PCT/US97/09781

Polo Software Programming Guide Stratus wompany Confidential

configuration of the register, and a functional name, followed by a description of the function of that
bit (bit encoding). All registers are reset to zero unless otherwise noted.

29 December 1995 . 118
A6

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Programming Guide wwatus Company Confidential

12.6.1 SAM Interface Registers - Page 3

These register reside in the Gambit and Mirage ASIC. For this group of registers, there is only a
single register for the entire Polo and HSC2 system to which all 16 PC! (Polo) or 4 PCI (HSC2) slot
addresses map.

Table 28. SAM Compatible /O Space Map - Page 3

Offset {11:0] Register Name Type HSC2
FF8 Disk LED Control Read/Write Supported
FFO Disk Status (Polo is CD different) Read/Write Supported
FES Power supply LED Read/Set/Clear | Not Supported
FEO Power supply status Read only Not Supported
FD8 Fan speed control Read/Set/Clear | Not Supported

Note that unlike a Polo/Gambit, the C-side and D-side Mirage’s bridge a single PCI bus to the
system. Therefore a HSC2 system does not have support for multiple disk shelves (SCS! port 0 &
1) and will react to accesses to SCSI Port 1(analogous to Gambit D-side) only. Accesses 10 SCsI
port 0(analogous to Gambit C-side) are ignored.

12.6.1.1 Disk LED Control

Type: Read/Write Offset [11:0]: FF8
Cold reset as documented below, warm reset has no effect

This register is used to control the amber LEDs on the front of the Polo disks via the StorageWorks
specified “Disk fault bus.” Although this register is read/write, it should be treated as write-only by
software. The reason is that the PCIBs in Xbus slots 2 and 3 share the fault bus lines. Writes to
this register in either of the PCIBs set the disk LEDs, but only the most recently written PCIB will
return a value from this register that is guaranteed to correspond with the actual state of the disk
LEDs.

31:6 reserved.

5 Disk shelf select bit. When writing this register and this bitis a 0, SCSI port 0 is selected
(C side Gambit). When writing this register and this bit is a 1, SCSI port 1 is selected
(D side Gambit). This bit has no effect when reading this register.

Note: This bit is not supported on HSC2.

4 LED on bit. This bit is setto a 1 to turn on the amber device fault LED for the device whose
SCSI TID is specified by bits 2:0, or all devices when bit 3 is set to a one. Setting this
bit to 0 tumns off the LED(s).

3 LED address test bit. This bit is used in conjunction with bit 4 to test the amber device fault
LEDs on all disks in the self. Setting bit 3 to a one overrides the TID set by bits 2:0.

2:0 These bits define the SCSI device Target iDentification (TID).

12.6.1.2 Disk Status

Type: Read/Set/Clear Oftset [11:0]: FFO
Cold reset as documented below, warm reset has no effect

29 December 1995 119

AN

CA 02257511 1998-12-03

WO 97/46941

PCT/US97/09781

Polo Software Progranfming Guide Stratus wompany Confidential

CD Ditterent (Poio Only): read via unpaired space

This register displays information based on the Storageworks disk subsystem SHELF_OK and
SWAP_L signals. There are 4 SCS| ports available... C side LOCAL, C side REMOTE, D side
LOCAL and D side REMOTE.

31:15
30:14
29:13
28:12
27,11

26,10

25,9

24,8

23,7
22,6
21,5
20,4
19,3

18,2

171

reserved
reserved
reserved
reserved

D side REMOTE Swap Interrupt Disable - Setting this bit by writing 0000008Bx suppress-
es the maintenance interrupt that normally is issued when a REMOTE swap on the D
side occurs. Disabling the interrupt does not disable the setting and clearing of the
REMOTE Swap has occurred bit. This bit is cleared by cold reset, or by writing
0000000Bx.

D side REMOTE Swap has Occurred. This bit is set when a disk has been inserted or re-
moved from the D side disk shelf. It stays set until explicitly cleared by writing
0000000AXx, or until it is cleared by cold reset. Attempting to set this bit by writing
0000008Ax has no effect. When this bit is set, a maintenance interrupt is issued un-
less masked by D side REMOTE Swap Interrupt Disable bit.

D side Swap Interrupt Disable - Setting this bit by writing 00000089x suppresses the main-
tenance interrupt that normally is issued when a swap on the D side occurs. Dis-
abling the interrupt does not disable the setting and clearing of the Swap has
occurred bit. This bit is cleared by cold reset, or by writing 00000009x.

D side Swap has Occurred. This bit is set when a disk has been inserted or removed from
the D side disk shelf. It stays set until explicitly cleared by writing 00000008x, or until
it is cleared by cold reset. Attempting to set this bit by writing 00000088x has no ef-
fect. When this bit is set, a maintenance interrupt is issued uniess masked by D side
Swap interrupt Disable bit.

reserved
reserved
reserved
reserved

C side REMOTE Swap Interrupt Disable - Setting this bit by writing 00000083x suppress-
es the maintenance interrupt that normally is issued when a REMOTE swap on the C
side occurs. Disabling the interrupt does not disable the setting and clearing of the
REMOTE Swap has occurred bit. This bit is cleared by cold reset, or by writing
00000003x.

This bit is not implemented in a HSC2 system.

C side REMOTE Swap has Occurred. This bit is set when a disk has been inserted or re-
“moved from the C side disk shelf. It stays set until explicitly cleared by writing
00000002x, or until it is cleared by cold reset. Attempting to set this bit by writing
00000082x has no effect. When this bit is set, a maintenance interrupt is issued un-
less masked by the C side REMOTE Swap Interrupt Disable bit.

This bit is not implemented in a HSC2 system.

C side Swap interrupt Disable - Setting this bit by writing 0000008 1x suppresses the main-
tenance interrupt that normally is issued when a swap on the C side occurs. Dis-

29 December 1995 A W 120

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

'Polo Software F..gramining Guide « .atus Company Confidential

abling the interrupt does not disable the setting and clearing of the Swap has
occurred bit. This bit is cleared by cold reset, or by writing 00000001x.

This bit is not implemented in a HSC2 system.

16,0 C side Swap has Occurred. This bit is set when a disk has been inserted or removed from
the C side disk shelf. It stays set until explicitly cleared by writing 00000000x, or until
it is cleared by cold reset. Attempting to set this bit by writing 00000080x has no ef-
fect. When this bit is set, a maintenance interrupt is issued uniess masked by the C
side Swap Interrupt Disable bit.

This bit is not implemented in a HSC2 system.

12.6.1.3 Power Supply LED

Type: Read/Write Oftfset [11:0]: FE8
Warm and Cold reset have no effect on this register.
Polo Only Register
31:3 Reserved.
2 Red LED bit. Writing a 1 to this bit position turns the Red LED on. Writing a 0 turns the
Red LED off. This bit will also be set if a focal power supply fault is detected.
1 Yellow LED bit. Writing a 1 to this bit position turns the Yellow LED on. Writing a 0 turns

the Yeliow LED off. This bit will aiso be cleared if a power supply fault is detected on
either the local or remote power supplies.

0 Green LED bit. Writing a 0 to this bit position turns the Green LED on. Writing a 0 turns the
Green LED off. This bit will also be cleared if a local power supply fault is detected.

12.6.1.4 Power Supply Status(Vanguard powe supply)

Type: Read Only Offset [11:0]: FEO
Warm and Cold reset have no effect on this register.
Polo Only Register

31:10 reserved.

9 Local power supply fault bit. This bit is set if the local power supply reports a fauit.

8 Remote power supply fault bit. This bit is set if the remote power supply reports a fault.

7:0 Local power supply ID.

12.6.1.5 Fan Speed Control
Type: Write Only Offset [11:0]: FD8
Cold reset clears this register.
Polo Only Register

This register is used to control the fan speed. On power on, this register is cleared, there by forcing
the fan to run at normal speed. Writing oxh80 to this register sets this register, there by forcing the
fan to run at higher speed. Writing oxh00 to this register clears this register, there by forcing the
fan to run at normal speed.

29 December 1995 121

A1

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Polo Software Programming Guide Stratus -ompany Confidential

12.6.2 SAM Interface Registers Page 2

These registers reside in the Cyclops ASIG in Polo systems, however they are addressed
through Xbus siot 2 or 3. in a HSC2 system, these registers reside in the Mirage ASIC and
should be addressed through the normal Golbus slot.

in a Polo system, there is oniy a single set of registers to which all 16/4 PCI slot addresses map.

in a HSC2 system, there is a set of registers for each PCi bus (Dune).

Table 29. SAM Compatible I/O Space Map - Page 2

Offset [11:0] Register Name Type
FF8 Address Table Command/IOVA Read/Write
FFO Address Table Data 2 Read/Write
FES8 Address Table Data 1 Read/Write
FEO Address Table Data 0 Read/Write

12.6.2.1 Address Table Command and IOVA Register

Type: Read/Write Oftset [11:0]): FF8
Cold reset clears this register, warm reset has no effect.

This register, combined with the three Address Table Data registers, is used to access the map
rams for IOVA translation. See section 5. for a complete description of the address mapping
function. To write the map rams, first load up the Address Table Data registers with the desired
write value then write the Address Table Command and IOVA Register with the proper device
index and page and bit 31 equal to 1. In order to read a map ram simply write to this register with
the proper device index and page and bit 31 set to zero. Follow this initial write with a read of any
of the four registers to retrieve the data.

31 Command
0 =read
1 = write

30-28 Reserved
27-20 Device Index
19-14 Reserved
13-12 Page

11-0 Reserved

12.6.2.2 Address Table Data 2 Register

Type: Read/Write Oftset [11:0]: FFO
Cold reset clears this register, warm reset has no eftect.

Refer to section 12.6.2.1, Address Table Command and IOVA Register, for a description of this
register.

31 - 30 Reserved

29 December 1985 122

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Programming Guide Suatus Company Confidential

29 -26 PCI Slot Number
Note: in HSC2, the most significant bit of the PCI slot number (bit [29}) is not used
due to space limitations in the Mirage Map RAM. Since a HSC2 only supports 4 PC!
devices this should not be considered an issue.

25-5 Reserved

Option bit — Xbus/Golfbus Incoherent Memory Access
Option bit - Swap 16 or 32 bit Endian

Option bit — Xbus/Golfbus Lock Cycle

Option bit — Data Pre-read

Entry valid bit

© = N W »

12.6.2.3 Address Table Data 1 Register
Type: Read/Write Otfset [11:0]: FEB
Cold reset clears this register, warm reset has no effect.

Refer to section 12.6.2.1, Address Table Command and IOVA Register, for a description of this
register.

31:16 Block Xbus/Golfbus Virtual index

15:12 Reserved

11:2 Block Xbus/Golfbus Ending Physical Address

1:0 Reserved

12.6.2.4 Address Tabie Data 0 Register
Type: Read/Write Offset [11:0]: FEO
Cold reset clears this register, warm reset has no effect.

Refer to section 12.6.2.1, Address Table Command and IOVA Register, for a description of this
register.

31-2 Block Xbus/Golfbus Starting Physical Address
31-12 Physical Cache Tag
11-2 Line Offset

1:0 Reserved.

29 December 1995 123

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Polo Software Programrﬁing Guide ‘ Stratus Lompany Confidential

12.6.3 SAM Interface Registers- Page 1

Each Gambit/Mirage ASIC has one of each of these registers for the one PC! bus (up to four
controllers per bus) it controls.

Table 30. SAM Compatible Common IO Space Map Page 1

Offset [11:0] Register Name Type
FF8 PCI config_addr Read/Write
7F0 PCI config_data Read/Write
FES8 Test Control Read/Set/Clear
FEO PCI Error Register Read/Set/Clear
FD8 PC! IOVA Error Register 4 Read only
FDO SAM Status Read/Set/Clear
FCs - FB8 Reserved
FBO Arbitration Freeze Counter Max. Value Read/Write
FA8 Host Request FIFO Timeout Value Register Read/Write

12.6.3.1 PCI config_addr
Type: Read/Write Oftfset [11:0]: FF8
Cold reset clears this register, warm reset has no effect.

1O reads and writes to this register cause no PClI cycles. IO reads and writes to the 'PCl
config_data register' use the information in the ‘PCl config_addr register’ to perform a
configuration cycle on the PCI bus except for device zero i.e. the bridge which is accessed internal
to Gambit/Mirage using this same mechanism. Thus configuration reads and writes to the host
bridge’s configuration space will not cause PCl cycles but will instead be handled internal to the
host bridge.

Special cycles will be generated when the ‘Bus Number' equals zero i.e. the bridges secondary
PCI bus, and the ‘Device Number' is all ones, and the ‘Function Number' is all ones and the
‘Register Number’ is all zeros.

31 Enable config_data - As per the PCI spec config_data is disabled if this bitisa 0.
30-24 Reserved - read only retum zeros

23-16 Bus Number - encoded value to select 1 0f 256 PCI buses in a system.

15-11 Device Number - encoded value to select 1 of 32 device on a given bus.

10-8 Function Number - encoded value to select 1 of 8 functions on a specific device.
7-2 PCI Configuration Register DWORD Index - specific bytes from BEs.

1-0 2'b00 - Read only

The configuration type will be added in by hardware based on the ‘Bus Number’ - type 00 config to
attached bus. type 01 config passed to ‘Bus Number'. Refer to the PCI Local Bus
Specification for more information on type 00 and type 01 commands.

29 December 1995 124

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software Proyramming Guide Suaws Company Confidential

12.6.3.2 PCI config_data

Type: Read/Write Otfset [11:0]: 7F0
Cold reset clears this register, warm reset has no effect.

IO Reads and Writes to this register result in PCI configuration cycles on the PCI bus as defined
by the address in ‘config_addr’ except for device zero i.e. the bridge configuration space is
accessed intemal to Gambit/Mirage using this same mechanism. The PCI configuration data is
little-endian. The Xbus and Golfbus are big-endian. Reads and writes to the PCl configuration
space of either the host bridge or the mated PCl adapter are always byte-swapped to provide ‘byte
address consistency’ rather than ‘MSByte consistency’. Where significance of bytes is rearanged
by the swapping mechanism, software wili have to re-order to restore significance. Refer to section

5.6 for a discussion of byte ordering (big endian versus littie endian) on configuration cycles.

Setting bit 31 in the ‘PCl config_addr register’ will cause accesses to the this register to be
enabled. If bit 31 of ‘PCI config_addr register’ is 0 writes will be ignored, and reads will return O's
and a failed_op status.

31-0 Configuration data

12.6.3.3 Test Control
Type: Read/Set/Clear Oftset [11:0]: FE8
Cold reset clear this register.

31:16 Reserved
15 Disable Protocol error signal generation

This bit is set by software to disable Protocol error signal generated by PCI core logic.
When this bit is set, the PCI core logic does not assert protocol_error signal to rest of
Gambit’Mirage logic. When this bit is set, bit 5 of Polo PCI Error register will not be
set. This bit is cleared by cold reset, or by writing 0000000Fx. it is set by writing

0000008Fx.

14 Disable Peer to Peer error signal generation

This bit is set by software to disable Peer-to-Peer error signal generated by PCI core logic.
When this bit is set, the PCI core logic does not assert peer_to_peer_error signal to
rest of Gambit/Mirage logic. When this bit is set, bit 6 of Polo PCI Error register will
not be set. This bit is cleared by coid reset, or by writing 0000000EXx. it is set by writ-
ing 0000008EX.

13 PCI read return ahead enable (Polo Only)

This bit is implemented in Rev. 1 Gambit only. When this bit is set, the Gambit sends read
return data to the PCI bus as soon as data is avaitable on post_gual bus. This will im-
prove the PC! bus read performance for cacle line read. !f this bit set to to zero, the
Gambit waits till last peace of data is available on post_gual bus for cache line read
before it sends data to the PCl core. This bit is cleared by cold reset, or by writing
0000000Dx. It is set by writing 0000008Dx.

12 Disable PCI drive/check error signal generation

This bit is set by software to disable PCI drive/check error signal generated by PCl core
logic. When this bit is set, the PCI core logic does not assert drive_check_error signal
to rest of Gambit/Mirage logic. When this bit is set, bit 9 of the Polo PCI Error register
will not be set. This bit is cleared by cold reset, or by writing 0000000Cx. It is set by

writing 0000008Cx.
11 Disable System error signal generation
29 December 1995 125

AY3

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Polo Software Programming Guide Stratus Lompany Confidential

This bit is set by software to disable system erfor signal generated by PCI core logic.
When this bit is set, the PCI core logic does not assert system_error signa! to rest of
Gambit/Mirage logic. When this bit is set, bit 28 of Polo PCl Eror register will not be
set. This bit is cleared by cold reset, or by writing 0000000Bx. it
is set by writing 0000008Bx.

10 Disable Parity error signal generation

This bitis set by software to disable parity error signal generated by PCl core {ogic. When
this bit is set, the PCI core logic does not assert parity_error signal to rest of the
Gambit/Mirage logic. When this bit is set, bit 27 of Polo PCI Error register will not be
set.This bit is cleared by cold reset, or py writing 0000000AX. it is set by writing

0000008AX.

9 Reserved.
Flush Mirage Write Buffer Map Entry Caches (HSC2 Only)

Writing to set this bit will invalidate the two write buffer entry caches. This will insure that
Mirage will go to the Map RAM for the next PC! write access and allows software the
ability to gurantee consistent data. Refer to the Mirage Specification for more details.

Writing to clear this bit has no affect. This bit will always return a zero when read.
7 inhibit Broken SAM on SERR

This bit is set by software to inhibit PCI error logic from removing a SAM from service
when an error is intentionally caused for diagnostic testing purposes.This bit is
cleared by cold reset, or by writing 00000007x. It is set by writing 00000087x.

6 Error Data Recorded/Rearm Error and Broken Registers
This bit is set by hardware when an error condition that requires logging in any of the
error registers occurs. Writing a O to this bit clears the error state of the chip and “re-
arms” them so they will capture the state of the next applicable error condition.This
bit is cieared by cold reset, or by writing 00000006x. This bit can not be set it is set by
writing 00000086x.

5 Force PCI data parity error

This bit is set by software to intentionally cause a PCl data parity error for diagnostic test-
ing purposes.This bit is cleared by cold reset, or by writing 00000005x. It is set by
writing 00000085x.

4 Force PCI address parity efror

This bit is set by software to intentionally cause a PCI address parity error for diagnostic
testing purposes.This bit is cleared by cold reset, or by writing 00000004x. It is set by
writing 00000084x

3:0 Reserved
12.6.3.4 PCI Error
Type: Read Only Oftset [11:0]: FEO

Cold reset clears this register, warm reset has no effect. |0 Reads and Writes to this register
cause no PCl cycles.

This register is valid it Status(16] is set (PCl Error detected).

31-29 PCI Grant Siot#(3-0) indicating mastership during registered error. This information is en-
coded in the following manner.

29 December 1995 126

A8Y

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software F..gramiing Guide «.atus Company Confidential

0: Siot 0

1: Slot 1

2: Slot 2

3:Slot3

4: Host
28 Bridge detected SERR# on PCIl Bus.
27 Bridge detected PERR# on PC! Bus
26 Bridge detected Master initiated Termination
25 Bridge detected Target Initiated Termination
24 Reserved.
24 Host request FIFO timeout error.

Note: When this error occurs, other info in this register may or may not repre-
sent correct info about PCl bus transaction that caused this error. Refer to sec-
tion 9.6.2.3 for details.

23:20 Reserved.
19-16 PCI Command.
15-12 Reserved

1 IDLE timeout after GNT#
PCI master failed to start an access within 16 clocks after GNT# asserted. Note that
the PCI command field and IOVA values are not applicable.

10 Time Out Error (see PC! Common Logic Spec.)

9 Drive Check Error (see PCl Common Logic Spec.)

8 Retry Count Error (see PGl Common Logic Spec.)

7 Disconnect Count Error (see PCl Common Logic Spec.)
6 Peer to Peer Error (see PC! Common Logic Spec.)

5 Protocol Error (see PCl Common Logic Spec.)

4-0 Reserved

12.6.3.5 PCI IOVA Error
Type: Read Only .
Cold reset clears this register, warm reset has no effect.
10 Reads and Writes to this register do not cause PCI cycles.

Offset [11:0]: FD8

This register is valid if Status[16] is set (PCl Error detected).
31-0 Xbus/Gbus IOVA for the PCI transaction which got an emor.

12.6.3.6 SAM Status

Type: Read only' Oftfset [11:0]: FDO
Cold reset clears this register, warm reset has no effect.

State Reduction (Off-line, Not-Ready):

29 December 1995 127

rd

ARS

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Polo Software Programming Guide Stratus Lumpany Confidential

The contents of the state reduction, are frozen when the SAM first goes off-line or broken, so that
the comparators that caused the state reduction are flagged. This is so that comparators that
miscompare further down the line (after the error has rippled through the logic) do not obscure the
cause of the original failure.

Writing to clear any of the state reduction bits will have no effect. The state reduction bits are re-
armed via the Rearm Error register bit in the Test Control register.

31:17 Reserved.

16 SAM Maintenance Interrupt issued due to PCI Error/Abort condition.
Refer to the PCI Error register and the PCI Configuration Space Status registers for
details.

15:14 Reserved

13 Software Set Off-line Command.
This bit is set by writing 00000081x to the page 0 Bus Interface State register.

12 Map Error (HSC2 Only)
This bit is set when an /O Address Map Error is detected. Refer to the CPU Specific
Xbus Register Descriptions on page 112 for further details about the error.

1 Failed Op (HSC2 Only)
When set, this bit indicates that the return for a transaction has timed-out and zeros
were returned to prevent the device from hanging. Status(10:9] indicate which slot
(Sam) was responsible for issueing the read request. Note that this Sam’s state will
have changed from online to onfine - not ready.

10-0 Reseved

12.6.3.7 Arbitration Freeze Count Max. Value
Type: Read/Write Oftset [11:0]: FBO
Cold reset clears this register, warm reset has no etfect on.

After certain types of PCl errors, arbitration logic is “frozen” and a PCl_reset is issued to the
attected PCI slot. Writing an 8 bit value to this register determines how many 24Mnz clocks the
arbitration logic will remain “frozen” after PCI_reset is de-asserted.

12.6.3.8 Host Request FIFO Timeout Value Register
Type: Read/Write ' Oftset [11:0): FA8
Cold reset sets this register to 32'h0100_0000; warm reset has no effect.

This register contains Timeout value for host request FIFO. This register is initialized t0
32'h0100_00 on power on. After a host request for PCl bus access is sent, if the request is not
completed by number of 12MHz clock ticks specified in this register, the PCIB or HSC2 is broken
and host request FiFO timeout error bit in the PCl error register is set. Setting this register to
32°h0000_0000 disables the host request FIFO timeout emor.

29 December 1995 128

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software r sograruming Guide wiratus Company Confidential

12.6.4 SAM Interface Registers - Page 0

There is a copy of each of these registers for each slot that a given ASIC controls. Thus the
Gambit and Mirage have four copies of each register.

Table 31. SAM Compatible 1/O Space Map - Page 0

Oftset [11:0] Register Name Type
FB8 Board Reset Read/Set/Clear
FBO LED Control Read/Set/Clear
FA8 not implemented
FAO SAM Host Interrupt Bit Register Read/Write
Fo8 SAM interrupt Mask Register Read/Write
Fo0 SAM Interrupt Source Register Read Only
F8s SAM Host interrupt Address Pointer Read/Write
F80 SAM Host interrupt Table Pointer#2 Read/Write
F78 . SAM Host interrupt Table Pointer#1 Read/Write
F70 SAM Configuration Read/Write
F68 PCI IO Space Offset Read/Write
F60 PCl Memory Ofiset Read/Write
F58 Bus Interface State Read/Set/Clear

12.6.4.1 Board Reset
Type: Read/Set/Clear Oftfset [11:0]: FB8
Cold and warm reset affect this register as documented below

This register behaves almost identically to the Xbus Board Reset register (or Golfbus Board Reset
register) listed in section 12.3.3. except that PCl reset is also activated through this register. PCI
reset is asserted by an explicit PCI reset access to this register, or by a power-up reset. A software
initiated cold or warm reset also asserts PCl reset. NOTE: A PCIB hardware or software cold reset
(as indicated in the Xbus Board Reset register) has no effect on this register.

31:7 These read bits/write bits are reserved for additional board specific resets.

6 Clear SAM entry cache valid bit (HSC2 only)
Writing to set this bit generates a pulse which will invalidate the entry cache in the
reader and flush any read data in the read RAM. This will insure that the reader will
go to the Map RAM for the next PCl access and allows software the ability to guaran-
tee consistent data when using the pre-read option.

Note that the wite buffer caches are unaffected by this operation. Write buffer caches
can be invalidated through the Test Control Register (page 1).
Wiriting to clear this bit has no effect. Reading this bit will aiways retum a 0

Software Note: Clearing the entry cache during a PC! initiated read transaction can cause unpre-
dictable resuits.

5 Software initiated PCl Reset
These read bits/write bits are reserved for additional board specific resets.hen read-

29 December 1995 129

AR

CA 02257511 1998-12-03

WO 97/46941

PCT/US897/09781

Polo Sottware Programming Guide Stratus company Confidential

ing this register, this bit =1 indicates that the board has received a software generat-
ed PC! reset since this bit was last cleared. Writing a 00000085x to this register will
freeze PCI arbitration logic, generate a PCl reset pulse on the board and set this bit.
Writing 00000005x to this register clears this bit. The activation of either of the cold
reset bits also clears this bit. For SAM, PCI Reset clears the internal PCI macro, in-
cluding the configuration space and state machines. It also causes the assertion of a
PCI reset to the attached PCl adapter

Software Note: On Mirage, PC! resets also cause the the Reader hardware to reset similar to a

warm_reset. Software initiated PCl resets during a PCl initiated read transaction can
cause unpredictable resuits.

Software initiated Warm Reset

When reading this register, this bit =1 indicates that the board has received a soft-
ware generated Warm Reset since this bit was last cleared. Writing a 00000084x to
this register generates a Warm Reset reset pulse on the board and sets this bit. Writ-
ing 00000004x to this register clears this bit. The activation of either of the cold reset
bits also clears this bit. For SAM, Warm Reset Clears all bus state machines, inciud-
ing PC! state machines, clears all non-persistent error conditions and causes a PCl
Reset.. All pending bus activities are cleared. The effects of Warm Reset on individu-
al registers is specified in the heading of each register.

Reserved

Software initiated Cold Reset

When reading this register, this bit =1 indicates that the board has received a soft-
ware generated Cold Reset since this bit was last cleared. Writing a 00000081x to
this register generates a Cold Reset reset pulse on the board and sets this bit. Writ-
ing 00000001x to this register clears this bit. The activation of the Power-up cold re-
set bit also clears this bit. For SAM, a Software Cold Reset clears all error reporting
registers in addition to clearing everything effected by a Warm Reset and PCI Reset.
The effects of Cold Reset on individual registers is specified in the heading of each
register.

Cold Reset due to Power up

When reading this register, this bit = 1 indicates that the board has received a power-
up generated Cold Reset since this bit was last cleared. This bit is cleared by writing
a 00000000x to this register or by a software initiated Cold Reset. When this bit is set
by a power-up reset, all other bits in this register are cleared. This bit is NOT cleared
by Warm Reset.

12.6.4.2 LED Control

Type: Read/Write Oftset [11:0]: FBO
Cold and warm reset affect this register as documented betow

Provided there is a PCl card present in the specified slot, this register functions identically to the
register described in section 12.3.3. with the addition that PCI reset will set the red LED and clear
the yellow and green LEDs. Refer to section 12.6.4.1 for more information on PCl reset. If no PC!
card is present, all LEDs will remain off.

12.6.4.3 SAM Host Interrupt Bit

Type: Read/Write , Oftset [11:0]: FAO

Cold reset clears this register. Warm reset has no eftect.

Bits 4:0 of this register points to the bit to be written in the host interrupt register, EIR and the least

29 December 1995 130

XS

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Software \.ugranuning Guide —~atus Company Confidential

significant byte is also the pattern to be written to the table in host memory.
31:6 Reserved.

5 1, this is the “set" bit for the read/set/clear register

4:0 Point to the bit location to be set in the host interrupt register.

12.6.4.4 SAM Iinterrupt Mask

Type: Read/Write Oftset [11:0]: FO8
Cold reset clears this register. Warm reset has no effect.

These bits are used to individually mask or enable the four interrupt source signals, INTA# - INTD#
Al four interrupt lines are tied together in hardware and must be masked/unmasked as a group.
31:1 Reserved.

0 interrupt mask - (1=enabled, O=masked)

12.6.4.5 SAM Interrupt Source

Type: Read Only Offset [11:0]: FS0
Cold reset clears this register. Warm reset has no effect.

This bit is used to indicate if any of the four interrupt source signals, INTA# - INTD#, are active with
interrupts pending. Most singte function PCI devices only use INTA#. All four interrupt fines are tied
together in hardware and can only be checked as a group.

31:1 Reserved. .
0 interrupt status - (1=active, O=inactive)

12.6.4.6 SAM Host Interrupt Address Pointer

Type: Read/Write Oftset [11:0]: F88
Cold reset clears this register. Warm reset has no eftect.

This register contains the IO address of the EIR register in one or all cougars.

31:2 Bits 31:2 point to the location of the interrupt register in host memory.
1:0 Reserved.

12.6.4.7 SAM Host Interrupt Table Pointer #2
Type: Read/Write Offset [11:0]: F80

Cold peset clears this register. Warm reset has no effect.
These bits are the upper 16 bits of the address of the interrupt table entry in host memory.
31:16 Reserved.
15:0 Bits 47:32 of the table base address pointer.

12.6.4.8 SAM Host interrupt Table Pointer #1

Type: Read/Write Offset [11:0): F78
Cold reset clears this register. Warm reset has no effect.

29 December 1995 131

&Y

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Polo Sottware Programming Guide Stratus Lompany Confidential

These bits are the lower 32 bits of the address of the interrupt table entry in host memory.
31:0 Bits 31:0 of the table base address pointer.

12.6.4.9 SAM Configuration
Type: Read/Write , Oftset [11:0): F70
Cold reset clears this register, warm reset has no effect.

31-0 Reserved.

12.6.4.10 PCI 10 Space Offset

Type: Read/Write Oftset [11:0]: F68
Cold reset clears this register, warm reset has no effect.

1O reads and writes to this register cause no PCI cycies. |0 reads and writes to the 16KB window
known as the SAM PCI/IO space window use the information in the PCI 10 Offset register to map
the base address of the 16KB 10 space window. Refer to section section 4.5.1 for further
information on the use of this register. This register is big endian.

31-14 Upper 18 bits of 32-bit PCI address for accesses to the 16KB PCl 10 space window. PCl

only defines use of the first 64KB of 10 space, but the interface supports 10 space ac-
cesses over the entire 32-bit address.

13-0 Reserved

12.6.4.11 PCl Memory Offset

Type: Read/Write Ofttset [11:0]): F60
Cold reset clears this register, warm reset has no etfect.

1O reads and writes to this register cause no PC! cycles. Memory reads and writes to the 64KB
window known as the SAM Memory space window use the information in the PCI Memory Offset
register to map the base address of the 64KB memory window. Refer to section 4.5.1 tor further
information on the use of this register. This register is big-endian.

31-16 Upper 16 bits of 32-bit PC! address for accesses to the 64KB PC! memory window. A
64KB window to memory can be put anywhere in the 32-bit PC! memory range. The
PCl base address register in the configuration register space of the PC! adapter must
be set to align with this window.

150 Reserved

12.6.4.12 Bus Interface State

Type: Read/Set/Clear . Offset [11:0]: F58
Cold reset clears this register; warm reset effect is documented below.
All bits remain cleared if there is not a PC card in the specified slot.

These bits reflect the current state of the SAM board.
31:3 Reserved
2 Off-Line - Not Ready

Board capable of receiving and responding to Xbus/Goltbus requests, but is incapa-
ble of performing Xbus/Golfbus initiated PCI requests. There is non-zero error state
in the Gambit.

29 December 1995 132

AD 0o

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Polo Sofiware . rogr....iming Guide stratus Company Confidential

This status bit is used to indicate the occurrence of a non Xbus/Golfbus related hard-
ware fault which was detected by the checking logic. This bit is set automatically by
hardware. Writing a 00000082x to set, or a 00000002x to clear wili have no effect.
This bit is cleared by a cold reset, or by writing the Test control register with a Rearm
Error Command.

1 Off-Line - Ready

Board capabie of receiving and responding to Xbus/Golfbus requests but is incapable
of performing Xbus initiated PCI requests. No error conditions are present.

This state is entered automatically after a cold or warm reset (provided there are no
errors detected by the Gambit or Mirage) or when the error state of the chip is
cleared via a Rearm Error Command. Writing a 0000081x to set, causes SAM Sta-
tus[13] to get set and a Attention Maintenance Interrupt to be generated. Clearing this
bit has no effect. (Note if the SAM is broken you won't be able to read this.)

0 Ondine

Board capable of receiing and responding to Xbus/Golfbus requests. Board capable
of performing Xbus initiated PCI requests. PCl adapter enabled to post requests.

Writing a 00000080x to set, bit causes the PCI arbiter to be enabled provided there is
a non-zero error state. Writing a 00000000x to clear causes the Gambit/Mirage to go
Off-line - Ready but a Attention Maintenance Interrupt is not generated. Note if the
SAM is broken you won't be able to read this.)

29 December 1995 133

A

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

is document contains confidential and proprietary information of Stratus Computer,
nc., and any reproduction, disclosure, or use in whole or in part is expressly

hrohibited, except as may be specifically authorized by prior written agreement or
ermission of Stratus.

Xbus Functional Specification

JED-00155

“If You Want Fauilt Tolerance, Buy A Jetta”

Will Leavitt (editor)
Conrad Clemson
Jeffrey Somers
John Chaves
David Barbera
21 July 1995

Revision: 1.3

(c) Stratus Computer, Inc.

Appendix II

A G2

CA 02257511 1998-12-03

WO 97746541 PCT/US97/09781
Xbus Functional Specification Stratus wompany Confidential
Table of Contents
1 Introduction......... teeseeeesssessssssessensesesesenanasssannasetste teseessmsessenssesrasessssannsrsassnan 8

1.1 Applicable Documents eeeetessereseesantesasesastesEeestesseSeRR TRt e SRR SRR et SRS m RO 8

1.1.1 Sratus DOCUMENSeceeeueusensmsiassasmansenssnssssssassasnssssrsssssmsssmsusenssssinereesss 8

1.1.2 Other DOCUMENS..ccccccsrrenmnansssnasssssssnsnmnannins 8

1.2 ROVISION HISIOMNY weverueeeesssssnsasorssssannsasastssmsssensasnosnsassssssssmnssasssasosnssmtassasassssases 9

2. Functional OVEIVIEW.....ceccivresiseesiasnsssssssssnasasanes veesseecseneesssasssanssnsesssensres 10
2.1 Introduction 10

22 Architectural Alternatives . 1

D21 NOW BUS coveerecrscrsomsmsarmssnsassnstssssssassssssassissmsssasmmisassssissmssensams it sssssasess 11

200 PCIBASEU BUS cceceruerisensssnsssssasssrssssasussssssenssssessnsassmsassasenssnssasmmassssess 11

223 |DUS DASEU BUS vuceuerernammmerssssesensssssssasnassstasasimsssamsmassssassssasssssnsrsinssssssses 12

224 Golfbus Based BUSccocvereeeermsmneonisssiasasaruseensosconiasasaseas 12

2.3 Golfbus Logical Overviewcceeeeses rvesasessssssessessenterastasssseresenese 12

2.4 GOlDUS PhySICAl SUMMEALY crvuursenmsenssessmmsassessemssmssessestsssmssnassissssmssassmsstessonemerss 13

2.5 P010 XBUS LOGICAI OVEIVIBW. cecceancsscmsmsemssinsssssrssssssansssssmssessemssasssmasenassasesssserssenass 14

26 Polo XBus PhySical OVEIVIBW.....cccueriesssscacacemsesiensanasmssaces rvenssrensessassnsaants 14

3. Detailed FUNCHONal DESCHPHON . cuccacerecimisansissnacsesrsssnssssanrssssseseasmeneeases 15
3.1 Bus Naming Convention teveeeeseensssessstsesnsesassesssstasaeesnerastTaRsstasnsn 15

3.4.1 Data Bus Naming CONVENUONccccenmisrsssssenssscncacnsensenes .15

312 Control Bus Naming Convention .- . . 16

3.2 Bit NUMDEBING c.vuecrsessescrssssssmeasmasssssessssensmassssnsssnssasmasansmasasnassssstessanemssmasssssssnssacsss 17

3.3 TOIMMUNOIOQY wrereercrscsserersessansssnessssnsesssassassassasssssssasonssanrastastaisasssmussasesssossisssmmasssess 17

4, XDUS Signal DESCHPHON ceeeerissemssemmmaressessrasssasensmammssemsenssimssssssassenasesssesss 21
41 Signal Description........c...... terebuessessmsesasssesnessatesassreasasesrasneestesessen 21

4.2 THE INO BUS cucmreremssssesssssssscssmnsssmasssssastsssssassinassssssssasmsssssatasasastsssssnsissasssnsssessssens 21

4.3 THE CONEO! BUS cuvervemeecsssscorsssemmssnssssassssessnsssassssassstasssasnsmsssasssisssssssasmsssescsssssanss 22

4.4 THE VOLEA SIGNAIS..ceremscrmsrrssrssassssssssasssresassmassensssssomsssmssussassasssnsseasasaseassesaserseess 25

4.5 Other Control Signals roeeessesstecssssmessarenmennssasnerarensititasresas 27

5. Xbus /O Interface REGISENS c.veeerserscsinensnmesesssssssssssmisssenasssasasasssasmases 28
6. XDUS PrOtOCO! 1.vcuearmsessscsnersessasannsnsssssassssassamnsssasasssnsssnsasasasassssarssnssassasass .29
6.1 Overview.. . 29

6.2 Bus Operation.......ccceeeseenes “ .29

6.3 Bus BUSIES....ccverereassres eeveseesssassessssnasssassussantssssnasesssasansess 30

6.4 Bus Ermrors......ceeeeeens 30

6.4.1 Bus Error Broken Conditions . - 32

6.4.2 Xbus Fault Analysis 33

6.4.3 Fault Conditions 34

6.4.3.1 CPU Board Faulty input Circuit - CPU Driving.......ccceussueenee 34

6.4.32 CPU Board Faulty input Circuit - /O Board DIVING..ecoerenasnns 34

6.4.3.3 CPU Board Different Data C-Side and D-side........ccceeenseens 34

6.4.3.4 CPU Board Faulty Output Circuit - Butfer to Pad Fault......... 34

6.4.3.5 CPU Board Open - CPU Board Driving ...c..ceecescecusmenssennsess 35

6.4.3.6 CPU Board Open - /O Board Driving.... 35

6.4.3.7 CPU Board Short......... reetvaeasanemesssbsensnaenessteersaesanasess 35

21 July 1995 A & 3 2

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781
Xbus Functiona, _pecileation . atus Company Confidential
6.4.3.8 Backplane Open EtCh........ccevirinvrrmsensnasnsssensssassssesessanacnans 36

6.4.3.9 Backplane Short revrrereesaneesansaninnras 36

6.4.3.10 /O Board Faulty input Circuit 36

6.4.3.11 1/0O Board Output Circuit Fault - Buffer to Pad..........c..e.c...... 36

6.4.3.12 1/0 Single-side Access - ASIC Parity Gen. Fault........c........ 36

6.4.3.13 /O Single-side Access - ASIC PCI Data Path Fault............. 37

6.4.3.14 1/O Non-single-side Access, Different C-D Data.........ccc...... 37

6.4.3.15 1/0 Board Open a7

6.4.3.16 /O Board Short.... 37

6.4.3.17 TransSient FAUlL........cocceeircscsseeemriinseserssenmnssercsssssossssnrassacan 38

6.4.3.18 Slow Driver FaUlt......ccecveicesencsnnrsncssonsasescsscsssssssssacionses 38

6.4.3.19 Board Not Broken Generation 38

6.4.320 Arbitrary Breaking eemeesreenmessasrssesasesarassesnserreaniranees a8

6.5 Summary Bus State Diagram. .-39
6.6 Arbitration40
6.6.1 Bus Mastershlp Upon Bus Grantceeeeeersecsnas cerenersnsssasns 43

6.6.2 Special Arbitration Rules for Non-Paired Read RetUmSs..........coccvueuersenc 43

6.7 BIOCK TTANSTEIS ceeeeeecerseserererreerrrecrsssmesassssnmeessntosssssesssasssssansssssstsssasssssasesssansens sasnnas 45
6.7.1 Bus Errors.. teeressssessentensneestssatEesaNesaasa bt iEsR e Rt e s s s ea s saarat e seREaRES 45

6.7.2 Global Writes............ reertrecssmsessebesnesstrsasatesttessest e nesbeessasanasesese 48

6.7.3 B0ard Breakingceiieissssinsrsessesasasssnssnsssssssssersmmssessasssssosasasesaisanes 48

6.7.4 BUS BUSYS..ccoomecmrrrnrsrrarsserssarsranrens . . 49

6.8 Peer 10 Peer traNSACHONS c.cccrccerireersessssrnosssotsessssnasssessnsssssssssssnressstssansossrasasoassess 49
6.8.1 BusEmors......cceeneeunn. ; eeeesseestesneesranrossasasastssasenseses 51

6.9 Major Transactions eesteeeesnnastrassniresasseantas 53
6.9.1 WIrite TranSaCliONScc.eceeeccmmsssssssnsssssessssrasesssantasonsarsscsssssssssaserassnsanassncs 53

6.9.2 Read TraNSACHONS. ..cciccerurcscmeesseesresreacssersssssssasssassassanssssssastossssssssorsasssass 54

6.9.3 Flush and Purge Transactions tteesseeesmmeesssenenssserssasennne 56

6.9.4 Load/Clear TranSactionS....cceessisemsserssnsssossnsssssaesssonssssasensacssesasansnesasas 58

6.9.5 Ping TranSACONccoecreemrarsaesnssrrsasmsnsnsnssssmsssstsesssansssansasassnsacassisesssesaras 59

6.9.5.1 The Need for PINGSccveeeeecccssssesasseesseonsaasossnnasscssssnnsssssnese 59

6.9.52 Detailed Rules During PING Operations.c..c.ceeseeeessnsnannes 59

6.9.6 busy, ack and error COmMbINAtONScecessesrsecssrsesnnsnnssassernasansicssesssasnanses 61

6.10 Xbus Signal FOMALScccceimeeeenimeruenisrisnaresssssssssssnssssassssasianaassssssssssssssansissnasane 62
6.10.1 trid{6:0] and func_op_ Bus Forrnat 62

6.10.2 IO BUS FOMAL ...cceceerreersmmessscsassnassssssessssmansanesanessssssaassosssmsnnssssssssnssnts 63
6.10.2.1 Function Code (rc and byte enable) Transfer.........ccceeeeeeeee 65

6.10.2.2 Remote/Coherent bits (rc[1:0]) «.oovveriiensnenereenrnsasccseracnseassns 69

6.10.2.3 Byte Enables (byte_en([3:0]).69

6.11 Board Synchronization/Board States..........ceceevsersisssassesnsasnnases .70
6.11.1 CPU/Memory Bus Interface Modescceesecccsissnccsssrennennsnsasssionsssnes 71

6.11.2 Simplexed I/0 Board Bus Interface Modes 73

6.11.3 Loopback mode .. 75

6.12 Board Breaking/Board REMOVA!ccesmvarvrersonesnsssasssasssnssssesanrsansees 75
6.12.1 Un-breaking a Board cestuesseriassansssssersrssssesensnant v 75

7. Xbus Routing and Xbus Interface Clockmg .. 76
7.1 On-board Clock Generation _ 76
7.1.1 Clock Phases...... - reevrmeeeesnsessasssssennese 76

7.2 Signal Routing ... eeeemtesesmtassessestesstsssrastettesseraresssesteassserssnaaaneseariteas W77
7.3 Clock Fault Tolerance issues, Outbound Slgnals ... 78
8. Board Insertion and REMOVAL......ccueeieeeccrirsinismmmessessssnssscnesasssnsssnensssenase 79
21 July 1985 3

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781
Xbus Functional Specification Stratus wompany Confidential
8.1 Hot Plugging eeeeseesesmssasseessasseseseneesiasnarsestassus s ensarassset 79
8.2 Xbus Interface Testing at Board INSEMONccowueessisessrssismmsemsrussasesssssasmssesss 79
9. XDUS FaUlt TOIBIANCE.evecsrrrsssrssmssrsessmsmsasssssmamusessasasansastssasssssssnsessasesenesss 80
9.1 IFO BUS PTOTECHON cuuemerecssessmesssmsmseasesessensassnssnssasnasasanssnsesessssesasensmssasesssssiassassasess 80
9.1.1 Parity e eoveousssesteseessesssmessesesstessEIRRLORSSRAS SRS eSS neRsa s s SOR RSO SS 80
9.1.2 LOOPDACK CNECKING ceouruserirassansmsssnssunsssnsssmsssnasemssesnsanassemasemssesssimsssisensiess 82
9.1.2.1 Loopback on CD different aCCeSSeScuuwuuermcessemamsareaserasenes 83
9.1.2.2 Loopback on Single-side accesses .83
9.1.3 Loop_ck_ops83
92 Control Bus Protection revesasesessssaseasstesseasssassatessenes 84
9.3 Three-way Voted Signal PrOtECHON ... ecrssessssscsmmssssssssssusssssmassrassssassssessmsssees 84
9.4 ErTOr REPOMING ..vceeesrescescsarsessossonmssassasmsnssassasmasensessassassuamsssassscsss 84
0.4.1 ProdUCING EfTOrS...cciiecmesmsssssessmrssmmsssanssarassssasmanssssiassasasmsussssiasmsenssansss 85
9.4.2 Maintenance interrupts... eesesssmensssesssnsssesestsssRsnssaresessnsssaranans 87
9.4.2.1 BrOKEN EVENS u.evemereraermasesnessssmssosssssnsrassasssssnssssnsannsssnissansnss 87
9.4.22 Error EVENtS.......cccueeenssnnsnssassns . .87
9.4.2.3 SOHWASE CONMION....ececemseesrrisnsnensascssassnsasssasnsssasseasasusssasessrasss 88
9.4.2.4 Determining the Source of a Maintenance Interrupt.....ceeeeee 88
9.5 Board Breaking Timingceveee. reestsessmomesssasesssssasassrrensssnansnsbesen 88
9.5.1 Board breaking and information latChing. ...ccc.eveeeussesussraseasmmasemssusscssnees 88
95.2 Board Breaking Timing on Info LOOPDACK ErTOr ccaeccuseessnasnannscnsensensuanseass 90
9.5.3 Board Breaking Timing on Heuristic or Arbitrary Broken.coeeeeencscses 90
10. RESEl..crcicsseenrenecstssanserasensissness ceererecessesens teesssessesasesssenseassrsesassasasenasaans 01
10.1 Xbus Resets tersesemsssereesrassrstsstnenasasseatreren 91
10.2 Power System Generated RESEtcccvescuitetmssmmsmsmsssaserssmasemsenecsse 92
10.3 Fault Tolerant Issues: ressesseeesanessnsssseesaneesnrasees 95
10.4 ASIC Pins Required For Reset Functions. resresseennersrasesssseranesants 95
10.5 DUMBFET’s... eeetessssesssssssieseesssteRsRRsaRseRSRIIRRRISIeRTTaTRRRTaSER LS IR RTTeanstesanRnee 95
11. Xbus Physical Partitioning c...ceccesererssesssescasemsinnammsessssssesssasannsmssensessssssees 96
11.1 Info Bus Partitioning.. tessseesssesssassssserassesstessusasnusanasesnntess .96
112 Control Signal PartitioNingcciseeesmssssesssmsssssssssersensssssesssessssmasmmsssssssssssmsstass s 96
11.3 Xbus Voted Signal Partitioningccceeeserrasesssessenssessmmmssmasssessasseassasemssesssssssonienasss 96
11.3.1 |D PROM Partitioning . reteesvessessmsssessasensensesasrssstensnetasstasnesens 98
12. Xbus Interface BlOck Dia@ramsceceeeseusmesusissmsssnasessmscsssanmssaseasssssasnsees 100
12.1 Xbus Top Level Block Diagram ...100
12.1.1 POM LISt.ccccnsessssesnsnssesasnsossossesassmasansassasessnsarsansassssstassnsmsmacsasissssanessacsss 100
12.1.2 Functional DeSCrPON ..cceesescacsrimacsensusnsnssnsssusnssensssssnsnssmarasasmasassensns 100
122 INDOUNG PiIPE SECHOM..cueemermrussisssssssusrentasssssnasssenesmssssiassasimssms s ssasrissseesss 101
12.2.1 PO LiSt.cueeeeerceoressersemmussssenssenssseasssssasnssssssssasmanantorasssasemsnsassessssasasmsssssnses 103
12.2.2 Functional Description .. 108
12.3 PING Section... .. 110
12.3.1 Port List.......... 111
12.3.2 Functional DeSCriptionccueeeresrrsninesssssssnsseasassnsees 113
12.4 Xbus Outbound Data and Control UNitceecerscesscmesmsseeccsssssssemsensssnsinseessensesss 114
12.4.1 Port List eeessssevesesessessestessessesTasRsssRTIRISIRSSRE RS SR RN RIS e nbenseenase 115
12.4.2 Functional Description .. .118
12.5 Arbitration LOQIC...ccccusrscmiaerasnenas resesssnsevesransesssasssnsesssasses 126
12.5.1 PO LISt ecririinciieincsiensnessssccnunmsnncrassansasanasssns 127
12.5.2 FUNCHONAl DESCHPHON weceeversseessssunsirenersnsssmsnsnsnsassnsscensinanassasasassensasasaes 127
21 July 1985 4

A4F

CA

WO 97/46941

Xbus Functiona, upeciw.ation

02257511 1998-12-03

PCT/US97/09781

_.atus Company Confidential

12.6 10 REGISEr SECHOM.euieerrcecmcsererensrnarrassssmsreenssssssssstsassseststststasassasasssasnass 130

12.6.1 PO LiStuc..ccsrecsssunsacrsarsssesonssarssanssnnasassassssssassassnssesssnsssssssessssssnsssaossassssns 131

12.6.2 FUNCHONA! DESCHPHON «ccvoevrrreeireicsnesnennssssesassncsnanssrensannanssessscssnensassens 135

12.7 Error Checking and Registering LOGICcerererseassrcsisarecsssnssnisensassnnsensarsasssasssas 136

12.7.1 POR LISt e eeececrcccrcrrintnnntsmsnitrenesioassiennisassesessssssasassansessses sosessasassassonses 137

12.7.2 FUNconal DesCrPiONcoicreieeisesmssmmsssrersrasasasosssnncssssssssessessansessases 149

13. Xbus/GOlbUS DifferenCeS....cccviriererrerecmrrssiansrsnrscsanssassecssccnissssassenssssaseas 151
21 July 1995 5

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781
Xbus Functional Specification Stratus Lompany Confidential
List of Figures
Figure 1. Xbus interconnect . .11
Figure 2. Xbus data BUSES.....cocuserurenermsssassrssassassnnannaens SR 15
Figure 3. Xbus CONrol BUSES ..cereeersiseascsssassasarsassanans . erevenseatnssssnansease 16
Figure 4. Xbus Bit NUMDErNG CONVENtON.....ceuseresssimssesmsssaessssmesesasnmnseacsssssssntusnsasises 17
Figure 5. Terminology - Simple Word Read Transaction .. . 18
Figure 6. Terminology - Simple Line Write TranSactioncevemssseesmsmasmassansrasensneses 19
Figure 7. BaSiC XDUS CYCIB.ccvveunserenmnrsrssrmssorssessasanasasmusssnsssossiasasmansescossssesens 29
Figure 8. Basic Bus Busy Operation reeavesssasssssssnssassssressesessT IS aRaRtase s e Esaat e ns 30
Figure Q. Basic Bus Error Operation.. remeesmesessasssnnesssssarsesarareennashiessasasas A
Figure 10. Bus Error Operation Flow Chart remevasarsases vererresasesassssnssunrass 32
Figure 11. XDUS INTEICONMNECE...orrerresersissserermssnsasassnsssessrnnesarasassassarsssnssarasansasses s 33
Figure 12. BASIC Bus Operation FIOW Chaft........ccoersieumusmsmemmuscassisssasensussscassusssseasensesss 39
Figure 13. Inter-CPU Bus Arbitration NEtWOIKc..cvieeeseemseesssessssammassoesussesmmessnasmssscscasacssasass 40
Figure 14. Arbitration AHter Being BUSIEU......ccceuerrererssomsesescssemsenssssssnsssassenimassssssiasssssnsaasasse 43
Figure 15. High Level BIOCK TraNSIer. .. eweuirsirmsismmssnsssnssssssnassammssessessessssssssmmessasssssess 45
Figure 16. Error During First Operation of a Quad BIOCK TranSfer....ccoeceetissesressrnassncssssasranas 46
Figure 17. Error During Second Operation of a Quad Block TrANSIEN ceerecacaereaerssarsonsranscsanes 46
Figure 18. Error During Third Operation of a Quad Block Transferc.sseeeesneesssesssanarasnnenss 47
Figure 19. Error During Fourth Operation of a Quad BIOCK TraNSIEr coceeemeriseceveneremrancsssseesen 47
Figure 20. Error causing entire block transfer to be CANCEIET ..evcecrieceraersanisssssnssanmnsssstsssssasas 48
Figure 21. Peer to Peer Cycle Initiated by a Simplexed CPU .51
Figure 22. Peer to Peer Non-paired Read from a Duplexed CPU ..e...cevceeeiimisrnsmscssonaseres 51
Figure 23. Store and Forward with Error on 2nd Operation of Quad Block Transfer 52
Figure 24. 32 Bit WIte TraNSACHON. cueeeccueucrssnisserassnsmassssssesesnsnsssmuansasssnanssssenasassssssssasasasassansse 54
Figure 25. 256 Bit BIOCK WIIte TranSACHON .c..ueuereserenresssisismsssnsmensessasisscusnrasmsannssnsasasssssnsnessss 54
Figure 26. 32 Bit Read TrANSACHONceveereeerscermessmserassssssassssnsnsasssssstsnansasassusastsssasnsasaienssss 55
Figure 27. Slave Response t0 @ 32 Bit RAG.......ccccvriimmmmranesscnirssimsnssssussnsssssasssassasnacess 55
Figure 28. 256 Bit R8AA TrANSACHON ...ccicovemrmsnssssensrsnsesssssessnsensasnssssasessasssassasasnassassssasssassines 56
Figure 29. Slave Response to a 256 Bit Read TranSactionc.eeeerssrssrescssccsseanunacs 56
Figure 30. Fiush with Modified Data Transaction.... 57
Figure 31. Slave Response to a Flush with Modified Data Transaction .57
Figure 32. Flush (no modified data) or Purge Transaction.. 58
Figure 33. Slave Response to a Flush (no modified data) or Purge Transactioncccesee 58
Figure 34. PING Transaction e eeeoessesssessasseseeabisseserssssmeresetsatssRssetTsasbreass s asanasasttss 60
Figure 35. PING Transactions, Boundary Condition 1............ “ 60
Figure 36. PING Transactions, Boundary Condition 2. 61
Figure 37. trid{6:0] and func_op_ Format for the 1st Cycle of an Info Phasecccceceenscenes 62
Figure 38. trid[6:4] Format for a PCIB for the 1st Cycle of an info Phase 63
Figure 39. trid{6:0] and func_op_ Format for the 2nd cycle of an INfo Phaseccveesenracssreane 63
Figure 40. Info[31:0] Format of CPU Address FUNGC_OP rceccicnrrerssessonsasesssmsnansasasasassessases 64
Figure 41. Info[31:0] Format of IOVA Address Bus FUNC_OP .cucvirnnmenermsassncsssssannsasanssssese 64
Figure 42. Info[31:0] Format During Data Transfers ... cmemssemssnssmcessessassnasensiesseaenees 65
Figure 43. 9 I R EG [S (T PSSt 70
Figure 44. CPU/Memory Board State tranSitioNScesseesssessssssamasassascuserssessansssasemssnieeees 73

21 July 1995 - 6
y CA DY

WO 97/46941

CA 02257511 1998-12-03

PCT/US97/09781
Xbus Functione.. specuication ratus Company Confidential
Figure 45. Simplex /O Board State Transitions..........cecvereeensestenmesrannnssesesssssessesnserssenes 75
Figure 46. RoUting Of INfO INES c..uuerecrerieniccecstecveransne s st reseseessesessananesnesesnerassasarssannsenen 77
Figure 47. Routing of 3way voted lines serrereesntesssrsssi e st ne st et b st aenes 78
Figure 48. Self Checking Parity LOGIC., c.ccuerreresmcsssecmsrmssssesmessessmsasssssessssassessssssssessssssssasassaess 81
Figure 49. LoOphaCk CONNECHVIY...ocermircirensannesessensssssaentassnsssssnscssnensassssasansasssssesasasasasasassase 82
Figure 50. Board Breaking Timing and latching (arrived at phase_12_1)......ccceeerverresnecracne 89
Figure 51. Board Breaking Timing and latching. (arrived at phase_12_2)......cccceeceeaererarcens 89
Figure 52. Board Breaking Timing on Info LOOPDACK EfTOr.....ccceeeiiueerrvecsnareessnssesnncasssonsanese 90
Figure 53. Board Breaking Timing on Heuristic or Arbitrary Brokeneeeevececeevecceeiecisnnns 90
Figure 54. Reset Signal TIMING......ceemescnsnisicseosssnsissssssssomessasassasssesasaenassssssassssesssnssesssasonss 91
Figure 55. Power Reset State Machingccceceevciicsenrccecnsrsereroresscncnnns 93
Figure 56. BOAIT rESIS. ceeecveerrreesasearsanmsseresnessasereassansesssssansensssssesassassasssssssasssssssssssasassas sansoss 94
Figure 57. info Bus Partitioning......... reseesenssnssens - .96
Figure 58. board_Not_DroKEeN_ TOUHNG.......cccciecteameramessiscssessnssssssensosassassasssansassnsonsansansnssstse 97
Figure 5§9. reset_ routing......ccceee verveveesenenseanens teesesseseseersirisasssassaseassassastressassrss 97
Figure 60. sync_ routing eetesssessessnenteseesesantttsttritaarsseatisies o8
Figure 61. ONINE_ TOURING c...covieneesceinnrencisiiensensresssesasassessnsnsensensasssonsasnesnanse .98
Figure 62. ID PROM Implementation............... veteesssasesesssaeasassansanas .99
Figure 63. Inbound Pipe Block Diagramcceceeeeveee tresesessnasansaasesnernans 102
Figure 64. Post-Qual and Pre~-Quat Bus Timing..........c.... 109
Figure 65. data_valid and 1ast_info TIMINGcccccvevriiiinissccrnrennsosnsccsesnssnessasonnonsasasssssess 109
Figure 66. PING Control BIOCK DIAGIaAM c..ociceeemmreicriisensisescsesseesinesensessnsassosssnsensansansssaneas 110
Figure 67. QOutbound Data and Control Unit . SRS 114
Figure 68. Outbound TIMING DIAGTAM......cccersecsceacrsessrssessssmsamsasssnsaosassensssessessnssessassnassnses 120
Figure 68. Outbound MASEET COMIOL ..vvnieiecetiieriarsccssessessanesacessnssrsssssanesansesssssassassnasseses 121
Figure 70. Outbound Slave Contro!cuccenueennnnes . resesessssnsaneens 122
Figure 71. Outbound Peer-10-Peer TIMING.....cccccrcercimsuscssrseresnssssessnsessersesasssonssssassnmsasmensss 123
Figure 72. Echo Peer-to-Peer Timing tesesmeessesssseseriitestiessesasaesentisssrnseansstnatanaese 124
Figure 73. Qutbound Peer-to-Peer Comrol......ccceevveevueannanae . 125
Figure 74. Arbitration Block Diagram.......c.eween. 126
Figure 75. Arbitration State Machinecoceeveeevene. 128
Figure 76. Arbitration Timing Diagram ... 129
Figure 77. 10 Register Block Diagram . 130
Figure 78. Register Write TIMiNG «...coeevceceeseeenes . 135
Figure 79. Register Read TIMINGcccoverveerniansenricssrasrssmssnssacssnssssas 135
Figure 80. Error Checking BIOCK DIa@raimcceecrcmesciiisssscsssesssnsssesansssssnsessnsssssssassnsnssasses 136
Figure 81. Bus Error Operation Flow Chart150
21 July 1995 7

A 8%

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Xpus Functional Specification Stratus Cumpany Confidential

1. Introduction

This document provides a detailed description of the Polo Xbus. Contained in this document are
the signal descriptions, functional protocol descriptions, functional timing diagrams, and physical
pus descriptions, including pinouts and clocking methodology. The Xbus protocol is directly based
on the Stratus Gbus, and this specification is itself derived from the Gbus Functional Specification.

1.1 Applicable Documents

1.1.1 Stratus Documents

Cougar Specification
Rev 1.2, 9/9/92, or later
fauto/jetta/doc/CPU/cougar’...

Polo Programmer’s Guide
Rev 3.0 or later
Jauto/polo/doc/func_spec/...

Gofer Specification
Rev 2.0 or later
fautofjetta/doc/CPU/gofer/...

GolfBus Specification
Rev 3.1 or later
Jauto/jetta/doc/gbus

Mercury Functional Specification
fautofjetta/doc/cpu/board/...

Polo Cyclops Specification
Rev 1.0 or later
/auto/polo/doc/CPU/cyclops/...

Polo Backplane Specification
Rev 1.0 or later
Jauto/polo/doc/backplane/...

Polo Clocking Specification
Rev 1.0 or later
Jauto/polo/doc/clock....

1.1.2 Other Documents

|EEE Standard 1149.1: [EEE Standard Test Access Port and Boundary Scan Architecture
February 15, 1990

Test Technology Technical Committee of the |IEEE Computer Society

The Institute of Electrical and Electronics Engineers, Inc.

345 East 47th Street, NY, NY 10017-2394

21 July 1995

AQ4 8

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781
Xbus Functional . ecifiation ¢ .tus Company Confidential
1.2 Revision History
Revision 1.0:

« Changes to aimost every section in order to complete document.
21 July 1995 9

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Xbus Functional Specification Stratus Lumpany Confidential

2. Functional Overview

2.1 Introduction

The Xbus performs a number of functions:

« it supplies a means to transfer information between Polo CPU boards and PCI Bridge cards.
. Itsupplies a means to transfer information between two Polo CPU boards.

. It provides fault detection and isolation for the bus and the boards on the bus. However, it is
only fault detecting, not fault tolerant.

This Xbus must have a number of functional characteristics. First, it must provide enough
throughput so that it is not the system bottie neck. Second, it must be inexpensive to implement.
Third, it must be able to support both PCl accesses, 32 bits of address and multiple words of data,
and PA-RISC accesses, 48 bits of address and multiple words of data. it must also be able to
support Cougar/PA-RISC functionality such as regurgitated infos, flushes, and purges.

There are a number of possible interconnect structures that could be used for this bus. The two
that were carefully investigated are a fully interconnected bus, such as in Jetta or StrataBus based
systems, and a series of 4 point to point buses as shown in figure 1. in order to determine which of
these interconnects would best meet the Polo implementation requirements, several key areas
were examined.

An important part of any Stratus design is live insertion. in order to accomplish live insertion on a
fully connected bus, it is necessary to insert a board into the system without perturbing any activity.
This is accomplished through the use of special bus transceivers. The bus transceivers are
expensive, power hungry parts. Further, these transceivers have some strict requirements
associated with them. First, they require a bias voltage of 410 5 volts. This voltage must be applied
pefore the signals make connection with the backplane. This places constraints on the power
architecture. Consideration must be given to where the bias voltage is generated, and how it is
delivered? Second, the BTL transceivers require a termination voltage of 2.1 volts. This voltage
must be very tightly controlled. It could be probably be generated by the suitcase supplies, but that
would increase the cost of each supply by over $400. Even though the suitcases can provide a
source for the power for the termination voltage, in order to regulate it to the tight constraints of the 77

BTL transceivers, it would?)e necessary to add backpanel power supgu;s. (
~ f [- N
in a poi ion, buses are not used whei e not in the system, not broke§

ang100% fun;:i?e{ This eliminates the need for live-irsertion as we know it today. By removirig
thi§ requiremerft, the need for the BTL transceivers is eliminated, thereby removing the need for
bias vofiage and 2.1 volit generation.

Also, with the point to point solution, termination becomes much simpler. Instead of paralle!
termination series termination is used. This change in termination removes the need for
generating a termination voltage and the need for backpane! power supplies.

There are some secondary considerations such as bus isolation, and complexity of
implementation, but the live insertion issue is the real driver for the technology choice.

21 July 1995 - v
2o

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Xbus Functionai opecincation - ~.atus Company Confidential

Figure 1. Xbus interconnect

CPU Board 0 Rt CPU Board 1

PCI Bridge A - PCI Bridge B

KEY

0 Bidirectional, point-to-point data bus.

. Unidirectional, point-to-point control bus.

2.2 Architectural Alternatives

There are 4 fundamental choices for implementation of this bus. The bus could be Golfbus based,
IBus based, PCI based, or totally new. These possibilities are explored in the next sections.

2.2.1 New Bus

In order to justify inventing a new bus, there mustbe a good reason. If performance, functionality,
or cost goals cannot be met by an existing structure, then it is necessary to invent one. This is not
the case for Polo. Therefore, this possibility is discarded.

2.2.2 PCl Based Bus

A PCI based bus is one possible implementation alternative. It meets performance and cost goals.
It coutd be modified to meet the addressing and Cougar functionality. The PClis probably not quite
optimal from a performance stand point due to the fact that it is not split transaction. This is clearly
a negative point for a PCI based solution. This design probably simplifies the Gambit ASIC at the

21 July 1995 11

CA 02257511 1998-12-03

WO 97/46941

PCT/US97/09781
Xbus Functional Specification Stratus Lompany Confidential
expense of the Cyclops ASIC.

if a PCI based bus is used, the PC! protocol will have to be modified to support the virtual index of
the PA chip. This is required to support CPU to CPU transters. The PC! protocol will also have to
be modified to support the tault detecting nature of the interconnect. Finally, some new function
codes will have to be added to the bus in order to allow it to support the sync functionality of the
CPU boards.

For these reasons, a PCl pased solution is discarded.

2.2.3 Ibus based Bus

The Ibus based implementation has quite a few advantages over the previous two possibilities.
The Ibus is already defined and has a performance and cost point that meet the needs for the
Xbus. It already supports PA virtual indexes, and a split transaction protocol. It will require
modification to support PCl based non virtual index transfers, but there are spare bits in the virtual
index transfer phase that can be used for this purpose. So inventing that cycle should not be
difficuit.

There are some disadvantages to an lbus based solution. First, an error protocol will have to be
invented that can support the fault detecting needs of this bus. This will require reworking some of
the central state machines of the Ibus. Second, although the Ibus has some similarities to the
Golfbus, there are enough differences that it is unlikely that the RTL recycling inside of Gofer will
be large. The tie between the Ibus and the Golfbus inside of Gofer is tight, therefore, removing the
Golfbus may require 2 substantial reworking of the Gofer internal interfaces.

For these reasons, although the Ibus based solution is a reasonable one, itis not considered to be
as good as the next possibility.

2924 Golfbus Based Bus

Although at first glance @ Golfbus based solution for the Xbus may seem like overkill, it has a
number of significant advantages even over the Ibus based solution. The Golfbus maintains all of
the Ibus advantages. However, the Golfbus also has the advantage that it already includes a
robust error handling protocol. it has an intertace that is well integrated into the existing Gofer RTL
logic. Hopefully, a Golfbus based solution will allow for a maximal sharing of RTL code between
Goter and Cyclops. Additionaily, the Golfbus logic has already been used in a common logic
tashion. This may allow for good sharing of logic between the Cyclops ASIC and the Gambit ASIC.

nfortunatel Golfous requires a large number of external transceivers and parallel backplane
termination, which do not meet the cost objectives of the polo project. For these reasons, the Polo
Xbus will use a Golfbus-based protocol running on a newly designed, point to point interconnect.

2.3 Golfbus Logical Overview

The Golfbus is a single logical split transaction multiplexed address/data bus. it is duplicated to
provide fault tolerance in a manner similar to the Stratabus. Major features of the bus include the
ability to support 32 and 64 bit bus interface widths, completely synchronous operation, cache
consistency support, and a single logical ASIC interface.

in its initial implementation, the bus supports:
. 2logical (4 physical) CPU/memory boards, with a 64 bit bus.

21 July 19985 7 e 5 12

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Xbus Functional . .ecinuation « s Company Confidential

- 10 physical 10 boards, with a “32 bit’ bus.

Peak supported bandwidths are 128MBytes/sec between CPU/Mem boards (assuming all line
transfers) and 76.8MBytes/sec to/from 10 boards. All information transfer across the Golfbus
occurs synchronously to/from the bus transceivers at ~24MHz.

A single logical bus is used for both address and data transfer. The bus contains up to 64 bits of
information (data or address and function code), 7 bits of tag, and a single bit which indicates.
whether the information lines are carrying data or address and function code. The 10 boards inthe
initial implementation will onty connect to 32 bits of the information bus. (Special function codes
will be used to interface to and from the 10 boards.) The information bus, tag, and func_op bit are
covered by 8 or 16 bits of parity for “32 bit" interfaces and “64 bit’ interfaces respectively.

Controt signals and arbitration lines are protected by a three-way voting algorithm. This provides
the ability to tolerate a single control signal failure within each three-way voted control line.

The Golfbus intertace logic provides full checking between the C-side and D-side of each Goifbus
board via loopback, thereby providing board level fault detectioit. The Goifbus interface is able to
isolate itself from the Golfous, even in the event of clock failures, thereby providing board level
fault isolation.

Because of the split nature of the bus, all boards in the system must be able to arbitrate for the bus
and initiate a bus operation.

2.4 Golfbus Physical Summary

The Golfbus has an extremely efficient physical implementation. Support of its information transfer
and fault detection/isolation capabilities require (in addition to clock generation circuitry) only:

- Connectors

« Transceivers

- 1 logical (2 physical) ASICs

« 1 logical (2 physical) MSI 20-pin register component

Support of board 1D PROMs and board indicator circuitry (card edge LEDs) requires some
additional MS! circuitry.

The 32-bit version of the bus interface requires fewer than 150 backplane signal connections and
the 64-bit version of the bus interface requires fewer than 250 backplane signal connections. 64-
bit and 32-bit interfaces coexist in the same backplane, though backplane slots are wired to
support one or the other. The AMP SL-100 connector is used for the Golfbus backplane
connections.

The transceiver used on the Golfbus is the FB2033, a Stratus specified bicmos device provided by
Signetics Corp. and Texas instruments Inc. This is a Futurebus compatible device with controlied
edge rates, capable of delivering 100mA on the bus side. These octal devices are implemented as
a three port device, i.e. each bit has a board side input port, a board side output port, and a bus
side bidirectional port. The transceiver is used in a clocked mode for both inbound and outbound
data flow. A testability feature, which allows internal loopback checking, i.e. a path that includes
the entire part except the bus side output driver and input buffer, is also utilized to facilitate testing.
The transceiver supports live insertion and removal.

21 July 1995 13

Lo

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Xbus Functional Specification Stratus ompany Confidential

“g4-pit' Golfbus interfaces can be supported via 2 391-pin ASICs and “32-bit" Golfbus interfaces
can be supported via 2 304-pin ASICs, though for the first implementation the former will be used
for both.

The Golfbus interface requires three clocks to transfer information across the backplane, a
~24MHz transmit clock, a ~24MHz receive clock, and a ~12MHz phase information clock qualifier.
In addition, first generation Xbus interfaces will require 2 ~24MHz clocks (really OE signals) for
transferring information from the bus transceivers to the bus ASICs.

2.5 Polo XBus Logical Overview

Polo implements a subset of the of the Golfbus protocol. The following discussion outlines key
Golfous features not supported in the Polo implementation.

Bus widths are limited to 32 bits. Since there are no CPU boards with remote memory on the Polo
Xbus, there is no need to use the optional 64 bit widths of the Golfbus.

The configurations are limited to 4 devices. Two CPU boards and two PCI bridge cards.

Although the physical implementation uses 4 point to point buses instead of 2 fully connected
buses, the protocol is still implemented with a single bus view. On any given cycle, there is no
more than one transaction on the interconnect. This transaction may be on all 4 buses for the case
of a duplexed operation or on only 2 of the buses for a simplexed operation. It is the responsibility
of the arbitration network to ensure this functionality.

Like the Jetta impiementation, the signals are divided into two categories, fransaction based
bused signals and control signals. However, due to the point to point nature of the signals, the
implementation is very different. The bused signals are implemented as 4 bidirectional point to
point buses. These are shown as the heavy lines in figure 1. The controt signals are implemented
as separate unidirectional buses. These are shown as the lighter lines in figure 1. The bused
signals are protected through the map ram, parity, and loopback checking. The control signais
protected through ECC and loopback checking.

One fundamentally new feature of the Xbus is the error protocol. Unlike the Golfbus, the Xbus
attempts not only to detect bus errors, but also to diagnose the source. This aspect of the Xbus is
covered in a later section in detail.

A second fundamentally different feature is the mechanism by which two CPUs communicate. A
CPU to CPU transaction is accomplished by means of a peer-to-peer operation in which the
transaction is broken into two separate transactions. in the first, the CPU transmits the transaction
from the CPU to the PCIB. In the second, the PCIB transmits the information from the PCIB to the
CPU. This is explained in detail in the section on peer-to-peer transactions.

-

2.6 Polo XBus Physical Overview

The Polo XBus physical implementation makes use of a direct ASIC to ASIC connection
technology. The bus interface is accomplished through the use of 2 391 pin PGA package ASICs.
The Xbus uses two ditferent styles of connectors. The CPU boards (suitcases) use the SL-100
connector from AMP. This connector was chosen for its ruggedness, built in stiffeners, and
grounding scheme. The PCIBs use the multiple sourced futurebus connector. These connectors,

while less rigid, provide good signal integrity, and are inexpensive. A single 24Mhz clock is used
tor clocking data and control onto and off of the bus.

21 July 1995 14

105

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Xbus Functiona. .pecincation .atus Company Confidential

3. Detailed Functional Description

3.1 Bus Naming Convention

The Xbus actually consists of 4 data buses and 12 controt buses. With so many buses in the
system, it is important to have a concise intuitive naming convention.

3.1.1 Data Bus Naming Convention
Figure 2 below, shows a block diagram of the 4 data buses in the Xbus system.

Figure 2. Xbus data Buses

CPUO CPU1

Xbus Slot 0 Xbus Siot 1

Bus AO Bus B0 , Bus B1 Bus A1

Y Y

PCI Bridge 0 PCI Bridge 1

Xbus Slot 2 Xbus Siot 3

The number for the bus is taken from the CPU slot number; therefore data buses connected to
CPU 0 end in 0 and data buses connected to CPU 1 end in 1. The letter for the bus is determined
by whether or not the bus is a crisscross bus (i.e. connects an even slot number to an odd slot
number) or a straight bus (i.e. connects an even to an even or an odd to an odd slot). Based on
this convention, CPU 0 has connections to data bus A0 and B0. CPU 1 has connections to data
bus B1 and A1. PCl Bridge 0 has connections to data bus A0 and B1. PCI Bridge 1 has
connections to B0 and A1. Note that uniike traditional Stratus boards, the PCI bridge cards do not
run in lock-step.

21 July 1995 15

Lo 6

WO 97/46941

Xbus Functional Specification

CA

02257511 1998-12-03

PCT/US97/09781

Stratus (..npany Confidential

3.1.2 Control Bus Naming Convention

Figure 3 below shows a block diagram of the control buses in the Polo system.

Figure 3. Xbus Control Buses

The control naming
source of the signal and then

PC! adaptor O

CcPUO
Xbus Slot 0
control_in_p
;n
=
£
-4
8

Xbus Slot 2

associated ASIC pins uses the

neighbor, o for opposite, and p

CPU 1
W
3 Xbus Slot 1
control_1_0 ‘% - 5
o 3
control_0_1 -é‘ EI
: § 8
control_3_2 '
c
control_2_3 T et :
— | T
A

signal name, the direction (in or o
for peer). Examples of this naming convention are shown in Figure

3. Table 1 lists alt of the control bus names.

Table 1. Control Bus Names

PCl adgptor

Xbus Slot 3

convention for the backplane signals uses the signal name followed by the
the destination of the signal. The naming convention for the

ut), and the connection (nfor

Control Bus Control Bus Control Bus ASIC Driving ASIC Receiving
Source Destination Name Pin Name Pin Name
CPUO CPU 1 control_0_1 controi_out_p control_in_p
CPUO PCIBO _ control_0_2 control_out_n control_in_n
CPUO PCIB 1 control_0_3 control_out_o control_in_o
CPU1 CPUO control_1_0 control_out_p control_in_p

21 July 1985 16

1)

CA 02257511 1998-12-03

WO 97/46941

PCT/US97/09781
Xbus Functiona. —pecincation atus Company Confidential
Table 1. Control Bus Names
Control Bus Contro! Bus Control Bus ASIC Driving ASIC Receiving

Source Destination Name Pin Name Pin Name

CPU 1 PCIBO control_1_2 control_out_o control_in_o

CPU1 PCIB 1 control_1_3 control_out_n control_in_n

PCIBO CPUO control_2_0 control_out_n control_in_n

PCIB 0 CPU 1 control_2_1 control_out_o control_in_o

PCIBO PCIB 1 control_2_3 control_out_p control_in_p

PCIB 1 CPUO control_3_0 controi_out_o control_in_o

PCiB 1 CPU1 control_3_1 control_out_n control_in_n

PCIB 1 PCIBO control_3_2 control_out_p control_in_p

3.2 Bit Numbering

The Xbus and HP-PA7100 use different bit numbering conventions. Refer to Figure 4 for a
description of the bit numbering scheme used on the Xbus. Refer to the Mercury Functionat
Specification for a description of the HP-PA7100 bit numbering scheme. Refer to the MIO/Polo
PC! programming specification for the PCl bit numbering scheme.

Figure 4. Xbus Bit Numbering Convention

- infcr.easiiﬁr:}gl;l order
. ot sign| nee
Xbus databits _g,, 34 24 23 1615 87 i
Big-Endian byteO | bytel | byte2 | byte3
(Xbus) : ' :

3.3 Terminology

bus cycle — the 24MHz (~41.67 ns) building block from which all Xbus operations are built. A bus
cycle is the time which a valid logic ievel driven by one board on the backplane is seen by all other
boards. Two bus cycles compose a bus phase, 4 bus phases compose a bus operation, and one
or more bus operations compose a bus transaction.

bus phase — the 12MHz (~83.3ns, 2 bus cycie) building block from which all bus operations are
constructed. There are logically 11 types of bus phases on the Xbus; “Arb"’, “info”, “Post1”, and
«post2” are the phases that occur during normal operation. When an eror is detected, the special
phases “Errort”, “CPU test’, “CPU Post", 10 Test", 10 Post1”, “IO Post2”, and “Error2” are inserted
in the protocot for fault isolation. (The error phases are sometimes collectively referred to as
“post3”). During each bus phase it is possible to transmit two sets of information on a physical set
of backplane lines (i.e. “double pumping”) though this is not done for all bus phases and/or signals.

bus operation — A bus operation is the basic unit of address and data transmission and checking
on the Xbus. it is generally composed of at least 4 phases: an Arb phase followed by Info, Post1

21 July 1995 17

N o4

CA 02257511 1998-12-03

WO 97/46
941 PCT/US97/09781

Xbus Functionat Specification Stratus wompany Confidential

and Post2 phases. Bus errors cause the insertion of the error phases after Post2 and increase the
number of phases required to complete 2 bus operation. Bus operations may consists of multiple
info transmissions in the case of a block transfer. A bus operation can be thoughtof as a full one

way transfer on the Xbus.

bus sub-operation — A bus sub-operation is an operation initiated by a bus master during
subsequent phases of a block transfer. Sub-operations always carry data and BUSYs are ignored.
Itis generally composed of 4 phases: an Arb phase during which grant inhibit is used, followed by
Info, Post1 and Post2 phases. Bus errors may increase the number of phases required to
complete a bus sub-operation. A sub-operation is differentiated trom an operation in that a bus
operation for a biock transfer consists of the first transfer plus a number of sub-operations
consisting of multiple data transfers.

bus transaction — a complete high level exchange of information on the Xbus. Examples include
reads and writes. A read transaction between CPU and PCIB is composed of a minimum of two
bus operations; one operation provides the address and function code, and one or more
operations provide the return data. A write transaction to a PCIB is composed of a minimum of two
operations; one operation provides address and function code, and one or more additional
operations provide the data.

The following diagrams illustrate the terminology surrounding a simple word read and line write
transaction.

Figure 5. Terminology - Simple Word Read Transaction

A 24MHz (-41.67n8)

bus cycle \

\ ! 1 ! I] i
! ! ! ! i ! [

)
1
/o \. ' Tnfo \| '
VA X e X Posti ‘Kl Post2) (A }de, Post) Post2 }
. L} . [}

i ! ! 1
A 12MHz (~B3.3ns)

bus phase
(composed of 2
bus cycies)
. -/ . —
Y Y
A four phase bus operation. in the word A four phase bus operation. In the word
read transaction shown here this first read transaction shown here this first
operation is used to transmit the read operation issued to transmit the data.
eddress and function code. ,
A complete bus transaction. This example
simple word read transaction is composed of
two operations, one to transmit address and
one to transmit data.
21 July 1995 18

L9

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Xbus Functiona: upecihcation - «atus Company Confidential

Figure 6. Terminology - Simple Line Write Transaction

A 24MHz (~41.67ns)

bus cycle \

1 1) I .
:F\fb):((a.g:/?n)*EOStﬁ p°st3>: i
| i
E ;K Arb X (cﬂ&) >;< Post1)l;(pow >:

—
A 12MHZ (~83.3ns) bus phase
(composed of 2 bus cycles)

\ J
A four-phase bus operation

\& J
Y

A four-phase bus sub-operation

\ —
A complete bus transaction. The simple
word write transaction shown is composed
of two over-lapping operations.

Bus Master — A board that has won arbitration. This board drives the info lines in the info phase
of the bus operation. A bus master can be a transaction master or a transaction slave.

Bus Slave — A board that has determined the info lines carry information that it must receive. A
bus slave can be a transaction master or a transaction slave.

CD different read — A read in which the C and D side ASICs each provide half the data, €.0.
when reading error status registers. Loopback checking of the bytes driven by the other side is
suppressed.

Cyclops — The Xbus to Ibus interface ASIC on the CPU board in Polo systems.

echo transaction — The second half of a peer-to-peer bus transaction between CPUs. Send and
echo transactions are not split; grant inhibit is used to ensure that no other transactions occur
between the send and echo. This is to prevent re-ordering.

EFQ — Eviction-Flush Queue. This queue exists only on CPU boards. Refer to the Cyclops (Bus
Interface) Specification for details.

EFQ-Freeze-State — Set via bit 19 of the Bus Interface State Register. This mode only exists on
CPU boards. When in this mode, a board will busy all accesses directed to its EFQ except those
from its partner unless it is a data return of any size.

Fast Duplexing — Fast duplexing is a form of duplexing in which no memory is updated. This is
done when both boards are coming up for the first time as opposed to updating a new board from
a running OS.

Freeze-State— Set via bit 14 of the Bus Interface State Register. This mode only exists on boards
that can be duplexed. When in this mode, a board will busy all accesses directed to its RWQ

21 July 1995 0

19
e

CA 02257511 1998-12-03

WO 97

/46541 PCT/US97/09781
Xbus Functional Specification Stratus company Confidential
except those from its partner.

Gambit — The Xbus to PCI ASIC on the PCI Bridge card. IT interface to the Xbus and the PCI bus.

1/O virtual address (IOVA) — An IOVA is an address generated by a PCI card. This address is
transmitted across the Xbus to the cyclops ASIC. Inside the cyclops ASIC the address is
translated into a valid system address. The IOVA is used to provide fault tolerance. It guarantees
that a PC! card will generate a correct address range.

loopback checking— This is when an ASIC checks that the value it sees on a pin is equal to the
value it thinks should be on the pin during normai operation.

loopcheck operation— This is when the bus ASICs drive 55/AAs as part of the error protocol in
order to determine the site of a fault.

peer to peer transaction — A two part transaction between two CPUs. The Xbus does not have
fully interconnected data buses, and transfers between the two CPLJ boards must occur in two
steps: first a send between the CPU and the PCIB(s), then an echo from the PCIiB(s) to all of the
CPU(s). The requesting CPU drives a complete transaction on its A and B buses. The PCIBs look
at the address, and determines whether the transaction is directed to the CPUs. If itis, they buffer
the transaction in order to repeat the transaction on their A & B buses once Post2 of the last info
phase has passed with no bus errors. In this way, both CPUs see the transaction at the same time.

Peer to peer transactions between CPU boards require a minimum of four operations.

RWQ — Read/Write Queue. This queue exists only on CPU boards. Refer to the Cyclops (Bus
Interface) Specification for details.

Regurgitated Info — A regurgitated info is a cougar generated cycle used during the update
process. It is generated by the update-on-line board and transmitted to the update off-line board. it
is unique because an update off-line board accepts info cycles even if the base address does not
match the base address of the board.

send transaction — The first half of a peer-to-peer bus transaction between CPUs.

single side operation — An operation with data supplied entirely by either the C or D ASIC; e.g.
a read from a PCI card. Loopback checking is performed only by the side supplying the data.

TRID — Transaction identifier. This a unique binary number used to tie together two bus
operations during a split transaction and to identify the source for write transactions (TRIDs on
write transactions are strictly for debug). A TRID is unique only while a given transaction is still
outstanding and will be re-used for later transactions by a transaction-master. Note that trid bits 02
- 00 are used for the siot number of the transaction-master and trid bits 06 - 04 are generated by
an on-board master - thus allowing a board to have 8 unique masters with transactions
outstanding.Trid bit 03 is a new bit for Polo that indicates the format of the address; a zero
indicates a Jetta style system address is being transmitted and a one indicates an IOVA (/O
Virtual Address) format is on the backpiane. The IOVA address needs to be translated into a

system address via the map RAM. Refer to section 6.10.1 for a complete description of the trid
field.

Transaction Master — The specific resource on a board that generated a transaction. The
transaction master is responsible for generating the TRID of the transaction.

Transaction Slave — The board on which a transaction was directed towards. i.e. a board in
which the function code and address of a bus operation has decoded to.

21 July 1995

(z“ 20

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Xbus Functiona: wpecincation . 4tus Company Confidential

4. Xbus Signal Description

The following section describes in detail the various signals that comprise the Xbus. As there are 4
buses in the Polo implementation, a new naming convention has been developed for the buses.
This naming convention is described in section 3.1, Bus Naming Convention, on page 15.

A functional description is included for each type of signal and not for every individual signal (for
example: there is a TRID field for all 4 buses, however there is only one description that covers
both). Power control and JTAG signals are not described here.The signal names are designed o
be compatible with the Verilog coding standards so that the specification will match the code
exactly. The following rules were used in creating the signal names:

- all lower-case characters '

. the“_"is a delimiter when it is not at the end of a signal nam

.+ the“ " atthe end of the signal name indicates that the signal is low-true

. _aindicates A_bus signals

. _bindicates B_bus signals

- _Xx_, _y_,and_z_areused forthe three low-true signals on a triplicated net
« [n:m]is used to describe a multi-bit field

4.1 Signal Description
As described earlier, the Polo Xbus implements the control and bused signals very differently.

The bused signals are implemented as 4 point-to-point bidirectional signals. The ability to drive
these signals is controlled through the arbitration network described later. These signals are
protected by a single parity bit that accompanies the bus. The buses are interconnected so that
each CPU is connected to both PC! bridge boards and each PCI bridge board is connected to both
CPUs. Error recovery is accomplished through the XBus error protocol.

The control signals are organized in a set of point to point unidirectional buses. Each of these
buses is ECC protected. These buses carry control signais which are not govermned through
arbitration. Unlike the bused signals, there is a control bus in each direction between every board.
This is necessary in order to ensure the single bus view of the system. For example, if one PCI
bridge card sees a bus error, that information must be transmitted to all three other boards in order
for the boards to all perform the error sequence.

The bused signals and control signals are double pumped at 24MHz each cycle. That is, they
carry different data during the first and second 24Mhz bus cycles that make up a single phase. All
buses and contro! signals are active high on the backpiane.

A small number of reset and broken related control signals are puffered by the 26S10 transceiver
and replicated for three way voting. These signals are active low on the backplane.

4.2 The Info Bus

The following signals are collectively referred to as the info bus. Although there are actually 4 sets
of these signals (a0,a1,b0,b1), for simplicity's sake only the a0 version is listed. For example,
when the TRID field is described, it should be understood that there are actually 4 TRID buses:

21 July 1995 21

WO 97/46941

Xbus Functional Specification

CA 02257511 1998-12-03

PCT/US97/09781

Stratus Company Confidential

trid_ao, trid_bo0, trid_a1, and trid_b1.

Table 2. Xbus Bidirectional Buses

signal

width

description

info_a0{31:0]

128
(32x4)

Xbus info bus- Info is driven during the info phase of a bus operation
by the current bus master. This field may contain either an address
(physical address or virtual index with function code) or data,
depending on the func_op control line.

trid_a0(6:0}

28
(7x4)

Xbus transaction id (TRID) - The trid lines carry the TRID
(transaction 1D) during the first cycle of a phase. During the second
cycle, it carries the number of phases remaining, the first_op bit, and
cache coherency bits.

func_op_a0_

Xbus func_op - This line carries the func_op_ signal which indicates
that the current information on the info bus contains a function code
that should be decoded. This signal is low true so thatan idie bus will
indicate that a function needs to be decoded, and thus a no-op
function. This bit is valid during an info phase and is protected by
parity along with the lower half of the info field. During the second
cycle, it is unused (driven to logic 0 on the backplane).

parity_a0

Xbus parity - This parity signal covers all of the bidirectional signals
on a bus: info, trid, func_op_.

TOTAL

158

4.3 The Control Bus

This section describes the control signals. There a

re actuaily 12 contro! buses, but again only one

is described here. The names of the tweive control buses are listed in table 1. For simplicity of
documentation, the control bus is identified by bit numbering, similar to the trid field. However,
since the meaning of the control bus bits is very significant, each one is described in detail here.

21 July 1995

WO 97/46941

Xbus Function.. Specincation

CA 02257511 1998-12-03

PCT/US97/09781

otratus Company Confidential

The controf buses are protected by a single bit correction, double bit detection ECC code.
Table 3. Control Bus Signals

signal

width

description

control[0}

12
(12x1)

bus_req and ack - During the first half of the phase, this bit is used for
bus_req. During the second half of the phase, this bit is used for ack.

During the first half of the phase, this bit is driven by a board when it is
requesting the bus. As described in later sections, the bus uses a
distributed arbitration model loosely based on the Golfbus. Each board
in the system drives the bus_req and tests all of other boards bus_req
signals to determine who will drive the info signals during the next
phase.

During the second cycle of the phase, this bit is used to acknowledge a
bus transaction. Ack is asserted in Post2 by the target board of the
transaction. This signal is the result of an address decode, so it is only
valid in Post2 of an operation that is transferring an address. Ack
provides an indication of whether or not a transaction is progressing.
This is relevant in a Polo system, since a PCl card may go away
resulting in a no ack for a ping operation.

Acks in a Polo system also let a PCI Bridge know that a CPU's map
RAM has mapped a PCi initiated access to a valid CPU address. if a
PCIB's read or write is not ACKed, the PCl slot that initiated the access
may or may not be set off-line depending on bits in the Gambit's
configuration register, described in section 12.6.4.9, SAM
Configuration, on page 127 in the Polo Programming Guide.

Writes from the CPU to the PCIB are acked to facilitate debug, but are
otherwise unused. A peer to peer CPU write is not ACKed by the
PCIBs, but the echoed operation is acked by both CPUs; again, this is
only for assisting debug.

Ack is ignored for the send portion of a peer-to-peer operation. The
CPU initiator of a peer-to-peer operation must track the entire
operation to see whether the cycle is acknowiedged.

21 July 1995

23

AR

CA 02257511 1998-12-03

WO 97/469
6941 PCT/US97/09781

Xbus Functional Specification Stratus Lompany Confidential

Table 3. Control Bus Signals

signal width description

control{1] 12 grant_inh and maint_int - During the first hait of the phase, this bit is
(12x1) | used tor grant_inh, during the second half of the phase, this bit is used
for maint_int.

During the first cycie, the grant inhibit control bit is driven by the current
bus master to extend the info cycles when the bus master is moving a
plock of data. The arbitration logic will not issue a grant to any other
board when a board is driving this signal. This ensures that the current
pus master will retain ownership of the bus for another cycle.

During the second half of the cycle, this bit is used to signal a
maintenance interrupt. Maintenance Interrupt indicates that some
board in the system is requesting attention from the software
maintenance process. Any board in the system may drive this signal
during the second half of a bus phase regardiess of bus mastership. All
boards in the system will sample maintenance interrupt and use it to
reset their arbitration priority.

control[2] 12 bus_err_a and busy - Assertion of this signal during the first haif of
(12x1) | Post2 signals that a bus error was detected on the info bus associated
with this particular control bus (n,0,p). Any operation in Arb, Info, or
Post1 will be aborted. Operations in Post2 are suspended while the
error protocol runs, and then will retum to the info phase. See section
6.4 on page 30 for more information on bus_err.

The CPU initiator of a peer-to-peer operation must track the entire
operation to see whether the cycle is errored in either the send or echo
portion of the transaction.

Assertion of this signal during the second half of Post2 indicates to the
bus master that the operation should be aborted and re-tried at a later
time.

Busy is ignored for the send portion of a peer-to-peer operation. The
CPU initiator of a peer-to-peer operation must track the entire
operation to see whether the cycle is busied.

21 July 1995 24

T
-
N\

WO 97/46941

Xbus Functiona: pecincation

CA 02257511 1998-12-03

PCT/US97/09781

atus Company Confidential

Table 3. Control Bus Signals

signal

width

description

control[3)

12
(12x1)

bus_err_b and funny_state- Assertion of this signal during the first
half of Post2 signals that a bus error was detected on the B bus
connected to this board. Any operation in Arb, Info, or Post1 will be
aborted. Operations in Post2 are suspended while the error protocol
runs, and then will retum to the Info phase. See section 6.4 on page 30
for more information on bus_err.

The CPU initiator of a peer-to-peer operation must track the entire
operation to see whether the cycle is errored in either the send or echo
portion of the transaction.

During the second half of the cycle, this bit is used to signal thata
board has just gone unbroken. The board will continue to assert this
signal until it has seen eight phases without a bus error occurring. At
that point the board will stop asserting this signal. Then all other boards
will treat this board as an active, responding board. This prevents a
board that is going unbroken from responding to bus emors in the
middie of an error sequence that is already underway.

control[7:4]

48
(12x4)

checkbits - The top 4 bits of the control bus are checkbits generated
from the lower 4 bits of control signals.

The checkbit aigorithm is:

control{4] =control{0]Acontrol[1}*control[2];
control[5] = conrtol[0)*control[1]Acontrol[3];
control[6] = control{0)Acontrol[2]*control[3];

control[7] = control{1]*control[2)*control{3];

TOTAL

108

4.4 The Voted Signals

The voted signals are the only signals driven through 26510 transceivers. These signals are point
to point and terminated at each end, so that insertion of an unpowered board does not disturb the

21 July 1995

25

CA 02257511 1998-12-03

WO
97/46941 PCT/US97/09781

Xbus Functional Specification Stratus company Confidential

termination (and timing) of a net in use. Only the _x_ versions are listed; there are _y_and _z_

Table 4. 3-Way Voted Signals

signal total description
reset_0_1_x_, 18 | reset - There are separate 3-way voted triplets
raset_0_2_x_, (2x3 | from each CPU to the other three boards in the
reset 0_3_x_, x3) | system. When a RECC needs to reset the
reset_1_0_x_, system, all lines go active. When a CPU wants to
reset_1_2_x_, reset another board, only the lines going to that
reset_1_3_X%_ board are active.
board_not_broken_0_1_x 36 | broken status - This three way voted signal is
board_not_broken_0_2_x (4x3 | driven from each board to each other board. It is do
board_not_broken_0_3_x x3) | drivenwhen a board is alive and not broken in the -
board_not_broken_1_0_x system and is used to determine which buses are
board_not_broken_1_2_x active. The C-side ASICs drive the signals and 1“3
board_not_broken_1_3_x the D-side ASICs drive the output enabies for the ol
poard_not_broken_2_0_x 26S10s. This organization guarantees that b\? :‘
board_not_broken_2_1_x board_not_broken is deasserted whenever either N
board_not_broken_2_3_x side of the board thinks that the board is broken,. o
board_not_broken_3_0_x The receiving board votes the x, y, and z N
board_not_broken_3_1_x signals.CPUO in slot0 drives
board_not_broken_3_2_Xx board_not_broken{0], etc.
Sync_x_ 3 sync status - These signals are on the CPU only
(1x3) | and are used when synchronizing a pair of CPUs

to enter the duplexed state.

even_online_x_, odd_online_x_ 6 on-line status - These signals are on the CPU
(2x3) | only and are used by the CPU boards to

communicate to each other which CPU board(s)

are in the on-line state. Even_online_ is asserted

when the CPU in slot 0 is on-line; odd_online_is

asserted when CPU in siot 1 is on-line.

TOTAL 63
signals making up the tripiet.
21 July 1995 26

T

WO 97/46941

Xbus Functiona. _pecmcation

CA 02257511 1998-12-03

PCT/US97/09781

atus Company Confidential

4.5 Other Control Signals

Table 5. Miscellaneous Control Signals

slot_ida
slot_idb

slot id - The slot ID signals are hard wired on the backplane for
each slot. There is one duplicated slot id. Since the slots are
dedicated in Polo, it is only necessary to determine if a board is in
an even or an odd slot. These two bits will be registered and
checked by each ASIC at reset and will not be sampled again. If an
error is detected at reset, the board will break and hence will never
be capable of being brought on-fine.

xb_clk8

system clock - This is the system clock received by the Sentry -
clock chip and used to generate the board clocks. It is generated by
the backplane clock oscillator. This clock runs at 8MHz, so every
board in the system will be in sync with each other and there will be
no need for additional synchronization clocks to be passed along
the backplane. The clock is pulse width modulated so that 4Mhz
can be generated.

slot0_ta_d,
slot0_ta_c_,
slot1_ta_d,
sloti_ta_c_

ta signals - These “ta” signals are only presenton CPU boards and
are sent between a duplexed board pair for early detection of the
boards going out of lockstep. These explicitly named backplane
signals are used in place of the Golfbus pair_comm(7:4] signals,
which carry the ta information in Golfous systems.

TOTAL

21 July 1995

27

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Xbus Functional Specification Stratus —ompany Confidential

5. Xbus /O Interface Registers

A complete description of the Polo register set can be found in the Polo Programming Guide.

21 July 1985
LUSD

28

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Xbus Functiona: upecincation ~-atus Company Confidential

6. Xbus Protocol

6.1 Overview

The Xbus is a point-to-point synchronous, pipelined, multiplexed address/data, error detecting bus
with split-transaction capabilities. Function-code, address and data are parity and loop-back
checked. Control fines are ECC protected and loop-back checked. Three-way voting is
implemented on the reset, clock, and broken indicator lines.

The bus supports word accesses and has a block transfer capability for support of cache line
accesses. The Xbus has a logical 32-bit wide data/address bus.

6.2 Bus Operation

The basic component of all Xbus transactions is the operation. An operation is composed of four
phases as illustrated in figure 7: arb, info, post1, and post2. Two information transfers can occur
on the bus during each phase; this is referred to as “double pumping”. The double pump frequency
is approximately 24MHz. The figure below illustrates the logical activity on the bus. All information
is directly registered in the ASICs without any external buffers.

Figure 7. Basic Xbus Cycle

83.3ns
-

Arb

i
|

£

1
!
I

|
[
1
1

'/ “\nfo/ \/ info/

m '//4 TRID A TRID
(]
|

:

] 1 L
info ' Post1] Post2
§
t
1
1
1
|
{
|

NOTE ** X PAdr

Where info ' !
is one of: : :

K Data X Data)
1

L

N\

** virtual index, function code, remote/coherent bits, and byte enables or /O

The phases are used as follows:

Arb phase: boards drive their arbitration request lines during the first half (cycle) of the
arbitration phase. During the second half they determine whether they won arbitration and
prepare for the info phase.

Info phase: For non-lOVA address transfers, boards drive the virtual index, function code,
remote/coherent bits, and byte enables during the first half of the info phase and the physical
address during the second half. For IOVA address transfers (IOVA bit in the trid is true),
boards drive the IOVA during the first half of the info phase and deterministic data with good
parity during the second half; the physical address is gotten from the I/0 address map RAM
iook-up. For data transfers, data is driven during both the first and second halves of the cycle.
Note that non-cache consistent address transfers need not supply a virtual index though the
driven information must be deterministic and parity will be computed across it.

21 July 1995 29

9o

CA 02257511 1998-12-03

WO 97/46941
PCT/US97/09781

Xbus Functional Specification Stratus Lompany Confidential

Post1 phase: During this phase, boards are determining whether any error conditions existed
with the info phase and whether there is need to BUSY the operation. CPU boards map the
device index portion of the IOVA to obtain the full physical address and virtual index of an /O
pboard's transfer for IOVA address transfers.

Post2 phase: Any board detecting an error with the info phase drives the error lines during the
first half. If a board does get errored, it next goes to the error sequence phases to determine
the source of the error. Any board detecting the need to BUSY an address/function code
driven during the info phase drives BUSY during the second cycle of this phase. ltis also
during this phase that accesses are acknowledged (this is described in greater detail in
someothersection).

6.3 Bus Busies

Figure 8 illustrates the effect of bus BUSYs on the basic bus cycle. As shown in the figure, BUSY
has no effect on a bus operation during any phase except for post2; a BUSY during post2 will
cancel the bus operation. Note that busys for multiple cycle bus operations, such as block
transfers, have special rules and are described in section 6.7.4 on page 49.

Should a cycle be both BUSYed and ERRORed, the ERROR takes precedence.

Figure 8. Basic Bus Busy Operation

1 \ | X
Ly |
 feus| L L1 !
| Busy during Pos of an address/function code info
: phase causes the access t0 be canceled.
. ‘ ; , ; . .
— " |
t
' Busy during Post1 has no effect, though Yhe info may not

1 be used as discussed in secp'on 6.7, Blogk Transfers,
! \

J X \\ \

Arb Yinfo XPst1 'Pst?.) : ; ‘| '| ‘|
Busy during Info has no eftect, though thie info may not
be used as discussed in section 6.7, Block Transfers,

']] I

(intoypstifpsey—+—— |
X ' vy a: . ! .

Busy during Arbitra'uo'n has no eﬂéct, though the info may
not be used as discussed in section 6.7, Block Transfers,

|
i
\

3]

0

'

1
I |

|
|

|
|

i
\

i
1

}
1
\ !
| 1
' |

I
|
| \ \ '

1 '
i !

| i
! | ! I
| \

i |
) {
1 !] !
1 ' + |

6.4 Bus Errors ,—ol—(rw’ \
AL At

This section covers bus erors on the info bus, for information on the control bus see Section 9.2
on page 84.

Figure 9 shows the effect ot bus errors on the basic bus cycle.

21 July 1995 30
(S

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Xbus Functiona. ecification itus Company Confidential

Figure 9. Basic Bus Error Operation

' ! ' !

:/' — | ! : ! :

error | { | | ! {
o i 1 . i H } 1
: | | Error'during Post2 causes the address to be retransmitted the
| - !cycle following the error protocol. .
! .

4:““::“:;
| G ' ' .
—{(Arb XInfo ¥PstiX Pst2{(Err1 Xcput XcpupX IOt ":' '

[}

! : Error'during Post! aborts the request. | \
! |

| H | |

I . { . | .
fo ><' Pst1XErr1><' thxt_XCpupX' 10t X|0p><' |o;_;9<' Em2YArb Yinfo YPst} \
| — ' f '

}
! Error'during Info aborts the request. |
i
|

b — - -

i

]

|

—]
'
i
|
|

e == -

1
!
J
I

t 1 . i f | '
) Vo ! 0
-l-—ﬁ—. Info XErrt Xcput XcpupX 10t 10 1XIO®<Err2><Arb *Am XInfo}
| ﬂ XB Nt & /| O n—

+ Ervor'during Arb aborts the request. Info is not driven. 1
! |

I

I |
| i

i i \ !
| i ‘

1

H

]
|
!
i
[

Lo
! | ! i ! | I | !
The board that was transmitting during the error
automatically gets the first available info cycle
following execution of the error protocol. The

arbitration is ignored in the previous cycle.

Since the Xbus has no transceivers, the loopcheck phase of the Golfbus error protocol (Post4) has
been modified to allow each board an opportunity to verify its transmit and receive capabilities.
This has resulted in new states being added to the bus error operation. These states are described
betow:

Erri: The Err1 state is entered on the cycle after a bus error is detected. This state is used to
allow for time to turn off the info bus before the loopback checks are performed. A board that is in
its info phase during Err1 will disable its output enables half way through the phase.

CPUTest: The CPUTest state is used to test the CPU's ability to drive pattemns on the Xbus. On
the first cycle of the phase the CPU will drive 55 on the info bus, 55 on the trid bus, 1 on the parity
line and 0 on the func_op line. On the second cycle of the phase the CPU will drive AA on the info
bus, 2A on the trid bus, 0 on the parity line and 1 on the func_op line.

CPUPost: The CPUPost state is used to turn the bus around between the CPU’s loopback check
and the /O boards loopback check. This phase is also used as a Post1 cycle for the CPU's
loopback pattern.

'|OTest: The I0Test state is used to test the IO board's ability to drive patterns on the Xbus. On

,?the first cycle of the phase the /O board will drive 55 on the info bus, 55 on the trid bus, 1 on the

" parity line and 0 on the func_op line. On the second cycle of the phase the /O board will drive AA
on the info bus, 2A on the trid bus, 0 on the parity line and 1 on the func_op line. Bus errors from
the CPUTest phase are reported during this phase. This information is used to evaluate the bus,
CPU, and I/O board at the end of the error sequence. The last I/O ASIC to drive the data bus

drives the bus during the 10Test phase.

. 10Post: The IOPost1 state is used to evaluate the IOTest data.
\

21 July 1995 <)
’7_:)/’1,

CA 02257511 1998-12-03

WO 97/46941 PCT/US97/09781

Xbus Functional Specification Stratus L.mpany Confidential

_ 10Post2: The IOPost2 state is used to transmit any bus errors from the IOPost1 state. This
| information will be used to make an intelligent decision about how to deal with the error.

Err2: The Emr2 state is used to evaluate the information from the loopback checks. Bus errors from
CPUPost and IOPost2 as well as information shared between the C and D sides of each board are
used to determine what course of action to take. This set of actions will be described later in this
section.

Figure 10 shows the basic state machine and state transitions for the bus error handler. -

Figure 10. Bus Efror Operation Flow Chart

. o
gl ¢
WA(()':/A:MM |LC Lo

/]rvﬂ’b /J I"('Jr ' v
A | - L
¢ A3 _ i
o7 \r“‘j;(((
W 50 "
/iimiQ ' t‘\\n |

CPUTest

The key challenge for the bus error algorithm on the Xbus is to diagnose errors so that system
operation can continue. Unlike previous systems that use duplicated buses to allow all functional
units a guaranteed path for communications, when the Xbus removes a bus from service, it must
also remove one of mﬁhuached to that bus. in some cases, the right thing to dois
obvious. in other ca e following sections analyze various faults, how they are
handled and how they maniest themselves.

6.4.1 Bus Error Broken Conditions

At this point it would be helpfut to classify the different types of conditions that cause a board to go
broken when a bus is detected bad. For a full discussion of the broken logic, see Section 9. on
page 80.

21 July 1995 . 32
y 223

WO 97/46941

Xbus Functiona. pecmcation

CA 02257511 1998-12-03

PCT/US97/09781

.atus Company Confidential

loopback on control - C and D ASICs must always agree on what to drive on the control
lines, including whether or not to assert bus error. If one ASIC asserts bus error and the other
side does not, the board breaks.

loopback on data - C and D ASICs must always agree on what to drive on the duplicated info
lines. When driving CD same data, ASICs compare the data they drive with the data they
receive. An ASIC asserts bus error on parity errors when receiving data, and parity errors and
loopback errors when driving data. Loopback checking is disabled when a board drives “CD
different” data, such as the contents of error reporting registers or data from PCI cards. The
board breaks if the two sides disagree on which bytes have or do not have ermors,.

arbitrary - Break the designated board in Err2 when there are bus errors signaled during
CPUtest and IOtest and no board has broken by the end of 1Opost2. This is called an arbitrary
shoot because the fault is most likely on the backplane, so it is arbitrary as to which of the two
boards connected to the faulty bus to break. Typically, the CPU is set broken, so that the
system can continue with all of its /O available, but if bit 21 of the Bus Interface State register
(Section 12.3.4 on page 87 in the Polo Programming Guide) is set then the PCIB board will be
the designated board.

heuristic - a board breaks itself during Err2 if there is a bus error when it drives, but no bus
error when the other board drives, and the other board did not break by the end of IOPOST2.

6.4.2 Xbus Fault Analysis

In order to understand various faults and what they can mean, it is important to present a detailed
block diagram of the Xbus interconnect. Figure 11 show the interconnect for a typical Xbus tine.

Figure 11. Xbus Interconnect

D-Side CPU ASIC C-Side CPU ASIC

T30

Backplane

rADY A
8 8
D-Side I/0 ASIC C-Side /0O ASIC
** fault site number - see section 6.4.3 J

The black dots in figure 11 represent the connectors to the backplane. For fault tolerance and fault
isolation reasons, it is important that the boards should be routed so that the etch between the D-

21 July 1995 33

LY

CA 02257511 1998-12-03

WO 97/
46941 PCT/US97/09781

Xbus Functional Specification Stratus _ umpany Confidential

side and the C-side runs through the connector connection. This limits the amount of etch on each
board that cannot be isolated &% to a minimum. On the CPU board, one ASIC both drives and
receives a given net while the other ASIC only receives that net. On the /O board, each ASIC can
potentially drive every net. The CPU ASICs are always in lockstep and therefore each ASIC is
capable of sharing the data out load. However on the 1/O board, each ASIC connects to a difterent
PC! bus so a signal ASIC may need to drive the entire Xbus. There are cases in normai operation
when only one CPU ASIC will drive the entire bus.

6.4.3 Fault Conditions

The following sections identify all known fault conditions and describe their handling. Refer to
figure 11 to determine the location of the fault site indicated.

6.4.3.1 CPU Board Faulty Input Circuit - CPU Driving
+ fault site 1
. break via loopback on control fault

This fault deals with a fault in the input section of one of the CPU ASICs. In this case, the fault
occurred during or just before a cycle in which the CPU drove the info bus. The error is detected
when the CPU drives the bus. The ASIC with the taulty circuit will signal a bus error during the
Post2 phase of the cycle and the other side ASIC will not. The board will go broken and drive bus
error during Err1. The error sequence will be executed, and the operation will be retried by the
partner CPU with no error.

6.4.3.2 CPU Board Faulty input Circuit - I/0 Board Driving
+ fault site 1
. break via loopback on control fault

This fault deals with a fault in the input section of one of the CPU ASICs. in this case the fault
occurred during or just before a cycle in which the /O board drove the info bus. If the error is a
multi-bit error that evades the parity logic, the error will be caught internal to the CPU board and
the CPU board will go broken. If the error is a single bit error the faulty ASIC will detect a bus error
during the Post1 phase of the transfer. The ASIC will drive bus error during Post2 of the transfer
and the otherside of the board will not. The board will break with a loopback on contro! failure in
the next phase. After the error sequence, the operation will be retried by the partner CPU with no
error.

6.4.3.3 CPU Board Different Data C-Side and D-side
. faultsite 2
. break via loopback on data fault

This fault deals with an intemal CPU fault that results in different data being driven out of each
ASIC. The error is detected when the CPU drive