

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number
WO 2015/084701 A1

(43) International Publication Date
11 June 2015 (11.06.2015)

W I P O | P C T

(51) International Patent Classification:
F28D 15/02 (2006.01) F25B 27/02 (2006.01)
F25B 49/00 (2006.01)

(21) International Application Number:
PCT/US20 14/067863

(22) International Filing Date:
1 December 2014 (01.12.2014)

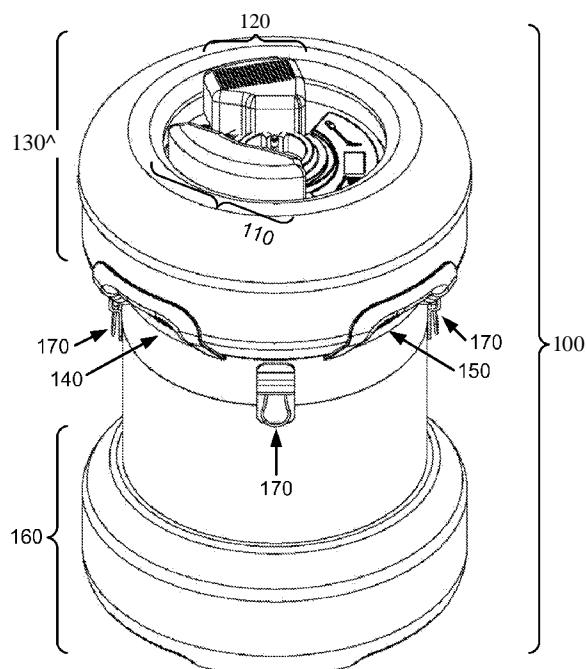
(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
14/098,886 6 December 2013 (06.12.2013) US

(71) Applicant: **TOKITAE LLC [US/US]; 3150 139th Ave SE, Bellevue, WA 98005-4046 (US)**

(72) Inventors: **BLOEDOW, Jonathan; 3111 203rd St SW, Lynnwood, Washington 98036 (US). CALDERON, Ryan; 901 NE 64th St., Apt B, Seattle, Washington 98115 (US). FRIEND, Michael; 4715 45th Ave NE, Seattle, Washington 98105 (US). GASPERINO, David; 3721 NE 150th**


St., Lake Forest Park, Washington 98155 (US). **GATES, William; One Microsoft Way, Redmond, Washington 98052-6399 (US). HYDE, Roderick A.; 9915 161st Ave NE, Redmond, Washington 98052 (US). JUNG, Edward K.Y.; 10091 Park Run Drive #200, Las Vegas, Nevada 89145 (US). LIU, Shieng; 15660 SE 12th PL, Bellevue, Washington 98008 (US). MYHRVOLD, Nathan P.; 11235 SE 6th Street, Suite 200, Bellevue, Washington 98004 (US). PEGRAM, Nathan John; 3429 Airport Way S #11A, Seattle, Washington 98134 (US). PIECH, David Keith; 8253 Bagley Ave N, Seattle, Washington 98103 (US). STONE, Shannon Weise; 10316 179th Ave NE, Redmond, Washington 98052 (US). TEGREENE, Clarence T.; 5910 E Mercer Way, Mercer Island, Washington 98040 (US). WHITMER, Charles; 15509 Uplands Way SE, North Bend, Washington 98045 (US). WOOD, Lowell L., Jr.; 989 112th Ave NE #2310, Bellevue, Washington 98004 (US). YILDIRIM, Ozgur Emek; 16399 SE 48th Dr., Bellevue, Washington 98006 (US).**

(74) Agents: **MALASKA, Stephen L. et al; 3150 139th Ave SE, Bellevue, WA 98005-4046 (US).**

[Continued on nextpage]

(54) Title: **TEMPERATURE-STABILIZED STORAGE SYSTEMS WITH INTEGRAL REGULATED COOLING**

FIG. 2

(57) **Abstract:** In some embodiments, a regulated thermal transfer device for a storage container includes: a phase change material unit, the phase change material unit including one or more walls surrounding a phase-change material region, and an aperture in the one or more walls; a heat pipe with a first end positioned within the phase change material unit, and a second end; a thermoelectric unit thermally connected to the second end of the heat pipe; a heat sink connected to the thermoelectric unit, and positioned to radiate heat away from the thermoelectric unit; and an electronic controller operably connected to the thermoelectric unit; wherein the regulated thermal transfer device is of a size and shape to be positioned so that the phase change material unit is within a storage region of a temperature-stabilized storage container, and the thermoelectric unit is positioned adjacent to an external surface of the temperature-stabilized storage container.

(81) **Designated States** (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) **Designated States** (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH,

GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

Temperature-Stabilized Storage Systems with Integral Regulated Cooling

All subject matter of the Priority Application(s) is incorporated herein by reference to the extent such subject matter is not inconsistent herewith.

5 SUMMARY

In some embodiments, a regulated thermal transfer device for a storage container includes: a phase change material unit, the phase change material unit including one or more walls surrounding a phase-change material region, and an aperture in the one or more walls; a heat pipe with a first end positioned within the phase change material unit, 10 and a second end; a thermoelectric unit thermally connected to the second end of the heat pipe; a heat sink connected to the thermoelectric unit, and positioned to radiate heat away from the thermoelectric unit; and an electronic controller operably connected to the thermoelectric unit; wherein the regulated thermal transfer device is of a size and shape to be positioned so that the phase change material unit is within a storage region of a 15 temperature-stabilized storage container, and the thermoelectric unit is positioned adjacent to an external surface of the temperature-stabilized storage container.

In some embodiments, a temperature-stabilized storage container includes: one or more sections of ultra-efficient insulation material substantially defining a temperature-stabilized storage container including a temperature-stabilized storage region with a single 20 access aperture to the temperature-stabilized storage region; a phase change material unit attached to an internal surface of the temperature-stabilized storage region; a heat pipe with a first end positioned within the phase-change material unit, and a second end positioned adjacent to the single access aperture on an outer surface of the temperature-stabilized storage container; a thermoelectric unit in contact with the second end of the 25 heat pipe; a heat sink connected to the thermoelectric unit and positioned to radiate heat away from the thermoelectric unit; and an electronic controller connected to the thermoelectric unit.

In some embodiments, a temperature-stabilized storage container includes: an outer wall substantially defining an outer surface of a storage container, the outer wall 30 including an outer aperture in an upper region; an inner wall substantially defining a

temperature-stabilized storage region internal to the storage container, the inner wall including an inner aperture in an upper region; a gap between the outer wall and the inner wall; a conduit connecting the outer aperture to the inner aperture; one or more sections of ultra-efficient insulation material within the gap; a phase-change material unit attached to 5 an internal surface of the temperature-stabilized storage region; a heat pipe with a first end positioned within the phase-change material unit, and a second end positioned adjacent to the outer aperture; a thermoelectric unit in contact with the second end of the heat pipe; a heat sink connected to the thermoelectric unit and positioned to radiate heat away from the thermoelectric unit; and an electronic controller connected to the thermoelectric unit.

10 The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features will become apparent by reference to the drawings and the following detailed description.

BRIEF DESCRIPTION OF THE FIGURES

15 **FIG. 1** is an external side view of a temperature-stabilized storage container including a regulated thermal transfer device.

FIG. 2 is an external isometric view of a temperature-stabilized storage container including a regulated thermal transfer device.

20 **FIG. 3** is an external, top-down view of a temperature-stabilized storage container including a regulated thermal transfer device.

FIG. 4 is a top-down view of a temperature-stabilized storage container including a regulated thermal transfer device with covers removed.

FIG. 5 is an external view of a regulated thermal transfer device.

FIG. 6 is an external, side view of a regulated thermal transfer device.

25 **FIG. 7** is a view of a regulated thermal transfer device with the covers removed.

FIG. 8 is a view of a regulated thermal transfer device with the covers removed.

FIG. 9 is a substantially vertical cross-section view of a regulated thermal transfer device.

30 **FIG. 10** is a substantially vertical cross-section view of a regulated thermal transfer device.

FIG. 11 is a substantially vertical cross-section view of a regulated thermal transfer device.

FIG. 12 is a substantially vertical cross-section view of a regulated thermal transfer device in position within a storage container.

FIG. 13 is a substantially vertical cross-section view of a regulated thermal transfer device in position within a storage container.

5 **FIG. 14** is a substantially horizontal cross-section view of a regulated thermal transfer device in position within a storage container.

FIG. 15 is a schematic of a regulated thermal transfer device and storage units in position within a temperature-stabilized storage container.

DETAILED DESCRIPTION

10 In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing 15 from the spirit or scope of the subject matter presented here.

The use of the same symbols in different drawings typically indicates similar or identical items unless context dictates otherwise.

Figure 1 shows a particular perspective of a temperature-stabilized storage container 100 including a regulated thermal transfer device, according to an embodiment. 20 Figure 1 illustrates a side view of a temperature-stabilized storage container 100 from the exterior. The temperature-stabilized storage container 100 includes a regulated thermal transfer device including a circuitry unit 110 and a heat sink unit 120 visible in the exterior view of Figure 1. The temperature-stabilized storage container 100 also includes an external shell 130 attached to the top region of the temperature-stabilized storage container 100. The external shell 130 includes a plurality of apertures positioned substantially 25 vertically within the external shell 130. In the view shown in Figure 1, a first aperture 140 and a second aperture 150 are visible. The first and second apertures 140, 150 are positioned, *inter alia*, to serve as handholds for the temperature-stabilized storage container 100 for a user of the container, such as to move the position of the container 30 within a room.

In some embodiments, a temperature-stabilized storage container includes a substantially thermally sealed storage container. See, for example, US Patent Application

No. No. 13/906,909, entitled TEMPERATURE-STABILIZED STORAGE SYSTEMS WITH REGULATED COOLING, naming Jonathan Bloedow, Ryan Calderon, David Gasperino, William Gates, Roderick A. Hyde, Edward K.Y. Jung, Shieng Liu, Nathan P. Myhrvold, Nathan John Pegram, Clarence T. Tegreene, Charles Whitmer, 5 Lowell L. Wood, Jr. and Ozgur Emek Yildirim as inventors, filed 31 May, 2013, which is incorporated by reference.

In some embodiments, a temperature-stabilized storage container can be of a portable size and shape, for example a size and shape within reasonable expected portability estimates for an individual person. The temperature-stabilized storage 10 container can be configured of a size and shape for carrying or hauling by an individual person. For example, in some embodiments the temperature-stabilized storage container has a mass that is less than approximately 50 kilograms (kg), or less than approximately 30 kg. For example, in some embodiments the temperature-stabilized storage container has a length and width that are less than approximately 1 meter (m). The temperature - 15 stabilized storage container 100 illustrated in Figure 1 is roughly configured as a cylindrical shape, however multiple shapes are possible depending on the embodiment. For example, a rectangular shape, or an irregular shape, can be desirable in some embodiments, depending on the intended use of the temperature-stabilized storage container.

20 In some embodiments, a temperature-stabilized storage container includes a base attached to the exterior of the container at a region of the container positioned to be a lower region during expected use of the container. The temperature-stabilized storage container 100 illustrated in Figure 1 includes a base 160, which is configured to provide stability and balance to the temperature-stabilized storage container 100. For example, the 25 base 160 can provide mass and therefore ensure stability of the temperature-stabilized storage container 100 in an upright position, or a position for its intended use. For example, the base 160 can provide mass and form a stable support structure for the temperature-stabilized storage container 100. In some embodiments, the temperature-stabilized storage container 100 is configured to be maintained in a position so that the 30 single access aperture to a substantially thermally sealed storage region is commonly maintained substantially at the highest elevated surface of the temperature-stabilized storage container. In embodiments such as that depicted in Figure 1, such positioning minimizes thermal transfer of heat from the region surrounding the temperature-stabilized

storage container 100 into a storage region within the temperature-stabilized storage container 100. In order to maintain the thermal stability of a storage region within the temperature-stabilized storage container 100 over time, thermal transfer of heat from the exterior of the temperature-stabilized storage container 100 into the temperature-stabilized 5 storage container 100 is not desirable. A base 160 of sufficient mass can be configured to encourage maintenance of the temperature-stabilized storage container 100 in an appropriate position for the embodiment during use. A base 160 of sufficient mass can be configured to encourage maintenance of the temperature-stabilized storage container 100 in an appropriate position for minimal thermal transfer into a storage region within the 10 temperature-stabilized storage container 100 from a region exterior to the temperature-stabilized storage container 100. In some embodiments, an external wall of an access conduit can be elongated and/or nonlinear to create an elongated thermal pathway between the exterior of the container 100 and the interior of the container.

The temperature-stabilized storage container 100 can include, in some 15 embodiments, one or more handles 170 attached to an exterior surface of the container 100, wherein the handles 170 are configured for transport of the container 100. The handles can be fixed on the surface of the container, for example welded, fastened or glued to the surface of the container. The handles can be operably attached but not fixed to the surface of the container, such as with a harness, binding, hoop or chain running along the 20 surface of the container. The handles can be positioned to retain the container with an access conduit on the top of the container during transport to minimize thermal transfer from the exterior of the container through the access conduit.

The temperature-stabilized storage container can include electronic components. For example, Figure 1 depicts a circuitry unit 110 positioned at the top of the container 25 100. Although it may be desirable, depending on the embodiment, to minimize thermal emissions (*i.e.* heat output) within the container, electronics with thermal emissions can be operably attached to the exterior of the container without providing heat to the interior of the container. For example, Figure 1 depicts a heat sink unit 120 positioned adjacent to the top edge of the container 100. For example, one or more positioning devices, such as 30 GPS devices, can be attached to the exterior of the container. One or more positioning devices can be configured as part of a system including, for example, monitors, displays, circuitry, power sources, an operator unit, and transmission units. To the extent that circuitry is positioned within the interior region of a container during use of an

embodiment, it is selected for low thermal emission properties as well as positioned and utilized to minimize thermal emissions.

Depending on the embodiment, one or more power sources can be attached to the temperature-stabilized storage container, wherein the power source is configured to supply power to circuitry within the container or within a regulated thermal transfer device affixed to the container. For example, a photovoltaic unit can be attached to the exterior surface of the temperature-stabilized storage container. For example, a photovoltaic unit can be attached to a building or structure that the container is placed within, and a wire or similar electrical conduit can connect the circuitry within the container or within a regulated thermal transfer device affixed to the container to the external photovoltaic unit.

For example, a battery unit can be attached to the exterior surface of the temperature-stabilized storage container. For example, one or more wires can be positioned within an access conduit of the temperature-stabilized storage container to supply power to circuitry within the container or within a regulated thermal transfer device affixed to the temperature-stabilized storage container. For example, one or more power sources can be attached to an exterior surface of the temperature-stabilized storage container, wherein the power source is configured to supply power to circuitry within the container. For example, one or more power sources can be attached to an exterior surface of the temperature-stabilized storage container, wherein the power source is configured to supply power to circuitry integral to a regulated thermal transfer device affixed to the temperature-stabilized storage container. A power source can include wirelessly transmitted power sources, such as described in U.S. Patent Application No. 2005/0143787 to Boveja, titled "Method and system for providing electrical pulses for neuromodulation of vagus nerve(s), using rechargeable implanted pulse generator," which is herein incorporated by reference. A power source can include a magnetically transmitted power source. A power source can include a battery. A power source can include a solar panel, such as a photovoltaic panel. A power source can include an AC power source with a converter to supply DC current to the circuitry within the temperature-stabilized storage container or within a regulated thermal transfer device affixed to the temperature-stabilized storage container.

Depending on the embodiment, one or more temperature sensors can be attached to an exterior surface of the temperature-stabilized storage container. The one or more temperature sensors can be configured, for example, to display the ambient temperature at

the surface of the temperature-stabilized storage container. The one or more temperature sensors can be configured, for example, to transmit data to one or more system. The one or more temperature sensors can be configured, for example, as part of a temperature monitoring system.

5 Depending on the embodiment, one or more transmission units can be operably attached to the temperature-stabilized storage container. For example, one or more transmission units can be operably attached to the exterior surface of the temperature-stabilized storage container. For example, one or more transmission units can be operably attached to an interior unit within the temperature-stabilized storage container. For
10 example, one or more transmission units can be operably attached to the regulated thermal transfer device affixed to the temperature-stabilized storage container. Depending on the embodiment, one or more receiving units can be operably attached to the temperature-stabilized storage container. For example, one or more receiving units can be operably attached to the exterior surface of the temperature-stabilized storage container. For
15 example, one or more receiving units can be operably attached to an interior unit within the temperature-stabilized storage container. For example, one or more receiving units can be operably attached to the regulated thermal transfer device affixed to the temperature-stabilized storage container.

Figure 2 depicts an isometric external view of a temperature-stabilized storage container 100. The temperature-stabilized storage container 100 includes a regulated thermal transfer device including a circuitry unit 110 and a heat sink unit 120 visible in the exterior view of Figure 2. The heat sink unit 120 includes a plurality of linear slits in a cover of the heat sink unit 120, the plurality of slits positioned to provide air flow between a region adjacent to the heat sink unit 120 and the interior of the heat sink unit 120. The
25 temperature-stabilized storage container 100 also includes an external shell 130 attached to the top region of the temperature-stabilized storage container 100. The external shell 130 includes a plurality of apertures positioned substantially vertically within the external shell 130. The embodiment shown in Figure 2 includes a plurality of handles 170 affixed to the exterior of the temperature-stabilized storage container 100. The embodiment illustrated
30 includes a base 160 affixed to a lower region of the temperature-stabilized storage container 100. The external shell 130 and the base 160 are affixed to distal ends of the temperature-stabilized storage container 100 illustrated in Figure 2.

Figure 3 illustrates an embodiment of a temperature-stabilized storage container 100 in a top-down view. The temperature-stabilized storage container 100 includes a regulated thermal transfer device including a circuitry unit 110 and a heat sink unit 120 visible in the view of Figure 3. The heat sink unit 120 includes a plurality of slits in the visible cover to the heat sink unit, the slits positioned to provide airflow through the cover. A lid 300 covers a single access aperture to the interior storage region within the temperature-stabilized storage container 100. The lid 300 is attached to hinges 310 positioned to move the lid 300 as desired by a user to access the interior storage region of the container.

Figure 4 shows an embodiment of temperature-stabilized storage container 100 in a top-down view. In the embodiment shown in Figure 4, the circuitry unit 110 and a heat sink unit 120 of a regulated thermal transfer device integral to the container do not include covers. The interior regions of the circuitry unit 110 and the heat sink unit 120 are partially illustrated in the view of Figure 4. The heat sink unit 120 includes a plurality of planar thermal transfer units positioned substantially horizontally relative to the usual orientation of the container (*e.g.* as shown in Figure 1). A top thermal transfer unit 400 is visible in the view of Figure 4 as a substantially planar sheet. The heat sink unit 120 also includes a plurality of heat pipes 410 affixed to a heat transfer unit 420. The heat transfer unit 420 includes a thermally-conductive block surrounding a top end of a heat pipe 430. The heat pipe 430 is positioned substantially at right angles to the view shown in Figure 4, so in this view it is visible as a circular cross-section of the heat pipe 430.

Figure 5 illustrates an external view of a portion of a regulated thermal transfer device 500. The regulated thermal transfer device 500 portion shown in Figure 5 is attached to a temperature-stabilized storage container during use, along with an attached circuitry unit (not shown in Figure 5). The regulated thermal transfer device is of a size and shape to be positioned so that the phase change material unit is within a storage region of a temperature-stabilized storage container during use of the device. The regulated thermal transfer device 500 illustrated in Figure 5 includes an external cover surrounding the structure. The regulated thermal transfer device 500 shown in Figure 5 is attached to a circuitry unit during use with a temperature-stabilized storage container. The portion of a regulated thermal transfer device 500 shown in Figure 5 includes a heat sink unit 120 at the top of the device 500. The heat sink unit 120 includes a plurality of slits in the top portion of the cover surrounding the heat sink unit 120. The slits create apertures through

the cover at the top of the heat sink unit 120. The heat sink unit 120 is affixed at its lower edge to an adiabatic region 510 of the regulated thermal transfer device 500. The adiabatic region 510 includes a cover with a surface 520 configured to reversibly mate with the interior surface of an access conduit of a temperature-stabilized storage container 5 during use of the device with the container. The portion of a regulated thermal transfer device 500 shown in Figure 5 includes a phase change material unit 530. The phase change material unit 530 includes walls surrounding a phase-change material region interior to the walls.

In some embodiments, a regulated thermal transfer device includes a phase change 10 material unit, the phase change material unit including one or more walls surrounding a phase-change material region, and an aperture in the one or more walls. For example, in the illustrated embodiment of Figure 5, wherein the aperture in the walls surrounding the phase change material unit 530 is attached to a corresponding aperture in the cover surrounding the adiabatic region 510. In some embodiments, the phase change material 15 unit includes an aperture surrounding a heat pipe, and a seal connecting the aperture to the heat pipe. In some embodiments, the phase change material unit includes a sealed container substantially filled with a phase-change material. In some embodiments, the phase change material unit includes a sealed container including a hydrocarbon-based phase-change material within an expanded graphite structure. In some embodiments, the 20 phase change material unit includes an attachment region positioned to attach the phase change material unit to a surface of the storage region of the temperature-stabilized storage container. For example, the external cover of the phase change material unit can include one or more fasteners positioned to mate with the interior surface of the storage region of the temperature-stabilized storage container. In some embodiments, the phase change 25 material unit includes a phase change material substantially filling a sealed interior region of the phase change material unit, the phase change material having a freeze temperature between about 0°C to about 2°C. In some embodiments, the phase change material has a freeze temperature between about 1°C to about 3°C. In some embodiments, the phase change material has a freeze temperature between about 2°C to about 4°C. In some 30 embodiments, the phase change material has a freeze temperature between about 3°C to about 5°C. In some embodiments, the phase change material has a freeze temperature between about 4°C to about 6°C. In some embodiments, the phase change material unit includes a phase change material as well as expansion space sufficient to include the phase

change material in a different phase. For example, in some embodiments the phase change material includes water and the phase change material unit includes sufficient expansion space to contain the water in a frozen state.

In some embodiments, the phase change material unit includes additional material 5 positioned in a location to encourage freezing of the phase change material at that location. In some embodiments, the phase change material unit includes one or more nucleation agents. For example, a phase change material unit can include water as a phase change material and nucleation agents, such as silver iodide or plant-based nucleating agents such as *Ina* proteins from *Pseudomonas syringae*. In some embodiments, the phase change 10 material unit includes a mechanical shock unit, such as a piezo actuator or a solenoid unit positioned to nucleate ice formation in supercooled phase change material, such as water. In some embodiments, a phase change material includes a second thermoelectric unit positioned to provide additional cooling to the phase change material unit.

"Phase change material" as used herein, includes materials that change their state 15 (*e.g.* liquid to solid) at specific temperatures with a high heat of fusion. For example, in some embodiments the phase change material is water or ice. For example, in some embodiments the phase change material is an organic or inorganic material. The phase change material for an embodiment can be selected based on factors such as cost, thermal capacity, toxicity, mass and freezing temperature for a specific phase change material. In 20 some embodiments a phase change material includes PureTemp™ 4 (available from Entropy Solutions Inc.), with a melting point of 5°C. In some embodiments a phase change material includes Phase 5™, (available from Cryopak Inc.), with a melting point of 5°C. In some embodiments a phase change material includes materials with a melting point up to 8°C. In some embodiments a phase change material includes materials with a 25 melting point between 2°C and 8°C. In some embodiments, the phase change material is a hydrocarbon-based material. In some embodiments, the phase change material is a salt-water solution. In some embodiments, the phase change material is a salt-hydrate solution, wherein the salt is present in a crystalline form. In some embodiments, the phase change material is a salt eutectic solution. In some embodiments, the phase change material 30 includes one or more clathrates, for example tetrahydrofuran clathrate. In some embodiments, the phase change material is structured as beads or pellets within the phase change material unit. In some embodiments, the phase change material is structured as a solid or semi-solid three-dimensional unit within the phase change material unit, so that no

internal containment structure for the phase change material is required. For example, in some embodiments a phase change material can be structured as a semi-solid gel, or a solid crystalline array.

In some embodiments, a phase change material unit can include one or more 5 additional elements positioned to enhance thermal transfer within the phase change material unit. For example, in some embodiments the phase change material unit includes an expanded graphite material saturated with a hydrocarbon-based phase change material. For example, during manufacture, one or more 10% graphite sheets can be saturated with a hydrocarbon-based phase change material and the combined materials positioned within 10 a phase change material unit. In some embodiments, a phase change material unit can include one or more thermal conduction elements, such as plate structures, linear structures, or other features fabricated from thermally-conductive material and positioned within the phase change material unit in a manner to enhance thermal transfer within the phase change material unit. For example, in some embodiments a phase change material 15 unit can include one or more mesh structures fabricated from copper and positioned to enhance thermal transfer within the phase change material unit.

The phase change material unit illustrated in Figure 5 is a solid structure. In some embodiments, a phase change material unit is a folded or compressed structure that is unfolded or expanded during addition of the regulated thermal transfer device to a 20 temperature-stabilized storage container. For example, in some embodiments, a phase change material unit includes a balloon-type structure that is initially inserted into the storage region interior to a temperature-stabilized storage container without phase change material (*e.g.* in a "deflated" state). Subsequently, the phase change material unit can be filled with a phase change material, such as through a tube positioned within the adiabatic 25 region of the regulated thermal transfer device. As the balloon-type structure of the phase change material unit is filled with the phase change material, it expands in position within the storage region interior to a temperature-stabilized storage container in a manner for use.

In some embodiments, a regulated thermal transfer device also includes a phase 30 change material unit with a second internal container including phase change material. For example, a second internal container can include the same phase change material as the main container. For example, a second internal container can include a second phase change material. For example, the second internal container can include an internal

enclosure with phase change material sealed within the internal closure. In some embodiments, a phase change material unit includes a plurality of internal containers, each including phase change material. The phase change material can be the same in each of the plurality of internal containers. The phase change material can be different among the 5 plurality of internal containers. The one or more internal containers within the phase change material unit can be positioned, for example, between the exterior of the phase change material unit and the heat pipe within the phase change material unit. The one or more internal containers within the phase change material unit can be positioned, for example, between the internal storage region of the container and the heat pipe within the 10 phase change material unit.

In some embodiments, a regulated thermal transfer device also includes a heat pipe with a first end positioned within the phase change material unit, and a second end traversing the aperture of the one or more walls of the phase change material unit. For example, in some embodiments the heat pipe includes a substantially tubular structure. 15 For example, in some embodiments the heat pipe includes a substantially vertical structure when the regulated thermal transfer device is positioned for use within a storage container. *See, e.g.* Figures 12 and 13. For example, in some embodiments the heat pipe is configured to be positioned substantially vertically when it is affixed to the temperature-stabilized storage container. For example, in some embodiments the heat pipe includes a 20 plurality of thermal conduction structures positioned within the phase-change material unit and configured to transfer heat from the phase change material to the heat pipe. For example, in some embodiments a heat pipe has a plurality of planar thermal conduction structures thermally attached to its outer surface. For example, the thermal conduction structures can be fabricated from a thermally-conductive material, such as copper or silver. 25 For example, in some embodiments the heat pipe includes a plurality of thermal conduction structures including a plurality of planar structures attached to the heat pipe at substantially right angles.

In some embodiments, a regulated thermal transfer device also includes a thermoelectric unit thermally connected to the second end of the heat pipe. The 30 thermoelectric unit is positioned adjacent to an external surface of the temperature-stabilized storage container. For example, in some embodiments the thermoelectric unit includes a Peltier device. For example, in some embodiments the thermoelectric unit is positioned to transfer thermal energy away from the second end of the heat pipe. For

example, in some embodiments the thermoelectric unit is positioned to transfer thermal energy to the heat sink connected to the thermoelectric unit. For example, the thermoelectric unit can include a side in thermal contact with a heat sink.

In some embodiments, a regulated thermal transfer device also includes a heat sink
5 connected to the thermoelectric unit, and positioned to radiate heat away from the thermoelectric unit. For example, in some embodiments the heat sink includes a passive heat sink device. For example, a passive heat sink can include unpowered components, such as radiative fins, a heat block, and one or more heat pipes positioned to radiate heat away from the thermoelectric unit. For example, in some embodiments the heat sink
10 includes an active heat sink device, the active heat sink device operably coupled to the controller. For example, an active heat sink device can include one or more fan units positioned to circulate air and thereby radiate heat away from the thermoelectric unit. For example, in some embodiments a fan is attached to a shell (*see, e.g.* shell 130 in Figure 1) in a position adjacent to an aperture in the shell (*see, e.g.* apertures 140, 150 in Figure 1)
15 and in a position to direct air through the aperture and away from the thermoelectric unit.

In some embodiments, a regulated thermal transfer device also includes an electronic controller operably connected to the thermoelectric unit. For example, in some embodiments an electronic controller is included within a circuitry unit (*see, e.g.* Figures 1 through 4). For example, in some embodiments an electronic controller includes circuitry
20 configured to control the thermoelectric unit of the regulated thermal transfer device. For example, in some embodiments an electronic controller includes circuitry configured to control the thermoelectric unit in response to signals received from at least one temperature sensor. For example, in some embodiments an electronic controller includes circuitry configured to control the thermoelectric unit in response to signals received from at least one
25 temperature sensor attached to the cover of the phase change material unit. For example, in some embodiments an electronic controller includes circuitry configured to control the thermoelectric unit in response to signals received from at least one temperature sensor attached to the interior of a storage region of the temperature-stabilized storage container.

30 Some embodiments of a regulated thermal transfer device also include a temperature sensor attached to the phase change material unit; and a connector between the temperature sensor and the electronic controller. For example, an electronic temperature sensor can be attached to the wall of a phase change material unit and a wire

connector can be positioned within the phase change material unit, traversing the adiabatic region of the regulated thermal transfer device, and connected to an electronic controller within the attached a circuitry unit. Some embodiments of a regulated thermal transfer device also include a connector attached to the electronic controller, the connector 5 configured to provide electricity to the regulated thermal transfer device from an external power source. For example, in some embodiments an external power source includes a photovoltaic unit. For example, in some embodiments an external power source includes a battery. For example, in some embodiments an external power source includes a municipal power supply.

10 Some embodiments of a regulated thermal transfer device also include a communications unit operably coupled to the electronic controller. For example, a communications unit can include a transmitter, such as a Bluetooth™ transmitter. For example, a communications unit can include a receiver. For example, a communications unit can include an antenna. For example, a communications unit can include a digital 15 memory device.

Some embodiments of a regulated thermal transfer device also include a second phase change material unit including one or more walls surrounding a phase-change material region, and an aperture in the one or more walls, and a second heat pipe with a first end positioned within the second phase change material unit, and a second end 20 thermally connected to the thermoelectric unit. The second phase change material unit can be configured, for example, to be positioned distal to the first phase change material unit within a storage region of the temperature-stabilized storage container. The second phase change material unit can be configured, for example, to be positioned within a second storage region of the temperature-stabilized storage container.

25 Figure 6 illustrates an external view of a portion of an embodiment of a regulated thermal transfer device 500. During use, the regulated thermal transfer device 500 portion shown in Figure 6 is attached to a temperature-stabilized storage container along with an attached circuitry unit (not shown in Figure 6). The regulated thermal transfer device 500 shown in Figure 6 includes an external cover surrounding the structure. The portion of a 30 regulated thermal transfer device 500 shown in Figure 6 includes a heat sink unit 120 at the top of the device 500. The heat sink unit 120 is affixed at its lower edge to an adiabatic region 510 of the regulated thermal transfer device 500. The adiabatic region 510 includes a cover with a surface 520 configured to reversibly mate with the interior

surface of an access conduit of a temperature-stabilized storage container during use of the device with the container. The portion of a regulated thermal transfer device 500 shown in Figure 6 includes a phase change material unit 530.

Figure 7 illustrates a portion of an embodiment of a regulated thermal transfer device 500. The regulated thermal transfer device 500 shown in Figure 7 has the cover removed to illustrate interior features of the regulated thermal transfer device 500. The regulated thermal transfer device 500 includes a heat sink unit 120 at the top of the device 500. The top end of a heat pipe 430 is positioned within the heat sink unit 120. A heat transfer unit 420 is in physical contact with the top end of the heat pipe 430. The heat sink unit 120 includes a thermal transfer unit 400. The heat sink unit 120 also includes a plurality of heat pipes 410 affixed to the heat transfer unit 420, the heat pipes 410 also attached to the thermal transfer unit 400. A thermoelectric device 700 is thermally connected to the top end of the heat pipe 430. The thermoelectric unit 700 is positioned to transfer heat from the top end of the heat pipe 430 to the thermal transfer unit 400. In the embodiment illustrated in Figure 7, the thermoelectric unit 700 is a Peltier device.

Figure 7 illustrates that the regulated thermal transfer device 500 includes an adiabatic region 510. In some embodiments, an adiabatic region includes one or more wires, one or more tubes, or other features described elsewhere within. In the embodiment shown in Figure 7, the adiabatic region 510 includes an adiabatic section of the heat pipe 430.

Figure 7 shows that the regulated thermal transfer device 500 includes a phase change material unit 530 at the lower end of the regulated thermal transfer device 500. The phase change material unit 530 would include a phase change material, not shown in Figure 7. In the embodiment illustrated in Figure 7, the phase change material unit 530 includes a plurality of planar structures 710 attached to the heat pipe 430 at substantially right angles. The plurality of planar structures 710 are configured to enhance thermal efficiency through the phase change material unit 530. Some embodiments include a plurality of planar structures 710 that are fabricated from a thermally-conductive material, such as copper, silver, or aluminum. Some embodiments include a plurality of planar structures 710 that includes a plurality of apertures, such as mesh structures.

Figure 8 illustrates a portion of an embodiment of a regulated thermal transfer device 500 with the cover removed to depict interior aspects of the device. As shown in Figure 8, the regulated thermal transfer device 500 includes a heat sink unit 120 at the top

of the device 500. The regulated thermal transfer device 500 depicted includes an adiabatic region 510 in the center of the device. The regulated thermal transfer device 500 shown includes a phase change material unit 530 at the lower end of the device. In the embodiment illustrated in Figure 8, the heat sink unit 120 includes a heat transfer unit 420 positioned in physical contact with the top end of the heat pipe 430. The heat sink unit 120 includes a thermal transfer unit 400. The heat sink unit 120 also includes a plurality of heat pipes 410 affixed to the heat transfer unit 420, the heat pipes 410 also attached to the thermal transfer unit 400. A thermoelectric device 700 is thermally connected to the top end of the heat pipe 430. The thermoelectric unit 700 is positioned to transfer heat from the top end of the heat pipe 430 to the thermal transfer unit 400. The heat pipe 430 traverses the adiabatic region 510 and includes a lower end within the phase change material unit 530. The phase change material unit 530 includes a plurality of planar structures 710 connected to the lower region of the heat pipe 430 and positioned to improve thermal transfer between the heat pipe 430 and phase change material (not shown) within the phase change material unit 530.

Figure 9 illustrates a substantially cross-section view of a portion of a regulated thermal transfer device 500. The embodiment illustrated includes a cover 900 surrounding the exterior of the shown regulated thermal transfer device 500. In some embodiments, a cover can be configured as a thin wall or shell surrounding the exterior of the regulated thermal transfer device. For example, in some embodiments a cover can be fabricated from a sturdy plastic or fiberglass material. The portion of a regulated thermal transfer device 500 shown in Figure 9 includes a heat sink unit 120, an adiabatic region 510 and a phase change material unit 530. The heat sink unit 120 illustrated in Figure 9 includes a heat transfer unit 420 positioned in physical contact with the top end of the heat pipe 430. The heat sink unit 120 includes a thermal transfer unit 400. The heat sink unit 120 also includes a plurality of heat pipes 410 affixed to the heat transfer unit 420, the heat pipes 410 also attached to the thermal transfer unit 400. A thermoelectric device 700 is thermally connected to the top end of the heat pipe 430. The thermoelectric unit 700 is positioned to transfer heat from the top end of the heat pipe 430 to the thermal transfer unit 400. The embodiment illustrated includes a heat pipe 430 traversing the adiabatic region 510 within the cover 900. The heat pipe 430 includes a lower end substantially coexistent with the lower face of the phase change material unit 530. The phase change material unit 530 includes a plurality of planar structures 710 connected to the lower region of the heat

pipe 430 and positioned to improve thermal transfer between the heat pipe 430 and phase change material (not shown) within the phase change material unit 530. During use, phase change material (not shown) would substantially fill the interior of the phase change material unit 530 substantially up to the edge of the adiabatic region 510.

5 Figure 10 shows aspects of a partial embodiment of a regulated thermal transfer device 500 as a substantially cross-section view. During use, the regulated thermal transfer device 500 is positioned within and attached to a temperature-stabilized storage container along with an attached circuitry unit (not shown in Figure 10). The embodiment illustrated includes a cover 900 surrounding the exterior of the shown regulated thermal 10 transfer device 500. The portion of a regulated thermal transfer device 500 shown in Figure 10 includes a heat sink unit 120, an adiabatic region 510 and a phase change material unit 530. The heat sink unit 120 includes a heat transfer unit 420 in direct thermal contact with the top end of the heat pipe 430. The heat sink unit 120 includes a thermal transfer unit 400. The heat sink unit 120 also includes a plurality of heat pipes 15 410 affixed to the heat transfer unit 420. The heat pipes 410 are embedded in the thermal transfer unit 400 and positioned to effectuate thermal transfer from the heat pipes 410 to the thermal transfer unit 400. A thermoelectric device 700 is thermally connected to the top end of the heat pipe 430. The thermoelectric device 700 is connected to a controller in an attached circuitry unit (not shown in Figure 10). During use, the controller regulates 20 the operation of the thermoelectric device 700 in response to input from at least one temperature sensor. For example, in some embodiments one or more temperature sensors can be placed adjacent to the cover 900 of the phase change material unit 530 and connected to an attached circuitry unit with a wire connector.

The embodiment illustrated in Figure 10 includes a phase change material unit 530. 25 The phase change material unit 530 includes a cover 900 surrounding the exterior of the phase change material unit 530. In some embodiments, the cover of the phase change material unit is contiguous with the cover of the entire regulated thermal transfer device. In the embodiment shown in Figure 10, the phase change material unit 530 includes a plurality of thermal conduction structures 710 positioned within the phase-change material 30 unit 530. Interspersed with the plurality of thermal conduction structures 710 is an enhanced thermal transfer material 1000 including expanded graphite saturated with a phase change material. The enhanced thermal transfer material is in direct contact with

the outer surface of the heat pipe 430 as well as the surfaces of the plurality of thermal conduction structures 710.

Figure 11 illustrates part of an embodiment of a regulated thermal transfer device 500 as a substantially cross-section view. During use, the regulated thermal transfer device 500 is positioned within and attached to a temperature-stabilized storage container along with an attached circuitry unit (not shown in Figure 11). The embodiment illustrated includes a cover 900 surrounding the exterior of the shown regulated thermal transfer device 500. The portion of a regulated thermal transfer device 500 shown in Figure 11 includes a heat sink unit 120, an adiabatic region 510 and a phase change material unit 530. The heat sink unit 120 includes a heat transfer unit 420 in direct thermal contact with the top end of a heat pipe 430, and a thermal transfer unit 400 in thermal contact with the heat transfer unit 420 through a plurality of heat pipes 410 affixed to the heat transfer unit 420. A thermoelectric device 700 is thermally connected to the top end of the heat pipe 430, in direct contact with the heat transfer unit 420.

In the embodiment shown in Figure 11, the phase change material unit 530 includes a cover 900 substantially defining the outer boundary of the phase change material unit 530. The lower end of the heat pipe 430 traverses the interior of the phase change material unit 530. In the embodiment shown in Figure 11, the lower end of the heat pipe 430 traverses the interior of the phase change material unit 530 substantially through the center of the interior of the phase change material unit 530. Surrounding the region of the heat pipe 430 within the phase change material unit 530 is an enhanced thermal transfer material 1000 including expanded graphite saturated with a phase change material. The enhanced thermal transfer material 1000 is in direct contact with the outer surface of the heat pipe 430 throughout the length of the heat pipe 430 within the phase change material unit 530.

Figure 12 illustrates an embodiment of a regulated thermal transfer device 500 within a temperature-stabilized storage container 100 in a substantially cross-section view. The temperature-stabilized storage container 100 includes an outer wall 1250 substantially defining an outer surface of the storage container 100, the outer wall 1250 including an outer aperture in an upper region (e.g. adjacent to the lid 300). The temperature-stabilized storage container 100 includes an inner wall 1260 substantially defining a temperature-stabilized storage region 1230 internal to the storage container 100, the inner wall 1260 including an inner aperture in an upper region (e.g. adjacent to the junction with the

internal conduit 1200). The temperature-stabilized storage container 100 includes a gap 1210 between the outer wall 1250 and the inner wall 1260, and a conduit 1200 connecting the outer aperture to the inner aperture. One or more sections of ultra-efficient insulation material are positioned within the gap 1210. The regulated thermal transfer device 500 within the temperature-stabilized storage container 100 includes a phase-change material unit 530 attached to an internal surface of the temperature-stabilized storage region 1230. The regulated thermal transfer device 500 within the temperature-stabilized storage container 100 includes a heat pipe 430 with a first end positioned within the phase-change material unit 530, and a second end positioned adjacent to the outer aperture. The 10 regulated thermal transfer device 500 within the temperature-stabilized storage container 100 includes a thermoelectric unit 700 in contact with the second end of the heat pipe 430, and a heat sink unit 120 connected to the thermoelectric unit 700 and positioned to radiate heat away from the thermoelectric unit 700. The regulated thermal transfer device 500 also includes an electronic controller connected to the thermoelectric unit 700. In the 15 illustrated embodiment, the electronic controller is positioned within the circuitry unit 110.

In some embodiments, a temperature-stabilized storage container includes wherein the conduit is substantially vertical when the temperature-stabilized storage container is positioned for use. For example, in the embodiment shown in Figure 12, the conduit 1200 is substantially vertical, and generally maintains that position during use. The adiabatic 20 region 510 of the regulated thermal transfer device 500 shown in Figure 12 includes a surface 520 positioned to reversibly mate with the interior surface of the conduit 1200. The base 160 assists in maintaining the position of the entire temperature-stabilized storage container 100, including the internal conduit 1200. In some embodiments, the conduit is of a size and shape to permit insertion and removal of a medicinal vial package 25 with minimal excess space. For example, in the embodiment shown in Figure 12, a plurality of medicinal vials in associated packaging 1240 is positioned within a storage unit 1220 that is of a size and shape to be inserted and removed from the temperature-stabilized storage region 1230 as needed by a user of the container 100. In some embodiments, a temperature-stabilized storage container includes wherein the conduit is a substantially 30 tubular shape with a diameter between approximately 4 centimeters and approximately 6 centimeters. In some embodiments, a temperature-stabilized storage container includes wherein the conduit is a substantially tubular shape with a diameter between approximately 5 centimeters and approximately 7 centimeters. In some embodiments, a

temperature-stabilized storage container includes wherein the conduit is a substantially tubular shape with a diameter between approximately 12 centimeters and approximately 13 centimeters. In some embodiments, a temperature-stabilized storage container includes wherein the conduit is a substantially tubular shape with a diameter between approximately 10 centimeters and approximately 15 centimeters.

5 In some embodiments, a temperature-stabilized storage container includes at least one section of ultra-efficient insulation material. In some embodiments, a temperature-stabilized storage container includes one or more sections of ultra-efficient insulation material substantially defining a temperature-stabilized storage container including a 10 temperature-stabilized storage region with a single access aperture to the temperature-stabilized storage region. In the embodiment shown in Figure 12, at least one section of ultra-efficient insulation material can be positioned within the gap 1210. For example, in some embodiments a temperature-stabilized storage container includes at least one section of ultra-efficient insulation material within the gap including: a plurality of layers of 15 multilayer insulation substantially surrounding the thermally sealed storage region; and substantially evacuated space surrounding the plurality of layers of multilayer insulation. Some embodiments, for example, include substantially evacuated space that has a pressure less than or equal to 5×10^{-4} torr. For example, in some embodiments a temperature-stabilized storage container includes at least one section of ultra-efficient insulation 20 material within the gap including one or more sections of an aerogel. In some embodiments, a temperature-stabilized storage container includes a temperature-stabilized storage region that is configured to be maintained at a temperature substantially between approximately 2 degrees Centigrade and approximately 8 degrees Centigrade. In some embodiments, a temperature-stabilized storage container includes a temperature-stabilized 25 storage region that is configured to be maintained at a temperature substantially between approximately 0 degrees Centigrade and approximately 10 degrees Centigrade. In some embodiments, a temperature-stabilized storage container includes a temperature-stabilized storage region that is configured to be maintained at a temperature substantially between approximately 3 degrees Centigrade and approximately 7 degrees Centigrade. For 30 example, a temperature-stabilized storage region can be configured to be maintained within a temperature range based on operation of the regulated thermal transfer device attached to the container.

Figure 13 illustrates an embodiment of a regulated thermal transfer device 500 within a temperature-stabilized storage container 100 in a substantially cross-section view. The temperature-stabilized storage container 100 includes an outer wall 1250 substantially defining an outer surface of the storage container 100, the outer wall 1250 including an outer aperture in an upper region. The outer aperture is closed with a removable lid 300. The temperature-stabilized storage container 100 includes an inner wall 1260 substantially defining a temperature-stabilized storage region 1230 internal to the storage container 100, the inner wall 1260 including an inner aperture in an upper region. In the embodiment shown in Figure 13, a storage unit 1220 including medicinal material in packaging 1240 is positioned adjacent to the inner aperture. The temperature-stabilized storage container 100 includes a gap 1210 between the outer wall 1250 and the inner wall 1260, and a conduit 1200 connecting the outer aperture to the inner aperture. One or more sections of ultra-efficient insulation material are positioned within the gap 1210. The regulated thermal transfer device 500 within the temperature-stabilized storage container 100 includes a phase-change material unit 530 attached to an internal surface of the temperature-stabilized storage region 1230. The regulated thermal transfer device 500 within the temperature-stabilized storage container 100 includes a heat pipe 430 with a first end positioned within the phase-change material unit 530, and a second end positioned adjacent to the outer aperture. The regulated thermal transfer device 500 within the temperature-stabilized storage container 100 includes a thermoelectric unit 700 in contact with the second end of the heat pipe 430, and a heat sink unit 120 connected to the thermoelectric unit 700 and positioned to radiate heat away from the thermoelectric unit 700. The regulated thermal transfer device 500 also includes an electronic controller connected to the thermoelectric unit 700. In the illustrated embodiment, the electronic controller is positioned within the circuitry unit 110.

Figure 14 illustrates a cross-section view substantially horizontally through a phase-change material unit 530 of a regulated thermal transfer device within a temperature-stabilized storage container 100. The temperature-stabilized storage container 100 includes an outer wall 1250 surrounded by a base 160. The temperature-stabilized storage container 100 includes an inner wall 1260 positioned within the outer wall 1250. A gap 1210 exists between the inner wall 1260 and the outer wall 1250. In some embodiments, at least one section of ultra-efficient insulation material is positioned within the gap 1210. The inner wall 1260 substantially defines a temperature-stabilized storage

region 1230 within the container 100. A series of storage units 1220 A, 1220 B, 1220 C are positioned adjacent to each other within the temperature-stabilized storage region 1230. A phase-change material unit 530 of a regulated thermal transfer device is attached to the inner surface of the inner wall 1260. The phase-change material unit 530 is 5 surrounded by a cover 900 and includes an interior heat pipe 430.

Figure 15 illustrates positioning of a plurality of storage units within a temperature-stabilized storage container including a regulated thermal transfer device. The plurality of storage units 1220 A, 1220 B, 1220 C, 1220 D, 1220 E, 1220 F, 1220 G and 1220 H are collectively referred to as "storage units 1220" with reference to the Figures 10 herein. As shown in Figure 15, the inner wall 1260 of a temperature-stabilized storage container including a regulated thermal transfer device substantially defines the perimeter of a temperature-stabilized storage region 1230. A phase-change material unit 530 of a regulated thermal transfer device is attached to the inner surface of the inner wall 1260. The phase-change material unit 530 includes an external cover 900. The phase-change 15 material unit 530 includes a heat pipe 430 positioned within the interior of the phase-change material unit 530. As illustrated in Figure 15, the storage units 1220 are shaped and positioned to substantially fill the interior space of the temperature-stabilized storage region 1230. As illustrated in Figure 15, the storage units 1220 are not all shaped identically. All of the storage units 1220 are sized and shaped to individually fit through 20 the conduit 1200, the diameter of which is shown in Figure 15 for purposes of illustration.

In some embodiments, the circuitry unit includes one or more controllers and one or more memory units. As described above, the regulated thermal transfer device may control the temperature in the temperature-stabilized storage region by controlling operation of the one or more thermoelectric unit integral to the regulated thermal transfer 25 device. A controller of the circuitry unit according to an embodiment can include at least one processor coupled to a power source (*e.g.*, a photovoltaic panel) and to a power management unit. The controller can include a processor configured to direct a power management unit to provide power to the thermoelectric unit in response to input from a temperature sensor within the temperature-stabilized storage region of a temperature - 30 stabilized storage container.

For instance, a thermoelectric unit may be connected at a power output connection to the circuitry unit. A controller within the circuitry unit may direct a power management unit to supply power to the power output connection and to the thermoelectric unit. As

such, by controlling whether the thermoelectric unit operates or voltage provided to the thermoelectric unit, the controller can control the temperature in the temperature-stabilized storage region of a temperature-stabilized storage container. In other words, for example, the controller may direct the thermoelectric unit to remove heat from the phase change 5 material unit until a predetermined portion of the phase change material is at a suitable temperature or is in a solid phase. Consequently, the controller can control the temperature in the storage compartment to within about ± 1 °C.

The controller and the power management unit also may adjust or transform the power received from the power source to a suitable voltage or, for example, may convert 10 the power to direct current. For instance, as described above, the power source may include a photovoltaic panel. In some operating conditions, the output voltage from the photovoltaic panel may vary (e.g., due to variance in exposure to light). The controller and the power management unit may convert the power received from the photovoltaic panel to a suitable voltage, which may be further supplied to other elements or 15 components of the regulated thermal transfer device, such as to the controller and to the thermoelectric unit, among others. In other words, the circuitry unit may be programmed to receive varying or variable voltage from the power source and to regulate such voltage to further provide suitable voltage to the heat pump.

In an embodiment, the power output connection may be coupled to a memory, 20 which may contain operating instructions for the power output connection. Specifically, in an embodiment, the memory may include instructions about desirable temperature or temperature distribution in the phase change material unit. For example, the memory may include instructions that relate change in volume of the phase change material unit to a suitable temperature distribution therein.

25 For instance, the phase change material unit may include a phase change material that is water. As water changes phase from liquid to solid, the total volume of the water in the phase change material unit will change. Furthermore, the initial volume of the water (e.g., when all of the water is in a liquid phase) may be known or stored in the memory. Accordingly, the circuitry unit may receive information about the volume (e.g., from one 30 or more sensors) of the phase change material unit and may calculate change in volume. Moreover, the processor may calculate the amount of solid phase change material. Hence, the instructions stored in the memory may allow the processor to determine the amount of solid phase PCM or temperature distribution in the phase change material unit.

In additional or alternative embodiments, the instructions stored in the memory also may allow the processor to use one or more temperature readings from the phase change material unit to control operation of the thermoelectric unit. For instance, the processor may receive a single or multiple temperature readings (e.g., from sensors) 5 indicative of the temperature in one or more zones in the phase change material unit. When the temperature in the predetermined one or more zone in the phase change material unit is at a predetermined level, as set in the instructions in the memory, the processor may stop operation of the thermoelectric unit.

In any case, the memory may include instructions that may allow the processor to 10 determine whether to direct power management unit to supply power to the thermoelectric unit connected at power output connection, thereby controlling the temperature in the phase change material unit and, thus, in the temperature-stabilized storage region of a temperature-stabilized storage container. For instance, the processor may maintain 15 operation of the thermoelectric unit until reaching a predetermined temperature level (e.g., 3 °C).

The memory also may include instructions regarding priority or hierarchy of power 20 needs. In other words, when the power received from the power source is insufficient to power all elements or components connected at the power output connection, the processor may use the priority instructions to direct the power management unit to provide power to elements or components indicated as having priority over other elements or components. For instance, the processor may give priority to providing power to the controller over the thermoelectric unit. In an embodiment, the priority hierarchy may be 25 as follows, listed from highest to lowest: controller (or battery attached to the controller, if any); thermoelectric unit of the heat sink unit, fan for the heat sink unit (if any); display unit (if any).

The state of the art has progressed to the point where there is little distinction left 30 between hardware, software (e.g., a high-level computer program serving as a hardware specification), and/or firmware implementations of aspects of systems; the use of hardware, software, and/or firmware is generally (but not always, in that in certain contexts the choice between hardware and software can become significant) a design choice representing cost vs. efficiency tradeoffs. There are various vehicles by which processes and/or systems and/or other technologies described herein can be effected (e.g.,

hardware, software (e.g., a high-level computer program serving as a hardware specification), and/or firmware), and that the preferred vehicle will vary with the context in which the processes and/or systems and/or other technologies are deployed. For example, if an implementer determines that speed and accuracy are paramount, the 5 implementer may opt for a mainly hardware and/or firmware vehicle; alternatively, if flexibility is paramount, the implementer may opt for a mainly software (e.g., a high-level computer program serving as a hardware specification) implementation; or, yet again alternatively, the implementer may opt for some combination of hardware, software (e.g., a high-level computer program serving as a hardware specification), and/or firmware in 10 one or more machines, compositions of matter, and articles of manufacture, limited to patentable subject matter under 35 U.S.C. § 101. Hence, there are several possible vehicles by which the processes and/or devices and/or other technologies described herein may be effected, none of which is inherently superior to the other in that any vehicle to be utilized is a choice dependent upon the context in which the vehicle will be deployed and 15 the specific concerns (e.g., speed, flexibility, or predictability) of the implementer, any of which may vary.

In some implementations described herein, logic and similar implementations may include computer programs or other control structures. Electronic circuitry, for example, may have one or more paths of electrical current constructed and arranged to implement 20 various functions as described herein. In some implementations, one or more media may be configured to bear a device-detectable implementation when such media hold or transmit device detectable instructions operable to perform as described herein. In some variants, for example, implementations may include an update or modification of existing software (e.g., a high-level computer program serving as a hardware specification) or 25 firmware, or of gate arrays or programmable hardware, such as by performing a reception of or a transmission of one or more instructions in relation to one or more operations described herein. Alternatively or additionally, in some variants, an implementation may include special-purpose hardware, software (e.g., a high-level computer program serving as a hardware specification), firmware components, and/or general-purpose components 30 executing or otherwise invoking special-purpose components. Specifications or other implementations may be transmitted by one or more instances of tangible transmission media as described herein, optionally by packet transmission or otherwise by passing through distributed media at various times.

Alternatively or additionally, implementations may include executing a special-purpose instruction sequence or invoking circuitry for enabling, triggering, coordinating, requesting, or otherwise causing one or more occurrences of virtually any functional operation described herein. In some variants, operational or other logical descriptions 5 herein may be expressed as source code and compiled or otherwise invoked as an executable instruction sequence. In some contexts, for example, implementations may be provided, in whole or in part, by source code, such as C++, or other code sequences. In other implementations, source or other code implementation, using commercially available and/or techniques in the art, may be compiled/ /implemented/translated/converted into a 10 high-level descriptor language (e.g., initially implementing described technologies in C or C++ programming language and thereafter converting the programming language implementation into a logic-synthesizable language implementation, a hardware description language implementation, a hardware design simulation implementation, and/or other such similar mode(s) of expression). For example, some or all of a logical 15 expression (e.g., computer programming language implementation) may be manifested as a Verilog-type hardware description (e.g., via Hardware Description Language (HDL) and/or Very High Speed Integrated Circuit Hardware Descriptor Language (VHDL)) or other circuitry model which may then be used to create a physical implementation having hardware (e.g., an Application Specific Integrated Circuit).

20 The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually 25 and/or collectively, by a wide range of hardware, software (e.g., a high-level computer program serving as a hardware specification), firmware, or virtually any combination thereof, limited to patentable subject matter under 35 U.S.C. 101. In an embodiment, several portions of the subject matter described herein may be implemented via Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays 30 (FPGAs), digital signal processors (DSPs), or other integrated formats. However, some aspects of the embodiments disclosed herein, in whole or in part, can be equivalently implemented in integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer

systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, limited to patentable subject matter under 35 U.S.C. 101, and that designing the circuitry and/or writing the code for the software (e.g., a high-level 5 computer program serving as a hardware specification) and or firmware would be well within the skill of one of skill in the art in light of this disclosure. The mechanisms of the subject matter described herein are capable of being distributed as a program product in a variety of forms, and that an illustrative embodiment of the subject matter described herein applies regardless of the particular type of signal bearing medium used to actually carry 10 out the distribution. Examples of a signal bearing medium include, but are not limited to, the following: a recordable type medium such as a floppy disk, a hard disk drive, a Compact Disc (CD), a Digital Video Disk (DVD), a digital tape, a computer memory, etc.; and a transmission type medium such as a digital and/or an analog communication 15 medium (e.g., a fiber optic cable, a waveguide, a wired communications link, a wireless communication link (e.g., transmitter, receiver, transmission logic, reception logic, etc.), etc.).

In a general sense, the various aspects described herein which can be implemented, individually and/or collectively, by a wide range of hardware, software (e.g., a high-level computer program serving as a hardware specification), firmware, and/or any combination 20 thereof can be viewed as being composed of various types of "electrical circuitry." Consequently, as used herein "electrical circuitry" includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a 25 computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of memory (e.g., random access, flash, read only, etc.)), and/or electrical 30 circuitry forming a communications device (e.g., a modem, communications switch, optical-electrical equipment, etc.). The subject matter described herein may be implemented in an analog or digital fashion or some combination thereof.

The herein described subject matter sometimes illustrates different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely exemplary, and that in fact many other architectures may be implemented which achieve the same functionality. In a conceptual 5 sense, any arrangement of components to achieve the same functionality is effectively "associated" such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as "associated with" each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed 10 as being "operably connected", or "operably coupled," to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being "operably couplable," to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to physically mateable and/or physically interacting components, and/or wirelessly interactable, and/or wirelessly 15 interacting components, and/or logically interacting, and/or logically interactable components.

In some instances, one or more components may be referred to herein as "configured to," "configured by," "configurable to," "operable/operative to," "adapted/adaptable," "able to," "conformable/conformed to," etc. Those skilled in the art 20 will recognize that such terms (e.g. "configured to") generally encompass active-state components and/or inactive-state components and/or standby-state components, unless context requires otherwise.

The herein described components (e.g., operations), devices, objects, and the discussion accompanying them are used as examples for the sake of conceptual clarity and 25 that various configuration modifications are contemplated. Consequently, as used herein, the specific exemplars set forth and the accompanying discussion are intended to be representative of their more general classes. In general, use of any specific exemplar is intended to be representative of its class, and the non-inclusion of specific components (e.g., operations), devices, and objects should not be taken limiting.

30 All of the above U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification are incorporated herein by reference, to the extent not inconsistent herewith.

Aspects of the subject matter described herein are set out in the following numbered clauses:

1. A regulated thermal transfer device for a storage container, comprising:
 - 5 a phase change material unit, the phase change material unit including one or more walls surrounding a phase-change material region, and an aperture in the one or more walls;
 - a heat pipe with a first end positioned within the phase change material unit, and a second end traversing the aperture of the one or more walls of the phase change material unit;
 - 10 a thermoelectric unit thermally connected to the second end of the heat pipe;
 - a heat sink connected to the thermoelectric unit, and positioned to radiate heat away from the thermoelectric unit; and
 - 15 an electronic controller operably connected to the thermoelectric unit;
- wherein the regulated thermal transfer device is of a size and shape to be positioned so that the phase change material unit is within a storage region of a temperature-stabilized storage container, and the thermoelectric unit is positioned adjacent to an external surface of the temperature-stabilized storage container.
- 20 2. The regulated thermal transfer device of clause 1, wherein the phase change material unit comprises:
 - a sealed container substantially filled with a phase-change material.
3. The regulated thermal transfer device of clause 1, wherein the phase change material unit comprises:
 - 25 a sealed container including a hydrocarbon-based phase-change material within an expanded graphite structure.
4. The regulated thermal transfer device of clause 1, wherein the phase change material unit comprises:
 - an aperture surrounding the heat pipe, and a seal connecting the aperture to the heat pipe.

5. The regulated thermal transfer device of clause 1, wherein the phase change material unit comprises:
 - an attachment region positioned to attach the phase change material unit to a surface of the storage region of the temperature-stabilized storage container.
6. The regulated thermal transfer device of clause 1, wherein the phase change material unit comprises:
 - a phase change material substantially filling a sealed interior region of the phase change material unit, the phase change material having a freeze temperature between about 0°C to about 2°C.
7. The regulated thermal transfer device of clause 1, wherein the heat pipe comprises:
 - a substantially tubular structure.
8. The regulated thermal transfer device of clause 1, wherein the heat pipe comprises:
 - a substantially vertical structure when the regulated thermal transfer device is positioned for use within a storage container.
9. The regulated thermal transfer device of clause 1, wherein the heat pipe comprises:
 - a plurality of thermal conduction structures positioned within the phase-change material unit and configured to transfer heat from the phase change material to the heat pipe.
- 20 10. The regulated thermal transfer device of clause 9, wherein the plurality of thermal conduction structures include a plurality of planar structures attached to the heat pipe at substantially right angles.
11. The regulated thermal transfer device of clause 9, wherein the plurality of thermal conduction structures are fabricated from a thermally-conductive material.
- 25 12. The regulated thermal transfer device of clause 1, wherein the heat pipe is configured to be positioned substantially vertically when it is affixed to the temperature-stabilized storage container.

13. The regulated thermal transfer device of clause 1, wherein the thermoelectric unit comprises:
 - a Peltier device.
14. The regulated thermal transfer device of clause 1, wherein the thermoelectric unit is positioned to transfer thermal energy away from the second end of the heat pipe.
- 5 15. The regulated thermal transfer device of clause 1, wherein the thermoelectric unit is positioned to transfer thermal energy to the heat sink connected to the thermoelectric unit.
- 10 16. The regulated thermal transfer device of clause 1, wherein the heat sink connected to the thermoelectric unit comprises:
 - a passive heat sink device.
- 15 17. The regulated thermal transfer device of clause 1, wherein the heat sink connected to the thermoelectric unit comprises:
 - an active heat sink device, the active heat sink device operably coupled to the controller.
18. The regulated thermal transfer device of clause 1, wherein the electronic controller comprises:
 - circuitry configured to control the thermoelectric unit.
19. The regulated thermal transfer device of clause 1, wherein the electronic controller comprises:
 - circuitry configured to control the thermoelectric unit in response to signals received from at least one temperature sensor.
20. The regulated thermal transfer device of clause 1, further comprising:
 - a temperature sensor attached to the phase change material unit; and
 - a connector between the temperature sensor and the electronic controller.
- 25 21. The regulated thermal transfer device of clause 1, further comprising:

a connector attached to the electronic controller, the connector configured to provide electricity to the regulated thermal transfer device from an external power source.

22. The regulated thermal transfer device of clause 21, wherein the external power
5 source comprises:
a photovoltaic unit.

23. The regulated thermal transfer device of clause 21, wherein the external power source comprises:
a battery.

10 24. The regulated thermal transfer device of clause 21, wherein the external power source comprises:
a municipal power supply.

25. The regulated thermal transfer device of clause 1, further comprising:
a communications unit operably coupled to the electronic controller.

15 26. The regulated thermal transfer device of clause 1, further comprising:
a second phase change material unit including one or more walls surrounding a
phase-change material region, and an aperture in the one or more walls;
a second heat pipe with a first end positioned within the second phase change
material unit, and a second end thermally connected to the thermoelectric
20 unit.

27. A temperature-stabilized storage container, comprising:
one or more sections of ultra-efficient insulation material substantially defining a
temperature-stabilized storage container including a temperature-stabilized
storage region with a single access aperture to the temperature-stabilized
25 storage region;

a phase change material unit attached to an internal surface of the temperature-
stabilized storage region;
a heat pipe with a first end positioned within the phase-change material unit, and a second end positioned adjacent to the single access aperture on an outer
30 surface of the temperature-stabilized storage container;

a thermoelectric unit in contact with the second end of the heat pipe;
a heat sink connected to the thermoelectric unit and positioned to radiate heat away
from the thermoelectric unit; and
an electronic controller connected to the thermoelectric unit.

5 28. The temperature-stabilized storage container of clause 27, wherein the one or more
sections of ultra-efficient insulation material comprise:
a plurality of layers of multilayer insulation substantially surrounding the
temperature-stabilized storage region; and
substantially evacuated space surrounding the plurality of layers of multilayer
10 insulation.

29. The temperature-stabilized storage container of clause 28, wherein the
substantially evacuated space has a pressure less than or equal to 5×10^{-4} torr.

30. The temperature-stabilized storage container of clause 27, wherein the one or more
sections of ultra-efficient insulation material comprise:
15 one or more sections of an aerogel.

31. The temperature-stabilized storage container of clause 27, wherein the
temperature-stabilized storage region is configured to be maintained at a
temperature substantially between approximately 2 degrees Centigrade and
approximately 8 degrees Centigrade.

20 32. The temperature-stabilized storage container of clause 27, wherein the single
access aperture is positioned at a top of the temperature-stabilized storage region
when the temperature-stabilized storage container is positioned for use.

33. The temperature-stabilized storage container of clause 27, wherein the single
access aperture is of a size and shape to permit insertion and removal of a
25 medicinal vial package with minimal excess space.

34. The temperature-stabilized storage container of clause 27, wherein the single
access aperture is a substantially circular shape with a diameter between
approximately 4 centimeters and approximately 6 centimeters.

35. The temperature-stabilized storage container of clause 27, wherein the single access aperture is a substantially circular shape with a diameter between approximately 5 centimeters and approximately 7 centimeters.
36. The temperature-stabilized storage container of clause 27, wherein the phase change material unit comprises:
 - 5 a sealed container substantially filled with phase-change material.
37. The temperature-stabilized storage container of clause 27, wherein the phase change material unit comprises:
 - 10 a sealed container including a hydrocarbon-based phase-change material within an expanded graphite structure.
38. The temperature-stabilized storage container of clause 27, wherein the phase change material unit comprises:
 - an aperture surrounding the heat pipe, and a seal connecting the aperture to the heat pipe.
- 15 39. The temperature-stabilized storage container of clause 27, wherein the phase change material unit is affixed to an interior wall of the temperature-stabilized storage region.
40. The temperature-stabilized storage container of clause 27, wherein the phase change material unit comprises:
 - 20 a phase change material substantially filling a sealed interior region of the phase change material unit, the phase change material having a freeze temperature between about 0°C and 2°C.
41. The temperature-stabilized storage container of clause 27, wherein the heat pipe comprises:
 - 25 a substantially tubular structure.
42. The temperature-stabilized storage container of clause 27, wherein the heat pipe comprises:

a plurality of thermal conduction structures positioned within the phase-change material unit and configured to transfer heat from the phase change material to the heat pipe.

43. The temperature-stabilized storage container of clause 42, wherein the plurality of thermal conduction structures include a plurality of planar structures attached to the heat pipe at substantially right angles.
44. The temperature-stabilized storage container of clause 42, wherein the plurality of thermal conduction structures are fabricated from a thermally-conductive material.
45. The temperature-stabilized storage container of clause 27, wherein the heat pipe is positioned substantially vertically within the container when it is positioned for routine use.
46. The temperature-stabilized storage container of clause 27, wherein the thermoelectric unit comprises:
a Peltier device.
- 15 47. The temperature-stabilized storage container of clause 27, wherein the thermoelectric unit is positioned to transfer thermal energy away from the second end of the heat pipe.
48. The temperature-stabilized storage container of clause 27, wherein the thermoelectric unit is positioned to transfer thermal energy to the heat sink connected to the thermoelectric unit.
- 20 49. The temperature-stabilized storage container of clause 27, wherein the heat sink connected to the thermoelectric unit comprises:
a passive heat sink device.
50. The temperature-stabilized storage container of clause 27, wherein the heat sink connected to the thermoelectric unit comprises:
an active heat sink device, the active heat sink device operably coupled to the electronic controller.

51. The temperature-stabilized storage container of clause 27, wherein the electronic controller comprises:
circuitry configured to control the thermoelectric unit.
52. The temperature-stabilized storage container of clause 27, wherein the electronic controller comprises:
circuitry configured to control the thermoelectric unit in response to signals received from at least one temperature sensor.
53. The temperature-stabilized storage container of clause 27, further comprising:
a temperature sensor positioned within the temperature-stabilized storage region;
10 and
a connector between the temperature sensor and the electronic controller.
54. The temperature-stabilized storage container of clause 27, further comprising:
a power unit attached to an external surface of the container, the power unit operably coupled to the electronic controller.
- 15 55. The temperature-stabilized storage container of clause 27, further comprising:
a connector attached to the electronic controller, the connector configured to provide electricity from an external power source.
56. The temperature-stabilized storage container of clause 27, further comprising:
a display unit affixed to an external surface of the container, the display unit
20 operably coupled to the electronic controller.
57. The temperature-stabilized storage container of clause 27, further comprising:
a communications unit operably coupled to the electronic controller.
58. The temperature-stabilized storage container of clause 27, further comprising:
a lid of a size and shape to reversibly mate with the single aperture.
- 25 59. The temperature-stabilized storage container of clause 27, further comprising:
a second phase change material unit positioned within the emperature-stabilized storage region;

a second heat pipe with a first end positioned within the second phase-change material unit, and a second end positioned adjacent to the single access aperture, wherein the thermoelectric unit is in contact with the second end of the second heat pipe.

5 60. A temperature-stabilized storage container, comprising:
an outer wall substantially defining an outer surface of a storage container, the
outer wall including an outer aperture in an upper region;
an inner wall substantially defining a temperature-stabilized storage region internal
to the storage container, the inner wall including an inner aperture in an
10 upper region;
a gap between the outer wall and the inner wall;
a conduit connecting the outer aperture to the inner aperture;
one or more sections of ultra-efficient insulation material within the gap;
a phase-change material unit attached to an internal surface of the temperature-
15 stabilized storage region;
a heat pipe with a first end positioned within the phase-change material unit, and a
second end positioned adjacent to the outer aperture;
a thermoelectric unit in contact with the second end of the heat pipe;
a heat sink unit connected to the thermoelectric unit and positioned to radiate heat
20 away from the thermoelectric unit; and
an electronic controller connected to the thermoelectric unit.

61. The temperature-stabilized storage container of clause 60, wherein the conduit is
substantially vertical when the temperature-stabilized storage container is
positioned for use.

25 62. The temperature-stabilized storage container of clause 60, wherein the conduit is of
a size and shape to permit insertion and removal of a medicinal vial package with
minimal excess space.

63. The temperature-stabilized storage container of clause 60, wherein the conduit is a
substantially tubular shape with a diameter between approximately 4 centimeters
30 and approximately 6 centimeters.

64. The temperature-stabilized storage container of clause 60, wherein the conduit is a substantially tubular shape with a diameter between approximately 5 centimeters and approximately 7 centimeters.
65. The temperature-stabilized storage container of clause 60, wherein the at least one section of ultra-efficient insulation material within the gap comprises:
 - 5 a plurality of layers of multilayer insulation substantially surrounding the thermally sealed storage region; and
 - substantially evacuated space surrounding the plurality of layers of multilayer insulation.
- 10 66. The temperature-stabilized storage container of clause 65, wherein the substantially evacuated space has a pressure less than or equal to 5×10^{-4} torr.
67. The temperature-stabilized storage container of clause 60, wherein the at least one section of ultra-efficient insulation material within the gap comprises:
 - one or more sections of an aerogel.
- 15 68. The temperature-stabilized storage container of clause 60, wherein the temperature-stabilized storage region is configured to be maintained at a temperature substantially between approximately 2 degrees Centigrade and approximately 8 degrees Centigrade.
69. The temperature-stabilized storage container of clause 60, wherein the phase-change material unit comprises:
 - 20 a sealed container substantially filled with phase-change material.
70. The temperature-stabilized storage container of clause 60, wherein the phase-change material unit comprises:
 - a sealed container including a hydrocarbon-based phase-change material within an expanded graphite structure.
- 25 71. The temperature-stabilized storage container of clause 60, wherein the phase-change material unit comprises:
 - an aperture surrounding the heat pipe, and a seal connecting the aperture to the heat pipe.

72. The temperature-stabilized storage container of clause 60, wherein the phase-change material unit is affixed to an interior wall of the temperature-stabilized storage region.
73. The temperature-stabilized storage container of clause 60, wherein the phase-change material unit comprises:
 - 5 a phase change material substantially filling a sealed interior region of the phase change material unit, the phase change material having a freeze temperature between about 0°C and 2°C.
74. The temperature-stabilized storage container of clause 60, wherein the heat pipe comprises:
 - 10 a substantially tubular structure.
75. The temperature-stabilized storage container of clause 60, wherein the heat pipe comprises:
 - 15 a plurality of thermal conduction structures positioned within the phase-change material unit and configured to transfer heat from the phase change material to the heat pipe.
76. The temperature-stabilized storage container of clause 75, wherein the plurality of thermal conduction structures include a plurality of planar structures attached to the heat pipe at substantially right angles.
- 20 77. The temperature-stabilized storage container of clause 75, wherein the plurality of thermal conduction structures are fabricated from a thermally-conductive material.
78. The temperature-stabilized storage container of clause 60, wherein the heat pipe is positioned substantially vertically within the container when it is positioned for routine use.
- 25 79. The temperature-stabilized storage container of clause 60, wherein the thermoelectric unit comprises:
 - 80 a Peltier device.

80. The temperature-stabilized storage container of clause 60, wherein the thermoelectric unit is positioned to transfer thermal energy away from the second end of the heat pipe.
81. The temperature-stabilized storage container of clause 60, wherein the thermoelectric unit is positioned to transfer thermal energy to the heat sink connected to the thermoelectric unit.
82. The temperature-stabilized storage container of clause 60, wherein the heat sink comprises:
 - a passive heat sink device.
83. The temperature-stabilized storage container of clause 60, wherein the heat sink comprises:
 - an active heat sink device, the active heat sink device operably coupled to the electronic controller.
84. The temperature-stabilized storage container of clause 60, wherein the electronic controller comprises:
 - circuitry configured to control the thermoelectric unit.
85. The temperature-stabilized storage container of clause 60, wherein the electronic controller comprises:
 - circuitry configured to control the thermoelectric unit in response to signals received from at least one temperature sensor.
86. The temperature-stabilized storage container of clause 60, further comprising:
 - a temperature sensor positioned within the temperature-stabilized storage region;
 - and
 - a connector between the temperature sensor and the electronic controller.
87. The temperature-stabilized storage container of clause 60, further comprising:
 - a power unit attached to an external surface of the container, the power unit operably coupled to the electronic controller.
88. The temperature-stabilized storage container of clause 60, further comprising:

a connector attached to the electronic controller, the connector configured to provide electricity from an external power source.

89. The temperature-stabilized storage container of clause 60, further comprising: a display unit affixed to an external surface of the container, the display unit

5 operably coupled to the electronic controller.

90. The temperature-stabilized storage container of clause 60, further comprising: a communications unit operably coupled to the electronic controller.

91. The temperature-stabilized storage container of clause 60, further comprising: a second phase change material unit positioned within the temperature-stabilized

10 storage region;

a second heat pipe with a first end positioned within the second phase-change material unit, and a second end positioned adjacent to the single access aperture, wherein the thermoelectric unit is in contact with the second end of the second heat pipe.

15

While various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.

CLAIMS

1. A regulated thermal transfer device for a storage container, comprising:
 - a phase change material unit, the phase change material unit including one or more walls surrounding a phase-change material region, and an aperture in the one or more walls;
 - 5 a heat pipe with a first end positioned within the phase change material unit, and a second end traversing the aperture of the one or more walls of the phase change material unit;
 - a thermoelectric unit thermally connected to the second end of the heat pipe;
 - 10 a heat sink connected to the thermoelectric unit, and positioned to radiate heat away from the thermoelectric unit; and
 - an electronic controller operably connected to the thermoelectric unit;
 - wherein the regulated thermal transfer device is of a size and shape to be positioned so that the phase change material unit is within a storage region 15 of a temperature-stabilized storage container, and the thermoelectric unit is positioned adjacent to an external surface of the temperature-stabilized storage container.
2. The regulated thermal transfer device of claim 1, wherein the phase change material unit comprises:
 - 20 a sealed container including a hydrocarbon-based phase-change material within an expanded graphite structure.
3. The regulated thermal transfer device of claim 1, wherein the phase change material unit comprises:
 - 25 an aperture surrounding the heat pipe, and a seal connecting the aperture to the heat pipe.
4. The regulated thermal transfer device of claim 1, wherein the phase change material unit comprises:
 - 30 an attachment region positioned to attach the phase change material unit to a surface of the storage region of the temperature-stabilized storage container.

5. The regulated thermal transfer device of claim 1, wherein the phase change material unit comprises:
 - a phase change material substantially filling a sealed interior region of the phase change material unit, the phase change material having a freeze temperature between about 0°C to about 2°C.
6. The regulated thermal transfer device of claim 1, wherein the heat pipe comprises:
 - a plurality of thermal conduction structures positioned within the phase-change material unit and configured to transfer heat from the phase change material to the heat pipe.
- 10 7. The regulated thermal transfer device of claim 1, wherein the thermoelectric unit comprises:
 - a Peltier device.
8. The regulated thermal transfer device of claim 1, wherein the heat sink connected to the thermoelectric unit comprises:
 - 15 a passive heat sink device.
9. The regulated thermal transfer device of claim 1, wherein the heat sink connected to the thermoelectric unit comprises:
 - an active heat sink device, the active heat sink device operably coupled to the controller.
- 20 10. The regulated thermal transfer device of claim 1, wherein the electronic controller comprises:
 - circuitry configured to control the thermoelectric unit in response to signals received from at least one temperature sensor.
11. The regulated thermal transfer device of claim 1, further comprising:
 - 25 a temperature sensor attached to the phase change material unit; and
 - a connector between the temperature sensor and the electronic controller.
12. The regulated thermal transfer device of claim 1, further comprising:

a connector attached to the electronic controller, the connector configured to provide electricity to the regulated thermal transfer device from an external power source.

13. The regulated thermal transfer device of claim 1, further comprising:

5 a communications unit operably coupled to the electronic controller.

14. The regulated thermal transfer device of claim 1, further comprising:

a second phase change material unit including one or more walls surrounding a phase-change material region, and an aperture in the one or more walls; a second heat pipe with a first end positioned within the second phase change material unit, and a second end thermally connected to the thermoelectric unit.

10 15. A temperature-stabilized storage container, comprising:

one or more sections of ultra-efficient insulation material substantially defining a temperature-stabilized storage container including a temperature-stabilized storage region with a single access aperture to the temperature-stabilized storage region;

15 a phase change material unit attached to an internal surface of the temperature-stabilized storage region;

a heat pipe with a first end positioned within the phase-change material unit, and a second end positioned adjacent to the single access aperture on an outer surface of the temperature-stabilized storage container;

20 a thermoelectric unit in contact with the second end of the heat pipe;

a heat sink connected to the thermoelectric unit and positioned to radiate heat away from the thermoelectric unit; and

25 an electronic controller connected to the thermoelectric unit.

16. The temperature-stabilized storage container of claim 15, wherein the one or more sections of ultra-efficient insulation material comprise:

a plurality of layers of multilayer insulation substantially surrounding the temperature-stabilized storage region; and

30 substantially evacuated space surrounding the plurality of layers of multilayer insulation.

17. The temperature-stabilized storage container of claim 16, wherein the substantially evacuated space has a pressure less than or equal to 5×10^{-4} torr.
18. The temperature-stabilized storage container of claim 15, wherein the temperature-stabilized storage region is configured to be maintained at a temperature substantially between approximately 2 degrees Centigrade and approximately 8 degrees Centigrade.
5
19. The temperature-stabilized storage container of claim 15, wherein the phase change material unit comprises:
a sealed container including a hydrocarbon-based phase-change material within an
10 expanded graphite structure.
20. The temperature-stabilized storage container of claim 15, wherein the phase change material unit comprises:
an aperture surrounding the heat pipe, and a seal connecting the aperture to the heat
pipe.
15
21. The temperature-stabilized storage container of claim 15, wherein the phase change material unit comprises:
a phase change material substantially filling a sealed interior region of the phase change material unit, the phase change material having a freeze temperature between about 0°C and 2°C.
20
22. The temperature-stabilized storage container of claim 15, wherein the thermoelectric unit comprises:
a Peltier device.
25
23. The temperature-stabilized storage container of claim 15, wherein the heat sink connected to the thermoelectric unit comprises:
a passive heat sink device.
24. The temperature-stabilized storage container of claim 15, wherein the heat sink connected to the thermoelectric unit comprises:
an active heat sink device, the active heat sink device operably coupled to the electronic controller.

25. The temperature-stabilized storage container of claim 15, wherein the electronic controller comprises:
circuitry configured to control the thermoelectric unit in response to signals received from at least one temperature sensor.

5 26. The temperature-stabilized storage container of claim 15, further comprising:
a temperature sensor positioned within the temperature-stabilized storage region;
and
a connector between the temperature sensor and the electronic controller.

10 27. The temperature-stabilized storage container of claim 15, further comprising:
a second phase change material unit positioned within the temperature-stabilized storage region;
a second heat pipe with a first end positioned within the second phase-change material unit, and a second end positioned adjacent to the single access aperture, wherein the thermoelectric unit is in contact with the second end of the second heat pipe.

15 28. A temperature-stabilized storage container, comprising:
an outer wall substantially defining an outer surface of a storage container, the outer wall including an outer aperture in an upper region;
an inner wall substantially defining a temperature-stabilized storage region internal to the storage container, the inner wall including an inner aperture in an upper region;
a gap between the outer wall and the inner wall;
a conduit connecting the outer aperture to the inner aperture;
one or more sections of ultra-efficient insulation material within the gap;
20 a phase-change material unit attached to an internal surface of the temperature-stabilized storage region;
a heat pipe with a first end positioned within the phase-change material unit, and a second end positioned adjacent to the outer aperture;
a thermoelectric unit in contact with the second end of the heat pipe;
25 a heat sink unit connected to the thermoelectric unit and positioned to radiate heat away from the thermoelectric unit; and

30

an electronic controller connected to the thermoelectric unit.

29. The temperature-stabilized storage container of claim 28, wherein the at least one section of ultra-efficient insulation material within the gap comprises:
a plurality of layers of multilayer insulation substantially surrounding the thermally
5 sealed storage region; and
substantially evacuated space surrounding the plurality of layers of multilayer
insulation.

30. The temperature-stabilized storage container of claim 29, wherein the substantially
evacuated space has a pressure less than or equal to 5×10^{-4} torr.

10 31. The temperature-stabilized storage container of claim 28, wherein the temperature-
stabilized storage region is configured to be maintained at a temperature
substantially between approximately 2 degrees Centigrade and approximately 8
degrees Centigrade.

15 32. The temperature-stabilized storage container of claim 28, wherein the phase-
change material unit comprises:
a sealed container including a hydrocarbon-based phase-change material within an
expanded graphite structure.

33. The temperature-stabilized storage container of claim 28, wherein the phase-
change material unit comprises:
20 a phase change material substantially filling a sealed interior region of the phase
change material unit, the phase change material having a freeze temperature
between about 0°C and 2°C.

34. The temperature-stabilized storage container of claim 28, wherein the
thermoelectric unit comprises:
25 a Peltier device.

35. The temperature-stabilized storage container of claim 28, wherein the heat sink
comprises:
a passive heat sink device.

36. The temperature-stabilized storage container of claim 28, wherein the heat sink comprises:
 - an active heat sink device, the active heat sink device operably coupled to the electronic controller.
- 5 37. The temperature-stabilized storage container of claim 28, wherein the electronic controller comprises:
 - circuitry configured to control the thermoelectric unit.
38. The temperature-stabilized storage container of claim 28, further comprising:
 - a temperature sensor positioned within the temperature-stabilized storage region;
 - 10 and
 - a connector between the temperature sensor and the electronic controller.
39. The temperature-stabilized storage container of claim 28, further comprising:
 - a power unit attached to an external surface of the container, the power unit operably coupled to the electronic controller.
- 15 40. The temperature-stabilized storage container of claim 28, further comprising:
 - a connector attached to the electronic controller, the connector configured to provide electricity from an external power source.
41. The temperature-stabilized storage container of claim 28, further comprising:
 - a display unit affixed to an external surface of the container, the display unit operably coupled to the electronic controller.
- 20 42. The temperature-stabilized storage container of claim 28, further comprising:
 - a communications unit operably coupled to the electronic controller.
43. The temperature-stabilized storage container of claim 28, further comprising:
 - a second phase change material unit positioned within the temperature-stabilized storage region;
 - 25 a second heat pipe with a first end positioned within the second phase-change material unit, and a second end positioned adjacent to the single access aperture, wherein the thermoelectric unit is in contact with the second end of the second heat pipe.

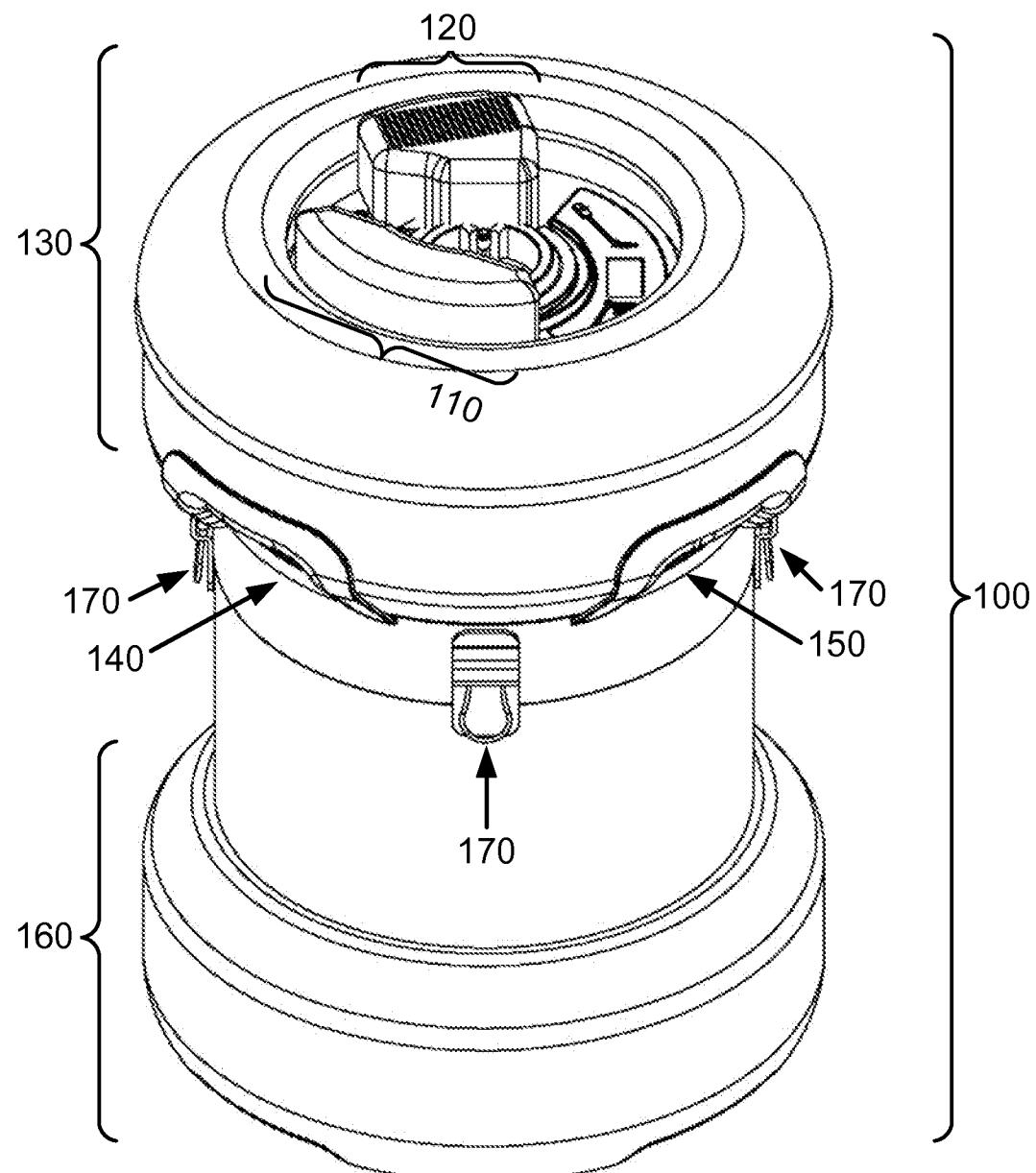

1/15

FIG. 1

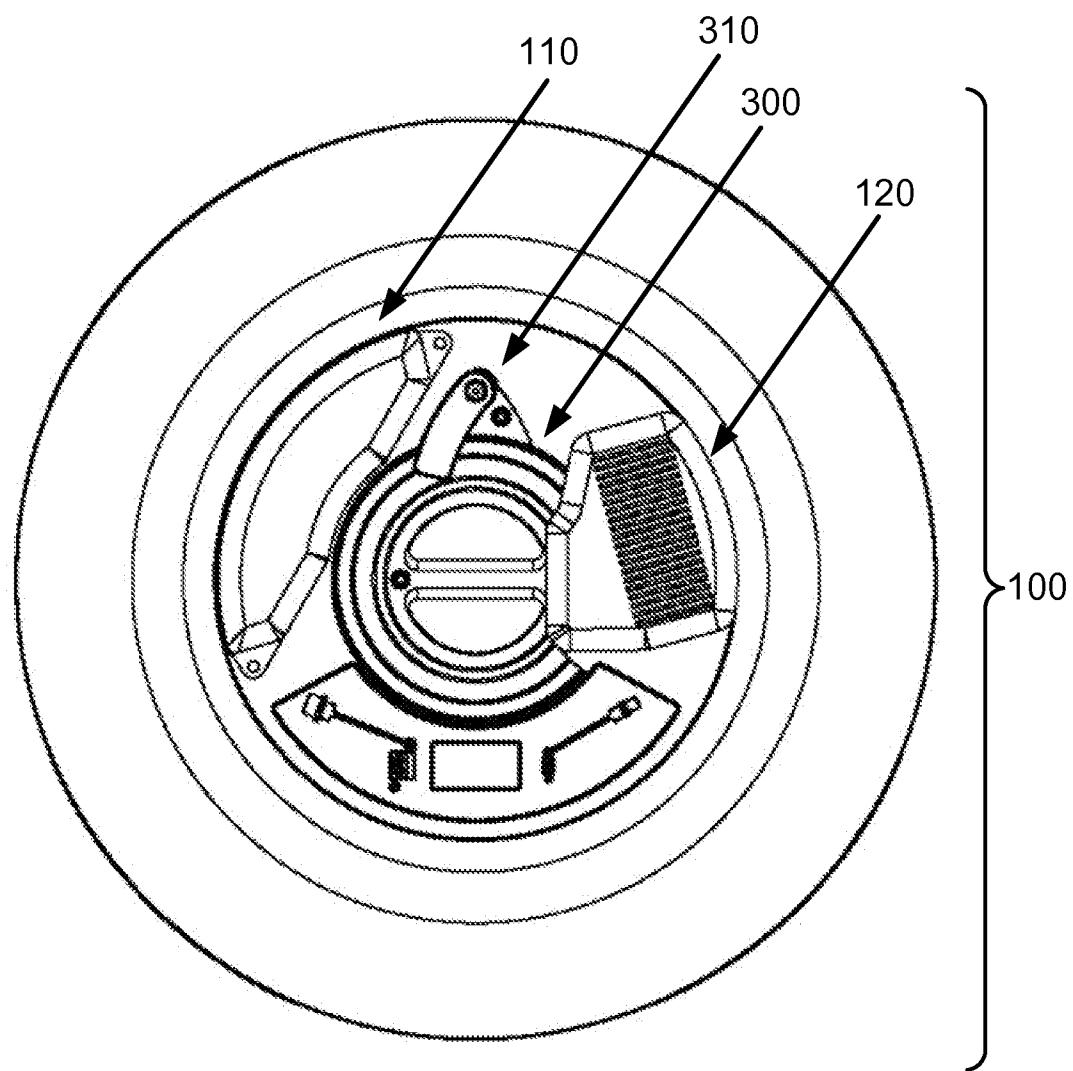

2/15

FIG. 2

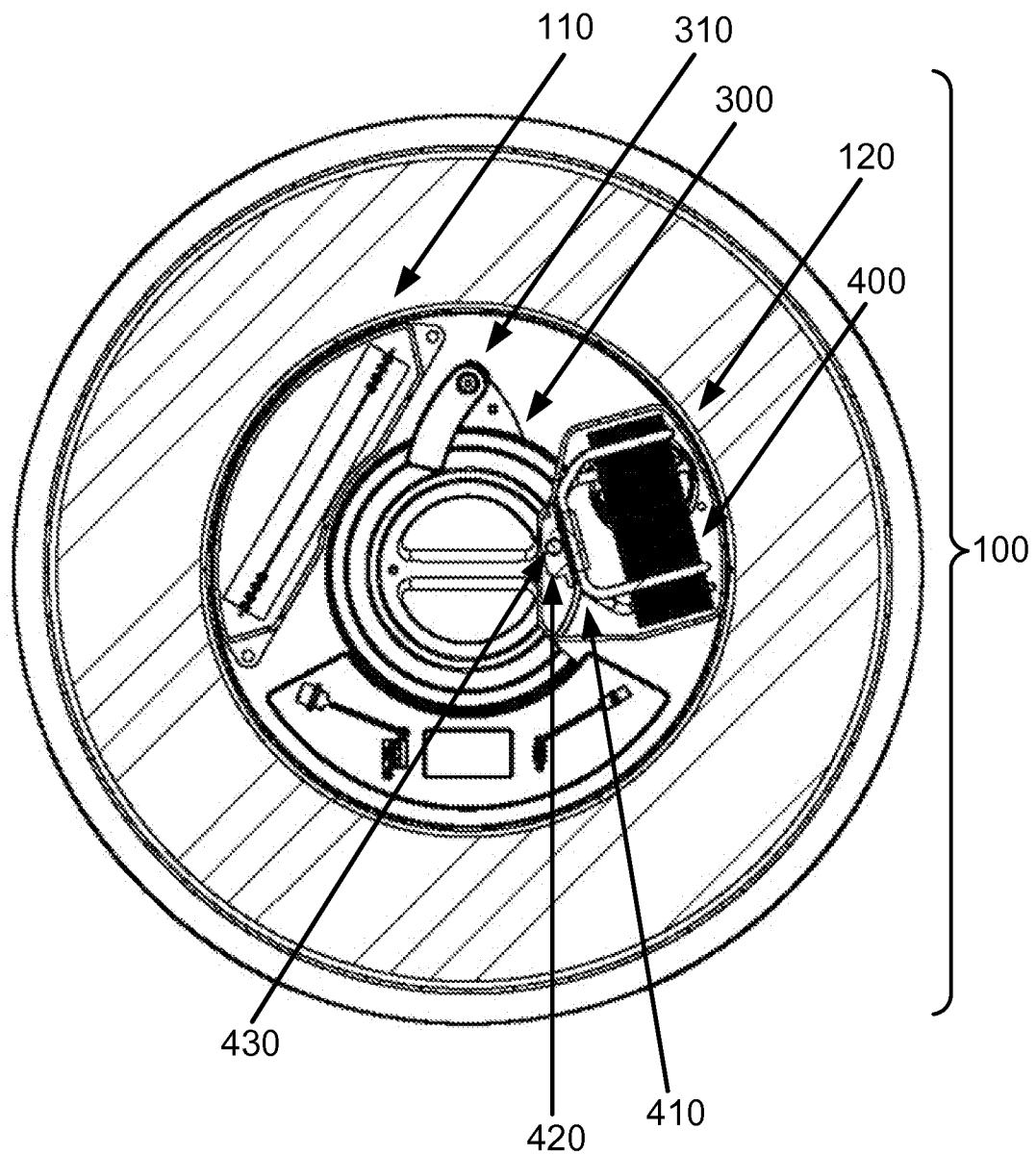

3/15

FIG. 3

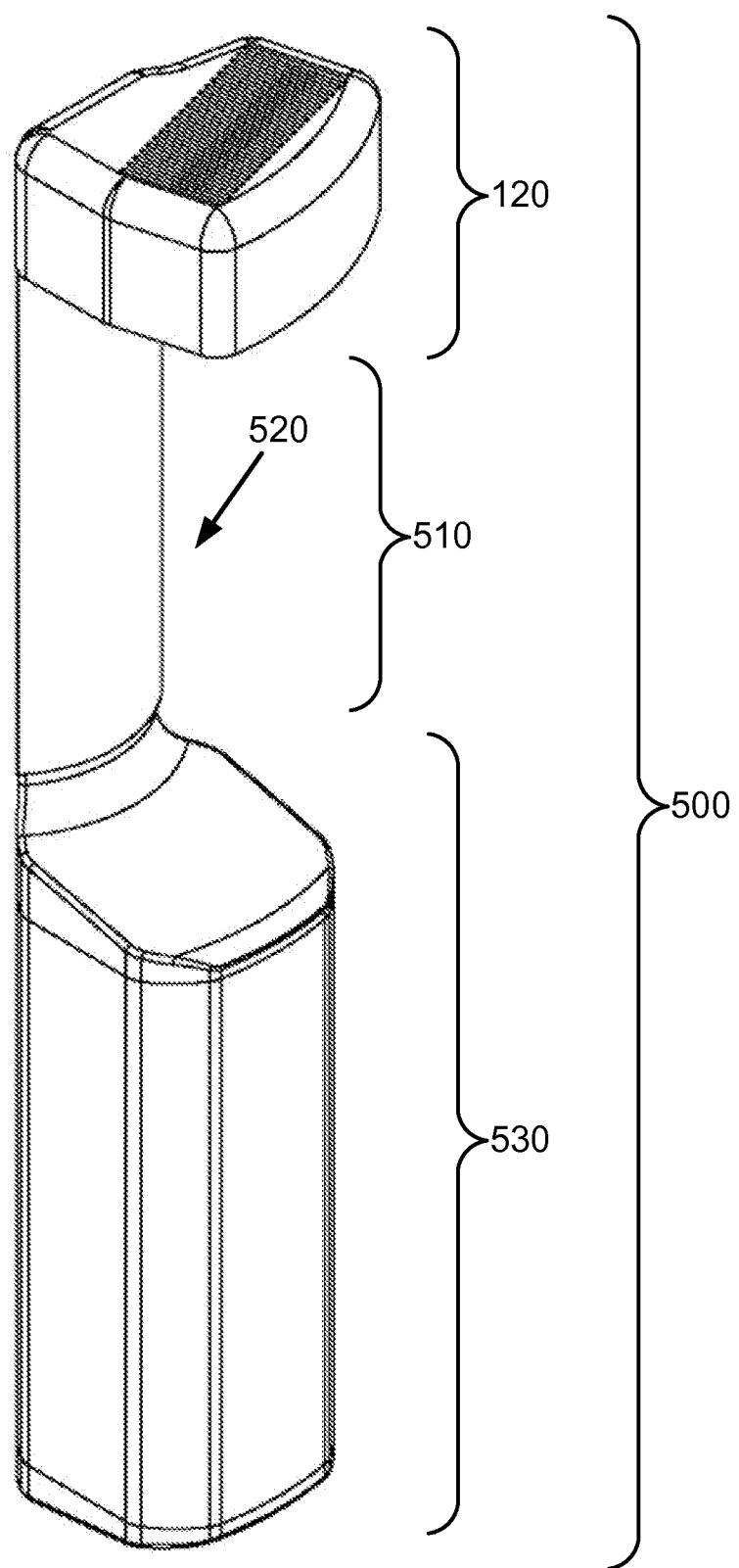

4/15

FIG. 4

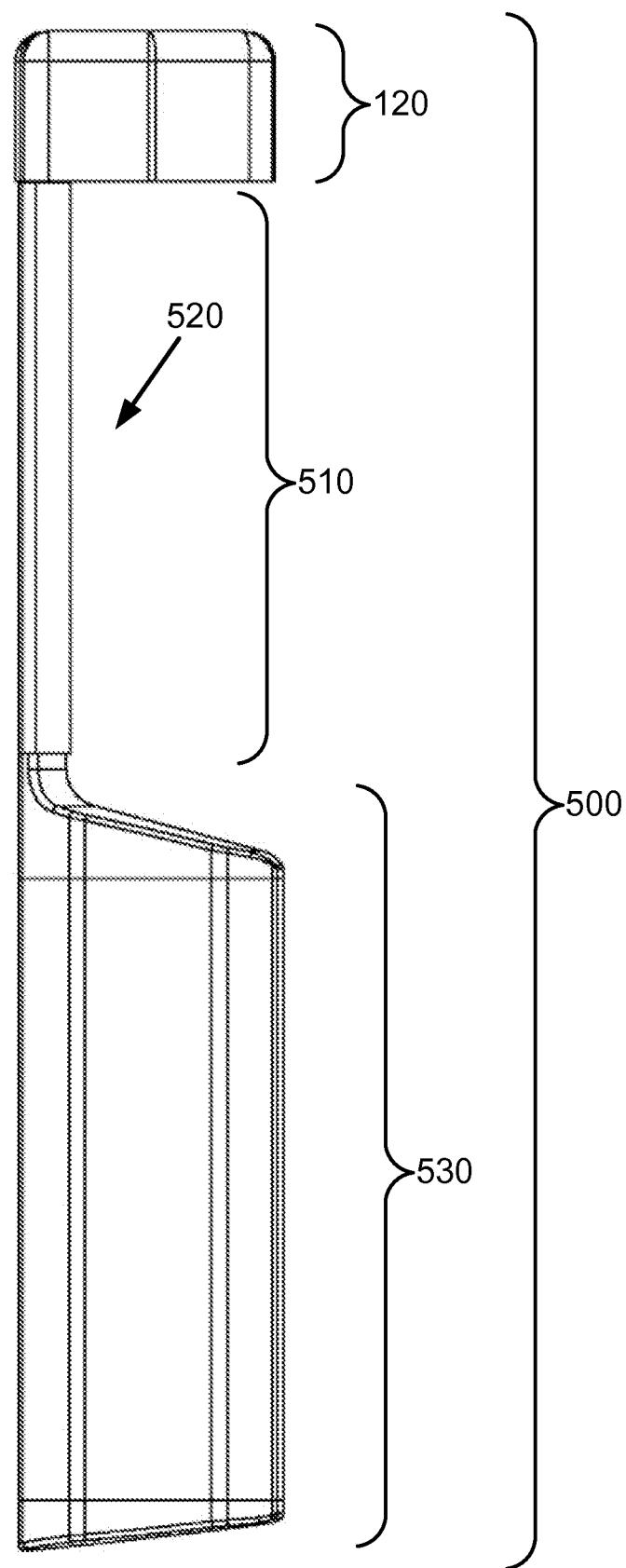

5/15

FIG. 5

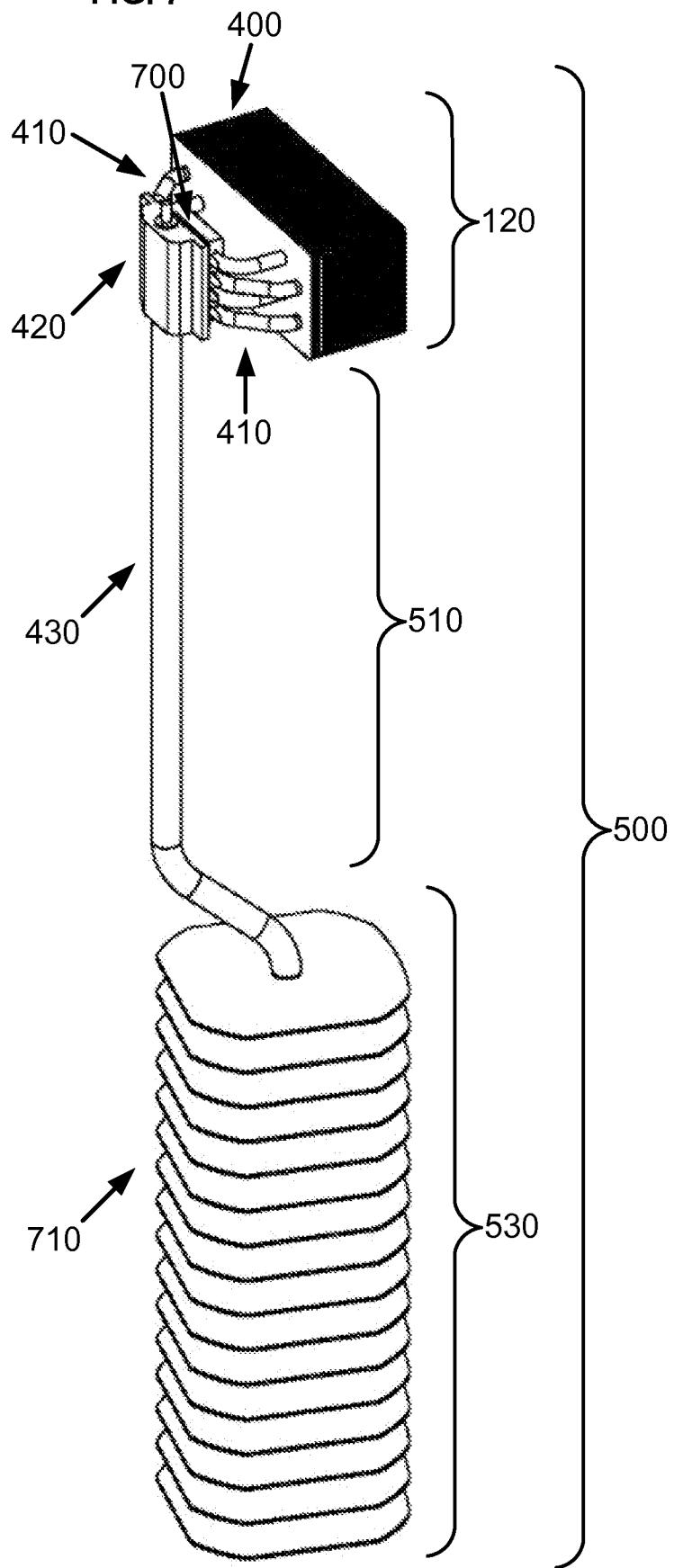

6/15

FIG. 6

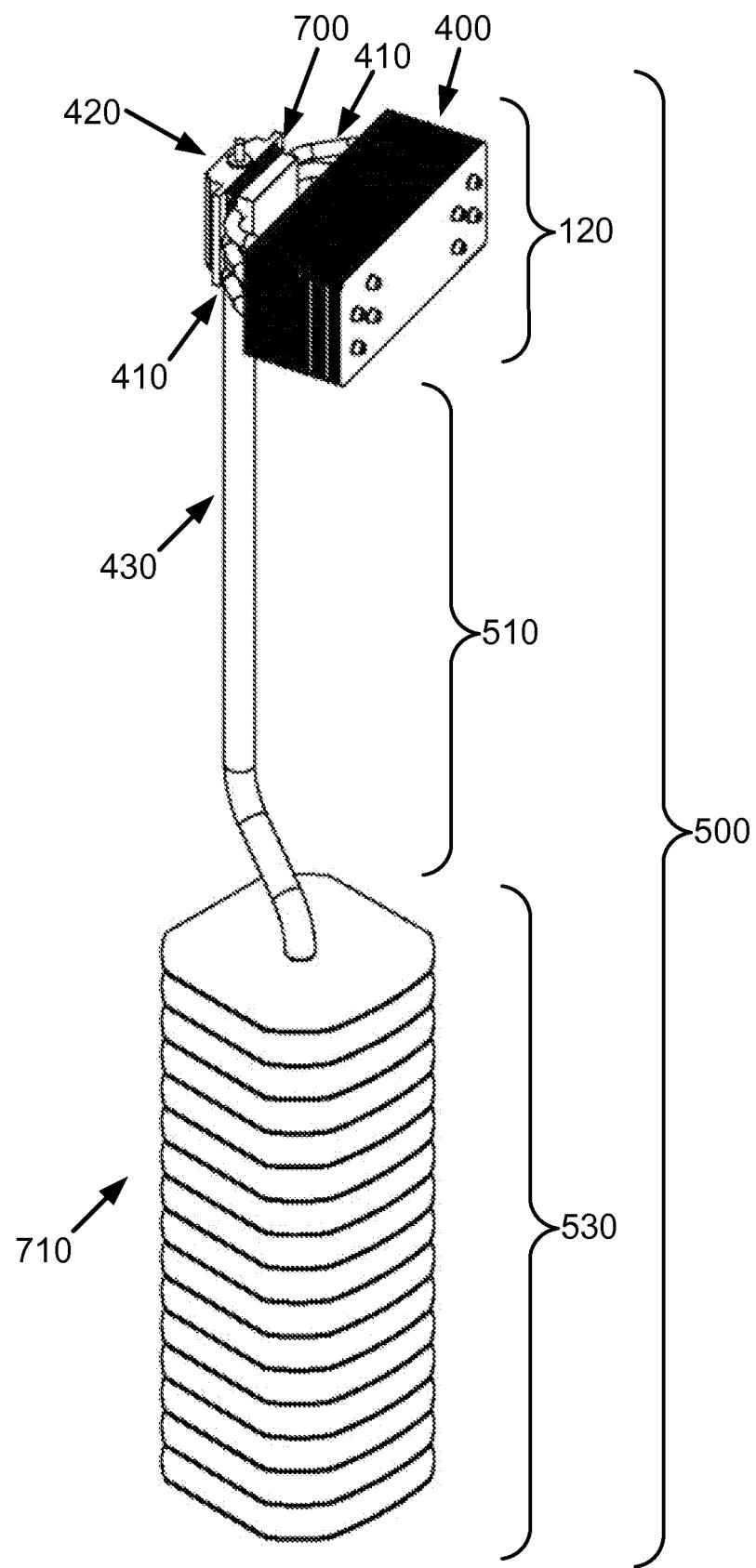

7/15

FIG. 7

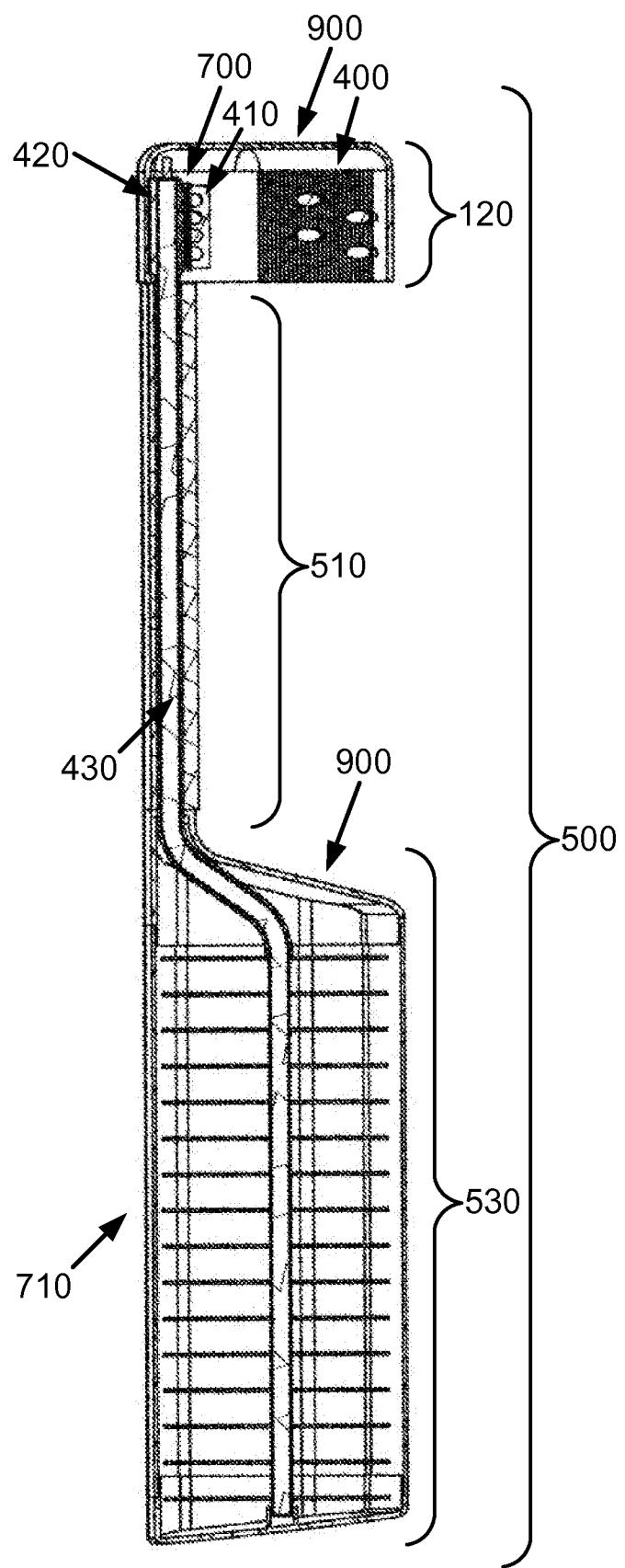

8/15

FIG. 8


9/15

FIG. 9

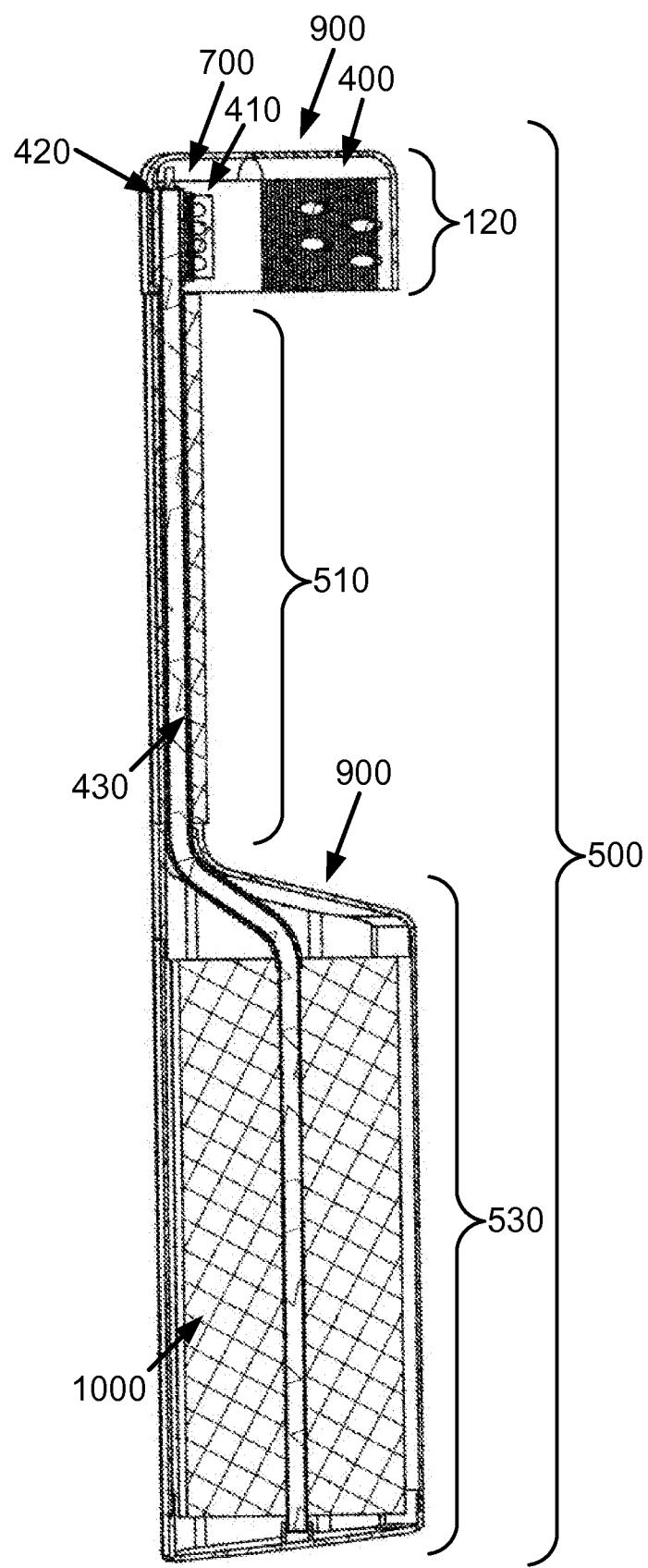

10/15

FIG. 10


11/15

FIG. 11

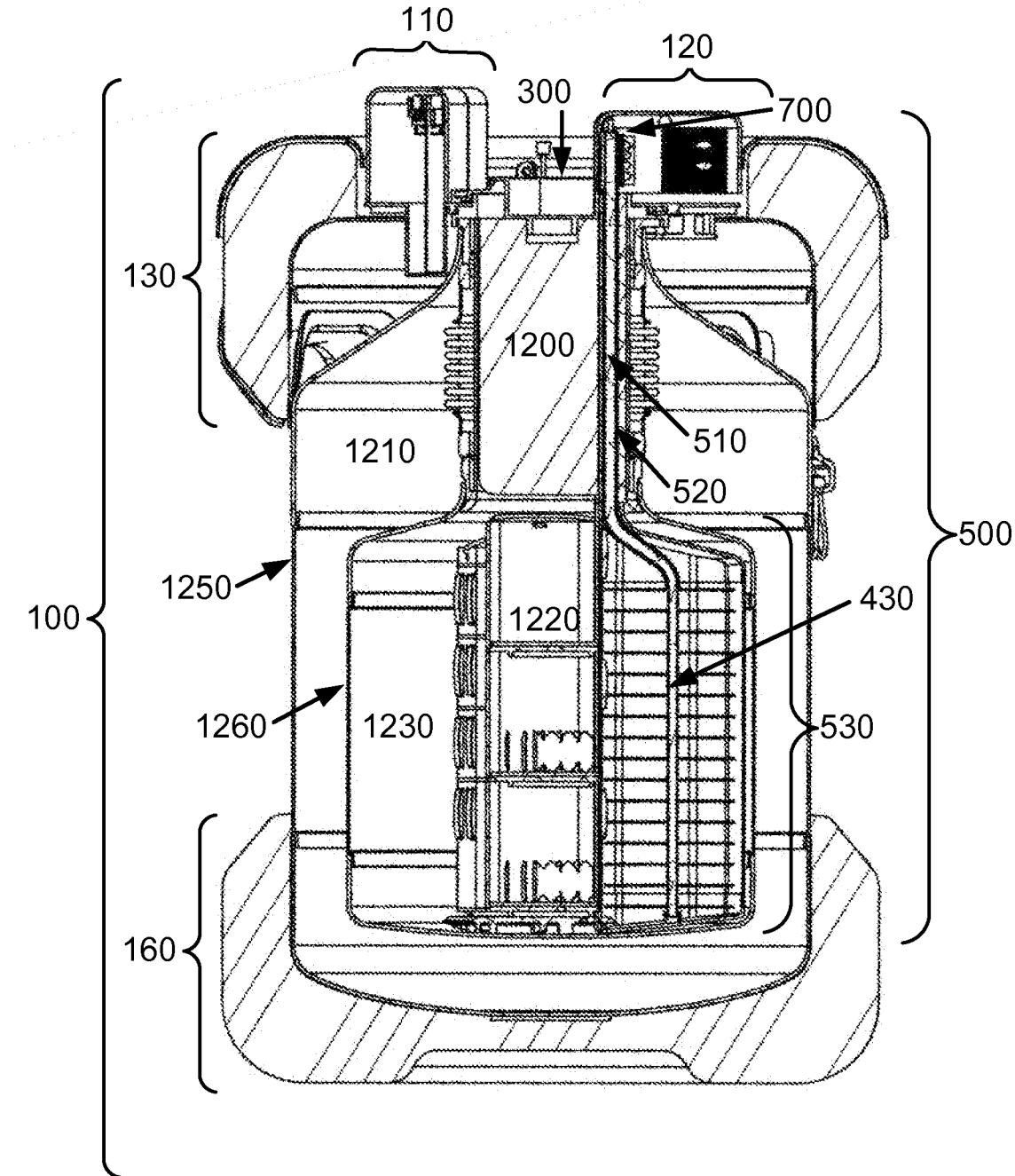

12/15

FIG. 12

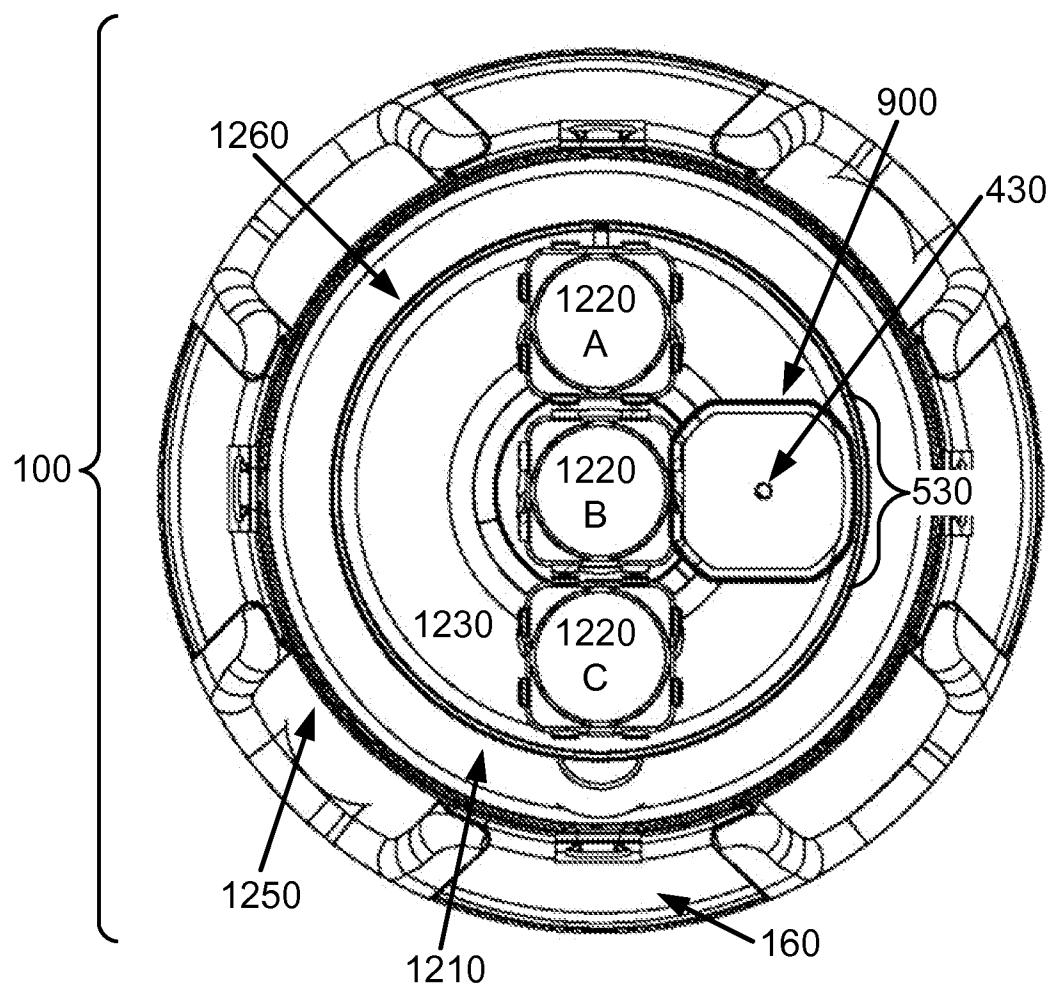

13/15

FIG. 13

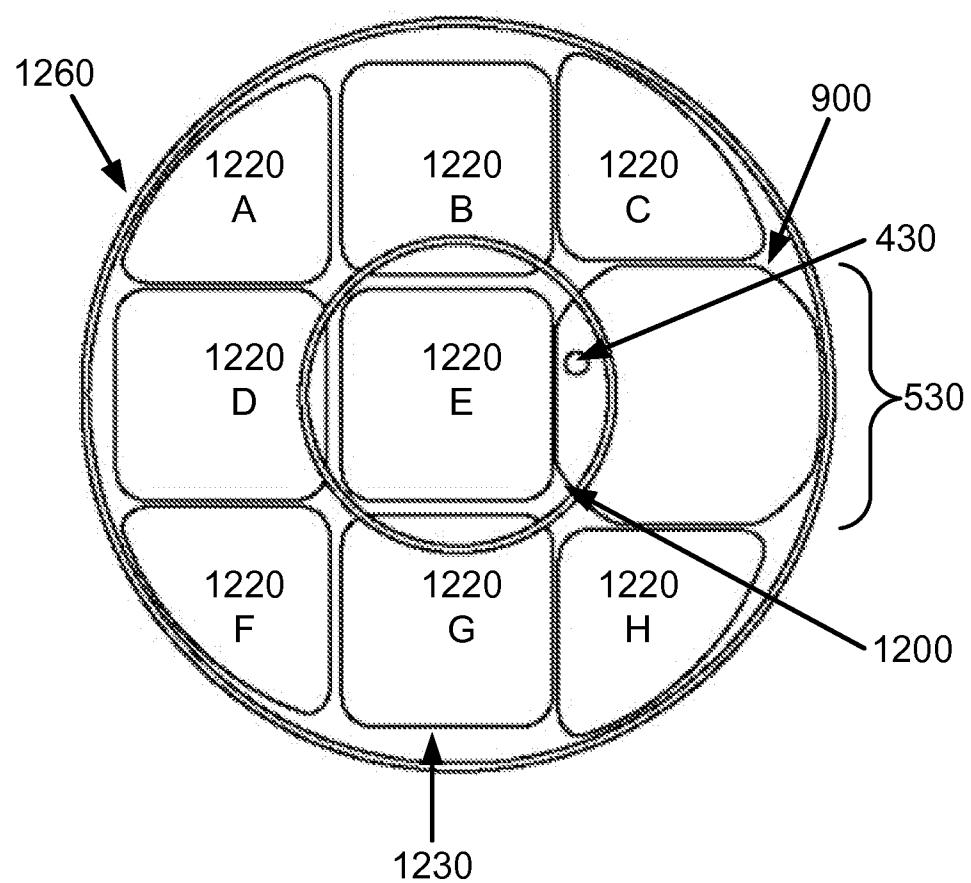

14/15

FIG. 14

15/15

FIG. 15

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2014/067863

A. CLASSIFICATION OF SUBJECT MATTER

F28D 15/02(2006.01)i, F25B 49/00(2006.01)i, F25B 27/02(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

F28D 15/02; H01L 35/02; F28F 7/00; F25B 21/02; F28D 20/00; H01L 35/00; F25B 49/00; F25B 27/02

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: thermal transfer device, container, phase change material, heat pipe, heat sink, controller, and thermoelectric unit

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category [‡]	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 2009-0049845 A1 (MCSTRAVICK et al.) 26 February 2009 See abstract ; paragraphs [0032]-[0041] ; and figures 1-5 .	1-2 ,4-15 ,18-19 ,21-28 ,31-43
A		3 ,16-17 ,20, 29-30
Y	US 6,997, 241 B2 (CHOU et al.) 14 February 2006 See column 4, lines 27-49 ; and figure 2 .	1-2 ,4-15 ,18-19 ,21-28 ,31-43
A	US 2011-0100605 A1 (ZHENG et al.) 05 May 2011 See paragraphs [0022] , [0026] ; and figures 2,4 .	1-43
A	US 4,976, 308 A (FAGHRI, AMIR) 11 December 1990 See column 3, line 57 - column 4, line 12; and figures 3-4 .	1-43
A	US 6,624, 349 B1 (BASS, JOHN C.) 23 September 2003 See column 3, lines 43-64 ; and figure 1 .	1-43

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

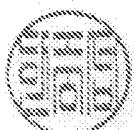
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
26 March 2015 (26.03.2015)

Date of mailing of the international search report


27 March 2015 (27.03.2015)

Name and mailing address of the ISA/KR
International Application Division
Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, 302-701,
Republic of Korea
Facsimile No. +82 42 472 7140

Authorized officer

HAN, Joong Sub

Telephone No. +82-42-481-5606

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2014/067863

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
us 2009-0049845 A1	26/02/2009	None	
us 6997241 B2	14/02/2006	us 2002-0144811 A1 us 2006-0151146 A1 us 7191820 B2	10/10/2002 13/07/2006 20/03/2007
us 2011-0100605 A1	05/05/2011	None	
us 4976308 A	11/12/1990	None	
us 6624349 B1	23/09/2003	None	