wo 2013/070800 A1 | PF V00000 OO O R O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(43) International Publication Date

(19) World Intellectual Property

Organization
International Bureau

—~
EEEEEééE;

=

\

(10) International Publication Number

WO 2013/070800 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

16 May 2013 (16.05.2013) WIPOIPCT
International Patent Classification: (81)
GO6F 3/06 (2006.01)

International Application Number:
PCT/US2012/063989

International Filing Date:
7 November 2012 (07.11.2012)

Filing Language: English
Publication Language: English
Priority Data:

61/556,820 7 November 2011 (07.11.2011) US

Applicant: NEXGEN STORAGE, INC. [—/US]; 361
Centennial Parkway, Suite 230, Louisville, Colorado
80027 (US).

Inventors: GALLANT, David A.; 2880 Glencoe Street,
Denver, Colorado 80207 (US). LONG, Kelly E.; 11136
Bryant Drive, Westminster, Colorado 80234 (US). ASH-
MORE, Paul A.; 543 Americana Road, Longmont, Color-
ado 80504 (US). SOBOLEWSKI, Sebastian Piotr; 14665
Federal Boulevard, Broomfield, Colorado 80023 (US).

Agent: KULISH, Christopher J.; 1531 Norwood Avenue,
Boulder, Colorado 80304 (US).

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
IM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: PRIMARY DATA STORAGE SYSTEM WITH QUALITY OF SERVICE

-\

Sty Dtabrsc 165

)

g

e

(57) Abstract: The invention is directed to a primary data storage system for

300

»oo8 doB | . | os

Misgion Critical Hen Critical

B |08

] : jivs)
2161

use in a computer network in which a network allows user computers to
transfer data to/from the primary data storage system. In one embodiment, the
primary data storage system allows an administrator of the computer network
to define two or more volumes on the primary data storage system and define
quality of service goals for each volume. The primary data storage system op-
erates so as allocate resources within the primary data storage system to the
volumes based upon criticality and performance goals specitied for each of
the volumes.

WO 2013/070800 PCT/US2012/063989

PRIMARY DATA STORAGE SYSTEM WITH
QUALITY OF SERVICE

FIELD OF THE INVENTION
[Para 1] The present invention relates to a primary data storage system suitable for use

in a computer network.

BACKGROUND OF THE INVENTION

[Para 2] A computer network is typically comprised of multiple user computers, a
primary data storage system that stores data provided by the user computers and provides
previously stored data to the user computers, and a network system that facilitates the transfer
of data between the user computers and the primary data storage system. The user computers
typically have local data storage capacity. In contrast, the primary data storage system is
separate from the user computers with local data storage capacity and provides the ability for
the user computers to share data/information with one another. The network system that is
between the user computers and the primary data storage system can take a number of forms.
For example, there can be a dedicated channel between each of the user computers and the
primary data storage system. More typically, the network system includes switches (fabric
switches) and servers (in certain situations known as initiators) that cooperate to transfer data
between the primary data storage system and the user computers. Also associated with many
computer networks is a secondary data storage system. The secondary data storage system
provides secondary storage of data, i.e., storage that is not constantly available for use by one
or more user computers when the computer network is in a normal/acceptable operating
mode. As such, many secondary data storage systems are employed to backup data and to
facilitate other maintenance functions. In contrast, primary data storages are substantially
constantly available for use by one or more user computers when the computer network is in
a normal/acceptable operating mode that involves substantial interaction with the user

computers.

SUMMARY OF THE INVENTION
[Para 3] The present invention is directed to a primary data storage system comprised
of: (a) one or more i/o ports, each i/o port capable of receiving a packet with a block

command and providing a packet with a reply, (b) a data store system having at least one data

WO 2013/070800 PCT/US2012/063989

store capable of receiving and storing data in response to a write block command and/or
retrieving and providing data in response to a read block command, and (c) a storage
processor with a processor and application memory for executing computer code related to
the transfer of data between the one or more i/0 ports and the at least one data store.

[Para 4] In one embodiment of the invention, the storage processor operates to allocate
resources within the primary data storage system to volumes that are competing for resources
in the system based upon criticality and performance goals specified for each of the volumes.
By way of background, a volume is an area of data storage that may or may not have an
actual physical boundary. For example, the storage space on a disk drive can be divided up
into several volumes, in which case none of the volumes have a complete physical boundary.
In contrast, the storage space on a disk drive can be entirely allocated to a single volume, in
which case the volume has a complete physical boundary. The primary data storage system
allows the data store system to be allocated to two or more volumes. Further, criticality and
performance goals can be specified for each volume. For instance, one volume may be more
critical than another volume and this criticality may manifest itself in the need for low latency
or turnaround time in responding to read/write commands relating to the volume.

[Para 5] In one embodiment, the system provides a data store system that is capable of
having at least two volumes with each volume having a defined criticality and defined quality
of service goals. The storage processor includes a sorting processor for sorting an input
queue or string of read/write block commands directed to at least two volumes into an output
string of read/write block commands that reflects the criticality and performance goals of the
volumes. The sorting processor, in conducting such a sort, uses statistical data provided by a
statistical database. In a particular embodiment, the sorting processor uses a substantial
amount of statistical data. To elaborate, when the sorting processor is assessing a particular
read/write block command, the processor takes into account the “criticality” attributed to the
volume to which the particular read/write block command relates, statistical data that relates
to the volume to which the particular read/write block command relates, criticality and
statistical data that relates to the other volumes in the system (i.e., the other volumes that are
competing for resources within the system), statistical data relating to the hardware (e.g., disk
drives, solid drives, switches etc.) that are likely to be involved in carrying out the read/write
block command, and characteristics of the read/write command itself (e.g., the size of the
data transfer that is the subject of the read/write block command).

[Para 6] In a particular embodiment, the statistical data includes both current statistical

data and historical statistical data relating to the volume to which a particular read/write

-2-

WO 2013/070800 PCT/US2012/063989

command relates and to the other volumes in the system. The sorting processor uses both
current and historical data to facilitate the identification of trends that, in turn, facilitate
sorting or prioritization of the read/write block commands. For example, if the system has
operated so that the execution of read/write block commands relating to one volume have
resulted in the volume approaching or exceeding the performance goals assigned to the
volume but have caused another volume to increasingly fall behind its performance goals, the
current and historical data allows this trend to be identified. Further, the sorting processor is
capable of operating in a fashion that brings the volume that was increasingly falling behind
in meeting its performance goals closer to meeting its performance goals. As another
example, if the read/write block commands being directed to a particular volume require
significantly less resources than would be expected for the criticality and performance goals
defined for the volume, the use of the current and historical data allows this trend to be
recognized. Further, if the sorting processor identifies such a trend, the sorting processor can
exploit this trend by favoring the sorting or prioritization of read/write block commands
directed to other volumes relative to read/write block commands directed to the under utilized
but over weighted volume.

[Para 7] In yet a further embodiment, the sorting processor evaluates or prioritizes a
particular read/write block command based on the weighted sum of several factors, including
criticality, characteristics of the read/write command, and statistical data relating to whatever
volumes have been defined in the system and the hardware present in the system for carrying
out the read/write block commands. The sorting processor implements such a weighted sum
in a fashion that recognizes the time constraints present in a primary data storage system. To
elaborate, if a particular read/write block command is recognized as primarily impacting
throughput and having considerably less impact on IOPS, the sorting processor can forego
any calculation relating to IOPS in reaching a weighted sum or effectively set the coefficient
associated with any IOPS factors to zero. Stated differently, the weighted sum takes into
account the factors that are likely to have a substantial impact on the weighted sum. For
example, in a sorting processor that includes (a) a first sub-string processor that sorts a string
of read/write block commands by criticality and produces a queue of read/write block
commands with a “mission critical” criticality and (b) a second sub-string processor that sorts
the read/write block commands in the “mission critical” queue by impact on the system in
terms of throughput, IOPS, and latency, the sorting processor substantially ignores data
relating to non-mission critical and non-throughput impacting factors in producting the queue

of “mission critical — throughput impact” read/write block commands .

-3-

WO 2013/070800 PCT/US2012/063989

[Para 8] In anotherembodiment, the sorting processor performs at least a three-stage
sort of an input queue of block commands that relate to the transfer of data to or from the data
store system and that relate to two or more volumes with criticality and performance goal(s)
associated with each volume. In the first stage, the storage processor initially sorts the block
commands in the input queue based upon the criticality of the volume to which the block
command relates. For instance, if there are three volumes respectively with “critical”,
“somewhat critical”, and “non-critical” criticalities, the processor would sort the block
commands into three streams, one for each of the volumes. In the second stage, each of the
three streams of block commands is sorted into two or more sub-streams based upon the
projected impact of the execution of the block commands. The sorting considers the
characteristics of the data associated with the block command and/or statistical data relating
to the volume with which the command is associated. For example, a stream of block
commands could be sorted into a latency stream, a throughput stream, and an input/output per
second stream based upon the data associated with each of the commands and statistical data
relating to the volume. In the third stage, all of the sub-streams for each of the volumes are
sorted into an execution queue based on statistical information relating to the hardware

associated with the system.

BRIEF DESCRIPTION OF THE DRAWINGS

[Para9] FIG. 1 illustrates an embodiment of a networked computer system that
includes an embodiment of a primary storage system;

[Para 10] FIG. 2 is a block diagram of the management stack that processes
administrator related communications, an 1/0O stack that processes communications relating to
data storage, and fail-over stack that facilitates the transfer of responsibility for a volume
between storage processors associated with the embodiment of the primary storage system
shown in FIG. 1;

[Para 11] FIG. 2A illustrates an example of a statistics database that receives data from
various elements of the primary data storage system and provides data to various elements of
the system that, in many instances, use the data in performing a data storage related
operation;

[Para 12] FIG. 3 illustrates an iSCSI encapsulation packet and an input/out block (IOB)
derived from the packet;

[Para 13] FIG. 3A illustrates the QoS attributes identified in FIG. 3;

WO 2013/070800 PCT/US2012/063989

[Para 14] FIG. 4 illustrates an example of a volume ownership table;

[Para 15] FIG. 5 illustrates an example of a layer map and a volume information table;

[Para 16] FIG. 6 illustrates an example of the operation of the QoS filter of the I/O stack
shown in FIG. 2 for a primary data storage system that services three initiators, each having a
different criticality and different performance goals;

[Para 17] FIG. 7 illustrates an example of a journal and related journal table; and

[Para 18] FIG. 8 illustrates an example of a layer store table.

DETAILED DESCRIPTION

NETWORKED COMPUTER SYSTEM

[Para 19] With reference to FIG. 1, an embodiment of a networked computer system that
includes an embodiment of a primary data storage system is illustrated. The networked
computer system, hereinafter referred to as system 20, includes a user level 22, an initiator
level 24, a first switch level 26 that facilitates communication between the user level 22 and
the initiator level 24, a primary data storage level 28, a second switch level 30 that facilitates
communications between the initiator level 24 and the primary data storage level 28, and a
secondary data storage level 32.

[Para 20] User Level. The user level 22 includes at least one user computer that is
capable of being used in a manner that interacts with the primary data storage level 28. A
user computer is capable of requesting that: (a) data associated with the user computer be sent
to the primary data storage level 28 for storage and (b) data stored in the primary data storage
level 28 be retrieved and provided to the user computer. At least one user computer
associated with the user level is a storage administrator computer 34 that provides a storage
administrator or system administrator with the ability to define the manner in which the data
storage provided by the primary data storage level 28 is utilized. As illustrated in FIG. 1, the
user level 22 typically includes a plurality of user computers with at least one of the plurality
of user computers being associated with a storage administrator and the other user computers
being associated with other entities. For the purpose of illustration, the user level 22 includes
user computers 36A-36C respectively associated with a customer support department, an
accounting department, and an engineering department.

[Para 21] Initiator Level. The initiator level 24 includes at least one initiator that

operates to translate a request from a user computer into one or more block command

packets. A request from a user computer is in the form of a request packet that conforms to a

-5-

WO 2013/070800 PCT/US2012/063989

packet protocol such as TCP, IP, Web, DB, and FileShare. A block command packet
conforms to a block protocol that includes block commands for data storage devices that
operate on one or more blocks of data. Examples of block protocols are the Internet Small
Computer System Interface protocol (iSCSI), the Fiber Channel protocol (FC), TCP, and IP.
Examples of block commands include: (a) a block write command that directs a data storage
device to write one or more blocks of data to storage media associated with the device and (b)
a block read command that directs a data storage device to read one or more blocks of data
from a storage media associated with the device. A block of data is a fixed and
predetermined number of contiguous bytes of data that is or will be resident on some kind of
storage media. Typical block sizes are 512, 1024, 2048, and 4096 bytes. For example, a
request from a user computer to read a large file of data resident at the primary data storage
level 28 is likely to be translated by an initiator into multiple block command packets that
each relate to one or more blocks of data that is/are part of the requested file.

[Para 22] The initiator also operates to translate a block result packet, a packet that is
received by the initiator and provides the result or a portion of the result of the execution of a
block command associated with a block command packet, into a reply to request packet. The
initiator provides the reply to the request packet to the appropriate user computer.

[Para 23] As illustrated in FIG. 1, the initiator level 24 commonly includes a plurality of
initiators with each of the initiators capable of: (a) processing request packets from each of
the user computers to generate block command packets and (b) processing block result
packets to produce reply to request packets that are provided to the appropriate user
computers. For the purpose of illustration, the initiator level includes initiators 38A-38C.

[Para 24] An initiator can be comprised of a cluster of two or more computers that each
endeavors to process a request from a user computer and that provide redundancy in the event
that one or more of the computers fail. Typically, an initiator that is designated to process
high priority or critical requests is comprised of multiple computers, thereby providing
redundancy should any one of the computers fail.

[Para 25] First Switch Level. The first switch level 26 provides the ability for one or

more user computers at the user level 22 to communicate with one or more initiators at the
initiator level 24. More specifically, the first switch level 26 operates so as to receive a
request packet from a user computer, process the request packet to determine which initiator
should receive the request packet, and routes the request packet to the appropriate initiator.
Conversely, the first switch level also operates to receive a reply to request packet from the

initiator level 24, process the reply to request packet to determine which user computer

-6-

WO 2013/070800 PCT/US2012/063989

should receive the reply to request packet, and routes the reply to request packet to the
appropriate user computer.

[Para 26] The first switch level 26 can include a single switch that connects one or more
user computers to one or more initiators or multiple switches that each connects one or more
user computers to one or more initiators. For the purpose of illustration, the first switch level
26 includes a switch 40 that is capable of establishing communication paths between the user
computers 34 and 36A-36C and the initiators 38A-38C.

[Para 27] Primary Data Storage Level. The primary data storage level 28 (or primary

data storage system 28) operates to receive a block command packet from an initiator,
attempt to execute the block command contained in the block command packet, produce a
block result packet that contains the result of the attempted execution or execution of the
block command, and provide the block result packet to the initiator that sent the related block
command packet to the primary data storage system 28.

[Para 28] Typical block commands include a write command and a read command. In
the case of a write command, the primary data storage system 28 attempts to write one or
more blocks of data to a data store (sometimes referred to simply as a “store”) associated with
the primary data storage system 28. With respect to a read command, the primary data
storage system 28 attempts to read one or more blocks of data from a data store associated
with the primary data storage system 28 and provide the read data to the initiator.

[Para 29] The primary data storage system 28 includes at least one storage processor and
at least one data store. The primary data storage system 28 also includes at least one switch
when the at least one storage processor and the at least one data store associated with the at
least one storage processor will accommodate two or more independent communication paths
between the at least one storage processor and the at least one data store.

[Para 30] A storage processor includes an application memory and a processor for
executing code resident in the application memory to process a block command packet. In
one embodiment, the processor and the application memory are embodied in a SuperMicro
Superserver 6036ST.

[Para 31] A data store is (a) a single data storage device or element or (b) a combination
of data storage devices or elements. Examples of a single data storage element that can each
be a data store include a CPU bus memory, a disk drive with a magnetic/optical disk, a solid
state drive, and a tape drive with a tape. An example of a combination of data storage
devices or elements that are configured to operate as a single data store is a group of disk

drives configured as a Redundant Array of Independent Drives or RAID.

-7-

WO 2013/070800 PCT/US2012/063989

[Para 32] A data store can be characterized by the attributes of path redundancy, data
redundancy, and persistence.

[Para 33] The path redundancy attribute is a measure of the number of redundant and
independent paths that are available for writing data to and/or reading data from a data store.
As such, the value of the path redundancy attribute is the number of independent paths (i.e.,
the independent 1/O ports associated with the data store) less one. The value of the path
redundancy attribute is one or greater when there are at least two independent paths available
for writing data to and/or reading data from the data store. If there is only one independent
path available for writing data to and/or reading from a data store, the path redundancy is
Zero.

[Para 34] The data redundancy attribute is a measure of the number of failures of
elements in a data store that can be tolerated without data loss. As such, the value of the data
redundancy attribute is the number of elements in the data store less the number of elements
that can fail before there is data loss. For example, if a data store is comprised of two disk
drives (elements) with the data on one disk drive mirroring the data on the other disk drive,
the value of the data redundancy attribute is one because the failure of one disk drive means
that the data can still be recovered but the failure of both disk drives would mean that there
would be data loss. As another example, the value of the data redundancy attribute of a
RAID-6 data store comprised of six disk drives (elements) is two because the two of the disk
drives (elements) can fail and the data can still be recovered but the failure of three or more
disk drives (elements) would preclude the recovery of the data.

[Para 35] The persistence attribute is an indication of: (a) the presence of data on a data
store for a substantial period of time without power being applied to the data store or (b) data
remaining on a data store for a substantial period of time due to the presence of a primary
power source and an independent backup power source that operates in the event of the
failure of the primary power source. For example, if a data store is a single magnetic disk
drive, the persistence attribute is “positive” because data will remain on the magnetic disk
drive for a substantial period of time in the absence of power being applied to the drive. In
contrast, a data store that is volatile memory without battery backup has a persistence
attribute that is “negative” because data established in the memory will not remain in the
memory in the absence of power being applied to the memory.

[Para 36] A data store also provides at least one of a number of possible combinations of
read and write operations, including read-only, read and write, write-only, and write-once-

read-many (WORM).

WO 2013/070800 PCT/US2012/063989

[Para 37] The switch facilitates communications between each of the storage processors
or a subset of all of the storage processors associated with the primary data storage level 28
and each port of all of the data stores associated with the primary data storage system 28 or a
subset thereof.

[Para 38] In many situations, redundancy that allows the primary data storage system 28
to continue operation in the event of a predetermined level of failure of a storage processor,
an clement of a data store, and or a switch is desired. This redundancy refers to path
redundancy in which there are at least two separate and independent paths extending at least
part of the way between an /O interface of the primary data storage system 28, the interface
that initially receives a block command packet from an initiator and from which a block
result packet is transmitted to an initiator, and a data store.

[Para 39] To provide one embodiment of path redundancy, the primary data storage
system 28 includes: (a) an I/O interface 42 comprised of network cards 44A-44D, (b) first
and second storage processors 46A, 46B, (c) first and second data store systems 48A, 48B,
and (d) first and second switches 50A, 50B. It should be appreciated that storage processors
46A, 46B could each be a single processor or multiple processors operating cohesively.

[Para 40] The network cards 44A-44D (sometimes referred to as “Ethernet cards™) of
the I/O interface 42 are each addressable by one or more of whatever initiators are operative
at the initiator level 24. In the illustrated embodiment, each of the network cards 44A-44D is
an Ethernet card that is appropriate for use when all of the initiators that are active at the
initiator level 24 are conducting communications with the primary data storage system 28
pursuant to the Ethernet protocol. Other cards can be employed if a different protocol, such
as Fibre Channel, is used by the initiators.

[Para 41] The first and second data store systems 48A, 48B are cach comprised of a
portion of a data store, a portion of each of multiple data stores, a data store, multiple data
stores, or combinations thereof.

[Para 42] The first and second switches 50A, 50B each provide at least a portion of the
ability to connect (a) one or more of the network cards 44A-44D to a selected one of the
storage processors 46A, 46B, (b) first and second storage processors 46A, 46B to one
another, and (c) a selected one of the storage processors 46A, 46B to a selected one of the
first and second data store systems 48A, 48B. The ability of switch S0A to establish a
connection to a store in the data store system 48B depends on the store having at least one of
two input/output ports available for establishing a connection with the switch. Similarly, the

ability of switch 50B to establish a connection to a store in the data store system 48A depends

-9-

WO 2013/070800 PCT/US2012/063989

on the store having one or at least two input/output ports available for establishing a
connection with the switch.

[Para 43] The path redundancy that is provided by the embodiment of the primary data
storage system 28 shown in FIG. 1 contemplates the failure of: (a) one or more but less than
all of the Ethernet cards 44A-44D, (b) one of the first and second storage processors 46A,
46B, (c) one of the first and second switches 50A, 50B, and/or (d) a data store associated with
one of the first and second data store systems 48A, 48B.

[Para 44] To elaborate, partial path redundancy is provided by rendering at least two of
the network cards 44A-44D with the same initiator. If one of the at least two Ethernet cards
fails, the other operative Ethernet card(s) provide(s) path redundancy for the initiator.

[Para 45] Partial path redundancy is provided by the two storage processors 46A, 46B.
If one of the first and second storage processors 46A, 46B fails, the other storage processor
can be utilized to provide the path redundancy between the 1/0 interface 42 and a data store.
In this regard, the non-failing storage processor may use one or both of the switches 50A,
S50B. For example, if the storage processor 46A is exclusively responsible for
communications conducted over Ethernet card 44 A, storage processor 46A needs to process a
command propagated over Ethernet card 44A and associated exclusively with the first data
store system 48A, and storage processor 46A fails, the storage processor 46B can utilize both
the first and second switches 50A, 50B to complete a communication path between the
Ethernet card 44A and the first data store system 48A, i.e., the storage processor 46B utilizes
the first and second switches 50A, 50B to communicate with both the Ethernet card 44A and
the first data store system 48A.

[Para 46] Partial path redundancy is provided by the first and second switches S0A, 50B.
If one of the first and second switches 50A, S0B fails, the other switch can be utilized to
provide the necessary path redundancy. This path redundancy is dependent upon the non-
failing switch having: (a) access to a portion of the data store that provides data redundancy
relative to the portion of the data store that is no longer accessible due to the failure of the
other switch and (b) access to an Ethernet card that can be addressed by the same initiator as
the Ethernet card(s) that is/are no longer available due to the failure of the other switch. For
example, if Ethernet cards 44A and 44C are each addressable by the same initiator, the data
store systems 48A and 48B each include an element that together define a data store in which
one element mirrors the other element, and switch 50A fails, the switch 50B can be utilized to
establish the necessary communication between the Ethernet card 44C and the element in

data store system 48B.

-10-

WO 2013/070800 PCT/US2012/063989

[Para 47] Additionally, in many situations, multiple data stores that have different
storage characteristics (e.g., speed, capacity, redundancy and/or reliability) are desired. In
this regard, the first data store system 48A is comprised of: (a) a first data store that is a first
CPU bus memory 52A (sometimes referred to as memory store 52A) and is relatively fast but
with relatively low capacity and no redundancy, (b) a second data store that is a first solid
state disk or drive (SSD) 54A with less speed but greater capacity relative to the first CPU
bus memory 52A and no redundancy, and (c) a third data store in the form of a first RAID
disk array 56A with less speed and greater capacity than the first solid state disk 54A and
redundancy. CPU bus memory is memory that is accessible to a processor of a storage
processor via the processor’s address bus, available for use by the processor, useable by the
processor in processing a block command packet, and does not contain any portion of the
application program that is executed or could be executed in the processing of a block
command packet. In contrast, the processor accesses the first SSD 54A and the first RAID
disk array 56A via an expansion bus (e.g., PCle). Relatedly, stores having similar
characteristics are typically configured within a primary data storage system so as to
constitute a tier.

[Para 48] It should be appreciated that the first data store system 48A can be comprised
of other combinations of partial data stores and/or data stores. For instance, the first data
store system 48A could include a first disk drive and the second data store system 48B could
include a second disk drive, the first and second disk drives together forming a data store in
which the first and second disk drives mirror one another to provide data redundancy. In the
illustrated embodiment, the second data store system 48B includes data stores in the forms of
a second CPU bus memory 52B (sometimes referred to as memory store 52B), a second SSD
54B, a second RAID disk array 56B. It should be appreciated that the second data store
system 48B can also include other combinations of data stores and partial data stores.

[Para 49] In a data store system that includes CPU bus memory and non-CPU bus data
storage, the switch that is used to establish connections between the processor of a storage
processor and the data store system is comprised of a type A switch that establishes
connections with the non-CPU bus data storage and a type B switch that establishes
connections with the CPU bus memory.

[Para 50] Because the first and second data store systems 48A, 48B respectively include
CPU bus memories 52A, 52B, the first and second switches 50A, 50B respectively include
type B switches 60A, 60B that respectively allow the processors of the storage processors

46A, 46B to establish communication paths with the CPU bus memories 52A, 52B. A type B

-11-

WO 2013/070800 PCT/US2012/063989

switch is comprised of the hardware, software, and/or firmware associated with a storage
processor that allow the processor to access the memory locations on the CPU memory bus
associated with the CPU bus memory.

[Para 51] Further, because the first and second data store systems 48A, 48B respectively
include non-CPU bus data storage in the form of SSD and SAS devices, the first and second
switches 50A, 50B respectively include type A switches 58A, 58B that respectively allow the
processors of the storage processors 46A, 46B to establish communication paths with the
non-CPU bus data stores. A type A switch is comprised of the hardware, software, and/or
firmware associated with an expansion bus that allows the processor to access the data on the
non-CPU bus data storages.

[Para 52] Second Switch Level. The second switch level 30 provides the ability for

each of the initiators associated with the initiator level 24 to communicate with at least one
network card associated with the primary data storage system 28, the at least one network
card being associated with at least one storage processor of the primary data storage system
28. More specifically, the second switch level 30 operates to receive a block command
packet from an initiator and process the block command packet so as to route the packet to
the address that is associated with a particular network card. Conversely, the second switch
level 30 also operates to receive a block result packet from the primary data storage system
28 and process the block result packet so as to route the packet to the appropriate initiator.

[Para 53] The second switch level 30 can include a single switch that selectively
connects one or more initiators to one or more network cards or multiple switches that each
selectively connects one or more initiators to one or more network cards. For the purpose of
illustration, the second switch level 30 includes switch 61 that is capable of selectively
establishing a communication path between each of the initiators 38A-38C and each of the
network cards 44A-44D.

[Para 54] Secondary Data Storage Level. The secondary data storage level 32

provides secondary storage of data, i.e., storage that is not constantly available for use by one
or more user computers when the system 20 is in a normal/acceptable operating mode. In
contrast, primary data storage is substantially constantly available for use by one or more user
computers when the system 20 is in a normal/acceptable operating mode. The secondary data
storage level 32 can include many different types of data storage, including tape drives,
robotic data storage systems that employ robots to move storage media between

players/recorders and storage locations, “cloud” storage etc. It should be appreciated that

-12-

WO 2013/070800 PCT/US2012/063989

these types of data storage and other types of data storage that are largely used as secondary
data storage can, in appropriate circumstances, become primary storage.

[Para 55] The secondary data storage level 32 includes a backup/tape server 62 that
communicates with one or more of the initiators at the initiator level 24 in response to a
request packet issued by a user computer at the user level 22.

[Para 56] The secondary data storage level 32 also includes a cloud storage provider 64
that is accessible to the primary data storage system 28. In the illustrated embodiment, the
cloud storage provider 64 can be a part of a data store, part of multiple data stores, a data
store, multiple data stores, or combinations thereof that is respectively accessible to the
storage processors 46A, 46B via network cards 66A, 66B (which are Ethernet cards in the
illustrated embodiment) and the type A switches 58A, 58B respectively associated with
switches 50A, 50B.

[Para 57] System Administrator Communication Path. The system administrator

computer 34 communicates with the primary data storage system 28 and, more specifically,
the storage processor(s) in the primary data storage system 28 to define the manner in which
the data storage provided by the primary data storage system 28 can be utilized. The
communication path between the system administrator computer 34 and a storage processor
in the primary data storage system 28 is from the system administrator computer 34 to the
switch 40 and from the switch 40 to a network card. The network card and the storage
processor can be connected to one another via the switch in the primary data storage system
28 that services the network cards associated with the initiators.

[Para 58] In the illustrated embodiment, the system administrator computer 34
respectively communicates with the storage processors 46A, 46B via network cards 68A, 68B
and switches 50A, 50B.

[Para 539] It should be appreciated that the administrator computer 34 can also
communicate with the storage processors 46A, 46B via one or more paths that include the

first switch level 26, the initiator level 24, and the second switch level 30.

PRIMARY DATA STORAGE LEVEL COMMUNICATIONS

[Para 60] The primary data storage system 28 receives and processes two types of
communications. The first type of communications is administrator command packets related
communications. Administrator command packets are processed using a management stack.

The second type of communications is block command packets that relate to the writing of

-13-

WO 2013/070800 PCT/US2012/063989

data to a data store or the reading of data from a data store. Block command packets are
processed using an IO stack.

[Para 61] With reference to FIG. 2, the administrator command packets are processed
using a management stack 100. There is a management stack 100 associated with each
storage processor at the primary data storage system 28. The management stack 100 is
embodied in software that is executed by the storage processor. Generally, the management
stack 100 operates to receive an administrator command packet that relates to the primary
data storage system 28, processes the administrator command packet, and provides a reply
packet, if appropriate. The receiving, processing, and replying of an administrator command
packet by the management stack 100 involves interaction with other software elements and
hardware elements within the primary data storage system 28. Among the software elements
with which the management stack interacts are: an 10 stack and, if there is another storage
processor, a fail-over manager and a second management stack. An example of a hardware
element that interacts with the management stack 100 is a network card. In addition, the
management stack 100 operates to conduct communications with any other storage
processors at the primary data storage system 28.

[Para 62] With continuing reference to FIG. 2, the block command packets are
processed by an 10 stack 102. An IO stack 102 is associated with each storage processor at
the primary data storage system 28. Generally, the 10 stack 102 operates to receive a block
command packet that relates to the primary data storage system 28, processes the block
command packet, and provides a result packet if appropriate. The process of receiving,
processing, and replying of a block command packet by the 10 stack 102 involves interaction
with other software elements and hardware elements within the primary data storage system
28. Among the software elements with which the IO stack 102 interacts are: the management
stack 100 and, if there is another storage processor, the fail-over manager associated with the
other storage processor. An example of a hardware element that interacts with the 10 stack
102 is a network card.

[Para 63] The IO stack 102 also communicates with a fail-over manager 104. If there is
more than one storage processor at the primary data storage level 28, there is a fail-over
manager 104 associated with each storage processor. Generally, the fail-over manager 104
operates to: (a) initiate a request from the “home” storage processor (i.e., the storage
processor with which the fail-over manager is associated) to a “foreign” storage processor
(i.e., a storage processor other than the “home” storage processor) to transfer responsibility

for a logical unit number (LUN) or volume to the “foreign” storage processor and (b)

-14 -

WO 2013/070800 PCT/US2012/063989

facilitate the processing of a request from a “foreign” storage processor to transfer
responsibility for a volume to the “home™ storage processor. A LUN or volume is a unit of
storage within the data store(s) provided by the primary data storage system 28. A volume
typically is a portion of a data store but can be a portion of each of multiple data stores, a data

store, multiple data stores, or combinations thercof.

MANAGEMENT STACK

[Para 64] The management stack 100 operates to: (a) receive an administrator command
packet (b) communicate with the block processing stack to the extent necessary to process an
administrator command packet, and (c) transmit a reply packet directed to the administrator
computer 34 to the extent the processing of an administrator command packet requires a
reply. Examples of administrator command packets include packets that relate to the creation
of a LUN/volume within the primary data storage system 28, the assignment of Quality-of-
Service (QoS) goals for a LUN/volume, the association of a LUN/volume with an initiator,
the configuration of a network card (i.e., the assigning of an address to the Ethernet card so
that the card is available to one or more initiators), requesting of data/information on the
operation of a LUN/volume, the destruction of a LUN, and maintenance operations.

[Para 65] The management stack 100 conducts communications with the IO stack 102
that relate to a volume(s) for which the IO stack 102 is responsible. Among the
communications with the IO stack 102 are communications that involve the creation of a
volume, the assignment of QoS goals to a volume, the association of a volume with an
initiator, the configuration of an network card, the acquisition of data/information relating to
a volume or volumes for which the 10 stack 102 is responsible, and the destruction of a
volume.

[Para 66] The management stack 100 is also capable of communicating with a fail-over
manager 104 via the IO stack 102. For example, if an administrator wants to temporarily
disable the IO stack 102 to update the 10 stack 102 but does not want to disable one or more
of the volumes for which the IO stack 102 is responsible, an administrator command packet
can be issued to implement an administrator fail-over in which the management stack 100
communicates with the fail-over manager 104 via the 10 stack 102 to transfer responsibility
for the relevant volumes to another storage processor in the primary data storage system 28.

[Para 67] The management stack 100 is also capable of communicating with the
management stacks associated with other storage processors at the primary data storage

system 28 to facilitate coordination between the storage processors. For example, the

-15-

WO 2013/070800 PCT/US2012/063989

management stack 100 communicates volume creation/destruction, changes in QoS for a
volume, network card address changes, administrator identification and password changes,
and the like to the management stacks associated with other storage processors in the system.

[Para 68] The management stack 100 is comprised of: (a) an Ethernet hardware driver
108, a TCP/IP protocol processor 110, a Web protocol processor 112 and/or a Telnet protocol
processor 114, a JavaScript Object Notation (JSON) or Jason parser 116, a Filesystem in
Userspace (FUSE) 118, a management server 120, and a management database 122.

[Para 69] The Ethernet hardware driver 108 controls an Ethernet card so as to produce
the electrical signals needed to receive a message, such as an administrator command packet,
and transmit a message, such as reply packet. The TCP/IP protocol processor 110 at the TCP
level manages the reassembly (if needed) of two or more packets received by an Ethernet
card into the original message (e.g., an administrator command packet) and the disassembly
(if needed) of a message into two or more packets for transmission (e.g., a reply to an
administrator command).

[Para 70] The TCP/IP protocol processor 110 at the IP level assures the addressing of
packets associated with a message. With respect to received packets, the IP level confirms
that each of the received packets does, in fact, belong to the IP address associated with the
Ethernet card. With respect to packets that are to be transmitted, the IP level assures that the
each packet is appropriately addressed so that the packet gets to the desired destination. With
respect to a received message, the TCP level also recognizes the packet as requiring further
routing through the management stack 100, i.e., to the Web protocol processor 112 or Telnet
protocol processor 114. The TCP/IP protocol processor 110 also performs other processing
in accordance with the protocols, e.g., ordering packets, checksum etc.

[Para 71] The Web protocol processor 112 is used when the administrator computer 34
is employing a browser to interact with the management stack of the primary data storage
system 28. The Web protocol processor 112 includes a Hyper Text Transport Protocol (
HTTP) daemon that receives a message (e.g., an administrator command packet) and
processes the message by passing the message on to the JSON parser 116. Subsequently, the
daemon is informed by the JSON parser 116 of any reply to the message and passes the reply
(Web pages etc.) on up to the TCP/IP protocol processor 110 for further processing.

[Para 72] As an alternative to the Web protocol processor 112, a Telnet protocol
processor 114 can be utilized. The Telnet protocol processor 114 includes a daemon that
receives a message (e.g., an administrator command packet) and processes the message by

passing the message on to the JSON parser 116. Subsequently, the daemon is informed by

-16 -

WO 2013/070800 PCT/US2012/063989

the JSON parser 116 of any reply to the message and passes the reply on up to the TCP/IP
protocol processor 110 for further processing.

[Para 73] The JSON parser 116 serves as a translator between the Web protocol
processor 112 (and Telnet protocol processor 114 or most other similar types of protocol
processors) and the FUSE 118 and management server 120. More specifically, the JSON
parser 116 operates to translate between “Web language” and JSON language. Consequently,
the Jason parser 116 translates an administrator command packet received from the Web
protocol processor 112 into JSON language. Conversely, the Jason parser 116 translates a
reply to an administrator command from JSON language into Web language for passing back
up the management stack. The translation of “Web” language” into JSON language produces
a file call, i.e., a request relating to a particular file.

[Para 74] The FUSE 118 is a loadable kermnel module for Unix-like operating systems
that allows the creation of a file system in a userspace program. The FUSE 118 serves as an
application program interface (API) to the file system in the management server 120, a
portion of the userspace program. More specifically, the FUSE 118 operates to receive a file
call from the JSON parser 116, convey the file call to the management server 120, receive
any reply to the file call generated by the management server 120, and convey any reply to
the JSON parser 116 for further conveyance up the management stack. The context of the
file call indicates the file within the management server that is to be executed, e.g., a volume
creation or a volume destruction.

[Para 75] The management server 120 operates to: (a) receive a file call from the FUSE
118 that is representative of an administrator command embodied in an administrator
command packet, (b) execute the file that is the subject of the file call, and (c) communicate
the result of the executed file to the FUSE 118 for further conveyance up the management
stack, typically this results in the administrator computer 34 being provided with a new or
updated Web page with an update as to the status of the execution of the administrator
command, e.g., the command executed or the command failed to execute.

[Para 76] The file that is the subject of the file call can result in the management server
120 communicating with the 1O stack 102, the fail-over manager 104, the management
database 122, and/or another storage processor. For example, if the goal of the file to be
executed is the creation of a volume, in executing the file, the management server 120 will
communicate with the 10 stack 102, the fail-over manager 104, the management database
122, and other storage processors. As another example, if the goal of the file to be executed

is to provide the administrator computer 34 with statistics relating to a particular volume, in

-17 -

WO 2013/070800 PCT/US2012/063989

executing the relevant file, the management server 120 will communicate with the IO stack
102 to obtain the necessary statistics on the particular volume.

[Para 77] The management server 120, in addition to processing administrator command
packets that propagate down the management stack, also processes commands or requests for
information from management servers associated with other storage processors. For instance,
a “foreign” management server that is associated with a different storage processor than the
management server 120 may have processed an administrator command packet setting forth a
new administrator id/password. The foreign management server would update its
management database and forward a command to the management server 120 to update the
management database 122 with the new administrator id/password.

[Para 78] The management database 122 has three portions: (a) a local object portion to
which only the management server 120 can read/write, (b) a shared object portion to which
the management server 120 can read/write but can only be read by another management
server, and (c) a shared object to which the management server 120 can read/write and to
which another management server can read/write. An example of a shared object to which
the management server 120 can read/write but that can only be read by another management
server is information that is specific to the storage processor with which the management
server 120 is associated, e.g., CPU usage or CPU temperature. An example of a shared
object to which both the management server 120 and another management server can

read/write is an administrator id/password.

10 STACK.

[Para 79] FIG. 2 illustrates the 1O stack 102, i.e., a group of processes that are executed
by each storage processor associated with the primary storage level 28 in processing a block
command packet relating to a particular block of data or multiple blocks of contiguous data.

[Para 80] Generally, the 10 stack 102 is comprised of network protocol processors 130
(sometimes refered to as “network processors”) that conduct the processing needed to
conduct communications with other elements in a computer network according to various
network protocols and a filter stack 132 that process block commands so as to read data from

and write data to a data store associated with the primary data storage system 28.

Network Protocol Processors.

[Para 81] iSCSI. A SCSI block command can be conveyed to the primary data storage

system 28 over an Ethernet and according to Internet protocols, i.e., according to iSCSI

-18-

WO 2013/070800 PCT/US2012/063989

protocols. The SCSI block command is embedded in a block command packet that conforms
to the iSCSI protocols. In such a situation, the network protocol processors 130 includes the
Ethernet hardware driver 108, the TCP/IP protocol processor 110, and an iSCSI protocol
processor 140 for processing the block command packet with the SCSI block command.
Generally, the Ethernet hardware driver 108 and the TCP/IP protocol processor 110 operate
as previously described with respect to the management stack 100. In this instance, however,
the TCP layer of the TCP/IP protocol processor 110 recognizes that the received packet as a
block command packet and not an administrator command packet. Moreover, the TCP layer
recognizes the block command packet as having an iSCSI block command. As such, the
block command packet is routed by the TCP/IP protocol processor 110 to the iSCSI protocol
processor 140 for further processing. The iSCSI protocol processor 140 operates to assure
that the iSCSI portion of a received block command is in conformance with the iSCSI
standard. If the iSCSI portion of a block command packet is in conformance, the block
command is passed on to the filter stack 132. The Ethernet hardware driver 108, TCP/IP
protocol processor 110, iSCSI protocol processor 140, also process any result packet (i.c., a
packet that conveys the result of the execution of a SCSI block command or failure to execute
a SCSI block command) for forwarding to the initiator that originated the block command
packet.

[Para 82] FibreChannel. A SCSI block command can also be conveyed over a Fibre
Channel (FC) network and according to Fibre Channel protocols. The SCSI block command
is embedded in a block command packet that conforms to the FC protocol. In such a
situation, the network protocol processors 130 include a FC hardware driver 150 and a FC
protocol processor 152. The FC hardware driver 150 operates to control a Fibre Channel card
(which replaces the Ethernet card, e.g., Ethernet cards 44A-44D) so as to produce the
electrical signals needed to receive a block command packet that conforms to the FC
protocols and transmit a result packet to the initiator that originated a block command packet.
The FC protocol processor 152 (a) manages the reassembly (if needed) of two or more
packets received by a Fibre Channel card into the original block command packet and the
disassembly (if needed) of a result packet into two or more packets for transmission, and (b)
assures the addressing of packets associated with a received block command packet and
associated with a reply packet.

[Para 83] Fibre Channel over Ethernet (FCoE). A SCSI block command can also be

conveyed over an Ethernet and according to Fibre Channel protocols. The SCSI block

command is embedded in a block command packet that conforms to the Ethernet and FC

-19-

WO 2013/070800 PCT/US2012/063989

protocol. In such a situation, the network processors 130 include the Ethernet hardware
driver 108 and the FC protocol processor 152.

[Para 84] It should be appreciated that the primary data storage system 28 operates to
process block commands, i.e., commands that relate to the reading of a block data from or
writing of a block data to a storage medium. As such, the primary data storage system 28 can
be adapted to operate with block commands other that SCSI commands.

[Para 85] Further, the primary data storage system 28 can be adapted to process block
commands regardless of the type of network used to convey the block command to the
primary data storage system 28 or to transmit the reply to a block command from the primary
data storage system 28. As such, the primary data storage system 28 can be adapted to
operate with networks other than Ethernet and FC networks.

[Para 86] Moreover, the primary data storage system 28 can be adapted to operate on
block commands that are conveyed over a network according to protocols other than

Ethernet, TCP/IP or FC.

Filter Stack.

[Para 87] The filter stack 132 is comprised of a target driver filter 160, a group of
foreground filters 162, and a group of background filters 164. Associated with the filter stack
132 are a filter manager 166 and a statistics database 168. Operations that involve executing
or attempting to execute a SCSI block command flow “down” the stack, i.e. in the direction
going from the target driver filter 160 and toward the group of background filters 164. In
contrast, operations that involve generating or providing the result of the execution or
attempted execution of a SCSI block command flow “up” the stack. Consequently, a filter
involved in executing or attempting to execute a SCSI block command may also be involved
in generating or providing the result of the execution or attempted execution of the SCSI
block command.

[Para 88] Generally, the target driver filter 160 processes block command packet to
generate an input/output block (IOB) that is used by the other filters to store data/information
relating to the processing of a block command. As such, the IOB facilitates the
communication of data/information between filters. The IOB that is initially generated by the
target driver filter 160 flows down the filter stack 132 and is on occasion referred to as
command 1OB. After there is a result relating to a SCSI block command associated with an
(execution or failure to execute), the IOB flows up the stack and is on occasion referred to as

a result IOB. The target driver filter 160 also operates to generate a result packet from a

-20-

WO 2013/070800 PCT/US2012/063989

received result IOB and passes the result packet on up the stack to the network processors
130.

[Para 89] Generally, the group of foreground filters 162 process a command 10B to: (a)
causec whatever write/read related operation is required of a block command to occur and (b)
cause one or more tasks needed to accomplish the read/write operation to occur in a fashion
that endeavors to meet QoS goals. The foreground filters 162 also process a result IOB as
needed and provide the result IOB to the target driver filter 160.

[Para 90] Generally, the group of background filters 164 cause one or more tasks related
to administrator defined QoS goals to occur and that, if performed in the foreground process,
would significantly impact the ability to meet QoS goals.

[Para 91] Generally, the filter manager 166 operates to create (associate) the filter stack
132 with a volume (an identifiable unit of data storage), destroy (disassociate) a volume from
the filter stack 132, and cooperates with the fail-over manager 104 and/or management server
120 to implement various volume related functions (e.g., using the management server 120 to
inform “foreign” storage processors of the creation of a new volume).

[Para 92] The statistics database 168 receives statistical data relating to a volume from
one or more filters in the filter stack 132, stores the statistical data, consolidates statistical
data based upon data provided by a filter, stores calculated statistical data, and provides the
stored statistical data to one or more filters in the filter stack 132 and to the management
server 120.

[Para 93] Generally, the filter manager 166 operates to create (associate) the filter stack
132 with a volume (an identifiable unit of data storage), destroy (disassociate) a volume from
the filter stack 132, and cooperates with the fail-over manager 104 and/or management server
120 to implement various volume related functions (e.g., using the management server 120 to
inform “foreign” storage processors of the creation of a new volume). To elaborate with
respect to the creation of a volume, the filter manager 166 receives a message from the
Management Server 120 instructing filter manager 166 to create a new volume with a specific
filter stack configuration. The filter manager 166 instantiates the filters and places them in the
correct hierarchy based on the storage administrator request. For example, with respect to
FIG 2, the filter manager creates an instance of target driver 160 and 1O forward filter 270
and ensures that target driver 160 sends IOBs “down” the stack to the IO Forward filter 270.
Similarly, filter manager 166 creates, configures, and connects the rest of the filter stack 132.
To elaborate with respect to the deletion of a volume, the filter manager 166 unlinks the

connections and removes each of the filters in the stack.

-21-

WO 2013/070800 PCT/US2012/063989

[Para 94] Statistics Database. The statistics database 168 receives data from various

hardware and software elements within the system and provides data to many of the elements
within the system that use the data in making one or more decisions relating to a data storage
operation. Due to the extensive use of the statistics database 168 throughout the system, a
description of the database 168 is provided prior to the descriptions of the various 10 filters,
many of which make use of the database. Initially, it should be appreciated that the structure
of the statistics database 168 can vary based upon the hardware and software elements
present in the system. Further, the statistics database can store data that is derived from data
provided by a single element or from data provided by multiple elements. Consequently, the
statistics database 168 can be quite extensive.

[Para 95] With reference to FIG. 2A, an example of a portion of a statistics database 258
is described to facilitate the understanding of the use of the database 168 by various filters.
With respect to the example of a portion of the statistics database 258, it should be
appreciated that a portion of the database relates to hardware. In this case, the portion that
relates to hardware includes statistics relating to a CPU, a Solid-State Disk (SSD), and an
Ethernet card. A portion of the example of a portion of the statistics database 258 relates to
volume related data. In this case, the portion that relates to volume data includes statistics
directed to three different criticalities, a volume, and an initiator. With respect to both the
hardware and volume statistics, statistic relating to throughput, queue depth, latency, and use
count are provided. The use count with the “second” resolution corresponds to IOPS. The
use count with respect to resolutions of greater duration are IOPS scaled to the resolutions of
the greater duration. Additionally, with respect to each of throughput, queue depth, latency,
and use count, statistics are provided in terms of both reads and writes. Further, it should be
appreciated that the example of a portion of a statistics data includes current statistical data
and historical statistical data. The current statistical data has a resolution of “second.” The
historical statistical data has resolutions great than “second” and include resolutions of
“minute”, “hour”, and “day”. It should be appreciated that only one resolution of current
statistical data and one resolution of historical statistical data can be utilized, provided the
resolution associated with the historical statistical data is for a greater period of time than the
resolution associated with the current statistical data. It should also be appreciated that
resolutions other than those shown can be utilized. It should also be appreciated that a more
complete example of the statistics database would likely include statistical data relating to

additional volumes and additional hardware components (e.g. SAS, additional CPUs, etc).

-22-

WO 2013/070800 PCT/US2012/063989

[Para 96] Target Driver Filter. The operation of the target driver filter 160 is described

with respect to the processing of a type of block command packet, known as an iSCSI
encapsulation packet 180 (sometimes referred to as “command packet”) that includes a SCSI
command, to generate an IOB 182. To elaborate, the command packet 180 is a packet that
encapsulates a SCSI block command and other information, is received at one of the Ethernet
cards 44A-44D, and processed by the Ethernet hardware driver 108, TCP/IP protocol
processor 110, and iSCSI protocol processor 140 prior to being provided to the target driver
filter 160. It should be appreciated that the target driver filter 160 can be adapted to operate
with block commands other than SCSI block commands, networks other than the Ethernet,
and network protocols other than TCP/IP.

[Para 97] The IOB 182 is a data structure that stores data/information associated with
the processing of the SCSI block command. More specifically, the IOB 182 provides
multiple fields for holding data/information relating to the processing of the SCSI block
command. The target driver filter 160 builds the IOB 182 and populates certain fields of the
IOB with data/information from the command packet 180. The IOB 182 is then provided to
each of the other filters in the filter stack 132 that is involved in the executing or attempting
to execute the SCSI command (i.e., going down the stack). Each of these other filters can, if
needed, read data/information from one or more ficlds in the IOB 182 and, if nceded, write
data/information to one or more fields in the IOB 182. After the SCSI command is executed
(i.e., data is written to or read from a data store) or fails to execute, the IOB 182 is then
provided to each of the filters in the filter stack 132 that is involved in providing the result of
the of the processing of the SCSI command (i.e., going up the stack). Ultimately, the IOB
182 is provided to the target driver filter 160 which uses the IOB 182 to create an iSCSI
encapsulation packet that includes the result of the processing of the SCSI command, i.e., a
result packet. The result packet is then provided to the network processors 130 for additional
processing and transmission of the results packet towards the initiator that originated the
command packet.

[Para 98] iSCSI Encapsulation Packet with SCSI Command. The command packet
180 is comprised of an Ethernet ficld 184, an IP field 186, a TCP field 188, and an iSCSI
field 190. The iSCSI field 190 is, in turn, comprised of a basic header segment 192, an

additional header segment 194, a header digest 196, a data segment 198, and a data digest
200. The basic header segment is comprised of an Opcode field 202, a DataSegLen field
204, a LUN field 206, and a SCSI command data block 208. The data digest 200 includes a
data cyclic-redundancy-check (CRC) field 210.

-23.-

WO 2013/070800 PCT/US2012/063989

[Para 99] 10B. The IOB 182 is comprised of an Initiator ID field 220, a VolID field
222, a PageMode field 224, an LBA/PageNum field 226, a SectorCount/PageOffset field 228,
a Command field 230, an ErrorCode 232 ficld, an ErrorOffset field 234, a
NumberOfDataSegments field 236, DataSegmentVector field 238, a DataCRCVector field
240, a Layerld field 242, a QoS attributes field 244, a StorelD field 246, a StoreLBA field
248, an In Time Stamp field 250, an Issuer stack field 252, and an XtraContext field 254.
The QoS attributes field 244 is comprised of a criticality field 260A, AllowedStores field
260B, AllowedLatency 260C, Projectedlmpact 260D, and ImpactArray 260E. The Impact
Array 260E includes impacts for each of the physical components of the primary data storage
system (e.g., CPU, memory, SAS, SSD, and Ethernet) and the software components (e.g.,
volume, criticality, and initiator).It should be appreciated that the AllowedLatency 260C and
the InTimeStamp 250 are used in a “headroom” evaluation (i.e., an evaluation as to the
amount of time available to perform an operation) in such a way that as filters higher in the
stack consume time operating on an IOB, the filters lower in the stack have less “headroom”
to operate on the 10B.

[Para 100] After the target driver filter 160 receives the command packet 180, the target
driver filter 160 builds the IOB 182 and populates certain fields of the IOB 182 with values
from or derived from the command packet 180. It should be appreciated that a value
associated with a field is sometimes referred to simply by the field name.

[Para 101]Specifically, the target driver filter 160 uses data/information in the TCP field
188 of the command packet 180 to lookup the value in a TCP session table associated with an
earlier login phase for the Initiator ID field 220 of the IOB 182.

[Para 102]The target driver filter 160 uses data/information in the LUN field 206 of the
command packet 180 to derive a value for the VolID field 222 of the IOB 182, i.c., the
volume within the primary data storage system 28 to which the SCSI block command relates.
The value in the VolID field 220 reflects the priority (e.g., mission critical, business critical,
non-critical) that the administrator has associated with the data blocks that are associated with
volume.

[Para 103]If the value in the PageMode field 224 is not automatically established as
“off” when the IOB 182 is first established, the target driver filter 160 sets the value of the
PageMode field 224 to “off” to indicate that the IOB 182 initially relates to a block or blocks
of data within a volume and not to a block or blocks of data within a page, a larger unit of
memory than a block. Moreover, the “off” value in the PageMode field 224 also indicates
that the values established or to be established in the LBA/PageNum field 226 and

-24-

WO 2013/070800 PCT/US2012/063989

SectorCount/PageOffset field 228 are LBA and SectorCount values and not PageNum and
PageOffset values.

[Para 104]The target driver filter 160 uses data/information in the SCST Command Data
Block field 208 to populate the command field 230 with the SCSI command (e.g., a block
read command or a block write command), the LBA/PageNum field 226 with the address of
the first logical block address within the volume to which the SCSI command relates, and the
SectorCount/PageOffset field 228 with the number of sectors (or blocks) beginning at the
specified LBA to which the SCSI command relates. Sometimes a block read command is
referred to as a read block command. Similarly, sometimes a block write command is referred
to as a write block command.

[Para 105]If the values of the ErrorCode field 232 and ErrorOffset field 234 are not
automatically set to “null” or irrelevant values when the IOB 182 is first established, the
target driver filter 160 establishes such values in these fields. The ErrorCode field 232 holds
an error code value that is subsequently established by a filter in the filter stack 132 and
indicative of a type of error encountered in the processing of the SCSI command or in the
returning of the result of the processing of the SCSI command. The ErrorOffset 234 field
holds an offset value that further defines the type of error identified in the ErrorCode field
232.

[Para 106]If the SCSI command is a write command, the target driver filter 160 uses the
data segment field 198 to establish values in the NumberOfDataSegments field 236 and the
DataSegmentVector field 238. To elaborate, in the case of a write command, the target driver
filter 160 places the data (sometimes referred to as “write data™) in the Data Segment field
198 into memory (e.g., memory store S2A or 52B). In placing the data in the Data Segment
field 198 into memory, the data from the Data Segment field 198 may be broken into two or
more non-contiguous segments. The target driver filter 160 places the number of data
segments that are established in memory in the NumberOfDataSegments field 236 and the
address and length of each of the segments established in memory in the DataSegmentVector
field 238. If there is more than one segment established in memory, the target driver filter
160 calculates a cyclic redundancy check (CRC) or possibly another form of hash for each of
the segments and places each of the CRC values in the DataCRCVector field 240. If there is
only one segment established in memory (i.e., all of the data in the Data Segment field 198
was copied into a single segment in memory), the target driver filter 160 copies the value that
is in the Data CRC field 210 to the DataCRCVector ficld 240. It should be appreciated that a
data verification techniques other that CRC can be employed in place of CRC.

- 25

WO 2013/070800 PCT/US2012/063989

[Para 107]After the DataCRCVector ficld 240 has been populated, the target driver filter
160 calculates a CRC on the data in the Data Segment 198 and compares the calculated CRC
to the CRC value (if present) in the Data CRC field 210. If there is a difference between the
calculated CRC and the CRC in the field 210, then the data in the Data Segment 198 has
somehow been corrupted. In this case, the processing of the SCSI command is aborted and
the target driver filter 160 prepares a result packet indicating that the command failed to
execute. The result packet is passed on to the network processors 130 for processing and
transmission to the initiator.

[Para 108]If the SCSI command is a read command, the target driver filter 160 populates
the NumberOfDataSegments ficld 236, the DataSegmentVector field 238, and the
DataCRCVector fields with “null” or irrelevant values. When a filter that is capable of
satisfying the read, the filter will place the data (sometimes referred to as “read data™) into
memory (e.g., memory store 52A or 52B) and populates the NumberOfDataSegments field
236 and the DataSegmentVector field 238 with the count and address of the read data blocks
in memory.

[Para 109]If the values of the LayerID field 242, QoS Attributes field 244, StorelD field
246, StorcLBA field 248, IssuerStack field 252, and XtraContextStack field 254 are not
automatically set to “null” or irrelevant values when the IOB 182 is first established, the
target driver filter 160 establishes such values in these fields.

[Para 110]The target driver filter 160 places an “In” time in In Time Stamp field 250 that
reflects the point in time when or about when the target driver filter 160 passes the IOB 182
to the next filter in the filter stack 132.

[Para 111]The IssuerStack field 252 is used by a filter in the filter stack 132 that is
operating on a command IOB (i.e., when the flow of the IOB is down the filter stack 132) to
indicate that the filter needs to do additional processing when the result IOB is propagating
up the stack (i.e., when a result of the execution of the SCSI command or failure to execute
the SCSI is being prepared). The XtraContextStack ficld 254 is a field that a filter can use to
store additional context information when the filter has indicated in the IssuerStack field 252
that the filter needs to do additional processing when the IOB is propagating up the stack.
Because several filters can indicate a need to do additional processing when a result IOB is
propagating up the stack, the IssuerStack field 252 has a stack structure in which each filter
that needs to do additional processing “pushes” down an indication of the need to do
additional processing onto the “stack.” As a result IOB propagates up the stack, a filter that

“pushed” down an indication of a need to do additional processing “pops” off or removes the

-26-

WO 2013/070800 PCT/US2012/063989

indication from the IssuerStack ficld 252 after the additional processing of the IOB is
completed by the filter. The XtraContext Stack field 254 also has a push/pop structure that
functions in a substantially similar way to the IssuerStack field 252.

[Para 112]Once the building of the IOB 182 is complete and no errors were encountered
in the building of the IOB 182 that caused the processing of the SCSI command to be
aborted, the target driver filter 160 (a) communicates with the statistics database 168 so as to
cause a “pending IOB” statistic to be incremented, (b) populates the IssuerStack field 252 and
XtraContextStack 254 fields as needed.

[Para 113]Later, when a result IOB 182 is propagating up the filter stack 132 and reaches
the target driver filter 160, the current time is obtained, the “In” time stored in the In Time
Stamp field 250 is obtained, and the total latency associated with the processing of the IOB is
calculated, i.e., the elapsed time between when the “In” time value was obtained by the target
driver filter 160 and the when the current time was obtained. The target driver filter 160
updates initiator and volume tables in the statistics database 168 with the total latency value.
It should be appreciated that other tables or statistics in the statistics database 168 may also
be updated. Additionally, the target driver 160 builds the result packet and provides the
result packet to the network processors 130 for further processing and communication to the

initiator.

Foreground Filters

[Para 114|The foreground filters 162 include an I/O forward filter 270, a layer map filter
272, a quality-of-service (QoS) filter 274, statistics collection filter 276, a pattern de-
duplication filter 278, a dictionary de-duplication filter 280, and an I/O journal filter 282.

[Para 115]1/O Forward Filter. An initiator can send a command packet to the primary

data storage system 28 that relates to a volume for which the storage processor that initially
starts processing the IOB relating to the command packet is not responsible. The I/O forward
filter 270 operates to identify this situation and forward the IOB to the storage processor that
is responsible for the volume.

[Para 116]By way of background, when an administrator computer 34 communicates
with one of the storage processors 46A, 46B via the management stack 100 to request the
creation of a volume, the filter manager 166 associated with the storage processor creates the
volume and updates a volume ownership table to indicate that the particular storage processor
and no other storage processor in the primary data storage system 28 is responsible for the

volume. With reference to FIG. 4, an example of a volume ownership table 286 is illustrated.

-27-

WO 2013/070800 PCT/US2012/063989

Additionally, the filter manager 166 indicates to the fail-over manager 104 that the volume
ownership table has changed. In response, the fail-over manager 104 communicates that
there has been a change in the volume ownership table to the fail-over manager associated
with each of the other storage processors in the primary data storage system 28. There are a
number of other situations that cause a change in the volume ownership table and the change
to be communicated to the other fail-over managers. For instance, the destruction of a
volume causes such a change in a volume ownership table. Another situation that causes a
change in the volume ownership table is a fail-over, i.e., a situation in which the storage
processor that is responsible for a volume cannot adequately service the volume and
responsibility for the volume is transferred to another storage processor. In any event, the
volume ownership table identifies the volume(s) for which each storage processor in the
primary data storage system 28 is responsible.

[Para 117]The I/O forward filter 270 obtains the volume id to which the SCSI command
relates from the VolID field 222 of the command IOB and uses the volume id to determine,
using the volume ownership table, if the “home” storage processor (i.e., the storage processor
that is executing the I/0O forward filter) is the storage processor that is responsible for the
identified volume. If the volume is a volume for which the “home” storage processor is
responsible, the IOB is passed on to the layer map filter 272. If, however, the volume is not a
volume for which the “home” storage processor is responsible, the /0 forward filter 270
forwards the IOB to the I/O forward filter associated with the “foreign” storage processor that
the volume ownership table indicates is the “owner” storage processor of the volume. In the
illustrated embodiment, the forwarding of the IOB involves the use of the switches 50A, 50B.
When a result IOB subsequently reaches the I/O forward filter of the foreign/owner storage
processor, the result IOB is forwarded back to the 1/O forward filter 270 of the “home”
storage processor. The “home” storage processor passes the result back up the stack so that
the result can be placed in a result packet and sent to the originating initiator.

[Para 118]Layer Map Filter. By way of background, the primary data storage system

28 provides the ability to take a “snapshot” of a volume at a particular point in time. The
snapshot function is implemented using layers. The top layer of a layer stack is read-write
and associated with a particular volume. Lower layers in a layer stack are read only and can
be associated with multiple volumes. A particular volume can have several layers, each
created at a different point in time. Each layer, other than the original or “0” layer, has a
pointer that links the layer to the next most recently created layer for the volume. Each layer,

other than the “0” layer, identifies the blocks in the volume that have been written since the

-28-

WO 2013/070800 PCT/US2012/063989

creation of the prior layer. When a snapshot command is executed with respect to a volume,
a new layer is created for the volume, the new layer is assigned a unique layer id, a volume
information table is updated so that the layer id of the new layer is associated with a volume,
and a logical block address offset that is specified by an administrator is also associated with
the volume. The blocks identified in the new layer can be both written and read until such
time as an even newer layer is created. As such, the new layer is considered a read/write
layer. Relatedly, the creation of the new layer prevents the blocks identified in the prior layer
from being written. As such, the prior layer is considered a read-only layer. Because the
execution of the snapshot command creates a new layer that is a read/write layer and causes
the prior layer to transition from a read/write layer to a read-only layer, the prior layer is the
snapshot of the volume at the time of the creation of the new layer.

[Para 119]FIG. 5 is an example of a layer map 290 and an associated volume information
table 292. The layer map 290 identifies volumes A, B, C with volume A associated with one
initiator and volumes B and C associated with another initiator. Further, layers 1, 2, and 3
have been established with respect to volume A, with layer 3 being the newest layer relating
to volume A. Layers 4 and 1 have been established with respect to volume B. Layer 5 has
been established with respect to volume C. Layer 5 essentially represents the creation of
volume C. The creation of layer 3 caused the volume information table 292 to be updated to
reflect that the newest layer associated with volume A is layer 3. Further, the snapshot
command that caused the creation of layer 3 specified an LBA offset of zero, which is also
reflected in the volume information table 292. Lastly, the creation of layer 3 in response to
the snapshot command also created a snapshot of volume A that is reflected in layers 0, 1, 2
as of the time layer 3 was created. The creation of layer 4 caused the volume information
table 292 to be updated to show layer 4 as being the newest layer associated with volume B
and to reflect a specified LBA offset of zero. The creation of layer 4 also created a snapshot
of volume B that is reflected in layers 1 and 0, with layer 1 being shared with volume A. The
creation of layer 5 caused the volume information table 292 to be updated to indicate that
layer 5 is the newest layer associated with volume C and to show a specified LBA offset of
Zero.

[Para 120]The layer map filter 272 receives the IOB provided by the I/O forward filter
270 and processes the IOB to determine a layer id (LID) and a layer logical block address
(LLBA) for the related SCSI command. More specifically, the layer map filter 272 uses the
volume id specified in the VolID field 222 to index into the current volume information table

292 to determine the newest LID associated with the volume and LBA offset associated with

-29-

WO 2013/070800 PCT/US2012/063989

the volume. The layer map filter 272 populates the LayerID field 242 with the LID retrieved
from the volume information table. If the offset retrieved from the volume information table
is non-zero, the layer map filter 272 revises the LBA in the LBA/PageNum field 226 to
reflect the LLBA, which is the current LBA value plus/minus the retrieved offset value. The
layer map filter 272 uses the LID and LBA to index into a layer-store table (e.g., FIG. 8) and
retrieve the StoreID and StoreLBA values to populate the Storeld field 246 and StoreLBA
field 248 of the IOB.

[Para 121]Quality of Service (QoS) Filter. The quality-of-service (QoS) filter 274

generally provides predictable data storage performance to one or more initiators that utilize a
shared data storage system (i.e., the primary data storage system) with multiple volumes. The
desired performance of a particular volume (criticality) is established by the administrator
using the administrator computer 34 to communicate with the management stack 100. When
the administrator uses the administrator computer 34 to create a volume, the administrator
also uses the administrator computer 34 to associate a criticality with the volume. The
management stack 100 maintains a table/tables that identifies each of the initiators that the
primary data storage system 28 will service and the criticality associated with each of the
volumes that have been created. The “criticality” associated with a volume is reflected in
certain performance or quality of service goals. As such, a volume that has “highly critical”
criticality necessarily has relatively high performance goals. A volume with “non-critical”
criticality has relatively lower performance goals. The group of attributes that is used to
reflect performance goals of the primary data storage system 28 with respect to a volume
includes, allowed stores, latency, throughput, and input/out operations per second (IOPS).
An allowed store is a store that a volume is allowed to use during the processing, storing, or
retrieving of data for a command packet/IOB. Latency is a measure of the elapsed time
between when the filter stack 132 begins the processing of command packet/IOB and when
the filter stack 132 finishes preparing a reply packet/IOB. Throughput is a measure of the
number of bytes prepared for transfer (read/write) per unit of time within the filter stack 132
with respect to a volume. IOPS is a measure of the number of IOBs processed within the
filter stack 132 per unit of time with respect to a volume. The specification of a criticality for
a volume is embodied in a goal with respect to each of these attributes. It should be
appreciated that a greater number, lesser number, and/or different attributes may be
appropriate in certain situations. It should also be appreciated that two volumes with the

same criticality can have the same or different quality of service or performance goals.

-30-

WO 2013/070800 PCT/US2012/063989

[Para 122]It should be appreciated that the performance of a data store in the primary
data storage system 28 can also be characterized in terms of latency, throughput, and IOPS.
Further, this “store performance” of a data store is or may be relevant to whether the
performance goals with respect to a volume are being met. As such, the production of
statistics relating to the “store performance” of data stores in the primary data storage system
28 are produced and available for use in assessing performance with respect to a volume.
Further, other hardware and software in the primary data storage system 28 are also be
characterized and monitored for use in assessing performance with respect to a volume.

[Para 123]Generally, the QoS filter 274 operates to sort IOBs that are associated with
different volumes having different criticalities (i.e., different performance goals) so as to try
to meet the goals of each volume. More specifically, the QoS filter 274 receives an IOB from
the layer map filter 272 and processes the IOB to perform: (a) a first sort of the IOB
according to the volume 1D, i.e., according to the criticality associated with the volume, (b) a
second sort of the IOB according to the projected impact of the processing of the IOB on the
data storage system at the primary data storage system 28, the projected impact taking into
account certain metrics/statistics relating to the operation of the primary data storage system
28, and (c) a third sort of the IOB into an IOB execution stack based upon the criticality
associated with the volume identified in the IOB (first sort), the projected impact (second
sort), past usage of the primary data storage system 28 as reflected in certain
metrics/statistics, the current state of the primary data storage system 28 including the state of
cach of the stores, cach of the switches, each of the storage processors, and each of the
network cards (e.g., Ethernet, FC, or other network cards) as reflected in certain
metrics/statistics.

[Para 124|FIG. 6 is an example of the operation of the QoS filter 274 with respect to
three volumes, each with a different criticality. The first volume has a “mission critical”
criticality; the second volume has a “business critical” criticality that is less than “mission
critical” criticality; and a third volume has a “non-critical” criticality that is less than
“business critical” criticality. As such, there are different performance goals associated with
each of the volumes in terms of latency, throughput, and IOPS. Further, one or more of the
initiators 38A-38C is sending block command packets to the primary data storage system 28
that relate to the three volumes. FEach of the block command packets being processed to
generate an IOB, such as IOB 182.

[Para 125]The QoS filter 274 places each IOB that is received from the layer map filter
272 into first-in-first-out input queue 300. The QoS filter 274 processes each of the IOBs in

-31-

WO 2013/070800 PCT/US2012/063989

the queue 300 in the order that the IOB was received in the queue 300. The following
describes the further processing of the IOB 182 by the QoS filter 274.

[Para 126]The QoS filter 274 includes a group scheduler 302 that sorts IOBs according
to the criticality associated with the volume to which an IOB relates. To elaborate with
respect to IOB 182, the group scheduler 302 uses the volume id in the VolID field 222 as an
index into a volume information table (e.g. volume information table 292) that indicates the
criticality value associated with that volume. The QoS filter 274 places the criticality value
(e.g., a whole number in the range of 1-3) in the Criticality field 260A of the QoS attributes
field 244 of the IOB 182. As such, the IOB 182 now has an indication of the criticality of the
SCSI command associated with the IOB. Further, the QoS filter 274 uses the criticality value
to sort the TOB 182 into one of the three goal schedulers 304A-304C. In this example,
because there are three possible criticality values, there are three goal schedulers 304A-304C.
It should, however, be appreciated that there can be as few as two possible criticality values
and more than three possible criticality values. Further, there is a goal scheduler associated
with each possible criticality value. Similarly, the QoS filter 160 uses the volume id
specified in the VolID field 222 to index into the volume information table 292 to poplulate
the QoS attributes, AllowedStores 260B, and AllowedLatency 260C fields with the Allowed
Stores, and Allowed Latency values retrieved from the volume information table 292.
Consequently, the IOB 182 now has an indication of the stores that may be used to service
the IOB and the amount of time that can be used to service the IOB.

[Para 127]Each of the goal schedulers 304A-304C processes an IOB received from the
group schedule 302 to assess the IOB as to the projected impact of the execution of the SCSI
command. In this regard, each IOB is assessed as to whether execution of the SCSI
command is likely to primarily affect latency, throughput, or IOPS. The assessment takes
into account metrics/statistics obtained from the statistics database 168. These
metrics/statistics include volume related statistics. For example, statistics relating
specifically to the volume with which the IOB is associated, statistics relating to “criticality,”
i.e., statistics relating to a number of volumes that have the same “criticality”, and statistics
relating an initiator, i.e., statistics relating to a number of volumes associated with a specific
initiator can be used. The statistics can include any number of factors, including throughput,
queue depth, latency, and use count for these volume related statistics. However, currently it
is believed that at least latency statistics are needed. Further, these factors can further include
read and write related versions of each of throughput, queue depth, latency, and use count.

Moreover, these factors can include current and historical statistics. Current statistics being

-32-

WO 2013/070800 PCT/US2012/063989

those statistics associated with the shortest period of time (or shortest resolution) and
historical statistics being statistics associated with a greater period or periods of time relative
to the shortest period of time. See, example of a portion of a statistics database 258. The use
of statistics relating to “criticality” and/or historical statistics facilitates the identification of
imbalances and the like in the processing of IOB associated with volumes having the same
criticality. For example, if the processing of IOBS associated with one volume has placed
another volume with the same criticality increasingly behind its quality of service goals, the
statistical data provides a basis for identifying this issue and taking action to bring the lagging
volume back towards its quality of service goals.

[Para 128] The assessment results in the IOB being placed in one of a latency queue,
throughput queue, and IOPS queue associated with the goal scheduler. With reference to
FIG. 6, because there are three goal schedulers 304A-304C, there are three FIFO latency
queues 306A-C, three FIFO throughput queues 308A-308C, and three FIFO IOPS quecues
310A-310C. Further, the goal scheduler also stores the result of the assessment in the IOB
ProjectedImpact 260D field of the QoS Attributes 244. Consequently, the IOB 182 now has
an indication of the projected impact of the execution of the command associated with the
IOB, in addition to an indication of the criticality of the IOB provided by the group scheduler
302. It should be appreciated that it is also possible to change the order of the group
scheduler and the goal scheduler such that the goal scheduler occurs first and the group
scheduler occurs second.

[Para 129]With continuing reference to FIG. 6, the QoS filter 274 includes a shared
hardware scheduler 312 that assesses the IOBs that are the next in line to be processed in
each of the latency, throughput, and IOPS queues (the IOBs that are at the “bottom” of each
of the queues) to determine which IOB will be placed in or merged into an FIFO execution
queue 314, i.e., a queue that defines the order in which the IOBS received at the input queue
300 are to be executed. The assessment of each of the IOBs takes into account the criticality
and projected impact of the execution of the command associated with the IOB that is set
forth in the QoS attributes field of cach IOB and metrics/statistics obtained from the statistics
database 168. These statistics include hardware related statistics. For example, statistics
relating the CPU, Ethernet cards, and stores (e.g., SSD) can be employed. These factors can
include throughput, queue depth, latency, use count. Further, current and/or historical
versions and/or read and/or write versions of these factors can be used. It should be
appreciated that the comparison of the IOBs from the goal scheduler output queues to one

another are comparisons of different volumes that have different criticalities and different

-33-

WO 2013/070800 PCT/US2012/063989

quality of service goals (IOPs, throughput, and latency). For example, if the next selected
IOB is throughput related the shared hardware scheduler 312 will use information in the
statistics database 168 to determine a store that has available bandwidth to process the
command and send the IOB down the stack “tagged” with that store as the destination.

[Para 130]Once the shared hardware scheduler 312 makes a determination as to the next
IOB that is to be placed in the execution queue 314, the I0OB is “popped” off the queue with
which it is associated and the IOB that was behind the “popped” IOB takes the place of the
“popped” IOB of the queue. The shared hardware scheduler 312 makes its next assessment
with respect to the “new” IOB on the queue from which the IOB was “popped” and the “old”
IOBs that were associated with the other queues. For example, with respect to FIG. 6, at a
given point in time, each of IOBs 316A-3161 is the next in line to be “popped” from their
respective queues. The shared hardware scheduler 312 evaluates cach of these IOBs to
determine which one of IOBs 316A-3161 is the next to be placed in the execution queue 314.
If, for example, the shared hardware controller 312 decided that IOB 316A was the next to be
placed in the execution queue 314, the next evaluation by the shared hardware controller 312
would be with respect to IOBs 316B-316I and IOB 316J, which has taken the place of IOB
316A at the head of the IOPS queue 310A. Before an IOB is placed in the execution queue
314, the related IOB is updated so as to “push” an indication onto the IssuerStack field 252
that the QoS filter 274 needs to do additional processing on the IOB when the IOB is
propagating up the filter stack 132.

[Para 131]It should be appreciated that Fig. 6 shows a specific implementation of the
QoS filter 274. The QoS filter 274 is more generally characterized as producing a sum of
weighted factor values for an IOB that indicate or signify the rank of the IOB relative to other
IOBS being processed. In this regard, the factors can include the volume and hardware
related throughput, queue depth, latency, use count, the noted current-historical-read-write
versions thereof. The values for these factors are obtained from the IOB and the statistics
database. The weighted coefficients associated with each factor being dynamically adjustable
to reflect the changing priorities with respect to the volumes and hardware due to what is
typically a changing workload being placed on the system.

[Para 132]Later, when the IOB 182 is propagating up the filter stack 132 and reaches the
QoS filter 274, the QoS filter 274, informs the shared hardware scheduler 312 that the queues
should be re-evaluated.

[Para 133|The following Table 1 is a pseudo-code description of the operation of the
QoS filter 274.

-34-

WO 2013/070800 PCT/US2012/063989

[Para 134]|Table 1 - Pseudo code for Quality of Service
/***
**/

/* C- pseudo code for Quality of Service -(274)*/

/***

**/

QualityOfServiceEngine = 274
MaxCriticality=3
MaxProjectedImpact=3

/***************************/

main () {
Initialize ()

SharedHardwareSchedInitialize ()
GoalSchedInitialize ()

ContextStart (SharedHardwareSchedMain)
for (ACriticality = 0 ; ACriticality < MaxCriticality;
ACriticality ++) {
ContextStart (GoalSchedMain, ACriticality)
1
GroupSchedMain ()

}

/***
**/

/* C- pseudo code for Quality of Service (274) -- Group Scheduler -
302 */

/***

**/

/***************************/

GroupSchedMain () {
while (true) {
Iob = ReceivelIob ()
Criticality = GetCriticality(Iob.VolID)
Iob.QosAttributes.Criticality = Criticality
GoalSchedulerInsert (Criticality, Iob)
} /* while forever */

}

/***

**/
/* C- pseudo code for Quality of Service (274) -- Goal Scheduler -
304 */

/***

**/
GoalSchedulerInputQueue [MaxCriticality]

/***************************/

GoalSchedInitialize (GoalNumber) {

-35-

WO 2013/070800 PCT/US2012/063989

for (ACriticality = 0 ; ACriticality < MaxCriticality;
ACriticality ++) {
GoalSchedulerInputQueue[ACriticality].Initialize ()
}
}

/***************************/

GoalSchedulerInsert (Criticality, Iob) {
GoalSchedulerInputQueue[Criticality] .Append (Iob)
1

/***************************/

SourceI0OB=0
SourceVolumeSec=1
SourceVolumeMinute=2
SourceInitiatorSec=1
SourceInitiatorMinute=2
SourceCriticalitySec=3
SourceCriticalityMinute=4
SourceSystemSec=5
SourceSystemMinute=6
MaxSource=6

GoalSchedMain (MyCriticality) {

/* Used to choose an impact on a per Iob basis */
IOPsConst [MaxSource]

IOPsMultiplier[MaxSource]

LatencyConst [MaxSource]
LatencyMultiplier[MaxSource]

ThroughputConst [MaxSource]

ThroughputMultiplier [MaxSource]

/* Used to adjust the factors between Iob Processing */
IOPsAlpha[MaxSource]

IOPsBeta [MaxSource]

IOPsDelta[MaxSource]

IOPsGamma [MaxSource]

LatencyAlpha [MaxSource]
LatencyBeta [MaxSource]
LatencyDelta[MaxSource]
LatencyGamma [MaxSource]

ThroughputAlpha [MaxSource]
ThroughputBeta [MaxSource]
ThroughputDelta [MaxSource]
ThroughputGamma [MaxSource]

while (true) {
Iob = GoalSchedulerInputQueue[MyCriticality].GetFirst ()

VolumeStats = Stats.GetVolumeMetrics (Iob.VolID)

InitiatorStats = Stats.GetInitiatorMetrics (Iob.InitiatorID)
CriticalityStats = Stats.GetCriticalityMetrics (MyCriticality)

-36 -

WO 2013/070800 PCT/US2012/063989

/* Calculate a weighted sum related to */
/* a projection of the IOPs impact */
IOPsImpactWeight =
IOPsConst[SourcelIOB] + Iob.SectorCount *
IOPsMultiplier[SourceIOB] +
IOPsConst[SourceVolumeSec] + VolumeStats.IOPs[Sec] *
IOPsMultiplier[SourceVolumeSec] +
IOPsConst [SourceVolumeMinute] + VolumeStats.IOPs[Minute] *
IOPsMultiplier[SourceVolumeMinute] +
IOPsConst[SourceInitiatorSec] + InitiatorStats.IOPs[Sec] *
IOPsMultiplier[SourceInitiatorSec] +
IOPsConst [SourceVolumeMinute] + InitiatorStats.IOPs[Minute] *
IOPsMultiplier[SourceVolumeMinute] +
IOPsConst[SourceCriticalitySec] + CriticalityStats.IOPs([Sec] *
IOPsMultiplier[SourceCriticalitySec] +
IOPsConst[SourceCriticalityMinute] +
CriticalityStats.IOPs[Minute] *
IOPsMultiplier[SourceCriticalityMinute] +

/* Calculate a weighted sum related to */
/* a projection of the Latency impact */
LatencyImpactWeight =
IOPsConst [SourceIOB] + Iob.GetCurrentlatency () *
IOPsMultiplier[SourceIOB] +
LatencyConst[SourceIOB] + IoB.InTimeStamp *
LatencyMultiplier[SourceIOB] +
LatencyConst [SourceVolumeSec] + VolumeStats.Latency[Sec] *
LatencyMultiplier[SourceVolumeSec] +
LatencyConst [SourceVolumeMinute] +
VolumeStats.Latency[Minute] *
LatencyMultiplier[SourceVolumeMinute] +
LatencyConst[SourceInitiatorSec] + InitiatorStats.Latency[Sec]

LatencyMultiplier[SourcelInitiatorSec] +
LatencyConst [SourceVolumeMinute] +
InitiatorStats.Latency[Minute] *
LatencyMultiplier[SourceVolumeMinute] +
LatencyConst[SourceCriticalitySec] +
CriticalityStats.Latency[Sec] *
LatencyMultiplier[SourceCriticalitySec] +
LatencyConst[SourceCriticalityMinute] +
CriticalityStats.Latency[Minute] *
LatencyMultiplier[SourceCriticalityMinute] +

/* Calculate a weighted sum related to */
/* a projection of the Throughput impact */
ThroughputImpactWeight =
ThroughputConst [SourceIOB] + (IoB.SectorCount / 100) *
ThroughputMultiplier[SourceIOB] +
ThroughputConst [SourceVolumeSec] +
VolumeStats.Throughput[Sec] *
ThroughputMultiplier[SourceVolumeSec] +
ThroughputConst [SourceVolumeMinute] +
VolumeStats.Throughput [Minute] *
ThroughputMultiplier[SourceVolumeMinute] +

-37-

WO 2013/070800 PCT/US2012/063989

ThroughputConst [SourceInitiatorSec] +
InitiatorStats.Throughput[Sec] *
ThroughputMultiplier[SourceInitiatorSec] +
ThroughputConst [SourceVolumeMinute] +
InitiatorStats.Throughput [Minute] *
ThroughputMultiplier[SourceVolumeMinute] +
ThroughputConst [SourceCriticalitySec] +
CriticalityStats.Throughput[Sec] *
ThroughputMultiplier[SourceCriticalitySec] +
ThroughputConst [SourceCriticalityMinute] +
CriticalityStats.Throughput [Minute] *
ThroughputMultiplier[SourceCriticalityMinute] +

/* Adjust the coefficients for the next use of the weighted sum */
if (IOPsImpactWeight > MAX (LatencyImpactWeight,
ThroughputImpactWeight) {
Iob.AllowedStores |= SSD | MEMORY
ChosenImpact = IOPs
for (ASource = 0 ; ASource < MaxSource ; ASource ++) {
IOPsConst[ASource] = I0OPsConst[ASource] *
IOPsAlpha[ASource] + IOPsBeta[ASource];
IOPsMultiplier[ASource] = IOPsMultiplier[ASource] *
IOPsDelta[ASource] + IOPsGamma [ASource]

r

}
if (LatencyImpactWeight > MAX(IOPsImpactWeight,
ThroughputImpactWeight) {

Iob.AllowedStores |= SSD | MEMORY
ChosenImpact = Latency
for (ASource = 0 ; ASource < MaxSource ; ASource ++) {
LatencyConst [ASource] = LatencyConst[ASource] *
LatencyAlpha[ASource] + LatencyBetal[ASource]:
LatencyMultiplier[ASource] = LatencyMultiplier[ASource] *
]

r

LatencyDelta[ASource] + LatencyGamma[ASource

}
if (ThroughputImpactWeight > MAX(IOPsImpactWeight,

LatencyImpactWeight) {
Iob.AllowedStores |= SAS
ChosenImpact = Throughput
for (ASource = 0 ; ASource < MaxSource ; ASource ++) {
ThroughputConst [ASource] = ThroughputConst [ASource] *

ThroughputAlpha[ASource] + ThroughputBetal[ASource];
ThroughputMultiplier [ASource]=ThroughputMultiplier [ASource]*
ThroughputDelta[ASource] + ThroughputGamma[ASource];

Iob.UpdateQos (ChosenImpact, IOPsImpactWeight,
LatencyImpactWeight, ThroughputImpactWeight)
Stats.Update (Iob, ChosenImpact)

SharedHardwareSchedulerInsert (Criticality, ChosenImpact, Iob)

-38-

WO 2013/070800 PCT/US2012/063989

} /* while forever */

}

/***
**/

/* C- pseudo code for Quality of Service (274) -- Shared Hardware
Scheduler - 312 */
/***
**/
SharedHardwareSchedulerInputQueue [MaxCriticality] [MaxProjectedImpact
]

ImpactIOPs=0
ImpactlLatency=1
ImpactThroughput=2
MaxImpact=3

/***************************/

SharedHardwareSchedInitialize () {
for (ACriticality = 0 ; ACriticality < MaxCriticality;
ACriticality ++) {
for (AImpact = 0 ; AImpact < MaxProjectedImpact; AImpact ++) {

SharedHardwareSchedulerInputQueue [ACriticality] [AImpact].Initialize
)
}

}

/***************************/

SharedHardwareSchedulerInsert (Criticality, Impact, Iob) {
SharedHardwareSchedulerInputQueue[Criticality] [Impact] .Append (Iob)
1

/***************************/

SharedHardwareSchedMain () {
for (ACriticality in MissionCritical, BusinessCritical,
NonCritical) {
for (AImpact in IOPs, Throughput, Latency) {
for (AComponent in SAS, S$SSD, Memory, Ethernet) {
/* load the start values for the coefficients */
LoadCoefecientsArray (Coefecients, ACriticality, AlImpact,
Acomponent)
/* load the start values for the feedback */
LoadAdjustmentArray (Adjustment, ACriticality, AImpact,
Acomponent)
} /* for all components */
} /* for all impacts */
} /* for all criticalities */

while (true) {
DominateWeight = 0
DominateFactor = 0

BestCriticality = UnknownCriticality

-39.-

WO 2013/070800 PCT/US2012/063989

BestImpact = UnknownImpact
TimeNow = time ()

for (ACriticality in MissionCritical, BusinessCritical,
NonCritical) {
for (AImpact in IOPs, Throughput, Latency) {

PossibleIob =
SharedHardwareSchedulerInputQueue [ACriticality] [AImpact] .Peek ()

IobDominateImpact =
PossibleIob.GetQosAttributes (ChosenImpact)

WeightForIob = Possiblelob.GetDominateValue ()

/* Start the Weight based on what we already know about the
IOB */

ThisWeight = PossibleIob.GetQosAttributes (CurrentWeight) *
PossibleIob.GetLatency (TimeNow)

WeightForIob += ThisWeight

if (ThisWeight > DominateWeight) {
DominateWeight = ThisWeight
DominateFactor Latency
BestCriticality = ACriticality
BestImpact = Almpact

1

/* calculate a weighted sum related to */
/* statistics and metrics of the system and hardware */
for (AComponent in SAS, S$SSD, Memory, Ethernet) {
ComponentStats = Stats.GetMetrics (AComponent)
for (AResolution in Second, Minute, Hour, Day) {
ThisWeight =
Coefecients[ACriticality] [AComponent] [AResolution] *

PossibleIob.QosAttributes.Impact[IobDominateImpact] *
ComponentStats.GetHeadRoom (ACriticality,
PossibleIob, DominateImpact, AResolution)
WeightForIob += ThisWeight
if (ThisWeight > DominateWeight) {
DominateWeight = ThisWeight
DominateFactor AComponent
BestCriticality = ACriticality
BestImpact = AlImpact

}
} /* all resolutions */
} /* all components */
}
}

/* found the Iob that should be processed, remove it and send it
for processing */

Iob =
SharedHardwareSchedulerInputQueue[BestCriticality] [BestImpact].Pop ()

NextFilterProcess (Iob)

/* Adjust the coefficients for the next weighted sum calculation

*/

-40 -

WO 2013/070800 PCT/US2012/063989

for (ACriticality in MissionCritical, BusinessCritical,
NonCritical) {
for (AComponent in SAS, S$SSD, Memory, Ethernet) {
for (AResolution in Second, Minute, Hour, Day) {
if (ACriticality == BestCriticality) {
ACriticality[ACriticality] [AComponent] [AResolution] -=
Adjustment [ACriticality] [AComponent] [AResolution];
} else {
Coefecients[ACriticality] [AComponent] [AResolution] +=
Adjustment [ACriticality] [AComponent] [AResolution];
1
} /* all resolutions */
} /* for all components */
} /* while forever */

[Para 135]Statistics Filter. Generally, the statistics filter 276 operates to collect certain

initiator and volume related data/statistical information for each IOB passed to the statistics
filter 276 from the QoS filter 274 when the IOB is going down the filter stack 132. To
elaborate with respect to IOB 182, the statistics filter 276 processes the IOB 182 to obtain the
initiator id from the InitiatorID ficld 220, the volume id from the VolID field 222, the sector
count from the SectorCount/PageOffset field 228, and the “In” time stamp value from the In
Time Stamp field 250. The statistics filter 276 also obtains the current time from the
operating system. The statistics filter 276 uses the value of the “In” Time Stamp and the
current time to calculate the latency that the IOB has experienced between when the “In”
Time Stamp value was established in the target driver filter 160 and when the current time is
obtained by the statistics filter 276 (hereinafter referred to as “first latency”). The statistics
filter 276 communicates with the statistics database 168 so as to: (a) update a table for the
initiator that is maintained in the database to reflect that an IOB associated with the initiator
will be processed that has the sector size obtained from the IOB and that the IOB has
experienced the calculated first latency and (b) update a table for the volume that is
maintained in the database to reflect that an IOB associated with the volume will be
processed that has the sector size obtained from the IOB and that the IOB has experienced the
calculated first latency.

[Para 136]The statistic filter 276 also pushes an indication onto the IssuerStack field 252
of the IOB 182 that the statistics filter 276 needs to do additional processing when the IOB is
propagating up the filter stack 132. Further, the statistic filter 276 also pushes the current
time onto the XtraContextStack field 254.

[Para 137]Later, when the IOB 182 is propagating up the filter stack 132 and reaches the
statistics filter 276, the statistics filter 276 obtains the time from the XtraContextStack ficld

254 (which is no longer the current time), obtains the “new” current time, and calculates a

-41-

WO 2013/070800 PCT/US2012/063989

second latency, i.e., the clapsed time between when the time value was obtained that was
pushed onto the XtraContextStack field 254 and the IOB was propagating down the filter
stack 132 and the when the “new” current time was obtained. The statistics filter 276 updates
the initiator and volume tables in the statistics database 168 with the second latency value.
Further, the statistics filter 276 uses the values from the ImpactArray 260E to update the
statistics database 168. When updating the database it may be necessary to update multiple
rows of data, (e.g. when updating the CPU statistics it may be required to update the row for
Second, Minute, Hour, and Day).

[Para 138]Pattern De-Duplication Filter. Generally, the pattern de-duplication filter

278 operates to preserve storage capacity and reduce turn around time to the initiator at the
primary data storage system 28 by preventing a block(s) of identical data that are frequently
written to the primary data storage system 28 from being written multiple times with each
such writing of the block(s) of data consuming additional storage capacity and time. More
specifically, the pattern de-duplication filter 278 operates to identify a block(s) of data that
have a pattern which can be readily calculated. Characteristic of a pattern is that the values of
each byte of data in a block can be calculated. For example, if the values of the bytes of data
in a block represent a triangle wave with known characteristics (period, amplitude, phase,
sampling frequency etc.), the value of each of the bytes in the block is susceptible to
calculation. A pattern that can be “readily” calculated is a pattern that can be calculated or
retrieved and the IOB completely processed (i.e., a result packet is prepared) within the
latency associated with the volume. It should be appreciated that, for a given latency, the
number of patterns that can be readily calculated increases with increasing processing speed.

[Para 139]Initially, with respect to an IOB associated with a SCSI write-related
command, the pattern de-duplication filter 278 makes a “headroom” calculation to determine
if there is sufficient time available to perform the operations associated with pattern
deduplication, which includes the time needed to identify a calculation engine that may be
able to calculate a pattern associated with the write data and the time needed to determine if
there is a match between the write data and the data produced by the selected calculation
engine. In this regard, there needs to be sufficient time to conduct these operations within
whatever time remains in the allowed latency 260C.

[Para 140]Generally, the pattern de-duplication filter 278 assesses data in the first block
of data associated with each IOB having a SCSI write-related command to determine if a
known calculable pattern of data is present. If all of the data in the first data block has a

known calculable pattern, the pattern de-duplication filter 278 proceeds to assess the second

-42-

WO 2013/070800 PCT/US2012/063989

and any additional blocks of data associated with the IOB. If all of the data in all of the
blocks of data associated with the IOB have a known calculable pattern, there are two
possibilities.

[Para 141]First, if the current values in the StorelD field 246 and the StoreLBA field 248
of the IOB are not currently identified as being the values of the StoreID and the StoreLBA
associated with the pattern, the current values in the StoreID field 246 and StoreL.BA field
248 in the IOB are updated. The current values in the StoreID and StoreLBA fields were
established in the layer map filter 272. A portion of the application memory that is dedicated
to storing a particular pattern calculator is identified as a calculation engine 320. Although
only one calculation engine 320 is shown in FIG. 2, there is a calculation engine for each
pattern calculator. Because the current values in the StoreID field 246 and the StoreLBA
field 248 do not point to the calculation engine 320, the values in the StoreID field 246 and
the StoreLBA field 248 need to be updated to point to the calculation engine. Once the
values for StoreID field 246 and StoreLBA field 248 have been updated, the pattern de-
duplication filter 278 updates the command field 230 of the IOB so as to reflect that a de-dup
write needs to be done and passes the IOB down the filter stack 132.

[Para 142]Second, if the current values in the StoreID field 246 and the StoreL.BA field
248 of the IOB are currently identified as being the values of the StoreID and the StoreLBA
associated with the pattern, the values in the StoreID field 246 and StoreLBA ficld 248 in the
current IOB are not modified. The values in the StoreID and StoreLBA fields were
established in the layer map filter 272 and respectively point to the relevant calculation
engine for calculating the pattern. Because the pattern of the blocks of data has not changed
from the prior IOB with the same values in the Volld field 222 and the LBA/PageNum field
226, the pattern de-duplication filter 278 places a “success” code in the error code field 232
and causes the I0OB to start propagating up the filter stack 132, thereby indicating that the
SCSI write command of the IOB has been completed.

[Para 143]If the data in any block(s) of data associated with the IOB do not have a
known calculable pattern, the pattern de-duplication filter 278 determines the pattern de-
duplication is not possible and passes the IOB on to the dictionary de-duplication filter 280.

[Para 144]While the assessment of the first block of data associated with the IOB could
be done with respect to each known calculable pattern, the pattern de-duplication filter 278
avoids doing so by making an initial comparison of two bytes in a block of data and using the
result of the comparison for concluding that the data in the block: (a) potentially has one of

the known calculable patterns or (b) does not possess one of the known calculable patterns.

-43-

WO 2013/070800 PCT/US2012/063989

This two byte comparison is a form of a “hash” calculation. It should be appreciated that
methods other than the noted two byte comparison (a form of hash) can be applied (e.g. CRC
or hash) as long as the methods can make the determination within the latency constraint, i.c.,
the allowed latency set forth in volume information table 292. If the comparison indicates
that the data in the block potentially has one of the known calculable patterns, the pattern de-
duplication filter 278 proceeds to assess the data in the block to determine whether the data in
the block actually does have the identified, known calculable pattern.

[Para 145]More specifically, the pattern de-duplication filter 278 utilizes the pattern
calculator to calculate the value that a byte(s) of the pattern should have if present in the data
block and compare each such value to the actual value associated with the byte(s) in the data
block. Generally, it is desirable to utilize a calculator that is efficient, i.c., makes a
determination of whether or not the pattern is present in the data more quickly rather than less
quickly so as to make the determination within the latency constraint, i.e., the allowed latency
set forth in volume information table 292. Further, the comparison is done in the fastest data
store available, typically memory store 52A and 52B.

[Para 146]For example, if the pattern is a triangle wave and there is an even number of
cycles of the triangle wave in a block of data, a relatively efficient calculator for determining
if this wave pattern is present in a block would: (a) with respect to the potential first cycle of
the wave pattern in the block, use the pattern calculator to calculate a first value for the wave
pattern and compare that value to the two bytes in the data that should have the calculated
value if a first cycle of the triangle wave is present in the block and (b) repeat this calculation
and comparison to the values associated with different bytes in the data block until the
presence of the first cycle of a triangle wave in the data is either confirmed or disaffirmed. If
a first cycle of the triangle wave is not present, the pattern de-duplication filter 278 passes the
IOB on to the dictionary de-duplication filter 280. If the presence of a first cycle of the
triangle wave in the data is confirmed, the calculator proceeds to compare the data associated
with the first cycle of the triangle wave to the data in the block that might be the second cycle
of the triangle wave to either confirm or disaffirm the presence of the second cycle of the
triangle wave. If the second cycle of the triangle wave is not present, the pattern de-
duplication filter 278 passes the IOB on to the dictionary de-duplication filter 280. If the
presence of the second cycle of the triangle wave is confirmed, the calculator proceeds to
compare the data associated with the first and second cycles of the triangle wave to the data
in the block that might be the third and fourth cycles of the triangle wave. This process of

comparing groups of bytes that increase in number by a factor of two with each comparison

-44 -

WO 2013/070800 PCT/US2012/063989

continues until either the presence of the pattern in all of the blocks associated with IOB is
confirmed or disaffirmed.

[Para 147|Read De-Duplication Operation. Generally, the pattern de-duplication filter

278 operates on an IOB having a SCSI read-related command to determine if the data at the
identified volume id and LBA is data that has been previously de-duplicated in the processing
of an IOB with a SCSI write-related command. More specifically, the pattern de-duplication
filter 278 obtains the value in the StorelD field 246. If the value in the StoreID matches a
StoreID assigned to a calculator engine (e.g., engine 320), the pattern de-duplication filter
278 concludes that the read-related command in the IOB relates to pattern data that has been
de-duplicated. Further, the de-duplication filter 278 obtains the value in the StoreLBA field
248 to identify the vector into the calculator for calculating the particular pattern and uses the
calculator to create the block(s) of patterned data in the memory store (e.g., CPU bus memory
52A or CPU bus memory 52B), if the block(s) of patterned data do not already exist in the
memory store. The pattern de-duplication filter 278 then updates the value in the
DataSegmentVector field to point to the address in the memory store (e.g., CPU bus memory
52A or 52B) that has the copy of the calculated pattern. Further, the pattern de-duplication
filter 278 places a “success” code in the error field 232 and causes the IOB to start
propagating up the filter stack 132, thereby indicating that the SCSI read-related command of
the IOB has been completed. If the value in the StoreID does not match a StoreID assigned
to a calculator engine, the IOB is passed down the filter stack 132 for further processing.

[Para 148]The following Table 2 is a pseudo-code description of the pattern
deduplication filter 278.

[Para 149]Table 2 - Pseudo code for Pattern DeDup

/***

**/
/* C- pseudo code for Pattern DeDup (278) */

/***

**/

PatternDeDupEngine = 278
IdentifyingOffset = 14
IdentifyingValueA = 4
IdentifyingValueB] = 234

/***************************/

main() {
Initialize ()
while (true) {
Iob = ReceivelIob ()
if (ProcessIOB (Iob) == true) {

-45 -

WO 2013/070800 PCT/US2012/063989

ReturnResult (Iob, true)
} else {

NextFilterProcess (Iob)
}

} /* while forever */

}

/***************************/

boolean Initialize() {
for Engineldx = 0 ; Engineldx < 255; Engineldx ++ {

EngineRoutine[EngineIdx] = NULL
IdentifyingValue[EngineIdx] = 0
}
EngineRoutine[IdentifyingValueA] = ProcessWriteHitA
EngineRoutine[IdentifyingValueB] = ProcessWriteHitB

}

/***************************/

boolean ProcessIOB(Iob)

{

/* Execute the write determination processor */

if (Iob.command == Write) {
return (IOBWrite(Iob))
} else {
/* Execute the read determination processor */
if (Iob.command == Read) {
return (IOBRead (Iob))
} else {

/* not a Write or a Read, do not process it */
return (false)

}

/***************************/

boolean IOBWrite(Iob)
{
/* Execute the headroom processor to determine if the system has */
/* available resources to execute the */
/* pattern deduplication processor */

if (QOSHeadRoomProcessor (Iob.QosAttributes, MEMORY | CPU) == true)
{
/* Execute the hash processor */

EngineChoice = DetermineEngineCandidate (Iob)

if (EngineRoutine[EngineChoice] != NULL) {
return (EngineRoutine [EngineChoice] (Iob))
} else {

return (false)

}
} else {
return (false)

}

/***************************/

-46 -

WO 2013/070800 PCT/US2012/063989

number DetermineEngineCandidate(Iob)
{
FastValue =
Iob.DataSegmentVector[0] .Byte[IdentifyingOffset] -
Iob.DataSegmentVector[0] .Byte[IdentifyingOffset + 11)
return (FastValue)

}

/***************************/

boolean ProcessWriteHitA(Iob)
{
RegenerateContext.InitialVector =
Iob.DataSegmentVector[0] .Buffer[0] /* the all "ones", or "zeroes
Engine */
RegenerateContext.SequenceOffset = 0
RegenerateContext.bytenum = 0

/* Execute the compare processor for EngineA */
for dataseg in Iob.DataSegmentVector {
for bytenum = 0 ; bytenum < dataseg.Bytes ; bytenum ++ {
if (dataseg.Buffer[bytenum] != GenByteA(Iob.StorelBA,
RegenerateContext)) {
return (false)
}
RegenerateContext.bytenum ++
}
}
Iob.StorelID = CalcStoreEngineA
Iob.StorelBA = RegenerateContext.InitialVector
LayerMapSaveStoreInfo(Iob)
return (true)

}

/***************************/
number GenByteA(StorelBA, bytenum , RegenerateContext)
{

return(RegenerateContext.InitialVector)

}

/***************************/

boolean ProcessWriteHitB(Iob)

{
RegenerateContext.InitialVector = 73 /* sin phase */
RegenerateContext.SequenceOffset = 24 /* sin period */
RegenerateContext.bytenum = 0

/* Execute the compare processor for EngineB */
for dataseg in Iob.DataSegmentVector {
for bytenum = 0 ; bytenum < dataseg.Bytes ; bytenum ++ {
if (dataseg.Buffer[bytenum] != GenByteB(Iob.StorelBA,
RegenerateContext)) {
return (false)

}
RegenerateContext.bytenum ++

-47 -

WO 2013/070800 PCT/US2012/063989

1

Iob.StoreID = CalcStoreEngineB

Iob.StorelBA = RegenerateContext.InitialVector
LayerMapSaveStoreInfo(Iob)

return (true)

}

/***************************/
number GenByteB(StorelBA, bytenum , RegenerateContext)
{
return((sin(RegenerateContext.InitialVector, StorelBA)))

}

/***************************/

boolean IOBRead(Iob)

{
if (Iob.StorelID == CalcStoreEngineA) {

return (ProcessReadHitA(Iob))
} else {
if (Iob.StorelID == CalcStoreEngineB) {
return (ProcessReadHitB(Iob))
} else {
return (false)

}

/***************************/

boolean ProcessReadHitA(Iob, RegenerateContext)

{
RegenerateContext.InitialVector = 32
RegenerateContext.SequenceOffset = 12
RegenerateContext.bytenum = 0

/* Execute the data creation processor for EngineA */
for dataseg in Iob.DataSegmentVector {
for bytenum = 0 ; bytenum < dataseg.Bytes ; bytenum ++ {
dataseg.Buffer[bytenum] = GenByteA(Iob.StorelBA,
RegenerateContext)
RegenerateContext.bytenum ++
}

}

/***************************/

boolean ProcessReadHitB(Iob, RegenerateContext)

{
RegenerateContext.InitialVector = 73 /* sin phase */
RegenerateContext.SequenceOffset = 24 /* sin period */
RegenerateContext.bytenum = 0

/* Execute the data creation processor for EngineB */

for dataseg in Iob.DataSegmentVector {
for bytenum = 0 ; bytenum < dataseg.Bytes ; bytenum ++ {

-48 -

WO 2013/070800 PCT/US2012/063989

dataseg.Buffer[bytenum] = GenByteB(Iob.StorelBA,
RegenerateContext)
RegenerateContext.bytenum ++

}

[Para 150]Dictionary De-Duplication Filter. Generally, the dictionary de-duplication

filter 280 operates to preserve storage capacity and reduce turn around time to the initiator at
the primary data storage system 28 by preventing blocks of data associated with an IOB that
constitute a page (a predefined number of contiguous blocks of data) that are commonly
written to the primary data storage system 28 and do not have a readily calculable pattern
from being written multiple times such that each writing of the page consumes additional
storage capacity and time.

[Para 151]By way of background, the dictionary de-duplication filter 280 has access to a
dictionary table that is capable of holding a limited and predetermined number of entries.
Each non-null entry in the dictionary table relates to a page of data identified by an advanced
de-duplication filter, one of the background filters 164, as being one of the most common
pages of data being written to storage. More specifically, each non-null entry in the
dictionary table for a “dictionary” page has StoreID and StoreLBA values for a copy of a
“dictionary” page that is on a dictionary store 322. Because the dictionary de-duplication
filter 280 is one of the group of foreground filters and speed of execution is a priority in the
foreground, the dictionary store 322 that holds the copy of the “dictionary” page is typically a
high-speed store, like memory store 52A or memory store 52B. The entry in the dictionary
table also identifies a portion of data in the relevant “dictionary” page (e.g., the second 64-
bytes of data in the page) that is unique relative to all of the other non-null entries in the
dictionary table. While it is feasible to use different identifying portions of a “dictionary”
page for each entry (e.g., one entry has the first 64-bytes of a first “dictionary” page and
another entry has the second 64-bytes of a second “dictionary” page) as long as the data in
each of the portions is unique, the use of the same identifying portion of data from each of the
“dictionary” pages facilitates the assessment of whether the page associated with an IOB can
be de-duplicated. This is a form of hash, other forms of hash are also feasible.
Consequently, each non-null entry in the dictionary table relates to the same identifying
portion of a “dictionary” page (e.g., the second 64-bytes) as the other entries in the dictionary
table. Further, the data in the identifying portion relating to a single “dictionary” page is
unique relative to all the other non-null entries in the dictionary table. Because the most

commonly written pages can change over time and the dictionary table has a limited and

-49-

WO 2013/070800 PCT/US2012/063989

predetermined number of entries, the advanced de-duplication filter can change the entries in
the dictionary table. In this regard, a change to the table may require that a different
identifying portion of the pages to which the entries in the table relate be used to preserve the
uniqueness of each entry in the table. The identifying portion of each of the dictionary pages
that is unique is maintained by the advanced de-duplication filter and available to the
dictionary de-duplication filter 280. The advanced de-duplication filter also ensures that a
copy of each of the common pages that is identified in dictionary table is in the dictionary
store 322.

[Para 152]Initially, with respect to an IOB associated with a SCSI write-related
command, the dictionary de-duplication filter 280 makes a “headroom” calculation to
determine if there is sufficient time available to perform the operations associated with
dictionary deduplication, which includes the time needed to identify a dictionary entry that
may correspond to the write data and the time needed to determine if there is a match
between the write data and the data in the dictionary entry. In this regard, there needs to be
sufficient time to conduct these operations within whatever time remains in the allowed
latency 260C.

[Para 153]In processing an IOB with a write-related command that relates to a block(s)
of data, the dictionary de-duplication filter 280 determines if the write command relates to a
page. This determination is made by obtaining the sector count value in the
SectorCount/PageOffset field 228 in the IOB. If the value is not equal to the number of
blocks in a page, the dictionary de-duplication filter 280 passes the IOB on down the filter
stack 132. If, however, the value is equal to the number of blocks in a page, the dictionary
de-duplication filter 280 obtains the same portion of the page associated with the IOB that is
associated with the identifying portion in each entry in the dictionary table and compares this
portion of the page to each identifying portion in the dictionary table. If there is no match
(i.e., the IOB relates to a page that is not common enough to justify an entry in the dictionary
table), the dictionary de-duplication filter 280 passes the IOB on down the filter stack 132. If
there is a match, then there is a possibility that the page associated with the IOB is a match
with the “dictionary” page to which the entry in the dictionary table relates. To determine
whether there is such a match, the dictionary de-duplication filter 280 compares the page
associated with the IOB to the copy of the “dictionary” page that is located at the StoreID and
StoreLBA of the dictionary store 322 set forth in the dictionary table. The data associated
with the write IOB and the dictionary page are both in memory store 52A or 52B, the fastest

type of store in the illustrated system. As such, the comparison occurs more quickly than if

-50-

WO 2013/070800 PCT/US2012/063989

the comparison was done in some other store in the system. If there is no match, the
dictionary de-duplication filter 280 passes the IOB down the filter stack 132. If there is a
match, there are two possibilities.

[Para 154]First, if the current values in the StorelD field 246 and the StoreLBA field 248
of the IOB are not currently identified as being the values of the StoreID and the StoreLBA
associated with the copy of the “dictionary page” in the dictionary store 322, the current
values in the StorelD field 246 and StoreLBA field 248 in the IOB are updated. The current
values in the StoreID and StoreLBA fields were established in the layer map filter 272. Once
the values for StorelD field 246 and StoreLBA field 248 have been updated, the dictionary
de-duplication filter 280 updates the command field 230 of the IOB so as to reflect that a de-
dup write needs to be done and passes the IOB down the filter stack 132.

[Para 155]Second, if the current values in the StorelD field 246 and the StoreLBA field
248 of the IOB are currently identified as being the values of the StoreID and the StoreLBA
associated with the copy of the “dictionary page” in the dictionary store 322, the current
values in the StorelD field 246 and StoreLBA field 248 in the IOB are not updated. The
current values in the StoreID and StoreLBA fields were established in the layer map filter
272. The dictionary de-duplication filter 280 places a “success” code in the error field 232
and causes the I0OB to start propagating up the filter stack 132, thereby indicating that the
SCSI write command of the IOB has been completed. For example, the primary storage
system 28 has previously persisted the same data at the same layer and same Iba and therefore
does not need to make any changes due to this IOB.

[Para 156|Read De-Duplication Operation. Generally, the dictionary de-duplication

filter 280 operates on an IOB having a SCSI read-related command that need not relate to a
page to determine if the data associated with the identified volume id and LBA is data that
has been previously de-duplicated in the processing of an IOB with a SCSI write-related
command relating to the same volume id and LBA. More specifically, the dictionary de-
duplication filter 280 obtains the value in the StorelD field 246 and determines if the value is
currently associated with the dictionary store 322. If the value is currently associated with
the dictionary store 322, the dictionary de-duplication filter 280 then updates the value in the
DataSegmentVector field to point to the address in the memory store (¢.g., memory store 52A
or 52B) that has the copy of the dictionary page and, more specifically, to point the first block
of the page that has the first block to which the SCSI read command relates. Further, the
dictionary de-duplication filter 280 places a “success” code in the error field 232 and causes

the IOB to start propagating up the filter stack 132, thereby indicating that the SCSI read-

-51-

WO 2013/070800 PCT/US2012/063989

related command of the IOB has been completed. If the value in the StoreID field 246 is not
currently associated with the dictionary store 322, the IOB is passed down the filter stack 132
for further processing.

[Para 157]The following Table 3 is a pseudo-code description of the dictionary
deduplication filter 280.

[Para 158 Table 3 — Pscudo-code for Dictionary DeDup

/***

**/
/* C- pseudo code for Dictionary DeDup (280) */

/***

**/

MemoryStoreID = 52A
IdentifyingOffset = 0
DictionaryMax = 5
DictionaryActive = 0
DataBuffer[DictionaryMax] = 0, 0, 0, 0, O
StoreID[DictionaryMax] = 0, O, , ,
Storelba[DictionaryMax] = 0, 0, 0, 0, O
HitCount[DictionaryMax] 0, 0, 0, O

/***************************/

main() {
Initialize ()
while (true) {
Iob = ReceivelIob()
if (ProcessIOB (Iob) == true) {
ReturnResult (Iob, true)
} else {
NextFilterProcess (Iob)
}
} /* while forever */

}

/***************************/

boolean Initialize() {
TmpDataBuffer = ""
TmpStoreID = 0
TmpStorelba = 0
TmpHitCount = 0

for BufIdx = 0 ; BuflIdx < DictionaryMax ; BufIdx ++ {
LoadLastKnownMap (BufIdx, TmpStorelID, TmpStorelba, TmpHitCount

if (TmpStoreID > 0) {
StoreRead (TmpDataBuffer, TmpStoreID, TmpStorelba)
InsertBuffer (TmpDataBuffer, TmpStoreID, TmpStorelba,
TmpHitCount)
1
1

-52-

WO 2013/070800 PCT/US2012/063989

/***************************/
boolean InsertBuffer(NewDataBuffer, NewStoreID, NewStorelba,
NewHitCount) {

OffsetIsUnique = true
InsertSuccess = false

for TestOffset = 0 ; TestOffset < 512 ; TestOffset ++ {
OffsetIsUnique = true
for BufIdx = 0 ; BuflIdx < DictionaryMax ; BufIdx ++ {
if (DataBuffer[Bufldx] [TestOffset] ==
NewDataBuffer [TestOffset]) {
OffsetIsUnique = false
break;

1
if (OffsetIsUnique == true) {
/* buffer insert Found a uniq identifying offset */
if (DictionaryActive == DictionaryMax) {
/* need to replace */

/* find the best replacement location */

MinHit = -1
MinHitIdx = -1
for BufIdx = 0 ; BuflIdx < (DictionaryActive - 1) ; Bufldx ++

if (HitCount [BufIdx] < HitCount[Bufldx + 1]) {
MinHit = HitCount [BufIdx]
MinHitIdx = Bufldx

}

/* replacement index found */
memcpy (DataBuffer [MinHitIdx], NewDataBuffer)

StoreID[MinHitIdx] = NewStorelD

Storelba[MinHitIdx] = NewStorelba

HitCount [MinHitIdx] = NewHitCount
} else {

/* add at end of list*/
memcpy (DataBuffer[DictionaryActive], NewDataBuffer)

StoreID[DictionaryActive] = NewStorelD
Storelba[DictionaryActive] = NewStorelba
HitCount[DictionaryActive] = NewHitCount

DictionaryActive ++

}

IdentifyingOffset = TestOffset
InsertSuccess = true

break;

}

return (InsertSuccess)

}

/***************************/

boolean ProcessIOB(Iob)

-63-

WO 2013/070800 PCT/US2012/063989

{

/* Execute the write determination processor */

if (Iob.command == Write) {
return (IOBWrite(Iob))
} else {
/* Execute the read determination processor */
if (Iob.command == Read) {
return (IOBRead (Iob))
} else {

/* not a Write or a Read, do not process it */
return (false)

}

/***************************/

boolean IOBWrite(Iob)
{
/* Execute the headroom processor to determine if the system has */
/* available resources to execute the */
/* dictionary duplication processor */
if (QOSHeadRoomProcessor (Iob.QosAttributes, MEMORY | CPU) == true)
{
/* Execute the hash processor for Dictionay Deduplication */
PossibleBuffer = IsPossible(Iob.DataSegmentVector)
if (PossibleBuffer >= 0) {
/* Execute the compare processor for Dictionay Deduplication */
if (CmpBuffer(Iob, DataBuffer[PossibleBuffer]) == true) {
Iob.StoreID = StorelID[PossibleBuffer]
Iob.StorelBA = Storelba[PossibleBuffer]
HitCount [PossibleBuffer] ++
LayerMapSaveStoreInfo(Iob)
return (true)

}

return (false)

}

/***************************/
number IsPossible(DataSegmentVector)

{
for BufIdx = 0 ; BuflIdx < DictionaryActive ; Bufldx ++ {

if (DataSegmentVector[0].Buffer[IdentifyingOffset] ==
DataBuffer [BuflIdx] [IdentifyingOffset]) {
return (BufIdx)
1
1
return(-1)

}

/***************************/
boolean CmpBuffer (Iob, SourceDataBuffer)

{
DatBufByte = 0

-54 -

WO 2013/070800 PCT/US2012/063989

for dataseg in Iob.DataSegmentVector {
for bytenum = 0 ; bytenum < dataseg.Bytes ; bytenum ++ {
if (dataseg.Buffer[bytenum] != SourceDataBuffer[DatBufByte]) {
return (false)

}
DatBufByte ++

}

return (true)

}

/***************************/
boolean IOBRead(Iob)

{
for Bufldx = 0 ;
if ((Iob.StoreID == StoreID[Bufldx]) &&

StoreLBA[BufIdx])) {
CopyBuffer(Iob, DataBuffer[Bufldx])

HitCount [BufIdx] ++
return (true)

BufIdx < DictionaryActive ; BuflIdx ++ {
(ITob.StorelBA ==

}

return (false)

}

/***************************/

boolean CopyBuffer(Iob, SourceDataBuffer)

{
DatBufByte = 0

for dataseg in Iob.DataSegmentVector {
for bytenum = 0 ; bytenum < dataseg.Bytes ; bytenum ++ {
if (dataseg.Buffer[bytenum] != SourceDataBuffer[DatBufByte]) {
return (false)
1
DatBufByte ++
1
1

return (true)

}

/***************************/

boolean DictionaryDeDupUpdatelist (CandidateStorelD,

CandidateStorelba, CandidateHitCount) {
CandidateDataBuffer = ""

if (DictionaryActive < DictionaryMax) {
CandidateDataBuffer, CandidateStorelD,

StoreRead (
CandidateStorelba)
InsertBuffer (CandidateDataBuffer, CandidateStorelD,
CandidateStorelba, CandidateHitCount)
} else {
MinHit = -1
; BuflIdx ++ {

for BufIdx = 0 ; BuflIdx < (DictionaryActive - 1) ;

-65-

WO 2013/070800 PCT/US2012/063989

if (HitCount [BufIdx] < HitCount [BufIdx + 1]) {
MinHit = HitCount [BuflIdx]
MinHitIdx = Bufldx

}
if (MinHit < CandidateHitCount)
StoreRead (CandidateDataBuffer, CandidateStorelD,
CandidateStorelba)
InsertBuffer (CandidateDataBuffer, CandidateStorelD,
CandidateStorelba, CandidateHitCount)
}
}

[Para 159]1/O Journal Filter. Generally, the 1/0 journal filter 282 operates with respect

to IOBs in the execution queue 314 that have SCSI write-related commands (de-dup write
and write) that have not been fully addressed by an intervening filter to move the actual data
that is associated with the IOBs and currently resident in a non-redundant and/or non-
persistent data store or other information that allows the data to be reproduced to a redundant
and persistent data store (i.e., a journal store). Further, because the I/O journal filter is part of
the foreground filters 162, the 1/0 journal filter 282 endeavors to do so in a timely fashion.
Because the actual data associated with an IOB or other information that allows the actual
data associated with the IOB to be reproduced is moved to a redundant and persistent data
store, the I/O journal filter 282 also causes each such IOB to begin propagating up the filter
stack 132, thereby acknowledging completion of the write-related command. There are two
characteristics of the I/O journal filter 282 that each contribute to the timely processing. The
first characteristic is that each write to the redundant and persistent store is the writing of a
page, which is comprised of a large number of blocks. As such, for a given number of data
blocks, the writing of pages requires fewer writes relative to an approach in which there is a
separate write operation for each block. The second characteristic is that the writes are done
to locations in the redundant and persistent store that have increasing/decreasing addresses.
For example, a number of page writes could be done to locations 1, 5, 20, and 200 on the
store. This avoids the time overhead associated with writing to locations that are unordered
(e.g., locations 1, 200, 20, and 5).

[Para 160] With reference to FIG. 7, the I/O journal filter 282 in one embodiment
operates on a journal store that is implemented in a redundant fashion between the SSDs 54A,
54B, both of which also exhibit persistence. It should be appreciated that, while redundant
and persistent stores are commonly utilized, other types of stores that do not exhibit
redundancy or persistency can also be employed. Each of the SSDs 54A, 54B, has a copy of

a journal 340, a data storage space of known length or capacity that stores the data associated

-56 -

WO 2013/070800 PCT/US2012/063989

with the IOBs and related metadata. Redundancy is provided by each of the SSDs 54A, 54B
having a copy of the journal 340. For convenience, the operation of the I/O journal filter 282
is described with respect to a single copy of the journal 340, which may be referred as the
journal 340, with the understanding that changes to one copy of the journal are also made to
the other copy of the journal.

[Para 161]In the illustrated embodiment, the journal 340 has a data storage space of 640-
Gigabytes. The storage space is divided into a plurality of 2-Megabyte journal page (JP) 342.
Each journal page 342 has a journal page header 344 that identifies the journal page within
the journal 340. The remainder of a journal page is available to be populated with a plurality
of journal entries. A journal entry (JE) 346 is comprised of a journal entry header (JEH) 348
that stores metadata related to the journal entry and a journal entry data field 350 capable of
storing 4-kbytes of actual data associated with an IOB or other information that allows the
actual data associated with the IOB to be reproduced. The journal entry data field 350 is
further divided into 8 512-byte journal block 351.

[Para 162]The journal entry header 348 is populated with the value for the layer LBA
that is present in the LBA/PageNum field 226 of the IOB that provided the first 512-byte
block in the journal entry data field and the values in the LayerID, StorelD, and StoreLBA
fields of the same IOB. A one byte bit-mask is also present in the journal entry header 348
and is used to identify the 512-byte blocks that are in the journal entry data field 350. For
example, if the LBA is 20 and the bit-mask is set to “10001000”, LBAs 20 and 24 are present
in the journal entry data field 350.

[Para 163] Associated with the journal 340 is a journal table that maps the values in the
LayerID and LayerLBA fields of the IOB or journal entry header 348 to a particular journal
page and journal entry. With reference to FIG. 7, an example of a journal table 352 is
illustrated.

[Para 164] With the foregoing background in mind, the I/O journal filter 282 identifies
IOBs in the execution queue 314 that have pending SCSI write-related commands (de-dup
write and write), i.e., SCSI write-related commands that have not been fully addressed by an
intervening filter. The /O journal filter 282 also identifies the currently active journal page
and journal entry, i.e., the location in the journal 340 that is to be next in line to be populated
with write-related data. For example, the currently active journal page could be journal page
number “20” and the currently active journal entry could be journal entry “7”. The currently

active journal entry either has no data in the journal entry data field or there is data in at least

-57-

WO 2013/070800 PCT/US2012/063989

the first 512-byte journal block and one or more of the immediately following 512-byte
journal blocks but not in all of the 512-byte journal blocks.

[Para 165]A “working” copy of the currently active journal page is located in the
application memory of a storage processor. With respect to the “working” copy of the
currently active journal page, the I/O journal filter 282 further determines if the first 512-byte
block of the current journal entry has been written. If this is not the case, the I/O journal
filter 282 writes the next 512-byte block associated with an IOB into the first 512-byte block
of the journal entry data field. If the IOB includes additional 512-byte blocks, these
additional blocks (up to seven blocks) are also sequentially written into the current journal
entry data field of the working copy. The /O journal filter 282 also writes the values from
the LayerID field 242, LBA/PageNum field 226, StorelD field 246, and StoreLBA field 248
into the journal entry header and sets the value in the bit-mask of the journal entry header to
reflect the blocks that have been or will be loaded into the journal entry data field. For
example, if the IOB includes five blocks of data, the I/O journal filter 282 would write the
first of the five blocks of data into the first block of the journal data entry field and the other
four blocks into the immediately following four blocks of the journal data entry field and
establish the journal header data based on the first block of data moved into the journal data
entry. In this example, the bit-mask would be set to “11111000”.

[Para 166]If the first 512-byte block of the currently active journal entry has been
written, the 1/O journal filter 282 uses the value of the layer ID in the journal entry header,
the value of the LBA in the journal entry header, and the bit-mask in the journal entry header
to determine the values for the LayerID and the layer LBA that should go in the next
available 512-byte block of the journal entry data field. For instance, if the first block in the
journal entry data field contained data relating to a layer id of 0 and a layer LBA of 20 and
the next available block was the second block in the journal entry data field, the I/O journal
filter 282 would conclude that the block of data for layer id 0 and layer LBA 21 should go in
the second block in the journal entry data field. The calculated values for the layer id and
layer LBA are compared to the actual layer id and layer LBA values associated with next
block of data associated with the IOB. If there is a match, the next block of data associated
with the IOB is written into the next available 512-byte block of the journal entry data field
and the bit-mask is appropriately updated. To continue with the example, if the 512-byte
block of the IOB journal had a layer id of 0 and layer LBA of 21, the I/O journal filter 282
establishes the 512-byte block of the IOB in the second 512-block of the journal entry data

field. If there is not a match and the currently active journal entry is not the last journal entry

-58-

WO 2013/070800 PCT/US2012/063989

for the currently active journal page, the currently active journal entry is incremented and the
512-byte block associated with the IOB is written in the first block of the new active journal
entry. If there is not a match and the currently active journal entry is the last journal entry for
the currently active page (i.e., the working copy of the currently active journal page is
finished), the working copy of the active journal page is written to the actual journal 340 in
the redundant and persistent store and a working copy of the next journal page is established
in application memory.

[Para 167]If any write IOB has consumed, released, or modified a JE, the I/O journal
filter 282 will update the journal table 352. Specifically, the I/O journal filter 282 obtains the
value from the LayerID field 242 and the layer LBA value from the LBA/PageNum field 226.
The I/O journal filter 282 determines if there is an entry in the journal table (e.g., journal
table 352) that has the layer id and the layer LBA. If there is such an entry, the I/O journal
filter 282 updates the journal page and journal entry fields with the currently active journal
page and currently active journal entry. If there is not an entry, the I/O journal filter 282
creates and entry in the table and enters the layer ID, layer LBA, journal page, and journal
entry values.

[Para 168]Generally, the I/O journal filter 282 operates with respect to IOBs in the
execution queue 314 that have SCSI read-related commands (read) that have not been fully
addressed by an intervening filter. More specifically, the I/O journal filter 282 obtains the
value from the LayerID field 242 and the layer LBA value from the LBA/PageNum field 226.
The I/O journal filter 282 determines if there is an entry in the journal table (e.g. journal table
352) that has the layer id and the layer LBA. If there is such an entry, the block(s) of data
that are the subject of the read command are located in the journal at the journal page and
journal entry specified for the entry in the journal table that has the noted layer id and layer
LBA. The I/O journal 282 proceeds to the specified journal entry, retrieves the LBA from the
journal entry header, determines the difference between the requested layer LBA and the
journal entry LBA to identify which of the 512-byte journal block(s) needs to be read. The
I/0 journal 282 causes the relevant block(s) to then be read into memory store (e.g., memory
store 52A or 52B) updates the DataSegmentVector field 240 to point to the location in
memory store that contains the read blocks. The I/O journal filter 282 places a “success”
code in the error field 232 of the IOB and causes the IOB to start propagating up the filter
stack 132, thereby indicating that the SCSI read command of the IOB has been completed. If
there is no entry in the journal table for the specified layer id and layer LBA, the block(s) that

-59-

WO 2013/070800 PCT/US2012/063989

are the subject of the SCSI read-related command are not in the journal 340. In this case, the
I/O journal filter 282 passes the IOB on down the filter stack 132.

[Para 169]While the operation of the I/O journal filter 282 has been described with
respect to 512-byte blocks and 2-megabyte pages, it should be appreciated that different
block sizes can be employed in an effort to match the characteristics of the data to the
characteristics of one of the stores among a group of stores in a data store system, the stores
having different characteristics from one another. For example, the sizes of the blocks, data

journal entry fields, and journal page can each be varied to achieve this goal.

Background Filters

[Para 170]Generally, the group of background filters 164 operates to place data on a data
store with performance characteristics that are commensurate with the use of the data. For
example, if a particular unit of data is frequently read and/or written, the group of background
filters endeavor to place such data on a store with a high-performance characteristics (e.g.,
low latency, high throughput, and high IOPS). Conversely, if a particular unit of data is
infrequently read and/or written, the group of background filters endeavor to place such data
on a store with lower relative performance characteristics. Moreover, to the extent that
placing a unit of data requires moving the data from one store to another store, the group of
background filters 164 operates to move the unit of data in a manner that is speedy, conserves
storage capacity, and has a relatively small impact on the processing of IOBs directly related
to an initiator. The group of background filters operate at the lowest criticality within the
primary data storage system 28 or with an allowed latency that is significantly greater than
the latency allowed in the foreground filters.

[Para 171]The background filters 164 operate in two contexts. The first context involves
the potential writing of data that is on one store to another store. In the background filters
164, such potential movements are accomplished using a super IOB that has a write-related
SCSI block command and facilitates communications between the filters. A super IOB is
identical in form to IOB 182, except that the value of the PageMode field 224 is set to “on”,
which means that the values in the LBA/PageNum field 226 and the SectorCount/PageOffset
field 228 now relate to pages and not blocks. The second context involves the processing of
an IOB that has a SCSI read-related command that has not yet been fully addressed by any of
the filters in the filter stack 132 that have previously processed the T1OB.

[Para 172]Operation of the background filters 164 with respect to operations that involve
a super IOB is invoked by the /O journal filter 282 indicating that a portion of the journal

-60 -

WO 2013/070800 PCT/US2012/063989

340 is “dirty”, i.e., has not been processed to determine whether data in the journal should be
moved to a different store. The actual percentage of the journal that is “dirty” is compared to
a predetermined threshold value. If the actual percentage is less than the threshold
percentage, operation of the background filters 164 is not invoked with respect to super [OBs.
If the actual percentage of the journal that is “dirty” has a triggering relationship with respect
to the threshold percentage (equals or exceeds, or only exceeds), operation of the background
filters 164 is invoked for super IOBs. With respect to operations that involve an IOB with a
SCSI read-related command, the presence of the IOB in the execution queue 314 is detected
and the operation of the background filters 164 is invoked.

[Para 173]The background filters 164 include a destage filter 370, advanced
deduplication filter 372, page pool filter 374, store converter filter 376, and store statistics
collection filter 378.

[Para 174]De-Stage Filter. Generally, the destage filter 370 operates to move data

between tiers of data stores with different characteristics and move the data so that the
characteristics of the data reflect the characteristics of the store. In this regard, when the
destage filter 370 is invoked because the percentage of the journal that is “dirty” has met
some criteria, the destage filter 370 operates to determine if one or more pages of contiguous
data blocks can be assembled from data blocks that typically are scattered throughout the
journal. The destage filter 370 also makes a determination as to what should happen to any
data blocks that cannot be assembled into a page.

[Para 175]If such a page can be assembled, the destage filter 370 genecrates a super IOB
and passes the super IOB down the filter stack 132. The destage filter 370 further assesses
whether each of the blocks that formed the page should, in addition to being the subject of the
super 10B that will ultimately result in the blocks being written to another store, be persisted
in the journal (i.e., whether a block is being read frequently enough to justify leaving the
block in the journal). If two or more blocks are to be persisted in the journal, the destage
filter 370 further assesses whether these blocks should remain in their current locations in the
journal or be “compacted”, i.e., consolidated into one or more consecutive journal entries. It
should be appreciated that data for any specific layer and layer LBA may persist in multiple
stores or tiers simultaneously.

[Para 176] With respect to a data block or blocks that are in the journal and that cannot be
assembled into a page, the destage filter 370 operates to assess whether each such block has
been resident in the journal for a period of time that exceeds a predefined threshold. If the

threshold is exceeded, the destage filter 370 generates an IOB (not a super IOB) for the data

-61-

WO 2013/070800 PCT/US2012/063989

block or group of contiguous blocks that is less than a page and passes the IOB down the
filter stack 132. Further, the destage filter 370 assesses whether the block(s) should be
persisted in the journal (i.e., whether the block(s) is being read frequently enough to justify
leaving the block in the journal). If two or more blocks are to be persisted in the journal, the
destage filter 370 further assesses whether the blocks should remain in their current locations
in the journal or be “compacted”, i.c., consolidated into one or more consecutive journal
entries. If the threshold is not exceeded, the destage filter 370 assesses whether the two or
more blocks of data that are logically contiguous blocks that are separated from one another
in journal but can be compacted into a single journal entry or journal page. If not, the blocks
remain in their current locations in the journal.

[Para 177] With the foregoing background in mind, the destage filter 370 determines if a
page(s) can be assembled from the data blocks currently residing in the journal 340. In this
regard, the destage filter 370 makes a working copy of the current journal table (e.g. journal
table 352) and sorts the entries in the copy of the journal table by layer id and layer LBA.
The destage filter 370 analyzes the sorted journal table and, if necessary, the bit-masks in the
headers of one or more journal entry headers 348 to determine if there is a layer with enough
consecutive layer LBAs of the data block size to equal a page. For example, if the block size
is 512-bytes and the page size is 2-megabytes, 4096 consecutive blocks of data are required
to assemble a page. If there are enough consecutive blocks of data to assemble a page, the
destage filter 370 assembles a working page in a memory store (memory store 52A or 52B).
A super [IOB is generated and the IOB is passed down the filter stack 132.

[Para 178] After the destage filter 370 assembles a page, the destage filter 370 builds a
super 10OB 182 and populates certain fields of the IOB 182 with values from or derived from
the journal 340. Specifically, the destage filter 370 sets the command field 230 to block write
command. If the data is a full page, then the destage filter 370 sets the PageMode field 224
of the IOB 182 as “on” to indicate that the IOB 182 initially relates to a page and not a block
or blocks of data. Moreover, the “on” value in the PageMode field 224 also indicates that the
values established or to be established in the LBA/PageNum field 226 and Sector
Count/PageOffset field 228 are PageNum and PageOffset values and not LBA and
SectorCount values. The destage filter 370 uses data in the journal entry headers 348 to
populate the LBA/PageNum field 226, Count/PageOffset field 228, LayerID field 242,
StorelID field 246, and StoreLBA field 248. The destage filter 370 uses data in the journal
entry headers 348 to establish values in the NumberOfDataSegments field 236 and the
DataSegmentVector field 238. To elaborate, the destage filter 370 places the data from the

-62-

WO 2013/070800 PCT/US2012/063989

journal blocks 351 into the memory store (e.g., memory store 52A or 52B). The destage filter
370 places the number of data segments that are established in the memory store into the
NumberOfDataSegments field 236 and the address and length of each of the segments
established in the memory into the DataSegmentVector field 238. The destage filter 370
calculates a cyclic redundancy check (CRC) for each of the segments and places each of the
CRC values in the DataCRCVector field 240. It should be appreciated that a data verification
techniques other that CRC can be employed in place of CRC. The value of the QoS
Attributes field 244 is set to 0 or “lowest priority”. If the values of the InitiatorID field 220,
VolID field 222 ErrorCode field 232, ErrorOffset field 234, , IssuerStack ficld 252, and
XtraContextStack field 254 are not automatically set to “null” or irrelevant values when the
TOB 182 is first established, the destage filter 370 establishes such values in these fields.

[Para 179]The destage filter 370 also pushes an indication onto the IssuerStack field 252
of the IOB 182 that the destage filter 370 needs to do additional processing when the IOB is
propagating up the filter stack 132.

[Para 180] The destage filter 370 also updates a cache entry (CE) in a cache table for each
journal entry that contributed one or more blocks to the page to indicate that the data
associated with the journal entry is being destaged, i.c., is now the subject of a super IOB that
will result in the data being written to a different data store. More specifically, a state bit
mask in the CE is updated to indicate that the data associated with the journal entry is being
destaged.

[Para 181]With respect to each of the data blocks that formed a page that is to be
destaged, the destage filter 370 makes a determination of whether or not to persist the data
block on the journal 340. In this regard, the destage filter 370 obtains statistical data from the
statistics database 168 for the layer ID and layer LBA associated with the block. If the
statistical data indicates that the data block is not being frequently read, the destage filter 370
removes the entry for the layer ID and layer LBA in the journal table (e.g., journal table 352)
and updates the state bit mask in the related CE to indicate that the data block has been
evicted from the journal 340. This effectively frees up the JE for the data block for use by the
I/O journal filter 282. If the statistical data indicates that the data block is being frequently
read, the destage filter 370 makes a determination as to whether to leave the data block in its
current location or compact the data block with other data blocks that are being persisted. To
make this determination, the destage filter 370 assesses whether the journal page that contains
the data block is sparsely populated or not. If the journal page is sparsely populated and there

is at least one other data block associated with another sparsely populated journal page, the

-63-

WO 2013/070800 PCT/US2012/063989

destage filter 370 compacts the two data blocks into one journal page, thereby freeing up one
journal page for use by the I/O journal filter 282. If the journal page is not sparsely
populated, the data block is allowed to remain in its current location in the journal 340.

[Para 182]If the destage filter 370 determines that: (a) a page could not be assembled
from the data blocks resident in the journal 340 when the destage filter 370 began processing
the journal 340 (“unpageable data blocks™) or (b) the journal had data blocks that could be
assembled into a page (“pageable data blocks”) and unpageable data blocks, the destage filter
370 processes each of the unpageable data blocks in the journal to assess how long the data
block has been resident in the journal 340. In this regard, the destage filter 370 obtains the
current time, obtains the “write” time from a time stamp field in the CE for the layer ID and
the layer LBA that relates to the data block to determine when the data block was written into
the journal 340, and determines the difference between the current time and the “write” time.

[Para 183]If the time difference exceeds a threshold, the destage filter 370 creates an
IOB (not a super IOB) for the data block and any contiguous data blocks in a similar fashion
to that noted for the super IOB but with a PageMode value set to “off” and passes the IOB on
down the filter stack 132. Additionally, the destage filter 370 makes a determination of
whether or not to persist the data block on the journal 340. In this regard, the destage filter
370 obtains statistical data from the statistics database 168 for the layer ID and layer LBA
associated with the block. If the statistical data indicates that the data block is not being
frequently read, the destage filter 370 removes the entry for the layer ID and layer LBA in the
journal table (e.g., journal table 352) and updates the state bit mask in the related CE to
indicate that the data block has been evicted from the journal 340. This effectively frees up
the JE for the data block for use by the I/O journal filter 282. If the statistical data indicates
that the data block is being frequently read, the destage filter 370 makes a determination as to
whether to leave the data block in its current location or compact the data block with other
data blocks that are being persisted. To make this determination, the destage filter 370
assesses whether the journal page that contains the data block is sparsely populated or not. If
the journal page is sparsely populated and there is at least one other data block associated
with another sparsely populated journal page, the destage filter 370 compacts the two data
blocks into one journal page, thereby freeing up one journal page for use by the I/O journal
filter 282. If the journal page is not sparsely populated, the data block is allowed to remain in
its current location in the journal 340.

[Para 184]If the difference between the write time and the current time does not exceed a

threshold, the destage filter 370 makes a determination as to whether to leave the data block

-64 -

WO 2013/070800 PCT/US2012/063989

in its current location or compact the data block with other data blocks that are being
persisted. To make this determination, the destage filter 370 assesses whether the journal
page that contains the data block is sparsely populated or not. If the journal page is sparsely
populated and there is at least one other data block associated with another sparsely populated
journal page, the destage filter 370 compacts the two data blocks into one journal page,
thereby freeing up one journal page for use by the I/O journal filter 282. If the journal page is
not sparsely populated, the data block is allowed to remain in its current location in the
journal 340.

[Para 185]The destage filter 370 queries the statistics database 168 to determine if the
system has sufficient resources to process the destage. If the system does have sufficient
resources, the destage filter 370 places an “In” time in the In Time Stamp field 250 that
reflects the point in time when or about when the destage filter 370 passes the IOB 182 on
down the filter stack 132. If the system does not have resources to process the destage IOB,
then the destage filter pauses and then tries the stats database query again.

[Para 186]Later, when a result [OB 182 is propagating up the filter stack 132 and reaches
the destage filter 370, the current time is obtained, the “In” time stored in the In Time Stamp
field 250 is obtained, and the total latency associated with the processing of the 10B is
calculated, i.e., the elapsed time between when the “In” time value was obtained by the
destage filter 370 and the when the current time was obtained. The destage filter 370 updates
layer tables in the statistics database 168 with the total latency value. Additionally, the
destage filter 370 updates all CEs that correspond to the result IOB setting the bitmask state
to destage complete.

[Para 187]When the destage filter 370 is invoked because there is an IOB with a SCSI
read-related command, the destage filter 370 passes the IOB on down the filter stack 132.

[Para 188]Advanced De-Duplication Filter. Generally, the advanced de-duplication

filter 372 operates to preserve storage capacity at the primary data storage system 28 by
preventing blocks of data associated with a super IOB that are commonly written to the
primary data storage system 28 and do not have a readily calculable pattern from being
written multiple times such that each writing of the page consumes additional storage
capacity.

[Para 189]By way of background, the advanced de-duplication filter 372 maintains a
super dictionary table that is capable of holding a number of entries that is greater than the
number of entries that the dictionary table associated with the dictionary deduplication filter

280 utilizes. Each non-null entry in the super dictionary table includes, for a page associated

-65 -

WO 2013/070800 PCT/US2012/063989

with a super IOB, a value for each of a cyclic redundancy check (CRC) for the page, a layer
ID, PageNum, a StorelD, and StoreLBA. The CRC is a number that is calculated using the
data in a page and representative of the data in a page but not necessarily a unique number
relative to the data in the page, i.c., there is the possibility that two pages with different data
have the same CRC. Nonetheless, if two pages of data do have the same CRC, there is a
distinct possibility that the two pages do have the same data. It should be appreciated that
hashes, checksums, and the like can be used in lieu of a CRC to identify pages that have
potentially identical data.

[Para 190] With respect to the processing of a super IOB relating to a write, the advanced
deduplication filter 372 calculates a CRC for the page located in a memory store (memory
store 52A or 52B) due to the operation of the destage filter 370. The advanced deduplication
filter 372 enters the calculated CRC value and the values from the LayerID field 242,
PageNum field 226, StorelD field 246, and StoreLBA field 248 in the super dictionary table.
The advanced deduplication filter 372 determines if there is another entry in the super
dictionary table that has the same CRC value, the same value for the StoreID, and the value
for the StorelD corresponds to a memory store. Two entries in the super dictionary table with
the same CRC value are potentially identical pages. Two entries in the super dictionary table
that also each has a value for the StorelD that corresponds to a memory store (which is a high
speed memory) can be compared to one another very quickly. The data associated with the
write IOB and the dictionary entry are both in memory store 52A or 52B, the fastest type of
store in the illustrated system. If there is another entry in the super dictionary table that has
the same CRC value and a value for the StorelD that corresponds to a memory store, the
advanced deduplication filter compares the two pages to one another. If the two pages are
identical, the advanced deduplication filter 372 changes the value in the command field 230
of the super IOB from a write to a de-dup write, adjusts the values in the StoreID field 246
and StoreLBA field 248, and passes the super [OB on down the filter stack 132.

[Para 191]Further, the advanced deduplication filter 372 increments a page counter that
is used to determine whether the identical page is being written commonly or frequently
enough to warrant identifying the page as being appropriate for use in the dictionary table
used by the dictionary deduplication filter 280 in the group of foreground filters 162. If the
page satisfies the test for inclusion in the dictionary table, the advanced deduplication filter
obtains the portion of the page (e.g., the second 64-bytes in the page) that is associated with
each of the non-null entries in the dictionary table. If the portion of the page is unique

relative to each of the portions of the pages associated with the other entries, the page is

-66 -

WO 2013/070800 PCT/US2012/063989

added to the dictionary table. Further, if the dictionary table is full, the entry with the oldest
access time (obtained from the statistic database 168) is deleted to make room for the new
entry. If the portion of the page is not unique relative to each of the portions of the pages
associated with the other entries in the dictionary table, the advanced deduplication filter 372
operates to identify a portion of each of the pages in the dictionary table that is unique and
updates the entire dictionary table accordingly. If a portion of each of the pages in the
dictionary table that is unique cannot be identified, the page is not added to the dictionary
table.

[Para 192]If the two pages are not identical, the advanced deduplication filter 372
proceeds to assess the impact of considering whether other entries in the super dictionary
table having the same CRC are duplicates of the page associated with the super 10B.
Specifically, the advanced deduplication filter 372 queries the statistics database 168 to
determine if the QoS goals are currently being achieved or nearly achieved (a “headroom”
calculation). If the impact is acceptable, the advanced deduplication filter 372 causes the
page that is at the location identified by the values in the StoreID and StoreLBA fields in the
super dictionary table to be read into a memory store for comparison to the page associated
with the super IOB currently in the memory store. Since the page associated with the super
IOB and the potentially identical page are now both in memory, the comparison proceeds in
substantially the same fashion as described above when the two pages were both in memory
store when the processing of the super IOB by the advanced deduplication filter 372 began.
If the impact is not acceptable, the advanced deduplication filter 372 passes the super IOB on
down the filter stack 132. If there is no entry in the super dictionary table that has the same
CRC, the advanced deduplication filter 372 passes the super IOB on down the filter stack
132.

[Para 193] With respect to an IOB with a SCSI write-related command that does not
relate to a page, the advanced deduplication filter 372 deletes the entry in the super dictionary
table that has the layer ID and the PageNum values set forth in the IOB. The entry is deleted
because the write command associated with the IOB will be subsequently executed and likely
change the CRC for the page with which the data block(s) that are the subject of the write
command are associated. As such, the current CRC for the page will no longer be valid and
useable for assessing whether there is a page that is the subject of a super 10B should be
deduplicated. Further, the advanced deduplication filter 372 passes the IOB on down the
filter stack 132.

-67-

WO 2013/070800 PCT/US2012/063989

[Para 194|Read De-Duplication Operation. Generally, the advanced deduplication

filter 372 operates on an IOB having a SCSI read-related command that need not relate to a
page to determine if the data associated with the identified layer id and LBA is data that has
been previously de-duplicated in the processing of an IOB with a SCSI write-related
command relating to the same layer id and LBA. More specifically, the advanced
deduplication filter 372 obtains the value in the StoreID ficld 246 and determines if the value
is currently associated with the dictionary store 322. If the value is currently associated with
the dictionary store 322, the advanced deduplication filter 372 then places the data from the
dictionary store 322 into the memory store (e.g., memory store 5S2A or 52B). The advanced
deduplication filter 372 places the number of data segments that are established in the
memory store into the NumberOfDataSegments field 236 and the address and length of each
of the segments established in the memory into the DataSegmentVector field 238. Further,
the advanced deduplication filter 372 updates the value in the DataSegmentVector field to
point to the address in the memory store (e.g., memory store 52A or 52B) that has the copy of
the dictionary page and, more specifically, to point the first block of the page that has the first
block to which the SCSI read command relates. Further, the advanced deduplication filter
372 places a “success” code in the error field 232 and causes the IOB to start propagating up
the filter stack 132, thereby indicating that the SCSI read-related command of the IOB has
been completed. If the value in the StoreID field 246 is not currently associated with the
dictionary store 322, the IOB is passed down the filter stack 132 for further processing.

[Para 195]The following Table 4 is a pseudo-code description of the advanced
deduplication filter 372.

[Para 196]Table 4 — Psecudo-code for Advanced Deduplication

/***

**/
/* C- pseudo code for Advanced DeDup (372) */

/***

**/

AdvancedDeDupEngine = 372
CandidateInfo {
number CheckSum
number LocationStore = {MEM, SSD, SAS}
number LocationLBA = {MEM, SSD, SAS}
number HitCount = 0
}
CandidatesMax = 255
Candidates[CandidatesMax] = {}, {}

/***************************/

-68 -

WO 2013/070800 PCT/US2012/063989

main() {
Initialize ()
while (true) {
Iob = ReceivelIob ()
if (ProcessIOB (Iob) == true) {
ReturnResult (Iob, true)
} else {

NextFilterProcess (Iob)
}

} /* while forever */

}

/***************************/

boolean Initialize() {
for CandiatelIdx = 0 ; Candiateldx < CheckSumsMax ; CandiateIdx ++

LoadCandidatelList (CandiateIdx)

}

/***************************/

boolean ProcessIOB(Iob)
{

/* Execute the write determination processor */

if (Iob.command == Write) {
return (IOBWrite(Iob))
} else {
/* Execute the read determination processor */
if (Iob.command == Read) {
return (IOBRead (Iob))
} else {

/* not a Write or a Read, do not process it */
return (false)

}

/***************************/

boolean IOBWrite(Iob)
{
if (AdvDedupWrite (Iob) == true) {
if (UpdatePatternDedupNeeded(Iob))

}

/***************************/

boolean IOBWrite(Iob)
{
Candidatelist = Candidates[Iob.DATACRCVector]
for OneCandidate in Candidatelist {
if (OneCandidate->LocationStore == MEM) {
/* Execute the headroom processor to determine if the system has */
/* available resources to execute the */
/* advanced deduplication processor using memory store */
if (QOSHeadRoomProcessor (Iob.QosAttributes, MEMORY) == true) {

-69 -

WO 2013/070800 PCT/US2012/063989

/* Execute the compare processor for Advanced Deduplication */
if (CmpCandidate(Iob, OneCandidate)) {
Iob.StorelID = OneCandidate->LocationStore
Iob.StorelBA = OneCandidate->LocationLBA
OneCandidate->HitCount ++;
DictionaryDeDupUpdatelList (OneCandidate->LocationStore,
OneCandidate->LocationLBA, OneCandidate->HitCount)
return (true)

}

}
if (OneCandidate->LocationStore == S$SD) {
/* Execute the headroom processor to determine if the system has */
/* available resources to execute the */
/* advanced deduplication processor using SSD store */
if (QOSHeadRoomProcessor (Iob.QosAttributes, SSD) == true) {
/* Execute the compare processor for Advanced Deduplication */
if (CmpCandidate(Iob, OneCandidate)) {
Iob.StorelID = OneCandidate->LocationStore
Iob.StorelBA = OneCandidate->LocationLBA
OneCandidate->HitCount ++;
DictionaryDeDupUpdatelList (OneCandidate->LocationStore,
OneCandidate->LocationLBA, OneCandidate->HitCount)
return (true)

}

}
if (OneCandidate->LocationStore == SAS) {
/* Execute the headroom processor to determine if the system has */
/* available resources to execute the */
/* advanced deduplication processor using SAS store */
if (QOSHeadRoomProcessor (Iob.QosAttributes, SAS) == true) {
/* Execute the compare processor for Advanced Deduplication */
if (CmpCandidate(Iob, OneCandidate)) {
Iob.StorelID = OneCandidate->LocationStore
Iob.StorelBA = OneCandidate->LocationLBA
OneCandidate->HitCount ++;
DictionaryDeDupUpdatelList (OneCandidate->LocationStore,
OneCandidate->LocationLBA, OneCandidate->HitCount)
return (true)

}

}

return (false)

}

/***************************/

boolean CmpCandidate(Iob, TestCandidate)
{
if (TestCandidate->LocationStore == MEM) {
TestBuffer = MemroyGetDataBuffer (TestCandidate->LocationLBA)
CmpBuffer (Iob, TestBuffer)
}
if (TestCandidate->LocationStore == SSD) {

-70 -

WO 2013/070800 PCT/US2012/063989

TestBuffer = SSDGetDataBuffer (TestCandidate->LocationLBA)
CmpBuffer (Iob, TestBuffer)

}

if (TestCandidate->LocationStore == SAS) {
TestBuffer = SAS (TestCandidate->LocationLBA)
CmpBuffer (Iob, TestBuffer)

}

}

/***************************/

boolean CmpBuffer(Iob, DataBuffer)

{
DatBufByte = 0

for dataseg in Iob.DataSegmentVector {
for bytenum = 0 ; bytenum < dataseg.Bytes ; bytenum ++ {
if (dataseg.Buffer[bytenum] != DataBuffer[DatBufBytel]) {
return (false)
1
DatBufByte ++
1
1

return (true)

/***************************/

boolean IOBRead(Iob)
{

return (false)

}

[Para 197]Page Pool Filter. Generally, the page pool filter 374 operates to allocate

storage space on the stores associated with the primary data storage system 28 other than a
store that is non-persistent and any portion of a store that is not dedicated to a journal as
needed. More specifically, the page pool filter 374 maintains a store map for each store for
which the filter can allocate storage that identifies all of the storage pages on the store and
indicates whether or not each such storage page has been allocated. Additionally, the page
pool filter 374 maintains a layer-store table 410 with each entry in the table mapping a layer
ID and layer LBA to a StorelD and StoreLBA. The table also indicates whether the data at a
particular StoreID and StoreLBA is shared by more than one layer ID, layer LBA. This
indication is referred to as a ref-count, with a ref-count of 1 indicating that the data at the
location specified by the StoreID and StoreLBA is only associated with one layer ID, layer
LBA. A ref-count that is greater than 1 indicates that the data at the location specified by the

StoreID and Store LBA is associated with more than one layer ID, layerLBA.

-71-

WO 2013/070800 PCT/US2012/063989

[Para 198] With the foregoing background in mind, the page pool filter 374 operates on a
received IOB to determine if the received IOB is an IOB or a super IOB. More specifically,
the page pool filter 374 obtains the value in the PageMode field 224 of the received IOB. If
the value is “yes”, the received 1OB is a super IOB, i.c., embodies a write-related command
that involves a page of data.

[Para 199]With respect to a super IOB, the page pool filter 374 determines whether the
command in the command field 230 is a write command or a dedup write command. If the
command is a write command, the page pool filter 374 obtains the values in the LayerID field
242 and the LBA/PageNum field 226 and determines whether there is an entry in the layer-
store table 410. If there is no entry in the layer-store table 410 with the specified layer ID and
layer LBA values, the page of data for the specified layer ID and layer LBA has not been
previously written to any of the stores for which the page pool filter 374 allocates space. In
this case, the page pool filter 374 interrogates the store map(s) to identify a page of space on
the related store to which the page of data can be efficiently written. With respect to an
identified page, the page pool filter 374 determines the values for the StoreID and StoreLBA.
The page pool filter 374 allocates the page to the layer ID and layer LBA. In this regard, the
page pool filter 374 updates the layer-store table to include an entry with the values for the
layer 1D, layer LBA, StorelD and StoreLBA and stores the updated store map. Further, the
page pool filter 374 sets the ref-count field in the entry to 1 to indicate that the data to be
established beginning at the location specified by the StoreID and StoreLBA values is
currently associated with only one layer ID and layer LBA. The page pool filter 374 updates
the StoreID field 246 and StoreLBA field 248 in the IOB with the StoreID and StoreLBA
values of the allocated storage. The updated super IOB is then passed down the filter stack
132.

[Para 200]If there is an entry in the layer-store table 410 with the specified layer ID and
layer LBA values, data associated with the specified layer ID and layer LBA has been
previously written to a store. With respect to such data, the page pool filter 374 determines if
the data is shared, i.c., associated with another layer ID and layer LBA values. In this regard,
the page pool filter 374 determines if the ref-count field in the entry in the layer-store table
410 for the layer ID and layer LBA in the super IOB is 1. If the ref-count is 1, the data at the
location specified by the StoreID and StoreLBA values in the table is not shared. In this case,
the values for the StoreID and StoreLBA in the table are respectively loaded into the StorelD
field 246 and StoreLBA field 248. The updated super IOB is then passed on down the filter
stack 132.

-72-

WO 2013/070800 PCT/US2012/063989

[Para 201]If the ref-count is greater than 1, the data at the location specified by the
StoreID and StoreLBA for the entry in the layer-store table 410 is shared with at least one
other layer ID and layer LBA. In this case, because the data at the location is shared and the
IOB involves the writing of data that is different than the data currently at the location, the
page pool filter 374 must allocate new space on a store for the page of data associated with
the super IOB. In this regard, the page pool filter 374 proceeds substantially as noted with
respect to the situation in which there was no entry in the layer-store table 410 with the
specified layer ID and layer LBA values. Further, the page pool filter 374 also decrements
the ref-counts.

[Para 202]If the command in the command field 230 of the super IOB is a dedup write,
the page pool filter 374 establishes a new entry in the layer-store table 410 and populates the
entry with the values from the LayerID field 242, LBA/PageNum 226 field 226, StorelD field
246, and the StoreLBA field 248 from the super IOB. In this instance, the values in the
StorelD field 246 and the StoreLBA ficld 248 were previously established by the advanced
deduplication filter 372. Further, the page pool filter 374 identifies the other entries in the
layer-store table 410 that have the same value for the StoreID and StoreLBA. With respect to
cach of these entries in the layer-store table 410 the ref-count value is incremented. The page
pool filter 374 also establishes this incremented ref-count value in the new entry in the layer-
store filter. The processing with respect to this super IOB is now complete. Consequently,
the page pool filter 374 places a “success” code in the error code field 232 and causes the
IOB to start propagating up the filter stack 132.

[Para 203]If the received IOB is not a super IOB, the page pool filter 374 determines
whether the command in the command field 230 is a write command or a read command. If
the command is a write command, the page pool filter 374 obtains the values in the LayerID
field 242 and the LBA/PageNum field 226 and determines whether there is an entry in the
layer-store table 410. If there is no entry in the layer-store table 410 with the specified layer
ID and layer LBA values, the block(s) of data for the specified layer ID and layer LBA has
not been previously written to any of the stores for which the page pool filter 374 allocates
space. In this case, the page pool filter 374 interrogates the store map(s) to identify a page of
space on the related store to which the block(s) of data can be efficiently written. With
respect to an identified page, the page pool filter 374 determines the values for the StorelD
and StoreLBA. The page pool filter 374 allocates the page to the layer ID and layer LBA. In
this regard, the page pool filter 374 updates the layer-store table 410 to include an entry with
the values for the layer ID, layer LBA, StoreID and StoreLBA and stores the updated store

-73-

WO 2013/070800 PCT/US2012/063989

map. Further, the page pool filter 374 sets the ref-count field in the entry to 1 to indicate that
the data to be established beginning at the location specified by the StoreID and StoreLBA
values is currently associated with only one layer ID and layer LBA. The page pool filter 374
updates the StorelD field 246 and StoreLBA ficld 248 in the IOB with the StoreID and
StoreLBA values of the allocated storage. The update IOB is then passed down the filter
stack 132.

[Para 204]If there is an entry in the layer-store table 410 with the specified layer ID and
layer LBA values, data associated with the specified layer ID and layer LBA has been
previously written to a store. With respect to such data, the page pool filter 374 determines if
the data is shared, i.e., associated with another layer ID and layer LBA. In this regard, the
page pool filter 374 determines if the ref-count field in the entry in the layer-store table 410
for the layer ID and layer LBA in the IOB is 1. If the ref-count is 1, the data at the location
specified by the StoreID and StoreLBA values in the layer-store table 410 is not shared. In
this case, the values for the StoreID and StoreLBA in the layer-store table 410 are
respectively loaded into the StorelD field 246 and StoreLBA field 248. The super 10B is
then passed on down the filter stack 132.

[Para 205]If the ref-count is greater than 1, the data at the location specified by the
StoreID and StoreLBA for the entry in the layer-store table 410 is shared with at least one
other layer ID and layer LBA. In this case, because the data at the location is shared and the
IOB involves the writing of data that is different than the data currently at the location, the
page pool filter 374 must allocate new space on a store for the page of data associated with
the super IOB. Morcover, because the writing to the store is page-based and not block-based
at this point and the IOB relates to a block(s) and not a page, the page pool filter 374 must
build the page that is to be written to the newly allocated space. Consequently, the page pool
filter 374 reads the page that is at the location specified by the current StoreID and StoreLBA
in the layer-store table 410 into a memory store (e.g., memory stores 52A or 52B) and
modifies the page to include the block(s) that are associated with the IOB. The page pool
filter 374 establishes a new entry in the layer-store table 410 and enters the values from the
LayerID field 242 and LBA/PageNum field 226 of the IOB into the new entry in the table.
Further, the StorelD and StoreLBA values for the newly allocated space are also placed in the
new entry. The ref-count for the new entry is set to 1 to indicate that the page is not shared
with any other layer ID and layer LBA. The page pool filter 374 updates the values of the
StorelD field 246 and the StoreLBA field 248 in the IOB to reflect the StoreID and StoreLBA
for the newly allocated space. Further, the page pool filter 374 wupdates the

-74 -

WO 2013/070800 PCT/US2012/063989

DataSegmentVector 240 in the IOB to indicate the location of the modified page in the
memory store. The updated IOB is then passed down the filter stack 132.

[Para 206]If the command is a read command, the page pool filter 374 uses the values
from the LayerID field 242 and the LBA/PageNum field 226 to identify the entry in the layer-
store table 410 that relates to the data that is to be read. In this regard, the value in the
LBA/PageNum field 226 relates to an LBA and not a page. The page pool filter 374
accomplishes the conversion by masking off certain bits of the LBA value. The layer ID and
PageNum values are then used to identify the entry in the layer-store table 410 relating to the
data that is the subject of the read command. The page pool filter 374 retrieves the values for
the StoreID and StoreLBA associated with the entry in the layer-store table 410 and loads
these values into the StorelD field 246 and StoreLBA fields 248 of the IOB. The updated
IOB is then passed down the filter stack 132.

[Para 207|Store Converter Filter. Generally, the store converter filter 376 processes

super I0OBs and IOBs so as to generate an element specific [OB(s), i.e., the command(s) that
are needed to actually perform the read or write of the data associated with the super IOB or
IOB. To elaborate, a particular store has data transfer requirements, a data redundancy
attribute, and a path redundancy attribute. The store converter filter 376 processes super
IOBs and IOBs to produce the element specific IOB(s) with the command(s) to the store that
satisfy the data transfer requirements of the store, preserve the data redundancy attribute of
the store, and preserve the path redundancy attribute of the store.

[Para 208] Write Data Transfer — Size. With respect to super IOBs and IOBs that have

SCSI write-related commands, the store converter filter 376 interrogates a store table to
obtain the size of a write-related data transfer that the store accommodates. If the size of the
data transfer accommodated by the store is equal to a page, the store converter filter 376
generates the element specific IOB with the command(s) necessary to write the page of data
associated with the super IOB to the store.

[Para 209] With respect to a super IOB with a write-related command, if the size of the
data transfer accommodated by the store is greater than a page, the store converter filter 376
generates the element specific IOB(s) with the command(s) necessary to: (a) read the current
greater portion of data that is on the store and that includes the location at which the page is
to be written, (b) modify the read current greater portion of data to include the page of data
associated with the super IOB, and (c) write the modified greater portion of data to the store.
For example, if the store requires that write data transfers be done in 4-megabyte chunks, the

store converter filter 376 generates the commands necessary to: (a) read the current 4-

-75-

WO 2013/070800 PCT/US2012/063989

megabyte chunk of data on the store that includes the location at which the page associated
with the super IOB is to be written, (b) modify the read 4-megabyte chunk to include the page
associated with the super 10B, and (c) write the modified 4-megabyte chunk to the store.

[Para 210]Conversely, if the size of data transfer accommodated by the store is less than
a page, the store converter filter 376 divides the page of data associated with the super IOB
into whatever size chunks of data are required by the store and generates the element specific
IOB(s) with the command(s) for transferring these chunks of data to the store. For instance,
if a store requires that data to be written in 512-byte chunks, the store converter filter 378
divides the 2-megabyte page associated with the super IOB into 4096 512-byte chunks and
generates the command(s) for writing each of the 4096 512-byte chunks to the store.

[Para 211]If the size of data transfer accommodated by a store is greater than a page but
not a whole number multiple of a page, the store converter filter 376: (a) divides the page into
one or more chunks of the size required by the store and generates the command(s) for
writing each of these chunks to the store and (b) with respect to the remaining data that is less
than the size of data transfer accommodated by the store, produces the read, modify, write
commands previously described for writing the data to the store.

[Para 212]With respect to an IOB with a SCSI write-related command, the store
converter filter 376 operates in substantially the same fashion as noted with respect to a super
IOB, except that the size of the block or blocks of data that are the subject of the IOB rather
than a page are compared to the size of the data transfer accommodated by the store.

[Para 213]|Write - Data Redundancy. The store converter filter 376 also interrogates the

store table to determine the value of the data redundancy attribute associated with the store,
performs any calculations that are associated with satisfying this attribute for the store, and
generates or modifies the element specific IOB so as to implement the data redundancy. For
example, if a store is comprised of a RAID-6 element, the store converter filter 376 engages
in the parity calculations that are needed for use with a store that includes such an element
and modifies the element specific IOB accordingly. As another example, if the store includes
two elements that are mirrored to provide data redundancy, the store converter filter 376
modifies the element specific IOB to include the command(s) needed for implementing the

mirroring.

[Para 214|Write - Path Redundancy. The store converter filter 376 further interrogates
the store table to determine the value of the path redundancy attribute associated with the

store. In addition, the store converter filter 376 interrogates a configuration table for the

-76-

WO 2013/070800 PCT/US2012/063989

primary data storage system 28 that provides the physical layout of the level and the
characteristics of the various elements at the level. For example, the configuration table
identifies each store, the number of I/O ports associated with each store, the status of the
ports, identifies the switches in the store and the status of the switches etc. The store
converter filter 376 generates or modifies the element specific IOB to provide the necessary
information for routing the data from its current location in the primary data storage system
28 (e.g., the memory store) to the store.

[Para 215]Write — Element Specific IOB. With respect to either an IOB or a super IOB

with a SCSI write-related command, once the assembly of the element specific IOB is
complete, the store converter filter 376 pushes an indication onto the IssuerStack field 252
that the store converter filter 376 needs to conduct further processing of the super IOB or IOB
after the execution or attempted execution of the commands in the element specific IOB is
complete. The store converter filter 376 passes the element specific IOB on down the filter
stack 132.

[Para 216]Read Data Transfer — Size . With respect to an IOB with a SCSI read-

related command, the store converter filter 376 interrogates a store table to obtain the size of
a read-related data transfer that the store accommodates. If the size of the read data transfer
accommodated by the store is equal to the size of the data that is the subject of the IOB, the
store converter filter 376 generates the element specific [OB with the command(s) necessary
to read the data associated with the IOB from the store.

[Para 217]If the size of a data transfer accommodated by the store is greater than size of
the data that is the subject of the IOB, the store converter filter 376 generates the element
specific IOB with the command(s) necessary to read the current greater portion of data that is
on the store and that includes the location with the data that is the subject of the IOB into the
memory store. The store converter filter 376 then wupdates the value in the
DataSegmentVector field to point to the address in the memory store (e.g., memory store 52A
or 52B) that has the copy of the page and, more specifically, to point the first block of the
page that has the first block to which the SCSI read command relates.

[Para 218]If the size of data transfer accommodated by the store is less than the size of
the data associated with the IOB, the store converter filter 376 determines the number of data
transfers that will be necessary to transfer data of the size specified in the IOB and generates
the element specific IOB(s) with the command(s) for conducting the calculated number of

reads from the store.

-77-

WO 2013/070800 PCT/US2012/063989

[Para 219]If the size of a data transfer accommodated by a store is less than the size of
the data associated with the IOB but not a whole number multiple of a size of the data, the
store converter filter 376: (a) determines the number of data transfers that will be necessary to
transfer data of the size specified in the IOB and generates the element specific IOB(s) with
the command(s) for conducting the calculated number of reads from the store and (b) with
respect to the remaining data that is less than the size of data transfer accommodated by the
store, generates or modifies the element specific IOB to include the command(s) necessary
to read the portion of data that is on the store that is of a greater size than the remaining data
but includes the location with the remaining data.

[Para 220]Read - Data and Path Redundancy. The store converter filter 376 accesses

a hardware state table to determine which path(s) and element(s) to which the element
specific IOB should be sent.
[Para 221]Read — Element Specific I0OB. With respect to cither an IOB or a super IOB

with a SCSI read-related command, once the assembly of the element specific IOB is
complete, the store converter filter 374 pushes an indication onto the IssuerStack field 252
that the store converter filter 376 needs to conduct further processing of the super IOB or IOB
after the execution or attempted execution of the commands in the element specific IOB is
complete. The store converter filter 376 passes the element specific IOB on down the filter
stack 132.

[Para 222]Later, when a result OB 182 is propagating up the filter stack 132 and reaches
the store converter filter 376, The store converter filter 376 updates store hardware stats
tables in the statistics database 168 with the latency value, throughput, queue depth, and use
count. It should be appreciated that other tables or statistics in the statistics database 168 may
also be udated.

[Para 223|Store Stats Collection Filter. Generally, the store stats collection filter 378

operates to collect certain store and clement related data/statistical information for each 1OB
passed to the store stats collection filter 378 from the store convertor filter 376 when the IOB
is going down the filter stack 132. To elaborate with respect to IOB 182, the store stats
collection filter 378 processes the IOB 182 to obtain the store id from the Storeld field 246,
the clement id from the ElementID field 256, the sector count from the
SectorCount/PageOffset field 228, and the “In” time stamp value from the In Time Stamp
field 250. The store stats collection filter 378 also obtains the current time from the operating
system. The store stats collection filter 378 uses the value of the “In” Time Stamp and the

current time to calculate the latency that the IOB has experienced between when the “In”

-78-

WO 2013/070800 PCT/US2012/063989

Time Stamp value was established in the destage filter 370 and when the current time is
obtained by the store stats collection filter 378 (hereinafter referred as “first latency”). The
store stats collection filter 378 communicates with the statistics database 168 so as to: (a)
update a table for the store that is maintained in the database to reflect that an IOB associated
with the store will be processed that has the sector size obtained from the IOB and that the
IOB has experienced the calculated first latency and (b) update a table for the element that is
maintained in the database to reflect that an IOB associated with the element will be
processed that has the sector size obtained from the IOB and that the IOB has experienced the
calculated first latency.

[Para 224|The store stats collection filter 378 also pushes an indication onto the
IssuerStack field 252 of the IOB 182 that the store stats collection filter 378 needs to do
additional processing when the IOB is propagating up the filter stack 132. Further, the store
stats collection filter 378 also pushes the current time onto the XtraContextStack field 254.

[Para 225]Later, when the IOB 182 is propagating up the filter stack 132 and reaches the
store stats collection filter 378, the store stats collection filter 378 obtains the time from the
XtraContextStack field 254 (which is no longer the current time), obtains the “new” current
time, and calculates a second latency, i.e., the elapsed time between when the time value was
obtained that was pushed onto the XtraContextStack field 254 and the IOB was propagating
down the filter stack 132 and the when the “new” current time was obtained. The store stats
collection filter 378 updates the store and element tables in the statistics database 168 with
the second latency value.

[Para 226]Storage Hardware Driver. Generally, the storage hardware driver 380

controls a SCSI card so as to produce the electrical signals needed to receive a message, such
as SCSI block result, and transmit a message, such as a SCSI block request. The storage
hardware driver 380 assures the addressing of packets associated with a message. With
respect to received packets, the storage hardware driver 380 confirms that each of the
received messages does, in fact, belong to the SCSI card. With respect to messages that are
to be transmitted, the storage hardware driver 380 assures that the each message is
appropriately addressed so that the message gets to the desired element. With respect to a
received message, the storage hardware driver 380 also recognizes the packet as requiring
further routing back up the filter stack 132. The storage hardware driver 380 also performs
other processing in accordance with the protocols, e.g., ordering packets, checksum etc.

[Para 227]1t should be appreciated that the storage hardware driver 380, operates to

process block commands, i.e., commands that relate to the reading of a block data from or

-79-

WO 2013/070800 PCT/US2012/063989

writing of a block data to a storage medium. As such, the storage hardware driver 380 can be
adapted to operate with storage hardware other that SCSI cards.

[Para 228]It should be appreciated that a number of functions noted with respect to the
primary data storage system 28 can be realized with a primary data storage system having a
single storage processor and a single data store and primary data storage systems having more
elements than noted with respect to the primary data storage system 28. For example, the
tiering function described with respect to I/O journal filter and the destage filter can be
practiced in a primary data system with two data stores having different performance
characteristics. The QoS function described with respect to the QoS filter can be practiced in
a primary data storage system that has a single data store where there are two are more
volumes associated with the store. The de-duplication function can be practiced in a primary
data storage system with a single data store. It should also be appreciated that the
redundancy described with respect to the primary data storage system 28 is not required to
practice many of the functions provided by the filters in the filter stack. It should also be
appreciated that a primary data storage system can employ a filter stack with a fewer number
or greater number of filters than are in the filter stack 132. For instance, in a primary data
storage system that is only going to service a single volume, a filter stack can be employed
that omits a QoS filter. Additionally, a filter stack can be employed in which the order of
filters in the stack are different than in filter stack 132. For instance, a filter stack could be
employed in which the an I/O journal filter preceded a the dictionary deduplication filter.

[Para 229|Tier and Tiering. A tier is a group of stores that have similar characteristics

such as throughput, latency, capacity, path redundancy, data redundancy, and atomic block
size (i.e., the smallest individually addressable block of a store) or a store with a defined set
of such characteristics. For example, memory store 52A and 52B comprise a tier, RAID disk
array S6A and 56B comprise a different tier, and SSDs 54A and 54B comprise yet another
tier. One tier can differ from another tier in one characteristic or multiple characteristics. For
instance, a particular tier may have specific latency and throughput characteristics while
another tier may have the same latency but a different throughput characteristic.

[Para 230] A tiering storage system is a storage system that attempts to match the access
pattern relating to a block of data in the system to the tier having the most appropriate or
compatible characteristics.

[Para 231]Many of the filters in the filter stack 132 are involved in providing tiering
functionality, e.g., the QoS filter 274, the pattern de-duplication filter 278, the dictionary de-
duplication filter 280, the I/O journal filter 282, the destage filter 370, the advanced de-

-80-

WO 2013/070800 PCT/US2012/063989

duplication filter 372, the page pool filter 374, the calculation engine 320, the dictionary store
322, and the statistics database 168.

[Para 232]The QoS filter 274 evaluates an IOB and volume, criticality, and hardware
statistics from the statistics database 168 to determine the most compatible and available
tier(s) for the blocks of data relating to an IOB. The QoS filter 274 updates the
AllowedStores field 260B of the IOB with the identified tier(s). It should be appreciated that
the AllowedStores field 260B can be implemented as a bitmask and the QoS filter 274 can
indicate in the bitmask that an IOB should skip a tier. For example, in the case of a very
large write data related command, the QoS filter 274 might indicate that the write data
associated with the IOB be written to the RAID disk array S6A or 56B instead of the SSDs
54A or 54B, which are in a higher tier than the RAID disk arrays S6A, 56B.

[Para 233]|The pattern de-duplication filter 278 and the calculation engine 320 implement
a tier-1 (the fastest tier, but with a limited capacity) functionality in the illustrated primary
data storage system 28. The pattern de-duplication filter 278 operates to identify and respond
to IOBs that contain blocks of data capable of being stored or retrieved from the calculation
engine 320 or other similar engines. The calculation engine 320 provides a CPU store for
storing and retrieving blocks of data that are readily calculable. The calculation engine 320 is
implemented by using a CPU and a limited amount of high speed memory to store and
retrieve blocks of data. The calculation engine has a block size characteristic of 512 bytes
(the smallest of any tier). The calculation engine 320 has the lowest latency and highest
bandwidth of the stores illustrated. It should be appreciated that the calculation engine 320
could be realized using specialized hardware such as a DMA engine or an MMX processor.

[Para 234|The dictionary de-duplication filter 280 and the dictionary store 322
implement a tier-2 (slower than tier-1 but with greater capacity than tier-1) functionality. The
dictionary de-duplication filter 280 operates to identify and respond to IOBs that contain
blocks of data that are identical to the blocks of data stored in the dictionary store 322. The
dictionary store 322 provides a dictionary table and a memory store 52A or 52B for storing
and retrieving blocks of data which are not readily calculable. The dictionary store 322 has a
block size characteristic of 2MB.

[Para 235]The /O journal filter 282 and the SSDs 54A and 54B implement a tier-3
(slower than tier-2 but with greater capacity than tier-2) functionality. The I/O journal filter
282 operates to identify and respond to IOBs that the filters above in the filter stack 132 have
not fully processed. The I/O journal filter 282 stores blocks of data to and retrieve blocks of
data from the SSDs 54A and 54B based upon the characteristics of the SSDs 54A and 54B

-81-

WO 2013/070800 PCT/US2012/063989

(e.g. atomic block size, performance, throughput, IOPs, persistence, and redundancy). The
SSDs 54A and 54B each provide a persistent store for storing blocks of data. The SSDs 54A
and 54B each have an atomic block size characteristic of 4KB.

[Para 236] The destage filter 370 is responsible for movement of blocks of data between
two tiers. The destage filter 370 decides when blocks of data relating to an IOB should be
copied, moved, or cleared relative to multiple tiers (in the illustrated system 28, the tier-3
SSDs 54A or 54B and the tier-4 RAID disk array 56A or 56B). The destage filter 370 uses
the characteristics of the source and destination tiers to accommodate the different tier
requirements. For example, the SSDs 54A and 54B require atomic block accesses to be 4KB
in size while the RAID disk array 56A and 56B require atomic block accesses to be 2MB
(page size). Thus, destage filter 370 executes a multitude of reads from the SSDs 54A or 54B
in 4KB chunks that coalesce in high speed memory until 2MB have been read. The destage
filter 370 then executes a write command to the RAID disk array 56A or 56B with the 2MB
that is now in high speed memory. Likewise, the destage filter 370 evaluates other
characteristics of the various stores and accommodates the characteristic strengths and
attempts to avoid the characteristic weaknesses. For example, the RAID disk array 56A or
56B has a seek penalty. Due to this penalty, the destage filter 370 processes IOBs in a
fashion to limit or reduce this seek penalty impact. The ability of destage filter 370 to
accommodate various characteristics of different stores enables more efficient use of
resources. For example, the atomic block size of the SSDs 54A and 54B is smaller than the
atomic block size of the RAID disk array 56A or 56B which allows the SSDs 54A and 54B to
contain smaller segments of more frequently accessed blocks of data and not require the
SSDs 54A and 54B to hold blocks of data that are adjacent to the frequently accessed blocks
of data. In effect this is more efficient use of the SSDs 54A and 54B.

[Para 237 The destage filter 370 can also copy blocks of data between tiers so as to
maintain a block of data in multiple tiers and thus increasing redundancy associated with the
block of data. This also allows the block of data that is located in multiple tiers to be "fast
reused". Fast reuse occurs when a tier includes a copy of a block(s) (i.e., there is another
copy in another tier) and it is necessary to make space in the tier for a block or blocks of data
associated with a different [OB command. In this case, the copy of the block(s) in the tier
can be deleted/written over to make space for the block(s) associated with the different [OB
command.

[Para 238] The destage filter 370 endeavors to match a block or blocks of related data to

the tier that is appropriate for the access pattern associated with the block or blocks of related

-82 -

WO 2013/070800 PCT/US2012/063989

data. To accomplish this, the destage filter 370 accesses the statistics database 168 to acquire
historical statistics related to the volume with which the data block or related data blocks are
associated and evaluates those statistics to detect trends in the access pattern. For example, if
the initiator access pattern is a streaming video (a trend represented by a sequence of
consecutive 10Bs), the destage filter 370 would likely direct the blocks of data to the tier
containing the RAID disk array S6A or 56B because the RAID disk array S6A or 56B is more
efficient than other tiers in processing large, contiguous blocks of data. In contrast, if the
initiator access pattern is a random read, the destage filter 370 endeavors to maintain the
blocks of data in a tier such as SSDs 54A and 54B because this tier has a smaller seek latency
penalty relative to the other tiers in the system.

[Para 239]The advanced de-duplication filter 372 provides movement of blocks of data
between tier-4 and tier-2. More specifically, advanced de-duplication filter 372 uses the
super dictionary table to determine when a group of contiguous blocks of data that constitute
a page is frequently accessed. If a page is accessed more frequently than other pages active
in the dictionary table, then the advanced de-duplication filter 372 identifies that page as a
candidate for movement to tier-2. The advanced de-duplication filter 372 subsequently
coordinates with the dictionary de-duplication filter 280 to update the dictionary table with
the candidate page.

[Para 240]The page pool filter 374 and the RAID disk array 56A or 56B implement a tier
4 (slower than tier-3 but with greater capacity than tier-3) functionality. The page pool filter
374 operates to store and retrieve blocks of data from RAID disk array S6A and 56B
considering the characteristics of RAID disk array S6A and 56B.

[Para 241]It should be appreciated that tiering functionality can be implement with other
combinations of filters and stores. It should also be appreciated that other filter stack 132
layouts could generate different tier assignments than those listed above. Additional storage
types such as the cloud storage provider 64 or tape stores would likely involve the filter stack
132 adding additional filters or re-arranging the order of the filters in such a way as to
accommodate the characteristics of any new tier employing one or more of these types of
stores. Further, as faster stores become available, these faster stores can be used to
implement a tier that is faster than the memory that constitutes the tier-1 in the illustrated
system.

[Para 242]The foregoing description of the invention is intended to explain the best mode

known of practicing the invention and to enable others skilled in the art to utilize the

-83-

WO 2013/070800 PCT/US2012/063989

invention in various embodiments and with the various modifications required by their

particular applications or uses of the invention

-84 -

WO 2013/070800 PCT/US2012/063989

WHAT IS CLAIMED IS:

I. A primary data storage system for use in a computer network and having a
quality of service capability, the system comprising:

an input/output port for receiving a block command packet that embodies one of a
read block command and a write block command and transmitting a block result packet in
reply to a block command packet;

a data store system having at least one data store capable of receiving and storing data
in response to a write block command and retrieving and providing data in response to a read
block command;

wherein the data store system is capable of having at least a first volume with a first
criticality and first quality of service goals and a second volume with a second criticality and
a second quality of service goals;

a statistical database for receiving, storing, and providing data for use in making
decisions related to the pursuit of the first and second quality of service goals; and

a sorting processor for sorting an input string comprised of multiple read/write block
commands into an output string of multiple read/write block commands using data from the
statistical database, wherein the order of the read/write block commands in the output string
reflects the pursuit of the first and second quality of service goals.

2. A primary data storage system, as claimed in claim 1, wherein:

the sorting processor includes:

a sub-string processor for sorting a string of read/write block commands into a
plurality of sub-strings of read/write block commands; and

a merging processor for merging a plurality of sub-strings of read/write block
commands into a string of read/write block commands.

3. A primary data storage system, as claimed in claim 2, wherein:

the sub-string processor, in sorting a read/write block command, is capable of
acquiring a combination of a criticality, throughput, queue depth, latency, and input-output
operations per second (IOPS) statistical data associated with whatever criticality is associated
with whichever one of a first volume and a second volume a read/write block command is
associated.

4. A primary data storage system, as claimed in claim 2, wherein:

the sub-string processor, in sorting a read/write block command, is capable of

acquiring a combination of a criticality, throughput, queue depth, latency, and input-output

-85-

WO 2013/070800 PCT/US2012/063989

operations per second (IOPS) statistical data associated with whichever one of a first volume
and a second volume a read/write block command is associated.

5. A primary data storage system, as claimed in claim 2, wherein:

the sub-string processor, in sorting a read/write block command, is capable of
acquiring:

a combination of a criticality, throughput, queue depth, latency, and input-output
operations per second (IOPS) statistical data associated with whichever one of the first and
second volumes the read/write block command is associated and

a combination of a criticality, throughput, queue depth, latency, and input-output
operations per second (IOPS) statistical data associated with the other of the first and second
volumes in deciding the sorting of the read/write command.

6. A primary data storage system, as claimed in claim 2, wherein:

the sub-string processor comprising a port for receiving data from and providing data
to the statistics database.

7. A primary data storage system, as claimed in claim 2, wherein:

the merging processor, in merging a read/write block command into a string, is
capable of accessing a combination of a criticality, throughput, queue depth, latency, and
input-output operations per second (IOPS) statistical data that is related to hardware used in
moving data to, from, and within the data store system with the data store system.

8. A primary data storage system, as claimed in claim 2, wherein:

the merging processor comprising a port for receiving data from and providing data to
the statistics database.

9. A primary data storage system, as claimed in claim 1, wherein:

the sorting processor includes:

a first sub-string processor for sorting a string of read/write block commands into a
plurality of sub-strings of read/write block commands;

a second sub-string processor for sorting sub-strings of read/write block commands
into a plurality of sub-sub-strings of read/write block commands;

a merging processor for merging a plurality of sub-sub-strings of read/write block
commands into a string of read/write block commands.

10. A primary data storage system, as claimed in claim 9, wherein:

the first sub-string processor, in sorting a read/write block command, is capable of
performing a sort based upon one of: (a) a criticality and (b) a combination of throughput,

queue depth, latency, and input-output operations per second (IOPS) statistical data

-86-

WO 2013/070800 PCT/US2012/063989

associated with whichever one of the first volume and second volume the read/write block
command is associated.

11. A primary data storage system, as claimed in claim 9, wherein:

the second sub-string processor, in sorting a read/write block command, is capable of
performing a sort based upon one of: (a) a criticality and (b) a combination of throughput,
queue depth, latency, and input-output operations per second (IOPS) statistical data
associated with whichever one of the first volume and second volume the read/write block
command is associated.

12. A primary data storage system, as claimed in claim 9, wherein:

the merging processor, in merging a read/write block command into a string, is
capable of acquiriing a combination of criticality, throughput, queue depth, latency, and
input-output operations per second (IOPS) that is related to hardware used in moving data to,
from, and within the data store system with the data store system.

13. A primary data storage system, as claimed in claim 1, wherein:

the sorting processor capable of determining a priority of a read/write block command
relative to other read/write block commands using a weighted sum of weighted factors, the
factors comprising:

(a) the criticality of the volume with which the read/write command is associated;

(b) the relationship of the read/write block command to the quality of service goals for
the volume with which the read/write command is associated;

(c) the relationship of the read/write block command to the quality of service goals for
any other volumes having the same criticality as the volume with which the read/write
command is associated;

(d) the relationship of the read/write block command to hardware used in moving data
to, from, and within the data store system; and

(e) the relationship of the read/write block command to the quality of service goals
for any other volumes having a different criticality than the volume with which the read/write
command is associated.

14.A primary data storage system, as claimed in claim 13, wherein:

at least one factor has a value that is a current statistic value.

14. A primary data storage system, as claimed in claim 13, wherin:

at least one factor has a value that is a historic statistic value.

15. A primary data storage system, as claimed in claim 13, wherein:

-87-

WO 2013/070800 PCT/US2012/063989

cach factor is weight by a coefficient whose value relates to the criticality and
reducing the different between quality of service goals for the first and second volumes and
the actual service obtained.

16. A primary data storage system, as claimed in claim 13, wherein:

each factor is weight by a coefficient that changes of time.

17. A primary data storage system, as claimed in claim 1, wherein:

the statistical database is capable of providing the sorting processor with current
statistical data that relates to a first time frame and historical statistical data that relates to a
second time frame that is greater than the first time frame.

18. A primary data storage system, as claimed in claim 17, wherein:

the current statistical data and the historical statistical data relate to a first volume.

19. A primary data storage system, as claimed in claim 17, wherein:

the current statistical data and the historical statistical data relate to both a first
volume and a second volume.

20. A primary data storage system, as claimed in claim 17, wherein:

the current statistical data and the historical statistical data relate to a first criticality
associated with the first volume.

21. A primary data storage system, as claimed in claim 17, wherein:

the current statistical data and the historical statistical data relate to a first criticality
associated with a first volume and a second criticality associated with a second volume.

22. A primary data storage system, as claimed in claim 1, wherein:

the statistical database is capable of providing the sorting processor with a
combination of throughput data, queue depth data, latency data, and input-output operations
per second (IOPS) related data.

23. A primary data storage system, as claimed in claim 1, wherein:

the combination includes at least latency data.

24. A primary data storage system, as claimed in claim 1, wherein:

the statistical database is capable of providing the sorting processor with a
combination of: (a) current throughput data, (b) current queue depth data, (c) current latency
data, (d) current input-output operations per second (IOPS) related data, (e) historical
throughput data, (f) historical queue depth data, (g) historical latency data, and (h) historical
input-output operations per second (IOPS) related data.

25. A primary data storage system, as claimed in claim 1, wherein:

-88-

WO 2013/070800 PCT/US2012/063989

the statistical database is capable of providing the sorting processor with a
combination of: (a) current read related throughput data, (b) current read related queue depth
data, (c) current read related latency data, (d) current read related input-output operations per
second (IOPS) related data, (e) historical read related throughput data, (f) historical read
related queue depth data, (g) historical read related latency data, and (h) historical read
related input-output operations per second (IOPS) related data, (i) current write related
throughput data, (j) current write related queue depth data, (k) current write related latency
data, (1) current write related input-output operations per second (IOPS) related data, (m)
historical write related throughput data, (n) historical write related queue depth data, (o)
historical write related latency data, and (p) historical write related input-output operations
per second (IOPS) related data.

26. A primary data storage system, as claimed in claim 1, wherein:

the statistical database is capable of providing the sorting processor with a
combination of latency, throughput, and IOPS related statistical data that is related to
criticality.

27. A primary data storage system, as claimed in claim 1, wherein:

the statistical database is capable of providing the sorting processor with a
combination of latency, throughput, and IOPS related statistical data that is related to a first
volume and/or a second volume.

28. A primary data storage system, as claimed in claim 1, wherein:

the statistical database is capable of providing the sorting processor with a
combination of latency, throughput, and IOPS related statistical data that is related to

hardware used in moving data to, from, and within the data store system.

-89-

WO 2013/070800

o

Sorage
Admiastrator

Suppoit

3 .

Customer |

364

Accounting

PCT/US2012/063989

Firgt
Switch

Management

Managemenl

Reqest Packet/

Backup , L
o
ng SOUrCEs e 358
a4 1 e
Mission Crticsl s ecs Critical N o
: Usmess Lrgies i MNaon C‘-‘ o
{uhivter) | Mo Lntica
anne ~ "y\,
30 Second By /

Switch

Reply 1o Reguest Packet

Result Packet

- Biher
LMt

Hther

-4AAL 448

o 46A

- 4AH

et

et

Storage

Etffzéz‘

Block Command Packet /

Block

I Provcessor Brocessor = i
S0A - 308
E e 2
. Fwiich Swiich =
28 SRA : 0L [60H BB L =
Type A Type B Type B Tvpe A e
,,,,,,,,,,,,,,, i i i ; =
i e e 991
o 48A | | 45T
/,/ ;\ i y
| + - -
Ether L bther i oy o e U Bther Bther
& PRARGESSD F Moemwory - S Memory L SSEY D BA L L
Net Net t “ e ‘ ; e 1‘ ‘i Net Net
)) \;\))) i J
G8A G684 _SSA S4A 524 528 HEB
i <
T
; \w &2 64
2 A

i

Backup/ Tape

Server

SUBSTITUTE SHEET (RULE 26)

Cloud Storage
Provider

e
397

N3

Other Management Server

WO 2013/070800 PCT/US2012/063989

)]

o~

Mapagement Stack ¢ ~100 IO Stack 102
A A

r

Forward

Cither 1O

Patabase

Additional
Hardware and
Software
Statistics

Cale Dhctionary
Engine Store

Figare 2

SUBSTITUTE SHEET (RULE 26)

WO 2013/070800

PCT/US2012/063989

258

Statistics Database Table >
Component | UnigiD | TimeStamp | Resolution | Throughput | Quese Depth Latency UseCount
Read Write Read | Write Read | Write | Read | Wrike
CPU 234 2362 Second in 1 52 43 9 & 1031 138
CRU 234 2368 Minite i5 9 7 a4 i6 4 94 97
CPU 234 2000 Hour 86 56 45 89 5 2 92 135
CRU 234 10 Day 59 87 47 33 i6 23 45 122
SR 154 2363 Second 08 108 63 74 i3 ig a8 {01
SSH 154 2362 Minute 138 0 207 | 74 86 12 23 50 @ 13
SR 154 2005 Hour W72 0 473 76 72 i4 21 82 13
SSH 154 17 Day W3 o127 88 84 L 23 88 10
Ether Net 283 2363 Second 10 11 52 43 9 8 1031 138
Ether Ket 283 2302 Minue i5 9 76 34 16 4 24 97
Ether Net 283 2005 Hour g4 55 45 89 5 2 G2 | 135
Ether Net 283 7 Bay 59 87 47 53 ig 23 145 0 13
Critieality SR3 2363 Seoond 1 1t 52 43 9 8 103 | 138
Criticality 583 2302 Minute i g 78 34 in 4 G4 Q@7
Critieality SR3 2005 Howr 56 56 45 gu 5 2 92 135
Criticality 543 17 Pay 59 87 47 53 in]
Criticality 584 2363 Second 0 13 52 43 9 & w3 38
Cuoticality 584 2362 Minute i5 g 76 a4 16 4 G4 97
Criticality 584 2005 Hour 86 56 43 89 5 2 Q2 138
Cuoticality 584 17 Day 59 87 47 33 16 23 145 @ 123
Oriticality 385 2363 Sacond 10 i 52 43 g 5 103 138
Criticality 58S 2302 Minue i5 9 76 34 16 4 24 97
Oriticality 385 20058 Hour 84 56 45 89 5 2 92 1
Criticality 385 7 Day 34 87 47 53 16 23 s 123
Volume 493 2363 Secand 19 11 52 43 S 8 w03 18
Volume 493 2302 Miuute 15 8 76 4 i6 4 94 97
Vohime 493 2005 Hour 56 56 45 86 5 2 22 135
Volume 493 17 Day 54 87 47 53 16 23 1451 123
Inttiator 697 2363 Second 18 i 52 43 9 it 103 1 138
btiator 897 2362 Minue i3 9 76 34 16 94 97
Inttiator 697 2005 Hour g4 50 45 89 5 g2 135
hatiator a9y 7 Day 59 a7 47 53 i6 230 145

SUBSTITUTE SHEET (RULE 26)

Figure 24

WO 2013/070800 PCT/US2012/063989

AN ISCSI Encapsulation
« Packet

184 Etherdiet v i82
186 P
188 = e T IOB Structure
Opnoode ‘

202

. * InitiaioriD 220

DataSesleon P Vol A2

P A
PageMode - Lik

N LBA PageNum | ~226

Rasic

A

Sector Count || PageQilset | 4«
RCST Command (W) T30
Commuand Drrortade 23

Data Block Tt aiTeat 234

ST
DhapnberUialasernends | - “
g

k4

7

Additional DataSemmentVoctor 238

Header DataC B Verior 240
19077 1808t | Segment LayoriD —an
194 :

0R Attributes 244
Header Storeil ST 246
Ehgest StoreLBA T4

1o thee Stanp

DssuerStack T
KiraUountestaack 254
Pata CRC ; o : L nee
g g i BlementiD 256
» : (if avaiiablc) ‘ |
Pata Digest 210

Figure 3

(O8 Attributes S

Uriticality o 260A
AllowedStores o 2608
AllowedLatency o 2600
Projectedinpact T 260D

hnpaciAoay ~o 2608

Figure 3A

SUBSTITUTE SHEET (RULE 26)

WO 2013/070800

Volume Owaership Table

Notih Storage Processar ID
A i
C @

PCT/US2012/063989

Figure 4

418
Layer Store Table ¥
Layer I Layer EBA © Slore 1B tore LBA | Bel Count
3 O 3 106 .
4 87 & 354 2
3 i 3 203 42
3 e 4 &

SUBSTITUTE SHEET (RULE 26)

Figure &

WO 2013/070800

PCT/US2012/063989

e 296
Layer Map *
Initiator Inttator
Laver=2 :
777777777777777777777777777777 Layer=4
. *L vvvvvvvvvvvvv Y
Layer=i Layer=5
-
Laver=0
— 292
Volume Information Table g
o o . : . S Allowe Altowe
Vol iD Crnticality Layer (D | 1BA Ofet | 7 osd o 9“ T‘d
Stores Latency
A i 3 O 7 &
B 2 4 O 2 164
¢ 3 b O & 35

6/

SUBSTITUTE SHEET (RULE 26)

WO 2013/070800 PCT/US2012/063989

— » 0B | OB .. OB

(%)
<
3]

Group
Scheduler

o Misston Critical oY Non Critical

Business Critical

~304A o 304R oo 3040
i } i ¥ | §
BN - Goal Cioal Goal

- Scheduler Scheduler i seheduler

/’Y‘\ N IOP Laieﬁcy 10Ps Latenc v 10OPs Latenc ¥
v Throughput - Throughput | - Throughput |
¥ ¥ ¥ ¥ ¥ ¥ ¥ v ¥

OB OB IGB 0B OB 0B OB OB OB

OB OB IGB 0B OB 0B OB OB OB

o
é‘
2)
£ 3161
2 N
£
Z OB FOR 0B OB OB 0B FOR OB FOR
316A | | 316B | | 316C 36D | 316R | | 318F 316G | 316H | 3161
& N N N N N N N N N
\Tr‘j 310A | 3084 306A 3ToB | 3083 3068 stoC| 308C 0 306C
oy
Shared <
Hardware
Schediler
e 314

L HEE 0B 10B

Next
Filter

-t

/8 Figure 6

SUBSTITUTE SHEET (RULE 26)

WO 2013/070800

PCT/US2012/063989
e 340

Journal
Page
342
\\\\\\\\\\\\\\\\\\\ 640 Gagabytes
Journal ! .
Journal .
Page o Journal
- Erdry .
Header | 7, 16 Entry
| Journal
Journal U ¢
L Eniry
i Bntry -
| z Data
i Header Field
| o qeld
g
S T
/ \\\\\\\\\\\\\\\\
Journal Journal
Block Bl ;‘kl
351 e
Journal Table
roat roal
Lager ID LBA fou Jonms
Page Entry
4 7 8
9 3 7 i
i5 9 9
i v 9 9
i v 16 4]
14 16 1

SUBSTITUTE SHEET (RULE 26)

Figue 7

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2012/063989

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F3/06
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

the whole document

9 March 1999 (1999-03-09)
abstract
column 13, Tine 52 - Tine 62

SASHIKANTH [US] ET AL)
16 November 2006 (2006-11-16)
abstract

paragraphs [0001] - [0009],
[0025], [0030], [0045],

[0019],
[0052],

X US 2610/332401 Al (PRAHLAD ANAND [IN] ET 1-29
AL) 30 December 2010 (2010-12-30)

X US 5 881 311 A (WOODS HAROLD L [US]) 1-29

X US 2006/259728 Al (CHANDRASEKARAN 1-29

[0058]

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

5 February 2013

Date of mailing of the international search report

11/02/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Limacher, Rolf

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2012/063989
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2010332401 Al 30-12-2010 AU 2010266433 Al 19-01-2012
CA 2765624 Al 06-01-2011
EP 2449477 A2 09-05-2012
US 2010332401 Al 30-12-2010
US 2010332454 Al 30-12-2010
US 2010332456 Al 30-12-2010
US 2010332479 Al 30-12-2010
US 2010332818 Al 30-12-2010
US 2010333116 Al 30-12-2010
US 2013024424 Al 24-01-2013
WO 2011002777 A2 06-01-2011
US 5881311 A 09-03-1999 NONE
US 2006259728 Al 16-11-2006 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - claims
	Page 87 - claims
	Page 88 - claims
	Page 89 - claims
	Page 90 - claims
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - wo-search-report
	Page 100 - wo-search-report

