Title: PROCESS ALLOWING THE DELIGNIFICATION AND THE TRANSFORMATION INTO SUGAR OF LIGNOCELLULOSIC VEGETAL MATERIALS BY USING ORGANIC SOLVENTS

Bezeichnung: VERFAHREN ZUM ENTLIGNIFIZIEREN UND VERZUCKERN VON PFLANZLICHEN LIGNOCELLULOSE-MATERIALIEN UNTER VERWENDUNG ORGANISCHER LÖSUNGSMITTEL
(57) Abstract

Minced lignocellulose, such as wood, straw, bamboo, bagasse or any other structured vegetal material, is treated in a discontinuous or continuous process. The process consists in boiling this material in an acidified mixture of solvents in an aqueous phase. This mixture of solvents contains water in a proportion of 30 to 70 parts and an organic solvent in a proportion of 70 to 30 parts. The organic solvent consists of either an alcohol of light molecular weight, or a ketone of light molecular weight; it must be easily evaporable and soluble in water. The pH of the medium is adjusted to a pH from 3.5 to 1.7 by adding a catalytic compound selected within the group of the strong acids: hydrochloric, nitric and phosphoric; within the group of these strong acids neutralized by their neutral salts; within the group of the following organic acids: oxalic, maleic, p-phthalic, l-malic, succinic, nicotinic, salicylic and trifluoroacetic. The boiling temperatures range between 160 and 210°C, preferably between 180 and 200°C. After three minutes at the minimum, we obtain the separation of the lignin and the hydrolysis of the hemicelluloses dissolved; after that, the fibres are easily dispersible while forming a pulp. By proceeding to a mechanical refining at a high pressure, a high density thermomechanical pulp is obtained after a shorter boiling time. With the neutralized acids, as well as with the organic acids, particularly with the oxalic acid, we can obtain a fibre with a high degree of polymerization. The lignin is obtained as a precipitate which separates from the liquid; the liquid solvent, usually ethanol or acetone, is evaporated; then the drained lignin is redissolved in the minimal quantity of acetone; a new precipitation with an excess of water allows to obtain the lignin in the form of a slightly coloured powder. A prolonged boiling dehydrates and disaggregates the sugar; by the strong acids action, takes place the formation of light molecular weight or microcrystalline cellulose, glucose or organic acids, methanol and furfural compounds.

(57) Zusammenfassung

(57) LEDIGLICH ZUR INFORMATION

Code, die zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäß dem PCT veröffentlicht.

<table>
<thead>
<tr>
<th>Code</th>
<th>Staat</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR</td>
<td>Brasilien</td>
</tr>
<tr>
<td>CA</td>
<td>Kanada</td>
</tr>
<tr>
<td>CP</td>
<td>Zentrales Afrikanisches Kaiserreich</td>
</tr>
<tr>
<td>CG</td>
<td>Kongo</td>
</tr>
<tr>
<td>CH</td>
<td>Schweiz</td>
</tr>
<tr>
<td>CM</td>
<td>Kamerun</td>
</tr>
<tr>
<td>DE</td>
<td>Deutschland, Bundesrepublik</td>
</tr>
<tr>
<td>DK</td>
<td>Dänemark</td>
</tr>
<tr>
<td>FR</td>
<td>Frankreich</td>
</tr>
<tr>
<td>GA</td>
<td>Gabun</td>
</tr>
<tr>
<td>GB</td>
<td>Vereinigtes Königreich</td>
</tr>
<tr>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>LU</td>
<td>Luxemburg</td>
</tr>
<tr>
<td>MG</td>
<td>Madagaskar</td>
</tr>
<tr>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>SE</td>
<td>Schweden</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>SU</td>
<td>Sowjetunion</td>
</tr>
<tr>
<td>TD</td>
<td>Tschechien</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>US</td>
<td>Vereinigte Staaten von Amerika</td>
</tr>
</tbody>
</table>
Verfahren zum Entlignifizieren und Verzuckern von pflanzlichen Lignocellulosematerialien unter Mitverwendung organischer Lösungsmittel

Die Erfindung betrifft ein neues säurekatalysiertes Hydrolyseverfahren zur raschen Lösung von Lignin und Hemicellulose aus Forst- und Agrikulturmaterialien und Gewinnung von Cellulosefasermaterial oder seiner Umwandlungsprodukte, Lignin und Zuckern oder deren Umwandlungsprodukten.

Die Erfindung betrifft insbesondere die Verringerung der Zeit, die zum Abtrennen der Cellulosefaser von Lignocellulose erforderlich ist, und die Gewinnung der Faser in einem hohen Polymerisationsgrad, zu welchem Zweck ein neues Lösungsmittelgemisch, das aus Wasser und einem flüssigen organischen Lösungsmittel, katalysiert durch einen sauren Zusatz, der das Lösungsmittelgemisch auf ein pH in dem Bereich von 3,5 bis 1,7 einstellt, besteht, verwendet wird.

Holz besteht aus etwa 40 bis 50 Gew.-% Cellulosepolymer in Faserform, nämlich einem Polymer aus 8-Anhydroglucosideinheiten, etwa 15 bis 20 Gew.-% Hemicellulose, die unterschiedlich aus Mannose, Xylose und anderen Hexose- und Pentosezuckern und Uronsäuren besteht, und etwa 20 bis etwa 30 Gew.-% Lignin, das aus einer Anzahl Ligninsubstanzen aus phenolischen Struktureinheiten in polymerer Form besteht. Als weitere Komponenten können in unterschiedlichen Mengen Wachse, Gummis und maskierte mineralische Verbindungen anwesend sein.

Ziel der Holzverwertungsverfahren ist es, dessen Bestandteile so sauber wie möglich und mit geringstmöglicherem Abbau der Bestandteile oder der Subkomponente eines Bestandteiles voneinander zu trennen, d.h. jeden Bestandteil in natürlicher Form zu gewinnen. Die Verfahren zur Abtrennung der Cellulosefaser erfordern die Entfernung eines möglichst großen Anteils des Lignins, damit die Fasern zu einer Pülp dispergiert werden, eine Faser von hohem Bindevermögen erhalten wird und möglichst wenig Bleichen erforderlich ist. Die Verwendbarkeit von Cellulose als Viehfutter wird stark verbessert, wenn der Restligninanteil auf unter 5% gesenkt wird. Da die Lignine und Hemicellulose die kristallinen Cellulosefasern als die Zellwände bildende Schichten umgeben, war die Entfernung dieser amorphen, verhältnismäßig porösen Substanzen durch chemischen Angriff die Grundlage der meisten bekannten Auftrennungsverfahren.

Die Frage, in welcher Weise Lignin, Hemicellulose und Cellulosepolymer miteinander verbunden sind, ist noch heute weitgehend ungelöst. Es spricht jedoch einiges dafür, daß eine gewisse Bindung zwischen einem geringen Anteil des Lignins und einem Anteil der Hemicellulose vorliegt. Mit viel Arbeitsaufwand sind chemische Trennverfahren entwickelt worden, die jedoch alle eine Modifikation oder einen Abbau von Lignin und Hemicellulose, die bei hoher Tempe-
ratur und hoher Azidität oder Alkalinität rasch angegriffen werden, mit sich brachten. Auch die kristalline Cellulose wird beträchtlich abgebaut, insbesondere durch Aufbrechen der Polymerketten an den ungeordneten Kristallstellen. Die nach den bekannten säurekatalysierten Verfahren abgetrennten Fasern enthalten noch ungelöstes Lignin und Hemicellulose, so daß weitere Behandlungen mit alkalischen Lösungen und/oder Eichmitteln erforderlich sind, durch die ein weiterer Abbau der Cellulose erfolgt.

Die Erfindung ist eine Verbesserung der bekannten, mit organischen Lösungsmitteln zur Preissetzung der Cellulosefaser arbeitenden Verfahren und besteht in einer optimalen Kombination von flüssigem organischem Lösungsmittel im Gemisch mit Wasser, die ausgezeichnet in Hemicellulose und Lignin einzudringen und die in ihm enthaltene saure katalytische Verbindung heranzutragen vermag, so daß das saure Gemisch Lignin und Hemicellulose rasch hydrolysieren und die Hydrolyseprodukte unter Infreiheitsetzung einer Cellulosefaser hoher Festigkeit auflösen kann. Es wurde gefunden, daß ein Gemisch aus einem flüssigen, flüchtigen, wasserlöslichen organischen Lösungsmittel mit einem Löslichkeitsparameter in dem Bereich von 10 bis 13, das entweder ein niedrigmolekularer aliphatischer Alkohol oder ein niedrigmolekulares aliphatisches Keton ist, mit Wasser in einem Verhältnis zwischen 0,43 und 2,33, das
durch Zusatz eines bestimmten Hydrolysekatalysators auf ein pH in dem Bereich von 3,5 bis 1,7 angesäuet ist, rasch in Lignocellulose eindringt und bei erhöhter Temperatur Lignin und Hemicellulose zu ihren Monomeren abbaut, ohne den Polymerisationsgrad der Cellulosefaser beträchtlich zu verringern. Die Entlignifizierung und Verzuckerung in Masse kann bis zu jedem gewünschten Grad durchgeführt werden, indem man die Kochzeit verlängert, wobei diese bis herunter zu 5 Minuten betragen kann, um Espenfasern in Freiheit zu setzen, oder bis zu 1 Stunde oder darunter, um Holz bis zu einem Feststoffrückstand von nur 1% aufzuschließen.

Hauptaufgabe der Erfindung ist daher eine Kochflüssigkeit, mit der außerordentlich rasch Cellulosefasern in vernähtnismäßig unbegabtem Zustand abgetrennt werden können.

Eine weitere Aufgabe der Erfindung ist eine Kochflüssigkeit, die entweder zum Abtrennen von Cellulosefasern oder zum Verzuckern von Lignocellulose bis zu einem gewünschten Grad, einschließlich einer praktisch vollständigen Auflösung des Holzes, verwendet werden kann.

In den Zeichnungen sind:

Figur 1 eine schematische Darstellung, die erkennen läßt, welche Produkte nach dem Verfahren erhalten werden, wenn Lignocellulose verschieden lange behandelt wird; und

Figuren 2A, 2B und 2C schematische Darstellungen einer Vorrichtung zur Durchführung des Verfahrens, mit dem die Produkte von Figur 1 erhalten werden.

Lösungsmittelgemische und ihre Wirkungen auf die Bestandteile von Lignocellulose

Es wurde gefunden, daß eine Verschiebung der Sauerstoff/Deuterium (OD)-Wellenlänge im Infrarotgebiet der -OH-Bindung, wenn ein Wasserstoff bindendes Lösungsmittel mit schwerem Methanol (CH₃OD) vermischt wird, proportional dem Wasserstoffbindungsvermögen des Lösungsmittels ist. Für die beste Ligninlöslichkeit hat sich eine Verschiebung von 0,14 Einheiten als optimal ergeben. Werte unter diesem Wert kennzeichnen mäßige oder schlechte Ligninlösungsmittel. Wie aus Tabelle I, in der die Löslichkeitsparameter und Deuteriumverschiebungen für einige organische flüssige Lösungsmittel zusammengestellt sind, ersichtlich ist, ist die Löslichkeit von Lignin auf Lösungsmittel mit einem Löslichkeitsparameter in einem engen Bereich von allgemein zwischen etwa 10 und 13 Einheiten beschränkt, wobei diese willkürliche Zahlenwerte sind, die Dampfdruckmessungen zugeordnet werden und einer optimalen Infrarotverschiebung für -OH-OD von 0,14 entsprechen.
Lösungs-	Löslichkeits-	Deuterium-	Löslichkeit des
mittel	parameter	verschiebung	ursprünglich an-
			wendenden Lignins
Äther	7,5	0,19	unlöslich
Methyläthyl-	9,3	0,11	teillöslich
keton			
Dioxan	10,0	0,14	löslich
Aceton	10,0	0,14	löslich
Pyridin	10,7	0,27	löslich
Methyl-	10,8	über 0,4	löslich
Cellusolve			
Äthanol	12,7	über 0,4	löslich
Äthylen-	14,2	0,31	löslich
glykol			
Glycerin	16,5	über 0,4	unlöslich
Wasser	23,4	über 0,4	unlöslich

Wasser hat bekanntlich ein beschränktes Lösungsvermögen für gewisse Lignine und vermag hauptsächlich Monomereinheiten polarer Natur aufzulösen. Lignine von mittlerem bis niedrigem Molekulargewicht vermögen sich in den niedrigmolekularen aliphatischen Alkoholen zu lösen, während sich Dioxan, Aceton und Pyridin als ausgezeichnete Lösungsmittel für alle Molekulargrößen, die in durch milde Extraktionsmethoden erhaltenen Ligninzubereitungen anwesend sind, erwiesen haben.

Es wurde nun gefunden, daß die Löslichkeit von natürlichen polymerem Lignin in einem Gemisch eines hydroxylierten Lösungsmittels, wie Wasser oder den niedrigmolekularen aliphatischen Alkoholen,
mit einem guten Ligninlösungsmittel, wie Dioxan, Aceton, Äthanol oder Pyridin, größer ist als in dem reinen flüssigen Lösungsmittel allein. Dieser Effekt ist besonders stark bei Gemischen, die Wasser und Äthanol oder Dioxan enthalten, am eindrucksvollsten jedoch in Gemischen von Aceton und Wasser, die, wenn die Bestandteile in nahezu gleichen Mengen anwesend sind, außerordentlich rasch in Lignocellulose eindringen.

Eine wirksame Hydrolyse von Lignocellulose wird erzielt, wenn das Mischungsverhältnis von organischem flüssigem Lösungsmittel zu Wasser in dem Bereich von etwa 30 bis 70 Teilen Lösungsmittel zu 70 bis 30 Teilen Wasser liegt. Da während eines Kochvorgangs die gleichzeitig hydrolysierten Zucker und Lignine von dem gemeinsamen Lösungsmittelgemisch aufgenommen werden müssen, muß das Lösungsmittelgemisch im Überschuß — gewöhnlich in einer Menge von dem 4- bis 12-fachen des Holzgewichtes — verwendet werden, und außerdem muß eine ausreichende Menge an Wasser, insbesondere während der späteren Stadien des Kochens, während deren das Kohlenhydratauf-
lösungsvermögen der Lösung kritisch wird, anwesend sein, um die Zucker, die in dem organischen Lösungsmittel weitgehend unlöslich sind, löslich zu machen. Wenn die Faserabtrennung in zwei aufeinander folgenden Stufen, in denen verschiedene Lösungsmittelgemische verwendet werden, durchgeführt wird, sind für das zuerst verwendete Lösungsmittel allgemein höhere Verhältnisse von organischem Lösungsmittel zu Wasser von Vorteil, um die Lignine aufzunehmen, während während der späteren Stufe, wenn die Hydrolyse auf die Auflösung von restlicher Hemicellulose und Glucan beschränkt ist, niedrigere Verhältnisse von flüssigem Lösungsmittel zu Wasser bevorzugt sind, um die höheren Konzentrationen an hydrolysierten Zuckern aufzunehmen.

Eigenschaften von angesäuerten Kochflüssigkeiten

Lösungsmittelgemische aus Wasser und einem organischen Lösungsmittel, wie Aceton, Äthanol oder Dioxan, die eine saure Verbindung gelöst enthalten und ein pH von nur 1,7 haben, ermöglichen das Fort-

Milde Hydrolysierungskatalysatoren sind allgemein geeignet für die Herstellung von Pülp en für die Papierherstellung, während eine Cellulose hoher Reinheit, wenn auch von geringerem Polymerisationsgrad – im folgenden "DP" bezeichnet – am besten bei Verwendung starker Säuren in dem Lösungsmittelgemisch erhalten wird, wobei starke Säuren dann erforderlich sind, wenn eine vollständige Holzverzuckerung erzielt werden soll. Es hätte erwartet werden können, daß starke Säuren mit hohen Dissoziationskonstanten, d.h. nahe an Einheitlichkeit, rascher und stärker wirkende Hydrolysierungsmittel als komplexe Säuren und organische Säuren mit niedrigen Dissoziationskonstanten sind. Diesen Erwartungen wird jedoch durch die angesäuerten Lösungsmittelgemische nicht entsprochen.

Die Azidität ist eine makroskopische Eigenschaft, die das Vermögen der Lösung, Protonen für eine Umsetzung mit einer Base oder für die Einstellung eines Ladungsübergangsverfahrens verfügbar zu machen, anzeigt und wird auf Messungen, die auf herkömmlichen Einzel-

Die Ionenstärke ergibt sich gewöhnlich ziemlich genau aus der Ionisierungsentropie, die für verschiedene Säuren verschieden ist, was hauptsächlich auf die Wirkung der in Mischungen von Lösungsmitteln und Gelöstem anwesenden Anionen zurückzuführen ist. Wenn Überlegungen hinsichtlich Ionengleichgewicht und Reaktivität in einer Umsetzung in Lösung angestellt werden, müssen die Wirkungen des betreffenden Lösungsmittels berücksichtigt werden, weil durch Wechselwirkungen zwischen Lösungsmittel und Ionen die Beweglichkeit der Ionen, das Ionenpotential und die kinetische Energie der Ionen modifiziert werden.

Das elektrostatische Wasserstoffbindungsvermögen von Lösungsmitteln und ihre Selbstdissoziation werden gewöhnlich als Ursache von Änderungen der Ionisationskonstanten von Säuren in Lösung angesehen. Beispielsweise modifiziert die Dielektrizitätskonstante eines Lösungsmittels den Aktivitätskoeffizienten von gelösten geladenen Teilchen. Wenn eine neutrale Säure in einem wäßrig/organischen Lösungsmittelgemisch gelöst wird, so werden durch eine Senkung der Dielektrizitätskonstante des Lösungsmittels die Aktivitätskoeffizienten der Protonen und der solvatisierten Anionen gesenkt, wodurch auch die Ionisierungskonstante der Säure gesenkt wird. Es wurden jedoch starke Unterschiede gegenüber den erwarteten Änderungen der Ionisationskonstante sowohl in wäßrig-amphiprotischen Lösungsmitteln, wie Äthanol/Wasser, die durch Wasserstoffbindung gekennzeichnet sind, als auch in wäßrig-aprotischen Lösungsmitteln, wie Aceton/Wasser, die durch die Abwesenheit von Wasserstoffbindung gekennzeichnet sind, festgestellt. Es zeigte sich, daß die Ionenleitfähigkeiten bei den Säuren sehr unregelmäßig mit einer Änderung der
Lösungsmittel variieren, was darauf hinweist, daß es keine direkte Beziehung zwischen der Leitfähigkeit und der Dielektrizitätskonstanten des Lösungsmittels oder der Fluidität oder den Assoziations-tendenzen der Lösungsmittel gibt.

Amphiprotische Lösungsmittel haben eine gute Protonenstabilität, weil freie Protonen wegen ihrer Kombination mit einigen Spezies von Gelöstem/Lösungsmittel, die den gleichen Charakter in solchen Lösungsmitteln haben, kaum verfügbar sind. Variationen in Protonenakzeptor/Donor-Kapazitäten amphiprotischer Lösungsmittel hängen von der Säurestärke und Basenstärke des Lösungsmittels selbst ab, so daß, wenn zwei amphiprotische Lösungsmittel die gleichen autoprotolytischen Konstanten, nämlich Dissoziations- oder Ionenproduktkonstanten, besitzen, sehr verschiedene Wirkungen auf das Säureverhalten solcher Lösungsmittel festzustellen sind. Dies ergibt sich aus der Tatsache, daß die Wechselwirkungen zwischen Ionen und Lösungsmittel
gewöhnlich stärker sind als die Wechselwirkungen zwischen den ungeladenen Teilchen, was dazu führt, daß Solvatationen der betreffenden Säureanionen in den verschiedenen Lösungsmittelsystemen ungleich werden. Da sich verschiedene Säure/Base-Gleichgewichte einstellen, hängen die Säurestärken von der Art des Lösungsmittel systems ab. Diese Wirkungen können in Rechnung gesetzt werden, wenn ein saurer Zusatz für ein Lösungsmittelgemisch von gewünschtem Hydrolysierungsvermögen gewählt wird, beispielsweise wenn das Hydrolysierungsvermögen ausreichend soll, um Hemicellulose zu Zuckern abzubauen, jedoch nicht ausreichend soll, um das Glucan anzugreifen.

Da die Ionenstärke von Säuren von der Protonenabgabe der Säuren und der Solvolyse der Anionen in diesen Lösungsmitteln verschieden beeinflußt wird, müssen Messungen des Potentials der Wasserstoffelektrode so durchgeführt werden, daß direkt als grobes Maß die mittlere Wirkung auf das Wasserstoffion gemessen wird, obwohl feststeht, daß das Wasserstoffelektrodenpotential und die Stabilität beträchtlich von dem Lösungsmittelsystem abhängen. Die in Tabelle II zusammengestellten pH- und Leitfähigkeitswerte veranschaulichen die obigen Zusammenhänge.
Tabelle II

pH und Leitfähigkeit der Lösungsmittel, Lösungsmittelgemische und der angesäuerten Kochflüssigkeit

<table>
<thead>
<tr>
<th>Hydrolysieren-</th>
<th>Säurekon-</th>
<th>Einzelnes Lösungsmittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>der saurer</td>
<td>zentration,</td>
<td>Wasser</td>
</tr>
<tr>
<td>Katalysator</td>
<td>Molarität</td>
<td>Leitfähigk.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>6,4</td>
<td>0,84**</td>
</tr>
<tr>
<td>0,01</td>
<td>2,2</td>
<td></td>
</tr>
<tr>
<td>HCl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,025</td>
<td>1,96</td>
<td>9,7</td>
</tr>
<tr>
<td>0,05</td>
<td>1,75</td>
<td>11,0</td>
</tr>
<tr>
<td>0,10</td>
<td>1,1</td>
<td>37,0</td>
</tr>
<tr>
<td>Oxalsäure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,025</td>
<td>2,05</td>
<td>4,0</td>
</tr>
<tr>
<td>0,05</td>
<td>1,82</td>
<td>7,0</td>
</tr>
<tr>
<td>0,10</td>
<td>1,65</td>
<td>11,9</td>
</tr>
<tr>
<td>gepufferte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Säure</td>
<td></td>
<td>1,93</td>
</tr>
<tr>
<td>Hydrolýsierender saurer Katalysator</td>
<td>Säurekonzentration, Molarität</td>
<td>Lösungsmittelgemisch</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Äthylalk.:H₂O 60:40</td>
</tr>
<tr>
<td></td>
<td>Leitfähigkeit</td>
<td>mmho</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>5,35</td>
<td>29,9</td>
</tr>
<tr>
<td>0,01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,025</td>
<td>2,35</td>
<td>0,54</td>
</tr>
<tr>
<td>0,05</td>
<td>2,06</td>
<td>1,04</td>
</tr>
<tr>
<td>0,10</td>
<td>1,81</td>
<td>2,00</td>
</tr>
<tr>
<td>HCl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,025</td>
<td>2,58</td>
<td>0,58</td>
</tr>
<tr>
<td>0,05</td>
<td>2,37</td>
<td>1,48</td>
</tr>
<tr>
<td>0,10</td>
<td>2,20</td>
<td>1,46</td>
</tr>
<tr>
<td>Oxalsäure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gepufferte Säure</td>
<td>-</td>
<td>2,05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Puffer: (25 ml 0,2m KCl + 6,5 ml 0,2m HCl) verdünnt auf 400 ml für 60:40 und auf 500 ml für 50:50

** Die so gekennzeichneten Werte sind Mikromho und nicht Millimho.

Im allgemeinen ist festzustellen, daß bei Dicarbonsäuren, in denen die Gruppen −COOH näher aneinander stehen, die Wirkung der Zumischung von Alkohol auf den pH-Wert für die erste Dissoziation größer ist als für die zweite. Diese Wirkung ist weniger ausgeprägt bei Säuren, in denen die Gruppen −COOH weiter voneinander entfernt sind. Der Aktivitätsfaktor wird durch die Zugabe von Alkohol für undissozierte Moleküle weniger beeinflußt als für die Lyoniumionen.

Wenn Lösungsmittelgemische mit Säuren vermischt werden, die in einer Molarität über 0,025 bis 0,05 anwesend sein müssen, damit das pH auf 2,5 oder darunter eingestellt wird, so ist die Wirkung des Gemisches hinsichtlich der Abtrennung von Cellulosefaser von Lignocellulose mäßig, weil diese Säuren lange Kochzeiten und/oder hohe Säurekonzentrationen und damit einen hohen Energieverbrauch erfordern und zu extremer Depolymerisation der Cellulose führen. In Tabelle III sind für eine Anzahl organischer Mono- und Dicarbonsäuren das Entlignifiziervermögen bei einer molaren Konzentration von 0,05 in einem Äthanol/Wasser-Gemisch 60:40 bei 200°C, die zugehörigen Kappa-Werte und der Restgehalt an Lignin auf den Fasern, der Grad der Faserabtrennung und die TAPPI-Viskosität, die den Polymerisationsgrad der Faser kennzeichnet, angegeben. Es wurde Fichten-Lignocellulose mit einem Chlorit-holocellulosegehalt von 77,5% verwendet. Es zeigt sich, daß, sofern bei 30 Minuten keine Faserabtrennung erfolgte, ein unzureichend niedriges pH der Koch-
flüssigkeit allgemein ein mitbestimmender Faktor war, obwohl sich Ausnahmen für den Fall der Monochlor- und der Trichloressigsäure erkennen lassen.
<table>
<thead>
<tr>
<th>Organische Säure</th>
<th>Erste Dissoziationskonstante in H_2O</th>
<th>Erster Ionisierungs P_{K_A}</th>
<th>pH des Lösungsmittelgemisches vor dem Kochen</th>
<th>Kochzeit min.</th>
<th>Ausbeute an Püle</th>
<th>Kappa-Zahl/Restlignin</th>
<th>DP TAPPIViskosität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ameisensäure</td>
<td>1,77 x 10^{-4}</td>
<td>3,75/5,01</td>
<td>30</td>
<td>77,5 KPT</td>
<td>1,27</td>
<td>1220</td>
<td>-</td>
</tr>
<tr>
<td>Essigsäure</td>
<td>1,76 x 10^{-3}</td>
<td>4,75/6,29</td>
<td>30</td>
<td>KPT</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oxalsäure</td>
<td>5,9 x 10^{-5}</td>
<td>1,23/2,52</td>
<td>2,2</td>
<td>10</td>
<td>67</td>
<td>120/15/6</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>6,4 x 10^{-5}</td>
<td></td>
<td>3,5</td>
<td>20</td>
<td>57</td>
<td>79/10,3</td>
<td>950</td>
</tr>
<tr>
<td>L-Apfelsäure</td>
<td>3,9 x 10^{-4}</td>
<td>-</td>
<td>2,9</td>
<td>30</td>
<td>56</td>
<td>95/12,4</td>
<td>895</td>
</tr>
<tr>
<td></td>
<td>7,8 x 10^{-6}</td>
<td></td>
<td>3,5</td>
<td>30</td>
<td>56</td>
<td>95/12,4</td>
<td>895</td>
</tr>
<tr>
<td>Maleinsäure</td>
<td>1,42 x 10^{-2}</td>
<td>1,30/2,27</td>
<td>2,05</td>
<td>60</td>
<td>53</td>
<td>75/9,8</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td>8,57 x 10^{-7}</td>
<td></td>
<td>3,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malonsäure</td>
<td>1,49 x 10^{-3}</td>
<td>2,75/3,94</td>
<td>4,1</td>
<td>30</td>
<td>KPT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2,03 x 10^{-6}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bernsteinäure</td>
<td>6,89 x 10^{-3}</td>
<td>4,16/5,64</td>
<td>3,4</td>
<td>30</td>
<td>54</td>
<td>81/10,5</td>
<td>783</td>
</tr>
<tr>
<td></td>
<td>2,47 x 10^{-6}</td>
<td></td>
<td>3,84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fumarsäure</td>
<td>9,30 x 10^{-4}</td>
<td>2,8/4,24</td>
<td>2,86</td>
<td>30</td>
<td>KPT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3,62 x 10^{-5}</td>
<td></td>
<td>2,58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o-Phtalsäure</td>
<td>1,3 x 10^{-3}</td>
<td>2,77/3,84</td>
<td>2,75</td>
<td>30</td>
<td>60</td>
<td>95/12,4</td>
<td>1100</td>
</tr>
<tr>
<td></td>
<td>3,9 x 10^{-6}</td>
<td></td>
<td>3,28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1: Fichten-Chlorit-holocellulose
<table>
<thead>
<tr>
<th>Organische Säure</th>
<th>Erste Dissoziationskonstante in H₂O</th>
<th>Erster Ionisations pHₐ, H₂O, 60% Alkohol</th>
<th>pH des Lösungsmittelpulpes vor dem Kochen</th>
<th>pH des Lösungsmittelpulpes nach dem Kochen</th>
<th>Kochzeit min.</th>
<th>Ausbeute an Pülpe %</th>
<th>Kappa - Zahl/Restlignin</th>
<th>DP TAPPI-Viskosität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferulasäure</td>
<td>-</td>
<td>3,77</td>
<td>4,4</td>
<td>30</td>
<td>KFT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicotinsäure</td>
<td>1,50 x 10⁻³</td>
<td>3,45</td>
<td>3,55</td>
<td>60</td>
<td>57</td>
<td>72/9,4</td>
<td>980</td>
<td></td>
</tr>
<tr>
<td>1,04 x 10⁻¹²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salicylsäure</td>
<td>1,07 x 10⁻³</td>
<td>3,0/4,46</td>
<td>2,90</td>
<td>3,62</td>
<td>30</td>
<td>53</td>
<td>68/8,8</td>
<td>1000</td>
</tr>
<tr>
<td>4,0 x 10⁻¹⁴</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trifluoresiglsäure</td>
<td>5,88 x 10⁻¹</td>
<td>1,96</td>
<td>2,30</td>
<td>15</td>
<td>52</td>
<td>63/8,19</td>
<td>520</td>
<td></td>
</tr>
<tr>
<td>Gallussäure</td>
<td>3,9 x 10⁻⁵</td>
<td>3,72</td>
<td>4,1</td>
<td>30</td>
<td>KFT</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Monochloressigsäure</td>
<td>1,40 x 10⁻³</td>
<td>2,85/4,04</td>
<td>2,4</td>
<td>3,1</td>
<td>30</td>
<td>KFT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Trichloressigsäure</td>
<td>2 x 10⁻¹</td>
<td>0,70/?</td>
<td>1,98</td>
<td>3,65</td>
<td>30</td>
<td>KFT</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Alle Kochflüssigkeiten sind Äthanol/Wasser-Gemische 60:40. Alle Säuren sind 0,05molar. KFT: Keine Fasertrennung.
Fasertrennung und Verzuckerung von Lignocellulose
durch säurekatalysierte wäbrige/organische Lösungs-
mittelgemische

Lignocellulose, die mit den heißen, wäbrigen, angesäuerten or-
 ganischen Lösungsmittelgemischen gemäß der Erfindung imprägniert
 sind, unterliegen augenblicklich der Entlignifizierung und Ver-
zuckerung durch das Lösungsmittelgemisch, so daß fortschreitend
die Bestandteile voneinander getrennt werden. Anfänglich dringt das
Gemisch nur in die leicht zugängliche Hemicellulose und das Lignin
 ein und hydrolysiert diese, und der gelöste Hemicellulosezucker und
Lignin werden in den Hauptteil des Gemisches geführt, von wo sie
durch Abziehen der Flüssigkeit entfernt werden können, um eine Zer-
setzung zu vermeiden und ihre Gewinnung in sehr reinem Zustand zu
ermöglichen.

Kurz nach Einsetzen der Löslichmachung erfolgt, wenn ein
aggressiver saurer Katalysator verwendet wird, eine ungeordnete
Hydrolyse des Glucans, die an den zugänglichen Stellen der Cellu-
losefasern, die durch die Entfernung von Hemicellulose freigelegt
werden, beginnt, zu den Mikrofasern und Kristalliten fortschreitet
und zu gegebener Zeit die Cellulose bis zu einem niedrigen DP de-
polymerisiert. Die starken Säuren - Salzsäure, Schwefelsäure,
Phosphorsäure und Salpetersäure - haben bei molaren Konzentrationen
unter 0,05 als saure katalysierende Verbindungen in dem Lösungsmi-
telgemisch das Vermögen, den DP-Wert so rasch zu senken, daß zu der
Zeit, wenn durch das Kochen eine mechanische Faserabtrennung, beis-
pielsweise durch Raffinieren oder Vermahlen des Lignocellulose-
rückstandes, möglich gemacht worden ist, der DP-Wert bereits stark
gesenkt ist.

Wenn das Kochen weiter fortgesetzt wird, werden durch die
hydrolysierende Wirkung des Lösungsmittelgemisches die Kristallite

BUREAU

Das von dem Lösungsmittelgemisch gelöste Lignin kann in nicht-
verunreinigtem Zustand gewonnen werden, indem man es aus der Mutter-
lauge durch Abdestillieren der flüchtigen Komponente abtrennt. Da-
bei fällt es in zuckerfreiem Zustand in solcher Form an, daß es in
den üblichen organischen Lösungsmitteln, wie Aceton, Äthanol, Di-
oxan, Pyridin, DMSO, Methylcellulose und Tetrahydrofuran, gelöst
werden kann.

Die gelösten Kohlenhydrate, die in monomerer Form vorliegen,
können leicht von der verbliebenen Flüssigkeit abgetrennt werden
und weiter, beispielsweise durch Fermentieren, Dehydratisieren,
Reduktion, Hydrieren, usw., aufgearbeitet werden. Es wurde gefunden,
dß die Verzuckerungswirkung des Lösungsmittelgemisches auf das
Glucan einer Kinetik erster Ordnung folgt, d.h. etwa 5 bis 10%
Glucoseausbeute je Minute-Kochzeit bei 200°C ergibt.

In den folgenden Beispielen, die bestimmte Kochverfahren be-
schreiben, wird der Einfluß von Zeit und Temperatur auf die Produkt-
gewinnung untersucht. Die gewählten bevorzugten Temperatur- und
Zeitparameter, auf die die verschiedenen Verfahren entsprechend den
gewünschten Produkten eingestellt werden, folgen allgemeinen Richt-
linien für die Hydrolyse von Lignocellulosebestandteilen, d.h.:
ungefährer Endpunkt für eine Hemicelluloseextraktion:
3 bis 5 Minuten Kochen bei 165 bis 180°C mit milder Säure
oder einem Gemisch Säure/Salz;
Produkte: Ligninlösung, Pülpe mit niedrigem Ligninge-
halt, Hemicellulosezucker;
ungefährer Endpunkt für die Gewinnung einer Pülpe hoher
Qualität:
Kochzeit 5 Minuten mehr bei 200°C mit milder Säure oder
einem Gemisch Säure/Salz;
Produkte: Faserpülpe bester Qualität, Ligninlösung,
Xylose- oder Mannosezucker, reduzierende Zucker;
ungefährer Endpunkt für mikrokristallinen Rückstand:
Kochzeit 5 Minuten länger bei 200°C mit starker Säure;
Produkte: Pilze mit hohem Lignininhalt und niedrigem DP,
Ligninlösung, reduzierende Zucker;
ungefährer Endpunkt für völlige Verzuckerung:
Kochzeit 4 bis 10 Minuten länger bei 200°C mit starker
Säure;
Produkte: fester Rückstand, Furfural oder Hydroxymethyl-
Furfural, organische Säuren, Methanol.

Es kann Bezug genommen werden auf Figur 1, die die fortschreitende
Zerlegung von Lignocellulose und die Arten der Gewinnung von Pro-
dukten spezieller Verfahrensvarianten veranschaulicht.

Beispiel I
In diesem Beispiel und der zugehörigen Tabelle IV wird das Auf-
lösungsvermögen für die Bestandteile von Cellulose von angesäuerten
wäßrig-organischen Lösungsmitteln verglichen. Insbesondere werden
Äthanol/Wasser/Säure-Gemische und Aceton/Wasser/Säure-Gemische hin-
sichtlich ihrer Wirkungen auf je 100 g Schnitzel aus Espe oder
Douglas-Tanne, verglichen. Je 100 g dieser Schnitzel wurden zusammen
mit 1200 ml Kochflüssigkeit aus Wasser und organischem Lösungsmittel
50:50 in einen Versuchszellstoffkocher eingebracht, wobei zwei An-
sätze mit acetonhaltigem Gemisch und die anderen beiden mit Äthanol-
haltigem Gemisch imprägniern wurden. Alle Flüssigkeiten enthielten
0,07 Gew-% HCl als hydrolysierenden Katalysator. Die Säure war einer
geeigneten Menge an Wasser zugesetzt worden, bevor das organische Lö-
sungsmittel zugemischt wurde, und die Volumkontraktion beim Ver-
mischen wurde mit wäßrigem Lösungsmittel 50:50 ausgeglichen, um die
gewünschte Säurekonzentration einzustellen. Von dem Inhalt des
Kochers wurden zu den angegebenen Zeiten Proben entnommen, ohne daß
dabei der Druck im Behälter gesenkt wurde, und diese Proben wurden
analysiert.
Tabelle IV

<table>
<thead>
<tr>
<th>Temperatur °C</th>
<th>Zeit min.</th>
<th>Lösungsmittel</th>
<th>Espe Ausbeute an Püpe %</th>
<th>Restan lignin %</th>
<th>Douglas-Tanne Ausbeute an Püpe %</th>
<th>Restan lignin %</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>7</td>
<td>Athanol</td>
<td>47,9</td>
<td>2,4</td>
<td>47,5</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td>45,4</td>
<td>1,8</td>
<td>42,0</td>
<td>5,85</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>31,2</td>
<td>0,5</td>
<td>31,5</td>
<td>2,1</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>28,6</td>
<td>-</td>
<td>26,8</td>
<td>-</td>
</tr>
<tr>
<td>200</td>
<td>7</td>
<td>Aceton</td>
<td>43,5</td>
<td>1,0</td>
<td>34,1</td>
<td>2,13</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td>34,2</td>
<td>0,35</td>
<td>22,5</td>
<td>1,30</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td>15,1</td>
<td>-</td>
<td>12,3</td>
<td>0,75</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>10,4</td>
<td>-</td>
<td>6,5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>3,7</td>
<td>-</td>
<td>2,03</td>
<td>-</td>
</tr>
</tbody>
</table>

Beispiel II

Das ganze Holz enthielt insgesamt 19% abtrennbares Lignin, insgesamt 74% abtrennbare Holocellulose, 56,3% als Glucose gewinnbare Cellulose und 17,9% abtrennbare Hemicellulose, die aus 1,9% Mannose und 16,0% Xylose bestand. Die angegebenen Werte zeigen, daß eine Erhöhung der Säurekonzentration von 0,01m auf 0,02m bei Verwendung von HCl eine nur geringe oder gar keine Wirkung auf die Reaktionsgeschwindigkeitskonstante bei konstanter Reaktionstemperatur und etwas unterschiedlichen Verhältnissen organisches Lösungsmittel: Wasser hat. Bei einer Verdreifachung der Konzentration - von 0,02m auf 0,06m ergab sich jedoch eine beträchtliche Wirkung, und der Einfluß einer Erhöhung der Säurekonzentration ist bei den höheren Konzentrationen denjenigen einer Erhöhung der Temperatur auf die Hydrolysegeschwindigkeit vergleichbar.
<table>
<thead>
<tr>
<th>Temp. °C</th>
<th>Zeit min.</th>
<th>Wasser: organ. Lösungsmittel</th>
<th>Säure & Konzentration m</th>
<th>Ausbeute an Pülpe, %</th>
<th>Lignin in Lösung, %</th>
<th>Glucose %</th>
<th>Mannose %</th>
<th>Xylose %</th>
<th>Hydrolysegeschwindigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>50:50</td>
<td>HCl, 0,02</td>
<td>60,2</td>
<td>15,9</td>
<td>1,2</td>
<td>1,3</td>
<td>14,9</td>
<td>0,11</td>
<td>r</td>
</tr>
<tr>
<td>2</td>
<td>50:50</td>
<td>HCl, 0,01</td>
<td>67,1</td>
<td>10,5</td>
<td>0,9</td>
<td>1,2</td>
<td>14,3</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>200</td>
<td>2</td>
<td>40:60</td>
<td>HCl, 0,01</td>
<td>65,1</td>
<td>11,5</td>
<td>1,2</td>
<td>1,3</td>
<td>11,1</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>40:60</td>
<td>HCl, 0,02</td>
<td>60,2</td>
<td>14,1</td>
<td>1,4</td>
<td>1,3</td>
<td>14,4</td>
<td>0,11</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>40:60</td>
<td>HCl, 0,06</td>
<td>59,6</td>
<td>16,4</td>
<td>1,1</td>
<td>1,4</td>
<td>11,4</td>
<td>0,19</td>
<td>--</td>
</tr>
<tr>
<td>7</td>
<td>50:50</td>
<td>OXA, 0,05</td>
<td>59,4</td>
<td>17,7</td>
<td>0,7</td>
<td>1,2</td>
<td>2,5*</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>200</td>
<td>7</td>
<td>50:50</td>
<td>OXA, 0,05</td>
<td>59,4</td>
<td>17,7</td>
<td>1,6</td>
<td>1,6</td>
<td>10,1**</td>
<td>--</td>
</tr>
<tr>
<td>7</td>
<td>50:50</td>
<td>OXA, 0,025</td>
<td>58,1</td>
<td>14,2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>200</td>
<td>2</td>
<td>50:50</td>
<td>HCl/KCl</td>
<td>65,6</td>
<td>12,8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>--</td>
</tr>
</tbody>
</table>

* Zuckerwerte vor der sekundären Hydrolyse
** Zuckerwerte nach der sekundären Hydrolyse für 60 Minuten mit 3%-iger H₂SO₄ bei 120°C.

(1) = Oxalsäure
Die mit einem gepufferten Gemisch aus starker Säure und Salz erhaltene überlegene Ausbeute an Pülpe und der hohe Wert an gelöstem Lignin machen die Gewinnung einer Faser hoher Festigkeit aus Pflanzenmaterialien aller Arten möglich, wie als nächstes gezeigt werden soll.

Die Reißlänge der Cellulosepülpe wird stark von der Restviskosität, d.h. dem Polymerisationsgrad der Cellulose nach der Isolierung der Faser beeinflußt. Starke Säuren sind selbst bei niedriger Konzentration nicht spezifisch in ihrer Hydrolysewirkung, insofern als sie alle glycosidischen Verknüpfungen in der Lignocellulose, einschließlich derjenigen Verknüpfungen, die sich in den Gebieten hoher Ordnung finden, hydrolysieren, d.h. amorphe, mesomorphe und kristalline Cellulose hydrolysieren.

Beispiel III

<table>
<thead>
<tr>
<th>Temp. Zeit</th>
<th>Säure und Konzentration, molar</th>
<th>Holzarten</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>min</td>
<td>HCl, 0,02</td>
<td>OXAz, 0,05</td>
<td>OXAz, 0,005</td>
</tr>
<tr>
<td>Ausgangsholz:</td>
<td></td>
<td>77,36</td>
<td>0,67</td>
<td>1440</td>
</tr>
<tr>
<td>200</td>
<td>5</td>
<td>46,9</td>
<td>1,0</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>53,2</td>
<td>4,9</td>
<td>980</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>51,2</td>
<td>3,5</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>200</td>
<td>5</td>
<td>59,4</td>
<td>5,8</td>
<td>1125</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>52,9</td>
<td>4,0</td>
<td>1025</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>51,9</td>
<td>2,31</td>
<td>870</td>
</tr>
<tr>
<td>200</td>
<td>3</td>
<td>65,6</td>
<td>6,2</td>
<td>465</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>56,8</td>
<td>4,2</td>
<td>450</td>
</tr>
</tbody>
</table>

※ OXAz = Oxalsäure 1 = Werte für Chlorit-holocellulose
Diese Werte zeigen die außerordentliche Verbesserung der Festigkeit von Pflanzenfasern jeder Art gegenüber denjenigen, die bisher durch chemische oder Bakterien/Fungus-Wirkung erhalten wurden. Die Festigkeit von Papierbahnen, Laminaten, Filtern, Garnen, Seilen und Tauwerk aus allen faserhaltigen Pflanzen kann offensichtlich durch die Anwendung des Verfahrens gemäß der Erfindung zur Freisetzung solcher Fasern sehr wesentlich verbessert werden.

Die halbmechanischen oder halbchemischen Pülpren stellen einen Kompromiss zwischen den hohen Ausbeuten mechanischer Pülpren, beispielsweise Holzschliff, und den sehr festen chemischen Pülpren dar, insofern als eine bessere Pülpe mit weniger beschädigten Fasern erhalten werden kann, wenn ein Teil des die Fasern verbindenden Materials, nämlich das Lignin und der Hemicellulosen, entfernt und das Fasernetzwerk durch chemische Einwirkung so weit erweicht wird, daß nur geringe Reißkräfte erforderlich sind, um die Fasergruppen zu löckern.

Eine derart verbesserte Pülpe wird in geringerer Ausbeute, jedoch mit höherer Blattfestigkeit und in viel kürzerer Zeit, als sie erforderlich ist, um eine Pülpe allein durch chemische Einwirkung herzustellen, erhalten. Das Verfahren der vorliegenden Erfindung kann leicht für die Herstellung von Bahnen sehr hoher Festigkeit mit geringem Kosten und in kurzer Zeit durchgeführt werden, wobei das Kochen entweder in einzelnen Ansätzen oder kontinuierlich oder entweder in nur einer Stufe oder in zwei Stufen unter Verwendung eines Lösungsmittelgemisches aus entweder Wasser und Äthanol und Wasser und Aceton und einer schwachen Säure oder einer gepufferten starken Säure als Katalysator durchgeführt werden kann.

Die Entlignifizierung und Hydrolyse von beispielsweise zerkleinertem Holz, Stroh, Zuckerrohr oder Bagasse kann bei einer
Zellstoffkochtemperatur von etwa 180°C gewöhnlich in einer Zeit von nur 3 bis 5 Minuten erfolgen. Zu diesem Zeitpunkt ist der Ligno-
celluloserest zwar erweicht, behält aber noch seine anfängliche
Strukturform, wenn das Material in einer Flüssigkeit verrührt wird
und kann trotzdem leicht zu einer Faserdispersion, d.h. einer Püle,
verarbeitet werden, indem man ihn durch einen oder mehrere Hoch-
druckschleifer, in denen er hohen Flüssigkeitskräften unter-
worfen wird, führt, so daß eine thermomechanische Püle gebildet
wird. Es können Ligningehalte von 5 bis 6% erzielt werden, und es
wird eine Püle mit außerordentlich hoher Festigkeit erhalten.

Die Kochflüssigkeit oder die Kochflüssigkeiten können in der
im folgenden beschriebenen Weise weiter verarbeitet werden, um or-
ganisches Lösungsmittel und andere gelöste Materialien zu gewinnen.

Für die Auflösung von Püle für die Herstellung regenerierter
Cellulose beispielsweise wird ein DP-Wert für gebleichte Püle von
über 800 und ein Mindestgehalt an α-Cellulose von 85% oder darüber
gefordert. Gemäß der vorliegenden Erfindung wird diesen Anforderun-
gen genügt, wie im folgenden näher beschrieben.

Beispiel IV

Eine Anzahl von Ansätzen aus luftgetrockneten Flocken von Espen-,
Fichten- und Birkenholz von je 20 g mit Flockenabmessungen von etwa
2 cm x 6 cm x 0,8 mm - 1,5 mm, Zuckerrohrtasern von 3 mm x
3 mm x 10 cm und Weizenstroh von 10 cm Länge, ebenfalls 20 g, wur-
durchgeführt. Jede Beschickung wurde mit so viel Lösungsmittel-
gemisch, daß das Gewichtsverhältnis von Beschickung zu Lö sungsmit-
telgemisch 1:10 betrug, in einen Bombenkokher aus rostfreiem Stahl
eingebracht. Das Lösungsmittelgemisch bestand aus 60 Teilen Äthanol
und 40 Teilen Wasser und enthielt so viel Oxalsäure, daß ihre Kon-
zentration 0,05m war. Die Temperatur des Kochers wurde innerhalb

<table>
<thead>
<tr>
<th>Spezies</th>
<th>Kochzeit min.</th>
<th>Ausbeute an Püle %</th>
<th>Restlignin %</th>
<th>α-Cellulose %</th>
<th>DP</th>
<th>TAPPI-Viskosität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espe.</td>
<td>15</td>
<td>51</td>
<td>9,1</td>
<td>85,4</td>
<td>970</td>
<td></td>
</tr>
<tr>
<td>Fichte</td>
<td>20</td>
<td>57</td>
<td>95±</td>
<td>85,8</td>
<td>950</td>
<td></td>
</tr>
<tr>
<td>Birke</td>
<td>15</td>
<td>54</td>
<td>25±</td>
<td>86,0</td>
<td>1100</td>
<td></td>
</tr>
<tr>
<td>Zuckerrohrrinde</td>
<td>15</td>
<td>53</td>
<td>33±</td>
<td>88,0</td>
<td>1300</td>
<td></td>
</tr>
<tr>
<td>Weizenstroh</td>
<td>15</td>
<td>54</td>
<td>37±</td>
<td>89,0</td>
<td>1280</td>
<td></td>
</tr>
</tbody>
</table>

* = Kappa-Zahl

Die oben Werte zeigen, daß alle in dieser Weise erhaltenen Pülen einen α-Cellulosegehalt von über 85% hatten. Alle diese Pülen sprachen außerordentlich gut auf eine dreistufige Bleichungsfolge aus Chlorieren, Extraktion-Hypochlorit an, wonach der Weißgrad demjenigen gebleichter Pülen, d.h. 88%, durchaus vergleichbar war. Die α-Cellulosegehalte lagen in dem Bereich von 95 bis 99%.

Beispiel V

Die Entfernung des größeren Teils des Lignins von Lignocellulose, wie Stroh, Gräsern, Zuckerrohrrückständen und verschiedenen Hart- und Weichhölzern, ist auch schon dafür genutzt worden, die Verdauungsfähigkeit solcher Materialien durch Wiederkäuer zu verbessern. Die Kosten der Entlignifizierung waren jedoch bisher so hoch, daß ein
solches Material nicht mit dem üblichen Viehfutter konkurrieren konnte. Außerdem wird bei manchen bekannten Verfahren der Entlignifizierung das Restlignin so verändert, daß der Lignocelluloserrückstand für Rinder giftig ist.

<table>
<thead>
<tr>
<th>Spezies</th>
<th>Kochzeit min.</th>
<th>Ausbeute %</th>
<th>Restlignin %</th>
<th>Verdaulichkeit des trockenen Materials, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espe</td>
<td>7</td>
<td>40</td>
<td>0,39</td>
<td>91,3</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>36</td>
<td>0,14</td>
<td>92,5</td>
</tr>
<tr>
<td>Douglas-Tanne</td>
<td>7</td>
<td>40</td>
<td>3,43</td>
<td>75,4</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>30</td>
<td>2,73</td>
<td>84,8</td>
</tr>
<tr>
<td>Fichte</td>
<td>7</td>
<td>45</td>
<td>5,00</td>
<td>74,0</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>37</td>
<td>3,6</td>
<td>74,4</td>
</tr>
<tr>
<td>Bagasse</td>
<td>5</td>
<td>64</td>
<td>5,7</td>
<td>56,4</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>50</td>
<td>3,5</td>
<td>67,1</td>
</tr>
<tr>
<td>Weizenstroh</td>
<td>7</td>
<td>64</td>
<td>3,6</td>
<td>78,6</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>55</td>
<td>2,8</td>
<td>89,1</td>
</tr>
</tbody>
</table>

Beispiel VI

Einige organische Säuren, die im Gemisch mit wässrig-organischen Lösungsmittelgemischen die Fasertrennung begünstigen, haben besondere Vorteile, wenn es Ziel der Hydrolyse ist, Hemicellulose und Lignin aufzulösen, jedoch einen hohen DP der Faser zu erhalten, indem sie sich bei der Kochtemperatur allmählich zersetzen, wodurch ihre Wirkung auf das Glucan beschränkt wird. Beispielsweise zersetzt sich bei den höheren Kochtemperaturen Oxalsäure zu CO₂ und
H₂O und Salicylsäure zu Phenol und CO₂, so daß die anfangs rasch erfolgende Hydrolyse mit dem 0,05m Katalysator zu Beginn des Kochens eine frühzeitige Freisetzung der Faser durch das so katalysierte Lösungsmittelgemisch ermöglicht, während die Hydrolysewirkung, wenn die Cellulose freigelegt ist, milder wird.

Eine Versuchsreihe ohne Lignocellulose mit Oxalsäure als Katalysator in einem Äthanol/Wasser-Gemisch 60:40 und einer Säurekonzentration von 0,05m wurde durch Kochen bei 200°C durchgeführt. Das pH wurde von Zeit zu Zeit über eine Periode von 30 Minuten gemessen, und Proben wurden entnommen, um die Flüssigkeit zu titrieren und die Restsäure zu messen. Eine weitere Versuchsreihe wurde durchgeführt, wobei eine Flüssigkeit, die kein organisches Lösungsmittel enthielt, verwendet wurde, und in einer weiteren Versuchsreihe wurden gleiche Teile Aceton und Wasser verwendet. Die in Tabelle IX zusammengestellten Werte zeigen eine fortschreitende und rasche Abnahme der Azidität des Lösungsmittelgemisches mit der Zeit, wobei diese Senkung bei Äthanol/Wasser am größten und mit Wasser allein am geringsten ist.

<table>
<thead>
<tr>
<th>Kochzeit (min)</th>
<th>H₂O + OX</th>
<th>Äthanol/H₂O + OX</th>
<th>Aceton/H₂O + OX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH 0,05</td>
<td>pH 0,05</td>
<td>pH 0,05</td>
</tr>
<tr>
<td></td>
<td>ml NaOH</td>
<td>ml OX</td>
<td>ml NaOH</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>0</td>
<td>1,71</td>
<td>50,5</td>
<td>100.</td>
</tr>
<tr>
<td>7</td>
<td>2,10</td>
<td>32,9</td>
<td>65,2</td>
</tr>
<tr>
<td>10</td>
<td>2,20</td>
<td>25,8</td>
<td>57,0</td>
</tr>
<tr>
<td>15</td>
<td>2,88</td>
<td>18,2</td>
<td>36,5</td>
</tr>
<tr>
<td>20</td>
<td>3,05</td>
<td>16,9</td>
<td>33,4</td>
</tr>
<tr>
<td>25</td>
<td>3,04</td>
<td>17,0</td>
<td>33,9</td>
</tr>
<tr>
<td>30</td>
<td>3,04</td>
<td>17,1</td>
<td>33,8</td>
</tr>
</tbody>
</table>

* = verbraucht durch 25 ml-Probe
Kochflüsigkeit

** = Oxalsäure
Die praktische Anwendbarkeit dieses Phänomens wurde durch eine Versuchsreihe, bei der Espen-, Fichten- und Birkenholzflöcken bei 200°C in einem Lösungsmittelgemisch Äthanol/Wasser 60:40, angesäuert durch Zugabe von Oxalsäure auf eine Säurekonzentration von 0,05m gekocht wurden, studiert. In Tabelle X sind die Ausbeuten an Pülpe, Restlignin und DP der Faser zusammengestellt.

Tabelle X

<table>
<thead>
<tr>
<th>Spezies</th>
<th>Kochzeit min.</th>
<th>Ausbeute an Pülpe</th>
<th>Restlignin Kappa-Zahl/%</th>
<th>DP TAPPI-Viskositäts</th>
<th>Anfangskonzentration Oxalsäure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espe</td>
<td>8</td>
<td>62,3</td>
<td>58/7,54</td>
<td>1250</td>
<td>0,025m</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>59,63</td>
<td>52/6,85</td>
<td>1200</td>
<td>0,025m</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>51</td>
<td>39/5,19</td>
<td>1180</td>
<td>0,025m</td>
</tr>
<tr>
<td>Fichte</td>
<td>10</td>
<td>67</td>
<td>120/15,6</td>
<td>987</td>
<td>0,05m</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>65</td>
<td>110/14,3</td>
<td>-</td>
<td>0,05m</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>57,3</td>
<td>95/12,3</td>
<td>950</td>
<td>0,05m</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>56</td>
<td>97/12,6</td>
<td>-</td>
<td>0,05m</td>
</tr>
<tr>
<td>Birke</td>
<td>10</td>
<td>63,2</td>
<td>35/4,55</td>
<td>1360</td>
<td>0,05m</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>60,8</td>
<td>25/3,25</td>
<td>1320</td>
<td>0,05m</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>57</td>
<td>27/3,51</td>
<td>1170</td>
<td>0,05m</td>
</tr>
</tbody>
</table>

Gemäß Figuren 2A, 2B und 2C werden Lignocelluloseschnitzel kontinuierlich vom Förderband 1 als Beschickung auf eine Schnecke 2 geworfen und durch diese mit bestimmter Geschwindigkeit einer Hochdruckschnecke 3 einer Vorimprägnierungsvorrichtung 5 zugeführt. Die Schnitzel, die am Ende der Schnecke ankommen, werden mit einem
Lösungsmittelgemisch, das von der Druckpumpe P zugepumpt und durch Einlass 4 am Eintrittsende dieser Vorrichtung zugeführt wird, auf eine Temperatur über 100°C und vorzugsweise 150°C vorgewärmt, um die Impregnierung einzuleiten.

Die benetzten Schnitzel werden über den Hochdruckschneckenförderer 6 in den ersten Behälter 9 eines Zweistufenkochers 100 eingeführt. Im Behälter 9 werden die Schnitzel mit einer ersten, vorgeheizten Kochflüssigkeit, die durch Leitung 7 und Vorratsstank 8 sowie die Heizzvorrichtung 7A zugeführt wird, vermischt und vorbehandelt. Diese Flüssigkeit ist so zusammengesetzt, daß sie Lignin zu lösen und Hemicellulose teilweise zu hydrolysieren vermag und kann aus 70 bis 30 Teilen Aceton und 30 bis 70 Teilen Wasser, vorzugsweise etwa 50 Teilen Lösungsmittel und 50 Teilen Wasser, bestehen. Alternativ kann die Flüssigkeit aus Äthanol und Wasser im gleichen Verhältnis bestehen und enthält eine solche Menge an katalysierender saurer Verbindung, die Oxalsäure sein kann, daß sie in einer Konzentration von 0,025m bis 0,05m in dem Lösungsmittelgemisch anwesend ist und das Gemisch ein pH in dem Bereich von 3,5 bis etwa 1,7, vorzugsweise etwa 2,2, hat. Das Verhältnis Holz:Flüssigkeit wird in der Impregnierungszone zwischen 1:4 und 1:15, vorzugsweise bei etwa 1:10, gehalten. Die Temperatur der in die Zone 9 eintretenden Flüssigkeit beträgt 180°C oder darüber, so daß die Temperatur der Flocken oder Schnitzel rasch erhöht und die Auflösung von Lignin und Hemicellulose eingeleitet wird.

Die Flüssigkeit wird in Bewegung gehalten, entweder indem man sie zwischen der Einlaßstelle und dem Filterring 10 umlaufen läßt oder durch Gegenströmung. Wenn die Strömungsrichtungen parallel sind, tritt das Lösungsmittelgemisch durch den Filterring 10 aus und strömt durch Leitung 11 und die Heizzvorrichtung 12 zum Einlass des Behälters zurück, sofern sie nicht nach einer bestimmten Impregnie-
Die Hauptmenge des zurückgewonnenen ersten Lösungsmittelgemischs, die extrahiertes Lignin und extrahierte Zucker enthält und daher als "verbraucht" bezeichnet wird, wird in Leitung 17 gesammelt und dem Tank 18 zugeführt. Bei einem in dem ersten Druckbehälter 9 herrschenden Druck von 19 bis 22 bar (280 to 320 psi) kann die Verweilzeit der Flocken oder Schnitzel etwa 5 Minuten betragen und hängt von der Temperatur ab, die in dem Bereich von 160 bis 185°C oder darüber liegen kann. In Tabelle XI sind Analysenwerte eines Lignocelluloserückstandes, der durch den Filterring 10 tritt und aus 100 g ofengestocktem Holz mit einem ersten Lösungsmittelgemisch aus Aceton/Wasser 50:50, mit HCl in einer Konzentration von 0,02m oder einer Konzentration von 0,07% angesäuert, erhalten wurde, angegeben.

<table>
<thead>
<tr>
<th>Temp.</th>
<th>Kochzeit min.</th>
<th>Holzarten</th>
<th>Espe</th>
<th>Douglas-Tanne</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lignin</td>
<td>Xylose</td>
<td>Lignin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in Lössung</td>
<td>sung</td>
<td>in Lössung</td>
</tr>
<tr>
<td>180</td>
<td>5</td>
<td>69</td>
<td>2,3</td>
<td>74%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>67</td>
<td>5,7</td>
<td>46%</td>
</tr>
</tbody>
</table>

* Die Werte bedeuten extrahierte Komponente in % der potentiell von dem ofengestockten Holz extrahierbaren Menge: Espe Lignin 19%, Espe Xylose 16%, Douglas-Tanne Lignin 31,5%, Douglas-Tanne Mannose 10,8%.

Das zweite Lösungsmittelgemisch wird nach einer bestimmten Kontaktzeit durch den Filterring 24, die Leitung 25 und den Aufheizer 26 von dem Behälter 19 abgezogen, so daß die Kochtemperatur genau eingehalten werden kann. Der sich in dem Behälter 19 bei Verwendung eines Lösungsmittelgemisches Aceton/Wasser 50:50, das 0,07% HCl enthält und ein pH von 2,2 hat, entwickelnde Druck beträgt etwa 24 bar (480 psi). Wenn die Flüssigkeit an gelöstem Material angereichert ist oder ihre maximale Verweilzeit erreicht hat, wird sie durch Leitung 27 und die Entspannungseinlauftkammer 28, die mit einem zweiten Kondensor 29 verbunden ist, abgezogen. Das Kondensat wird direkt in den Tank 31 geleitet, während der Dampf über Leitung 30 in die Kondensorleitung 67 geführt wird. Unter normalen Bedingungen sind in dem zweiten Behälter bei den beschriebenen Bedingungen zur Abtrennung...

<table>
<thead>
<tr>
<th>Temp. Kochzeit °C</th>
<th>Holzarten</th>
<th>Espe</th>
<th>Douglas-Tanne</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Feststoffausbeute</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>200 2 + 5 50,5 5</td>
<td>Lignin in Lösung</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>= 7</td>
<td>Zucker ges.</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Feststoffausbeute</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Lignin in Lösung</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Zucker ges.</td>
<td>%</td>
<td>%</td>
</tr>
</tbody>
</table>

Diese Werte geben die prozentuale Menge an der extrahierten Komponente, bezogen auf die potentiell extrahierbare Menge, an (vgl. Tabelle XI).

Wenn die Bildung von Dehydratationsprodukten in der abgezogenen Flüssigkeit, die erfolgt, wenn die gelösten Zucker längere Zeit einer hohen Temperatur und einem niedrigen pH ausgesetzt werden, vermieden werden soll, wird die Flüssigkeit, beispielsweise mit Kalkwasser, rasch neutralisiert und in einem Tank gelagert, bis sie weiter verarbeitet wird. Für die Weiterverarbeitung werden organische Lösungsmittel abgedampft und die ausgefallenen Lignine durch Filtration/Zentrifugieren abgetrennt. Die wässrige Lösung kann dann entweder mit einem Konservierungsstoff gelagert oder, beispielsweise bis zu
einer Konzentration von 20 bis etwa 50% zu einem Sirup eingedampft werden.

Gewinnung von Pülppe

Wenn das Hauptprodukt Pülppe sein soll, werden die durch den Filterring 24 in die Vorwaschzone 32 einströmenden Feststoffe sofort mit einer kalten, säurefreien Flüssigkeit, die vom Tank 34 über Leitung 33 zugeführt wird, besprüht. Diese Zone dient als Kühlzone, in der die Temperatur der Pülppe bis zu einem Wert gesenkt wird, bei dem jede weitere Hydrolyse zum Stillstand kommt und eine erneute Fällung des Lignins aus der restlichen verbrauchten Flüssigkeit vermieden wird. Die in diesem Abschnitt erwünschte Konsistenz der Pülppe ist 20%.

Der Flüssigkeitsumlauf wird durch Leitung 33 und Leitung 35 fortgesetzt, bevor die Pülppe durch die Hochdruckbeschickungsschnecke 36 und die mit mittlerem Druck arbeitende Beschickungsschnecke 37 in die Hochdruckvorrichtung 38 eingeführt wird, wo die Entfaserung beendet wird, bevor die Pülppe durch Leitung 39 in den Eindampftank 40 eingeführt wird, wo sie vollständig gekühlt und von einem vermindertem Druck von etwa 3,4 bis 10,3 bar (about 50 to 150 psi) be-

keit mit Vorteil in der Zone 32 als erste Waschflüssigkeit verwen-
det und dieser Zone durch die Leitungen 58, 46 und 45 zugeführt.
Die abgestrichene, mit Lösungsmittel benetzte Pülpe wird durch
Quetschwalzen 59 geführt, um den Lösungsmittelgehalt weiter zu sen-
ken, bevor sie über einen Trockner 61 der Verpackungs-
station 63 zugeführt wird. Gesammelter Abfluß wird durch Leitung 60
ebenfalls in die Waschzone 32 zurückgeführt. Die Dämpfe aus dem
Trockner werden durch Leitung 62 dem Kondensor zugeführt, um zurück-
gewonnen zu werden.

Die getrocknete Pülpe kann entweder als Kollerstoff zu Ballen
verpackt oder zu Bahnen verformt werden. Die weitere Verarbeitung
der Pülpe kann in üblicher Weise erfolgen und muß hier nicht be-
sprochen werden. Wenn sie als Viehfutter verwendet werden soll, kann
sie als Nudelpülpe hergestellt werden. Wenn sie zu einer Bahn ver-
arbeitet wird, kann die Trocknung nach dem Abtreiben der Waschflüs-
sigkeit abgebrochen und die Pülpe dann erneut aufgeschlämmt werden;
wonach sie in einer Maschine zu Blättern üblicher Abmessungen ver-
arbeitet werden kann. Alternativ kann als Futter zu verwendende
Pülpe bis zu einem Feuchtigkeitsgehalt von etwa 10% getrocknet, mit
3% Harnstoff, 10 bis 20% Alfalfamehl und färbdendem Material, wie
einem gelb-grünen Farbstoff pflanzlicher Herkunft, vermischt werden,
urn der sonst geschmacklosen, farblosen und geruchlosen weißen Pülpe
ein besseres Aussehen und einen besseren Geruch zu verleihen. Das
Futter kann dann pelletisiert und mit einem geeigneten Feuchtigkeits-
gehalt in dem Bereich von 15 bis 20% als Futter für Wiederkäuer ab-
gepackt werden.

Gewinnung gelöster Materialien

Die Gewinnung des organischen Lösungsmittels oder der Lösungs-
mittel, die in den Lösungsmittelgemischen verwendet werden, und ge-

Die klare Zuckerlösung, die die Hauptmenge an aus dem Ligno-celluloserückstand hydrolysiertem Glucose enthält, wird dann über Leitung 78 dem Tank 79 zugeführt. Das Sediment vom Tank 77 wird über Leitung 80 der Spinntricknungszentrifuge 85 zugeführt, um bei 86 Lignin zu gewinnen, während die Zuckerlösung zu dem Glucosetank 79 zurückgeführt wird.

Das so abgetrennte Lignin, das durch Aufarbeiten des Inhalts vom Tank 18 gewonnen wird, wie weiter unten beschrieben, fällt in pulveriger Form an und hat eine ausgezeichnete Löslichkeit in den üblichen Ligninlösungsmitteln, wie Äthanol, Aceton, DMSO, Furfural und Tetrahydrofuran. Aus acetonischen Lösungen können die Lignine leicht gereinigt werden, indem man sie insgesamt oder in Fraktionen durch Einbringen in Wasser im Überschuß oder in ein anderes schlechtes

Die im Tank 18 gesammelten Prehydrolysate enthalten die Hauptmenge des gelösten Lignins und die wertvollen Hemicellulosezucker und werden über Leitung 81 einem Entspannungseindampfer 82 oder einer (nicht-gezeigten) Batterie solcher Eindampfer zugeführt. Die darin in Freiheit gesetzten Dämpfe werden durch die Kondensorleitung 83 geführt, während die wässrige Lösung, das ausgefallte Lignin und Hemicellulosezucker mit sich führt, durch Leitung 84 dem Spinntrocknungs-Zentrifugalwäscher 85 zugeführt wird, wo die Zuckerlösung von dem Lignin, das bei 86 gesammelt wird, abgetrennt wird. Die klare Hemicellulosezuckerlösung aus dem unteren Teil der Zentrifuge wird dem Tank 87 zugeführt. Das gesammelte Kondensat strömt in Leitung 67 durch einen Vorerhitzer 68, um die gewünschte Dampftemperatur einzustellen, bevor sie in den Fraktionierkondensor 69 eintritt, wo die flüchtigen Komponenten gemäß ihren Siedepunkten, die in dem Bereich von etwa 50 bis 250°C liegen, abgetrennt werden. In
einer solchen Fraktionierkolonne werden zunächst die höchsiedenden Fraktionen (Furfurale, Lävulinsäure, einschließlich Essigsäure, die sich durch Umwandlung von Acetylen bildet), dann die Fraktionen mit mittleren Siedepunkten (organische Flüssigkeiten und flüchtige Säuren) und schließlich das am niedrigsten siedende organische Kochlösungsmitte1 (Methanol, Äthanol, Propanol, Aceton, Methyläthylketon oder Dioxan) einschließlich des durch Zersetzung von Methoxylen bei hoher Temperatur gebildeten Methanols entfernt.

Die Destillate aus dieser Kolonne werden durch Leitungen 92 einer Anzahl Tanks, wie 93, 94, 95 zugeführt. Methanol wird vom oberen Ende der Kolonne zusammen mit dem Hauptteil des Acetons und seinem Azeotrop mit Wasser, das 18% Wasser enthält, gewonnen. Methanol beeinträchtigt das Auflösungsvermögen anderer organischer Lösungsmittel, die in dem Lösungsmittelgemisch verwendet werden, nicht merklich, jedoch sollte seine Menge unter 5 bis 10% des Gemisches gehalten werden.

Von dem Azeotrop Aceton/Wasser wird das Aceton abgetrennt, indem man das Azeotrop durch eine Rektifizierkolonne 71 führt, wonach das wasserfreie Lösungsmittel über Leitung 74 zum Tank 75 zurückgeführt wird, oder das wässrige Lösungsmittel kann dem Tank 73 zugeführt werden. Die Zusammensetzungen der verschiedenen Kochflüssigkeiten werden durch Abziehen von Lösungsmittel aus den Tanks 75 und 73, aus der Wasserleitung 89 und aus dem Säuretank 88 eingestellt, wobei das Mischen bei 90 einreguliert wird, von wo das Gemisch durch Leitung 91 den Tanks 8 (erstes Lösungsmittelgemisch), 23 (zweites Lösungsmittelgemisch) und 34 (Waschflüssigkeit) zugeführt wird.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>°C</td>
<td>min</td>
<td>beute</td>
<td>lignin</td>
<td>Lignin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>an</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pülpe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>oder</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>HMF</td>
</tr>
<tr>
<td>Espe</td>
<td>200</td>
<td>7</td>
<td>50,6</td>
<td>1,4</td>
<td>85</td>
<td>6,8</td>
<td>51</td>
<td>61</td>
<td>69</td>
<td>93</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>8</td>
<td>43,5</td>
<td>0,2</td>
<td>91</td>
<td>17,0</td>
<td>76</td>
<td>86</td>
<td>40</td>
<td>70</td>
<td>5,8</td>
</tr>
<tr>
<td>D-T</td>
<td>200</td>
<td>7</td>
<td>47,5</td>
<td>3,5</td>
<td>86</td>
<td>20</td>
<td>95</td>
<td>34</td>
<td>57</td>
<td>20</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>8</td>
<td>41,8</td>
<td>2,7</td>
<td>95</td>
<td>40</td>
<td>18</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>6,2</td>
</tr>
</tbody>
</table>

D-T = Douglas-Tanne
Gl. = Glucose M = Mannose G = Galactose
X = Xylose A = Arabinose F = Furfural
HMF = Hydroxymethylfurfural

Die Pülpen enthielten nach 8 Minuten Kochzeit 95% Glucan und hatten den folgenden Weißgrad, gemessen auf der GE-Skala, wobei die erste Zahl sich auf 7 Minuten Kochzeit und die zweite auf 8
Minuten Kochzeit bezieht:
Espe 70%, 78%; Douglas-Tanne 57%, 62%.
Die relative Kristallinität der Pülp en betrug 0,6 und war damit höher als diejenige des Ausgangsmaterials, nämlich 0,4 bis 0,45.

Die bei 7 Minuten Kochzeit gemessene geringe Ausbeute an Fur- fural ist der Tatsache zuzuschreiben, daß Hemicellulose und Glucose von der abgezogenen ersten Kochflüssigkeit abgetrennt wurden, bevor eine weitere Hydratation erfolgen konnte.

Interessant ist, daß am Ende des Kochens der zweiten Stufe auch etwa 2% organishe Säuren und 3% Methanol erhalten wurden.

Die Eigenschaften einer Anzahl Pülp en hoher Qualität, wie sie am Ende des Trockners 61 erhalten werden können, wurden bestimmt, indem man in einer weiteren Versuchsreihe Weichhölzer und Harthölzer, nämlich Fichte, Kiefer (Southern Pine) und Douglas-Tanne sowie Espe und Birke, und Landwirtschaftsrückstände, nämlich Zuckerröhrinde und Weizenstroh im Zellstoffkocher aufschloß. Jeder Versuch umfaßte 2 Kochstufen, wobei die Temperatur des ersten Lösungsmittelgemisches unter 185°C und die Zeit 5 bis 6 Minuten betrug und das abschließende Kochen bei 200°C für eine ausreichende Zeit, daß die Faser nur durch Einwirkung von Flüssigkeit auf den Rückstand in der Flüssigkeit abgetrennt werden konnte, durchgeführt wurde. Der saure Katalysator war entweder 0,02m HCl oder 0,025m oder 0,05m Oxalsäure oder 0,025m HCl/KCl, wodurch das pH auf 2,2 eingestellt wurde.

Die Pülp en wurden gemäß TAPPI-Standard-Methoden analysiert. Die Kappa-Zahl des Lignins nach T-236; die Viskosität nach T-230; der Weißgrad nach T-217; die Canadian-Standard-Freeness nach T-227; die Standard-Festigkeitsbestimmungen nach Bewertung der Mahlgeschwindigkeit in einer PFI-Mühle nach SCIT B-6-1; und die Her-
<table>
<thead>
<tr>
<th>Lignocellulose, Säure, Kochzeit min.</th>
<th>Ausbeute %</th>
<th>Grobteilchen %</th>
<th>Ausbeute gesiebt %</th>
<th>Kappazahl %</th>
<th>Restlignin %</th>
<th>Weißgrad %</th>
<th>TAPPI Viskosität op</th>
<th>DP</th>
<th>Weißgrad nach Bleichen %</th>
<th>CSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASP-KRAFT</td>
<td>54,0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4,0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ASP-OXA-10</td>
<td>59,63</td>
<td>0,98</td>
<td>58,88</td>
<td>39,9</td>
<td>5,19</td>
<td>72</td>
<td>41,3</td>
<td>1780</td>
<td>88</td>
<td>671</td>
</tr>
<tr>
<td>ASP-OXA-15</td>
<td>54,99</td>
<td>0,75</td>
<td>54,01</td>
<td>10,0</td>
<td>1,35</td>
<td>63</td>
<td>21,3</td>
<td>1280</td>
<td>88</td>
<td>705</td>
</tr>
<tr>
<td>ASP-HCl-8</td>
<td>46,75</td>
<td>1,09</td>
<td>45,66</td>
<td>20,2</td>
<td>2,63</td>
<td>42</td>
<td>2,94</td>
<td>380</td>
<td>84</td>
<td>453</td>
</tr>
<tr>
<td>ASP-B-10</td>
<td>57,80</td>
<td>0,19</td>
<td>57,61</td>
<td>19,1</td>
<td>2,48</td>
<td>51</td>
<td>6,67</td>
<td>700</td>
<td>-</td>
<td>542</td>
</tr>
<tr>
<td>SPR-KRAFT</td>
<td>50,0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5,0</td>
<td>35</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SPR-OXA-20</td>
<td>57,30</td>
<td>0,22</td>
<td>57,08</td>
<td>79,5</td>
<td>10,34</td>
<td>45</td>
<td>10,28</td>
<td>950</td>
<td>84</td>
<td>730</td>
</tr>
<tr>
<td>SPR-HCl-10</td>
<td>50,95</td>
<td>0,22</td>
<td>50,73</td>
<td>46,4</td>
<td>6,03</td>
<td>38</td>
<td>2,07</td>
<td>300</td>
<td>-</td>
<td>145</td>
</tr>
<tr>
<td>SPR-IB-10</td>
<td>50,96</td>
<td>0,19</td>
<td>50,77</td>
<td>48,4</td>
<td>6,09</td>
<td>45</td>
<td>3,71</td>
<td>440</td>
<td>85</td>
<td>617</td>
</tr>
<tr>
<td>BAG-KRAFT</td>
<td>54,0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3,0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SCAN-OXA-9</td>
<td>55,05</td>
<td>0,42</td>
<td>54,54</td>
<td>16,0</td>
<td>2,08</td>
<td>51</td>
<td>22,47</td>
<td>1380</td>
<td>80</td>
<td>485</td>
</tr>
<tr>
<td>BAG-HCl-6</td>
<td>43,37</td>
<td>0,26</td>
<td>43,11</td>
<td>50,0</td>
<td>6,50</td>
<td>39</td>
<td>2,91</td>
<td>380</td>
<td>-</td>
<td>229</td>
</tr>
<tr>
<td>Lignocellulose, Säure, Kochzeit min.</td>
<td>Ausbeute %</td>
<td>Grobe Teilchen %</td>
<td>Ausbeute %</td>
<td>Kappa Zahl</td>
<td>Restlignin %</td>
<td>Weißgrad %</td>
<td>TAPPI-Viskosität cp</td>
<td>DP</td>
<td>Weißgrad nach Bleichen %</td>
<td>CSF</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>------------</td>
<td>------------------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>---------------------</td>
<td>----</td>
<td>--------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>WHE-KRAFT</td>
<td>58,0</td>
<td>-</td>
<td>-</td>
<td>8,8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>WHE-OXA-10</td>
<td>56,20</td>
<td>0,84</td>
<td>55,36</td>
<td>50,0</td>
<td>6,50</td>
<td>54</td>
<td>22,11</td>
<td>1360</td>
<td>83</td>
<td>430</td>
</tr>
<tr>
<td>WHE-HCl-8</td>
<td>43,73</td>
<td>1,13</td>
<td>42,60</td>
<td>23,4</td>
<td>3,42</td>
<td>61</td>
<td>3,2</td>
<td>400</td>
<td>-</td>
<td>185</td>
</tr>
<tr>
<td>SOP-OXA-10</td>
<td>59,65</td>
<td>0,40</td>
<td>59,25</td>
<td>53,6</td>
<td>7,62</td>
<td>41</td>
<td>5,78</td>
<td>600</td>
<td>81</td>
<td>748</td>
</tr>
<tr>
<td>SOP-HB-10</td>
<td>60,25</td>
<td>1,50</td>
<td>58,75</td>
<td>78,7</td>
<td>10,23</td>
<td>41</td>
<td>9,64</td>
<td>850</td>
<td>82</td>
<td>768</td>
</tr>
<tr>
<td>BIR-KRAFT</td>
<td>54,0</td>
<td>-</td>
<td>-</td>
<td>4,0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BIR-OXA-15</td>
<td>60,88</td>
<td>0,77</td>
<td>60,11</td>
<td>25,0</td>
<td>3,25</td>
<td>43</td>
<td>21,99</td>
<td>1320</td>
<td>86</td>
<td>670</td>
</tr>
<tr>
<td>DP-OXA-15</td>
<td>58,75</td>
<td>1,60</td>
<td>57,15</td>
<td>80,9</td>
<td>10,51</td>
<td>35</td>
<td>8,71</td>
<td>810</td>
<td>75</td>
<td>743</td>
</tr>
</tbody>
</table>

ASP = Espe; SPR = Fichte; BAG = Bagasse, o. Mark; SCAN = Zuckerrohrinde; BAG = Bagasse; WHE = Weizenstroh; SOP = Kiefer (Southern Pine); BIR = Birke; DF = Douglas-Tanne; OXA = Oxalsäure; HCl = Salzsäure; B, HB = Puffer: (KCl-HCl, pH 2,2)

OXA, HB, B in Äthanol/H₂O 60:40 und HCl in Aceton/H₂O 60:40
Tabelle XIV-B

<table>
<thead>
<tr>
<th>Lignocellulose, Säure, Kochzeit min.</th>
<th>Festigkeitseigenschaften der Pülpe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>500 CFS</td>
</tr>
<tr>
<td></td>
<td>REVS. Break. TEAR Burst O-Span.</td>
</tr>
<tr>
<td></td>
<td>Leng. m</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>ASP-KRAFT</td>
<td>- 6500 56 114</td>
</tr>
<tr>
<td>ASP-OXA-10</td>
<td>550 5370 53 20 16622 1400 6970 49 32 17665</td>
</tr>
<tr>
<td>ASP-OXA-15</td>
<td>1500 6570 49 27 16200 3920 7800 65 40 16500</td>
</tr>
<tr>
<td>ASP-HCL-8</td>
<td>- 4330 23 14 13591 - - -</td>
</tr>
<tr>
<td>ASP-B-10</td>
<td>100 4800 45 27 14000 1230 6700 39 24 16750</td>
</tr>
<tr>
<td>SPR-KRAFT</td>
<td>- - - 11200 108 117</td>
</tr>
<tr>
<td>SPR-OXA-20</td>
<td>3000 7500 89 83 13600 4300 7700 82 47 17600</td>
</tr>
<tr>
<td>SPR-HCL-10</td>
<td>- 5460 19 18 11579 - - -</td>
</tr>
<tr>
<td>SPR-HB-10</td>
<td>200 5600 72 29 17450 1750 7200 47 39 17500</td>
</tr>
<tr>
<td>DAGK-KRAFT</td>
<td>- - - 11200 108 117</td>
</tr>
<tr>
<td>SCAN-OXA-9</td>
<td>- 7200 46 34 15560 1000 8200 46 39 14970</td>
</tr>
<tr>
<td>BAG-HCL-6</td>
<td>- 4900 21 13 11768 - - -</td>
</tr>
<tr>
<td>WHE-KRAFT</td>
<td>- - - - -</td>
</tr>
<tr>
<td>WHE-OXA-10</td>
<td>8000 70 34 22000 850 9800 63 50 20260</td>
</tr>
<tr>
<td>WHE-HCL-8</td>
<td>- 5200 25 15 12000 - - -</td>
</tr>
<tr>
<td>SOP-OXA-10</td>
<td>670 4500 64 16 14850 1170 4900 59 19 14870</td>
</tr>
<tr>
<td>SOP-HB-10</td>
<td>600 3200 85 13 15760 2900 4300 73 18 15600</td>
</tr>
<tr>
<td>BIR-KRAFT</td>
<td>- 7000 88 60 - - -</td>
</tr>
<tr>
<td>BIR-OXA-15</td>
<td>700 10230 71 57 17100 1600 10560 68 65 18700</td>
</tr>
<tr>
<td>DF-OXA-15</td>
<td>2000 6150 88 38 17300 2950 6900 71 35 17850</td>
</tr>
</tbody>
</table>
hölzern kann eine Faser mit DP-Werten von über 1000 und aus Weich-
hölzern eine Faser mit DP-Werten über 800 erhalten werden. Wenn der
Lignocelluloserrückstand weiter mit heißem Lösungsmittelgemisch un-
ter Verwendung eines stark sauren Katalysators behandelt wird, kann
die Verzuckerung bis zu jedem Stadium der Auflösung der Feststoffe
und Zucker durchgeführt werden, und es können Zuckerdehydriations-
produkte, organische Säuren, Furfural und Methanol erhalten werden.

Mit dem Verfahren gemäß der Erfindung ist eine wesentliche
Kosteneinsparung gegenüber Kraft-Verfahren, bei denen 30 bis 40%
Chemikalien je Tonne Holz verwendet werden, möglich, da in dem Ver-
fahren gemäß der Erfindung nur 3 bis 6% an saurem Katalysator, be-
zogen auf das Holzgewicht, verwendet werden. Durch die kontinuier-
liche Rückgewinnung von organischem Lösungsmittel und die Gewinnung
von Lignin und Zuckern hoher Qualität werden die Kosten für nicht-
zurückgewinnbare Chemikalien mehr als aufgehoben. Außerdem werden
aus der Lignocellulose organische Säuren gebildet.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das für das Lösungsmittelgemisch gewählte flüssige organische Lösungsmittel Äthanol oder Aceton und das flüssige Waschlösungsmittel Aceton oder Äthanol ist.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das flüssige organische Lösungsmittel Äthanol und der hydrolysierende saure Katalysator Oxalsäure ist.

4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das flüssige organische Lösungsmittel Äthanol und der hydrolysierende saure Katalysator Maleinsäure ist.

5. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das flüssige organische Lösungsmittel Äthanol und der hydrolysierende saure Katalysator O-Phthalsäure ist.

6. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das flüssige organische Lösungsmittel Äthanol und der hydrolysierende saure Katalysator L-Apfelsäure ist.

7. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das flüssige organische Lösungsmittel Äthanol und der hydrolysierende saure Katalysator Bernsteinäure ist.

8. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das flüssige organische Lösungsmittel Äthanol und der hydrolysierende saure Katalysator Nicotinsäure ist.

10. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das flüssige organische Lösungsmittel Äthanol und der hydrolysierende saure Katalysator Trifluoressigsäure ist.

13. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die niedrigsiedenden flüchtigen Materialien in der abgezogenen Kochflüssigkeit und dem Waschungsmittel abgedampft werden, um Lignin zu fallen, das Lignin aus wäβriger Zuckerlösung abgetrennt wird, das abgetrennte Lignin wieder in einem Ligninlösungsmittel bis zur Sättigung aufgelöst wird und die Ligninlösung sprühgetrocknet oder mit einem vorwiegenden Volumanteil Wasser vermischt wird, um einen Niederschlag aus feinteiligem Lignin zu dispergieren.

15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß die wäβrige Zuckerlösung durch Abstreifen von Dampf bis zu einem Gehalt an gelösten Feststoffen von 20 bis 50% konzentriert wird.

17. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß die flüchtigen Materialien, die durch Dampfabstreifen entfernt werden, entsprechend ihren Siedepunkten fraktioniert kondensiert werden, um die flüssigen organischen Lösungsmittel, das flüssige Waschungsmittel und die flüchtigen thermischen Umwandlungsprodukte sowie die flüchtigen Hydrolyseprodukte, nämlich Methanol, Furfural, 5-Hydroxymethylfurfural, Lävulinsäure, Ameisensäure und Essigsäure, zu gewinnen.

19. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das angesäuerte wäßrig organische Lösungsmittelgemisch mit zerkleinerter Lignocellulose in einem Druckbehälter mit Einlaß und Auslaß vermischt wird und das Lösungsmittelgemisch kontinuierlich durch die Lignocellulose umlaufend gelassen wird, so daß die Verweilzeit der Kochflüssigkeit nicht länger als 5 Minuten beträgt, wonach die Flüssigkeit abgezogen wird, während frisches Lösungsmittelgemisch eingeführt wird, um das abgezogene Gemisch zu ersetzen.

20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, daß die Lignocellulose und das Lösungsmittelgemisch in Richtung zum Auslaß bewegt werden, wobei das Lösungsmittelgemisch mit höherer Geschwindigkeit als die Lignocellulose bewegt wird.

21. Verfahren zum Abtrennen der Fasern aus dem Cellulosebestandteil von Lignocellulose, dadurch gekennzeichnet, daß man Teilchen der ganzen Lignocellulose mit einem vorwiegenden Volumanteil eines ersten heißen wäßrigen angesäuerten organischen Lösungsmittelgemisches aus 40 bis 60 Teilen Wasser, 60 bis 40 Teilen an einem flüs-

22. Verfahren nach Anspruch 21, dadurch gekennzeichnet, daß der erste und der zweite saure Hydrolysierungskatalysator Oxalsäure und das für die Kochgemische gewählte organische Lösungsmittel Äthanol ist.

23. Verfahren nach Anspruch 22, dadurch gekennzeichnet, daß erstes und zweites wäβrig organisches Lösungsmittelgemisch mit den Lignocelluloseteilchen in einem Druckbehälter mit Einlaß und Auslaß vermisch werden und das Lösungsmittelgemisch kontinuierlich durch die Lignocellulose umlaufen gelassen wird, wobei erstes und zweites Lösungsmittelgemisch zusammen mit der Lignocellulose in Richtung zum
Auslaß durch den Behälter bewegt wird und die Geschwindigkeit der Bewegung jedes Gemisches größer ist als die Geschwindigkeit der Bewegung der Lignocellulose.

24. Verfahren nach Anspruch 21, dadurch gekennzeichnet, daß jedes der in den abgezogenen Kochflüssigkeiten und dem Waschlösungsmittel anwesenden flüchtigen Materialien abgedampft wird, um das darin gelöste Lignin auszufallen, das Lignin von wäßriger Zuckerlösung abgetrennt wird, das abgetrennte Lignin bis zur Sättigung in einem Ligninlösungsmittel wieder aufgelöst wird und die Ligninlösung sprühgetrocknet oder mit einem vorwiegenden Volumanteil an Wasser vermischt wird, um ausgefälltes feinteiliges Lignin zu dispergieren.

25. Verfahren nach Anspruch 24, dadurch gekennzeichnet, daß die von dem abgezogenen ersten Lösungsmittelgemisch erhaltenen wäßrigen Zuckerlösung bis zu einem Feststoffgehalt von 20 bis 50% konzentriert wird.

26. Verfahren nach Anspruch 24, dadurch gekennzeichnet, daß die von dem zweiten Lösungsmittelgemisch erhaltenen wäßrigen Zuckerlösung bis zu einem Feststoffgehalt von 20 bis 50% konzentriert wird.

27. Verfahren nach Anspruch 24, dadurch gekennzeichnet, daß das Lösungsmittel für das aus dem ersten Lösungsmittelgemisch gewonnene Lignin Aceton und das Lösungsmittel für das aus dem zweiten Lösungsmittelgemisch gewonnene Lignin aus der Gruppe Aceton, Furfural, Dimethylsulfoxid und Tetrahydrofuran gewählt ist.

28. Verfahren zum Abtrennen der Fasern aus dem Cellulosebestandteil von Lignocellulose und Gewinnen der Fasern in einem Zustand verrin­gerten Polymerisationsgrades, dadurch gekennzeichnet, daß man Tei­chen aus der ganzen Lignocellulose mit einem Hauptvolumanteil an

29. Verfahren nach Anspruch 25, dadurch gekennzeichnet, daß das erste organische Lösungsmittel Äthanol ist und das zweite Lösungsmittelgemisch entweder Äthanol oder Aceton enthält, die angesäuerten wässrigen organischen Lösungsmittelgemische in einem Druckbehälter mit Einlaß und Auslaß mit der Lignocellulose vermischt und jedes der Lösungsmittelgemische während der Kochzeiten kontinuierlich durch die Lignocellulose umlaufen gelassen werden, das erste Lösungsmittelgemisch parallel zu der Lignocellulose in Richtung zum
Auslaß mit einer Geschwindigkeit, die größer ist als diejenige der Bewegung der Lignocellulose, umlaufen gelassen wird und das zweite Lösungsmittelgemisch im Gegenstrom zu der Bewegung des Lignocelluloserückstandes bewegt wird.

30. Verfahren nach Anspruch 28, dadurch gekennzeichnet, daß die niedrigsiedenden flüchtigen Materialien in jeder der abgezogenen Kochflüssigkeiten und dem Waschölabtragsmittel abgedampft werden, um Lignin auszufallen, das Lignin von der wässrigen Zuckerlösung abgetrennt wird, das abgetrennte Lignin in einem Ligninlösungsmittel bis zur Sättigung wieder aufgelöst wird und die Ligninlösung sprühgetrocknet oder mit einem vorwiegenden Volumanteil an Wasser vermischt wird, um einen Niederschlag aus feinteiligem Lignin zu dispergieren.

31. Verfahren nach Anspruch 30, dadurch gekennzeichnet, daß die aus dem ersten Lösungsmittelgemisch gewonnene wässrige Zuckerlösung bis zu einem Feststoffgehalt aus Hemicelluloseumwandlungszuckern von 20 bis 50% konzentriert wird.

32. Verfahren nach Anspruch 30, dadurch gekennzeichnet, daß die aus dem abgezogenen zweiten Lösungsmittelgemisch gewonnene wässrige Zuckerlösung bis zu einem Feststoffgehalt von 20 bis 50% konzentriert wird.

33. Verfahren nach Anspruch 30, dadurch gekennzeichnet, daß das Lösungsmittel für das aus dem ersten Lösungsmittelgemisch gewonnene Lignin Aceton und das Lösungsmittel für das aus dem zweiten Lösungsmittelgemisch gewonnene Lignin aus der Gruppe Aceton, Furfural, Dimethylsulfoxid und Tetrahydrofuran gewählt ist.

34. Verfahren zum Abtrennen der Fasern aus dem Cellulosebestandteil von Lignocellulose und Gewinnen eines mikrokristallinen Rückstandes
aus diesen Fasern, dadurch gekennzeichnet, daß man die ganze zer-
kleinerte Lignocellulose mit einem Hauptvolumanteil an einem ersten
heißen wäßrigen angesäuerten organischen Lösungsmittelgemisch aus
40 bis 60 Teilen Wasser, 60 bis 40 Teilen eines ersten organischen
Lösungsmittels aus der Gruppe der flüchtigen wasserlöslichen orga-
nischen Lösungsmittel Äthanol und Aceton und einem ersten sauren
Hydrolysierungskatalysator in solcher Menge, daß das Lösungsmittel-
gemisch ein pH in dem Bereich von 3,5 bis 1,7 hat, aus der Gruppe
der organischen Säuren Malein-, o-Phthal-, Oxal-, L-Apfel-, Bern-
stein-, Nicotin-, Salicyl- und Trifluoresigäure imprägniert, die
imprägnierte Lignocellulose der entlignifizierenden und verzuckern-
den Wirkung des ersten Lösungsmittelgemisches bei einer Temperatur
von etwa 180°C für eine Zeit von etwa 5 Minuten aussetzt, dann die
erste Kochflüssigkeit von der teilentlignifizierten Lignocellulose
abzieht, danach diesen teilentlignifizierten Rückstand mit einem
Hauptvolumanteil, bezogen auf den Rückstand, an einem zweiten wäßri-
gen angesäuerten organischen Lösungsmittelgemisch, das einen zweiten
sauren Hydrolysierungskatalysator aus der Gruppe der starken Säuren
Salzsäure, Schwefelsäure, Phosphorsäure und Salpetersäure bei einer
Digestionstemperatur von 200 bis 210°C ausreichend lange, um die
Cellulose zu hydrolysieren, kocht, so daß die Faserstruktur bis in
den kristallinen Bereich von Nichtfaserform und Abwesenheit
amorpher Polyglucose abgebaut wird, dann die zweite Kochflüssigkeit
abzieht und den mikrokristallinen Rückstand mit Wasser wäscht.

35. Verfahren nach Anspruch 34, dadurch gekennzeichnet, daß das
erste organische Lösungsmittel Äthanol ist und das zweite Lösungs-
mittelgemisch entweder Äthanol oder Aceton enthält, die angesäuert-
ten wäßrigen organischen Lösungsmittelgemische in einem Druckbehälter
mit Einlaß und Auslaß mit der Lignocellulose vermischt werden und
das erste Lösungsmittelgemisch kontinuierlich in Richtung parallel
mit der Lignocellulose und mit einer Geschwindigkeit, die größer
ist als diejenige der Lignocellulose, durch die Lignocellulose umlaufend gelassen wird und das zweite Lösungsmittelgemisch kontinuierlich im Gegenstrom durch die teilentlignifizierte Lignocellulose umlaufen gelassen wird.

36. Verfahren nach Anspruch 34, dadurch gekennzeichnet, daß die in jeder abgezogenen Kochflüssigkeit und in dem Waschlösungsmittel anwesenden niedrigsiedenden flüchtigen Bestandteile abgedampft werden, um das Lignin zu fällen, das Lignin von der wäßrigen Zuckerlösung abgetrennt wird, das abgetrennte Lignin bis zur Sättigung in einem Ligninlösungsmittel wieder aufgelöst wird und die Ligninlösung sprühgetrocknet oder mit einem vorwiegenden Volumanteil an Wasser vermischt wird, um einen Niederschlag aus feinteiligem Lignin zu dispergieren.

38. Verfahren nach Anspruch 36, dadurch gekennzeichnet, daß die erwähnten flüchtigen Materialien durch fraktionierte Destillation abgetrennt werden, so daß die organischen flüssigen Lösungsmittel und flüchtige thermische Umwandlungsprodukte und flüchtige Hydrolyseprodukte, einschließlich Methanol, Ameisensäure und Essigsäure, gewonnen werden.

39. Verfahren nach Anspruch 36, dadurch gekennzeichnet, daß die aus dem abgezogenen ersten Lösungsmittelgemisch gewonnene wäßrige Zuckerlösung bis zu einem Feststoffgehalt an Hemicelluloseumwandlungs- zuckern von 20 bis 50% konzentriert wird.
40. Verfahren nach Anspruch 36, dadurch gekennzeichnet, daß die wäßrige Zuckerlösung durch Dampfabstreifen bis zu einem Gehalt an gelösten Feststoffen von 20 bis 50% konzentriert wird und die flüchtigen Bestandteile in der Dampfphase fraktioniert kondensiert werden, um das organische flüssige Lösungsmittel und die flüchtigen thermischen Umwandlungsprodukte der Hydrolyse zu gewinnen.

41. Verfahren zum Abtrennen der Fasern aus dem Cellulosebestandteil von Lignocellulose und Gewinnen von Lignin und Hydrolyseprodukten von Hemicellulose und Cellulose, dadurch gekennzeichnet, daß man die ganze zerkleinerte Lignocellulose mit einem Hauptvolumanteil an einem ersten heißen wäßrigen angesäuerten organischen Lösungsmittelgemisch aus 70 bis 30 Teilen Wasser, 30 bis 70 Teilen an einem organischen Lösungsmittel der Gruppe Äthanol und Aceton und einem hydrolysierenden sauren Katalysator in ausreichender Menge, um dem Lösungsmittelgemisch ein pH in dem Bereich von 3,5 zu 2,2 zu verleihen, aus der Gruppe der starken Säuren Salzsäure, Schwefelsäure, Phosphorsäure und Salpetersäure imprägniert, die imprägnierte Lignocellulose bei einer Temperatur von etwa 180°C und für eine Zeit von etwa 5 Minuten, die ausreicht, um die Cellulosefasern freizusetzen, der entlignifizierenden und verzuckernden Wirkung des Lösungsmittelgemisches aussetzt, danach die erste Kochflüssigkeit abzieht und den Lignocelluloserückstand mit frischem wäßrigem angesäuertem organischem Lösungsmittelgemisch, das dem ersten Lösungsmittelgemisch gleicht mit der Abweichung, daß das zweite Lösungsmittelgemisch eine höhere Säurekonzentration, nämlich einen pH-Bereich von 2,2 bis 1,7 hat, vermischt und das Gemisch bei einer Temperatur von etwa 210°C und für eine ausreichende Zeit, um die Cellulose praktisch vollständig aufzulösen, kocht, dann die zweite Kochflüssigkeit abzieht, die in jeder Kochflüssigkeit anwesenden niedrigsiedenden flüchtigen Materialien verdampft, um Lignin auszufallen, das Lignin von den Flüssigkeiten abtrennt, so daß eine Restflüssigkeit, die Zucker und andere Umwandlungsprodukte gelöst
enthält, erhalten wird, die kondensierten flüchtigen Materialien zurückgewinnt und die gelösten Zucker und anderen Umwandlungsprodukte von jeder der Restflüssigkeiten abtrennt.

42. Verfahren nach Anspruch 41, dadurch gekennzeichnet, daß Lignocellulose und Kochflüssigkeit im Verhältnis von etwa 1:12 verwendet werden.

44. Verfahren nach Anspruch 43, dadurch gekennzeichnet, daß das flüssige organische Lösungsmittel Aceton ist und das Gewichtsver-
hältnis von Lignocellulose zu Kochflüssigkeit anfangs etwa 1:12 beträgt.

45. Verfahren zum Abtrennen der Fasern des Cellulosebestandteils von Lignocellulose, dadurch gekennzeichnet, daß man die ganze zer-
kleinerte Lignocellulose mit einem Hauptvolumanteil an einem heißen wäßrigen angesäuerten organischen Lösungsmittelgemisch aus 70 bis 30 Teilen Wasser, 30 bis 70 Teilen an einem flüchtigen flüs-
sigen organischen Lösungsmittel mit einem Löslichkeitsparameter in dem Bereich von 10 bis 13 aus den Gruppen der wasserlöslichen nied-
rigmolekularen aliphatischen Alkohole und der wasserlöslichen nied-
rigmolekularen aliphatischen Ketone und Gemischen davon und einem Hydrolyserungskatalysator aus der Gruppe der organischen Säuren Malein-, Oxal-, o-Phthal-, L-Apfel-, Bernstein-, Nicotin-, Salicyl-
und Trifluorethinsäure in solcher Menge, daß das pH des Lösungsmit-
telgemisches in dem Bereich von 3,5 bis 1,7 liegt, imprägnierts, die imprägnierte Lignocellulose bei einer Temperatur in dem Bereich von 160 bis etwa 180°C für eine ausreichende Zeit, um den größeren Teil der Hemicellulose und den größeren Teil des Lignins zu lösen, so daß die Fasern nach dem Kochen noch nicht freigesetzt sind, aber durch kräftige mechanische Bewegung einer wäßrigen Suspension des Lignocelluloserückstandes freigesetzt werden können, unterwirft, danach die Kochflüssigkeit von dem Rückstand abzieht, den Rückstand mit Aceton kocht und anschließend mit Wasser wäscht, den Rückstand in Wasser dispergiert und den dispergierten Rückstand unter hohem Druck raffiniert, um eine mechanische Pülpe hoher Festigkeit zu ge-

46. Verfahren nach Anspruch 45, dadurch gekennzeichnet, daß die Lignocellulose und das wäßrig organische angesäuerte Lösungsmittel-
gemisch unter Mischen in einen Druckbehälter mit Einlaß und Auslaß in einem Gewichtsverhältnis zwischen 1:4 und 1:12 eingeführt und
zusammen in Richtung zum Auslaß durch den Behälter geführt werden, wobei die Geschwindigkeit der Bewegung des Lösungsmittelgemisches größer ist als diejenige der Lignocellulose.

47. Verfahren nach Anspruch 45, dadurch gekennzeichnet, daß das flüssige organische Lösungsmittel Äthanol oder Aceton und das flüssige Waschlösungsmittel Aceton ist und daß die Lignocellulose der entlignisierenden und verzuckernden Wirkung des Lösungsmittelgemisches für eine Zeit von nicht mehr als 5 Minuten ausgesetzt wird.

48. Verfahren zum Abtrennen der Fasern aus dem Celluloseanteil von Lignocellulose, dadurch gekennzeichnet, daß man die ganze zerkleinerte Lignocellulose mit einem Hauptvolumanteil an einem heißen wäfig organischen angesäuerten Lösungsmittelgemisch aus 70 bis 30 Teilen Wasser, 30 bis 70 Teilen an einem flüssigen flüchtigen organischen Lösungsmittel aus den Gruppen der wasserlöslichen niedrigmolekularen aliphatischen Alkohole und der wasserlöslichen niedrigmolekularen aliphatischen Ketone und Gemischen davon, deren Löslichkeitsparameter in dem Bereich von 10 bis 13 liegt, und einem sauren Hydrolyserungskatalysator der Gruppe der starken Säuren Salzsäure, Schwefelsäure, Phosphorsäure und Salpetersäure und der Gruppe der mit ihren neutralen Salzen gepufferten starken Säuren in solcher Menge, daß das pH des Lösungsmittelgemisches in den Bereich von 3,5 bis 1,7 eingestellt wird, imprägniern, die imprägnierte Lignocellulose der entlignisierenden und verzuckernden Wirkung des Lösungsmittelgemisches bei einer Temperatur in dem Bereich von etwa 160 bis etwa 180°C für eine ausreichende Zeit, um die Auflösung des größeren Teils der Hemicellulose und des größeren Teils des Lignins zu bewirken, unterwirft, so daß die Fasern nach dem Kochen noch nicht freigesetzt sind, aber durch kraftige mechanische Bewegung einer wäfigen Suspension des Lignocelluloserückstandes freigesetzt werden können, danach die Kochflüssigkeit von dem Celluloserückstand ab-
zieht, den Rückstand mit Aceton und anschließend mit Wasser wäscht, den Rückstand in Wasser dispergiert und den dispergierten Rückstand unter hohem Druck raffiniert, um eine mechanische Püple hoher Festigkeit zu bilden.

50. Verfahren nach Anspruch 48, dadurch gekennzeichnet, daß die Lignocellulose der entlignifizierenden und verzuckernden Wirkung des Lösungsmittelgemisches für eine Zeit von nicht mehr als 5 Minuten ausgesetzt wird.

51. Kontinuierliches Verfahren zum Freisetzen der Fasern aus dem Cellulosebestandteil von Lignocellulose, dadurch gekennzeichnet, daß man

- Teilchen von Lignocellulose durch einen Einlaß in einen ersten Druckbehälter einführt, wobei dieser erste Behälter wenigstens einen Einlaß und wenigstens einen, in einem Abstand längs der Länge des Behälters von diesem Einlaß angeordneten Auslaß aufweist und seinen Inhalt unter erhöhtem Druck zu halten vermag, einführt,
- durch den Einlaß ein erstes wäfiges angesäuertes Lösungsmittelgemisch aus 30 bis 70 Teilen Wasser, 70 bis 30 Teilen eines flüssigen flüchtigen wasserlöslichen organischen Lösungsmittels und eines sauren Hydrolysierungskatalysators in solcher Menge, daß das pH des Gemisches in den Bereich von 1,7 bis 3,5 einge-
stellt wird, wobei das flüssige organische Lösungsmittel aus der Gruppe der wasserlöslichen niedrigmolekularen aliphatischen Alkohole und der Gruppe der wasserlöslichen niedrigmolekularen aliphatischen Ketone und der Gemische davon, deren Löslichkeitsempfindlichkeit in dem Bereich von 10 bis 13 liegt, ausgewählt wird, einzuführen,

- ein Gewichtsverhältnis von eingeführtem Lösungsmittel und Beschickung von wenigstens 4:1 wählt und dem Behälter Wärme zuführt, um seinen Inhalt bei einer Temperatur von wenigstens 160°C, jedoch nicht über 210°C, zu halten, während man Lignocellulose und Lösungsmittelgemisch in Richtung zum Auslaß durch den Behälter bewegt,

- das Lösungsmittelgemisch so umläuft, daß seine Geschwindigkeit beträchtlich größer als die Geschwindigkeit der zerkleinerten Lignocellulose ist, und Lösungsmittelgemisch, das Lignin und Zucker gelöst enthält, durch einen Auslaß abzieht, um die Verweilzeit auf einen bestimmten Wert zu begrenzen,

- von einem Auslaß dieses ersten Behälters ohne Drucksenkung Lignocelluloserschrockstand und Imprägnierungslösungsmittel abzieht,

- Lösungsmittelgemisch von dem abgezogenen Lignocelluloserschrockstand abtrennt, bis in dem Lignocelluloseanteil nur noch ein geringer Volumanteil an Flüssigkeit bleibt,

- den Lignocelluloserschrockstand durch einen Einlaß in einen zweiten Druckbehälter überführt, wobei dieser zweite Behälter wenigstens einen Einlaß und einen Auslaß, die in einem Abstand längs der Länge des Behälters voneinander angeordnet sind, aufweist und seinen Inhalt unter Druck zu halten vermag, einzuführen,

- ein zweites wäßriges angesäuertes Lösungsmittelgemisch aus 70 bis 30 bis 70 Teilen eines flüchtigen wasserlöslichen organischen Lösungsmittels sowie einen sauren Hydrolysierungs-katalysator in ausreichender Menge, um das pH des Gemisches in
den Bereich von 1,7 bis 3,5 einzustellen, wobei das flüssige
organische Lösungsmittel aus der Gruppe der wasserlöslichen
niedrigmolekularen aliphatischen Alkohole und der wasserlös-
lchen niedrigmolekularen aliphatischen Ketone und Gemischen
davon, deren Löschkeitsparameter in dem Bereich von 10 bis
13 liegt, gewählt ist, eingeführt,

- ein Gewichtsverhältnis von Lösungsmittelgemisch zu Lignocellu-
loserrückstand beim Eintritt in den zweiten Druckbehälter in dem
Bereich von 10:1 zu 4:1 einhält und dem Inhalt Wärme zuführt,
so daß eine Temperatur nahe an 210°C, jedoch nicht darüber, eingehalten wird, während man den Lignocelluloserückstand und das
Lösungsmittelgemisch in Richtung zum Auslaß führt,

- das zweite Lösungsmittelgemisch durch den zweiten Behälter strö-
men läßt und Lösungsmittelgemisch unter Einhaltung einer bestimm-
ten Verweilzeit von einem Auslaß abzieht,

- Lignocelluloserückstand mit solcher Geschwindigkeit durch den
zweiten Behälter führt, daß die gekochten Teilchen von einem
Auslaß in solchem Zustand, daß die Cellulosezellen frei ab-
trennbar sind, ausgebracht werden,

- ohne Drucksenkung die Imprägnierungslösungsmittelgemisch und gelöstes Lignin und Zucker enthaltenden Teilchen von dem zweiten
Behälter abzieht,

- Lösungsmittelgemisch von dem gekochten Rückstand abzieht,

- den Celluloserückstand nacheinander mit Waschflüssigkeiten aus
reinem organischem Lösungsmittel und anschließend flüssigem
wäbrig organischem Lösungsmittel und danach mit Wasser extrahiert und wäscht, und

- die mit Lösungsmittel extrahierte gewaschene Cellulosefasermasse ausbringt.

52. Kontinuierliches Verfahren nach Anspruch 51, dadurch gekennzeichnet, daß das erste abgezogene Lösungsmittelgemisch bei einer
Nichtverkokungstemperatur destilliert wird, um flüchtige Materialien abzutrennen und Lignin in einem sirupartigen Rückstand zu fallen, die flüchtigen Materialien kondensiert werden, um das flüssige organische Lösungsmittel zurückzugewinnen, und das gewonnene flüssige organische Lösungsmittel erneut in dem Verfahren eingesetzt wird.

53. Kontinuierliches Verfahren nach Anspruch 51, dadurch gekennzeichnet, daß das abgezogene zweite Lösungsmittelgemisch einer Destillation bei Nichtverkokungstemperatur unterworfen wird, um flüchtige Materialien abzutrennen und gelöstes Restlignin zu fallen, wobei die flüchtigen Materialien kondensiert werden, um das flüssige organische Lösungsmittel zurückzugewinnen, und der Zucker und Dehydratationsprodukte enthaltende Flüssigkeitsrückstand gewonnen wird.

55. Kontinuierliches Verfahren nach Anspruch 54, dadurch gekennzeichnet, daß die Kochtemperatur im ersten Behälter etwa 180°C und die Kochtemperatur im zweiten Behälter etwa 210°C beträgt und das pH des ersten Lösungsmittelgemisches in dem Bereich von 1,7 bis 2,2 liegt.

56. Kontinuierliches Verfahren nach Anspruch 51, dadurch gekennzeichnet, daß das flüssige organische Lösungsmittel in dem ersten
Lösungsmittelgemisch Äthenol oder Aceton ist und mit einem gleichen Gewichtsanteil Wasser vermischt ist, der saure Hydrolysierungskata-
lysator für das erste Lösungsmittelgemisch aus der Gruppen der Säu-
ren Oxal-, Malein-, o-Pthal-, L-Apfel-, Bernstein-, Nicotin-, Salicyl- und Trifuoressigsäure und Gemischen eines neutralen Puf-
fersalzes von Salzsäure, Schwefelsäure, Phosphorsäure und Salpetersäure im Gemisch mit der entsprechenden starken Säure gewählt ist, so daß das pH des Lösungsmittelgemisches in den Bereich von 1,7 bis 2,2 eingestellt wird, das flüssige organische Lösungsmittel für das zweite Lösungsmittelgemisch Aceton ist, das mit Wasser im Verhält-
nis von 40 bis 60 Volumteilen Aceton zu 60 bis 40 Volumteilen Wasser vermischt wird, und das Gewichtsverhältnis von Lignocellulose zu Lösungsmittelgemisch zwischen 1:4 und 1:10 eingestellt wird, und daß der für das zweite Lösungsmittelgemisch verwendete saure Hydro-
lysierungskatalysator aus der Gruppe der starken Säuren Salzsäure, Schwefelsäure, Phosphorsäure und Salpetersäure gewählt wird.

57. Kontinuierliches Verfahren nach Anspruch 56, wobei das Kochen des Lignocelluloserückstandes in dem zweiten Druckbehälter so lange fortgesetzt wird, bis eine Teilverzuckerung von Glucan und eine praktisch vollständige Faserfreisetzung erfolgt sind, gekennzeich-
et durch Aufbrechen der Mikrofibrillen in kristalline Teilchen ohne Faserstruktur und durch die Abwesenheit von amorphen Poly-
glucose sowie dadurch, daß der mit Lösungsmittel extrahierte und gewaschene Celluloserückstand bis zu einem praktisch wasserfreien Cellulosepulver dehydratisiert wird.

58. Kontinuierliches Verfahren zum Entlignifizieren von Ligno-
cellulose und praktisch vollständiger Umwandlung des Glucans in Zuckerdehydratations- und Abbauprodukte, dadurch gekennzeichnet, daß man
- zerkleinerte Lignocellulose durch einen Einlaß in einen Druck-
 behälter einführt, wobei dieser Behälter wenigstens ein Paar
 von Ein- bzw. Auslässen an jedem Ende für das Einbringen und
 Ausbringen von Materialien aufweist und seinen Inhalt unter
 erhöhtem Druck zu halten vermag, einbringt,
- ein angesäuertes wäfig organisches Lösungsmittelgemisch aus
 30 bis 70 Teilen Wasser, 70 bis 30 Teilen eines wasserlöslichen
 organischen Lösungsmittels der Gruppe Aceton und Äthanol und
 einer Säure der Gruppe der starken Säuren Salzsäure, Schwefel-
 säure, Phosphorsäure und Salpetersäure in solcher Menge, daß
 das pH des Lösungsmittelgemisches in dem Bereich von 1,7 bis
 3,5 eingestellt wird, wählt, einbringt,
- ein Verhältnis Beschickung zu Lösungsmittelgemisch von 1 Teil
 Lignocellulose zu 10 bis 15 Teilen Lösungsmittelgemisch ein-
 hält,
- dem Behälterinhalt Wärme zuführt, so daß seine Temperatur etwa
 210°C beträgt, während man die zerkleinerte Lignocellulose in
 Richtung zu dem in einem Abstand von dem Einlaß befindlichen
 Auslaß bewegt, während man Lösungsmittel im Gegenstrom zu der
 Fortschreitungsrichtung der Lignocellulose umlaufen läßt,
- Lösungsmittelgemisch, das Lignin und Zucker gelöst enthält, von
 einem Auslaß in der Nähe des Einlasses abzieht und frisches
 aufgeheiztes Lösungsmittelgemisch durch einen von diesem Einlaß
 entfernten Einlaß zuführt,
- abgezogenes Lösungsmittelgemisch bei Nichtverkokungstemperatur
 destilliert, um das Äthanol oder Aceton als Kondensat zurückzu-
 gewinnen und das Lignin von einem sirupartigen Rückstand zu
 fällen, und den sirupartigen Rückstand mit dem Kondensat durch
 den zweiten, vom ersten entfernten Einlaß einführt,
- die Lignocellulose der Verzuckerungswirkung des Lösungsmittel-
 gemisches so lange aussetzt, daß praktisch kein fester organi-
 scher Rückstand den vom Einlaß entfernten Auslaß erreicht und
so lange, daß die gelösten, aus Cellulose gebildeten Produkte zu Furfuralen von Pentosen und Hexosen dehydratisiert werden, unterwirft, und
- eine die Zuckerdehydtrationsprodukte enthaltende Flüssigkeit abzieht.

60. Lignin niedrigen Molekulargewichts in Pulverform hergestellt nach dem beanspruchten Verfahren.
INTERNATIONALER RECHERCHENBERICHT

I. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDS (bei mehreren Klassifikationsymbolen sind alle anzugeben)

Nach der Internationalen Patentklassifikation (IPC) oder sowohl nach der nationalen Klassifikation als auch nach der IPC
D 21 C 3/20, C 13 X 1/02, C 07 G 1/00, C 07 C 31/04, C 07 C 53/02,
C 07 C 53/08, C 07 C 55/06, C 07 C 59/08, C 07 C 59/14, C 07 C 59/33 +

II. RECHERCHIERTE SACHGEBIETE

Recherchierter Mindestprüfstoff

Klassifikationssystem

Klassifikations symbole

Int.Cl. 2
D 21 C 3/00, C 13 X 1/02, C 07 D 307/50,
C 08 B 1/00, C 08 H 5/02.

Recherchierte nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Sachgebiete fallen

III. ALS BEDIUTSAM ANZUSEHENDE VERÖFFENTLICHUNGEN

Art +
Kannzeichnung der Veröffentlichung 16 mit Angabe, soweit erforderlich, der in Betracht kommenden Teile 17
Betr. Anspruch Nr. 18

US, A, 1856567, veröffentlicht am 3. Mai 1932,
siehe Patentansprüche 3-5; Seite 1, Zeilen 31-99; Seite 2, Zeilen 9-22, T. KLEINERT et al.

US, A, 2106797, veröffentlicht am 1. Februar 1938,
H. DREYFUS

US, A, 2959500, veröffentlicht am 8. November 1960,
siehe Patentanspruch 1; Spalte 2, Zeilen 3-31; Spalte 3, Zeilen 60-75; Spalte 4, Zeilen 1-9; Beispiele 1-4,7,10, P. SCHLAEPFER et al.

FR, A, 1235092, veröffentlicht am 23. Mai 1960,
McKee DEVELOPMENT

US, A, 2783146, veröffentlicht am 26. Februar 1957,
siehe Zeichnung; Spalte 1, Zeilen 15-39 und 62-72; Spalte 2, Zeilen 1-72; Spalte 3, Zeilen 1-75; Spalte 4, Zeilen 1-63, R.H. McKee

+ Besondere Arten von angegebenen Veröffentlichungen: 15

"A" Veröffentlichung, die den allgemeinen Stand der Technik charakterisiert
"E" frühere Veröffentlichung, die erst am oder nach dem Anmeldedatum erschienen ist
"L" Veröffentlichung, die aus anderen als den bei den übrigen Arten genannten Gründen angegeben ist
"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem Anmeldedatum, aber am oder nach dem beanspruchten Prioritätsdatum erschienen ist
"S" Späte Veröffentlichung die am oder nach dem Anmeldedatum erschienen ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis der Erfindung zugrundeliegenden Prinzip oder der ihr zugrundeliegende Theorie angegeben wurde
"X" Veröffentlichung von besonderer Bedeutung

IV. BESCHEINIGUNG

Datum des tatsächlichen Abschlusses der internationalen Recherche
19. Dezember 1978
Absendetermine des internationalen Recherchenberichtes
4. Januar 1979

Internationale Recherchenbehörde
EUROPÄISCHES PATENTAMT

Unterschrift des bevollmächtigten Bediensteten

Formiert PCT/ISA/210 (Blatt 2) (Oktober 1977)
I. Klassifizierung des Anmeldungsgegenstands (bei mehreren Klassifikationsymbolen sind alle anzugeben)

Nach der internationalen Patentklassifikation (IPC), oder sowohl nach der nationalen Klassifikation als auch nach der IPC (Fortsetzung)

C 07 D 307/46, C 07 D 307/50, C 07 H 13/08/1
A 23 K 1/12, C 08 B 1/00

II. Recherchierte Sachgebiete

<table>
<thead>
<tr>
<th>Recherchierter Mindestprüfstoff 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klassifikationssystem</td>
</tr>
<tr>
<td>Klassifikationszeichen</td>
</tr>
</tbody>
</table>

Recherchierte nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter den recherchierten Sachgebieten fallen 5

III. Als bedeutsam anzusehende Veröffentlichungen 14

<table>
<thead>
<tr>
<th>Art +</th>
<th>Kennzeichnung der Veröffentlichung 16 mit Angabe, soweit erforderlich, der in Betreff kommenden Teil 17</th>
<th>Begr. Anspruch Nr. 18</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 Besondere Arten von angegebenen Veröffentlichungen: 15

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert
"E" früher Veröffentlichung, die erst am oder nach dem Anmeldedatum erschienen ist
"L" Veröffentlichung, die aus anderen als den bei den übrigen Arten genannten Gründen angegeben ist
"Q" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

5 "P" Veröffentlichung, die vor dem Anmeldedatum, aber am oder nach dem beantragten Prioritätsdatum erschienen ist
"T" Spätere Veröffentlichung die am oder nach dem Anmeldedatum erschienen ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis der Erfindung zugrundeliegenden Prinzipien oder der ihr zugrundeliegenden Theorie angegeben wurde

IV. Bescheinigung

Datum des tatsächlichen Abschlusses der Internationalen Recherche 2

Abschließendes Datum des internationalen Recherchenberichts 2

Internationale Recherchenbehörde 1

<table>
<thead>
<tr>
<th>EUROPÄISCHES PATENTAMT</th>
</tr>
</thead>
</table>

Unterschrift des bevollmächtigten Bediensteten 20

Formblatt PCT / 12A / 210 (Blatt 2) (Oktober 1977) -2-
V. BEMERKUNGEN ZU DEN ANSPRUCHEN, DIE SICH ALS NICHT RECHERCHIERBAR ERWIESEN HABEN ¹⁰

Dieser internationale Recherchenbericht geht gemäß Artikel 17 Absatz 2 Buchstabe a aus folgenden Gründen auf einige Ansprüche nicht ein:

1. □ Ansprüche Nr. __________, weil sie sich auf Gebiete beziehen, in bezug auf die diese Behörde nicht zur Durchführung einer Recherche verpflichtet ist, nämlich

2. □ Ansprüche Nr. __________, weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle Recherche nicht durchgeführt werden kann ¹³, insbesondere

VI. BEMERKUNGEN BEI MANGELNDER EINHEITLICHKEIT DER ERFINDUNG ¹¹)

Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:

1. □ Da der Anmelder alle erforderlichen zusätzlichen Recherchegebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle rechtfertigbaren Ansprüche der internationalen Anmeldung.

2. □ Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchegebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche der internationalen Anmeldung, für die Gebühren gezahlt worden sind, also auf die folgenden Ansprüche:

3. □ Der Anmelder hat die erforderlichen zusätzlichen Recherchegebühren nicht rechtzeitig entrichtet. Dieser internationale Recherchenbericht beschränkt sich daher auf die zuerst in den Ansprüchen erwähnte Erfindung; sie ist in folgenden Ansprüchen erfaßt:

Bemerkung hinsichtlich eines Widerspruchs

□ Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt.

□ Die Zahlung zusätzlicher Gebühren erfolgte ohne Widerspruch.
INTERNATIONAL SEARCH REPORT

International Application No. PCT/CH78/00016

I. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both National Classification and IPC

- D 21 C 3/20, C 13 K 1/02, C 07 G 1/00, C 07 C 31/04, C 07 C 53/02, C 07 C 53/08, C 07 C 55/06, C 07 C 59/08, C 07 C 59/14

II. FIELDS SEARCHED

Minimum Documentation Searched

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int.Cl.²</td>
<td>D 21 C 3/00, C 13 K 1/02, C 07 D 307/50, C 08 B 1/00, C 08 H 5/02</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation

to the extent that such Documents are Included in the Fields Searched

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>US, A, 1856567, published on 3 May 1932, see claims 3-5; page 1, lines 31-99; page 2, lines 9-22, T. KLEINERT et al.</td>
<td>1,2,13</td>
</tr>
<tr>
<td></td>
<td>US, A, 2106797, published on 1st February 1938, H. DREYFUS</td>
<td>1,2,13,19-21, 23,24,28-30</td>
</tr>
<tr>
<td></td>
<td>US, A, 2959500, published on 8 November 1960, see claim 1, column 2, lines 3-31; column 3, lines 60-75; column 4, lines 1-9; examples 1-4,7,10, P. SCHAEFFER et al.</td>
<td>1,2,13,43,60</td>
</tr>
<tr>
<td></td>
<td>FR, A, 1235092, published on 23 May 1960, McKEE DEVELOPMENT</td>
<td>1,9,13,16,17, 60</td>
</tr>
<tr>
<td></td>
<td>US, A, 2783146, published on 26 February 1957, see drawing; column 1, lines 15-39, to 62-72; column 2, lines 1-72; column 3, lines 1-75; column 4, lines 1-63, R.H.McKee</td>
<td>1,9,45,46,48</td>
</tr>
</tbody>
</table>

IV. CERTIFICATION

Date of the Actual Completion of the International Search

19 December 1978 (19.12.78)

Date of Mailing of this International Search Report

4 January 1979 (04.01.79)

International Searching Authority

European Patent Office

Signature of Authorized Officer

+ Continues PCT/ISA/210 (second sheet)
I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all)
According to International Patent Classification (IPC) or to both National Classification and IPC
C 07 C 59/33, C 07 D 307/46, C 07 D 307/50, C 07 H 13/08//
(continued) A 23 K 1/12, C 08 B 1/00

II. FIELDS SEARCHED
Minimum Documentation Searched 4

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
</table>

Documentatation Searched other than Minimum Documentation

to the Extent that such Documents are Included in the Fields Searched 5

III. DOCUMENTS CONSIDERED TO BE RELEVANT 14

<table>
<thead>
<tr>
<th>Category *</th>
<th>Citation of Document, 16 with indication, where appropriate, of the relevant passages 17</th>
<th>Relevant to Claim No. 18</th>
</tr>
</thead>
</table>

* Special categories of cited documents: 16
"A" document defining the general state of the art
"E" earlier document but published on or after the international filing date
"L" document cited for special reason other than those referred to in the other categories
"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but on or after the priority date claimed
"T" later document published on or after the international filing date or priority date and not in conflict with the application, but cited to understand the principle or theory underlying the invention
"X" document of particular relevance

IV. CERTIFICATION

Date of the Actual Completion of the International Search 1 | Date of Mailing of this International Search Report 1

International Searching Authority 4 | Signature of Authorized Officer 99

Form PCT/ISA/210 (second sheet) (October 1977)
FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET

US, A, 2730444, published on 10 January 1956, 1,2,4,13, see claims 1,5,9; column 1, lines 15-72; column 2, lines 1-29 to 52-72; column 3, lines 5-8; examples 2,3,7, A. HODGE et al. 16,60

US, A, 1357467, published on 2 November 1920, see page 1, lines 22-92, K.P. MONROE 15-17

A US, A, 3776897, published on 4 December 1973, Y. IKARI et al. 1

V. OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE

This international search report has not been established in respect of certain claims under Article 17(2) (a) for the following reasons:

1. Claim numbers __________, because they relate to subject matter not required to be searched by this Authority, namely:

2. Claim numbers __________, because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

VI. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

This International Searching Authority found multiple inventions in this international application as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims of the international application.

2. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims of the International application for which fees were paid, specifically claims:

3. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers:

Remark on Protest

☐ The additional search fees were accompanied by applicant's protest.
☐ No protest accompanied the payment of additional search fees.