Title: PROCESS FOR REDUCING THE OXYGEN CONTENT OF HIGH-OXYGEN FEEDSTOCKS

Abstract: A process is disclosed for reducing the oxygen content of a high-oxygen feedstock. The process is particularly suitable for biomass-based feedstocks. The process comprises contacting the feedstock with carbon monoxide and/or coke in the presence of a catalyst. Conveniently, the coke may be present in the form of a deposit on the catalyst. Carbon monoxide may be generated in a regeneration step of the catalyst. The process may be carried out in conventional refinery equipment.
PROCESS FOR REDUCING THE OXYGEN CONTENT OF HIGH-OXYGEN FEEDSTOCKS

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0001] The invention relates generally to a process for reducing the oxygen content of high-oxygen feedstocks, and more particularly to the conversion of bio-oil components to hydrocarbon fuels.

2. Description of the Related Art

[0002] Increasingly, renewable resources are being studied as replacements for fossil fuels. In particular biomass materials are being looked at as a source for liquid fuels for internal combustion engines.

[0003] Liquid fuels obtained from crude oil consist predominantly of hydrocarbons and aromatics. The constituents are almost exclusively carbon (C), and hydrogen (H), and little or no oxygen. Conversion products from biomass invariably comprise significant amounts of oxygen. Ligno-cellulosic biomass and bio-oils derived therefrom typically have an oxygen content of at least 20% by weight, and sometimes as high as 50% by weight. The energy content of these materials is accordingly much lower than that of fossil fuels.

[0004] It is necessary to upgrade biomass-derived fuels by reducing their oxygen content. Techniques that have been proposed thus far include cracking, for example fluid catalytic cracking (FCC); hydro-cracking; hydro-treating; and hydro-deoxygenation. What these techniques have in common is that much of the oxygen removal relies on the reaction of oxygen with hydrogen to form water. The hydrogen is either supplied externally, or is consumed from the biomass feedstock. Externally supplied hydrogen is expensive, and adds significantly to the cost of biomass-derived fuels. If no external hydrogen is supplied the hydrogen content of the biofuel is reduced during the cracking process, which lowers the energy content of the fuel.

[0005] Thus, there is a particular need for a process for reducing the oxygen content of a high-oxygen feedstock that has a reduced hydrogen consumption as compared to existing processes.
There is a further need for a process that may be carried out in existing plant available in oil refineries.

BRIEF SUMMARY OF THE INVENTION

The present invention addresses these problems by providing a process for reducing the oxygen content of a high-oxygen feedstock, said process comprising the step of contacting the high-oxygen feedstock with carbon monoxide and/or coke at a temperature in the range of 100 to 300 °C.

Another aspect of the invention comprises a method for carrying out the inventive process in standard refinery equipment.

BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of the invention will be appreciated upon reference to the following drawings, in which:

FIG. 1 is a diagram of a reaction scheme for the catalytic pyrolysis and the catalytic cracking of a biomass material

FIG. 2 is a diagram of an improved embodiment of the reaction scheme of figure 1

DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

The following is a description of certain embodiments of the invention, given by way of example only and with reference to the drawings.

Figure 1 is a diagrammatic depiction of one embodiment of the process 100 of the present invention.

In reactor 102 biomass material 101 is mixed with a particulate catalyst 105, and a fluidizing gas 103. The fluidizing gas 103 may be inert, or it may be a reducing gas, such as comprising hydrogen, carbon monoxide. Conveniently the gas could be flue gas from regenerator 111, which is rich in CO.

The temperature of the catalyst particles 105 and the fluidizing gas 103 is such that the temperature in reactor 102 does not exceed 200 °C. It will be understood that biomass material 101 typically contains water, which will be driven off by fluidizing gas 103. The
amount of water present in biomass material 101 is an important factor in determining the temperature in reactor 102, and must be taken into account when calculating the energy balance for reactor 102.

[0016] After the biomass material 101 and the catalyst particles 105 have become thoroughly mixed in reactor 102, the mixture 104 is transferred to fluid cracker 106. A second stream 107 of catalyst particles is introduced at this point. Catalyst stream 107 is hot, so as to maintain a cracking temperature in fluid cracker 20 of from 250 to 550 °C, preferably from 350 to 450 °C.

[0017] The cracking reaction taking place in fluid cracker 106 reduces the oxygen content of the feedstock. If CO is present in the fluidizing gas, at least part of the oxygen reduction proceeds via the following reaction:

\[C_\alpha H_\beta O_\gamma + d \text{CO} \rightarrow C_\alpha H_\beta O_{cd} + d \text{CO}_2 \]

(1)

[0018] To the extent that deoxygenation is the result of this reaction it does not involve the consumption of hydrogen.

[0019] From fluid cracker 106 the reaction mixture 108 is transferred to product/catalyst separator 110 (e.g., comprising cyclones and a stripper). Product is condensed in product recovery unit 109, producing product stream 113. The catalyst particles, which are covered with coke (a by-product of the fluid cracking reaction) are sent to regenerator 111. In regenerator 111 an oxygen containing gas (e.g., air, or an oxygen/steam mixture) is admitted, to burn off the coke. The amount of oxygen and the temperature in regenerator 111 are controlled so as to maximize the amount of carbon monoxide in flue gas 103. This gas is piped to reactor 102. Regenerated catalyst particles 112, which are hot and, in this embodiment, virtually coke free (e.g., less than 0.2 % coke by weight of the catalyst) are recycled in part to reactor 102, and in part to fluid reactor 106. The split is controlled so as to obtain the desired temperatures in each of reactor 102 and fluid reactor 106.

[0020] Figure 2 is a diagrammatic representation of a second embodiment of the present invention. This embodiment differs from that of figure 1 in that the regeneration in regenerator 111 is controlled such that the regenerated catalyst particles (112a, 107a and 105a) retain at least 1 wt%, preferably about 2 wt % of coke. In fluid cracker 106 the feedstock reacts with
carbon monoxide in the flue gas, as per equation (1), above. In addition, feedstock is
deoxygenated by reaction with the coke deposit on the catalyst particles, as illustrated by
equation (2):

\[C_{a}H_{b}O_{c} + e \rightarrow C_{a}H_{b}O_{c-2e} + e CO_{2} \]

(2)

[0021] For convenience the coke is depicted as elemental carbon, although it may contain
small amounts of hydrogen.

[0022] It will be readily appreciated that the use of carbon monoxide in the flue gas and the
residual coke on the catalyst particles permits a significant reduction in the oxygen content of
the feedstock, without requiring the consumption of hydrogen.

[0023] To a large extent, conventional refinery equipment may be used for the process of
the present invention. For example, 106, 110 and 111 can be the riser, the stripper and the
regenerator of a conventional FCC unit.

[0024] Any high-oxygen feedstock may be used as feed 101. The feedstock may be liquid or
solid. Examples of suitable liquid feedstocks include bio-oils and components of bio-oils. The
term "bio-oil", as used herein, refers to liquid product resulting from a chemical treatment of a
solid biomass. The chemical treatment may be pyrolysis, cracking, hydrotreatment, and the
like.

[0025] Suitable examples of solid feedstocks include solid biomass materials, in particular
biomass materials containing cellulose and/or ligno-cellulose. Examples include wood
particles, straw, corn husks, bagasse, and other forms of forestry or agricultural waste
materials.

[0026] Solid biomass materials may be fed directly into reactor 102 in the form of small
particles. Fluidizing gas 103 carrying catalyst material 105 or 105a provides intimate mixing of
the catalyst material and the solid biomass.

[0027] In an alternate embodiment, catalyst material 105 or 105a is brought into intimate
contact with solid biomass material in a pre-treatment step (not shown) prior to introduction
into reactor 102. Solid biomass may be brought into intimate contact with catalyst particles by
mechanical processes, such as grinding, milling kneading, and the like. Such processes are
disclosed in more detail in our pending patent application PCT/EP2007/054377, the
disclosures of which are incorporated herein by reference. It will be appreciated that the
presence of coke on the surface of the catalyst particles may act as a lubricant, thereby
enhancing the penetration of the catalyst particle into the biomass particle.

[0028] It will be appreciated that the catalyst particles used in this pre-mixing step may be
much smaller than the catalyst sizes customary for use in FCC processes. The latter are in the
mm range, whereas for this pre-mixing step the catalyst particles have an average particle size
in the range of from 50 nanometers to 40 micrometers, preferably from 150 to 500
nanometers. These catalyst particles are recovered from the product stream as "fines", and
recycled to the pre-mixing step.

[0029] Accordingly, the process for deoxygenation of solid biomass may comprise two
catalyst streams: a first catalyst stream comprising catalyst particles having an average particle
size the range of from 50 nanometers to 40 micrometers, preferably from 150 to 500
nanometers, which is mixed with a solid biomass in a mixer positioned upstream of reactor
102, and which is recovered from the product stream in separator 109; and a second catalyst
stream comprising catalyst particles suitable for fluidized beds (i.e., in the mm range), which is
recovered from regenerator 111 (with or without a coke residue) and recycled into 102 and
106. The chemical composition of the two catalyst streams may be the same or different, with
the understanding that, even if the same catalyst is used in both stream, the catalyst particles of
the second stream will usually contain a binder.

[0030] Examples of suitable catalytic materials include clays, silicas, silica-aluminas,
magnesia, magnesia-alumina, magnesia-silica-alumina, manganese compounds, lime, transition
metal hydroxides, metal oxides, metal hydroxyl salts, zeolites, cationic layered materials,
anionic clays, layered double hydroxides (LDHs), smectite clays, saponites, and mixtures
thereof.

[0031]
WHAT IS CLAIMED IS:

1. A process for reducing the oxygen content of a high-oxygen feedstock, said process comprising the step of contacting the high-oxygen feedstock with carbon monoxide and/or coke at a temperature in the range of 100 to 300 °C.

2. The process of claim 1 wherein the coke is present on a particulate inorganic material.

3. The process of claim 2 wherein the particulate inorganic material is inert.

4. The process of claim 2 wherein the particulate inorganic material has catalytic properties.

5. The process of claim 4 wherein the coke is deposited onto the particulate inorganic material in a catalytic process.

6. The process of claim 5 wherein the catalytic process is an FCC process.

7. The process of claim 5 or 6 wherein the particulate inorganic material is selected from the group consisting of E-cat; spent cat, HT coked catalyst, and mixtures thereof.

8. The process of claim 3 wherein the particulate inorganic material is selected from the group consisting of sand, silica, and metal.

9. The process of any one of the preceding claims wherein the particulate inorganic material has a mean particle diameter in the range of from 10 nm to 3 mm.

10. The process of any one of the preceding claims which is carried out in a fluid bed.

11. The process of any one of the preceding claims wherein the feedstock has an oxygen content of 20 to 50 weight %.
12. The process of claim 11 wherein the oxygen content of the feedstock is reduced to less than 10 weight %.

13. The process of any one of the preceding claims wherein the feedstock is derived from a ligno-cellulosic biomass.