Methods and related systems providing removal of heat from electric motors via fluid baths.
FIG. 1.
FIG. 4.
FIG. 5
ASSEMBLY AND METHOD FOR DIRECT COOLING OF MOTOR END-WINDINGS

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims the benefit under 35 U.S.C. §119(e) of the U.S. Provisional Patent Application No. 60/319,081 filed Jan. 16, 2002, entitled Assembly And Method For Direct Cooling Of Motor End-Winding, such application hereby incorporated by reference in its entirety.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] The present application generally relates to a method and system for use with electric motors.

[0004] 2. Description of the Related Art

[0005] Electric motors are power conversion devices. Electric motors typically convert electrical power into some type of mechanical power.

[0006] Electric motors typically have two primary parts: a stator and a rotor. The "stator" is a mechanically non-moving or stationary part of the motor. The rotor is a mechanically moving or rotating part. Typically, the rotor is formed in roughly the shape of a cylinder and is surrounded by the stator, which is also typically roughly shaped as a cylinder.

[0007] Electric motors are not one hundred percent efficient as they convert electrical power into mechanical power. Specifically, mechanical friction and electrical resistance tend to create losses generating heat.

[0008] Generated heat has numerous deleterious effects. For example, generated heat tends to increase both mechanical friction and electrical resistance within the motor, thereby creating a process which tends to feed on itself and create yet more mechanical friction and electrical resistance, thereby engendering yet more losses. Furthermore, modern power system components (e.g., electronic control and measurement components and motor insulation) tend to degrade more rapidly in the presence of high heat. It is therefore generally recognized that every effort should be made to remove generated heat from electric motors.

[0009] There are several conventional methods for removing generated heat from electric motors. One example of such conventional methods is air cooling. Air cooling uses either passive or active techniques to cause the flow of heat from warmer surfaces of components of electric motors to cooler air.

BRIEF SUMMARY OF THE INVENTION

[0010] Electric motors typically use windings integral with the stator to generate a rotating electromagnetic field, where the windings are electrically fed from a source external to the stator. Portions of such stator windings have historically tended to protrude from either or both ends of stator cores. Consequently, such protrusions of the stator windings are generally known as electric motor “end-windings.” It is desired to remove heat from surfaces proximate to the electric motor end-windings.

[0011] The inventors have noted that the thermal resistance of heat paths proximate to electric motor end-windings can advantageously be reduced. Accordingly, the inventors have devised various embodiments of methods and systems that provide, as some of their many advantages, the advantage of reducing the thermal resistance of heat paths proximate to electric motor end-windings and the advantage of providing greater cooling of electric motors.

[0012] In one embodiment, a system having an electric motor includes but is not limited to a stator core, a stator winding having a winding portion external to the stator core; and a fluid bath having fluid in contact with the winding portion external to the stator core.

[0013] In another embodiment, a motorized vehicle includes but is not limited to an electric motor having a magnetic core; a winding having a winding portion internal to the magnetic core and a winding portion external to the magnetic core; and a fluid bath in contact with the winding portion external to the magnetic core.

[0014] In one embodiment, a method of making a system to transfer heat between an electric motor end-winding and a heat sink includes but is not limited to: loading a volume of fluid to a reservoir; and at least partially submerging the end-winding in the volume of fluid.

[0015] In another embodiment, a method of transferring heat between an electric motor end-winding and a heat sink includes but is not limited to: maintaining contact between a volume of fluid in a reservoir and the end-winding.

[0016] In addition to the foregoing, other method embodiments are described in the claims, drawings, and text forming a part of the present application.

[0017] The foregoing is a summary and thus contains, by necessity, simplifications, generalizations and omissions of detail; consequently, those skilled in the art will appreciate that the summary is illustrative only and is NOT intended to be in any way limiting. Other aspects, inventive features, and advantages of the devices and/or processes described herein, as defined solely by the claims, will become apparent in the non-limiting detailed description set forth herein.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0018] FIG. 1 is a cross-sectional view having a stator which includes an end-winding integral formed with a winding.

[0019] FIG. 2 is a cross-sectional view including a passive fluid bath.

[0020] FIG. 3 is a cross-sectional view of a passive fluid bath which provides a heat transfer path from an end-winding to a watercooled jacket.

[0021] FIG. 4 is a functional block diagram illustrating the problem of a high thermal resistance between the windings, stator iron, and water cooling jacket, and the solution of a path of lower thermal resistance provided in one embodiment of the subject matter of the present application.

[0022] FIG. 5 is a cross-sectional view of an electric motor having cooling described herein with a coupling device and a mechanical load.
The use of the same reference numbers in different drawings typically indicates similar or identical items.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 shows a representation of one embodiment of an electric motor. The motor includes a stator core 10 and a rotor 12, a shaft 13 of the rotor 12, and a motor housing 14. The housing 14 is sealed to prevent entry of external contaminants into the motor assembly. The stator core 10 has winding 15 formed by winding a wire 16 around a core with a predetermined electrical specification. The wire 16 may have an enameled coating outside which functions as insulation. Passing an electric current through winding 15 from the outside generates an electromagnetic force which rotates the rotor 12. The rotor 12 may, or may not, include fan blades formed or attached onto the end or ends of the rotor 12. The winding 15 consists of intimately wound wire 16 and maybe impregnated with varnish to avoid flexing. The winding 15 is a differentiator between motor derating and has a great deal to do with the performance of the motor. The winding 15 is inserted into the steel stator core 10. The core includes a watercooled jacket 17 which is wrapped around the stator core 10 outer surface. Watercooled jacket 17 transfers dissipated heat from the winding 15 to fluid in the watercooled jacket 17. The protruding location of the end-windings 18 creates an inefficient cooling path to the watercooled jacket 17, and therefore is sometimes provided with an alternate cooling system.

Conventional passive or active air cooling systems are sometimes used to cool end-windings 18. The inventors have noted that both the passive and active air cooling systems are somewhat ineffective in removing heat from end-windings 18, due at least in part to the fact that such air cooling systems use recirculated air contained within the sealed motor housing 14.

FIG. 2 shows a motor assembly which includes a passive fluid bath 19 in which the end-windings 18 are submerged. In one implementation, the fluid is an oil, such as gear-box oil, which may be circulated from the gear-box to the electric motor. The fluid bath 19 can be characterized as an open reservoir which can reside in a cavity interior to the motor housing. In one implementation, the cavity takes the shape of the motor housing 14. In one embodiment, the top surface of the fluid bath 20 lies just below surface 21 of the rotor assembly 12. The fluid bath 19 is in direct contact with a hot surface of the end-windings 18. In one implementation, sensing circuitry senses the level of the top surface of the fluid bath 20, and a fluid control mechanism, responsive to the sensing circuitry, maintains the fluid level such that the top surface of the fluid bath 20 lies just below surface 21 of the rotor assembly 12. In one embodiment the fluid control circuitry maintains the fluid level by pumping oil to and from the gear box.

During operation of the motor, and especially during heavy load conditions, heat is generated in the stator windings. In one implementation, the generated heat is removed by both cooling jacket 17 and passive fluid bath 19.

The stator core 10 transfers heat from the windings to the cooling jacket 17. The hanging end-windings 18 are not in direct contact with the stator core 10, but are in direct contact with passive fluid bath 19 and are therefore primarily cooled by passive fluid bath 19. In one embodiment, the passive fluid bath 19 is believed to cause an accelerated convection heat transfer. Accelerated convection heat transfer is the flow of heat from the hot molecules on the surface of the end-windings 18, to the cold molecules of the fluid bath 19. In general, the cooler the fluid bath 19, the greater the heat transfer. Increased dissipated heat transfer tends to allow the electric motor to be operated at higher power levels than it could otherwise tolerate.

As stated above, the watercooled jacket 17, which is wrapped around the stator core outer surface, is designed to accommodate water cooling of the stator core 10. The thermal path from a copper end-winding 18 through the stator core 10 and ultimately to the cooling water, tends to have a high thermal resistance.

FIG. 3 shows that in one implementation of an electric motor 300, the fluid bath 19 provides a direct conductive and convective heat transfer path 30 from the end-windings 18 to the watercooled jacket 17 surrounding the stator lamination stack. Fluid, such as water or coolant 31, flows through the watercooled jacket 17 and is used to cool the stator and windings 18. The oil bath 19 is believed to cool the end windings by contacting the watercooled jacket 17 and providing a path of lower thermal resistance. In one implementation, the oil 19 is stirred due to either or both of the rotation of rotor 12 fan blades (not shown) and natural convection. In addition, the fluid bath 19 is believed to add thermal capacitance to the electric motor assembly, which is believed to reduce local temperature fluctuations in the end-windings 18 during transient load conditions. Using the passive fluid bath 19, as opposed to an active-oil cooling strategy, the fluid, such as oil, is not sprayed, and therefore exerts little mechanical pressure which may otherwise erode the end-windings varnish and insulation. As opposed to an active oil cooling strategy, in one implementation the oil itself is not externally cooled or prompt, so the fluid bath 19 assembly may be realized with little extra cost above a standard traction motor.

The layer where the cool fluid from the fluid bath 19 meets the end-winding 18 surface is called the boundary layer. At this region, the boundary layer is very thin, and hence the heat from the end-winding is transferred very easily. Perfect heat transfer involves breaking the boundary layer completely. In the subject matter of the present application, it is believed that the fluid bath reduces the boundary layer, making it very thin. When the fluid hits the end-winding 18 surface, it is believed that very thin hydrodynamic and thermal boundary layers form in the impact region. Consequently, extremely high heat transfer coefficients are obtained with a stagnation zone. Since the peak heat transfer only occurs within the stagnation zone, the fluid bath 19 provides an effective means where highly localized cooling is desired, such as at the end-winding 18.

A mathematical formula believed to represent the form of heat transfer of the subject matter of the present application is Newton’s Law of Cooling. As applied to the subject matter of the present application, Newton’s Law of Cooling states that the rate at which heat is transferred from the end-windings 18 to the passive fluid bath 19 is related to an proportionality constant often donated as: h [W/m²·degrees Kelvin] and called the heat transfer coefficient. Simulation studies were conducted regarding cooling meth-
ods. A grading of end-winding cooling efficiency was calculated for stagnant air, convection cooling using a fan, and fluid bath 19 cooling. Stagnant cooling was the least efficient removing only 10 W/m² degrees Kelvin, convection cooling using a fan with air movement of 5-10 mph was better at 5-100 W/m² degrees Kelvin, and passive oil bath cooling was the best, removing greater than 100 W/m² degrees Kelvin. A simulation study was conducted which demonstrated that end-winding 18 temperature cooling efficiency was improved using the passive oil bath 19. The end-winding 18 temperature increase over the main coolant temperature is less for fluid bath 19 cooling, such as oil, as it is for natural convection. Cooling and forced air fan cooling. The heat transfer coefficient of fluid bath 19 cooling is much greater than that of natural convection.

[0033] A temperature sensor may be located in the end-winding 18. As the temperature approaches an end limit, usually in the range of 150-195 degrees Centigrade, preferably in the range of 150-180 degrees Centigrade, current supply to the motor is constrained. Using the fluid bath 19 assembly, the temperature of end-winding 18 can be lowered to around 150 degrees Centigrade, or less, so that more current may be supplied to the motor. The more current that is supplied to the motor, the more power the motor is able to generate, and the more current the motor is able to generate. Current tends to be directly proportional to torque, and is referred to as power density. The passive fluid bath 19 cooling assembly increases an electric motor’s power density.

[0034] With natural convection cooling using stagnant air, as the air around the surface of the end windings 18 approaches and equals the temperature of the end-windings 18 themselves, heat is no longer able to be transferred from the end-windings 18 to the surrounding air because the temperatures are equal. Heat will tend to transfer through a path of minimum thermal resistance, hot to cold, and is unlikely to travel on a path to an equal temperature.

[0035] FIG. 4 shows that, in one embodiment, the fluid bath 19 provides a thermal path with a lower thermal resistance as compared to conventional end-winding 18 cooling methods. The fluid bath 19 assembly is believed to result in lower temperatures of the end-windings 18 of an electric motor, which results in increased motor reliability. As end-winding 18 temperatures rise above a certain level, around 150-195 degrees Centigrade, the performance and reliability of electric motors and generators are constrained. Lower end-winding 18 temperatures translate into higher motor performance, higher power density, and improved reliability of the motor. For a given motor power rating, any motor with the cooling methods of the subject matter described herein may be significantly smaller in size, lower in weight, and cost less than a motor with a conventional cooling method.

[0036] Since the field strength of a permanent magnet is proportional to temperature, cooling the end-windings 18, and in effect the permanent magnet, increases the field strength, which produces higher voltage in the stator. The reduction of heat radiating from the stator core 10 causes a reduction in the temperature of the stator windings 18, which lowers the resistance of the windings 18. This higher voltage and lower resistance reduces the current for a given kilowatt output or load. Since the efficiency and life of many power electronics are inversely proportional to current, the fluid bath cooling assembly and method will therefore increase the efficiency of the electric motor system as a whole, and increase the life of the magnet, stator windings 18, power electronics, and other components. Cooling the stator windings 18 to a lower operating temperature improves the reliability and robustness of electric motor system by increasing the operating margin of the system as a whole, and is particularly important at higher ambient temperatures.

[0037] The fluid bath 19 cooling assembly does not interfere with the primary function of the electric motor. The rotor 12, and all other components of the electric motor assembly, function as intended. The fluid bath 19 assembly design does not block or prevent the cooling of the rotor 12.

[0038] Assemblies, systems, and methods for the cooling of electric motor end-windings 18 utilizing a passive fluid bath 19 have been described herein. In a general sense, those skilled in the art will recognize that the various embodiments described herein can be implemented, individually and/or collectively, by a wide range of hardware.

[0039] Those skilled in the art will recognize that it is common within the art to describe devices and/or processes in the fashion set forth herein, and thereafter use standard engineering practices to integrate such described devices and/or processes into systems. That is, the devices and/or processes described herein can be integrated into systems via a reasonable amount of experimentation.

[0040] FIG. 5 shows one such contemplated integration. The shaft 13 of electric motor 300 is coupled via conventional techniques to load 500. Those skilled in the art will recognize that conventional coupling techniques include but are not limited to mechanical techniques such as gear assemblies and hydraulic assemblies. Those skilled in the art will also recognize that load 500 can be virtually anything that can be driven, in part or in whole, by an electric motor, such as a vehicle (e.g., an electric vehicle, a hybrid-electric vehicle, a fuel-cell powered vehicle, etc.), an aircraft, a watercraft, an electrical appliance (e.g., a computer system, washing machine, an air conditioning system, etc.), or any other device that can be driven in part or in whole by an electric motor.

[0041] All of the above U.S. patents, U.S. patent applications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet, are incorporated herein by reference, in their entirety, including but not limited to U.S. Ser. No. 60/319,081, entitled Assembly And Method For Direct Cooling Of Motor End-Winding, filed Jan. 16, 2002.

[0042] The foregoing described embodiments depict different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely exemplary, and that in fact many other architectures can be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively "associated" such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as "associated with" each other such that the desired functionality is achieved, irrespective of architectures or intermedial com-
ponents. Likewise, any two components so associated can also be viewed as being “operably connected”, or “operably coupled” to each other to achieve the desired functionality.

While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from the spirit and scope of the invention. Furthermore, it is to be understood that the invention is solely defined by the appended claims. It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to inventions containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations).

1. A system having an electric motor, the system comprising:
 a stator core;
 a stator winding having a winding portion external to the stator core; and
 a fluid bath having fluid in contact with the winding portion external to the stator core.
2. The system of claim 1, wherein the fluid further comprises oil.
3. The system of claim 1, wherein the fluid further comprises recirculated gear-box oil.
4. The system of claim 1, wherein the fluid bath comprises:
 a reservoir internal to an electric motor housing.
5. The system of claim 4, wherein the electric motor housing further comprises:
 a heat sink.
6. The system of claim 5, wherein the heat sink comprises:
 a fluid cooled jacket.
7. The system of claim 1, wherein the electric motor is coupled with a load.
8. A motorized vehicle comprising:
 an electric motor having a magnetic core;
 a winding having a winding portion internal to the magnetic core and a winding portion external to the magnetic core; and
 a fluid bath in contact with the winding portion external to the magnetic core.
9. The motorized vehicle of claim 8, wherein the motorized vehicle comprises at least one of an electric vehicle, a hybrid-electric vehicle, and a fuel-cell powered vehicle.
10. The motorized vehicle of claim 8, wherein the winding portion external to the magnetic core comprises:
 an end-winding of a stator.
11. A method of making a system to transfer heat from an electric motor end-winding, said method comprising:
 loading a volume of fluid to a reservoir; and
 at least partially submerging the end-winding in the volume of fluid.
12. The method of claim 11, further comprising placing the fluid in the reservoir in thermal communication with a heat sink.
13. The method of claim 12, wherein the placing the fluid in the reservoir in thermal communication with a heat sink further comprises:
 placing a motor housing in thermal communication with the fluid in the reservoir; and
 placing a fluid cooled jacket in thermal communication with the motor housing.
14. The method of claim 11, further comprising placing the fluid in the reservoir in thermal communication with a heat sink.
15. The method of claim 14, wherein the placing the fluid in thermal communication with a heat sink further comprises:
 constructing a fluid path between the reservoir and a gear box.
16. A method of transferring heat from an electric motor end-winding, said method comprising:
 maintaining contact between a volume of fluid in a reservoir and the end-winding.
17. The method of claim 16, wherein the maintaining contact between a volume of fluid in a reservoir and the end-winding further comprises:
 sensing a fluid level of the fluid in the reservoir;
 maintaining the fluid level such that the fluid in the reservoir contacts the end winding.
18. The method of claim 16, wherein the maintaining contact between a volume of fluid in a reservoir and the end-winding further comprises:
 circulating the fluid between the reservoir and a gear box.