Title: REGULATION OF ZINC DEFICIENCY AND TOLERANCE IN PLANTS

Abstract: The invention relates to a method to change the capacity of a plant for adaptation to changes in the zinc concentration in the environment, especially the soil, comprising providing said plant with a nucleotide according to SEQ ID NO:1 or SEQ ID NO: 2 or an ortholog thereof. Such a method is especially useful to decrease Zn deficiency or to (hyper)accumulate Zn in plants for bioremediation or for biofortification. Transgenic plants for these proteins are also disclosed.
Title: Regulation of zinc deficiency and tolerance in plants

Field of the invention
The invention relates to plant biotechnology, more specifically to modulate the sensitivity to metals in plants, more specifically to Zn.

Particularly, the invention relates to adaptation of the plant to changes in the availability of Zn in the environment.

Background of the Invention
Zinc is an essential micronutrient for all living organisms including plants. Zinc is typically the second most abundant transition metal in organisms after iron (Fe), and the only metal represented in all six enzyme classes (oxidoreductases, transferases, hydrolases, lyases, isomerases and ligases). Zinc binding sites also occur in a wide range of other proteins, membrane lipids and DNA/RNA molecules. The largest class of Zn-binding proteins in organisms is the zinc finger domain containing proteins that function as transcription regulator.

Zn is present in the soil in primarily three fractions: (i) water-soluble Zn (including Zn\(^{2+}\) and soluble organic fractions), (ii) adsorbed and exchangeable Zn in the colloidal fraction (associated with clay particles) and (iii) insoluble Zn complexes and minerals. Zinc is acquired from the soil solution primarily as Zn\(^{2+}\), but also potentially complexed with organic ligands, by roots which feed their shoots via the xylem.

When facing a shortage in zinc supply, plants adapt by enhancing the zinc uptake capacity. Plants are thought to control Zn homeostasis using a tightly regulated network of zinc status sensors and signal transducers controlling the coordinated expression of Zn transporters involved in Zn acquisition from the soil, mobilization between organs and tissues and

In recent years numerous studies have been performed to unravel the biochemical pathways of Zn uptake and transport. In these studies, however, it is not yet found which proteins are responsible for Zn uptake from the soil (Palmer, C.M. and Guerinot, M.L., 2009, Nature Chem. Biol. 5:333-340). While candidate genes for the required Zn transporters have been identified, the so-called ZIP transporters ZIP1, ZIP2, ZIP3 and ZIP4 (Grotz, N. et al., 1998, Proc. Natl. Acad. Sci USA 95:7220-7224), more proteins seem to be necessary to explain the phenomenon of Zn-hyperaccumulation, such as the heavy metal transporters HMA2, 3 and 4 (Hanikenne et al, 2008, Nature 453:391-395). Also nicotianamine, made by nicotianamine synthase (NAS), seems to play a role in vascular transport of zinc, and the citrate transporter FRD3 (Durrett, T.P. et al., 2007, Plant Physiol. 144:197-205). For transport between tissues and organs several proteins seem to be involved. Members of the YSL group, a subfamily of the oligopeptide transporter (OPT) family of transporters, are proteins that have been mentioned. For intracellular transport of Zn, NRAMP ZIP and ZIF proteins seem to be involved. Transport of Zn into the vacuole is performed by MTPs (metal tolerance proteins, also referred to as cation diffuser facilitator – CDF - proteins).

(Lack of) adaptation of plants to a changing concentration of Zn in the environment works both ways: zinc deficiency and zinc toxicity. After Fe deficiency, Zn deficiency is the most commonly occurring micronutrient deficiency in agriculture, mainly affecting parts of Asia (Turkey and Near-East Asia, Central Asia, South and Central China), Sahel and sub-Saharan Africa and Australia. Since plants are often the major dietary source of micronutrients for human consumption, many people worldwide suffer from Fe and Zn deficiencies as plants, especially cereals, are notoriously poor in their content of bioavailable Fe and Zn.
Some soils are not deficient in minerals, but have become contaminated with large amounts of heavy metals, such as Zn or Cd. Zn toxicity in crops is far less widespread than Zn deficiency. However, toxicity symptoms usually become visible at Zn concentrations of more than 300 mg Zn kg\(^{-1}\) in the leaves. Some plants are known to be able to grow on soil that has a high concentration of Zn, such as *Silene vulgaris*, *Thlaspi caerulescens*, *Arabidopsis halleri* and *Viola calaminaria* (see also Table 3 in Broadley, M.R. et al., 2007, New Phytologist 173:677-702). It has been suggested to use these Zn hyperaccumulators as sanitation plants to extract zinc from the soil, whereby the metal is concentrated in the biomass, that can be harvested, incinerated and properly disposed of. Such a method, known as phytoremediation, is currently not attractive as the known metal hyperaccumulator plants are relatively small, thus producing not sufficient biomass to yield a high metal extraction capacity.

Thus, there is still need to be able to control the adaptation of plants to changes in zinc concentration in the environment.

Summary of the Invention

The invention now relates to a method to change the capacity of a plant for adaptation to changes in the zinc concentration in the environment, especially the soil, comprising providing said plant with a nucleotide coding for a bZIP19 and/or bZIP23 protein or a functional equivalent thereof. Preferably in such a method the tolerance to Zn deficiency is increased. In another embodiment in such a method said plant is capable of hyperaccumulating zinc. In a further embodiment said plant is capable of enhancing concentrations of zinc in edible parts.
In the above mentioned methods, the plant is preferably provided with a nucleotide coding for a bZIP19 protein and a nucleotide coding for a bZIP23 protein. More preferably, said plant is additionally provided with one or more polynucleotides coding for a protein selected from the group consisting of heavy metal transporters, preferably HMA2, HMA3 or HMA4, YSL proteins, preferably YSL, preferably YSL1 or YSL3, ZIP or IRT proteins, ZIF proteins, NAS proteins, MRP proteins, FRD3 and MTPs.

The invention further relates to a plant transformed with a polynucleotide coding for a bZIP19 and/or a bZIP23 protein.

The invention further comprises a method according as described above or a plant as described above, wherein the polynucleotide is derived from Arabidopsis, more preferably A. thaliana.

The invention further relates to a plant made by a method according to the invention, preferably wherein said plant overexpresses a bZIP19 and/or a bZIP23 protein. Preferably said plant is tolerant to Zn deficiency.

Alternatively, said plant is a Zn hyperaccumulator and/or has an elevated amount of bioavailable Zn in its edible parts.

Also part of the invention is a method for phytoremediation, comprising growing a plant according to the invention on soil that is polluted with Zn, harvesting said plant and disposing of the biomass. Further part of the invention is a method for biofortification, comprising growing a plant according to the invention on soil that is polluted with Zn, harvesting said plant and disposing of the biomass.

Also part of the invention is the use of the (nucleotides encoding) the bZIP19 and/or bZIP protein in the methods of the invention and/or for producing the plants of the invention.

Legends to the Figures
Figure 1: Amino acid sequences of *Arabidopsis thaliana* proteins bZIP 19, bZIP23 and bZIP24. Amino acids highlighted in green correspond to the bZIP domain. Amino acids highlighted in grey correspond to two conserved motifs rich in histidine residues. An asterisk or dot below the aligned sequences indicates identical, respectively, similar amino acids.

Figure 2: Yeast-one-hybrid baits and F group bZIP gene expression. (A) Schematic diagram of the baits (A-G) used to construct the reporter vectors in the yeast-one-hybrid assay. The grey box represents the 10-bp palindromic motif. (B) Relative transcript levels (RTL) of *bZIP19*, *bZIP23* and *bZIP24* in 3-week-old Arabidopsis seedlings grown in MS medium, without (Zn-), with 30 µM (Zn+) or with 300 µM ZnSO₄ (Zn++). Error bars indicate SE.

Figure 3: Gene expression and zinc transport of the Arabidopsis ZIP4 zinc transporter. (A) Relative transcript levels (RTL) of ZIP4 in 3-week-old Arabidopsis seedlings grown in MS medium, with 30 µM ZnSO₄ (Zn+) or without (Zn-). Error bars indicate SE. (B) Growth of *zrt1zrt2* S. cerevisiae cells carrying either the empty vector (*zrt1zrt2* Δ) or expressing ZIP4 (*zrt1zrt2 ZIP4*) was assayed by spotting serial dilutions of cells (OD₆₀₀ is shown on the left) on SD-URA selective medium with 0.4 or 0.8 mM ZnCl₂. (C) OD measurements at the indicated time-intervals of *zrt1zrt2* Δ and *zrt1zrt2 ZIP4* on SD-URA selective liquid medium with 0.4 mM ZnCl₂. Error bars indicate SE.

Figure 4: The double T-DNA insertion mutant *m19m23* is hypersensitive to zinc deficiency. (A) Effect of zinc deficiency on 3-week-old seedlings of Arabidopsis (WT), *bZIP19* T-DNA insertion mutants, *m19*, *bZIP23* T-DNA insertion mutants, *m23*, and double T-DNA insertion mutants, *m19m23*, grown in MS medium without (Zn-) and with 30 µM ZnSO₄ (Zn+). (B) Effect of zinc supply on 4-week-old plants of Arabidopsis (WT), *m19*, *m23* and *m19m23*,
grown in hydroponics at 0.05 μM (Zn−), 2 μM (Zn+) and 25 μM ZnSO₄ (Zn++)

(C) Zinc concentration, in mg kg⁻¹ dry weight, and dry weight (DW), in g, of roots (white bars) and shoots (grey bars) of 4-week-old WT, m19, m23 and m19m23 plants, grown in hydroponics at 0.05 μM ZnSO₄ (Zn−). * P<0.05, ** P<0.01, *** P<0.001; representing significant differences of the mean in comparison with the WT mean. Error bars indicate SE.

Figure 5: (A) Schematic drawing of the bZIP19 mutant allele (m19) and the bZIP23 mutant allele (m23). Triangles indicate T-DNA insertions. White boxes indicate exons, grey boxes indicate introns, lines indicate 5’ and 3’ untranslated sequences. (B) Relative transcript levels (RTL) of bZIP19 (white bars) and bZIP23 (grey bars) in 3-week-old seedlings of Arabidopsis wild type plants (WT), homozygous bZIP19 T-DNA insertion mutants (m19), homozygous bZIP23 T-DNA insertion mutants (m23), and T-DNA insertion double mutants (m19m23) grown in MS medium. Error bars indicate SE.

Figure 6: Zinc concentration (in mg kg⁻¹ dry weight) and dry weight (DW; in g) of roots (white bars) and shoots (grey bars) of 4-week-old wild-type (WT), bZIP19 (m19) and bZIP23 (m23) single mutants and double mutants (m19m23), grown in hydroponics at 2 μM ZnSO₄ (Zn+). Error bars indicate SE.

Figure 7: Zinc concentration (in mg kg⁻¹ dry weight) and dry weight (DW; in g) of roots (white bars) and shoots (grey bars) of 4-week-old wild-type (WT), bZIP19 (m19) and bZIP23 (m23) single mutants and double mutants (m19m23), grown in hydroponics at 25 μM ZnSO₄ (Zn+). Error bars indicate SE.

Figure 8: Complementation study and expression analysis of putative target genes. (A) Arabidopsis wild-type plants (WT), double T-DNA insertion mutants (m19m23) and double mutants constitutively expressing either bZIP19
(m19m23 -OX19) or bZIP23 (m19m23 -OX23), grown for 4 weeks in MS medium without (Zn-) and with 30 μM ZnSO4 (Zn+). (B) Relative transcript levels (RTL) of ZIP4, ZIP1, ZIP3, ZIP5, ZIP9, ZIP12, IRT3 and ZIP2 in 3-week-old wild-type seedlings of Arabidopsis (WT) (white bars) and m19m23 double mutants (grey bars) grown in MS medium with 30 μM ZnSO4 (Zn+) or without (Zn-). Error bars indicate SE.

Figure 9: Visible phenotypes of OX 19 (# 19, 14, 15), OX 23 (# 16, 17, 18) and untransformed Arabidopsis Col plants (WT), grown for 6 weeks on hydroponics medium to which no Zn has been added (0 μM Zn), creating strong zinc deficiency symptoms. Lines 19, 16 and 17 appear to have larger rosettes and darker green leaves, showing less sensitivity to zinc deficiency, when compared to WT.

Figure 10: Total plant dry weight comparisons of OX 19 (# 19, 14, 15), OX 23 (# 16, 17, 18) and untransformed Arabidopsis Col plants (WT), grown for 6 weeks on hydroponics medium to which no Zn has been added (0 μM Zn) (A, left panel); or on hydroponic medium containing normal Zn (2 μM Zn) (B, right panel). Only for the low Zn treatment, line # 16 was found to be significantly different from WT.

Figure 11: Zinc concentrations of OX 19 (# 19, 14, 15), OX 23 (# 16, 17, 18) and untransformed Arabidopsis Col plants (WT), grown for 6 weeks on hydroponics medium to which no Zn has been added (0 μM Zn).

Figure 12: Visible phenotypes of pZIP4::bZIP19 (# 4, 5, 6, 7, 8, 9) and untransformed Arabidopsis Col plants (# 1, 2, 3), grown for 3 weeks on hydroponics medium to which no Zn has been added (0 μM Zn). Plants are not yet showing Zn deficiency symptoms. Although there is some variation within lines due to plants that germinated later than the rest, in general, pZIP4::bZIP19 plants are showing larger rosette diameters than untransformed plants.
Figure 13: DNA sequence and schematic drawing of the proZIP4::bZIP19 construct (pBG0072) used to generate transgenic Arabidopsis expressing the bZIP19 cDNA under control of the zinc deficiency responsive ZIP4 promoter.

Definitions

The term "gene" is used broadly to refer to any segment of nucleic acid associated with a biological function. Thus, genes include coding sequences and/or the regulatory sequences required for their expression. For example, gene refers to a nucleic acid fragment that expresses mRNA or functional RNA, or encodes a specific protein, and which includes regulatory sequences. Genes also include nonexpressed DNA segments that, for example, form recognition sequences for other proteins. Genes can be obtained from a variety of sources, including cloning from a source of interest or synthesizing from known or predicted sequence information, and may include sequences designed to have desired parameters.

The term "native" or "wild type" gene refers to a gene that is present in the genome of an untransformed cell, i.e., a cell not having a known mutation. The term "native" or "wild type" is intended to encompass allelic variants of the gene.

A "marker gene" encodes a selectable or screenable trait. The term "selectable marker" refers to a polynucleotide sequence encoding a metabolic trait which allows for the separation of transgenic and non-transgenic organisms and mostly refers to the provision of antibiotic resistance. A selectable marker is for example the *aph* (npt) encoded kanamycin resistance marker, or the hpt gene, the gene coding for hygromycin resistance. Other selection markers are for instance reporter genes such as chloramphenicol acetyl transferase, β-galactosidase, luciferase and green fluorescence protein. Identification methods for the products of reporter genes include, but are not limited to, enzymatic assays and fluorimetric assays. Reporter genes and assays to detect their products are well known in the art and are described, for

The term "chimeric gene" refers to any gene that contains 1) nucleotide sequences, including regulatory and coding sequences, that are not found together in nature, or 2) nucleotide sequences encoding parts of proteins not naturally adjoined, or 3) parts of promoters that are not naturally adjoined. Accordingly, a chimeric gene may comprise regulatory sequences and coding sequences that are derived from different sources, or comprise regulatory sequences and coding sequences derived from the same source, but arranged in a manner different from that found in nature.

A "transgene" refers to a gene that has been introduced into the genome by transformation and that preferably is stably maintained. Transgenes may include, for example, genes that are either heterologous or homologous to the genes of a particular plant to be transformed. Additionally, transgenes may comprise native genes inserted into a non-native organism or chimeric genes. The term "endogenous gene" refers to a native gene in its natural location in the genome of an organism. A "foreign" gene refers to a gene not normally found in the host organism but that is introduced by gene transfer.

An "oligonucleotide", e.g., for use in probing or amplification reactions, may be about 30 or fewer nucleotides in length (e.g., 9, 12, 15, 18, 20, 21 or 24, or any number between 9 and 30). Generally specific primers are upwards of 14 nucleotides in length. For optimum specificity and cost effectiveness, primers of 16 to 24 nucleotides in length may be preferred. Those skilled in the art are well versed in the design of primers for use in processes such as PCR. If required, probing can be done with entire restriction fragments of the gene disclosed herein which may be 100's or even 1000's of nucleotides in length.

The terms "protein", "peptide" and "polypeptide" are used interchangeably herein.
"Coding sequence" refers to a nucleotide (DNA or RNA) sequence that codes for a specific amino acid sequence and excludes the non-coding sequences. It may constitute an "uninterrupted coding sequence", i.e., lacking an intron, such as in a cDNA or it may include one or more introns bound by appropriate splice junctions. An "intron" is a sequence of RNA which is contained in the primary transcript but which is removed through cleavage and re-ligation of the RNA within the cell to create the mature mRNA that can be translated into a protein. Also the DNA coding for said sequence of RNA is designated as “intron”. “Exons” are the coding parts of the DNA or RNA sequence, which are separated from each other by introns.

"Regulatory sequences" refer to nucleotide sequences located upstream (5’ non-coding sequences), within, or downstream (3’ non-coding sequences) of a coding sequence, and which influence the transcription, RNA processing or stability, or translation of the associated coding sequence. Regulatory sequences include enhancers, promoters, translation leader sequences, introns, and polyadenylation signal sequences. They include natural and synthetic sequences as well as sequences which may be a combination of synthetic and natural sequences. As is noted above, the term "suitable regulatory sequences" is not limited to promoters.

"Promoter" refers to a nucleotide sequence, usually upstream (5’) to its coding sequence, which controls the expression of the coding sequence by providing the recognition for RNA polymerase and other factors required for proper transcription. "Promoter" includes a minimal promoter that is a short DNA sequence comprised of a TATA box and other sequences that serve to specify the site of transcription initiation, to which regulatory elements are added for control of expression. "Promoter" also refers to a nucleotide sequence that includes a minimal promoter plus regulatory elements that is capable of controlling the expression of a coding sequence or functional RNA. This type of promoter sequence consists of proximal and more distal upstream elements, the latter elements often referred to as enhancers. Accordingly, an "enhancer"
is a DNA sequence which can stimulate promoter activity and may be an innate element of the promoter or a heterologous element inserted to enhance the level or tissue specificity of a promoter. It is capable of operating in both orientations (normal or flipped), and is capable of functioning even when moved either upstream or downstream from the promoter. Both enhancers and other upstream promoter elements bind sequence-specific DNA-binding proteins that mediate their effects. Promoters may be derived in their entirety from a native gene, or be composed of different elements derived from different promoters found in nature, or even be comprised of synthetic DNA segments. A promoter may also contain DNA sequences that are involved in the binding of protein factors which control the effectiveness of transcription initiation in response to physiological or developmental conditions.

The "initiation site" is the position surrounding the first nucleotide that is part of the transcribed sequence, which is also defined as position +1. With respect to this site all other sequences of the gene and its controlling regions are numbered. Downstream sequences (i.e., further protein encoding sequences in the 3' direction) are denominated positive, while upstream sequences (mostly of the controlling regions in the 5'direction) are denominated negative.

"Constitutive expression" refers to expression using a constitutive promoter.

"Conditional" and "regulated expression" refer to expression controlled by a regulated promoter.

"Constitutive promoter" refers to a promoter that is able to express the open reading frame (ORF) that it controls in all or nearly all of the plant tissues during all or nearly all developmental stages of the plant.

The terms "open reading frame" and "ORF" refer to the amino acid sequence encoded between translation initiation and termination codons of a coding sequence. The terms "initiation codon" and "termination codon" refer to a unit of three adjacent nucleotides (codon') in a coding sequence that specifies
initiation and chain termination, respectively, of protein synthesis (mRNA translation).

"Regulated promoter" refers to promoters that direct gene expression not constitutively, but in a temporally-and/or spatially-regulated manner, and includes both tissue-specific and inducible promoters. It includes natural and synthetic sequences as well as sequences which may be a combination of synthetic and natural sequences. Different promoters may direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental conditions. New promoters of various types useful in plant cells are constantly being discovered, numerous examples may be found in the compilation by Okamuro, J.K. and Goldberg, R.B. (1989) Chapter 1, "Regulation of Plant Gene Expression: General Principles" in Stumpf, P.K. and Conn, E.E. Eds., The Biochemistry of Plants: A comprehensive treatise. Academic Press, NY USA).

"Tissue-specific promoter" refers to regulated promoters that are not expressed in all plant cells but only in one or more cell types in specific organs (such as roots, stems, leaves or seeds), specific tissues (such as embryo or cotyledon), or specific cell types (such as leaf parenchyma or seed storage cells).

"Operably-linked" refers to the association of nucleic acid sequences on a single nucleic acid fragment so that the function of one is affected by the other. For example, a regulatory DNA sequence is said to be "operably linked to" or "associated with" a DNA sequence that codes for an RNA or a polypeptide if the two sequences are situated such that the regulatory DNA sequence affects expression of the coding DNA sequence (i.e., that the coding sequence or functional RNA is under the transcriptional control of the promoter). Coding sequences can be operably-linked to regulatory sequences in sense or antisense orientation.

"Expression" refers to the transcription and/or translation of an endogenous gene, ORF or portion thereof, or a transgene in plants. Expression
refers to the transcription and stable accumulation of sense (mRNA) or functional RNA. Expression may also refer to the production of protein.

"Specific expression" is the expression of gene products which is limited to one or a few plant tissues (spatial limitation) and/or to one or a few plant developmental stages (temporal limitation). It is acknowledged that hardly a true specificity exists: promoters seem to preferably switch on in some tissues, while in other tissues there can be no or only little activity. This phenomenon is known as leaky expression. However, with tissue-specific expression in this invention is meant preferable expression in one or a few plant tissues.

The terms "heterologous DNA sequence", "exogenous DNA segment" or "heterologous nucleic acid", as used herein, each refer to a sequence that originates from a source foreign to the particular host cell or, if from the same source, is modified from its original form. Thus, a heterologous gene in a host cell includes a gene that is endogenous to the particular host cell but has been modified through, for example, the use of DNA shuffling. The terms also include non-naturally occurring multiple copies of a naturally occurring DNA sequence. Thus, the terms refer to a DNA segment that is foreign or heterologous to the cell, or homologous to the cell but in a position within the host cell nucleic acid in which the element is not ordinarily found. Exogenous DNA segments are expressed to yield exogenous polypeptides. A "homologous" DNA sequence is a DNA sequence that is naturally associated with a host cell into which it is introduced.

"Homologous to" in the context of nucleotide or amino acid sequence identity refers to the similarity between the nucleotide sequence of two nucleic acid molecules or between the amino acid sequences of two protein molecules. Estimates of such homology are provided by either DNA-DNA or DNA-RNA hybridization under conditions of stringency as is well understood by those skilled in the art (as described in Haines and Higgins (eds.), Nucleic Acid Hybridization, IRL Press, Oxford, U. K.), or by the comparison of sequence
similarity between two nucleic acids or proteins. Two nucleotide or amino acid sequences are homologous when their sequences have a sequence similarity of more than 60%, preferably more than 70%, 80%, 85%, 90%, 95%, or even 98%.

The term "substantially similar" refers to nucleotide and amino acid sequences that represent functional and/or structural equivalents of sequences disclosed herein. For example, altered nucleotide sequences which simply reflect the degeneracy of the genetic code but nonetheless encode amino acid sequences that are identical to a particular amino acid sequence are substantially similar to the particular sequences. In addition, amino acid sequences that are substantially similar to a particular sequence are those wherein overall amino acid identity is at least 65% or greater to the instant sequences. Modifications that result in equivalent nucleotide or amino acid sequences are well within the routine skill in the art. Moreover, the skilled artisan recognizes that equivalent nucleotide sequences encompassed by this invention can also be defined by their ability to hybridize, under low, moderate and/or stringent conditions (e.g., 0.1X SSC, 0.1% SDS, 65°C), with the nucleotide sequences that are within the literal scope of the instant claims.

The term "transformation" refers to the transfer of a nucleic acid fragment into the genome of a host cell, resulting in genetically stable inheritance. Host cells containing the transformed nucleic acid fragments are referred to as "transgenic" cells, and organisms comprising transgenic cells are referred to as "transgenic organisms". Examples of methods of transformation of plants and plant cells include Agrobacterium-mediated transformation (De Blaere et al., 1987) particle bombardment technology (Klein et al. 1987; U.S. Patent No. 4,945,050), microinjection, CaPO₄ precipitation, lipofection (liposome fusion), use of a gene gun and DNA vector transporter (Wu et al., 1992). Whole plants may be regenerated from transgenic cells by methods well known to the skilled artisan (see, for example, Fromm et al., 1990).

"Transformed", "transgenic" and "recombinant" refer to a host organism such as a bacterium or a plant into which a heterologous nucleic acid
molecule has been introduced. The heterologous nucleic acid molecule can be stably integrated into the genome generally known in the art and are disclosed in Sambrook et al., 1989. See also Innis et al., 1995 and Gelfand, 1995; and Innis and Gelfand, 1999. For example, "transformed", "transformant", and "transgenic" plants or calli have been through the transformation process and contain a foreign gene integrated into their chromosome. The term "untransformed" refers to normal plants that have not been through the transformation process.

"Transiently transformed" refers to cells in which transgenes and foreign DNA have been introduced (for example, by such methods as Agrobacterium-mediated transformation or biolistic bombardment), but not selected for stable maintenance.

"Stably transformed" refers to cells that have been selected and regenerated on a selection media following transformation.

"Genetically stable" and "heritable" refer to chromosomally-integrated genetic elements that are stably maintained in the plant and stably inherited by progeny through successive generations.

"Chromosomally-integrated" refers to the integration of a foreign gene or DNA construct into the host DNA by covalent bonds. Where genes are not "chromosomally integrated" they may be "transiently expressed". Transient expression of a gene refers to the expression of a gene that is not integrated into the host chromosome but functions independently, either as part of an autonomously replicating plasmid or expression cassette, for example, or as part of another biological system such as a virus.

"Primary transformant" refers to transgenic plants that are of the same genetic generation as the tissue which was initially transformed (i. e., not having gone through meiosis and fertilization since transformation).

"Secondary transformants" and the "T1, T2, T3, etc. generations" refer to transgenic plants derived from primary transformants through one or more meiotic and fertilization cycles. They may be derived by self-fertilization
of primary or secondary transformants or crosses of primary or secondary transformants with other transformed or untransformed plants. Secondary transformants are an aspect of the present invention.

"Genome" refers to the complete genetic material of an organism.

The term "nucleic acid" or "polynucleotide" refers to deoxyribonucleotides or ribonucleotides and polymers thereof in either single- or double-stranded form, composed of monomers (nucleotides) containing a sugar, phosphate and a base which is either a purine or pyrimidine. Unless specifically limited, the term encompasses nucleic acids containing known analogs of natural nucleotides which have similar binding properties as the reference nucleic acid and are metabolized in a manner similar to naturally occurring nucleotides. Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e. g., degenerate codon substitutions) and complementary sequences as well as the sequence explicitly indicated. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (Batzner et al., 1991; Ohtsuka et al., 1985; Rossolini et al. 1994). A "nucleic acid fragment" is a fraction of a given nucleic acid molecule.

In higher plants, deoxyribonucleic acid (DNA) is the genetic material while ribonucleic acid (RNA) is involved in the transfer of information contained within DNA into proteins. The term "nucleotide sequence" refers to a polymer of DNA or RNA which can be single- or double-stranded, optionally containing synthetic, non-natural or altered nucleotide bases capable of incorporation into DNA or RNA polymers. The terms "nucleic acid" or "nucleic acid sequence" may also be used interchangeably with gene, cDNA, DNA and RNA encoded by a gene.

The nucleotide sequences used in aspects of the invention include both the naturally occurring sequences as well as mutant (variant) forms. Such variants will continue to possess the desired activity, i. e., either promoter
activity or the activity of the product encoded by the open reading frame of the non-variant nucleotide sequence.

Thus, by "variant" is intended a substantially similar sequence. For nucleotide sequences comprising an open reading frame, variants include those sequences that, because of the degeneracy of the genetic code, encode the identical amino acid sequence of the native protein. Naturally occurring allelic variants such as these can be identified with the use of well-known molecular biology techniques, as, for example, with polymerase chain reaction (PCR) and hybridization techniques. Variant nucleotide sequences also include synthetically derived nucleotide sequences, such as those generated, for example, by using site-directed mutagenesis and for open reading frames, encode the native protein, as well as those that encode a polypeptide having amino acid substitutions relative to the native protein. Generally, nucleotide sequence variants of the invention will have at least 40, 50, 60, to 70%, e.g., preferably 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, to 79%, generally at least 80%, e.g., 81%-84%, at least 85%, e.g., 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, to 98% and 99% nucleotide sequence identity to the native (wild type or endogenous) nucleotide sequence.

The term "nucleotide sequence identity" or "nucleotide sequence homology" as used herein denotes the level of similarity, respectively the level of homology, between two polynucleotides. Polynucleotides have "identical" sequences if the sequence of nucleotides in the two sequences is the same. Polynucleotides have "homologous" sequences if the sequence of nucleotides in the two sequences is the same when aligned for maximum correspondence. Sequence comparison between two or more polynucleotides is generally performed by comparing portions of the two sequences over a comparison window to identify and compare local regions of sequence similarity. The comparison window is generally from about 20 to 200 contiguous nucleotides. The "percentage of sequence identity" or "percentage of sequence homology" for polynucleotides, such as 50, 60, 70, 80, 90, 95, 98, 99 or 100 percent
sequence identity or homology may be determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may include additions or deletions (i.e. gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by: (a) determining the number of positions at which the identical nucleic acid base occurs in both sequences to yield the number of matched positions; (b) dividing the number of matched positions by the total number of positions in the window of comparison; and (c) multiplying the result by 100 to yield the percentage of sequence homology. Optimal alignment of sequences for comparison may be conducted by computerized implementations of known algorithms, or by visual inspection. Readily available sequence comparison and multiple sequence alignment algorithms are, respectively, the Basic Local Alignment Search Tool (BLAST) (Altschul et al., 1990; Altschul et al., 1997) and ClustalW programs, both available on the internet. Other suitable programs include, but are not limited to, GAP, BestFit, PlotSimilarity, and FASTA in the Wisconsin Genetics Software Package (Genetics Computer Group (GCG), Madison, WI, USA) (Devereux et al., 1984).

The nucleic acid sequences of the invention can be "optimized" for enhanced expression in plants of interest. See, for example, EP 0359472 or WO 91/16432. In this manner, the open reading frames in genes or gene fragments can be synthesized utilizing plant-preferred codons. Thus, the nucleotide sequences can be optimized for expression in any plant.

By "variant" polypeptide is intended a polypeptide derived from the native protein by deletion (so-called truncation) or addition of one or more amino acids to the N-terminal and/or C-terminal end of the native protein; deletion or addition of one or more amino acids at one or more sites in the native protein; or substitution of one or more amino acids at one or more sites in the native protein. Such variants may result from, for example, genetic
polymorphism or from human manipulation. Methods for such manipulations are generally known in the art. Also included in the definition of variant polypeptide are “orthologous” polypeptides (orthologs), which are peptides encoded by genes in different species that evolved from a common ancestral gene by speciation. Normally, orthologs retain the same function in the course of evolution.

Thus, the polypeptides may be altered in various ways including amino acid substitutions, deletions, truncations, and insertions. Methods for such manipulations are generally known in the art. Conservative substitutions, such as exchanging one amino acid with another having similar properties, are preferred. Individual substitutions deletions or additions that alter, add or delete a single amino acid or a small percentage of amino acids (typically less than 5%, more typically less than 1%) in an encoded sequence are "conservatively modified variations", where the alterations result in the substitution of an amino acid with a chemically similar amino acid.

"Expression cassette" as used herein means a DNA sequence capable of directing expression of a particular nucleotide sequence in an appropriate host cell, comprising a promoter operably linked to the nucleotide sequence of interest which is operably linked to termination signals. It also typically comprises sequences required for proper translation of the nucleotide sequence. The coding region usually codes for a protein of interest but may also code for a functional RNA of interest, for example antisense RNA or a nontranslated RNA, in the sense or antisense direction. The expression cassette comprising the nucleotide sequence of interest may be chimeric, meaning that at least one of its components is heterologous with respect to at least one of its other components. The expression cassette may also be one which is naturally occurring but has been obtained in a recombinant form useful for heterologous expression. The expression of the nucleotide sequence in the expression cassette may be under the control of a constitutive promoter or of an inducible promoter which initiates transcription only when the host
cell is exposed to some particular external stimulus. In the case of a multicellular organism, the promoter can also be specific to a particular tissue or organ or stage of development.

The term "vector" as used herein refers to a construction comprised of genetic material designed to direct transformation of a targeted cell. A vector contains multiple genetic elements positionally and sequentially oriented, i.e., operatively linked with other necessary elements such that the nucleic acid in a nucleic acid cassette can be transcribed and when necessary, translated in the transformed cells. "Vector" is defined to include, inter alia, any plasmid, cosmid, phage or Agrobacterium binary vector in double or single stranded linear or circular form which may or may not be self transmissible or mobilizable, and which can transform prokaryotic or eukaryotic host either by integration into the cellular genome or exist extrachromosomally (e.g. autonomous replicating plasmid with an origin of replication). Specifically included are shuttle vectors by which is meant a DNA vehicle capable, naturally or by design, of replication in two different host organisms, which may be selected from actinomycetes and related species, bacteria and eukaryotic (e.g. higher plant, mammalian, yeast or fungal cells). Preferably the nucleic acid in the vector is under the control of, and operably linked to, an appropriate promoter or other regulatory elements for transcription in a host cell such as a microbial, e.g. bacterial, or plant cell. The vector may be a bi-functional expression vector which functions in multiple hosts. In the case of genomic DNA, this may contain its own promoter or other regulatory elements and in the case of cDNA this may be under the control of an appropriate promoter or other regulatory elements for expression in the host cell.

"Cloning vectors" typically contain one or a small number of restriction endonuclease recognition sites at which foreign DNA sequences can be inserted in a determinable fashion without loss of essential biological function of the vector, as well as a marker gene that is suitable for use in the identification and selection of cells transformed with the cloning vector.
A "transgenic plant" is a plant having one or more plant cells that contain an expression vector.

"Plant tissue" includes differentiated and undifferentiated tissues or plants, including but not limited to roots, stems, shoots, leaves, pollen, seeds, tumor tissue and various forms of cells and culture such as single cells, protoplast, embryos, and callus tissue. The plant tissue may be in plants or in organ, tissue or cell culture.

The term "plant," as used herein, refers to any type of plant. The inventors have provided below an exemplary description of some plants that may be used with the invention. However, the list is provided for illustrative purposes only and is not limiting, as other types of plants will be known to those of skill in the art and could be used with the invention.

A common class of plants exploited in agriculture are vegetable crops, including artichokes, kohlrabi, arugula, leeks, asparagus, lettuce (e.g., head, leaf, romaine), bok choy, malanga, broccoli, melons (e.g., muskmelon, watermelon, crenshaw, honeydew, cantaloupe), brussels sprouts, cabbage, cardoni, carrots, napa, cauliflower, okra, onions, celery, parsley, chick peas, parsnips, chicory, Chinese cabbage, peppers, collards, potatoes, cucumber plants (marrows, cucumbers), pumpkins, cucurbits, radishes, dry bulb onions, rutabaga, eggplant, salsify, escarole, shallots, endive, garlic, spinach, green onions, squash, greens, beet (sugar beet and fodder beet), sweet potatoes, swiss-chard, horseradish, tomatoes, kale, turnips, and spices.

Other types of plants frequently finding commercial use include fruit and vine crops such as apples, apricots, cherries, nectarines, peaches, pears, plums, prunes, quince almonds, chestnuts, filberts, pecans, pistachios, walnuts, citrus, blueberries, boysenberries, cranberries, currants, loganberries, raspberries, strawberries, blackberries, grapes, avocados, bananas, kiwi, persimmons, pomegranate, pineapple, tropical fruits, pomes, melon, mango, papaya, and lychee.
Many of the most widely grown plants are field crop plants such as
evening primrose, meadow foam, corn (field, sweet, popcorn), hops, jojoba,
peanuts, rice, safflower, small grains (barley, oats, rye, wheat, etc.), sorghum,
tobacco, kapok, leguminous plants (beans, lentils, peas, soybeans), oil plants
(rape, mustard, poppy, olives, sunflowers, coconut, castor oil plants, cocoa
beans, groundnuts), fiber plants (cotton, flax, hemp, jute), Lauraceae
(cinnamon, camphor), or plants such as coffee, sugarcane, tea, and natural
rubber plants.

Especially applicable in the present invention are plants with a high
biomass, such as plants that are also used in biofuel production, such as
Miscanthus, switchgrass, poplar, eucalyptus, loblolly pine, willow, silver
maple, alfalfa, Jatropha, and Pongamia pinnata.

Another economically important group of plants are ornamental
plants. Examples of commonly grown ornamental plants include Alstroemeria
(e.g., Alstroemeria brasiliensis), aster, azalea (e.g., Rhododendron sp.),
begonias (e.g., Begonia sp.), bellflower, bougainvillea, cactus (e.g., Cactaceae
schlumbergera truncata), camellia, carnation (e.g., Dianthus caryophyllus),
chrysanthemums (e.g., Chrysanthemum sp.), clematis (e.g., Clematis sp.),
cockscomb, columbine, cyclamen (e.g., Cyclamen sp.), daffodils (e.g., Narcissus
sp.), false cypress, freesia (e.g., Freesia reflexa), geraniums, gerberas,
gladiolus (e.g., Gladiolus sp.), holly, hibiscus (e.g., Hibiscus rosasinensis),
hydrangea (e.g., Macrophylla hydrangea), juniper, lilies (e.g., Lilium sp.),
magnolia, miniroses, orchids (e.g., members of the family Orchidaceae),
petunias (e.g., Petunia hybrida), poinsettia (e.g., Euphorbia pulcherima),
primroses, rhododendron, roses (e.g., Rosa sp.), snapdragons (e.g., Antirrhinum
sp.), shrubs, trees such as forest (broad-leaved trees and evergreens, such as
conifers) and tulips (e.g., Tulipa sp.).

The term “plant part”, as used herein, includes reference to, but is
not limited to, single cells and tissues from microspores, pollen, ovules, leaves,
embryos, roots, root tips, anthers, flowers, fruits, seeds, stems, shoots, scions, rootstocks, protoplasts, calli, meristematic tissues and the like.

The term “crop plant”, as used herein, refers to a plant which is harvested or provides a harvestable product.

The terms “seedling” and “plantlet”, as used herein, are interchangeable and refer to the juvenile plant grown from a sprout, embryo or a germinating seed and generally include any small plants showing well developed green cotyledons and root elongation and which are propagated prior to transplanting in the ultimate location wherein they are to mature.

The term “tissue culture”, as used herein, refers to a culture of plant cells wherein the cells are propagated in a nutrient medium under controlled conditions.

"Significant increase" is an increase that is larger than the margin of error inherent in the measurement technique, preferably an increase by about 10%-50%, or even 2-fold or greater.

"Significantly less" means that the decrease is larger than the margin of error inherent in the measurement technique, preferably a decrease by about 2-fold or greater.

The term “endogenous” as in “endogenously produced” refers to produced within the plant (cell).

The term “production area”, as used herein, refers to a location where plants are grown and where products in the form of plants or plant parts are produced for harvest. The size of the production area is generally expressed in square meters or acres of land. A production area can be an open field or a greenhouse.

The term “biomass production”, as used herein, refers to the production of plant derived organic material.

The term “dry matter content”, as used herein, refers to the mass fraction (%) that remains after the water fraction (%) has been removed by drying.
DNA Sequences for Transformation

Virtually any DNA composition may be used for delivery to recipient plant cells, to ultimately produce fertile transgenic plants in accordance with the present invention. For example, DNA segments in the form of vectors and plasmids, or linear DNA fragments, in some instances containing only the DNA element to be expressed in the plant, and the like, may be employed. The construction of vectors which may be employed in conjunction with the present invention will be known to those of skill of the art in light of the present disclosure (see, e.g., Sambrook et al., 1989; Gelvin et al., 1990). Vectors, including plasmids, cosmids, YACs (yeast artificial chromosomes), BACs (bacterial artificial chromosomes) and DNA segments for use in transforming cells, according to the present invention will, of course, comprise the cDNA, gene or genes necessary for production of isoprene in the transformant.

The vector of the invention can be introduced into any plant. The genes and sequences to be introduced can be conveniently used in expression cassettes for introduction and expression in any plant of interest. Such expression cassettes will comprise a transcriptional initiation region (a promoter) linked to the gene encoding the isoprene synthase gene of interest.

Such an expression cassette is preferably provided with a plurality of restriction sites for insertion of the gene of interest to be under the transcriptional regulation of the regulatory regions, such as the designated promoter. The expression cassette may additionally contain selectable marker genes suitable for the particular host organism.

The transcriptional cassette will include in the 5'-to-3' direction of transcription, transcriptional and translational initiation regions, a DNA sequence of interest, and transcriptional and translational termination regions functional in plants.
The termination region may be native with the transcriptional initiation region, may be native with the DNA sequence of interest, or may be derived from another source.

Methodologies for the construction of plant transformation constructs are described in the art.

In one embodiment of the invention, plants are transformed with the nucleotide coding for bZIP19 or bZIP23. These genes can be derived from Arabidopsis. Alternatively, orthologs of bZIP19 and bZIP23 may be used, such as those from Populus trichocarpa (PtrbZIP38 or XM_002305485.1 and PtrbZIP39 or XM_002313671.1); rice (OsbZIP48 or AK071639.1), Helianthus annuus (CD852649.1), Medicago truncatula (TA25329_3880), Solanum tuberosum (TA33239_3880), Glycine max (TA50226_3847; TA50224_3847), Sorghum bicolor (TA23717_4558), Zea mays (TA111061_4577; TA111059_4577; CO451643), or Hordeum vulgare (TA45897_4513).

The amino acid sequences of the Arabidopsis proteins are provided in Figure 1, the genes for these proteins can be found in the gene databases under Accession No's At4g35040 or NM_119670.4 (bZIP19) and At2g16770 or NM_119670.4 (bZIP23). The sequences are also listed as SEQ ID NO: 2 and SEQ ID NO: 1, respectively. All bZIP proteins contain a characteristic and highly conserved basic domain, which binds DNA, and a leucine zipper dimerization motif. bZIPS can form homo and/or heterodimers, which bind DNA in a sequence-specific manner and are capable of binding short palindromic or pseudo-palindromic target sequences (Fyjii., Y. et al., 2000,
Nature 7:889-893). Plant bZIPs are important for the regulation of pathogen defence, environmental signalling and development, but so far no function is assigned to about two thirds of the bZIP members (Hakoby, M. et al., 2002, Trends Plant Sci. 7:106-111). Among these are the $bZIP19$ and $bZIP23$ genes. They belong to group F, one of ten groups in which this family is divided. This group contains a third member, $bZIP24$, not identified in the yeast-one-hybrid assay. $bZIP19$ and $bZIP23$ predicted protein sequences share 69% of amino acid sequence identity and only 28 and 32 %, respectively, with $bZIP24$. All three members of the F group contain two characteristic histidine-rich motifs (fig. 1).

As can be seen, $bZIP19$ and $bZIP23$ share the bZIP domain at amino acid 79-110 (bZIP23) and amino acid 94-125 (bZIP19) and two histidine-rich motifs at amino acid 36-48 and 51-60 (bZIP23) and amino acid 44-56 and 59-68 (bZIP19).

Although it is possible to obtain overexpression of either $bZIP19$ or $bZIP23$ in a plant by providing such a plant with the above mentioned nucleotide sequences, a preferred embodiment of the invention is a plant in which both proteins are overexpressed. As is exemplified in the experimental part, the genes act redundantly, with $bZIP19$ only being partially redundant.

$bZIP$ transcription factors generally act as dimers. Their redundancy suggests that $bZIP19$ and $bZIP23$ act as homo(di)mers, in line with previous predictions (Deppmann, C.D. et al., 2006, Mol. Biol. Evol. 23:1480-1492).

Overexpression of $bZIP19$ and/or $bZIP23$ can be achieved by insertion of one or more than one extra copy of the selected gene. It is not unknown for plants or their progeny, originally transformed with one or more than one extra copy of a nucleotide sequence to exhibit overexpression.

Obtaining sufficient levels of transgene expression in the appropriate plant tissues is an important aspect in the production of genetically engineered crops. Expression of heterologous DNA sequences in a plant host is dependent upon the presence of an operably linked promoter that
is functional within the plant host. Choice of the promoter sequence will determine when and where within the organism the heterologous DNA sequence is expressed. The proteins of the current invention are preferably expressed in the roots, where Zn is taken up from the soil and transported, and in other cells of the plant that are currently involved in transport and accumulation of zinc. Such root-specific promoters are well known to a person skilled in the art and can be chosen from the the RolD, RPL16A, Tub-1, ARSK1, PsMT₆ (WO97/20057), and Atao1 promoter (Moller, S.G. and McPherson, M.J., 1998, The Plant J., 13:781-791), the AAP6 promoter (Okumoto, S. et al., 2002, J. Biol. Chem. 277:54338-54346), the tobacco RB7 promoter (Yamamoto, Y.T. et al., 1991, Plant Cell 3:371–382.), the Arabidopsis ADH promoter (McKendree, W.L. et al., 1992, Plant Mol Biol. 19:859-862), the Arabidopsis PHT1 promoter (Koyama, T. et al., 2004, J. Biosci. Bioeng. 99:38-42), the Arabidopsis pyk10 promoter (Nitz, I. et al., 2001, Plant Sci. 161:337-346), the peroxidase gene promoter (prxEa) of Arabidopsis (Wanapu and Shinmyo, 1996, Ann N. Y. Acad. Sci. 782: 107-114), the tomato SIREO promoter (Jones, M.O. et al., 2008, Funct. Plant Biol. 35:1224-1233), the alfalfa MsPRP2 promoter (Winicov, I. et al.), the rice ZRP3 and ZRP4 promoters (ref?), the maize RCC2 and RCC3 promoters (ref?), the strawberry FaRB7 promoter (Vaughan, S.P. et al., 2006, J. Exp. Botany doi: 10.1093/jxb/erl185) the promoters as disclosed in US 5,459,252, US 5,837,876, WO 97/005261, WO 2001/53502, WO2001/044454, WO 2006/024291 and WO 2006/022467. Alternatively, promoters can be used from genes that are normally controlled in expression by bZIP19 or bZIP23, for example those as listed in Table 3. It is believed that these promoters are especially preferable since they are expressed in the cells where the proteins normally act and since they will be induced by the presence of Zn and thus they will amplify the Zn deficiency signal causing an earlier and particularly stronger response.

Although it is known that some transgenic approaches do indeed influence adaptation of plants to changes in the zinc concentrations in the
environment, these approaches are all attempts to make plants transgenic for zinc transporter proteins (such as ZAT, see van der Zaal, B.J., 1999, Plant Physiol. 119:1047-1055; AtHMA4, see Verret, F. et al., 2004, FEBS Lett 576:306-312; and NAS, see Takahashi, M. et al., 2003, Plant Cell 15:1263-1280). The current invention attempts to interfere with the regulation of zinc, uptake, transport and storage in the plant, by modulating the expression of genes that are regulators of, amongst others, these transport proteins. Thus, the invention interferes at a more basal level, which has the advantage that it is less influenced by feedback mechanisms and other regulatory processes involved in zinc processing.

Although it is demonstrated in the experimental part that bZIP19 and bZIP23 play a major role in the control of adaptation to changes in the zinc content of the soil and although transforming plants with either or both of those proteins would make the plants able to adapt to Zn deficiency or to act as Zn (hyper)accumulators, these properties can be enhanced by overexpressing additional proteins that are known to be involved in Zn homeostasis. These proteins are preferably chosen from heavy metal transporters, preferably HMA2, HMA3 or HMA4, YSL proteins, preferably YSL, preferably YSL1 or YSL3, ZIP or IRT proteins, ZIF proteins, NAS proteins, MRP proteins, FRD3 and MTPs (metal transporting proteins).

As can be seen in this Table, genes encoding these proteins are available to the person skilled in the art and transformation of the sequences coding for these genes can be performed according to the methods as described herein.
Table A. Proteins involved in Zn uptake, transport and storage

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Acc. No. Gene</th>
<th>Acc. No. Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMA2</td>
<td>cadmium-transporting ATPase</td>
<td>NM_119157.3</td>
<td>NP_194740.1</td>
</tr>
<tr>
<td>HMA3</td>
<td>potential Zn/Cd heavy metal transporter</td>
<td>AY434729.1</td>
<td>AAR10768.1</td>
</tr>
<tr>
<td>HMA4</td>
<td>cadmium ion transmembrane transporter/cadmium-transporting ATPase/zinc ion transmembrane transporter</td>
<td>NM_127468.4</td>
<td>NP_179501.1</td>
</tr>
<tr>
<td>YSL1</td>
<td>Oligopeptide transporter</td>
<td>NM_118544.3</td>
<td>NP_567694.2</td>
</tr>
<tr>
<td>YSL2</td>
<td>Oligopeptide transporter</td>
<td>NM_122346.3</td>
<td>NP_197826.2</td>
</tr>
<tr>
<td>YSL3</td>
<td>Oligopeptide transporter</td>
<td>NM_124735.2</td>
<td>NP_200167.2</td>
</tr>
<tr>
<td>ZIP1</td>
<td>zinc ion transmembrane transporter</td>
<td>NM_112111.3</td>
<td>NP_187881.1</td>
</tr>
<tr>
<td>ZIP2</td>
<td>zinc ion transmembrane transporter</td>
<td>NM_125344.2</td>
<td>NP_200760.1</td>
</tr>
<tr>
<td>ZIP3</td>
<td>zinc ion transmembrane transporter</td>
<td>NM_128786.3</td>
<td>NP_180786.1</td>
</tr>
<tr>
<td>ZIP4</td>
<td>copper ion transmembrane transporter</td>
<td>NM_100972.4</td>
<td>NP_172566.2</td>
</tr>
<tr>
<td>ZIP5</td>
<td>metal ion transmembrane transporter</td>
<td>NM_202033.1</td>
<td>NP_973762.1</td>
</tr>
<tr>
<td>ZIP6</td>
<td>metal ion transmembrane transporter</td>
<td>NM_128563.1</td>
<td>NP_180569.1</td>
</tr>
<tr>
<td>ZIP7</td>
<td>metal ion transmembrane transporter</td>
<td>NM_126440.2</td>
<td>NP_178488.1</td>
</tr>
<tr>
<td>ZIP8</td>
<td>zinc ion transmembrane transporter</td>
<td>NM_001161290.1</td>
<td>NP_001154762.1</td>
</tr>
<tr>
<td>ZIP9</td>
<td>zinc ion transmembrane transporter</td>
<td>NM_119456.1</td>
<td>NP_195028.1</td>
</tr>
<tr>
<td>ZIP10</td>
<td>zinc ion transmembrane transporter</td>
<td>NM_102864.2</td>
<td>NP_174411.2</td>
</tr>
<tr>
<td>ZIP11</td>
<td>metal ion transmembrane transporter</td>
<td>NM_104468.2</td>
<td>NP_564703.1</td>
</tr>
<tr>
<td>ZIP12</td>
<td>zinc ion transmembrane transporter</td>
<td>NM_125609.1</td>
<td>NP_201022.1</td>
</tr>
<tr>
<td>IRT3</td>
<td>metal ion transmembrane transporter</td>
<td>NM_104776.4</td>
<td>NP_564766.1</td>
</tr>
<tr>
<td>ZIP1</td>
<td>carbohydrate transmembrane transporter</td>
<td>NM_121377.4</td>
<td>NP_196878.2</td>
</tr>
<tr>
<td>NAS1</td>
<td>nicotianiline synthase</td>
<td>NM_120577.3</td>
<td>NP_196114.1</td>
</tr>
<tr>
<td>NAS2</td>
<td>nicotianiline synthase</td>
<td>NM_124990.1</td>
<td>NP_200419.1</td>
</tr>
<tr>
<td>NAS3</td>
<td>nicotianiline synthase</td>
<td>NM_100794.3</td>
<td>NP_172395.1</td>
</tr>
<tr>
<td>NAS4</td>
<td>nicotianiline synthase</td>
<td>NM_104521.2</td>
<td>NP_176038.1</td>
</tr>
<tr>
<td>MRP5</td>
<td>glutathione S-conjugate-exporting ATPase</td>
<td>NM_121147.2</td>
<td>NP_187915.1</td>
</tr>
<tr>
<td>FRD3</td>
<td>antiporter/ transporter</td>
<td>NM_111683.1</td>
<td>NP_187461.1</td>
</tr>
<tr>
<td>MTP1</td>
<td>zinc ion transmembrane transporter</td>
<td>NM_180128.2</td>
<td>NP_850459.1</td>
</tr>
<tr>
<td>MTP2</td>
<td>zinc ion transmembrane transporter</td>
<td>NM_116059.2</td>
<td>NP_191753.1</td>
</tr>
<tr>
<td>MTP3</td>
<td>zinc ion transmembrane transporter</td>
<td>NM_115743.3</td>
<td>NP_191440.2</td>
</tr>
<tr>
<td>MTP8</td>
<td>metal tolerance protein</td>
<td>NM_115668.2</td>
<td>NP_191365.2</td>
</tr>
</tbody>
</table>
(Over)expression of bZIP19 and/or bZIP23 in plants together with one or more of the above mentioned proteins would yield plants which would be able to uptake more zinc than a normal wild-type plant or to respond faster to local deficiencies in zinc supply. By these characteristics, such plants would be very suitable to grow on high zinc containing soil and would therefore be able to act as phytoremediators, clearing the soil from the toxic metal, or they would be able to grow on normal or low zinc containing soil, but still have dietarily sufficient amounts of zinc in their edible parts, or be less sensitive to zinc deficiencies.

Vectors for use in tissue-specific targeting of genes in transgenic plants will typically include tissue-specific promoters and may also include other tissue-specific control elements such as enhancer sequences. Additionally, vectors may be constructed and employed in the intracellular targeting of a specific gene product within the cells of a transgenic plant. This will generally be achieved by joining a DNA sequence encoding a transit or signal peptide sequence to the coding sequence of a particular gene. The resultant transit, or signal, peptide will transport the protein to a particular intracellular, or extracellular destination, respectively, and will then be post-translationally removed. Transit or signal peptides act by facilitating the transport of proteins through intracellular membranes, e.g., vacuole, vesicle, plastid and mitochondrial membranes, whereas signal peptides direct proteins through the extracellular membrane.

A particular example of such a use concerns the direction of a protein (enzyme) to a particular organelle such as the vacuole rather than to the cytoplasm. Signal peptides of vacuolar proteins, such as the N-terminal propeptide (NTPP) of sweet potato sporamin and the C-terminal propeptide (CTPP) of tobacco chitinase can be used to target expression of a protein to the vacuole.
By facilitating the transport of the protein into compartments inside the cell, these transit peptides may increase the accumulation of gene product by protection from proteolytic degradation.

Production And Characterization of Stably Transformed Plants

Plant species may for instance be transformed by the DNA-mediated transformation of plant cell protoplasts and subsequent regeneration of the plant from the transformed protoplasts in accordance with procedures well known in the art.

Any plant tissue capable of subsequent clonal propagation, whether by organogenesis or embryogenesis, may be transformed with a vector of the present invention. The term "organogenesis", as used herein, means a process by which shoots and roots are developed sequentially from meristematic centers; the term "embryogenesis", as used herein, means a process by which shoots and roots develop together in a concerted fashion (not sequentially), whether from somatic cells or gametes. The particular tissue chosen will vary depending on the clonal propagation systems available for, and best suited to, the particular species being transformed. Exemplary tissue targets include leaf disks, pollen, embryos, cotyledons, hypocotyls, megagametophytes, callus tissue, existing meristematic tissue (e. g., apical meristems, axillary buds, and root meristems), and induced meristem tissue (e. g., cotyledon meristem and ultilane meristem).

Plants of the present invention may take a variety of forms. The plants may be chimeras of transformed cells and non-transformed cells; the plants may be clonal transformants (e. g., all cells transformed to contain the expression cassette); the plants may comprise grafts of transformed and untransformed tissues (e. g., a transformed root stock grafted to an untransformed scion in citrus species). The transformed plants may be propagated by a variety of means, such as by clonal propagation or classical breeding techniques. For example, first generation (or T1) transformed plants
may be selfed to give homozygous second generation (or T2) transformed/plants, and the T2 plants further propagated through classical breeding
techniques. A dominant selectable marker (such as npt II) can be associated
with the expression cassette to assist in breeding.

Thus, the present invention provides a transformed (transgenic)
plant cell, in planta or ex planta, including a transformed plastid or other
organelle, e.g., nucleus, mitochondria or chloroplast.

Transformation of plants can be undertaken with a single DNA
molecule or multiple DNA molecules (i.e., co-transformation), and both these
techniques are suitable for use with the expression cassettes of the present
invention. Numerous transformation vectors are available for plant
transformation, and the expression cassettes of this invention can be used in
conjunction with any such vectors. The selection of vector will depend upon the
preferred transformation technique and the target species for transformation.

Suitable methods of transforming plant cells include, but are not
limited to, microinjection (Crossway et al., 1986), electroporation (Riggs et al.,
1986), Agrobacterium-mediated transformation (Hinchee et al., 1988), direct
gene transfer (Paszkowski et al., 1984), and ballistic particle acceleration using
devices available from Agracetus, Inc., Madison, Wis. And BioRad, Hercules,
Calif. (see, for example, Sanford et al., U. S. Pat. No. 4,945,050; and McCabe et
al., 1988). Also see, Weissinger et al., 1988; Sanford et al., 1987 (onion);
Christou et al., 1988 (soybean); McCabe et al., 1988 (soybean); Datta et al.,
1990 (rice); Klein et al., 1988 (maize); Klein et al., 1988 (maize); Klein et al.,
1988 (maize); Fromm et al., 1990 (maize); and Gordon- Kamm et al., 1990
(maize); Svab et al., 1990 (tobacco chloroplast); Koziel et al., 1993 (maize);
Shimamoto et al., 1989 (rice); Christou et al., 1991 (rice); European Patent
Application EP 0 332 581 (orchardgrass and other Pooidae); Vasil et al., 1993
(wheat); Weeks et al., 1993 (wheat). In one embodiment, the protoplast
transformation method for maize is employed (European Patent Application
It is particularly preferred to use the binary type vectors of Ti and Ri plasmids of *Agrobacterium* spp. Ti-derived vectors transform a wide variety of higher plants, including monocotyledonous and dicotyledonous plants, such as soybean, cotton, rape, tobacco, and rice (Pacciotti et al., 1985; Byrne et al., 1987; Sukhapinda et al., 1987; Park et al., 1985; Hiei et al., 1994). The use of T-DNA to transform plant cells has received extensive study and is amply described (EP 120516; Hoekema, 1985; Knauf et al., 1983; and An et al., 1985). For introduction into plants, the chimeric genes of the invention can be inserted into binary vectors as described in the examples.

Other transformation methods are available to those skilled in the art, such as direct uptake of foreign DNA constructs (see EP 0295959), techniques of electroporation (Fromm et al., 1986) or high velocity ballistic bombardment with metal particles coated with the nucleic acid constructs (Kline et al., 1987, and U. S. Patent No. 4,945,050). Once transformed, the cells can be regenerated by those skilled in the art. Of particular relevance are the methods to transform foreign genes into commercially important crops, such as rapeseed (De Block et al., 1989), sunflower (Everett et al., 1987), soybean (McCabe et al., 1988; Hinchee et al., 1988; Chee et al., 1989; Christou et al., 1989; EP 301749), rice (Hiei et al., 1994), and corn (Gordon Kamm et al., 1990; Fromm et al., 1990).

Those skilled in the art will appreciate that the choice of method might depend on the type of plant, i.e., monocotyledonous or dicotyledonous.

Agrobacterium tumefaciens cells containing a vector comprising an expression cassette of the present invention, wherein the vector comprises a Ti plasmid, are useful in methods of making transformed plants. Plant cells are infected with an *Agrobacterium tumefaciens* as described above to produce a transformed plant cell, and then a plant is regenerated from the transformed plant cell. Numerous *Agrobacterium* vector systems useful in carrying out the present invention are known. These typically carry at least one T-DNA border sequence and include vectors such as pBIN19 (Bevan, 1984).
Methods using either a form of direct gene transfer or Agrobacterium-mediated transfer usually, but not necessarily, are undertaken with a selectable marker which may provide resistance to an antibiotic (e.g., kanamycin, hygromycin or methotrexate) or a herbicide (e.g., phosphinothricin). The choice of selectable marker for plant transformation is not, however, critical to the invention.

General methods of culturing plant tissues are provided for example by Maki et al., (1993); and by Phillips et al. (1988).

After transformation the transgenic plant cells are placed in an appropriate selective medium for selection of transgenic cells which are then grown to callus. Shoots are grown from callus and plantlets generated from the shoot by growing in rooting medium. The particular marker used will allow for selection of transformed cells as compared to cells lacking the DNA which has been introduced.

To confirm the presence of the transgenes in transgenic cells and plants, a variety of assays may be performed. Such assays include, for example, “molecular biological” assays well known to those of skill in the art, such as Southern and Northern blotting, in situ hybridization and nucleic acid-based amplification methods such as PCR or RT-PCR; “biochemical” assays, such as detecting the presence of a protein product, e.g., by immunological means (ELISAs and Western blots) or by enzymatic function.

The invention further provides a transgenic plant transformed with a nucleotide sequence coding for a bZIP19 or a bZIP23 protein or both.

Additionally, said plant may be transgenic for a protein selected from the group consisting of heavy metal transporters, preferably HMA2, HMA3 or HMA4, YSL proteins, preferably YSL, preferably YSL1 or YSL3, ZIP or IRT proteins, ZIF proteins, NAS proteins, MRP proteins, FRD3 and MTPs.

As will be shown in the Examples, the transgenic plants according to the invention are tolerant to Zn deficiency, i.e. they are able to adapt to
environmental situations in which there is no or hardly no zinc in the substrate on which the plant is growing. Further advantage of the transgenic plants of the current invention is that they are able to accumulate Zn. This is not only an advantage for bioremediation, but in cases of plants where Zn is stored in edible parts (such as leaves, roots, beets, berries or tubers) the plants will be suitable for diets in areas where the Zn concentration in the food is insufficient in the normal diet. This use is also known under the name of ‘biofortification’. Normally the Zn in the plant will be less bioavailable because part of it is complexed with phytate or polyphenols. Thus preferably the plants used in this respect are plants that comprise low levels of phytate or and/or polyphenoles.

On the other hand, the transgenic plants of the invention are very useful in circumstances where there is an excess of zinc in the substrate. The transgenic plants of the inventions are capable of taking up the metal and storing it in their tissues and/or vacuole. In this way, the plants can be used as sanitation plants to extract zinc from the soil. The metal thus will be concentrated in the plant biomass, which can be harvested and disposed off in a convenient way. This method, known as phytoextraction, is especially useful if large areas of soil are contaminated with zinc (such as is the case in the neighbourhood of zinc mines). In such a case, phytoextraction is a commercially very attractive way of cleaning the surroundings from excess metal.

A further part of the invention is the use of a bZIP19 and/or a bZIP23 protein or an ortholog thereof, or a nucleotide sequence encoding for such a protein or ortholog, in the methods of the invention described above, and/or for making a plant as described above and progeny thereof.

The following enabling Examples serve to further illustrate the invention, and are not intended to define limitations or restrict the scope of the subject invention.
EXAMPLES

Example 1 - Material and Methods

Plant Growth

Arabidopsis ecotype Columbia (Col-0) was used in all experiments. Plants were grown in climate chambers with 16h light at 22°C, 8h at 20°C, 120 μmol photons m⁻² s⁻¹ and 50% relative humidity. Previous to germination, seeds had a 3-day stratification treatment in a cold room at 4°C in the dark to promote uniform germination. For genetic analysis and transformation, plants were grown in pots with peat. For the plate-based assay, seeds were surface-sterilized using vapour-phase seed sterilization and sown on plates with MS media (Duchefa Biochemie, Haarlem, The Netherlands) supplemented with 1% sucrose and adjusted to pH 5.8. The MS media was prepared either without zinc (Zn⁻), with 30 μM ZnSO₄ (Zn⁺) or with 300 μM ZnSO₄ (Zn⁺⁺). For the hydroponically grown plants, seeds were sown on 0.55% agar-filled tubes and grown on a modified half-strength Hoagland’s nutrient solution prepared with either 0.05 μM (Zn⁻), 2 μM ZnSO₄ (Zn⁺), or 25 μM ZnSO₄ (Zn⁺⁺). The hydroponic system consisted of 8-liter-capacity containers (46x31x8 cm), with a non-translucent 3-mm thick plastic lid containing holes for placing 9x5 agar-filled tubes. The nutrient solution was replaced once in the first week and twice in the weeks thereafter.

Yeast complementation experiment

A 1.3-kb full-length cDNA clone corresponding to *AtZIP4* (APD09D10R, genebank accession number AV524735) was kindly provided by Kazuza DNA Research Institute (Kisarazu, Chiba, Japan). The open-reading frame of *ZIP4* was amplified with proofreading DNA polymerase (Pfu native; Stratagene, La Jolla, CA, USA), with PCR conditions as recommended by the manufacturer, and using the primers 5' - GGGGACAACATTTGTACAAAAAAGCAGGCTTAACCTCTTGGTCCCATGATC - 3' and 5'.
GGGACCACCTTTGTACAAAGAAAGCTGGGTATATTATTGTATTCTACAG -3'
containing Gateway recombination sites (underlined). The fragment was
cloned into the entry vector pDONR207 (Invitrogen) by in vitro site-directed
recombination for further recombination into the yeast expression vector
pFL613 (20). The ATG start-codon of the cloned ZIP4 cDNA was in frame with
the pFL613 ATG start-codon and without stop-codons upstream. The construct
was verified by sequencing.

A Saccharomyces cerevisiae zrt1zrt2 mutant, ZHY3, and its parental
wild-type strain DY1457 were used (6). Yeast cells were grown on synthetic
defined liquid media (SD) supplemented with auxotrophic requirements and
2% (w/v) glucose. Both yeast strains were transformed with the pFL613 empty
vector, and zrt1zrt2 was transformed with pFL613 containing AtZIP4, using a
standard yeast transformation procedure (21). zrt1zrt2 complementation was
tested by a drop spotting assay, spotting diluted cultures from a single colony
of each transformant on selective SD-URA agar plates. The media was made
zinc-limiting by adding EDTA (1 mM) and citrate (pH 4.2) (22) and
supplemented with 0.4 (zinc-limiting media) or 0.8 mM ZnCl₂. Five colonies of
each transformant were tested. zrt1zrt2 complementation was also tested by
measuring the OD₆₀₀ in 5-ml cultures of the described SD-URA media with 0.4
mM ZnCl₂ inoculated with a 60 µl (0.8 mM ZnCl₂) single-colony overnight pre-
culture at OD₆₀₀=1. Three independent experiments were performed.

Construction of Reporter Vectors for the Yeast One-hybrid

The bait sequence in six reporter vectors (named A to F) were PCR-
amplified fragments of the ZIP4 promoter. These fragments covered the full
promoter, starting -1049 bp upstream of the start codon and had an overlap
between fragments of 60 to 80 bp. The fragments were amplified from
Arabidopsis genomic DNA using proofreading polymerase (Pfu native;
Stratagene, La Jolla, CA, USA), with PCR conditions as recommended by the
manufacturer, and using primers with 5'-overhangs compatible with
EcoRI/Sacl (table 1). The fragments were intermediately cloned into the pCR-
Blunt II-TOPO vector (Invitrogen) according to the manufacturer’s recommendations. The TOPO vector with each of the baits was digested with EcoRI/SacI and the bait fragment was extracted from agarose gel (Qiagen Gel Extraction kit). The bait of the reporter vector G consisted of a trimer of the following motif: ATGTCGACAT/C. Two antiparallel oligonucleotides, one representing the sense strand and the other its antisense complement strand, and containing 5’-overhangs compatible with EcoRI/SacI, were synthesized (table 1).

<table>
<thead>
<tr>
<th>Fragment</th>
<th>Primer sequence</th>
</tr>
</thead>
</table>
| A | Forward: 5’-GAATTCAAGCTTTGGAAAGTGAGTGGA-3’
Reverse: 5’-GAGCTCCAATTCCAAACCAAGTA-3’ |
| B | Forward: 5’-GAATTCTGTATATCTGATCTTCTCTGCTG-3’
Reverse: 5’-GAGCTCAAGCTAAAAGGACGGTAACT-3’ |
| C | Forward: 5’-GAATTCTTCATCCTATTTGCTTG-3’
Reverse: 5’-GAGCTCATTTTCCATTTGTCAC-3’ |
| D | Forward: 5’-GAATTCTCTGCAGTAGACTTGAC-3’
Reverse: 5’-GAGCTCCCAATCTTGCTAT-3’ |
| E | Forward: 5’-ATCGGAATTCTGAGAAAAACAGAATAACGC-3’
Reverse: 5’-GAGCTCCCCATGGGAAACAGAATTTAT-3’ |
| F | Forward: 5’-ATCGGAATTCTGAGAAAAACAGAATAACGC-3’
Reverse: 5’-CGTAGAGCTCTGAGAAAAAGATGGAAGAGT-3’ |
| G | Forward: 5’-AATTCTATGTCGACATATGTGCGAATATGTCGACACAGCAGCT-3’
Reverse: 5’-CGTGTGCACATATGTCGACATATGTCGACATG-3’ |
0.1 μg of each oligonucleotide strand were mixed in 10 μl of 50 mM NaCl, annealed by heating at 70°C for 5 min, and slowly cooled down to room temperature. The digested, PCR-derived baits (A to F) and the annealed oligonucleotide (G), were cloned into pHISi, previously digested with EcoRI/SacI according to the manufacturer’s recommendations. Each reporter vector was confirmed by digestion analysis and sequencing.

Yeast One-hybrid Screening

The cDNA expression library was constructed with mRNA from *Arabidopsis* inflorescence obtained using an mRNA purification kit (Amersham Bioscience). Subsequently, a Gateway compatible cDNA entry library was constructed making use of the CloneMiner cDNA library Construction Kit (Invitrogen, Carlsbad). This cDNA entry library had a titer of 5 x 10^7 cfu ml^{-1} and it was transferred into the pDEST22 vector (Invitrogen) via an LR recombination reaction following the protocol provided by the manufacturer, yielding an expression library with a titer of 2 x 10^6 cfu ml^{-1}. The reporter vectors were introduced into yeast strain PJ69-4A (James, P. et al., 1996, Genetics 144:1425-1436). For this purpose, yeast cells were transformed with digested (XhoI) linearized pHISi reporter vector using a standard yeast transformation procedure (Gietz, R.D. et al., 2002, Meth. Enzymol. 350:87-96). The empty pHISi vector, digested and undigested, and a non-integrative reporter vector were used as controls. The cDNA expression library screening was performed following the Large-Scale Yeast Transformation Protocol (PT3024-1; Clontech) which yielded a transformation efficiency of 5 to 9 x 10^5 cfu μg^{-1} DNA. Screening with all the reporter strains was performed on medium lacking His and in the presence of 20-40 mM 3-aminotriazole (3AT, optimal concentration was optimized for each reporter strain). There were in total 18 positive interactions (7 with *bZIP19* and 11 with *bZIP23*) when using the reporter vectors E, F and G (Fig. 2A). Positive colonies
were selected and the cDNA clone of the GAL4-AD library vector was isolated and sequenced.

Identification of T-DNA insertion mutants

T-DNA SALK lines were obtained from the Nottingham Arabidopsis Stock Center (NASC). The T-DNA was inserted 18 bp upstream of the *bZIP19* (At4g35040) start codon in *m19* (salk_144252), and 91 bp upstream of the *bZIP23* (At2g16770) start codon in *m23* (salk_045200). The T-DNA insertion events were confirmed by PCR analysis with gene-specific primers of LP and RP described by the Salk Institute Genomic Analysis Laboratory and a T-DNA border primer LBa1. Homozygous plants for each T-DNA insertion were selected. In order to obtain a double T-DNA insertion mutant, *m19m23*, the progeny of a cross between *m19* and *m23* plants were selected by PCR analysis for homozygosity of each T-DNA insert.

Quantitative RT-PCR Analysis

Seedlings of Arabidopsis wild-type (wt), and T-DNA insertion mutants *m19*, *m23* and *m19m23* grown for three weeks in MS medium at either Zn-, Zn+ or Zn+++ conditions were harvested. Seedlings from a single plate, per genotype and per treatment were pooled (6 to 8 seedlings) and homogenized in liquid nitrogen. For each genotype and treatment, seedlings were harvested from 3-4 different plates, representing independent experiments. Total RNA of the seedlings was extracted with an RNeasy plant RNA kit (Qiagen) and treated with DNase to eliminate any genomic DNA (Fermentas). The kits were used according to manufacture’s instructions. First-strand cDNA was synthesized from 1 μg of total RNA using the iScript™ cDNA Synthesis Kit (Bio-Rad). Gene-specific primers for quantitative RT-PCR were designed according to database genome sequence information for Arabidopsis and using Vector NTI software (Invitrogen) (table 2).
Table 2. Forward and reverse primers used in the quantitative RT-PCR to determine transcript expression of ZIP4, ZIP1, ZIP3, ZIP5, ZIP9, ZIP12, IRT3, ZIP2, bZIP19, bZIP23 and bZIP24 genes.

<table>
<thead>
<tr>
<th>Fragment</th>
<th>Primer sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZIP4</td>
<td>Forward: 5’-GATCTTTCGTGATGGTCATTCTGGG-3’
Reverse: 5’-TGAGAGGTATGGGCTACACCAGCAG-3’</td>
</tr>
<tr>
<td>ZIP1</td>
<td>Forward: 5’-GGACACACACATGTCGAC-3’
Reverse: 5’-GATAGTCAGCCATGAGTGG-3’</td>
</tr>
<tr>
<td>ZIP3</td>
<td>Forward: 5’-CAGAAACATTTTCTCTTCGAC-3’
Reverse: 5’-CGCAATAAATCCGGTAACG-3’</td>
</tr>
<tr>
<td>ZIP5</td>
<td>Forward: 5’-CGGGATTGTGGCGTGGGAAT-3’
Reverse: 5’-CAGAAGCCCTCGAAGCATTG-3’</td>
</tr>
<tr>
<td>ZIP9</td>
<td>Forward: 5’-CAATAATCATAGGAAATATCGTGG-3’
Reverse: 5’-AGAAAGCGCATCAGCAGAT-3’</td>
</tr>
<tr>
<td>ZIP12</td>
<td>Forward: 5’-CAATGCGATTGACTTTGGC-3’
Reverse: 5’-CCATGAGAATGTCTGTGA-3’</td>
</tr>
<tr>
<td>IRT3</td>
<td>Forward: 5’-ATATGTTGGCGGGTGCGCAG-3’
Reverse: 5’-GCTTCCCCTCTCTGGTCC-3’</td>
</tr>
<tr>
<td>ZIP2</td>
<td>Forward: 5’-TAATAAACCACGTGGGAG-3’
Reverse: 5’-AGCAAAGCTGTGCTCCAAA-3’</td>
</tr>
<tr>
<td>bZIP19</td>
<td>Forward: 5’-TTCTCCCGGATGAGGATGG-3’
Reverse: 5’-GCTGATTCACCGCCCTAGG-3’</td>
</tr>
<tr>
<td>bZIP23</td>
<td>Forward: 5’-TAATCAGCTGTGAAAGAGG-3’
Reverse: 5’-TCATGATAGTAAGGAGCG-3’</td>
</tr>
<tr>
<td>bZIP24</td>
<td>Forward: 5’-TCTCAGGATCAAGCAGGAA-3’
Reverse: 5’-TCAGTCTCCACCATTCTGG-3’</td>
</tr>
</tbody>
</table>
Amplicon lengths were between 150 and 240 bp and all primer combinations had at least 85% efficiency. The absence of genomic DNA was confirmed by performing a no-amplification control (without reverse transcriptase reaction) for every sample. For the PCR reaction, 5 μl of a 100x dilution of the cDNAs, corresponding approximately to 2.5 ng of RNA, were used as template. In addition, the reaction contained 12.5 μl iQ™ SYBR® Green Supermix (Bio-Rad) and 5 pmol of forward and reverse primers (Invitrogen) in a total volume of 25 μl. The PCR reactions were performed in a 96-well plate with an iCycler thermal cycler and an iCycler iQ Real Time PCR System (Bio-Rad). The following standard thermal profile was used: 3 min at 95.0°C, followed by 40 cycles of 15 sec at 95.0°C and 1 min at 60.0°C. 18S rRNA was used as an internal control, to normalize the amount of template cDNA. Reactions were performed in 3-4 biological replicas and 2-6 technical replicas per biological replica for each genotype x treatment. Relative transcript levels (RTL) were calculated with the 2^ΔΔCt method (24).

Determination of zinc concentration

Roots and shoots of four-week-old hydroponically grown *Arabidopsis* wild-type (wt), T-DNA insertion mutants *m19, m23* and *m19m23*, were harvested, consisting of three plants per genotype x three treatments (Zn-, Zn+, Zn++) x two independent experiments. The root systems were desorbed with ice-cold 5 mM PbNO₃ for 30 min. Roots and shoots were analyzed for zinc concentration using flame atomic absorption spectrometry (Perkin Elmer 1100B).

Generation of Constructs

To generate overexposer constructs for transformation of the *Arabidopsis* double T-DNA insertion mutant (*m19m23*), full-length cDNAs of *AtbZIP19* and *AtbZIP23* (clones GSLTSIL54ZH09 and GSLTBF35ZE06, respectively) were obtained from the CNRGV (Centre National de Ressources Génomiques Végétales, France) in pCMV SPORT6 cloning vector, containing Gateway recombination sites. The cDNAs were cloned into the entry vector
pDONR207 (Invitrogen) by in vitro site-directed recombination, for further recombination into the overexpressor vector pGD625 (De Folter, S. et al., 2005, Plant Cell 17:1424-1433). The constructs pCaMV35S::bZIP19 (OX19) and pCaMV35S::bZIP23 (OX23) were verified by digestion analysis and sequencing and transformed by electroporation into Agrobacterium tumefaciens strain AGL0. Subsequently, m19m23 and Arabidopsis wild-type plants were transformed by floral dipping (Clough, S.J. et al., 1998, Plant J. 16:735-743). Independent transformed lines were selected for a single insertion locus by antibiotic resistance and 3:1 segregation ratio of T2 seedlings. The overexpression of bZIP19 or bZIP23 was confirmed by RT-PCR. Five, respectively three independent lines of m19m23-OX19 and m19m23-OX23 were analysed with 10 seedlings per line, grown in MS medium at either Zn- or Zn+ conditions, in two replicate plates per line. Arabidopsis wild-type and m19m23 plants were used as controls.

Micro-array analysis

Arabidopsis wild-type (wt) and T-DNA insertion double mutant m19m23 plants were grown in hydroponics medium as described above. They were grown for three weeks with normal zinc supply (Zn+, 2 μM ZnSO₄) and one week with low zinc supply (Zn-, 0.05 μM ZnSO₄) or normal zinc supply (Zn+). Roots of four plants per genotype and per treatment (Zn-/Zn+) were pooled in a two biological replica experiment, and RNA was extracted with the RNAeasy plant RNA kit (Qiagen). Transcriptomes were analysed using 1 μg of total RNA as starting material. Targets were prepared with the one-cycle cDNA synthesis kit followed by biotin-labelling with the IVT labelling kit (GeneChip One-cycle target labelling and control reagents, Affymetrix, High Wycombe, U.K.) and hybridized to ATH1 gene chip for 16 h as recommended by the supplier (Gene expression analysis manual, Affymetrix). Raw data files were processed and quantile normalized in Bioconductor/R (27). Differential expression of each gene was tested for by applying an Empirical Bayes regularized t-test (Smyth, G.K., 2004, Stat. Appl. Genet. Mol. Biol. 3, Iss. 1,
Article 3)). The p-values were corrected for multiple testing using the approach of Benjamini and Hochberg (1995, J. Royal Stat., Soc. B 57:289-300), providing control of the false discovery rate (FDR).

Statistics

Data analysis and statistics were done using Microsoft Excel and SPSS 15.0 for Windows. Statistical analysis of zinc concentration and dry weight data, from Arabidopsis and mutant lines, was performed by one-way ANOVA followed by a post-hoc Tukey test.

Results

In *Arabidopsis*, several members of the ZIP family of metal transporters mainly involved in cellular uptake, are transcriptionally induced in response to zinc deficient conditions and thought to constitute the major gateway of zinc into the plant. The ZIP4 gene in particular is strongly induced in roots upon zinc deficiency (Fig. 3A). We used it to complement the increased zinc requirement of the *Saccharomyces cerevisiae zrt1zrt2* mutant defective in high- and low-affinity zinc uptake (Zhao, H. et al., 1996, Proc. Natl. Acad. Sci. USA 93:2454-2458), and showed it indeed encodes a zinc transporter (Fig. 4, B and C). We cloned the promoter of the ZIP4 gene upstream of the GUS reporter gene and expressed this construct in *Arabidopsis*. GUS expression was apparent only when plants were grown on zinc deficient medium, analogous to endogenous ZIP4 gene expression (data not shown). To identify transcription factors controlling ZIP4 expression, we used six overlapping ZIP4 promoter fragments as baits in a yeast-one-hybrid assay. We also used three tandem repeats of a 10-bp palindrome motif, present in two copies close to the predicted ZIP4 transcription start, as additional bait (Fig. 2A; fragments A to G). Several clones of two cDNAs were identified, but only when screening with baits containing two or three copies of the 10-bp palindrome (Fig. 2A; fragments E, F and G). These cDNAs corresponded to bZIP19 (At4g35040,
NM_119670.4) and bZIP23 (At2g16770, NM_119670.4), two genes of the basic region/leucine zipper motif (bZIP) family of transcription factors. *Arabidopsis* contains 75 members of the bZIP family (Jakoby, M. et al., 2002, Trends Plant Sci. 7:106-111).

To investigate the involvement of these three *bZIP* genes in controlling adaptation of plants to low zinc supply, we analysed transcript levels by quantitative RT-PCR (qPCR) on three-week-old wild-type seedlings grown on agar plates at three different zinc concentrations. Expression of *bZIP19* and *bZIP23* genes decreased to about half upon increased zinc supply, with *bZIP19* slightly higher expressed than *bZIP23* (Fig. 2B). *bZIP24* had lower transcript levels than the other two, and expression was not obviously affected by the zinc status of the medium, therefore we concluded that *bZIP19* and *bZIP23* are involved in the response to zinc deficiency in plants.

To determine their mutant phenotypes, we obtained homozygous T-DNA insertion lines for the *bZIP19* and *bZIP23* genes (respectively named *m19* and *m23*) which were devoid of full-length *bZIP19* or *bZIP23* transcript (fig. 5, A and B). We crossed both single mutant lines to generate a double mutant line (*m19m23*). Wild type plants and single or double mutants grown on soil did not show any obvious phenotypic differences (data not shown), however when grown on zinc-deficient agar media (Zn-), only the double mutant line was hypersensitive to zinc-deficiency (Fig. 4A). Three-week-old seedlings showed very poor growth and strong chlorosis. To exclude *in vitro* effects during tissue culture, we grew plants for longer time on hydroponics medium, where they could develop normally. Four-week-old double mutant plants, growing at low zinc supply (Zn-) showed a strong growth reduction compared to wild-type plants, as determined by dry weight comparison (Fig. 4, B and C). These plants also had a decreased zinc uptake, with only 58% and 73% of the respective shoot and root zinc concentration of wild-type plants (Fig. 4C). At low zinc supply on hydroponics, also the *m19* single mutant showed reduction in growth and decreased zinc uptake when compared to wild
type (Fig. 4B). When growing in zinc-sufficient (Zn+) or zinc-excess media (Zn++) we did not see differences between the mutants and the wild-type (Fig. 4, A and B), neither for zinc content nor for dry weight (Fig. 6,7). To prove that mutations in bZIP19 and bZIP23 indeed caused the phenotype of the m19m23 double mutant we expressed either the bZIP19 or the bZIP23 cDNA, each under control of the CaMV 35S promoter, in the double mutant. This fully complemented the zinc deficiency hypersensitive phenotype (Fig. 8A).

These findings show that bZIP19 and bZIP23 encode essential transcription factors that control the zinc deficiency response in plants. These genes act redundantly, with bZIP19 only being partially redundant. bZIP transcription factors generally act as dimers. Their redundancy suggests that bZIP19 and bZIP23 act as homo(dimer)s, in line with previous predictions (Deppmann, C.D. et al., 2006, Mol. Biol. Evol. 23:1480-1492). The DNA target sequence for binding bZIP19 and bZIP23 should be within the 10-bp imperfect palindrome present in two copies in the ZIP4 promoter, as three tandem copies of this sequence were sufficient to identify both bZIPs in the yeast-one-hybrid assay. We therefore called the palindrome consensus sequence (RTGTCGACAY) a Zinc Deficiency Response Element (ZDRE). The ZDRE does not have the typical ACTG core as found in the A-box (TACGTA), C-box (GACGTC) or G-box (CAGGTG) DNA elements, to which plant bZIPs are known to preferentially bind. Although also other binding sites have been reported (Choi, H. et al., 2000, J. Biol. Chem. 275:1723-1730; Fukazawa, I. et al., 2000, Plant Cell 12:901-915) the ZDRE is not among them.

To further confirm that the ZDRE is indeed the characteristic cis element to target genes for transcriptional control by bZIP19/23, we screened the promoters of other ZIP transporter genes for ZDREs. Of the 15 Arabidopsis ZIP genes (Mäser, P. et al., 2001, Plant Physiol. 126:1646-1667), approximately half are described to be transcriptionally induced under zinc deficiency conditions compared to normal zinc supply (Grotz, N. et al., 1998, Proc. Natl. Acad. Sci USA 95:7220-7224; Van de Mortel, J.E. et al., 2006, Plant
Physiol. 142:1127-1147; Wintz, H. et al., 2003, J. Biol. Chem. 278:47644-47653). Only ZIP1, ZIP2, ZIP3, ZIP4 and IRT3 encode proteins characterized as zinc transporters (Grotz, supra; Lin, Y.-F. et al., 2009, New Phytol. 182:392-404) although others are likely to transport zinc too. ZIP1, ZIP3, ZIP4, ZIP5, ZIP9, ZIP12 and IRT3 contain one or two ZDRE copies in their promoters and these genes do not show the typical induction of expression in the m19m23 double mutant under zinc-deficient conditions as we saw in the wild-type (Fig. 8B). Expression of ZIP2, which is not zinc-deficiency induced and has no ZDRE sequence in its promoter, is not affected when comparing mutant and wild-type (Fig. 8B). In order to determine the effect of loss of bZIP19/23 function on global gene expression we performed a micro-array experiment comparing roots of hydroponically grown four-week-old m19m23 double mutant plants with those of wild-type plants, treated in their last week with low zinc supply (Zn-). Only 23 genes showed a statistically significant alteration of transcript levels exceeding a 1.5-fold difference threshold (Table 3).

Among those, 16 were down-regulated in the double mutant, including bZIP19 (a probe for bZIP23 was not included in the micro-array used). Of the 15 remaining genes, 11 are known to be induced in wild type Arabidopsis roots upon zinc deficiency (Van de Mortel et al., supra) and nine contain one or more copies of ZDRE in their promoter regions. We think these are the direct targets of bZIP19 and bZIP23, important for the primary zinc deficiency response, and the other genes represent a secondary effect. These findings confirm the important role of the ZDRE and the bZIP19/23 genes in controlling Arabidopsis zinc deficiency response. It also shows that the strong negative effect on growth and on zinc concentration of the m19m23 mutant when grown under zinc deficiency (Fig. 4, A, B and C) is largely explained by reduction in expression of a relatively small group of zinc homeostasis genes involved in uptake and translocation of metals.
Table 3. Differentially expressed genes detected by comparative micro-array analysis of the root transcriptome of *Arabidopsis* wild-type and *m19m23* double mutant plants. Roots of four-week old plants grown in hydroponics exposed in their last week to zinc deficiency (Zn-) were used. Fold change (FC) ≥ 1.5 and adjusted p-values (Benjamini-Hochberg, BH) ≤ 0.05 were used as cut-offs. Average expression value (log2 scale) of the gene model in the data set is indicated as A.

<table>
<thead>
<tr>
<th>Annotation (www.arabidopsis.org)</th>
<th>Gene Model</th>
<th>FC (≥1.5)</th>
<th>A</th>
<th>Adjusted p-value (BH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>down-regulated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bZIP transcription factor family protein</td>
<td>AT4G35040</td>
<td>-35.87</td>
<td>7.31</td>
<td>9.27E-08</td>
</tr>
<tr>
<td>ZIP3 (ZINC TRANSPORTER 3 PRECURSOR)*</td>
<td>AT2G32270</td>
<td>-26.23</td>
<td>9.67</td>
<td>1.35E-09</td>
</tr>
<tr>
<td>phosphatidylinositol 3- and 4-kinase family protein / ubiquitin family protein</td>
<td>AT5G24240</td>
<td>-8.43</td>
<td>8.20</td>
<td>3.57E-08</td>
</tr>
<tr>
<td>ZIP5 (ZINC TRANSPORTER 5 PRECURSOR)*</td>
<td>AT1G05300</td>
<td>-8.34</td>
<td>6.90</td>
<td>4.15E-07</td>
</tr>
<tr>
<td>ZIP4 (ZINC TRANSPORTER 4 PRECURSOR)*</td>
<td>AT1G10970</td>
<td>-7.19</td>
<td>7.68</td>
<td>9.27E-08</td>
</tr>
<tr>
<td>ZIP9 (ZINC TRANSPORTER 9 PRECURSOR)*</td>
<td>AT4G33020</td>
<td>-3.23</td>
<td>6.90</td>
<td>4.41E-04</td>
</tr>
<tr>
<td>ZIP1 (ZINC TRANSPORTER 1 PRECURSOR)*</td>
<td>AT3G12750</td>
<td>-3.21</td>
<td>7.33</td>
<td>1.10E-05</td>
</tr>
<tr>
<td>nicotianamine synthase, putative*</td>
<td>AT5G56080</td>
<td>-3.02</td>
<td>9.24</td>
<td>1.28E-02</td>
</tr>
<tr>
<td>ATPA27/PAP27 (purple acid phosphatase 27)</td>
<td>AT5G50400</td>
<td>-2.51</td>
<td>9.79</td>
<td>1.10E-05</td>
</tr>
<tr>
<td>nicotianamine synthase, putative*</td>
<td>AT1G56430</td>
<td>-2.46</td>
<td>7.68</td>
<td>1.98E-03</td>
</tr>
<tr>
<td>ATARP9 (ACTIN-RELATED PROTEIN 9)</td>
<td>AT5G43500</td>
<td>-2.33</td>
<td>7.28</td>
<td>3.16E-05</td>
</tr>
<tr>
<td>FRD3 (FERRIC REDUCTASE DEFECTIVE 3)</td>
<td>AT3G08040</td>
<td>-1.78</td>
<td>8.61</td>
<td>1.98E-03</td>
</tr>
<tr>
<td>prolyl oligopeptidase, putative / prolyl endopeptidase, putative / post-proline cleaving enzyme, putative*</td>
<td>AT1G20380</td>
<td>-1.77</td>
<td>8.28</td>
<td>6.20E-03</td>
</tr>
<tr>
<td>WR3 (WOUND-RESPONSIVE 3)</td>
<td>AT5G50200</td>
<td>-1.60</td>
<td>11.63</td>
<td>2.48E-02</td>
</tr>
<tr>
<td>ZIP10 (ZINC TRANSPORTER 10 PRECURSOR)*</td>
<td>AT1G31260</td>
<td>-1.60</td>
<td>6.30</td>
<td>3.09E-02</td>
</tr>
<tr>
<td>similar to unknown protein ['Arabidopsis thaliana] (TAIR:AT1G61260.1)</td>
<td>AT4G04990</td>
<td>-1.59</td>
<td>8.41</td>
<td>4.22E-03</td>
</tr>
</tbody>
</table>

up-regulated				
LAC2 (laccase 2)	AT2G29130	1.82	7.01	1.82E-02
ANR1; DNA binding / transcription factor	AT2G14210	1.71	8.90	2.85E-02
similar to unknown protein ['Arabidopsis thaliana] (TAIR:AT1G21670.1)	AT1G21680	1.57	8.98	2.85E-02
ATEBP/ERF72/RAP2.3 (RELATED TO AP2 3)	AT3G16770	1.55	9.68	4.18E-02
COBL2 (COBRA-LIKE PROTEIN 2 PRECURSOR)	AT3G29810	1.54	7.40	3.42E-02
kelch repeat-containing F-box family protein	AT1G80440	1.52	11.05	9.48E-03
ATPSK2 (PHYTOSULFOKINE 2 PRECURSOR)	AT2G22860	1.52	9.20	4.24E-02

* Indicates genes that contain one or more copies of the ZDRE in their promoter region.
In summary, the *bZIP19* and *bZIP23* transcription factor function is essential for the response and adaptation of plants to low zinc supply. The identification of these transcription factors, as well as the ZDRE element they bind to and the target genes they regulate, constitutes an important step forward towards a full understanding of zinc homeostasis in plants.

Example 2

Arabidopsis plants, accession Col, were transformed with OX19 or OX23 (for the construction of these vectors, see Example 1) and homozygous T3 plants were obtained. Three high expressing lines containing either OX19 (genotypes 14, 15, 19) or OX23 (genotypes 16, 17, 18) were selected. Seeds of these lines were germinated and grown in two replicates on hydroponic medium containing no additional Zn (0 μM Zn; Zn deficiency), 2 μM Zn (normal Zn), or 25 μM Zn (excess Zn). Plants were photographed after 6 weeks and sampled for biomass analysis.

When comparing plants grown at normal Zn conditions, there was no obvious difference in visible phenotype (data not shown). However, when plants grown on Zn deficient medium were compared, lines 19 (OX 19), 16 and 17 (OX23) were generally larger and greener (Fig. 9). When examined for biomass production, indeed all lines were found to produce more biomass than WT, although at this small scale experiment, this was only found to be significant for line # 16 (Fig 10A). When plants grown at normal Zn supply were examined for biomass production, they were generally found to have less or equal biomass compared to WT (Fig 10B), although the observed differences were not statistically significant. Zinc concentrations were determined in shoots of all lines grown at normal zinc and zinc deficiency. The shoot Zn concentrations of plants grown at normal zinc were generally not different from WT (data not shown), however, at zinc deficiency, the concentration of zinc in all lines was lower than WT (Fig. 11), with especially lines 18 and 19 showing only 60% of the Zn concentration of WT. This means that although plants are not able to acquire more Zn, due to depletion of Zn in the medium, some OX 19 and OX23 lines are able to produce more biomass with the same amount of Zn, indicating they are more Zn deficiency tolerant and more Zn efficient.
Example 3

For this experiment, a new pZIP4::bZIP19 construct was made. This contains the full Arabidopsis bZIP19 cDNA fused downstream of the promoter of the zinc deficiency responsive Arabidopsis ZIP4 gene. The rationale of the experiments is to test if overexpression of bZIP19 or bZIP23 function will enhance the tolerance to Zn deficiency, compared to wild type Arabidopsis plants. Overexpression of bZIP19 function in this experiment, in contrast with the experiment described in Example 2, is mediated by the promoter of the Zn deficiency transcriptionally responsive ZIP4 zinc transporter gene. Thus, overexpression of bZIP19 function will be predominantly in the cells and tissues in which normally the Zn deficiency response is active, albeit expected at higher levels than in WT plants.

Arabidopsis plants, accession Col, were transformed with the pZIP4::bZIP19 construct and homozygous T3 plants were obtained. In total 6 lines were selected, containing the T-DNA inserted at one locus and showing an undiminished hygromycin resistance phenotype after three successive generations as evidence of stable transformation. WT and pZIP4::bZIP19 plants were grown in two replicates on medium with normal Zn (2 μM Zn), or with no Zn added (0 μM Zn) to cause Zn deficiency. After four weeks of growth, photos were taken to determine any differences in visible phenotypes (Fig. 12). At this stage, plants are not yet showing visible Zn deficiency symptoms, but show growth retardation, compared to plant grown on normal Zn (data not shown). At this stage, it is clear that WT plants in general have smaller rosettes than pZIP4::bZIP19 transformed plants.
SEQUENCE LISTING

Wageningen Universiteit
Gonçalves Leite de Assunção, Ana
Aarts, Martinus GM

Regulation of zinc deficiency and tolerance in plants

P88518PC00
EP 09165714.8
2009-07-16
44
PatentIn version 3.3
1
249
FRT
Arabidopsis thaliana
1

Met Asp Asp Gly Glu Leu Glu Phe Ser Asn Ser Asn Met Gly Gly Glu
Leu Pro Ser Cys Ser Met Asp Ser Phe Phe Asp Glu Leu Leu Arg Asp
Ser His Ala Cys Thr His Thr His Thr Cys Asn Pro Pro Gly Pro Glu
Asn Thr His Thr Cys Leu His Val His Thr Lys Ile Leu Pro
Asp Lys Val Ser Thr Asp Thr Ser Glu Ser Ser Gly Lys Lys Arg
Pro Leu Gly Asn Arg Glu Ala Val Arg Lys Tyr Arg Glu Lys Lys
Ala Lys Ala Ala Ser Leu Glu Asp Glu Val Met Arg Leu Lys Ala Val
Asn Asn Cln Leu leu Arg Leu Glu Cln Gly Ala Ala Leu Glu Ala
Glut Val Thr Arg Leu Lys Cys Leu Leu Val Asp Ile Arg Gly Arg Ile
Asp Gly Ile Gly Ala Phe Pro Tyr Glu Pro Ala Val Thr Asn
Val Pro Tyr Ser Tyr Met Met His Pro Cys Met Gln Cys Asp Val
Asp Asn Leu Tyr Cys Leu Gln Asn Gly Asn Gly Glu Gly Gly Ala Ser
Met Asn Glu Glu Gly Leu Asn Gly Cys Glu Phe Asp Gln Leu Glu Cys
Leu Ala Asn Glu Asn Leu Ala Gly Lys Glu Ile Pro Val Cys Ser Asn
Gly Ile Gly Thr Phe Thr Val Asn Gly Ser Gly Val Asn Lys Arg Lys
Gly Glu Pro Arg Ala Ala Lys Ala Val
<210> 2
<211> 261
<212> PRT
<213> Arabidopsis thaliana

<400> 2

Met Glu Asp Gly Glu Leu Asp Phe Ser Asn Gln Glu Val Phe Ser Ser
1 5 10 15
Ser Glu Met Gly Glu Leu Pro Pro Ser Asn Cys Ser Met Asp Ser Phe
20 25 30
Phe Asp Gly Leu Leu Met Asp Thr Asn Ala Ala Cys Thr His Thr His
35 40 45
Thr Cys Asn Pro Thr Gly Pro Glu Asn Thr His Thr His Thr Cys Phe
50 55 60
His Val His Thr Lys Ile Leu Pro Asp Glu Ser Asp Glu Lys Val Ser
65 70 75 80
Thr Asp Asp Thr Ala Glu Ser Cys Gly Lys Gly Glu Lys Arg Pro
85 90 95
Leu Gly Asn Arg Glu Val Arg Tyr Arg Glu Lys Lys Lys Ala
100 105 110
Lys Ala Ala Ser Leu Glu Asp Glu Val Ala Arg Ala Val Asn
115 120 125
Gln Gln Leu Val Lys Arg Leu Gln Asn Gln Ala Thr Leu Glu Ala Glu
130 135 140
Val Ser Arg Leu Lys Cys Leu Leu Val Asp Leu Arg Gly Arg Ile Asp
145 150 155 160
Gly Glu Ile Gly Ser Phe Pro Tyr Gln Lys Pro Met Ala Ala Asn Ile
165 170 175
Pro Ser Phe Ser His Met Met Asn Pro Cys Asn Val Gln Cys Asp Asp
180 185 190
Glu Val Tyr Cys Pro Gln Asn Val Phe Gly Val Asn Ser Gln Glu Gly
195 200 205
Ala Ser Ile Asn Asp Gln Gly Leu Ser Gly Cys Asp Phe Asp Gln Leu
210 215 220
Gln Cys Met Ala Asn Gln Asn Leu Asn Gly Asn Gly Asn Gly Ser Phe
225 230 235 240
Ser Asn Val Asn Thr Ser Val Ser Asn Lys Arg Lys Gly Gly His Arg
245 250 255
Ala Ser Arg Ala Val
260

<210> 3
<211> 228
<212> PRT
<213> Arabidopsis thaliana

<400> 3

Met Phe Cys Cys Cys Lys Asp Cys Arg Gly Asn Gln Arg Val Ser Asn
1 5 10 15
Phe Asp Ser Leu Thr Gly Val Phe Phe Gly Asp Leu Glu Phe Gly Pro
20 25 30
Gln Asn Gln Arg Tyr Ile Met Asn Glu Glu Asp Lys Asp Gln
Asp Arg Val Thr Arg Gly Cys Ser His Thr His Ser Cys Asn Pro Pro
5 35
Gly Pro Glu Asp Ala Ser His Ser His Thr Cys Phe His Ala His Thr
10 40
His Leu Ile Ile Ser Gln Asp Gln Gln Glu Asn Asp His Ser Asp Ser
15 45
Ser Asn lys Lys Arg Leu Cys Gly Asn Arg Gly Ala Val Arg Lys Tyr
20 50
Arg Glu lys lys Ala Arg Thr Ala Tyr leu Glu Asp Glu Val Met
25 55
Arg Leu Gln Ser Leu Asn Gln Gln Phe Leu Arg Lys Leu Gln Ser Gln
30 60
Glu Met Val Glu Thr Glu Leu lle Arg Leu Arg Ala Leu Val Glu
35 65
Met Gln Gly lys Ile Glu Val Glu Leu Cys Ser Phe Ser Phe Gln Lys
40 70
Gln Cys Asn Gly Ser Gly Phe Val Phe lys Glu Asp Gly Cys Asn Leu
45 75
Ala Thr Ser Asn Met Met Cys Glu Ala Ala Arg Val Glu Cys Glu Glu
50 80
Gly Glu Thr Leu His Asp Pro lle Gln Ser Phe Val Pro Gln Pro Pro
55 85
Pro Phe Ser Arg
60 90
225

<210> 4
<211> 11745
<212> DNA
<213> Artificial

<220> construct pBG0072

<223> 4
<400> 4
catagctcct gatatttcg gatagcgcg acgcctcct ttcctgctgta tttgctttca 60
atcttggtct gcacgtgcta aaaaacgct gcatgtagtt ctcagactct ttcgcgggt 120
ttcgctca ttaaatgat atataccgct ttacgctttg atatattgta ttaaatctc 180
cgcgttctt ttgattttg cgtcgttctt cggctttctt tataaatgct cggctttctt 240
tagttgct atggtgcaat atacagatg cgtcgttctt cggctttctt cggctttctt 300
tgcgcttt tttcgttctt cggctttctt cggctttctt cggctttctt cggctttctt 360
gactgtttccttaatatttt aaaaaacgct gatagcgcg acgcctcct ttcctgctgta 420
ttcgctca ttaaatgat atataccgct ttacgctttg atatattgta ttaaatctc 480
tcgcttt tttcgttctt cggctttctt cggctttctt cggctttctt cggctttctt 540
ttcgcttt tttcgttctt cggctttctt cggctttctt cggctttctt cggctttctt 600
ttcgcttt tttcgttctt cggctttctt cggctttctt cggctttctt cggctttctt 660
ttcgcttt tttcgttctt cggctttctt cggctttctt cggctttctt cggctttctt 720
ttcgcttt tttcgttctt cggctttctt cggctttctt cggctttctt cggctttctt 780
cctttcccc cagttggtca gcttgatgg cgatgtagc agcagttgga gttggatac 840
gattgttt tcctgactc aagtttaaat atccagtgtt gacggatat atggcgggtt 900
aactattaaca gaagaagagc ttctgactga taagggatct ttgaaaggg gttgaaaaggt 960
tttctgcgg gtttctgttc aagtgggtgc ctcacgggag gtctccgtctg ggtacaaagt 1020
actttgaac caaaccttcg ctgattatacg gatgtggcttc ccgccaggttc aggtccggcg 1080
tttccggaaa agacactgttc gcaccagttgt ctcgtagcgc gaagcagttg cgcgoctgccc 1140
cttcccggg gtttctggttc cgctgttattt cgcgtggtttt cgcgtaccaya agtaggatat ccgctag 1200
accoagagct attagcctat gaaacagagc gcctcggtgcg gtctctggtgg cttcggcagc 1260
gtccagcctg cagacacctt cttgaccaca caacggtcgg cgaccagcagc ggcggtgctgg 1320
accagactct gattcaagga gtcgagggcg accagagcct accagcctgg accggcgctggc 1380
atgggagcta atcctcacc ggctccgattgc accagcctgg accagcctgg accggcgctggc 1440
cgctggcg gggcagctac gcagcctggtgg cgcagtcgcc accagcctgg accggcgctggc 1500
gtctctggttg ccagcgcttg gcctcgctg accagcctgg accagcctgg accggcgctggc 1560
gtctctggttg gcctcgctg accagcctgg accagcctgg accggcgctggc 1620
cttccccggg gtttccgggg gtttctggttc aagtgggtgc ctcacgggag gtctccgtctg ggtacaaagt 1680
cacagagctg acggccagct gtcgagggcg gcacacggcgc gcctcgggat gcctcgggat 1740
gacctggct gcctcgggat gcctcgggat gcctcgggat gcctcgggat gcctcgggat 1800
aaccagcct gcctcgggat gcctcgggat gcctcgggat gcctcgggat gcctcgggat 1860
gcctcgggat gcctcgggat gcctcgggat gcctcgggat gcctcgggat gcctcgggat 1920
gcctcgggat gcctcgggat gcctcgggat gcctcgggat gcctcgggat gcctcgggat 1980
gcctcgggat gcctcgggat gcctcgggat gcctcgggat gcctcgggat gcctcgggat 2040
tctctggtg caagtgcctgc gttgagggcg ccagagtctgt gcagcctgcc gcacgacaggg 2100
gcctcgggat gcctcgggat gcctcgggat gcctcgggat gcctcgggat gcctcgggat 2160
atctgcatc ggctgcagtt gcctcgggat gcctcgggat gcctcgggat gcctcgggat 2220
actctcagcag gacccgagg gcacgacaggc gcacgacaggc gcacgacaggc gcacgacaggc 2280
gcctcgggat gcctcgggat gcctcgggat gcctcgggat gcctcgggat gcctcgggat 2340
tctctggtg caagtgcctgc gttgagggcg ccagagtctgt gcagcctgcc gcacgacaggg 2400
tcggcctgt gcacgacaggg gcacgacaggg gcacgacaggg gcacgacaggg gcacgacaggg 2460
ggctcgggat gcctcgggat gcctcgggat gcctcgggat gcctcgggat gcctcgggat 2520
ggctcgggat gcctcgggat gcctcgggat gcctcgggat gcctcgggat gcctcgggat 2580
tcggcctgt gcacgacaggg gcacgacaggg gcacgacaggg gcacgacaggg gcacgacaggg 2640
gcctcgggat gcctcgggat gcctcgggat gcctcgggat gcctcgggat gcctcgggat 2700
tcggcctgt gcacgacaggg gcacgacaggg gcacgacaggg gcacgacaggg gcacgacaggg 2760
gcctcgggat gcctcgggat gcctcgggat gcctcgggat gcctcgggat gcctcgggat 2820
aacacgctg ggcagctgtc gcacgacaggg gcacgacaggg gcacgacaggg gcacgacaggg 2880
ggcagctgtc gcacgacaggg gcacgacaggg gcacgacaggg gcacgacaggg gcacgacaggg 2940
ctgactcgct gggctggccc gctggggtgc gggagagcct atcgcttaca tcaagagcgg 5160
tatacgtt attcacgaa attcgggata agcgagaaa gaaagttgtg gcgaagaagcc 5220
agcacaaggg caggaagct aaaaagcggc gttctgctgg gttctctcatt aggtcctgccc 5280
doogdgaag gactacaaaa aacgacagct cagtcagag tttgggaaac acgacaggcc 5340
tataagata cccaggttcc cccctctgaa gctctcctgt gcctcttgct gttctggggtc 5400
tggctggac cggagatcct tggctcttcc tcctctctgg aagcttggaggt tctctctaaa 5460
gtggcttcct tgtttcgtct ggtgttggct atgtctggct gcctctcttg ggtggttttc 5520
agcgagaccc cggagggcct cggagttggg gcttctcttg tataagctgc cggaggttgg 5580
accctgaac ttcgtatgc cggagttggg gcttctcttg tataagctgc cggaggttgg 5640
gggtctgttt acagcttttt ggtgttgctc gcctctcttg ggtggttttc 5700
gacgccagc gccacggcag gacgcctctt cagccggctc gcctctcttg ggtggttttc 5760
gtctggactc cggagttggg gcttctcttg tataagctgc cggaggttgg 5820
gacagcggtc cggagttggg gcttctcttg tataagctgc cggaggttgg 5880
tgtctctctt ggtgttgctc gcctctcttg ggtggttttc 5940
acatctcttt cagtcgcttc cactactctt ctcgctctt ctcgctctt ctcgctctt 6000
gttactacaa aaatagctg ccaatcctgct tttggggct ctcgctctt ctcgctctt 6060
cogcgaaggg ccacccacct cgaaccacct cgtctcgcct tctccacagc tccataaatg 6120
cactctcttt ggtgttgctc gcctctcttg ggtggttttc 6180
cacatctccta ctcgctctt ctcgctctt ctcgctctt ctcgctctt ctcgctctt 6240
atgtctcctc ctcgctctt ctcgctctt ctcgctctt ctcgctctt ctcgctctt 6300
atcagctctgtct ctcgctctt ctcgctctt ctcgctctt ctcgctctt ctcgctctt 6360
tgtcgcgacc cggagctcct tttgccgca tgcctctctt ggggaagtgc gatggtgatga 6420
cactctcttt ctcgctctt ctcgctctt ctcgctctt ctcgctctt ctcgctctt 6480
atcagctctgtct ctcgctctt ctcgctctt ctcgctctt ctcgctctt ctcgctctt 6540
tgcttactc ctcgctctt ctcgctctt ctcgctctt ctcgctctt ctcgctctt 6600
ttttttaaatagtcgttc ttttccctcc cggagactcgt ttttcttttc ggcaggttgat 6660
cttctctctt ctcgctctt ctcgctctt ctcgctctt ctcgctctt ctcgctctt 6720
tcgtacttag ctcgctctt ctcgctctt ctcgctctt ctcgctctt ctcgctctt 6780
agctaataa ccaagagaga ctctcctctg ttttcttttc gcgcatttgc ttttcttttc 6840
ttctctctctt ctcgctctt ctcgctctt ctcgctctt ctcgctctt ctcgctctt 6900
ccgagcctt ccgagcctt ccgagcctt ccgagcctt ccgagcctt ccgagcctt 6960
tgtggtgtgct ctcgctctt ctcgctctt ctcgctctt ctcgctctt ctcgctctt 7020
actagctcgc ctcgctctt ctcgctctt ctcgctctt ctcgctctt ctcgctctt 7080
ttgctggtgct ctcgctctt ctcgctctt ctcgctctt ctcgctctt ctcgctctt 7140
agctggtgtgct ctcgctctt ctcgctctt ctcgctctt ctcgctctt ctcgctctt 7200
ctcgtactcct ccgagcctt ccgagcctt ccgagcctt ccgagcctt ccgagcctt 7260
tgtatotca tttttgttt ttgtttttcg atctctttcg cttcctttgc ttttctttg 11640
ttgagttgga caaatcagaa ggtgtatata ttgttataac aaacaactca aatgttttgtt 11700
gtttttggcc attttgttctt catctttgag cgtttttcc tttaa 11745

5

<210> 5
<211> 49
<212> DNA
<213> Artificial

10 <220>
<223> primer
<400> 5
ggggaaaaat ttgtacaaaa aagcaggctt aactttttgtt ocottgtccc 49

20 <210> 6
<211> 48
<212> DNA
<213> Artificial

25 <220>
<223> primer
<400> 6
ggggacact ttgtacagaa aagcttggctt taatttttga ttctacag 48

30

<210> 7
<211> 10
<212> DNA
<213> Artificial

<220>
<223> bait motif reporter vector G
<400> 7
atgtctagacy 10

35

40 <210> 8
<211> 28
<212> DNA
<213> Artificial

45 <220>
<223> primer
<400> 8
gaatctaacg ttggaaagct gaagtggga 28

50

55 <210> 9
<211> 22
<212> DNA
<213> Artificial

<220>
<223> primer
<400> 9
gagctcaat ttcaaadacag ta 22

60

65 <210> 10
<211> 29
<212> DNA
<213> Artificial
<220> primer

5 <400> 10
gaattotgta tatcatgat ctotgctg 29

10 <210> 11
 <211> 26
 <212> DNA
 <213> Artificial

15 <220>
 <223> primer

 <400> 11
gagtosagc taaaaggag gtaact 26

20 <210> 12
 <211> 23
 <212> DNA
 <213> Artificial

25 <220>
 <223> primer

30 <400> 12
gaatottctc tostacttgct tg 23

35 <210> 13
 <211> 25
 <212> DNA
 <213> Artificial

40 <220>
 <223> primer

45 <400> 13
gagtosatct tosatttttg tocac 25

50 <210> 14
 <211> 23
 <212> DNA
 <213> Artificial

55 <220>
 <223> primer

60 <400> 14
gaatototg cagtagactt gac 23

65 <210> 15
 <211> 21
 <212> DNA
 <213> Artificial

70 <220>
 <223> primer

75 <400> 15
gagtosocca atcttgcteta t 21

76 <210> 16
 <211> 30
 <212> DNA
 <213> Artificial
primer

5 atggaaatc gtgagaaac agaataaagc

10 DNA Artificial

15 primer

20 gagctccc gggaaacagt tttatat

25 DNA Artificial

30 atggaaatc gtgagaaac agaataaagc

35 DNA Artificial

40 primer

45 gtagagct cggagaaaggt gaaagagt

50 DNA Artificial

55 primer

60 aatctagtgc gaataatgtc gaataatgtc gaataatgtc

65 DNA Artificial

70 cgctgcgaca tatgtgaca tatgtgaca tg

75 DNA Artificial
5 primer

<220> 22
<223> gatottgto gatottotottt gg 22

10 DNA
<212> Artificial
<213>

15 primer

<220> 23
<223> tgagaggtat ggctaccacg gacgc 25

20 DNA
<212> Artificial
<213>

25 primer

<220> 24
<223> ggacacacac atgtgctgac 20

30 DNA
<212> Artificial
<213>

35 primer

<220> 25
<223> gatagtgcac gcttgagtgg 20

40 DNA
<212> Artificial
<213>

45 primer

<220> 26
<223> gaagaactg ttcttttgcgtc gtoac 25

50 DNA
<212> Artificial
<213>

55 primer

<220> 27
<223> gcagataaat cggtgaacg 20

60 DNA
<212> Artificial
<213>

65 primer

<220> 28
<223> gcgtaaatgtcgagacg 20

70 DNA
<212> Artificial
<213>
primer

<220> primer

5
<400> 28
Gggatttt gctgtggaat

10
<210> 29
<211> 20
<212> DNA
<213> Artificial

15
<220> primer

<400> 29
Cggagaccc cgaagcattg

20
<210> 30
<211> 25
<212> DNA
<213> Artificial

25
<220>
<223> primer

<400> 30
Caaaatctat aggaatatcg cttgg

30
<210> 31
<211> 20
<212> DNA
<213> Artificial

35
<220>
<223> primer

<400> 31
Agaagacoat cagggcagat

40
<210> 32
<211> 22
<212> DNA
<213> Artificial

45
<220>
<223> primer

<400> 32
Caaaattgat tgaatcttt gc

50
<210> 33
<211> 20
<212> DNA
<213> Artificial

55
<220>
<223> primer

<400> 33
Gccagagaat gccctttgtaa

60
<210> 34
<211> 20
<212> DNA
<213> Artificial
<220> primer

5 <400> 34
 atstgttgct gcggtggcaacg
 20

10 <210> 35
 <211> 20
 <212> DNA
 <213> Artificial

15 <220> primer
 <400> 35
 gcttcotct cttgtttctcg
 20

20 <210> 36
 <211> 20
 <212> DNA
 <213> Artificial

25 <220> primer

30 <400> 36
 taataacaac caagttggag
 20

35 <210> 37
 <211> 20
 <212> DNA
 <213> Artificial

40 <220> primer

45 <400> 37
 agcsgagctg tggcctoaaca
 20

50 <210> 38
 <211> 22
 <212> DNA
 <213> Artificial

55 <220> primer

60 <400> 38
 ttctccgaag tggagcggat ga
 22

65 <210> 39
 <211> 22
 <212> DNA
 <213> Artificial

70 <220> primer

75 <400> 39
 gotgactac cgccactaga ct
 22
<220> primer
<223>

5 <400> 40
taatcagotg ttgaagagtt 20

10 <210> 41
 <211> 20
 <212> DNA
 <213> Artificial

15 <220> primer
 <400> 41
tcatgtatga gtaaggcacg 20

20 <210> 42
 <211> 20
 <212> DNA
 <213> Artificial

25 <220> primer
 <400> 42
tccaggatc agcaaagaat 20

35 <210> 43
 <211> 21
 <212> DNA
 <213> Artificial

40 <220> primer
 <400> 43
tcagttttaa caatttttgg 21

45 <210> 44
 <211> 10
 <212> DNA
 <213> Artificial

50 <220> Primer Deficiency Response Element
 <400> 44
 rtgtcagacy 10
Claims

1. Method to change the capacity of a plant for adaptation to changes in the zinc concentration in the environment, especially the soil, comprising providing said plant with a nucleotide coding for a bZIP19 and/or bZIP23 protein, of which the sequences are given in SEQ ID NO: 2 and SEQ ID NO: 1, respectively, or orthologs thereof.

2. Method according to claim 1, wherein tolerance to Zn deficiency is increased.

3. Method according to claim 1, wherein said plant is capable of hyperaccumulating zinc.

4. Method according to claim 1, wherein said plant is capable of enhancing concentrations of zinc in edible parts.

5. Method according to any of claims 1-4, wherein said plant is provided with a nucleotide coding for a bZIP19 protein and a nucleotide coding for a bZIP23 protein.

6. Method according to any of claims 1-5, wherein said plant is additionally provided with one or more polynucleotides coding for a protein selected from the group consisting of heavy metal transporters, preferably HMA2, HMA3 or HMA4, YSL proteins, preferably YSL, preferably YSL1 or YSL3, ZIP or IRT proteins, ZIF proteins, NAS proteins, MRP proteins, FRD3 and MTPs.

7. Method according to any of claims 1-6, wherein the polynucleotide is derived from Arabidopsis, more preferably A. thaliana.

8. Method for phytoremediation, comprising the steps of

 a) growing a plant that is transgenic for a nucleotide coding for a bZIP19 and/or bZIP23 protein, of which the sequences are given in SEQ ID NO: 2 and SEQ ID NO: 1, respectively, or orthologs thereof on soil that is polluted with Zn;
b) harvesting said plant; and

c) dispose of the biomass.

9. Method for biofortification, comprising growing a plant that is transgenic for a nucleotide coding for a bZIP19 and/or bZIP23 protein, of which the sequences are given in SEQ ID NO: 2 and SEQ ID NO: 1, respectively, or orthologs thereof.

10. Use of a nucleotide coding for a bZIP19 and/or bZIP23 protein, of which the sequences are given in SEQ ID NO: 2 and SEQ ID NO: 1, respectively, or orthologs thereof, for transformation of a plant, thereby changing the capacity of said plant for adaptation to changes in the zinc concentration in the environment, especially the soil.

11. Method according to any of claims 1-9 or use according to claim 10, wherein the ortholog is chosen from the group consisting of orthologs from *Populus trichocarpa* (PtrbZIP38 or XM_002305485.1 and PtrbZIP39 or XM_002313671.1); *rice* (OsbZIP48 or AK071639.1), *Helianthus annuus* (CD852649.1), *Medicago truncatula* (TA25329_3880), *Solanum tuberosum* (TA33339_3880), *Glycine max* (TA50226_3847; TA50224_3847), *Sorghum bicolor* (TA23717_4558), *Zea mays* (TA111061_4577; TA111059_4577; CO451643), and *Hordeum vulgare* (TA45897_4513).
Figure 1
Figure 2

A

ZIP4 promoter

A: 287 bp

B: 270 bp

C: 247 bp

D: 265 bp

E: 272 bp

G: 3 x 10-bp motif, 30 bp

B

![RTL chart]
Figure 3

A

B

C

Zn\(^{2+}\) (mM)

0.4 0.8

Zn\(^{2+}\)

0.001 0.01 0.1 1.0

Zn\(^{2+}\)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

OD(600nm)

zrt1znt2 \(\varnothing\) zrt1znt2 ZIP4 zrt1znt2 ZIP4 zrt1znt2 ZIP4 zrt1znt2 ZIP4

18 h 22 h 26 h 30 h 42 h

zrt1znt2 \(\varnothing\) zrt1znt2 ZIP4

RTL

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Zn\(^{2+}\)

Zn\(^{2+}\)
Figure 4

A m19m23 m23 m19 wt

B Zn- Zn+ Zn++

C [Images of data and graphs]
Figure 5A

Figure 5B
Figure 8

A

WT m19m23 m19m23-OX19 m19m23-OX23

Zn-

Zn+

B

Zn4

0.00 0.50 1.00 1.50

+ - + -

Zn1

0.00 0.50 1.00 1.50

+ - + -

Zn3

0.00 0.50 1.00 1.50

+ - + -

Zn5

0.00 0.50 1.00 1.50

+ - + -

Zn9

0.00 0.50 1.00 1.50

+ - + -

Zn12

0.00 0.50 1.00 1.50

+ - + -

Zn2

0.00 0.50 1.00 1.50

+ - + -
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. C07K14/415 C12N15/82
ADD. A01H5/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C07K C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, BIOSIS, CHEM ABS Data, EMBASE, WPI Data, Sequence Search

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

Date of the actual completion of the international search
27 September 2010

Date of mailing of the international search report
05/10/2010

Name and mailing address of the ISA

Authorized officer
Burkhardt, Peter

Form PCT/ISA/210 (second sheet) (April 2008)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>GHANDILYAN ARTAK ET AL: "Progress in the genetic understanding of plant iron and zinc nutrition" PHYSIOLOGIA PLANTARUM, vol. 126, no. 3, March 2006 (2006-03), pages 407-417, XP002557319 ISSN: 0031-9317 page 409, column 1, paragraph 2 - page 410, column 2, paragraph 2 page 412, column 1, paragraph 2 - page 413, column 1, paragraph 2</td>
<td>1-9,11</td>
</tr>
<tr>
<td>Y</td>
<td>ISMAIL CAKMAK: "Enrichment of cereal grains with zinc: Agronomic or genetic biofortification?" PLANT AND SOIL ; AN INTERNATIONAL JOURNAL ON PLANT-SOIL RELATIONSHIPS, KLUWER ACADEMIC PUBLISHERS, DO, vol. 302, no. 1-2, 28 November 2007 (2007-11-28), pages 1-17, XP019579709 ISSN: 1573-5036 page 5, column 2, last paragraph - page 6, column 2, paragraph 1</td>
<td>1-9,11</td>
</tr>
<tr>
<td>Y</td>
<td>VAN DER ZAAL BERT J ET AL: "Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation" PLANT PHYSIOLOGY (ROCKVILLE), vol. 119, no. 3, March 1999 (1999-03), pages 1047-1055, XP9126367 ISSN: 0032-0889 page 1048, column 1, paragraph 2 page 1053, column 1, last paragraph - page 1054, column 2, paragraph 2</td>
<td>1-9,11</td>
</tr>
<tr>
<td>Category</td>
<td>Citation of document, with indication, where appropriate, of the relevant passages</td>
<td>Relevant to claim No.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>Y</td>
<td>JAKOBY MARC ET AL: "bZIP transcription factors in Arabidopsis" TRENDS IN PLANT SCIENCE, ELSEVIER SCIENCE, OXFORD, GB, vol. 7, no. 3, 1 March 2002 (2002-03-01), pages 106-111, XP002413546 ISSN: 1360-1385 figure 1</td>
<td>1-9,11</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 2007022495 A1</td>
<td>25-01-2007</td>
<td>NONE</td>
</tr>
</tbody>
</table>