(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(10) International Publication Number

WO 2005/024550 A2

(43) International Publication Date
17 March 2005 (17.03.2005)

(51) International Patent Classification’: GO6F Redmond, WA 98052 (US). VASCHILLO, Alexander
. o [RU/US]; c/o Microsoft Corporation, One Microsoft Way,

(21) International Application Number: Redmond, WA 98052 (US)r.p PLATT, John, C. [US /US%I;
PCT/US2004/024437 c/o Microsoft Corporation, One Microsoft Way, Redmond,

(22) International Filing Date: 29 July 2004 (29.07.2004) WA 98052 (US). GLENNER, Steve, C. [US/US]; c/o
. . Microsoft Corporation, One Microsoft Way, Redmond,

(25) Filing Language: English WA 98052 (US). BALLOU, Nathaniel, H. [US/US]; c/o
(26) Publication Language: English Microsoft Corporation, One Microsoft Way, Redmond,

WA 98052 (US). THOMPSON, J., Patrick [GB/US]J; c/o

(30) Priority Data: Microsoft Corporation, One Microsoft Way, Redmond,

10/646,632 21 August 2003 (21.08.2003) US WA 98052 (US).
PCT/US03/26144 21 August 2003 (21.08.2003) US
10/692,779 24 October 2003 (24.10.2003) US (74) Agents: ROCCI, Steven, J. et al.; Woodcock Washburn

LLP, One Liberty Place, 46th Floor, Philadelphia, PA

71) Applicant (for all designated Stat t US): MI-
(71) App (fo esignate es excep) 19103 (US).

CROSOFT CORPORATION [US/US]; One Microsoft

Way, Red d, WA 98052 (US).
&y, Redmond, ? S (81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,

(72) Inventors; and
(75) Inventors/Applicants (for US only): DART, Scott, E.

57024550 A2 | IV P00 0 RO

[US/US]; clo Microsoft Corporation, One Microsoft
Way, Redmond, WA 98052 (US). GIBSON, Bradley,
P. [CA/US]; c/o Microsoft Corporation, One Microsoft
Way, Redmond, WA 98052 (US). EVANS, Christopher,
A. [US/US]; c/o Microsoft Corporation, One Microsoft
Way, Redmond, WA 98052 (US). HELLYAR, Paul, S.
[CA/US]; c/o Microsoft Corporation, One Microsoft Way,

CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, HI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

[Continued on next page]

Base.item

A

(54) Title: SYSTEMS AND METHODS FOR THE IMPLEMENTATION OF A DIGITAL IMAGES SCHEMA FOR ORGANIZ-
ING UNITS OF INFORMATION MANAGEABLE BY A HARDWARE/SOFTWARE INTERFACE SYSTEM

Core.Principal j<
i

L Image.Pholo
\magefhob

i EventReference

' f Image.mage j ‘

Core.Document) Covent) (" Cors Location
i
i

=
i
i
I
LocationReference

* Extension

(sublype)
i

i Relationship
P finig

& (57) Abstract: In an Item-based system, Images (e.g., JPEG, TIFF, bitmap, and so on) are treated as core platform objects ("Image
& Items" or, more simply, "Tmages") and exist in an "Image Schema" that provides an extensible representation of an Image in the

system-that is, the characteristics of an Image and how that Image relates to other Items (including but not limited to other Images)

O in the system. To this end, the Image Schema defines the properties, behaviors, and relationships for Images in the system, and

=

the Schema also enforces rules about Images, for example, what data specific Images must contain, what data specific Images may
optionally contain, how specific Images can be extended, and so on and so forth.

WO 2005/024550 A2

0 0000 00 OO

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,

GW, ML, MR, NE, SN, TD, TG).

Published:
— without international search report and to be republished

upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

WO 2005/024550 PCT/US2004/024437

SYSTEMS AND METHODS FOR THE IMPLEMENTATION OF A DIGITAL IMAGES
SCHEMA FOR ORGANIZING UNITS OF INFORMATION MANAGEABLE BY A
HARDWARE/SOFTWARE INTERFACE SYSTEM

CROSS-REFERENCE

[0001] This application claims priority to U.S. Application Serial No. 10/692,779 filed
on October 24, 2003 (Atty Dockt No. MSFT-2829), which claims the benefit of U.S. Patent
Application No. 10/646,632 (Atty. Docket No. MSFT-1751), filed on August 21, 2003, entitled
“SYSTEMS AND METHODS FOR THE IMPLEMENTATION OF A CORE SCHEMA FOR
PROVIDING A TOP-LEVEL STRUCTURE FOR ORGANIZING UNITS OF INFORMATION
MANAGEABLE BY A HARDWARE/SOFTWARE INTERFACE SYSTEM”; and
International Application No. PCT/US03/26144, filed on August 21, 2003, the disclosures of
which are incorporated herein by reference in their entirety.

[0002] This application is also related by subject matter to the inventions disclosed in
the following commonly assigned applications, the contents of which are also herein
incorporated by reference: U.S. Patent Application No. 10/647,058 (Atty. Docket No. MSFT-
1748), filed on August 21, 2003, entitled “SYSTEMS AND METHODS FOR REPRESENTING
UNITS OF INFORMATION MANAGEABLE BY A HARDWARE/SOFTWARE
INTERFACE SYSTEM BUT INDEPENDENT OF PHYSICAL REPRESENTATION”; U.S.
Patent Application No. 10/646,941 (Atty. Docket No. MSFT-1749), filed on August 21, 2003,
entitled “SYSTEMS AND METHODS FOR SEPARATING UNITS OF INFORMATION
MANAGEABLE BY A HARDWARE/SOFTWARE INTERFACE SYSTEM FROM THEIR
PHYSICAL ORGANIZATION”; U.S. Patent Application No. 10/646,940 (Atty. Docket No.
MSFT-1750), filed on August 21, 2003, entitled “SYSTEMS AND METHODS FOR THE
IMPLEMENTATION OF A BASE SCHEMA FOR ORGANIZING UNITS OF
INFORMATION MANAGEABLE BY A HARDWARE/SOFTWARE INTERFACE
SYSTEM?”; U.S. Patent Application No. 10/646,645 (Atty. Docket No. MSFT-1752), filed on
August 21, 2003, entitled “SYSTEMS AND METHOD FOR REPRESENTING
RELATIONSHIPS BETWEEN UNITS OF INFORMATION MANAGEABLE BY A
HARDWARE/SOFTWARE INTERFACE SYSTEM”; U.S. Patent Application No. 10/646,575
(Atty. Docket No. MSFT-2733), filed on August 21, 2003, entitled “SYSTEMS AND

WO 2005/024550 PCT/US2004/024437

METHODS FOR INTERFACING APPLICATION PROGRAMS WITH AN ITEM-BASED
STORAGE PLATFORM?”; U.S. Patent Application No. 10/646,646 (Atty. Docket No. MSFT-
2734), filed on August 21, 2003, entitled “STORAGE PLATFORM FOR ORGANIZING,
SEARCHING, AND SHARING DATA”; U.S. Patent Application No. 10/646,580 (Atty. Docket
No. MSFT-2735), filed on August 21, 2003, entitled “SYSTEMS AND METHODS FOR DATA
MODELING IN AN ITEM-BASED STORAGE PLATFORM”; U.S. Patent Application No.
10/692,515 (Atty. Docket No. MSFT-2844), filed on October 24, 2003, entitled “SYSTEMS
AND METHODS FOR PROVIDING SYNCHRONIZATION SERVICES FOR UNITS OF
INFORMATION MANAGEABLE BY A HARDWARE/SOFTWARE INTERFACE
SYSTEM?”; U.S. Patent Application No. 10/692,508 (Atty. Docket No. MSFT-2845), filed on
October 24, 2003, entitled “SYSTEMS AND METHODS FOR PROVIDING RELATIONAL
AND HIERARCHICAL SYNCHRONIZATION SERVICES FOR UNITS OF INFORMATION
MANAGEABLE BY A HARDWARE/SOFTWARE INTERFACE SYSTEM”; U.S. Patent
Application No. 10/693,362 (Atty. Docket No. MSFT-2846), filed on October 24, 2003, entitled
“SYSTEMS AND METHODS FOR THE IMPLEMENTATION OF A SYNCHRONIZATION
SCHEMAS FOR UNITS OF INFORMATION MANAGEABLE BY A
HARDWARE/SOFTWARE INTERFACE SYSTEM?”; and U.S. Patent Application No.
10/693,574 (Atty. Docket No. MSFT-2847), filed on October 24, 2003, entitled “SYSTEMS
AND METHODS FOR EXTENSIONS AND INHERITANCE FOR UNITS OF
INFORMATION MANAGEABLE BY A HARDWARE/SOFTWARE INTERFACE
SYSTEM”.

FIELD OF THE INVENTION
[0003] The present invention relates generally to the field of information storage and
retrieval, and, more particularly, to an active storage platform for organizing, searching, and

sharing different types of data in a computerized system and, specifically, image data.

BACKGROUND
[0004] Individual disk capacity has been growing at roughly seventy percent (70%) per
year over the last decade. Moore’s law accurately predicted the tremendous gains in central
processing unit (CPU) power that has occurred over the years. Wired and wireless technologies

have provided tremendous connectivity and bandwidth. Presuming current trends continue,

-9 -

WO 2005/024550 PCT/US2004/024437

within several years the average laptop computer will possess roughly one terabyte (TB) of
storage and contain millions of files, and 500 gigabyte (GB) drives will become commonplace.

[0005] Consumers use their computers primarily for communication and organizing
personal information, whether it is traditional personal information manager (PIM) style data or
media such as digital music or photographs. The amount of digital content, and the ability to
store the raw bytes, has increased tremendously; however the methods available to consumers for
organizing and unifying this data has not kept pace. Knowledge workers spend enormous
amounts of time managing and sharing information, and some studies estimate that knowledge
workers spend 15-25% of their time on non-productive information related activities. Other
studies estimate that a typical knowledge worker spends about 2.5 hours per day searching for
information.

[0006] Developers and information technology (IT) departments invest significant
amounts of time and money in building their own data stores for common storage abstractions to
represent such things as people, places, times, and events. Not only does this result in duplicated
work, but it also creates islands of common data with no mechanisms for common searching or
sharing of that data. Just consider how many address books can exist today on a computer
running the Microsoft Windows operating system. Many applications, such as e-mail clients and
personal finance programs, keep individual address books, and there is little sharing among
applications of the address book data that each such program individually maintains.
Consequently, a finance program (like Microsoft Money) does not share addresses for payees
with the addresses maintained in an email contact folder (like the one in Microsoft Outlook).
Indeed, many users have multiple devices and logically should synchronize their personal data
amongst themselves and across a wide variety of additional sources, including cell phones to
commercial services such as MSN and AOL; nevertheless, collaboration of shared documents is
largely achieved by attaching documents to e-mail messages—that is, manually and inefficiently.

[0007] One reason for this lack of collaboration is that traditional approaches to the
organization of information in computer systems have centered on the use of file-folder-and-
directory-based systems (“file systems”) to organize pluralities of files into directory hierarchies
of folders based on an abstraction of the physical organization of the storage medium used to
store the files. The Multics operating system, déveloped during the 1960s, can be credited with

pioneering the use of the files, folders, and directories to manage storable units of data at the

-3

WO 2005/024550 PCT/US2004/024437

oRerating system level. Specifically, Multics used symbolic addresses within a hierarchy of files
(thereby introducing the idea of a file path) where physical addresses of the files were not
transparent to the user (applications and end-users). This file system was entirely unconcerned
with the file format of any individual file, and the relationships amongst and between files was
deémed irrelevant at the operating system level (that is, other than the location of the file within
the hierarchy). Since the advent of Multics, storable data has been organized into files, folders,
and directories at the operating system level. These files generally include the file hierarchy
itself (the “directory””) embodied in a special file maintained by the file system. This directory,
in turn, maintains a list of entries corresponding to all of the other files in the directory and the
nodal location of such files in the hierarchy (herein referred to as the folders). Such has been the
state of the art for approximately forty years.

[0008] However, while providing a reasonable representation of information residing in
the computer’s physical storage system, a file system is nevertheless an abstraction of that
physical storage system, and therefore utilization of the files requires a level of indirection
(interpretation) between what the user manipulates (units having context, features, and
relationships to other units) and what the operating system provides (files, folders, and
directories).' Consequently, users (applications and/or end-users) have no choice but to force
units of information into a file system structure even when doing so is inefficient, inconsistent, or
otherwise undesirable. Moreover, existing file systems know little about the structure of data
stored in individual files and, because of this, most of the information remains locked up in files
that may only be accessed (and comprehensible) to the applications that wrote them.
Consequently, this lack of schematic description of information, and mechanisms for managing
information, leads to the creation of silos of data with little data sharing among the individual
silos. For example, many personal computer (PC) users have more than five distinct stores that
contain information about the people they interact with on some level—for example, Outlook
Contacts, online account addressees, Windows Address Book, Quicken Payees, and instant
messaging (IM) buddy lists—because organizing files presents a significant challenge to these
PC users. Because most existing file systems utilize a nested folder metaphor for organizing files
and folders, as the number of files increases the effort necessary to maintain an organization

scheme that is flexible and efficient becomes quite daunting. In such situations, it would be very

WO 2005/024550 PCT/US2004/024437

useful to have multiple classifications of a single file; however, using hard or soft links in
existing file systems is cumbersome and difficult to maintain.

[0009] Several unsuccessful attempts to address the shortcomiﬁgs of file systems have
been made in the past. Some of these previous attempts have involved the use of content
addressable memory to provide a mechanism whereby data could be accessed by content rather
than by physical address. However, these efforts have proven unsuccessful because, while
content addressable memory has proven useful for small-scale use by devices such as caches and
memory management units, large-scale use for devices such as physical storage media has not
yet been possible for a variety of reasons, and thus such a solution simply does not exist. Other
attempts using object-oriented database (OODB) systems have been made, but these attempts,
while featuring strong database characteristics and good non-file representations, were not
effective in handling file representations and could not replicate the speed, efficiency, and
simplicity of the file and folder based hierarchical structure at the hardware/software mterface
system level. Other efforts, such as those that attempted to use SmallTalk (and other
derivatives), proved to be quite effective at handling file and non-file representations but lacked
database features necessary to efficiently organize and utilize the relationships that exist between
the various data files, and thus the overall efficiency of such systems was unacceptable. Yet
other attempts to use BeOS (and other such operating systems research) proved to be inadequate
at handling non-file representations—the same core shortcoming of traditional file systems—
despite being able to adequately represent files while providing some necessary database
features.

[0010] Database technology is another area of the art in which similar challenges exits.
For example, while the relational database model has been a great commercial success, in truth
independent software vendors (ISV) generally exercise a small portion of the functionality
available in relational database software products (such as Microsoft SQL Server). Instead, most
of an application’s interaction with such a product is in the form of simple “gets” and “puts”.
While there are a number of readily apparent reasons for this—such as being platform or
database agnostic—one key reason that often goes unnoticed is that the database does not
necessarily provide the exact abstractions that a major business application vendor really needs.
For example, while the real world has the notion of “items”, such as “customers” or “orders”

(along with an order’s embedded “line items” as items in and of themselves), relational databases

-5-

WO 2005/024550 PCT/US2004/024437

only talk in terms of tables and rows. Consequently, while the application may desire to have
aspects of consistency, locking, security, and/or triggers at the item level (to name a few),
generally databases provide these features only' at the table/row level. While this may work fine
if each item gets mapped to a single row in some table in the database, in the case of an order
with multiple line items there may be reasons why an item actually gets mapped to multiple
tables and, when that is the case, the simple relational database system does not quite provide the
right abstractions. Consequently, an application must build logic on top of the database to
provide these basic abstractions. In other words, the basic relational model does not provide a
sufficient platform for storage of data on which higher-level applications can easily be devéloped
because the basic relational model requires a level of indirection between the application and the
storage system--where the semantic structure of the data might only be visible in the application
in certain instances. While some database vendors are building higher-level functionality into
their products--such as providing object relational capabilities, new organizational models, and
the like--none have yet to provide the kind of comprehensive solution needed, where a truly
comprehensive solution is one which provides both useful data model abstractions (such as
“Ttems,” “Extensions,” “Relationships,” and so on) for useful domain abstractions (such as
“Persons,” “Locations,” “Events,” etc.).

[0011] In view of the foregoing deficiencies in existing data storage and database
technologies, there is a need for a new storage platform that provides an improved ability to
organize, search, and share all types of data in a computer system--a storage platform that
extends and broadens the data platform beyond existing file systems and database systems, and
that is designed to be the store for all types of data. The related inventions, incorporated by
reference earlier herein, satisfies this need.

[0012] However, the storage of images (photos, digital images, etc.) is not standardized
and is not generalized across platforms and applications. While applications can include APIs
tailored to a particular image format (e.g., JPEG), developers of such applications must be aware
of the format, include tailored application programming interfaces (APIs), and perform any
conversions necessary to interoperate with said format. What is missing in the art is a common
schema (or set of schemas) for all image objects in a computer system, and the present invention,
in conjunction with the related inventions incorporated by reference earlier herein, satisfies this

specific need.

WO 2005/024550 PCT/US2004/024437

SUMMARY

[0013] The following summary provides an overview of various aspects of the
invention described in the context of the related inventions incorporated-by-reference earlier
herein (the “related inventions”). This summary is not intended to provide an exhaustive
description of all of the important aspects of the invention, nor to define the scope of the
invention. Rather, this summary is intended to serve as an introduction to the detailed
description and figures that follow.

[0014] The present invention, as well as the related inventions, are collectively directed
to a storage platform for organizing, searching, and sharing data. The storage platform of the
present invention extends and broadens the concept of data storage beyond existing file systems
and database systems, and is designed to be the store for all types of data including structured,
non-structured, or semi-structured data.

[0015] The storage platform of the present invention comprises a data store
implemented on a database engine. The database engine comprises a relational database engine
with object relational extensions. The data store implements a data model that supports
organization, searching, sharing, synchronization, and security of data. Specific types of data are
descﬁbed in schemas, and the platform provides a mechanism to extend the set of schemas to
define new types of data (essentially subtypes of the basic types provides by the schemas). A
synchronization capability facilitates the sharing of data among users or systems. File—s;llstem—
like capabilities are provided that allow interoperability of the data store with existing file
systems but without the limitation of such traditional file systems. A change tracking
mechanism provides the ability track changes to the data store. The storage platform further
comprises a set of application program interfaces that enable applications to access all of the
foregoing capabilities of the storage platform and to access the data described in the schemas.

[0016] The data model implemented by the data store defines units of data storage in
terms of items, elements, and relationships. An item is a unit of data storable in a data store and
can comprise one or more elements and relationships. An element is an instance of a type
comprising one or more fields (also referred to herein as a property). A relationship is a link
between two items. (As used herein, these and other specific terms may be capitalized in order

to offset them from other terms used in close proximity; however, there is no intention

WO 2005/024550 PCT/US2004/024437

whatsoever to distinguish between a capitalized term, e.g. “Item”, and the same term when not
capitalized, e.g., “item”, and no such distinction should be presumed or implied.)

[0017] The computer system further comprises a plurality of Items where each Item
constitutes a discrete storable unit of information that can be manipulated by a
hardware/software interface system; a plurality of Item Folders that constitute an organizational
structure for said Ttems; and a hardware/software interface system for manipulating a plurality of
Ttems and wherein each Item belongs to at least one Item Folder and may belong to more than
one Item Folder.

[0018] An Item or some of the Item’s property values may be computed dynamically as
opposed to being derived from a persistent store. In other words, the hardware/software interface
system does not require that the Item be stored, and certain operations are supported such as the
ability to enumerate the current set of Items or the ability to retrieve an Item given its identifier
(which is more fully described in the sections that describe the application programming
interface, or API) of the storage platform -- for example, an Item might be the current location of
a cell phone or the temperature reading on a temperature sensor. The hardware/software
interface system may manipulate a plurality of Items, and may further comprise Items
interconnected by a plurality of Relationships managed by the hardware/software interface
system.

[0019] A hardware/software interface system for the computer system further
comprises a core schema to define a set of core Items which said hardware/software interface
system understands and can directly process in a predetermined and predictable way. To
manipulate a plurality of Items, the computer system interconnects said Items with a plurality of
Relationships and manages said Relationships at the hardware/software interface system level.

[0020] The API of the storage platform provides data classes for each item, item
extension, and relationship defined in the set of storage platform schemas. In addition, the
application programming interface provides a set of framework classes that define a Lcommon set
of behaviors for the data classes and that, together with the data classes, provide the basic
programming model for the storage platform API. The storage platform API provides a
simplified query model that enables application programmers to form queries based on various
properties of the items in the data store, in a manner that insulates the application programmer

from the details of the query language of the underlying database engine. The storage platform

-8-

WO 2005/024550 PCT/US2004/024437

API also collects changes to an item made by an application program and then organizes them
into the correct updates required by the database engine (or any kind of storage engine) on which
the data store is implemented. This enables application programmers to make changes to an item
in memory, while leaving the complexity of data store updates to the API.

[0021] Through its common storage foundation and schematized data, the storage
platform of the present invention enables more efficient application development for consumers,
knowledge workers and enterprises. It offers a rich and extensible application programming
interface that not only makes available the capabilities inherent in its data model, but also
embraces and extends existing file system and database access methods.

[0022] Within view of this overarching structure of interrelated inventions (described in
detail in Section II of the Detailed Description), the present invention is specifically directed to a
common schema for all image objects (Image Items) in a computer system (described in detail in
Section IIT of the Detailed Description). Other features and advantages of the invention may
become apparent from the following detailed description of the invention and accompanying

drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0023] The foregoing summary, as well as the following detailed description of the
invention, is better understood when read in conjunction with the appended drawings. For the
purpose of illustrating the invention, there is shown in the drawings exemplary embodiments of
various aspects of the invention; however, the invention is not limited to the specific methods
and instrumentalities disclosed. In the drawings:

[0024] Fig. 1 is a block diagram representing a computer system in which aspects of the
present invention may be incorporated;

[0025] Fig. 2 is a block diagram illustrating a computer system divided into three
component groups: the hardware component, the hardware/software interface system component,
and the application programs component;

[0026] Fig. 2A illustrates the traditional tree-based hierarchical structure for files
grouped in folders in a directory in a file-based operating system;

[0027] Fig. 3 is a block diagram illustrating a storage platform;

WO 2005/024550 PCT/US2004/024437

[0028] Fig. 4 illustrates the structural relationship between Items, Item Folders, and
Categories;

[0029] Fig. 5A is a block diagram illustrating the structure of an Item;

[0030] Fig. 5B is a block diagram illustrating the complex property types of the Item of
Fig. 5A,;

[0031] Fig. 5Cis a block diagram illustrating the “Location” Item wherein its complex
types are further described (explicitly listed);

[0032] Fig. 6A illustrates an Item as a subtype of the Ttem found in the Base Schema;

[0033] Fig. 6B is a block diagram illustrating the subtype Item of Fig. 6A wherein its
inherited types are explicitly listed (in addition to its immediate properties);

[0034] Fig. 7 is a block diagram illustrating the Base Schema including its two top-
Ievell class types, Item and PropertyBase, and the additional Base Schema types derived
therefrom;

[0035] Fig. 8A is a block diagram illustrating Items in the Core Schema;

[0036] Fig. 8B is a block diagram illustrating the property types in the Core Schema;

[0037] Fig. 9 is a block diagram illustrating an Item Folder, its member Items, and the
interconnecting Relationships between the Item Folder and its member Items;

[0038] Fig. 10 is a block diagram illustrating a Category (which, again, is an Item
itself), its member Items, and the interconnecting Relationships between the Category and its
member Items;

[0039] Fig. 11 is a diagram illustrating a reference type hierarchy of the data model of
the storage platform; |

[0040] Fig. 12 is a diagram illustrating how relationships are classified;

[0041] Fig. 13 is a diagram illustrating a notification mechanism;

[0042] Fig. 14 is a diagram illustrating an example in which two transactions are both
inserting a new record into the same B-Tree;

[0043] Fig. 15 illustrates a data change detection process;

[0044] Fig. 16 illustrates an exemplary directory tree;

[0045] Fig. 17 shows an example in which an existing folder of a directory-based file
system is moved into the storage platform data store;

[0046] Fig. 18 illustrates the concept of Containment Folders;

-10 -

WO 2005/024550 PCT/US2004/024437

[0047] Fig. 19 illustrates the basic architecture of the storage platform API;

[0048] Fig. 20 schematically represents the various components of the storage platform
API stack;

[0049] Fig. 21A is a pictorial representation of an exemplary Contacts Item schema;

[0050] Fig. 21B is a pictorial representation of the Elements for the exemplary Contacts
Ttem schema of Fig. 21A; “

[0051] Fig. 22 illustrates the runtime framework of the storage platform API;

[0052] Fig. 23 illustrates the execution of a “FindAll” operation;

[0053] Fig. 24 illustrates the process by which storage platform API classes are
generated from the storage platform Schema;

[0054] Fig. 25 illustrates a schema on which a File API is based;

[0055] Fig. 26 is a diagram illustrating an access mask format used for data security
purposes;

[0056] Fig. 27 (parts a, b, and c) depicts a new identically protected security region
being carved out of an existing security region;

[0057] Fig. 28 is a diagram illustrating the concept of an Item search view;

[0058] Fig. 29 is a diagram illustrating an exemplary Item hierarchy;

[0059] Fig. 30A illustrates an interface Interfacel as a conduit through which first and
second code segments communicate;

[0060] Fig. 30B illustrates an interface as comprising interface objects I1 and I2 which
enable first and second code segments of a system to communicate via mediom M;

[0061] Fig. 31A illustrates how the function provided by interface Interfacel may be
subdivided to convert the communications of the interface into multiple interfaces Interfacel A,
Interface 1B, Interface 1C;

[0062] Fig. 31B illustrates how the function provided by interface I1 may be
subdivided into multiple inter\faces I1a, I1b, Ilc;

[0063] Fig. 32A illustrates a scenario where a meaningless parameter precision can be
ignored or replaced with an arbitrary parameter;

[0064] Fig. 32B illustrates a scenario where an interface is replaced by a substitute

interface that is defined to ignore or add parameters to an interface;

-11 -

WO 2005/024550 PCT/US2004/024437

[0065] Fig. 33A illustrates a scenario where a 1st and 2nd Code Segments are merged
into a module containing them both; |

[0066] Fig. 33B illustrates a scenario where part or all of an interface may be written
inline into another interface to form a merged interface.

[0067] Fig. 34A illustrates how one or more pieces of middleware might convert
communications on the first interface to conform them to one or more different interfaces;

[0068] Fig. 34B illustrates how a code segment can be introduced with an interface to
receive the communications from one interface but transmit the functionality to second and third
interfaces;

[0069] Fig. 35A illustrates how a just-in-time compiler (JIT) might convert
communications from one code segment to another code segment;

[0070] Fig. 35B illustrates a JIT method of dynamically rewriting one or more
interfaces may be applied to dynamically factor or otherwise alter said interface;

[0071] Fig. 36 illustrates the Image Schema, along with selected elements of the Base
Schema (of Fig. 7) and the Core Schema (of Fig. 8A) to show the interrelationship between

various Items within each schema.

[Remainder of Page Intentionally Left Blank]

-12 -

WO 2005/024550 PCT/US2004/024437
DETAILED DESCRIPTION
TABLE OF CONTENTS

I. INTRODUCTION et e beebeat e e et e ae e et be e bt e Rt et r e e s aete et e e neeresbess e tensenaeenteas - 18-
A. EXEMPLARY COMPUTING ENVIRONMENTcccceoomeriiererirerereeeveneene - 18 -
B. TRADITIONAL FILE-BASED STORAGEccceocemtrrnirrecreceeeeeeeeeve e -22-

II. WINFS STORAGE PLATFORM FOR ORGANIZING, SEARCHING, AND
SHARING DATA ..ottt sttt stete et et re st st s s s e st s a e s as e b eraessessenneenns -24 -
A. GLOSSARY ..ottt ettt sb ettt sa s sae e s -24 -
B. STORAGE PLATFORM OVERVIEWccccootiiiminiininienieneeeesnesresreseennes -25-
C. THE DATA MODELoooiiuiiiniiteniniisertesieetetesie st ettt e seesesassaesbesassseessens -26-
1. TEEIMIS ottt e -28-
2. Ttem Tdentification........ccceeeeereerereciercr e e -31-
3. Ttem Folders and Categoriesceeueereeneenenirinieieneesceee e -32-
4, SCREMAS ..ottt sttt e -34 -
a) Base SChemMaccceveurerierienieieeeereee e ae e s s -34 -
b) Core SChema......cocvereriererienteeecte e -35-
5. ReEIatiONSHIPS. .. ueeviiiereerrireeterteiecree e reeere s eese et eseesressesnessaesanessnas - 36 -
a) Relationship Declaration...........coeveeeeveenienienrenrenenienieneesesenenns -37 -
b) Holding Relationshipcoveveereevenreneenieinieicseeeeeeree e -39 -
c) Embedding Relationships ' -40 -
d) Reference Relationships.......cceeievveevvirieniieeecieieieee e -4l -
e) Rules and Constraintsco.ccvevvvvercerererenreoneeeiseessseneesenesinees -41 -
) Ordering of Relationships.......c.ccecvevrvenioeneneniineieneiieneene -42 -
6. EXtenSIDILILY .oocuvinieiiieriiieite sttt ettt et -47 -
a) Ttem EXTENSIONS ...oveeureiriirrieiiirereeseee sttt ere e sa e eanes -48 -

-13 -

WO 2005/024550 PCT/US2004/024437
b) Extending NestedElement typesceervueveereinnceciienccreiecnnees
D. DATABASE ENGINEcooorniiieeiiriinieete et esssssss e
1. Data Store Implementation Using UDTS.......ccccveverrererreninreeneenereenen.
2. TEEM MAPPING . ccuvereiricrieeeciereetcee et e tesressesrevee e tsene s e saebestesesesaeanees
3. ExXtension Mappingcceecereeererieeermieieisseeseesasessesseeseessenseseeneons
4. Nested Element Mapping........cocceeeeeerrernrieeseseessesesesessneseseeeseessennes
5. ObJect TABNEILY ...eeovveveeieiieteireceseerte st s
6. SQL ODbject NaMINGcceeveerrerrerrirrrerienrienteerreeeeereeneesreeseessessseesneeseeas
7. Column NaMINE......c.cvvereerrerciriereeterieeierreeaesaeesseesessesreeaesseessseeseens
8. SEATCH VIEWS ...eiuiiiieieieiteieneeeecerenttete et ettt et e sttt aa s sae e
a) TEEIN 1ottt ettt st s ene e
1) Master Item Search View............... e
(2) Typed Item Search VIEWS.......coceveveeveeriveereeieciecreenee,
b) Ttem EXteNnSIons.ccovevvreieiiiieriiierenietet e
(D Master Extension Search View.......cccoccvveverinecnennnne.
2) Typed Extension Search VIEWscccccocevvieieeneeneenns
c) Nested Elements........cccoceveeiriiieimiieiiiieenienientciecrcicneseeenes
d) RelationShips......cccceeerieeriecereneierienenie ettt
€)) Master Relationship Search View........ccevceevvecieernennen,
2) Relationship Instance Search Views.........cccovvvrrveerennee.

e) - 64 -
\ 9. UPAALES ...eocueiiieieiienieeeerie sttt st e s eeese e et e e e sne
10. Change Tracking & TOMDSIONEScceevviririieiierrirrieereeereereereeeeneens
a) Change Tracking.......ccoeeveeviereerierciniiirecstiesie e esee e
(1) Change Tracking in “Master” Search Views................

-14 -

WO 2005/024550

PCT/US2004/024437
(2) Change Tracking in “Typed” Search VIEWS......oooveeeve - 66 -
b) TOMDSTONES vvveeveeerrerereererreerte st eebreseaesasesra st e e et ennnee -67 -
(1) Ttem TOmDSIONES......oviiriieereiiiiinrississ e -67 -
(2) Extension TOMDSIONESceveveeiminiiminsseseinsisessissienens -67 -
(3) Relationships Tombstone.c..ccouevrimrmsnmeniinsiniscnenn. - 68 -
(4) Tombstone Cleanupc.ceeeireurinimmmssnisisssssnnecssees - 69 -
11. Helper APIs and FUNCHONS ...vueuiuiiiiiiniiiiriinisiss e - 69 -
a) Function [System.Storage]. GetItem.ccovevinniiniiniieene - 69 -
b) Function [System.Storage]. GetEXtensIon.......c.covvuvvrinnneirienene - 69 -
c) Function [System.Storage].GetRelationship........c.cooevrieiinneeene - 69 -
12, IMEEAAALA. cueeereeeerereeeieeiireesresrreseresstesstsere s b s e s be s s r et - 69 -
a) Schema Metadata.......ooveeeereereeriiiniininisiese s - 69 -
b) Instance Metadatacveceeerreeereeereniiiie e -70 -
E. SECURITY ..veeeeeeeeeietstesessesaessesesessesssssssssessasasssssssesssstnsas i n s sn s b s st s en s -70 -
NOTIFICATIONS AND CHANGE TRACKINGccoeieenrciiiiiiiniinnine -70 -
G. SYNCHRONIZATIONcvveveerirrerereeseeesesiessssssssassssssessssessnssssisssssensssssans -71 -
1. Storage Platform-to-Storage Platform Synchronization.........cceeeeeennes -72 -
a) Synchronization (Sync) Controlling Applications.............c..... -72 -
b) Schema annOtAtIONcvereeerrereererieereriese e -73 -
c) Sync Configurationcoueereeesereeseseisinininnssi s -74 -
¢)) Community Folder - Mappings.......ccoreeeenievruesneienunnss -75 -
2) PrOFILES coouveeeereeveeeiecrreeereesseeseeesressre s sab e rnes e s sine s =75 -
€)] SCHEAULES ..vovvvereerretreierie ettt -76 -
d) Conflict Handlng. ...c.ecvevvereeermeminineneiieensssesmsesecsisasas s -77 -
(1) Conflict DeteCtion......ccoueeueuemsimriemnisiinisisisceses -77 -

-15-

WO 2005/024550

PCT/US2004/024437

(a) Knowledge-based conflicts
(b) Constraint-based conflicts
(2) Conflict ProCeSSINGccerrerrereerrerrenrenrenrrereseesreseeneesenens
€) Automatic Conflict resolution
(b) Conflict Logging
(c) Conflict inspection and resolution
(d) Convergence of replicas and Propagation of
Conflict Resolutions
2. Synchronizing to non-storage platform data storesccoeveveerenane
a) SYNC SEIVICES 1.vervnirirereirreiriecreiisiesei et
(1) Change Enumeration.........coeeereeermieinnieiinnieneesnecienene
(2) Change Applicationccccvveerveieieeniesisieeieniees e
(3) Conflict ReSOIULION......ocvevirerirriierrieenieiieei
b) Adapter implementation..........cccouviininiiineerinieieinee s
3. SEOULILY .vveveeeeeeriiciesirt ittt e
4. MaAnAZEADIILY ...c.cevueeeereieiriireie e
H. TRADITIONAL FILE SYSTEM INTEROPERABILITYccooevvniniiiinannens
I STORAGE PLATFORM APoouiiteiecenieneciercinicinieinn st
III. The Image Schema and Subordinate Schemas (the Image Schema Set)......................
A. The Image SChEMA.......occvvvreriiiiiiici e
B. The Photo SCHEMA .c.cvvviriieeiereneieerireee et st ese bbb ean e

C. Analysis Properties Schema

IV. CONCLUSION.......cccooerrrirrarnanns

..

..

-16-

WO 2005/024550 PCT/US2004/024437

[Remainder of Page Intentionally Left Blank]

-17 -

WO 2005/024550 PCT/US2004/024437

I INTRODUCTION

[0072] The subject matter of the present invention is described with specificity to meet
statutory requirements. However, the description itself is not intended to limit the scope of this
patent. Rather, the inventors have contemplated that the claimed subject matter might also be
embodied in other ways, to include different steps or combinations of steps similar to the ones
described in this document, in conjunction with other present or future technologies. Moreover,
although the term “step” may be used herein to connote different elements of methods employed,
the term should not be interpreted as implying any particular order among or between various
steps herein disclosed unless and except when the order of individual steps is explicitly

described.

A. EXEMPLARY COMPUTING ENVIRONMENT

[0073] Numerous embodiments of the present invention may execute on a computer.
Fig. 1 and the following discussion is intended to provide a brief general description of a suitable
computing environment in which the invention may be implemented. Although not required,
various aspects of the invention may be described in the general context of computer executable
instructions, such as pro gram modules, being executed by a computer, such as a client
workstation or a server. Generally, program modules include routines, programs, objects,
components, data structures and the like that perform particular tasks or implement particular
abstract data types. Moreover, the invention may be practiced with other computer system
configurations, including hand held devices, multi processor systems, microprocessor based or
programmable consumer electronics, network PCs, minicomputers, mainframe computers and
the like. The invention may also be practiced in distributed computing environments where tasks
are performed by remote processing devices that are linked through a communications network.
In a distributed computing environment, program modules may be located in both local and
remote memory storage devices.

[0074] As shown in Fig. 1, an exemplary general purpose computing system includes a
conventional personal computer 20 or the like, including a processing unit 21, a system memory
22, and a system bus 23 that couples various system components including the system memory

to the processing unit 21. The system bus 23 may be any of several types of bus structures

-18-

WO 2005/024550 PCT/US2004/024437

including a memory bus or memory controller, a peripheral bus, and a local bus using any of a
variety of bus architectures. The system memory includes read only memory (ROM) 24 and
random access memory (RAM) 25. A basic input/output system 26 (BIOS), containing the basic
routines that help to transfer information between elements within the personal computer 20,
such as during start up, is stored in ROM 24. The personal computer 20 may further include a
hard disk drive 27 for reading from and writing to a hard disk, not shown, a'magnetic disk drive
28 for reading from or writing to a removable magnetic disk 29, and an optical disk drive 30 for
reading from or writing to a removable optical disk 31 such as a CD ROM or other optical
media. The hard disk drive 27, magnetic disk drive 28, and optical disk drive 30 are connected to
the system bus 23 by a hard disk drive interface 32, a magnetic disk drive interface 33, and an
optical drive interface 34, respectively. The drives and their associated computer readable media
provide non volatile storage of computer readable instructions, data structures, program modules
and other data for the personal computer 20. Although the exemplary environment described
herein employs a hard disk, a removable magnetic disk 29 and a removable optical disk 31, it
should be appreciated by those skilled in the art that other types of computer readable media
which can store data that is accessible by a computer, such as magnetic cassettes, flash memory
cards, digital video disks, Bernoulli cartridges, random access memories (RAMs), read only
memories (ROMs) and the like may also be used in the exemplary operating environment.
Likewise, the exemplary environment may also include many types of monitoring devices such
as heat sensors and security or fire alarm systems, and other sources of information.

[0075] A number of program modules may be stored on the hard disk, magnetic disk
29, optical disk 31, ROM 24 or RAM 25, including an operating system 35, one or more
application programs 36, other program modules 37 and program data 38. A user may enter
commands and information into the personal computer 20 through input devices such as a
keyboard 40 and pointing device 42. Other input devices (not shown) may include a microphone,
joystick, game pad, satellite disk, scanner or the like. These and other input devices are often
connected to the processing unit 21 through a serial port interface 46 that is coupled to the
system bus, but may be connected by other interfaces, such as a parallel port, game port or
universal serial bus (USB). A monitor 47 or other type of diéplay device is also connected to the
system bus 23 via an interface, such as a video adapter 48. In addition to the monitor 47,

personal computers typically include other peripheral output devices (not shown), such as

-19-

WO 2005/024550 PCT/US2004/024437

speakers and printers. The exemplary system of Fig. 1 also includes a host adapter 55, Small
Computer System Interface (SCSI) bus 56, and an external storage device 62 connected to the
SCSI bus 56.

[0076] The personal computer 20 may operate in a networked environment using
logical connections to one or more remote computers, such as a remote computer 49. The remote
computer 49 may be another personal computer, a server, a router, a network PC, a peer device
or other common network node, and typically includes many or all of the elements described
above relative to the personal computer 20, although only a memory storage device 50 has been
illustrated in Fig. 1. The logical connections depicted in Fig. 1 include a local area network
(LAN) 51 and a wide area network (WAN) 52. Such networking environments are commonplace
in offices, enterprise wide computer networks, intranets and the Internet.

[0077] When used in a LAN networking environment, the personal computer 20 is
connected to the LAN 51 through a network interface or adapter 53. When used in a WAN
networking environment, the personal computer 20 typically includes a modem 54 or other
means for establishing communications over the wide area network 52, such as the Internet. The
modem 54, which may be internal or external, is connected to the system bus 23 via the serial
port interface 46. In a networked environment, program modules depicted relative to the personal
computer 20, or portions thereof, may be stored in the remote memory storage device. It will be
appreciated that the network connections shown are exemplary and other means of establishing a
communications link between the computers may be used.

[0078] As illustrated in the block diagram of Fig. 2, a computer system 200 can be
roughly divided into three component groups: the hardware component 202, the
hardware/software interface system component 204, and the applications programs component
206 (also referred to as the “user component” or “software component” in certain contexts
herein).

[0079] In various embodiments of a computer system 200, and referring back to Fig. 1,
the hardware component 202 may comprise the central processing unit (CPU) 21, the memory
(both ROM 24 and RAM 25), the basic input/output system (BIOS) 26, and various input/output
(I/0) devices such as a keyboard 40, a mouse 42, a monitor 47, and/or a printer (not shown),
among other things. The hardware component 202 comprises the basic physical infrastructure

for the computer system 200.

-20 -

WO 2005/024550 PCT/US2004/024437

[0080] The applications programs component 206 comprises various software programs
including but not limited to compilers, database systems, word processors, business programs,
videogames, and so forth. Application programs provide the means by which computer
resources are utilized to solve problems, provide solutions, and process data for various users
(machines, other computer systems, and/or end-users).

[0081] The hardware/software interface system component 204 comprises (and, in
some embodiments, may solely consist of) an operating system that itself comprises, in most
cases, a shell and a kemel. An “operating system” (OS) is a special program that acts as an
intermediary between application programs and computer hardware. The hardware/software
interface system component 204 may also comprise a virtual machine manager (VMM), a
Common Language Runtime (CLR) or its functional equivalent, a Java Virtual Machine (JVM)
or its functional equivalent, or other such software components in the place of or in addition to
the operating system in a computer system. The purpose of a hardware/software intérface
system is to provide an environment in which a user can execute application programs. The goal .
of any hardware/software interface system is to make the computer system convenient to use, as
well as utilize the computer hardware in an efficient manner.

[0082] The hardware/software interface system is generally loaded into a computer
system at startup and thereafter manages all of the application programs in the computer system.
The application programs interact with the hardware/software interface system by requesting
services via an application program interface (API). Some application programs enable end-
users to interact with the hardware/software interface system via a user interface such as a
command language or a graphical user interface (GUI).

[0083] A hardware/software interface system traditionally performs a variety of
services for applications. In a multitasking hardware/software interface system where multiple
programs may be running at the same time, the hardware/software interface system determines
which applications should run in what order and how much time should be allowed for each
application before switching to another application for a turn. Tﬁe hardware/software interface
system also manages the sharing of internal memory among multiple applications, and handles
input and output to and from attached hardware devices such as hard disks, printers, and dial-up
ports. The hardware/software interface system also sends messages to each application (and, in

certain case, to the end-user) regarding the status of operations and any errors that may have

-21-

WO 2005/024550 PCT/US2004/024437

occurred. The hardware/software interface system can also offload the management of batch
jobs (e.g., printing) so that the initiating application is freed from this work and can resume other
processing and/or operations. On computers that can provide parallel processing, a
hardware/software interface system also manages dividing a program so that it runs on more than
one processor at a time.

[0084] A hardware/software interface system shell (simply referred to herein as a
“shell”) is an interactive end-user interface to a hardware/software interface system. (A shell
may also be referred to as a “command interpreter” or, in an operating system, as an “operating
system shell”). A shell is the outer layer of a hardware/software interface system that is directly
accessible by application programs and/or end-users. In contrast to a shell, a kernel is a
hardware/software interface system’s innermost layer that interacts directly with the hardware
components.

[0085] While it is envisioned that numerous embodiments of the present invention are
particularly well-suited for computerized systems, nothing in this document is intended to limit
the invention to such embodiments. On the contrary, as used herein the term “computer system”
is intended to encompass any and all devices capable of storing and processing information
and/or capable of using the stored information to control the behavior or execution of the device

itself, regardless of whether such devices are electronic, mechanical, logical, or virtual in nature.

B. TRADITIONAL FILE-BASED STORAGE

[0086] In most computer systems today, “files” are units of storable information that
may include the hardware/software interface system as well as application programs, data sets,
and so forth. In all modern hardware/software interface systems (Windows, Unix, Linux, Mac
0S, virtual machine systems, and so forth), files are the basic discrete (storable and retrievable)
units of information (e.g., data, programs, and so forth) that can be manipulated by the
hardware/software interface system. Groups of files are generally organized in “folders.” In
Microsoft Windows, the Macintosh OS, and other hardware/software interface systems, a folder
is a collection of files that can be retrieved, moved, and otherwise manipulated as single units of
information. These folders, in turn, are organized in a tree-based hierarchical arrangement called
a “directory” (discussed in more detail herein below). In certain other hardware/software

interface systems, such as DOS, z/OS and most Unix-based operating systems, the terms

-9 .

WO 2005/024550 PCT/US2004/024437

“directory” and/or “folder” are interchangeable, and early Apple computer systems (e.g., the
Apple ITe) used the term “catalog” instead of directory; however, as used herein, all of these
terms are deemed to be synonymous and interchangeable and are intended to further include all
other equivalent terms for and references to hierarchical information storage structures and their
folder and file components. |

[0087] Traditionally, a directory (a.k.a. a directory of folders) is a tree-based
hierarchical structure wherein files are grouped into folders and folder, in turn, are arranged
according to relative nodal locations that comprise the directory tree. For example, as illustrated
in Fig. 2A, a DOS-based file system base folder (or “root directory’) 212 may comprise a
plurality of folders 214, each of which may further comprise additional folders (as “subfolders™
of that particular folder) 216, and each of these may also comprise additional folders 218 ad
infinitum. Each of these folders may have one or more files 220 although, at the
hardware/software interface system level, the individual files in a folder have nothing in common
other than their location in the tree hierarchy. Not surprisingly, this approach of organizing files
into folder hierarchies indirectly reflects the physical organization of typical storage media used
to store these files (e.g., hard disks, floppy disks, CD-ROMs, etc.).

[0088] In addition to the foregoing, each folder is a container for its subfolders and its
files—that is, each folder owns its subfolders and files. For example, when a folder is deleted by
the hardware/software interface system, that folder’s subfolders and files are also deleted (which,
in the case of each subfolder, further includes its own subfolders and files recursively).

Likewise, each file is generally owned by only one folder and, although a file can be copied and
the copy located in a different folder, a copy of a file is itself a distinct and separate unit that has
no direct connection to the original (e.g., changes to the original file are not mirrored in the copy
file at the hardware/software interface system level). In this regard, files and folders are
therefore characteristically “physical” in nature because folders are the treated like physical
containers, and files are treated as discrete and separate physical elements inside these

containers.

-23.

WO 2005/024550 PCT/US2004/024437

IL WINFS STORAGE PLATFORM FOR ORGANIZING, SEARCHING, AND
SHARING DATA

[0089] The present invention, in combination with the related inventions incorporated
by reference as discussed earlier herein, is directed to a storage platform for organizing,
searching, and sharing data. The storage platform of the present invention extends and broadens
the data platform beyond the kinds of existing file systems and database systems discussed

above, and is designed to be the store for all types of data, including a new form of data called

Items.

A. GLOSSARY

[0090] As used herein and in the claims, the following terms have the following
meanings:

e An “Ttem” is an unit of storable information accessible to a hardware/software
interface system that, unlike a simple file, is an object having a basic set of
properties that are commonly supported across all objects exposed to an end-user
by the hardware/software interface system shell. Items also have properties and
relationships that are commonly supported across all Item types including features
that allow new properties and relationships to be introduced (and discussed in
great detail later herein).

e An “operating system” (OS) is a special program that acts as an intermediary
between application programs and computer hardware. An operating system
comprises, in most cases, a shell and a kernel.

e A “hardware/software interface system” is software, or a combination of
hardware and software, that serves as the interface between the underlying
hardware components of a computer system and applications that execute on the
computer system. A hardware/software interface system typically comprises
(and, in some embodiments, may solely consist of) an operating system. A
hardware/software interface system may also comprise a virtual machine manager
(VMM), a Common Language Runtime (CLR) or its functional equivalent, a Java
Virtual Machine (JVM) or its functional equivalent, or other such software

components in the place of or in addition to the operating system in a computer

-24 -

WO 2005/024550 PCT/US2004/024437

systerﬂ. The purpose of a hardware/software interface system is to provide an
environment in which a user can execute application programs. The goal of any
hardware/software interface system is to make the computer system convenient to

use, as well as utilize the computer hardware in an efficient manner.

B. STORAGE PLATFORM OVERVIEW

[0091] Referring to Fig. 3, a storage platform 300 comprises a data store 302
implemented on a database engine 314. In one embodiment, the database engine comprises a
relational database engine with object relational extensions. In one embodiment, the relational
database engine 314 comprises the Microsoft SQL Server relational database engine. The data
store 302 implements a data model 304 that supports the organization, searching, sharing,
synchronization, and security of data. Speciﬁc types of data are described in schemas, such as
schemas 340, and the storage platform 300 provides tools 346 for deploying those schemas as
well as for extending those schemas, as described more fully below.

[0092] A change tracking mechanism 306 implemented within the data store 302
provides the ability track changes to the data store. The data store 302 also provides security
capabilities 308 and a promotion/demotion capability 310, both of which are discussed more
fully below. The data store 302 also provides a set of application programming interfaces 312 to
expose the capabilities of the data store 302 to other storage platform components and
application programs (e.g., application programs 350a, 350b, and 350c) that utilize the storage
platform. The storage platform of the present invention still further comprises an application
programming interfaces (API) 322, which enables application programs, such as application
programs 350a, 350b, and 350c, to access all of the foregoing capabilities of the storage platform
and to access the data described in the schemas. The storage platform API 322 may be used by
application programs in combination with other APIs, such as the OLE DB API 324 and the
Microsoft Windows Win32 API 326.

[0093] The storage platform 300 of the present invention may provide a variety of
services 328 to application programs, including a synchronization service 330 that facilitates the
sharing of data among users or systems. For example, the synchronization service 330 may
enable interoperability with other data stores 340 having the same format as data store 302, as

well as access to data stores 342 having other formats. The storage platform 300 also provides

-25.

WO 2005/024550 PCT/US2004/024437

file system capabilities that allow interoperability of the data store 302 with existing file systems,
such as the Windows NTFS files system 318. In at least some embodiments, the storage
platform 320 may also provide application programs with additional capabilities for enabling
data to be acted upon and for enabling interaction with other systems. These capabilities may be
embodied in the form of additional services 328, such as an Info Agent service 334 and a
notification service 332, as well as in the form of other utilities 336.

[0094] In at least some embodiments, the storage platform is embodied in, or forms an
integral part of, the hardware/software interface system of a computer system. For example, and
without limitation, the storage platform of the present invention may be embodied in, or form an
integral part of, an operating system, a virtual machine manager (VMM), a Common Language
Runtime (CLR) or its functional equivalent, or a Java Virtual Machine (JVM) or its functional
equivalent. Through its common storage foundation, and schematized data, the storage platform
of the present invention enables more efficient application development for consumers,
knowledge workers and enterprises. It offers a rich and extensible programming surface area
that not only makes available the capabilities inherent in its data model, but also embraces and
extends existing file system and database access methods.

[0095] In the following description, and in various ones of the figures, the storage
platform 300 of the present invention may be referred to as “WinFS.” However, use of this
name to refer to the storage platform is solely for convenience of description and is not intended

to be limiting in any way.

C. THE DATA MODEL

[0096] The data store 302 of the storage platform 300 of the present invention
implements a data model that supports the organization, searching, sharing, synchronization, and
security of data that resides in the store. In the data model of the present invention, an “Item” is
the fundamental unit of storage information. The data model provides a mechanism for
declaring Items and Item extensions and for establishing relationships between Items and for
organizing Items in Item Folders and in Categories, as described more fully below.

[0097] The data model relies on two primitive mechanisms, Types and Relationships.
Types are structures which provide a format which governs the form of an instance of the Type.

The format is expressed as an ordered set of Properties. A Property is a name for a value or set of

- 26 -

WO 2005/024550 PCT/US2004/024437

values of a given Type. For example a USPostalAddress type might have the properties Street,
City, Zip, State in which Street, City and State are of type String and Zip is of Type Int32. Street
may be multi-valued (i.e. a set of values) allowing the address to have more than one value for
the Street property. The system defines certain primitive types that can be used in the
construction of other types — these include String, Binary, Boolean, Int16, Int32, Int64, Single,
Double, Byte, DateTime, Decimal and GUID. The Properties of a Type may be defined using
any of the primitive types or (with some restrictions noted below) any of the constructed types.
For example a Location Type might be defined that had Properties Coordinate and Address
where the Address Property is of Type USPostalAddress as described above. Properties may also
be required or optional.

[0098] Relationships can be declared and represent a mapping between the sets of
instances of two types. For example there may be a Relationship declared between the Person
Type and the Location Type called LivesAt which defines which people live at which locations.
The Relationship has a name, two endpoints, namely a source endpoint and a target endpoint.
Relationships may also have an ordered set of properties. Both the Source and Target endpoints
have a Name and a Type. For example the LivesAt Relationship has a Source called Occupant of
Type Person and a Target called Dwelling of Type Location and in addition has properties
StartDate and EndDate indicating the period of time for which the occupant lived at the dwelling.
Note that a Person may live at multiple dwellings over time and a dwelling may have multiple
occupants so the most likely place to put the StartDate and EndDate information is on the
relationship itself.

[0099] Relationships define a mapping between instances that is constrained by the
types given as the endpoint types. For example the LivesAt relationship cannot be a relationship
in which an Automobile is the Occupant because an Automobile is not a Person.

[0100] The data model does allow the definition of a subtype-supertype relationship
between types. The subtype-supertype relationship also known as the BaseType relationship is
defined in such a way that if Type A is a BaseType for Type B it must be the case that every
instance of B is also an instance of A. Another way of expressing this is that every instance that
conforms to B must also conform to A. If, for example A has a property Name of Type String
while B has a property Age of Type Int16, it follows that any instance of B must have both a
Name and an Age. The type hierarchy may be envisaged as an tree with a single supertype at the

-27-

WO 2005/024550 PCT/US2004/024437

I

root. The branches from the root provide the first level subtypes, the branches at this level
provide the second level subtypes and so on to the leaf-most subtypes which themselves do not
have any subtypes. The tree is not constrained to be of a uniform depth but cannot contain any
cycles. A given Type may have zero or many subtypes and zero or one super type. A given
instance may conform to at most one type together with that type’s super types. To put it another
way, for a given instance at any level in the tree the instance may conform to at most one subtype
at that level. A type is said to be Abstract if instances of the type must also be an instance of a

subtype of the type.
1. Items

[0101] An Item is a unit of storable information that, unlike a simple file, is an object
having a basic set of properties that are commonly supported across all objects exposed to an
end-user or application program by the storage platform. Items also have properties and
relationships that are commonly supported across all Item types including features that allow
new properties and relationships to be introduced, as discussed below.

[0102] Items are the objects for common operations such as copy, delete, move, open,
print, backup, restore, replicate, and so forth. Items are the units that can be stored and retrieved,
and all forms of storable information manipulated by the storage platform exist as Items,
properties of Items, or Relationships between Items, each of which is discussed in greater detail
herein below.

[0103] TItems are intended to represent real-world and readily-understandable units of
data like Contacts, People, Services, Locations, Documents (of all various sorts), and so on. Fig.
5A is a block diagram illustrating the structure of an Item. The unqualified name of the Item is
“Location”, The qualified name of the Item is “Core.Location” which indicates that this Item
structure is defined as a specific type of Item in the Core Schema. (The Core Schema is
discussed in more detail later herein.)

[0104] The Location Item has a plurality of properties including EAddresses,
MetropolitanRegion, Neighborhood, and PostalAddresses. The specific type of property for each
is indicated immediately following the property name and is separated from the property name
by a colon (*:”). To the right of the type name, the number of values permitted for that property

type is indicated between brackets (“[]”) wherein an asterisk (“*””) to the right of the colon (*:”)

-28 -

WO 2005/024550 PCT/US2004/024437

indicates an unspecified and/or unlimited number (“many”). A “1” to the right of the colon
indicates that there can be at most one value. A zero (“0”) to the left of the colon indicates that
the property is optional (there may be no value at all). A “1” to the left of the colon indicates
that there must be at least one value (the property is required). Neighborhood and
MetropolitanRegion are both of type “nvarchar” (or equivalent) which is a predefined data type
or “simple type” (and denoted herein by the lack of capitalization). EAddresses and

Postal Addresses, however, are properties of defined types or “complex types” (as denoted herein
by capitalization) of types EAddress and Postal Address respectively. A comple>\(type is type
that is derived from one or more simple data types and/or from other complex types. The
complex types for the properties of an Item also constitute “nested elements” since the details of
the complex type are nested into the immediate Item to define its properties, and the information
pertaining to these complex types is maintained with the Item that has these properties (within
the Item’s boundary, as discussed later herein). These concepts of typing are well known and
readily appreciated by those of skill in the art.

[0105] Fig. 5B is a block diagram illustrating the complex property types PostalAddress
and EAddress. The PostalAddress property type defines that an Item of property type
PostalAddress can be expected to have zero or one City values, zero or one CountryCode values,
zero or one MailStop values, and any number (zero to many) of PostalAddressTypes, and so on
and so forth. In this way, the shape of the data for a particular property in an Item is hereby
defined. The EAddress property type is similarly defined as shown. Although optionally used
herein this Application, another way to represent the complex types in the Location Item is to
draw the Item with the individual properties of each complex type listed therein. Fig. 5Cisa
block diagram illustrating the Location Item wherein its complex types are further described.
However, it should be understood that this alternative representation of the Location Item in this
Fig. 5C is for the exact same Item illustrated in Fig. 5A. The storage platform of the present
invention also allows subtyping whereby one property type can be a subtype of another (where
the one property type inherits the properties of another, parent property type).

[0106] Similar to but distinct from properties and their property types, Items inherently
represent their own Item Types that can also be the subject of subtyping. In other words, the
storage platform in several embodiments of the present invention allows an Item to be a subtype

of another Item (whereby the one Item inherits the properties of the other, parent Item).

-29 -

WO 2005/024550 PCT/US2004/024437

Moreover, for various embodiments of the present invention, every Item is a subtype of the
“Ttem” Ttem type which is the first and foundational Item type found in the Base Schema. (The
Base Schema will also be discussed in detail later herein.) Fig. 6A illustrates an Item, the
Location Item in this Instance, as being a subtype of the Item Item type found in the Base
Schema. In this drawing, the arrow indicates that the Location Item (like all other Items) is a
subtype of the Item Item type. The Item Item type, as the foundational Item from which all other
Ttems are derived, has a number of important properties such as ItemlId and various timestamps,
and thereby defines the standard properties of all Items in an operating system. In the present
figure, these properties of the Item Item type-are inherited by Location and thereby become
properties of Location.

[0107] Another way to represent the properties in tﬁe Location Item inherited from the
Item Item type is to draw Location with the individual properties of each property type from the
parent Ttem listed therein. Fig. 6B is a block diagram illustrating the Location Item wherein its
inherited types described in addition to its immediate properties. It should be noted and
understood that this Ttem is the same Item illustrated in Fig. 5A, although in the present figure
Location is illustrated with all of its properties, both immediate—shown in both this figure and
Fig. 5A—and inherited—shown in this figure but not Fig. SA (Whereaé in Fig. SA these
properties are referenced by showing with an arrow that the Location Item is a subtype of the
Ttem Item type).

[0108] Items are stand-alone objects; thus, if you delete an Item, all of the Items
immediate and inherited properties are also deleted. Similarly, when retrieving an Item, what is
received is the Item and all of its immediate and inherited properties (including the information
pertaining to its complex property types). Certain embodiments of the present invention may
enable one to request a subset of properties when retrieving a specific Item; however, the default
for many such embodiments is to provide the Item with all of its immediate and inherited
properties when retrieved. Moreover, the properties of Items can also be extended by adding
new properties to the existing properties of that Ttem’s type. These “extensions” are thereafter
bona fide properties of the Item and subtypes of that Item type may automatically include the
extension properties. \

[0109] The “boundary” of the Item is represented by its properties (including complex

property types, extensions, and so forth). An Item’s boundary also represents the limit of an

-30-

WO 2005/024550 PCT/US2004/024437

operation performed on an Item such as copy, delete, move, create, and so on. For example, in
several embodiments of the present invention, when an Item is copied, everything within that
Item’s boundary is also copied. For each Item, the boundary encompasses the following:

e The Item Type of the Item and, if the Item is a subtype of another Item (as is

the case in several embodiments of the present invention where all Items are

derived from a single Item and Item Type in the Base Schema), any applicable

subtype information (that is, information pertaining to the parent Item Type). If

the original Item being copied is a subtype of another Item, the copy may also be

a subtype of that same Item.

e The Item’s complex-type properties and extensions, if any. If the original

Item has properties of complex types (native or extended), the copy may also have

the same complex types.

e The Item’s records on “ownership relationships”, that is, the Item’s own list of

what other Items (the “Target Items™) are owned by the present Item (the

“Owning Item™). This is particularly relevant in regard to Item Folders, discussed

more fully below, and the rule stated below that all Items must belong to at least

one Item Folder. Moreover, in regard to elmbedded items—discussed more fully

below—an embedded item is considered to be part of the Item in which it is

embedded for operations such as copy, delete, and the like.
2. Item Identification

[0110] Items are uniquely identified within the global items space with an ItemID. The
Base.Item type defines a field ItemID of type GUID that stores the identity for the Item. An Item
must have exactly one identity in the data store 302.

An item reference is a data structure that contains information to locate and identify an
Item. In the data model, an abstract type is defined named ItemReference from which all item
reference types derive. The ItemReference type defines a virtual method named Resolve. The
Resolve method resolves the ItemReference and returns an Item. This method is overridden by
the concrete subtypes of ItemReference, which implement a function that retrieves an Item given

a reference. The Resolve method is invoked as part of the storage platform APT 322.

-31-

WO 2005/024550 PCT/US2004/024437

[0111] ItemIDReference is a subtype of ItemReference. It defines a Locator and an
ItemID field. The Locator field names (i.e. identifies) an item domain. It is processed by a
locator resolution method that can resolve the value of the Locator to an item domain. The
ItemlID field is of type ItemID

[0112] ItemPathReference is a specialization of ItemReference that defines a Locator
and a Path field. The Locator field identifies an item domain. It is processed by a locator
resolution method that can resolve the value of the Locator to an item domain. The Path field
contains a (relative) path in the storage platform namespace rooted at the item domain provided
by the Locator.

[0113] This type of reference cannot be used in a set operation. The reference must
generally be resolved through a path resolution process. The Resolve method of the storage
platform API 322 provides this functionality.

[0114] The reference forms discussed above are represented through the reference type
hierarchy illustrated in Fig. 11. Additional reference types that inherit from these types can be

defined in the schemas. They can be used in a relationship declaration as type of the target field.
3. Item Folders and Categories

[0115] As discussed more fully below, groups of Items can are organized into special
Items called Item Folders (which are not to be confused with file folders). Unlike in most file
systems, however, an Item can belong to more than one Item Folder, such that when an Item is
accessed in one Item Folder and revised, this revised Item can then be accessed directly from
another Item folder. In essence, although access to an Item may occur from different Item
Folders, what is actually being accessed is in fact the very same Item. However, an Item Folder
does not necessarily own all of its member Items, or may simply co-own Items in conjunction
with other folders, such that the deletion of an Item Folder does not necessarily result in the
deletion of the Item. Nevertheless, in several embodiments of the present invention, an Item
must belong to at least one Item Folder so that if the sole Item Folder for a particular Item is
deleted then, for some embodiments, the Item is automatically deleted or, in alternative
embodiments, the Item automatically becomes a member of a default Item Folder (e.g., a “Trash
Can” Item Folder conceptually similar to similarly-named folders used in various file-and-folder-

based systems).

-32.

WO 2005/024550 PCT/US2004/024437

[0116] As also discussed more fully below, Items may also belong to Categories based
on common described characteristic such as (a) an Item Type (or Types), (b) a specific
immediate or inherited property (or properties), or (c) a specific value (or values) corresponding
to an Item property. For example, a Item comprising specific properties for personal contact
information might automatically belong to a Contact Category, and any Item having contact
information properties would likewise automatically belong to this Category. Likewise, any
Ttem having a location property with a value of “New York City” might automatically belong to
a NewYorkCity Category.)

[0117] Categories are conceptually different form Item Folders in that, whereas Item
Folders may comprise Items that are not interrelated (i.e., without a common described
characteristic), each Item in a Category has a common type, property, or value (a
“commonality”) that is described for that Category, and it is this commonality that forms the
basis for its relationship to and among the other Items in the Category. Moreover, whereas an
Ttem’s membership in a particular Folder is not compulsory based on any particular aspect of that
Ttem, for certain embodiments all Items having a commonality categorically related to a
Category might automatically become a member of the Category at the hardware/software
interface system level. Conceptually, Categories can also be thought of as virtual Item Folders
whose membership is based on the results of a specific query (such as in the context ofa
database), and Items that meet the conditions of this query (defined by the commonalities of the
Category) would thus comprise the Category’s membership.

[0118] Fig. 4 illustrates the structural relationship between Items, Item Folders, and
Categories. A plurality of Items 402, 404, 406, 408, 410, 412, 414, 416, 418, and 420 are
members of various Item Folders 422, 424, 426, 428, and 430. Some Items may belong to more
than one Ttem Folder, e.g., Item 402 belong to Ttem Folders 422 and 424. Some Items, e.g., Item
402, 404, 406, 408, 410, and 412 are also members of one or more Categories 432, 434, and 436,
while other times, e.g., Items 414, 416, 418, and 420, may belong to no Categories (although this
is largely unlikely in certain embodiments where the possession of any property automatically
implies membership in a Category, and thus an Item would have to be completely featureless in
order not to be a member of any category in such an embodiment). In contrast to the hierarchical

structure of folders, both Categories and Item Folders have structures more akin to directed

-33-

WO 2005/024550 PCT/US2004/024437

graphs as shown. In any event, the Items, Item Folders, and Categories are all Items (albeit of
different Item Types).

[0119] In contrast to files, folders, and directories, the Items, Item Folders, and
Categories of the present invention are not characteristically “physical” in nature because they do
not have conceptual equivalents of physical containers, and therefore Items may exist in more
than one such location. The ability for Items to exist in more than one Item Folder location as
well as being organized into Categories provides an enhanced and enriched degree of data
manipulation and storage structure capabilities at the hardware/software interface level, beyond

that currently available in the art.
4. Schemas
a) Base Schema

[0120] To provide a universal foundation for the creation and use of Items, various
embodiments of the storage platform of the present invention comprise a Base Schema that
establishes a conceptual framework for creating and organizing Items and properties. The Base
Schema defines certain special types of Items and properties, and the features of these special
foundational types from which subtypes can be further derived. The use of this Base Schema
allows a programmer to conceptually distinguish Items (and their respective types) from
properties (and their respective types). Moreover, the Base Schema sets forth the foundational
set of properties that all Items may possess as all Items (and their corresponding Item Types) are
derived from this foundational Item in the Base Schema (and its corresponding Item Type).

[0121] As illustrated in Fig. 7, and in regard to several embodiments of the present
invention, the Base Schema defines three top-level types: Item, Extension, and PropertyBase. As
shown, the Item type is defined by the properties of this foundational “Ttem” Item type. In
contrast, the top level property type “PropertyBase” has no predefined properties and is merely
the anchor from which all other property types are derived and through which all derived
property types are interrelated (being commonly derived from the single property type). The
Extension type prloperties define which Item the extension extends as well as identification to
distinguish one extension from another as an Item may have multiple extensions.

[0122] TItemFolder is a subtype of the Item Item type that, in addition to the properties
inherited from Item, features a Relationship for establishing links to its members (if any),

-34 -

WO 2005/024550 PCT/US2004/024437

whereas both IdentityKey and Property are subtypes of PropertyBase. CategoryRef, in turn, is a
subtype of IdentityKey.

b) Core Schema

[0123] Various embodiments of the storage platform of the present invention further
comprise a Core Schema that provides a conceptual framework for top-level Items type
structures. Fig. 8A is a block diagram illustrating Items in the Core Schema, and Fig. 8B is a
block diagram illustrating the property types in the Core Schema. The distinction made between
files with different extensions (*.com, *.exe, *.bat, *.sys, etc.) and other such criteria in file-and-
folder-based systems is analogous to the function of the Core Schema. In the Item-based
hardware/software interface system, the Core Schema defines a set of core Item types that,
directly (by Item type) or indirectly (by Item subtype), characterize all Items into one or more
Core Schema Item types which the Item-based hardware/software interface system understands
and can directly process in a predetermined and predictable way. The predefined Item types
reflect the most common Items in the Item-based hardware/software interface system and thus a
level of efficiency is gained by the Ttem-based hardware/software interface system understanding
these predefined Item types that comprise the Core Schema.

[0124] In certain embodiments, the Core Schema is not extendable—that is, no
additional Item types can be subtyped directly from the Item type in the Base Schema except for
the specific predefined derived Item types that are part of the Core Schema. By preventing
extensions to the Core Schema (that is, by preventing the addition of new Items to the Core
Schema), the storage platform mandates the use of the Core Schema Item types since every
subsequent Item type is necessarily a subtype of a Core Schema Item type. This structure
enables a reasonable degree of flexibility in defining additional Item types while also preserving
the benefits of having a predefined set of core Item types.

[0125] For various embodiments of the present invention, and in reference to Fig. 8A,
the specific Item types supported by the Core Schema may include one or more of the following:

e Categories: Items of this Item Type (and subtypes derived therefrom) represent
valid Categories in the Item-based hardware/software interface system.

e Commodities: Items that are identifiable things of value.

-35-

WO 2005/024550 PCT/US2004/024437

[0126]

Devices: Items having a logical structure that supports information processing
capabilities.

Documents: Items with content that is not interpreted by the Item-based
hardware/software interface system but is instead interpreted by an application
program corresponding to the document type.

Events: Items that record certain occurrences in the environment.

Locations: Items representing physical locations (e.g., geographical locations).
Messages: Items of communication between two or more principals (defined
below).

Principals: Items having at least one definitively provable identity aside from an
TtemlId (e.g., the identification of a person, organization, group, household,
authority, service, etc.).

Statements: Items having special information regarding the environment
including, without limitation, policies, subscriptions, credentials, and so forth.

Likewise, and in reference to Fig. 8B, the specific property types supported by

the Core Schema may include one or more of the following:

Certificates (derived from the foundational PropertyBase type in the Base
Schema)

Principal Identity Keys (derived from the IdentityKey type in the Base Schema)
Postal Address (derived from the Property type in the Base Schema)

Rich Text (derived from the Property type in the Base Schema)

EAddress (derived from the Property type in the Base Schema)
IdentitySecurityPackage (derived from the Relationship type in the Base Schema)
RoleOccupancy (derived from the Relationship type in the Base Schema)

BasicPresence (derived from the Relationship type in the Base Schema)

These Items and Properties are further described by their respective properties set forth in Fig.
8A and Fig. 8B.

5. Relationships

[0127] Relationships are binary relationships where one Item is designated as source

and the other Item as target. The source Item and the target Item are related by the relationship.

-36-

WO 2005/024550 PCT/US2004/024437

The source Item generally controls the life-time of the relationship. That is, when the source Item
is deleted, the relationship between the Items is also deleted.

[0128] Relationships are classified into: Containment and Reference relationships. The
containment relationships control the life-time of the target Items, while the reference
relationships do not provide any life-time management semantics. Fig. 12 illustrates the manner
in which relationships are classified.

[0129] The Containment rc?lationship types are further classified into Holding and
Embedding relationships. When all ﬁolding relationships to an Item are removed, the Item is
deleted. A holding relationship controls the life-time of the target through a reference counting
mechanism. The embedding relationships enable modeling of compound Items and can be
thought of as exclusive holding relationships. An Item can be a target of one or more holding '
reli;ltionships; but an Item can be target of exactly one embedding relationship. An Item that is a
target of an embedding relationship can not be a target of any other holding or embedding
relationships.

[0130] Reference relationships do not control the lifetime of the target Item. They may
be dangling — the target Item may not exist. Reference relationships can be used to model
references to Items anywhere in the global Item name space (i.e. including remote data stores).

[0131] Fetching an Item does not automatically fetch its relationships. Applications
must explicitly request the relationships of an Item. In addition, modifying a relationship does
not modify the source or the target Item; similarly, adding a relationship does not affect the

source/target Item.

a) Relationship Declaration

[0132] The explicit relationship types are defined with the following elements:
e A relationship name is specified in the Name attribute.
e Relationship type, one of the following: Holding, Embedding, Reference. This is
specified in the Type attribute.
¢ Source and target endpoints. Each endpoint specifies a name and the type of the
referenced Item.
e The source endpoint field is generally of type ItemID (not declared) and it must

reference an Item in the same data store as the relationship instance.

-37-

WO 2005/024550 PCT/US2004/024437

e For Holding and Embedding relationships, the target endpoint field must be of
type ItemIDReference and it must reference an Item in the same store as the
relationship instance. For Reference relationships the target endpoint can be of
any ItemReference type and can reference Items in other storage platform data
stores.

e Optionally one or more fields of a scalar or PropertyBase type can be declared.
These fields may contain data associated with the relationship.

e Relationship instances are stored in a global relationships table.

e Every relationship instance is uniquely identified by the combination (source
ItemID, relationship ID). The relationship ID is unique within a given source
ItemID for all relationships sourced in a given Item regardless of their type.

[0133] The source Item is the owner of the relationship. While an Item designated as
owner controls the life time of the relationship, the relationship itself is separate from the Ttems it
relates. The storage platform API 322 provides mechanisms for exposing relationships associated
with an Item.

Here is an example of a relationship declaration:

<Relationship Name="Employment" BaseType="Reference" >
<Source Name="Employee" ItemType="Contact.Person"/>
<Target Name="Employer" ItemType="Contact.Organization"

ReferenceType="ItemIDReference" />

<Property Name="StartDate" Type="the storage
platformTypes.DateTime" />
<Property Name="EndDate" Type="the storage
platformTypes.DateTime" />
<Property Name="Office" Type="the storage
platformTypes.DateTime" />

</Relationship>

!

[0134] This is an example of a Reference relationship. The relationship can not be
created if the person Item that is referenced by the source reference does not exist. Also, if the
person Item is deleted, the relationship instances between the person and organization are
deleted. However, if the Organization Item is deleted, the relationship is not deleted and it is

dangling.

-38 -

WO 2005/024550 PCT/US2004/024437

b) Holding Relationship

[0135] Holding relationships are used to model reference count based life-time
management of the target Items.

[0136] An Item can be a source endpoint for zero or more relationships to Items. An
Ttem that is not an embedded Item can be a target of in one or more holding relationships.

[0137] The target endpoint reference type must be ItemIDReference and it must
reference an Item in the same store as the relationship instance.

[0138] Holding relationships enforce lifetime management of the target endpoint. The
creation of a holding relationship instance and the Item that it is targeting is an atomic operation.
Additional holding relationship instances can be created that are targeting the same Item. When
the last holding relationship instance with a given Item as target endpoint is deleted the target
Item is also deleted.

[0139] The types of the endpoint Items specified in the relationship declaration will
generally be enforced when an instance of the relationship is created. The types of the endpoint
Ttems can not be changed after the relationship is established.

[0140] Holding relationships play a key role in forming the Item namespace. They
contain the “Name” property that defines the name of the target Item relative to the source Item.
This relative name is unique for all the holding relationships sourced from a given Item. The
ordered list of this relative names starting from the root Item to a given Item forms the full name
to the Item.

[0141] The holding relationships form a directed acyclic graph (DAG). When a holding
relationship is created the system ensures that a cycle is not created, thus ensuring that the Item
namespace forms a DAG.

[0142] While the holding relationship controls the life time of the target Item, it does
not control the operational consistency of the target endpoint Item. The target Item is
operationally independent from the Item that owns it through a holding relationship. Copy,
Move, Backup and other operations on an Item that is a source of a holding relationship do not
affect the Item that is a target of the same relationship — for example that is, backing up a Folder
Ttem does not automatically backup all the Items in the folder (targets of the FolderMember
relationship).

[0143] The following is an example of a holding relationship:

-39-

WO 2005/024550 PCT/US2004/024437

<Relationship Name="FolderMembers" BaseType="Holding” >
<Source Name="Folder" I[temType="Base.Folder"/>
<Target Name="Item" ItemType="Base.ltem"
ReferenceType="TtemIDReference" />
</Relationship>

[0144] The FolderMembers relationship enables the concept of a Folder as a generic

collection of Items.

c) Embedding Relationships

[0145] Embedding relationships model the concept of exclusive control of the lifetime
of the target Item. T h;ay enable the concept of compound Items.

[0146] The creation of an embedding relationship instance and the Item that it is
targeting is an atomic operation. An Item can be a source of zero or more embedding
relationship. However, an Item can be a target of one and only one embedding relationship. An
Item that is a target of an embedding relationship can not be a target of a holding relationship.

[0147] The target endpoint reference type must be ItemIDReference and it must
reference an Item in the same data store as the relationship instance.

[0148] The types of the endpoint Items specified in the relationship declaration will
generally be enforced when an instance of the relationship is created. The types of the endpoint
Items can not be changed after the relationship is established.
| [0149] Embedding relationships control the operational consistency of the target
endpoint. For example the operation of serializing of an Item may include serialization of all the
embedding relationships that source from that Item as well as all of their targets; copying an Item
also copies all its embedded Items.

[0150] The following is an example declaration:

<Relationship Name="ArchiveMembers" BaseType="Embedding” >
<Source Name="Archive" ItemType="Zip.Archive" />
<Target Name="Member" ItemType="Base.Item "

ReferenceType="ItemIDReference" />

<Property Name=""ZipSize" Type="the storage
platformTypes.bigint" />
<Property Name="SizeReduction" Type="the storage
platformTypes.float" />

</Relationship>

-40 -

WO 2005/024550 PCT/US2004/024437

d) Reference Relationships

[0151] The reference relationship does not control life time of the Item it references.
Even more, the reference relationships do not guarantee the existence of the target, nor do they
guarantee the type of the target as specified in the relationship declaration. This means that the
reference relationships can be dangling. Also, the reference relationship can reference Items in
other data stores. Reference relationships can be thought of as a concept similar to links in web
pages.

[0152] An example of reference relationship declaration is the following:

<Relationship Name="DocumentAuthor" BaseType="Reference" >
<Sourc ItemType="Document"
ItemType="Base.Document"/>
<Target ItemType="Author" ItemType="Base.Author"

ReferenceType="ItemIDReference" />

<Property Type="Role" Type="Core.CategoryRef" />
<Property Type="DisplayName" Type="the storage
platformTypes.nvarchar(256)" />

</Relationship>

[0153] Any reference type is allowed in the target endpoint. The Items that participate
in a reference relationship can be of any Item type.

[0154] Reference relationships are used to model most non-lifetime management
relationships between Items. Since the existence of the target is not enforced, the reference
relationship is convenient to model loosely-coupled relationships. The reference relationship can

be used to target Items in other data stores including stores on other computers.

€) Rules and Constraints

[0155] The following additional rules and constraints apply for relationships:

e An Item must be a target of (exactly one embedding relationship) or (one or more
holding relationships). One exception is the root Item. An Item can be a target of
zero or more reference relationships

e An Item that is a target of embedding relationship can not be source of holding
relationships. It can be a source of reference relationships.

e An Item can not be a source of holding relationship if it is promoted from file. It

can be a source of embedding relationships and reference relationships.

-41 -

WO 2005/024550 PCT/US2004/024437

e An Item can that is promoted from a file can not be a target of an embedding

relationship.

f) Ordering of Relationships

[0156] In at least one embodiment, the storage platform of the present invention
supports ordering of relationships. The ordering is achieved through a property named “Order” in
the base relationship definition. There is no uniqueness constraint on the Order field. The order
of the relationships with the same “order” property value is not guaranteed, however it is
guaranteed that they may be ordered after relationships with lower “order” value and before
relationships with higher “order” field value.

[0157] Applications can get the relationships in the default order by ordering on the
combination (SourceltemID, RelationshipID, Order). All relationship instances sourced from a
given Item are ordered as a single collection regardless of the type of the relationships in the
collection. This however guarantees that all relationships of a given type (e.g., FolderMembers)
are an ordered subset of the relationship collection for a given Item.

[0158] The data store API 312 for manipulating relationships implement a set of
operations that support ordering of relationships. The following terms are introduced to help
explain the operations:

e RelFirst is the first relationship in the ordered collection with order value
OrdFirst;

® RelLast is the last relationship in the ordered collection with order value OrdLast,

e RelXis a given relationship in the collection with order value OrdX;

* RelPrev is a closest relationship in the collection to RelX with order value
OrdPrev smaller then OrdX; and

e RelNext is a closest relationship in the collection to RelX with order value
OrdNext greater then OrdX.

[0159] The operations include but are not limited to:

o InsertBeforeFirst(SourceltemID, Relationship) inserts the relationship as the first
relationship in the collection. The value of the “Order” property of the new

relationship may be smaller then OrdFirst.

-42 -

WO 2005/024550 PCT/US2004/024437

o [nsertAfterLast(SourceltemID, Relationship) inserts the relationship as the last
relationship in the collection. The value of the “Order” property of the new
relationship may be greater then OrdLast.

o InsertAt(SourceltemID, ord, Relationship) inserts a relationship with the
specified value for the “Order” property.

o InsertBefore(SourceltemID, ord, Relationship) inserts the relationship before the
relationship with the given order value. The new relationship may be assigned
“Order” value that is between OrdPrev and ord, noninclusive.

o InsertAfter(SourceltemID, ord, Relationship) inserts the relationship after the
relationship with the given order(value. The new relationship may be assigned
“Order” value that is between ord and OrdNext, non-inclusive.

» MoveBefore(SourceltemID, ord, RelationshipID) moves the relationship with
given relationship ID before the relationship with specified “Order” value. The
relationship may be assigned a new “Order” value that is between OrdPrev and
ord, non-inclusive.

o MoveAfter(SourceltemID, ord, RelationshipID) moves the relationship with
given relationship ID after the relationship with specified “Order” value. The
relationship may be assigned a new order value that is between ord and OrdNext,
non-inclusive.

[0160] As previously mentioned, every Item must be a member of an Item Folder. In
terms of Relationships, every Item must have a relationship with an Item Folder. In several
embodiments of the present invention, certain relationships are represented by Relationships
existing between the Items.

[0161] As implemented for various embodiments of the present invention, a
Relationship provides a directed binary relationship that is “extended” by one Item (the source)
to another Item (the target). A Relationship is owned by the source Item (the Item that extended
it), and thus the Relationship is removed if the source is removed (e.g., the Relationship is
deleted when the source Item is deleted). Moreover, in certain instances, a Relationship may
share ownership of (co-own) the target Item, and such ownership might be reflected in the
IsOwned property (or its equivalent) of the Relationship (as shown in Fig. 7 for the Relationship

property type). In these embodiments, creation of a new IsOwned Relationship automatically

-43 -

WO 2005/024550 PCT/US2004/024437

increments a reference count on the target Item, and deletion of such a Relationship may
decrement the reference count on the target Item. For these specific embodiments, Items
continue to exist if they have a reference count greater than zero, and are automatically deleted if
and when the count reaches zero. Again, an Item Folder is an Item that has (or is capable of
having) a set of Relationships to other Items, these other Items comprising the membership of the
Item Folder. Other actual implementations of Relationships are possible and anticipated by the
present invention to achieve the functionality described herein.

[0162] Regardless of actual implementation, a Relationship is a selectable connection
from one object to another. The ability for an Item to belong to more than one Item Folder, as
well as to one or more Categories, and whether these Items, Folders, and Categories are public or
private, is determined by the meanings given to the existence (or lack thereof) in an Item-based
structure. These logical Relationships are the meanings assigned to a set of Relationships,
regardless of physical implementation, which are specifically employed to achieve the
functionality described herein. Logical Relationships are established between the Item and its
Item Folder(s) or Categories (and vice versa) because, in essence, ltem Folders and Categories
are each a special type of Item. Consequently, Item Folders and Categories can be acted upon
the same way as any other Item—copied, added to an email meésage, embedded in a document,
and so and so forth without limitation—and Item Folders and Categories can be serialized and
de-serialized (imported and exported) using the same mechanisms as for other Items. (For
example, in XML all Items might have a serialization format, and this format applies equally to
Item Folders, Categories, and Items.)

[0163] The aforementioned Relationships, which represent the relationship between an
Item and it Item Folder(s) can logically extend from the Item to the Item Folder, from the Item
Folder to the Item, or both. A Relationship that logically extends from an Item to an Item Folder
denotes that the Item Folder is public to that Item and shares its membership information with
that Item; conversely, the lack of a logical Relationship from an Item to an Item Folder denotes
that the Item Folder is private to that Item and does not share its membership information with
that Item. Similarly, a Relationship that logically extends from an Item Folder to an Item
denotes that the Item is public and sharable to that Item Folder, whereas the lack of a logical
Relationship from the Item Folder to the Item denotes that the Item is private and non-sharable.

Consequently, when an Item Folder is exported to another system, it is the “public” Items that

-44 -

WO 2005/024550 PCT/US2004/024437

are shared in the new context, and when an Item searches its Items Folders for other, sharable
Items, it is the “public” Item Folders that provide the Item with information regarding sharable
Items that belong thereto.

[0164] Fig. 9 is a block diagram illustrating an Item Folder (which, again, is an Item
itself), its member Items, and the interconnecting Relationships between the Item Folder and its
member Items. The Item Folder 900 has as members a plurality of Items 902, 904, and 906.
Item Folder 900 has a Relationship 912 from itself to Item 902 which denotes that the Item 902
is public and sharable to Item Folder 900, its members 904 and 906, and any other Item Folders,
Categories, or Items (not shown) that might access Item Folder 900. However, there is no
Relationship from Item 902 to the Item Folder 900 which denotes that Item Folder 900 is private
to Item 902 and does not share its membership information with Item 902. Item 904, on the
other hand, does have a Relationship 924 from itself to Item Folder 900 which denotes that the
Ttem Folder 900 is public and shares its membership information with Item 904. However, there
is no Relationship from the Item Folder 900 to Item 904 which denotes that Item 904 is private
and not sharable to Item Folder 900, its other members 902 and 906, and any other Item Folders,
Categories, or Items (not shown) that might access Item Folder 900. In contrast with its
Relationships (or lack thereof) to Items 902 and 904, Item Folder 900 has a Relationship 916
from itself to the Item 906 and Item 906 has a Relationship 926 back to Item Folder 900, which
together denote that Item 906 is public and sharable to Item Folder 900, its members 902 and
904, and any other Item Folders, Categories, or Items (not shown) that might access Item Folder
900, and that Item Folder 900 is public and shares its membership information with Item 906.

[0165] As previously discussed, the Items in an Item Folder do not need to share a
commonality because Item Folders are not “described.” Categories, on the other hand, are
described by a commonality that is common to all of its member Items. Consequently the
membership of a Category is inherently limited to Items having the described commonality and,
in certain embodiments, all Items meeting the description of a Category are automatically made
members of the Category. Thus, whereas Item Folders allow trivial type structures to be
represented by their membership, Categories allow membership based on the defined
commonality.

[0166] Of course Category descriptions are logical in nature, and therefore a Category

may be described by any logical representation of types, properties, and/or values. For example,

- 45 -

WO 2005/024550 PCT/US2004/024437

a logical representation for a Category may be its membership to comprise Items have one of two
properties or both. If these described properties for the Category are “A” and “B”, then the
Categories membership may comprise Items having property A but not B, Items having property
B but not A, gnd Items having both properties A and B. This logical representation of properties
is described by the logical operator “OR” where the set of members described by the Category
are Items having property A OR B. Similar logical operands (including without limitation
“AND”, “XOR?”, and “NOT” alone or in combination) can also be used describe a category as
will be appreciated by those of skill in the art.

[0167] Despite the distinction between Item Folders (not described) and Categories
(described), Categories Relationship to Items and Items Relationship to Categories essentially
the same way as disclosed herein above for Item Folders and Items in many embodiments of the
present invention.

[0168] Fig. 10 is a block diagram illustrating a Category (which, again, is an Item
itself), its member Items, and the interconnecting Relationships between the Category and its
member Items. The Category 1000 has as members a plurality of Items 1002, 1004, and 1006,
all of which share some combination of common properties, values, or types 1008 as described
(commonality description 1008°) by the Category 1000. Category 1000 has a Relationship 1012
from itself to Item 1002 which denotes that the Item 1002 is public and sharable to Category
1000, its members 1004 and 1006, and any other Categories, Item Folders, or Items (not shown)
that might access Category 1000. However, there is no Relationship from the Item 1002 to the
Category 1000 which denotes that Cateéory 1000 is private to Item 1002 and does not share its
membership information with Item 1002. Item 1004, on the other hand, does have a
Relationship 1024 from itself to Category 1000 which denotes that the Category 1000 is public
and shares its membershjp information with Item 1004. However, there is no Relationship |
extended from Category 1000 to the Item 1004 which denotes that Item 1004 is private and not
sharable to Category 1000, its other members 1002 and 1006, and any other Categories, Item
Folders, or Items (not shown) that might access Category 1000. In contrast to its Relationships
(or lack thereof) with Items 1002 and 1004, Category 1000 has a Relationship 1016 from itself to
Item 1006 and Iter;l 1006 has a Relationship 1026 back to Category 1000, which altogether
denotes that Item 1006 is public and sharable to Category 1000, its Item members 1002 and

1004, and any other Categories, Item Folders, or Items (not shown) that might access Category

- 46 -

WO 2005/024550 PCT/US2004/024437

1000, and that the Category 1000 is public and shares its membership information with Item
1006.

[0169] Finally, because Categories and Item Folders are themselves Items, and Items
may Relationship to each other, Categories may Relationship to Item Folders and vice versa, and
Categories, Item Folders, and Items can Relationship to other Categories, Item Folders, and Item
respectively in certain alternative embodiments. However, in various embodiments, Item Folder
structures and/or Category structures are prohibited, at the hardware/software interface system
level, from containing cycles. Where Item Folder and Category structures are akin to directed
graphs, the embodiments that prohibit cycles are akin to directed acyclic graphs (DAGs) which,
by mathematical definition in the art of graph theory, are directed graphs wherein no path starts

and ends at the same vertex.
6. Extensibility

[0170] The storage platform is intended to be provided with an initial set of schemas
340, as described above. In addition, however, in at least some embodiments, the storage
platform allows customers, including independent software vendor (ISVs), to create new
schemas 344 (i.e. new Item and Nested Element types). This section addresses the mechanism
for creating such schemas by extending the Item types and Nested Element types (or simply
“Element” types) defined in the initial set of schemas 340.
[0171] Preferably, extension of the initial set of Item and Nested Element types is
constrained as follows:
e an ISV is allowed to introduce new Item types, i.e. subtype Base.Item;
e an ISV is allowed to introduce new Nested Element types, i.e. subtype
Base.NestedElement;
- o an ISV is allowed to introduce new extensions, i.e. subtype Base.NestedElement;
but,
e an ISV cannot subtype any types (Item, Nested Element, or Extension types)
defined by the initial set of storage platform schemas 340.

[0172] Since an Item type or Nested Element type defined by the initial set of storage

platform schemas may not exactly match an ISV application’s need, it is necessary to allow ISVs

-47 -

WO 2005/024550 PCT/US2004/024437

to customize the type. This is allowed with the notion of Extensions. Extensions are strongly
typed instances but (a) they cannot exist independently and (b) they must be attached to an Item
or Nested Element.

[0173] In addition to addressing the need for schema extensibility, Extensions are also
intended to address the “multi-typing” issue. Since, in some embodiments, the storage platform
may not support multiple inheritance or overlapping subtypes, applications can use Extensions as
a way to model overlapping type instances (e.g. Document is a legal document as well a secure

document).

a) Item extensions

[0174] To provide Item extensibility, the data model further defines an abstract type
named Base.Extension. This is a root type for the hierarchy of extension types. Applications can
subtype Base.Extension to create specific extension types.

[0175] The Base.Extension type is defined in the Base schema as follows:

<Type Name="Base.Extension" IsAbstract="True">
<Propety Name="ltemID"
Type="the storage platformTypes.uniqueidentified"
Nullable="false"
MultiValued="false"/>
<Property Name="ExtensioniD"
Type="the storage platformTypes.uniqueidentified"
Nullable="false"
MultiValued="false"/>
</Type>

[‘017 6] The ItemID field contains the ItemID of the item that the extension is associated
with. An Item with this ItemID must exist. The extension can not be created if the item with the
given ItemID does not exist. When the Item is deleted all the extensions with the same ItemID
are deleted. The tuple (ItemID,ExtensionID) uniquely identifies an extepsion instance.

[0177] The structure of an extension type is similar to that of an item type:

e Extension types have fields;
e Fields can be of primitive or nested element types; and

o Extension types can be sub-typed.

[0178] The following restrictions apply for extension types

-48 -

WO 2005/024550 PCT/US2004/024437

o Extensions can not be sources and targets of relationships;
e Extension type instances can not exist independently from an item; and

e [Extension types can not be used as field types in the storage platform type

definitions

[0179] There are no consiraints on the types of extensions that can be associated with a
given Item type. Any extension type is allowed to extend any item type. When multiple
extension instances are attached to an item, they are independent from each other in both
structure and behavior.

[0180] The extension instances are stored and accessed separately from the item. All
extension type instances are accessible from a global extension view. An efficient query can be
composed that will return all the instances of a given type of extension regardless of what type of
item they are associated with. The storage platform APIs provides a programming model that can
store, retrieve and modify extensions on items.

[0181] The extension types can be type sub-typed using the storage platform single
inheritance model. Deriving from an extension type creates a new extension type. The structure
or the behavior of an extension cannot override or replace the structure or behaviors of the item
type hierarchy. Similar to Item types, Extension type instances can be directly accessed through |
the view associated with the extension type. The ItemID of the extension indicates which item
they belong to and can be used to retrieve the corresponding Item object from the global Item
view. The extensions are considered part of the item for the purposes of operational consistency.
The Copy/Move, Backup/Restore and other common operations that the storage platform defines
may operate on the extensions as part of the item.

[0182] Consider the following example. A Contact type is defined in the Windows
Type set.

<Type Name="Contact" BaseType="Base.ltem” >
<Property Name="Name"
Type="String"
Nullable="false"
MultiValued="false"/>
<Property Name="Address"
Type="Address"
Nullable="true"
MultiValued="false"/>

- 49 -

WO 2005/024550 PCT/US2004/024437

<[Type>

[0183] A CRM application developer would like to attach a CRM application extension
to the contacts stored in the storage platform. The application developer would define a CRM

extension that would contain the additional data structure that the application can manipulate.

<Type Name="CRMEXxtension" BaseType="Base.Extension" >
<Property Name="Customer|D"
Type="String"
Nullable="false"
MultiValued="false"/>

 <[Type>

[0184] An HR application developer may want to also attach additional data with the
Contact. This data is independent from the CRM application data. Again the application

developer can create an extension

<Type Name="HRExtension" EBaseType="Base.Extension" >
<Property Name="EmployeelD"
Type="8tring"
Nullable="false"
MultiValued="false"/>

</Type>.)

[0185] CRMExtension and HRExtension are two independent extensions that can be
attached to Contact items. They are created and accessed independently of each other.

[0186] In the above example, the fields and methods of the CRMExtension type cannot
override fields or methods of the Contact hierarchy. It should be noted that instances of the
CRMExtension type can be attached to Item types other than Contact.

[0187] When the Contact item is retrieved, its item extensions are not automatically
retrieved. Given a Contact item, its related item extensions can be accessed by querying the
global extension view for extensions with the same ItemlId.

[0188] All CRMExtension extensions in the system can be accessed through the
CRMExtension type view, regardless of which item they belong to. All item extension of an item
share the same item id. In the above example, the Contact item instance and the attached
CRMExtension and HRExtension instances the same ItemlID.

[0189] The following table summarizes the similarities and differences between Item,

Extension and NestedElement types:

-50 -

WO 2005/024550

Item vs Item Extension vs NestedElement

PCT/US2004/024437

Item Item Extension NestedElement
Item ID Has its own item id Shares the item id ’ Does not have its
of the item own item id. Nested
element is part of
the item
Storage Item hierarchy is Item extension Stored with item
stored in its own hierarchy is stored
tables in its own tables
Query/Search Can query item Can query item Can generally be
tables extension tables queried only within
the containing item
context
Query/Search Can search across Can search across Can generally only
scope all instances of an all instances of an search within nested
item type item extension type element type
instances of a singe
(containing) item
Relationship Can have No Relationships to No Relationships to
semantics Relationships to item extensions nested elements
items ’
Association to Can be related to Can generally only Related to item via

items

other items via
holding, embedded
and soft’

Relationships

be related via
extensions. The
extension semantics
is similar to
embedded item

semantics

fields. Nested
elements are part of

the item

-5] -

WO 2005/024550 PCT/US2004/024437

b) Extending NestedElement types

[0190] Nested Element types are not extended with the same mechanism as the Item

types. Extensions of nested elements are stored and accessed with the same mechanisms as fields

of nested element types.

[0191] The data model defines a root for nested element types named Element:

<Type Name="Element"
IsAbstract="True">
<Property Name="ElementID"
Type="the storage platformTypes.uniqueidentifier"
Nullable="false"
MultiValued="false"/>
</Type>

[0192] The NestedElement type inherits from this type. The NestedElement element
type additionally defines a field that is a multi-set of Elements.

<Type Name="NestedElement" BaseType="Base.Element"
[sAbstract="True">
<Property Name="Extensions"
’ Type="Base.Element"
Nullable="false"
MultiValued="true"/>
</Type>

[0193] The NestedElement extensions are different from item extensions in the
following ways:

e Nested element extensions are not extension types. They do not belong to the
extension type hierarchy that is rooted in the Base.Extension type.

e Nested element extensions are stored along with the other fields of the item and
are not globally accessible — a query can not be composed that retrieves all
instances of a given extension type.

e These extensions are stored the same way as other nested elements (of the item)
are stored. Like other nested sets, the NestedElement extensions are stored in a
UDT. They are accessible through the Extensions field of the nested element type.

e The collection interfaces used to access multi-valued properties is also used for
accessing and iterating over set of type extensions.

[0194] The following table summarizes and compares Item Extensions and

NestedElement extensions.

-52 -

WO 2005/024550

Item extensions vs NestedElement extensions

PCT/US2004/024437

Item Extension

NestedElement Extension

Storage

Query/Search

Query/Search

scope

Programmability

Behavior
Relationship
semantics

Item ID

Item extension hierarchy is
stored in its own tables
Can query item extension

tables

Can search across all
instances of an item

extension type

Need special extension
APIs and special querying

on extension tables

Can associate behavior
No Relationships to item
extensions

Shares the item id of the

item

Stored like nested elements

Can generally only be
queried within the
containing item context
Can generally only search
within nested element type
instances of a singe
(containing) item
NestedElement extensions
are like any other multi-
valued field of nested
element; normal nested
element type APIs are used
No behavior permitted (7)
No Relationships to
NestedElement extensions
Does not have its own item
id. NestedElement
extension is part of the

item

D. DATABASE ENGINE

[0195] As mentioned above, the data store is implemented on a database engine. In the

present embodiment, the database engine comprises a relational database engine that implements

the SQL query language, such as the Microsoft SQL Server engine, with object relational

extensions. This section describes the mapping of the data model that the data store implements

to the relational store and provides information on the logical API consumed by storage platform

-53.

WO 2005/024550 PCT/US2004/024437

clients, in accordance with the present embodiment. It is understood, however, that a different
mapping may be employed when a different database engine is employed. Indeed, in addition to
implementing the storage platform conceptual data model on a relational database engine, it can
also be implemented on other types of databases, e.g. object-oriented and XML databases.

[0196] An object-oriented (OO) database system provides persistence and transactions
for programming language objects (e.g. C++, Java). The storage platform notion of an “item”
maps well to an “Object” in object-oriented systems, though embedded collections would have to
be added to Objects. Other storage platform type concepts, like inheritance and nested element
types, also map object-oriented type systems. Object-oriented systems typically already support
object identity; hence, item identity can be mapped to object identity. The item behaviors
(operations) map well to object methods. However, object-oriented systems typically lack
organizational capabilities and are poor in searching. Also, object-oriented systems to do not
provide support for unstructured and semi-structured data. To support the complete storage
platform data model described herein, concepts like relationships, folders, and extensions would
need to be added to the object data model. In addition, mechanisms like promotions,
synchronization, notifications, and security would need to be implemented.

[0197] Similar to object-oriented systems, XML databases, based on XSD (XML
Schema Definition), support a single-inheritance based type system. The item type system of the
present invention could be mapped to the XSD type model. XSDs also do not provide support for
behaviors. The XSDs for items would have to be augmented with item behaviors. XML
databases deal with single XSD documents and lack organization and broad search capabilities.
As with object-oriented databases, to support the data model described herein, other concepts
like relationships, and folders would need to be incorporated into such XML databases; also,
mechanisms like synchronization, notifications and security would need to be implemented.

[0198] Inregard to the following subsections, a few illustrations are provided to
facilitate the general information disclosed: Fig. 13 is a diagram illustrating a notification
mechanism. Fig. 14 is a diagram illustrating an example in which two transactions are both
inserting a new record into the same B-Tree. Fig. 15 illustrates a data change detection process.
Fig. 16 illustrates an exemplary directory tree. Fig. 17 shows an example in which an existing

folder of a directory-based file system is moved into the storage platform data store.

_54-

WO 2005/024550 PCT/US2004/024437

1. Data Store Implementation Using UDTs

[0199] In the present embodiment, the relational database engine 314, which in one
embodiment comprises the Microsoft SQL Server engine, supports built-in scalar types. Built-in
scalar types are “native” and “simple”. They are native in the sense that the user cannot define
their own types and they are simple in that they cannot encapsulate a complex structure. User-
defined types (hereinafter: UDTs) provide a mechanism for type extensibility above and beyond
the native scalar type system by enabling users to extend the type system by defining complex,
structured types. Once defined by a user, a UDT can be used anywhere in the type syétem that a
built-in scalar type might be used

[0200] In accordance with an aspect of the present invention, the storage platform
schemas are mapped to UDT classes in the database engine store. Data store Items are mapped
to UDT classes deriving from the Base.Item type. Like Items, Extensions are also mapped to
UDT classes and make use of inheritance. The root Extension type is Base.Extension, from
which all Extension types are derived.

[0201] A UDT is a CLR class — it has state (i.e., data fields) and behavior (i.e.,
routines). UDTs are defined using any of the managed languages — C#, VB.NET, etc. UDT
methods and operators can be invoked in T-SQL against an instance of that type. A UDT can be:
the type of a column in a row, the type of a parameter of a routine in T-SQL, or the type of a
variable in T-SQL

[0202] The mapping of storage platform schemas to UDT classes is fairly
straightforward at a high level. Generally, a storage platform Schema is mapped to a CLR
namespace. A storage platform Type is mapped to a CLR class. The CLR class inheritance
mirrors the storage platform Type inheritance, and a storage platform Property is mapped to a

CLR class property.
2. Item Mapping

[0203] Given the desirability for Items to be globally searchable, and the support in the
relational database of the present embodiment for inheritance and type substitutability, one
possible implementation for Item storage in the database store would be to store all Items in a

single table with a column of type Base.Item. Using type substitutability, Items of all types

-55-

WO 2005/024550 PCT/US2004/024437

could be stored, and searches could be filtered by Item type and sub-type using Yukon’s “is of
(Type)” operator.

[0204] However, due to concerns about the overhead associated with such an approach,
in the present embodiment, the Items are divided by top-level type, such that Items of each type
“family” are stored in a separate table. Under this partitioning scheme, a table is created for each
Item type inheriting directly from Base.Item. Types inheriting below these are stored in the
appropriate type family table using type substitutability, as described above. Only the first level
of inheritance from Base.Item is treated specially.

[0205] A “shadow” table is used to store copies of globally searchable properties for all
Items. This table may be maintained by the Update() method of the storage platform API,
through which all data changes are made. Unlike the type family tables, this global Item table
contains only the top-level scalar properties of the Item, not the full UDT Item object. The
global Item table allows navigation to the Item object stored in a type family table by exposing
an ItemID and a TypeID. The ItemID will generally uniquely identify the Item within the data
store. The TypelD may be mapped using metadata, which is not described here, to a type name
and the view containing the Item. Since finding an Item by its ItemID may be a common
operation, both in the context of the global Item table and otherwise, a Getltem() function is
provided to retrieve an Item object given an Item’s ItemID.

[0206] For convenient access and to hide implementation details to the extent possible,
all queries of Items might be against views built on the Item tables described above.

Specifically, views may be created for each Item type against the appropriate type family table.
These type views may select all Items of the associated type, including sub-types. For
convenience, in addition to the UDT object, the views may expose columns for all of the top-

level fields of that type, including inherited fields.

3. Extension Mapping

[0207] Extensions are very similar to Items and have some of the same requirements.
As another root type supporting inheritance, Extensions are subject to many of the same
considerations and trade-offs in storage. Because of this, a similar type family mapping is
applied to Extensions, rather than a single table approach. Of course, in other embodiments, a

single table approach could be used. In the present embodiment, an Extension is associated with

-56 -

WO 2005/024550 PCT/US2004/024437

exactly one Item by ItemID, and contains an ExtensionID that is unique in the context of the
Ttem. As with Items, a function might be provided to retrieve an Extension given its identity,
which consists of an ItemID and ExtensionID pair. A View is created for each Extension type,

similar to the Item type views.
4. Nested Element Mapping

[0208] Nested Elements are types that can be embedded in Items, Extensions,
Relationships, or other Nested Elements to form deeply nested structures. Like Items and
Extensions, Nested Elements are implemented as UDT’s, but they are stored within an Items and
Extensions. Therefore, Nested Elements have no storage mapping beyond that of their Item and
Extension containers. In other words, there are no tables in the system which directly store
instances of NestedElement types, and there are no views dedicated specifically to Nested

Elements.
5. Object Identity

[0209] Each entity in the data model, i.e., each Item, Extension and Relationship, has a
unique key value. An Item is uniquely identified by its ItemId. An Extension is uniquely
identified by a composite key of (ItemId, Extensionld). A Relationship is identified by a
composite key (TtemId, RelationshipId). ItemId, Extensionld and Relationshipld are GUID

values.
6. SQL Object Naming

[0210] All objects created in the data store can be stored in a SQL schema name
derived from the storage platform schema name. For example, the storage platform Base
schema (often called “Base’””) may produce types in the “[System.Storage]” SQL schema such as
“[System.Storage].Item”. Generated names are prefixed by a qualifier to eliminate naming
conflicts. Where appropriate, an exclamation character (!) is used as a separator for each lo gical
part of the name. The table below outlines the naming convention used for objects in the data
store. Bach schema element (Item, Extension, Relationship and View), is listed along with the

decorated naming convention used to access instances in the data store.

[Object | Name Decoration | Description | Example B

-57.-

WO 2005/024550 PCT/US2004/024437

Object Name Decoration Description Example

Master Item | Master!Item Provides a [System.Storage].

Search View summary of items | [Master!Item]
in the current
item domain.

Typed Item | ItemType Provides all [AcmeCorp.Doc].

search view property data [OfficeDoc]
from item and any
parent type(s).

Master Master!Extension . Provides a [System.Storage].

Extension summary of all [Master!Extension]

Search View extensions in the
current item
domain.

Typed Extension!extensionType | Provides all [AcmeCorp.Doc].

extension property data for | [Extension!StickyNote]

search view extension.

Master Master!Relationship Provides a [System.Storage].

Relationship summary of all [Master!Relationship]

View relationships in
the current item
domain.

Relationship | Relationship!relationship | Provides all data | [AcmeCorp.Doc].

view Name associated with a | [Relationship!AuthorsFrom
given relationship | Document]

View View!viewName Provides the [AcmeCorp.Doc].
columns/types [View!DocumentTitles]
based on the
schema view
definition.

Column Naming

[0211] When mapping any object model into a store, the possibility of naming

collisions occur due to additional information stored along with an application object. In order

to avoid naming collisions, all non-type specific columns (columns which do not map directly to

a named Property in a type declaration) is be prefixed with an underscore () character. In the

present embodiment, underscore (_) characters are disallowed as the beginning character of any

identifier property. Further, in order to unify naming between CLR and the data store, all

properties of a storage platform types or schema element (relationship, etc.) should have a

capitalized first character.

-58-

WO 2005/024550 PCT/US2004/024437

8. Search Views

[0212] Views are provided by the storage platform for searching stored content. A
SQL view is provided for each Item and Extension type. Further, views are provided to support
Relationships and Views (as defined by the Data Model). All SQL views and underlying tables
in the storage platform are read-only. Data may be stored or changed using the Update()
method of the storage platform API, as described more fully below.

[0213] Each view explicitly defined in a storage platform schema (defined by the
schema designer, and not automatically generated by the storage platform) is accessible by the
named SQL view [<schema-name>].[View!<view-name>]. For example, a view named
“BookSales” in the schema “AcmePublisher.Books” would be accessible using the name
“[AcmePublisher.Books].[View!BookSales]”. Since the output format of a view is custom on a
per-view basis (defined by an arbitrary query provided by the party defining the view), the
columns are directly mapped based on the schema view definition.

[0214] All SQL search views in the storage platform data store use the following
ordering convention for columns:

e Logical “key” column (s) of view result such as Itemld, Elementld,
Relationshipld, ...

e Metadata information on type of result such as Typeld.

e Change tracking columns such as CreateVersion, UpdateVersion, ...

e Type specific column(s) (Properties of the declared type)

e Type specific views (family views) also contain an object column which returns
the object

[0215] Members of each type family are searchable using a series of Item views, with
there being one view per Item type in the data store. Fig. 28 is a diagram illustrating the concept

of an Item search view.

a) Item

[0216] Each Item search view contains a row for each instance of an Item of the
specific type or its subtypes. For example, the view for Document could return instances of
Document, LegalDocument and ReviewDocument. Given this example, the Item views can be

conceptualized as shown in Fig. 29.

-59-

WO 2005/024550 PCT/US2004/024437

@ Master Item Search View

[0217] Each instance of a storage platform data store defines a special Item view called
the Master Item View. This view provides summary information on each Item in the data store.
The view provides one column per Item type property, a column which described the type of the
Item and several columns which are used to provide change tracking and synchronization
information. The master item view is identified in a data store using the name

“[System.Storage].[Master!Item]”.

Column Type Description
ItemlId - | ItemlId The storage platform identity of the Item
_Typeld Typeld The Typeld of the Item - identifies the exact type of

the Item and can be used to retrieve information on
the type using a Metadata catalog.

_Rootltemld | Itemld The ItemlId of the first non-embedded ancestor that
controls the lifetime of this item.

<global e Global change tracking information
change

tracking>

<Item props> |1n/a One column per Item type property

2) Typed Item Search Views

[0218] Each Item type also has a search view. While similar to the root Item view, this
view also provides access to the Item object via the “_Item” column. Each typed item search
view is identified in a data store using the name [schemaName).[itemTypeName]. For example

[AcmeCorp.Doc].[OfficeDoc].

Column Type Description

TtemlId Ttemld The storage platform identity of the Item

<type change e Type change tracking information

tracking>

<parent props> | <property One column per parent property
specific>

<item props> <property . .
specific> One column per exclusive property of this type

-60 -

WO 2005/024550 PCT/US2004/024437

_Item CLR type of Item | CLR object — type of declared Item

b) Item Extensions
[0219] All Item Extensions in a WinFS Store are also accessible using search views.
Q) Master Extension Search View

[0220] Each instance of a data store defines a special Extension view called the Master
Extension View. This view provides summary information on each Extension in the data store.
The view has a column per Extension property, a column which describes the type of the
Extension and several columns which are used to provide change tracking and synchronization
information. The master extension view is identified in a data store using the name

“[System.Storage].[Master!Extension]”.

Column Type Description
Itemld Itemld The storage platform identity of the Item with which
this extension is associated
Extensionld ExtensionId Id of this extension instance
(GUID)
_Typeld Typeld The Typeld of the Extension - identifies the exact

type of the extension and can be used to retrieve
information on the extension using the Metadata
catalog.

<global change e Global change tracking information
tracking>

<ext properties> <property

specific> One column per Extension type property

2) Typed Extension Search Views

[0221] Each Extension type also has a search view. While similar to the master
extension view, this view also provides access to the Item object via the _Extension column.
Each typed extension search view is identified in a data store using the name
[schemaName].[Extension!extensionTypeName]. For example

[AcmeCorp.Doc].[Extension! OfficeDocExt].

-61-

WO 2005/024550

PCT/US2004/024437

Column Type Description
ItemId Ttemld The storage platform identity of the Item with
which this extension is associated
Extensionld | Extensionld 1d of this extension instance
(GUID)
<type change Type change tracking information
tracking>
<parent <property One column per parent property
props> specific>
<ext props> <property . .
specific> One column per exc}us1ve property of this type
_Extension CLR type of CLR object — type of declared Extension
Extension
instance

c) Nested Elements

[0222] All nested elements are stored within Items, Extensions or Relationships

instances. As such, they are accessed by querying the appropriate Item, Extension, or

Relationship search view.

[0223] As discussed above, Relationships form the fundamental unit of linking between

Items in a storage platform data store.

d) Relationships

®

Master Relationship Search View

[0224] Each data store provides a Master Relationship View. This view provides

information on all relationship instances in the data store. The master relationship view is

identified in a data store using the name “[System.Storage].[Master!Relationship]”.

Column Type Description

TtemId ItemlId Identity of source endpoint (ItemlId)

Relationshipld Relationshipld The id of the relationship instance
(GUID)

-62 -

WO 2005/024550

PCT/US2004/024437

_RelTypeld RelationshipTypeld | The RelTypeld of the Relationship - identifies
the type of the relationship instance using the
Metadata catalog.

<global change Global change tracking information.

tracking>

TargetltemReference | ItemReference Identity of target endpoint

_Relationship Relationship Instance of the Relationship object for this
instance

2) Relationship Instance Search Views

[0225] Each declared Relationship also has a search view which returns all instances of
the particular relationship. While similar to the master relationship view, this view also
provides named columns for each property of the relationship data. Each relationship instance
search view is identified in a data store using the name
[schemaName].[Relationship!relationshipName]. For example

[AcmeCorp.Doc].[Relationship! DocumentAuthor].

Column Type Description
ItemId Itemld Identify of source endpoint (ItemId)
Relationshipld Relationshipld The id of the rela’fionship instance
(GUID)
<type change Type change tracking information
tracking>
TargetItemReference | ItemReference Identity of target endpoint
<source name> ItemId Named property of source endpoint identity

(alias for ItemId)

<target name> ItemReference or | Named property of target endpoint identity
derived class (alias and cast for TargetItemReference)

<rel property> <property One column per property of the relationship
specific> definition

_Relationship CLR type of
Relationship CLR object — type of declare Relationship
instance

- 63 -

WO 2005/024550 PCT/US2004/024437

e)
9. Updates

[0226] All views in the storage platform data store are read-only. In order to create a
new instance of a data model element (item, extension or relationship), or to update an existing
instance, the ProcessOperation or ProcessUpdategram methods of the storage platform API must
be used. The ProcessOperation method is a single stored procedure defined by the data store
which consumes an “‘operation” that details an action to be performed. The ProcessUpdategram
method is a stored procedure which takes an ordered set of operations, known as an
“apdategram”, which collectively detail a set of actions to be performed..

[0227] The operation format is extensible and provides various operations over the
schema elements. Some common operations include:

1. Item operations: |

a. Createltem (Creates a new item in the context of an embedding or holding
relationship)
b. Updateltem (updates an existing Item)
2. Relationship operations:
a. CreateRelationship (creates an instance of a reference or holding relationship)
b. UpdateRelationship (updates a relationship instance)
c. DeleteRelationship (removes a relationship instances)
3. Extension operations:
a. CreateExtension (adds an extension to an existing Item)
b. UpdateExtension (updates an existing extension)

c. DeleteExtension (deletes an extension)
10. Change Tracking & Tombstones

[0228] Change tracking and tombstone services are provided by the data store, as
discussed more fully below. This section provides an outline of the change tracking information

exposed in a data store.

- 64 -

WO 2005/024550 PCT/US2004/024437

a) Change Tracking

[0229] Each search view provided by the data store contains columns used to provide
change tracking information; the columns are common across all Item, Extension and
Relationship views. Storage platform Schema Views, defined explicitly by schema designers,
do not automatically provide change tracking information — such information is provided
indirectly through the search views on which the view itself is built.

[0230] For each element in the data store, change tracking information is available from
two places — the “master” element view and the “typed” element view. For example, change
tracking information on the AcmeCorp.Document.Document Item type is available from the
Master Item View “[System.Storage].[Master!Item]” and typed Item search view '

[AcmeCorp.Document].[Document].
(1) Change Tracking in “Master” Search Views

[0231] Change tracking information in the master search views provides information on
the creation and update versions of an element, information on which sync partner created the
element, which sync partner last updated the element and the version numbers from each partner
for creation and update. Partners in sync relationships (described below) are identified by
partner key. A single UDT object named _ChangeTrackingInfo of type
[System.Storage.Store].ChangeTrackingInfo contains all this information. The type is defined in
the System.Storage schema. _ChangeTrackingInfo is available in all global search views for

Ttem, Extension and Relationship. The type definition of ChangeTrackingInfo is:

<Type Name="”ChangeTrackingInfo” BaseType="Base.NestedElement”>
<FieldProperty Name="CreationLocalTS” Type="SglTypes.Sglint64”
Nullable="False” />
<FieldProperty Name="CreatingPartnerKey”

Type="S8qlTypes.SqlInt32” Nullable="False” />
<FieldProperty Name="CreatingPartnerTS”
Type="S5qlTypes.SqlInt64” Nullable="False” />
<FieldProperty Name="”LastUpdateLocalTs”
Type="SqlTypes.SqlInt64” Nullable="False” />
<FieldProperty Name="LastUpdatingPartnerKey”
Type="SqlTypes.SqlInt32” Nullable="False” />

<FieldProperty Name="LastUpdatingPartnerTS” Type="SqglTypes.SglInt64”
Nullable="False” />
</Type>

[0232] These properties contain the following information:

-65 -

WO 2005/024550 PCT/US2004/024437

Column Description
_CreationLocalTS Creation time stamp by the local machine
_CreatingPartnerKey PartnerKey of the partner who created this entity.

If the entity was locally created, this is the local
machine’s PartnerKey.

_CreatingPartnerTS Timestamp of the time at which this entity was
created at the partner corresponding to
_CreatingPartnerKey.

_LastUpdateLocalTS Local timestamp corresponding to the update time

at the local machine

_LastUpdatingPartnerKey | PartnerKey of the partner who last updated this
entity. If the last update to the entity was done
locally, this is the local machine’s PartnerKey.

_LastUpdatingPartnerTS | Timestamp of the time at which this entity was
updated at the partner corresponding to
_LastUpdatingPartnerKey.

2) Change Tracking in “Typed” Search Views

[0233] In addition to providing the same information as the global search view, each

typed search view provides additional information recording the sync state of each element in the

sync topology.
Column Type Description
<global change e Information from global change
tracking> , tracking

_ChangeUmtVersions | MultiSet<ChangeUnitVersion> | Description of version numbers
of the change units within the
particular element

_ElementSyncMetadata | ElementSyncMetadata Additional version-independent
metadata about this item that is
only of interest to the
Synchronization runtime.

_VersionSyncMetadata | VersionSyncMetadata Additional version-specific
metadata about this version that
is only of interest to the
Synchronization runtime

- 66 -

WO 2005/024550 PCT/US2004/024437

b) Tombstones

[0234] The data store provides tombstone information for Items, Extensions and
Relationships. The tombstone views provide information about both live and tombstoned entities
(items, extensions and relationships) in one place. The item and extension tombstone views do
not provide access to the corresponding object, while the relationship tombstone view provides
access to the relationship object (the relationship object is NULL in the case of a tombstoned

relationship).
€)) Item Tombstones

[0235] Item tombstones are retrieved from the system via the view

[System.Storage].[Tombstone!Item)].

Column Type Description

ItemId Itemld Identity of the Item

_TypelD Typeld Type of the Item

<Item properties> e Properties defined for all items

_Rootltemld ItemId Itemld of the first non-embedding item

| which contains this item.

_ChangeTrackingInfo | CLR instance of Change tracking information for this item
type
ChangeTrackingInfo

_IsDeleted BIT This 1s a flag that is O for live items, and 1

for tombstoned items.

_DeletionWallclock | UTCDATETIME The UTC wall clock date time according to
the partner which deleted the item. It is
NULL if the Item is live.

(2) Extension Tombstones

[0236] Extension tombstones are retrieved from the system using the view
[System.Storage].[Tombstone!Extension]. Extension change tracking information is similar to
y g g

that provided for Items with the addition of the Extensionld property.

Column Type Description

-67 -

WO 2005/024550 PCT/US2004/024437

ItemId ItemlId Identity of the Item which owns the
Extension
Extensionld Extensionid Extension Id of the Extension
_TypeID Typeld Type of the extension
_ChangeTrackingInfo | CLR instance of Change tracking information for this
type extension
ChangeTrackingInfo
_IsDeleted BIT This is a flag that is 0 for live items, and 1

for tombstoned extensions.

_DeletionWallclock | UTCDATETIME The UTC wall clock date time according to
the partner which deleted the extension. It is
NULL if the extension is live.

(3) Relationships Tombstone

[0237] Relationship tombstones are retrieved from the system via the view
[System.Storage].[Tombstone!Relationship]. Relationships tombstone information is similar to
that provided for Extensions. However, additional information is provided on the target ItemRef

of the relationship instance. In addition, the relationship object is also selected.

Column Type Description
Itemld Itemld Identity of the Item which owned the
relationship (identity of relationship source
endpoint)
Relationshipld Relationshipld Relationshipld of the relationship
_TypelD Typeld Type of the relationship
_ChangeTrackingInfo | CLR instance of Change tracking information for this
type relationship
ChangeTrackingInfo
_IsDeleted BIT This is a flag that is O for live items, and 1

for tombstoned extensions.

_DeletionWallclock | UTCDATETIME The UTC wall clock date time according to
the partner which deleted the relationship. It
is NULL if the relationship is live.

_Relationship CLR instance of a This is the relationship object for live
Relationship relationship. It is NULL for tombstoned
relationships.

- 68 -

WO 2005/024550 PCT/US2004/024437

TargetltemReference | ItemReference Identity of target endpoint

(4) Tombstone Cleanup

[0238] In order to prevent unbounded growth of tombstone information, the data store
provides a tombstone cleanup task. This task determines when tombstone information may be
discarded. The task computes a bound on the local create / update version and then truncates

the tombstone information by discarding all earlier tombstone versions.
11. Helper APIs and Functions

[0239] The Base mapping also provides a number of helper functions. These functions

are supplied to aid common operations over the data model.

a) Function [System.Storage].Getltem

Returns an ltem object given an ltemld
Il
ltem Getltem (ltemld ltemid)

b) Function [System.Storage].GetExtension

// Returns an extension object given an Itemld and Extensionld
1l
Extension GetExtension (ltemld Itemld, Extensionld Extensionld)

c) Function [System.Storage].GetRelationship

/I Returns an relationship object given an Itemld and Relationshipld
/)
Relationship GetRelationship (ltemld ltemld, Relationshipld Relationshipld)

12. Metadata

[0240] There are two types of metadata represented in the Store: instance metadata (the

type of an Item, etc), and type metadata.

a) Schema Metadata

[0241] Schema metadata is stored in the data store as instances of Item types from the

Meta schema.

-69 -

WO 2005/024550 PCT/US2004/024437

b) Instance Metadata

[0242] Instance metadata is used by an application to query for the type of an Item and
finds the extensions associated with an Item. Given the ItemId for an Item, an application can
query the global item view to return the type of the Item and use this value to query the

Meta.Type view to return information on the declared type of the Item. For example,

I/ Return metadata Item object for given item instance

/)

SELECT m._ltem AS metadatainfoObj

FROM [System.Storage].[ltem] i INNER JOIN [Meta].[Type] m ON i._Typeld = m.ltemid
WHERE i.ltemld = @ltemid

E. SECURITY

[0243] In general, all securable objects arrange their access rights using the access
mask format shown in the Fig. 26. In this format, the low-order 16 bits are for object-specific
access rights, the next 7 bits are for standard access rights, which apply to most types of objects,
and the 4 high-order bits are used to specify generic access rights that each object type can map
to a set of standard and object-specific rights. The ACCESS_SYSTEM_SECURITY bit
corresponds to the right to access the object’s SACL.

[0244] In the access mask structure of Fig. 26, item specific rights are placed in the
Object Specific Rights section (low order 16-bits). Because in the present embodiment, the
storage platform exposes two sets of APIs to administer security — Win32 and the storage
platform AP, the file system object specific rights must be considered in order to motivate the
design of the storage platform object specific rights.

[0245] The security model for the storage platform of the present invention is fully
described in the related applications incorporated by reference earlier herein. In this regard, Fig.
27 (parts a, b, and c) depicts a new identically protected security region being carved out of an

existing security r