
(10) Pub. No.: US 2004/0002375 A1
(43) Pub. Date:

Jan. 1, 2004
(54) GAME MACHINE TO BE CONNECTED TO NETWORK, METHOD OF PLAYING GAME AND GAME SYSTEM WITH USE OF THE MACHINE
(76) Inventor: Yoshio Ogawa, Osaka-shi (JP)

Correspondence Address:
ARMSTRONG, KRATZ, QUINTOS, HANSON \& BROOKS, LLP
1725 K STREET, NW
SUITE 1000
WASHINGTON, DC 20006 (US)
(21) Appl. No.: $\quad 10 / 370,654$
(22) Filed:

Feb. 24, 2003
(30)

Foreign Application Priority Data
Jun. 26, 2002 (JP)
2002-185664
Publication Classification
(51)

Int. Cl. ${ }^{7}$ $\qquad$ A63F 9/24
(52) U.S. Cl. 463/20

## ABSTRACT

A game machine main body has a manual start button, sensor means for recognizing in an amusement parlor H the presence of a person who plays a game with the machine main body 1, and a CPU for receiving signals from the sensor means. Changeover means transmits a signal indicating that the machine main body is not usable to a terminal of a player in the case where the sensor means recognizes in the parlor $H$ the presence of the person playing the game using the machine main body. The changeover means operates in conformity with an input from the terminal disregarding the manipulation of the start button when the sensor means detects in the parlor $H$ the absence of the person playing the game with use of the machine main body and when the changeover means receives a signal indicating that the player at the terminal desires to use the machine main body from the terminal via the network.



FIG 2


FIG. 3


FIG. 4


FIG. 5


FIG. 6



FIG. 8



FIG. 10


## GAME MACHINE TO BE CONNECTED TO NETWORK, METHOD OF PLAYING GAME AND GAME SYSTEM WITH USE OF THE MACHINE

## FIELD OF THE INVENTION

[0001] The present invention relates to game machines connectable to a network and to be operated remotely, a game playing method, and a game system with use of the machine.

## BACKGROUND OF THE INVENTION

[0002] A game system wherein game machines are remotely operable through a network is already proposed as disclosed, for example, in JP-A No. 2001-269442. FIG. 10 is a diagram showing the proposed system which relates to pachinko machines (arcade machines resembling pinball machines). A game machine main body 1 images of which are to be captured by a video camera 5 in front thereof is installed in an amusement parlor H . The machine main body 1 has a manipulation handle 46 , which is connected to a server 20 via a servo unit 47 and a control circuit 48. The machine main body 1 and the video camera 5 are also connected to the server 20. The images to be displayed on the machine main body $\mathbf{1}$ are input to the server 20.
[0003] Through a network 90, the server 20 is connected to a room R which is away from the parlor H and wherein a player is present, i.e., to the home of the player. Provided in the room R are a player's terminal $\mathbf{3}$ having a modem for use in transmitting data between the server 20 and the terminal $\mathbf{3}$, and a display 32 and a keyboard $\mathbf{3 3}$ which are connected to the terminal 3. Although FIG. 10 shows the game machine main body land the player's terminal $\mathbf{3}$ which are each only one in number, a plurality of players' terminals $\mathbf{3}$ are connected to the machine main body $\mathbf{1}$, such that the player who gains access to the machine main body 1 earliest can play the game with the machine main body 1.
[0004] Before playing, the player visits the parlor H and pays the parlor $H$ a charge for the desired number of pachinko balls to be rented. The charge and data identifying the player are stored in a memory of the terminal $\mathbf{3}$ and that of the machine main body 1 .
[0005] An image of the machine main body 1 captured by the video camera 5 is presented on the display 32. When the player manipulates the keyboard 33 , the handle 46 is moved via the control circuit 48 and the servo unit 47 , and an image of balls discharged from the main body $\mathbf{1}$ is shown on the display 32 by way of the terminal 3 . The machine main body 1 counts the number of balls discharged and the number of balls absorbed or returned to the machine main body 1 , and if the number returned to the main body 1 is in excess of the number of balls paid for, the main body 1 shows a message to the effect that the game is forcibly terminated on the display 32 via the server 20 and the terminal 3.
[0006] If the player terminated the game before using up the balls rented by manipulating the terminal 3 , the machine main body 1 adds the number of balls discharged from the body 1 to the number of balls paid for, or subtracting the number of balls returned to the machine main body from the number of balls paid for, and shows the resulting number on the display 32.
[0007] With the conventional system, however, the game machine main body $\mathbf{1}$ is provided only for those who play
the game through the terminals $\mathbf{3}$, so that the customers visiting the parlor $H$ are unable to play the game on the machine main body 1. Accordingly, even if there are many customers visiting the parlor $H$ even in the absence of those manipulating the terminals $\mathbf{3}$, the visitors to the parlor H are unable to use the machine main body 1 , hence a low rate of operation of the game machine main body 1 .
[0008] An object of the present invention is to provide a game machine which is usable both by the customer visiting the amusement parlor and by the player manipulating his or her terminal, and a game system for use with the game machine.

## SUMMARY OF THE INVENTION

[0009] A game machine main body $\mathbf{1}$ is provided with a manipulation unit manually operable by a player in an amusement parlor $H$, sensor means for recognizing in the parlor H the presence of a person who plays a game using the machine main body 1 , a CPU 6 for receiving signals from the sensor means, and a changeover means 7 provided between the CPU 6 and a network 90 .
[0010] The changeover means 7 performs a first operation of transmitting a signal indicating that the machine main body 1 is not usable to a player terminal 3 in the case where the sensor means recognizes in the parlor $H$ the presence of the person playing the game using the machine main body 1.
[0011] When the sensor means detects in the parlor H the absence of the person playing the game with use of the machine main body 1 and when the changeover means 7 receives a signal indicating that a player desires to use the machine main body $\mathbf{1}$ from a terminal $\mathbf{3}$ of the player via the network, the changeover means 7 performs a second operation in conformity with the input from the terminal 3 disregarding an input given by manually operating the manipulation unit
[0012] The changeover means 7 performs the first operation of transmitting a signal indicating that the machine main body 1 is not usable to the player terminal 3 in the case where the sensor means recognizes in the parlor $H$ the presence of a person who plays the game using the machine main body 1 . This enables the player in the parlor H to play the game without being interfered with by the terminal 3 .
[0013] When the sensor means detects in the parlor H the absence of the person playing the game with use of the machine main body 1 and when the changeover means 7 receives a signal indicating that a player desires to use the machine body 1 from the player terminal 3 via the network, the changeover means 7 feeds to the CPU 6 a signal indicating that the means 7 operates in conformity with the input from the player terminal 3 while disregarding any subsequent input given by manually operating the manipulation unit. The player in the parlor H is then unable to use the machine main body 1 accessed by the terminal 3 for the player using his or her terminal $\mathbf{3}$ to exclusively use the machine main body 1 . Thus, the player with the terminal 3 will not be interfered with by the player vising the parlor H .
[0014] In this way, both the player vising the parlor H and the player manipulating his terminal 3 can use the common game machine main body $\mathbf{1}$ to increase the rate of operation of the game machine body 1 .

## BRIEF DESCRIPTION OF THE DRAWINGS

[0015] FIG. 1 is a block diagram showing the overall construction of a game system of the invention;
[0016] FIG. 2 is a diagram showing the procedure to be performed by the player in using the system;
[0017] FIG. 3 is a perspective view of the main body of a game machine;
[0018] FIG. 4 is a perspective view of four reels;
[0019] FIG. 5 is a perspective view of a video camera;
[0020] FIG. 6 is an interior block diagram of the game machine main body;
[0021] FIG. 7 is a flow chart showing the game playing procedure to be performed by the player in a parlor;
[0022] FIG. 8 is a flow chart showing the game playing procedure to be performed by the player in a room;
[0023] FIG. 9 is a flow chart showing the game playing procedure to be performed by the player in the room; and
[0024] FIG. 10 is a diagram schematically showing a conventional game system.

## DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0025] An embodiment of the invention will be described below with reference to the drawings. The following description will be given with reference to an example of game machine, i.e., a slot machine into which medals are dropped in playing a game, whereas the game machine can be a pachinko machine or other game machine. The present invention has the feature that both the player in a room R and the player in an amusement parlor H can use a common game machine main body 1 .
[0026] FIG. 1 is a block diagram showing the overall construction of a game system of the invention. The parlor H has installed therein a plurality of game machine main bodies 1,1 , and images are captured of the front side of each machine main body 1 by a video camera 5 .
[0027] The game uses a number of points corresponding to the number of medals dropped into the machine main body. The number of points decreases when the game is played. With reference to the point number, the player recognizes whether the game can still be played or no allowance is left for playing further.
[0028] The game machine main bodies $\mathbf{1}$ are different in the number of points corresponding to one medal. For example, one machine main body 1 may count 50 points for one medal, and another machine main body may calculate one medal as 100 points. The player can select a particular machine main body $\mathbf{1}$ in accordance with the contents of play.
[0029] The game machine main body $\mathbf{1}$ is connected to data management means 2 via changeover means 7 , which changes over the player who can use the machine main body 1 from one of the player in the room R and the player in the parlor H to the other as will be described later.
[0030] The data management means 2 comprises a host computer which controls the entire system and which
includes a server 20. The server 20 includes a communication server for communication processing and database server. The data management means 2 has stored therein data as to the players, i.e., customers, and further the point conversion rate, that is, the number of points corresponding to one medal, for each machine main body 1 .
[0031] The data management means 2 is connected to rooms R which are away from the parlor H and where the respective players are present, i.e., the homes of the players. Each room R has a player's terminal 3 provided with a modem for use in communicating with the server 20, and a display 32, keyboard 33 and a card identifying device $\mathbf{3 0}$ (to be described later) which are connected to the terminal 3.
[0032] The video camera 5 has its image pickup posture altered by a remote control circuit 9 connected to the changeover means 7, and the image from the video camera 5 is compressed within the camera 5 and sent to the data management means 2. Each of the video cameras $\mathbf{5}$ is given an IP address. When the player in the room R gains access to the machine main body 1 via the data management means 2, the player is able to view the image captured by the camera 5 by means of the display 32. The remote control circuit 9 is connected to the server 20
[0033] Available as the network 90 is, for example, the Internet or a wide-area LAN. Although FIG. 1 shows only one parlor H , a plurality of parlors H may be provided.
[0034] To use the system described above, the player needs to follow the procedure shown in FIG. 2. The player first visits the parlor H (S1), identifies himself or herself by showing the driver's license or the like and needs to be enrolled as a member of the parlor H (S2). The enrollment prevents persons other than the members from breaking into the system.
[0035] After the enrollment, a membership card 31 is issued ( $\mathbf{S 3}$ ), and the player pays security money corresponding to the number of medals to be rented ( S 4 ). The membership card $\mathbf{3 1}$ is necessary for the player in the room R and also for the player in the parlor H .
[0036] Recorded on the membership card, which is an IC card, are the name of the parlor issuing the card, the name of the member, the membership number assigned to the member, the record of games in the past, and the number of medals rented by the member in corresponding relation with the security money. The card identifying device $\mathbf{3 0}$ is lent to the member player by the parlor H , and the membership card 31 is inserted into the device 30 shown in FIG. 1. The membership card 31 and the card identifying device 30 identify each other by cryptography or like method so as to exclude the use of membership cards and card identifying devices other than the membership cards 31 and card identifying devices $\mathbf{3 0}$ under the control of the system.
[0037] To play the game in the parlor H , the membership card is set in a medal lending machine (not shown) in the parlor $H$ for the identification of the membership, and a number of medals are thereafter lent within a limit allowed by the security money. Medals are then fed to the game machine main body 1 for playing the game. If medals still remain after the game is over or medals are gained, the medals are returned to the parlor H , and the number of excessive or remaining medals is recorded on the membership card.
[0038] With the present system, an amount of money corresponding to the number of medals is refunded within the range of security money when so desired in returning the medals to the parlor H .
[0039] Suppose security money of 100,000 yen is paid to rent 1000 medals, and playing the game on the machine main body $\mathbf{1}$ increases the number of medals in hand to 1500 . If the 1500 medals are returned to the parlor H , a balance of 1500 medals is input to the membership card. If the player desires to have the security money refunded at this time, the security money is refunded in an amount of up to 100,000 yen as a limit. The player then has 1500 medals minus 1000 medals corresponding to the security money of 100,000 yen, i.e., a balance of 500 medals, remaining on the membership card. These 500 medals can not be converted to money but are merely usable for playing on the next occasion. If the number of medals is decreased, for example, to 800 by playing, the amount of security money to be refunded is 80,000 yen corresponding to 800 medals.
[0040] When an amount of security money is additionally paid, the number of medals corresponding to the addition is of course input to the membership card. If no balance of medals remains on the card, the game can not be played further unless an additional amount of security money is paid.

## [0041] [Entire Game Machine]

[0042] FIG. 3 is a perspective view of the game machine main body 1 , which is placed on a desk $1 a$. The remote control circuit $\mathbf{9}$ is positioned inside a corner of the desk $1 a$. A support arm $\mathbf{5 5}$ extends from the top of the machine main body $\mathbf{1}$ and has the video camera 5 attached by a disk 52 to the outer end thereof. Signals for driving the camera 5 leftward or rightward, upward or downward, or zooming up the camera are fed from the remote control circuit 9 to the disk $\mathbf{5 2}$ or the camera $\mathbf{5}$ through the interior of the support arm 55.
[0043] A chair $\mathbf{8}$ for the player to sit in is provided in front of the machine main body $\mathbf{1}$. The body $\mathbf{1}$ has a panel 10 for displaying the contents of the game. The panel 10 comprises a front panel 10a, and a control panel $10 b$ extending from the lower end of the panel $10 a$ obliquely downward toward the player. The front panel $10 a$ has four small windows 11, 11, 11, 11 arranged side by side laterally. Arranged side by side
 rotatable independently of one another. The player can view designs provided on the outer peripheries of the reels $\mathbf{4}, \mathbf{4}$, 4, 4 through the small windows 11, 11, 11, 11. The small windows 11 may be provided in at least two stages as indicated in chain lines in FIG. 3.
[0044] The front panel $10 a$ has provided thereon a remainder point indicator 12 for showing the number of points in corresponding relation with the playing time. The greater the point number, the longer the player can play the game.
[0045] Arranged on the control panel $10 b$ are a medal inlet 13 having an inlet opening $13 a$, reel lock buttons $40,40,40$, 40 to be pushed by the player for halting the respective reels $4,4,4,4$, a start button 15 to be pushed for rotating all the reels $\mathbf{4 , 4}, 4,4$ at the same time, gambling row change buttons 16, 16 called 1BET and MAXBET for determining by a changeover the particular row of windows $\mathbf{1 1}$ which is to be made to present the same design at the windows in the
case where the small windows 11 are provided in at least two stages, and a payout button 17 to be pushed for refunding the medals remaining on completion of the game. When the start button 15 is pushed, the reels $4,4,4,4$ are brought out of rotation upon lapse of a predetermined period of time. As will be described later, also provided on the control panel $10 b$ is a ready state indicator $\mathbf{1 4}$ for indicating whether the player in the parlor H is ready for playing.
[0046] A medal box 18 is disposed at the lower end of the machine main body 1. A hopper 19 containing a multiplicity of medals is disposed in the interior of the body 1 in the rear of the medal box 18. The machine main body 1 has a light receiving sensor SE1 disposed below the control panel $10 b$ for receiving light from the front, while the chair $\mathbf{8}$ has a pressure sensor SE1 inside a top portion thereof. When the player is seated in the chair 8 , the pressure sensor SE2 is pushed, and the light impinging on the light receiving sensor SE1 is blocked, whereby the sensors SE1, SE2 are turned on. Accordingly, the sensors SE1, SE2 indicate whether the player is present in front of the machine main body 1.
[0047] FIG. 14 is a perspective view of the four reels 4, 4, 4, 4 (see JP-A No. 1996-182800). The reels 4 are fitted around a shaft $\mathbf{4 2}$ mounted on a frame $\mathbf{4 1}$, which is fixedly provided inside the machine main body 1 . Each reel 4 is provided inside thereof with a motor for rotating the reel 4 and a reel position sensor for detecting the rotated position of the reel 4 (neither of these components are shown). The position sensor indicates which of the designs appears through the window 11.
[0048] FIG. 5 is a perspective view of the video camera 5 . The camera 5 has incorporated therein a microphone 54 and a data compression circuit (not shown). The image data is converted to digital data and compressed to the format of MPEG, Motion JPEG or the like, and the sound data is converted to digital data and compressed to the format of ATRAC or the like, whereupon the converted data is sent to the data management means 2 .
[0049] The video camera 5 is attached to a holding bracket 50 , from which a support rod 51 extends upward. The rod 51 is rotatably fitted in the disk 52. A camera motor M1 is attached to the rear side of the disk $\mathbf{5 2}$ and provided with a roller 53 in contact with the support rod 51 . The remote control circuit 9 feeds an electric signal to the motor M1, causing the roller $\mathbf{5 3}$ to rotate the support rod $\mathbf{5 1}$ and the holding bracket $\mathbf{5 0}$, whereby the video camera $\mathbf{5}$ is moved leftward or rightward about the support rod $\mathbf{5 1}$ to alter the image pickup range for the machine main body 1 . Although not shown, another motor separate from the motor M1 may be provided as coupled to the video camera 5 for pivotally moving the camera 5 upward or downward.
[0050] FIG. 6 is an interior block diagram of the game machine main body 1 to show a circuit construction including a CPU 6 for controlling an operation for processing the game, and peripheral devices electrically connected to the CPU. The CPU 6 generally comprises a microcomputer and has a timer function provided by frequency-dividing an operation clock.
[0051] The signals to be input to the CPU 6 include those from a ROM 60 having stored therein divided arrangement tables of designs for use at the time of prize winning in addition to an operation program, a motor drive circuit 61
for rotating the motors for the reels $\mathbf{4 , 4 , 4 , 4 \text { , the start button }}$ 15 , the reel lock buttons 40 , the payout button 17 and reel position sensors SE3. The operation program and the arrangement tables of prize-winning designs are stored in the ROM 60 according to the prior art disclosed in JP-A No. 2001-137424.
[0052] A random number generator 66 is connected to the CPU 6 and has connected thereto a random number sampling circuit 67 . Upon depression of the start button 15 , the CPU 6 actuates the random number generator 66, which produces random numbers in a predetermined range. The sampling circuit 67 extracts an optional random number and feeds the number to the motor drive circuit $\mathbf{6 1}$. The circuit 61 rotates the reels $\mathbf{4}, 4,4,4 \mathrm{a}$ number of turns corresponding to the random number and thereafter deenergizes the motors to stop the reels $\mathbf{4}, 4,4,4$.
[0053] The CPU 6 is connected to a point memory 63 for storing points and to the remainder point indicator $\mathbf{1 2}$ to store the remaining points at the time of start of the game and during playing in the point memory 63, and show the remaining points on the indicator $\mathbf{1 2}$. The CPU 6 is connected to the ready state indicator $\mathbf{1 4}$ to show whether the machine main body 1 is usable or not on the indicator 14.
[0054] The CPU 6 is connected to a hopper drive circuit 64 to open or close the hopper 19 to adjust the amount of medals to be delivered to the medal box 18 . The hopper 19 is thus opened or closed according to the known technique disclosed in JP-A No. 1997-173631.
[0055] The CPU 6 is connected also to a medal dropping sensor SE4, which is disposed in the medal inlet 13 to check the medals dropped for genuineness and detect the number of medals dropped.
[0056] Incidentally, the CPU 6 may be connected to lamps 65 provided in the start button 15 and the payout button 17. The lamps $\mathbf{6 5}$ indicate that the machine main body $\mathbf{1}$ is in use when turned on, preventing other player from using the machine body in error, along with the ready state indicator 14.
[0057] The CPU 6 has connected thereto the changeover means 7, which has connected thereto the remote control circuit 9. The pressure sensor SE2 and the light receiving sensor SE1 are connected to the circuit 9 . The changeover means 7 selects by a changeover which of the player in the room $\mathbf{R}$ and the player in the parlor H can use the machine main body 1 . When the player in the parlor H is found to be using the main body 1 by the pressure sensor SE2 and the light receiving sensor SE1, the changeover means 7 informs the data management means 2 that the machine main body 1 is currently used exclusively.
[0058] If the machine main body 1 is not used by the player in the parlor H , the changeover means 7 informs the data management means $\mathbf{2}$ that the main body $\mathbf{1}$ is usable and vacant. If a signal is sent from the terminal $\mathbf{3}$, indicating that the terminal player desires to use the machine main body 1 , the changeover means 7 controls a signal from the CPU 6 as will be described below.
[0059] The game playing procedure to be performed by the player in the parlor H will be described below with reference to the flow chart of FIG. 7.
[0060] [In the Case of Player in the Parlor]
[0061] To play a game in the parlor H , the player sets his or her membership card into a medal lending device (not shown) in the parlor H and rents a number of medals not exceeding a limit corresponding to the security money.
[0062] When the player in the parlor H is to play the game, the player is seated in the chair $\mathbf{8}$ after recognizing that the game machine main body 1 is usable for playing with reference to the ready state indicator 14 . Signals from the pressure sensor SE2 and the light receiving sensor SE1 indicate that the player in the parlor H is to use the machine main body 1 exclusively. The changeover means 7 informs the data management means 2 that the machine main body 1 is in exclusive use by the player in the parlor H. As already stated, the machine main body $\mathbf{1}$ is not usable by the player's terminal 3 in this state.
[0063] The player drops a desired number of medals into the medal inlet opening $13 a$ (S10). The CPU 6 reads from the medal dropping sensor SE4 the number of medals dropped, calculates the remaining points by multiplying the number of points for each medal by the number of medals, and stores the number of remaining points in the point memory 63. The number of points corresponding to the number of medals dropped are shown on the remainder point indicator 12.
[0064] When the player pushes the start button 15 (S11), the four reels $\mathbf{4}, \mathbf{4}, \mathbf{4}, 4$ are rotated at the same time (S12), and designs appear through the small windows 11, 11, 11, 11 one after another while moving vertically. After the reels 4, $\mathbf{4 , 4 , 4}$ have rotated a number of turns corresponding to the number extracted by the random sampling circuit 67 , the reels $\mathbf{4}, \mathbf{4}, \mathbf{4}, \mathbf{4}$ come to a halt one by one. The reel position sensors SE3 indicate which designs appear through the respective windows $\mathbf{1 1}$. When the designs displayed on the windows 11, 11, 11, 11 are in a predetermined combination in match with an arrangement of designs stored in the ROM 60 , the combination is interpreted as winning a corresponding prize, and the CPU 6 sends a signal to the hopper drive circuit 64 to open the hopper 19 (S14, S16) and deliver from the hopper 19 to the medal box 18 a number of medals corresponding to the prize. The CPU 6 subtracts the number of points for one instance of playing from the number of remaining points but when the medal delivered is inserted into the medal inlet 13 again, the number of remaining points increase, enabling the player to continue the game.
[0065] If the designs appearing through the small windows 11 fail to match any of the design arrangements stored in the ROM 60, the hopper 19 remains closed (S15). The medal dropped by the player is accommodated in the hopper 19. The CPU 6 subtracts the number of points corresponding to one instance of playing, and the result of calculation is stored in the point memory 63 and shown on the remainder point indicator 12. The number of points shown on the indicator $\mathbf{1 2}$ tells the player whether points are still available for playing.
[0066] When the player pushes the payout button 17 during playing (S17), the CPU 6 shows the number of remaining points on the indicator 12 (S19) and returns to the medal box 18 a number of medals corresponding to the number of remaining points.
[0067] When the number of remaining points has reduced to zero in the point memory 63 due to continued playing
(S18), the CPU 6 deenergizes the motor drive circuit 61 to stop the reels $4,4,4,4$ and show the remainder of 0 on the indicator 12.
[0068] The player in the parlor $H$ returns the excessive medals to the parlor $H$ as previously stated, and the number of excessive medals is input to the membership card. Thus, the player in the parlor H play the game using actual medals.
[0069] [In the Case of Player in the Room]
[0070] With reference to FIGS. 8 and 9, a description will be given of the game playing procedure to be performed by the player in the room R. Unlike the player in the parlor $H$, the player in the room R plays the game using the remaining medals recorded on the membership card, i.e., electronic medals, without using actual medals.
[0071] When the player in the room R is to use the game machine main body 1 , the membership card is inserted into the card identifying device $\mathbf{3 0}$ ( $\mathbf{S 3 0}$ ), and the player's terminal $\mathbf{3}$ is initiated into operation to gain access to the data management means 2 via the network 90. The data management means 2 checks the player for membership with reference to data on the membership card forwarded from the terminal $3(\mathbf{S 3 1})$. Unless the player is found to be a member, "reject" is displayed ( $\mathbf{S 4 1}$ ). "Reject" means that the card is not usable. In this way, unidentified persons who are not members are prevented from inadvertently breaking into the system.
[0072] When the player having access to the means 2 is found to be a member, the data management means 2 actuates the changeover means 7 for the means 7 to send information as to whether the machine main bodies 1 in the parlor $\mathbf{1}$ are usable to the terminal $\mathbf{3}$ by way of the data management means 2 (S32).
[0073] Stated more specifically, if the signals from the pressure sensors SE2 and light receiving sensors SE1 reveal that the machine main bodies 1 are used by players in the parlor H , the machine main bodies $\mathbf{1}$ are of course unusable. The machine main body 1 already accessed by other terminal 3 is not usable either.
[0074] The display 32 indicates the machine main bodies 1 in the parlor $H$ which are vacant currently. With reference to the display 32 showing the machine main bodies 1 in use within the parlor H , the player selects the desired machine main body 1 which is not used by the player in the parlor $H$ and which is not accessed by other terminal 3, and inputs the selection data by the keyboard 33 ( S 33 ).
[0075] The data management means 2 informs the changeover means 7 of the selected machine main body $\mathbf{1}$ that the main body 1 is selected. The CPU 6 shows on the ready state indicator $\mathbf{1 4}$ that this main body $\mathbf{1}$ is not usable by the player in the parlor H .
[0076] At the same time, the changeover means 7 blocks the input from the medal dropping sensor SE4 and the start button 15 to the CPU 6, and transmits the outputs to the hopper drive circuit 64 and the remainder point indicator $\mathbf{1 2}$ to the terminal 3 via the data management means 2.
[0077] Accordingly, even if the player in the parlor $H$ inserted a medal into the medal inlet 13 in error, the machine main body 1 is in no way responsive to, and neglects, the input from the player in the parlor H . The machine main
body $\mathbf{1}$ is not accessible by other terminals 3 either. As a result, the selected machine main body $\mathbf{1}$ is made ready to use only by the player in the room R having access to the selected machine main body 1 .
[0078] The data management means 2 reads the remaining number of medals from the membership card via the network 90 (S34) and transmit the read data to the changeover means 7. If no medal remains, "reject" is displayed (S41). "Reject" means that the game can not be played because no medal remains.
[0079] The changeover means 7 converts a signal indicating that the electronic medals forwarded from the terminal 3 and feeds the resulting signal to the CPU 6, thus emulating a medal dropping signal.
[0080] The CPU 6 reads the point number for each medal from the data management means 2 , calculates the number of remaining points by multiplying the point number by the remaining quantity of electronic medals, and stores the number of remaining points in the point memory 63 . The remaining point number is shown only on the display 32 of the player using the machine main body exclusively. Although no actual medal is used, the CPU 6 performs the following operation assuming that medals are dropped into the machine body.
[0081] If medals remain, the player can play the game on the terminal 3. The data management means 2 transmits to the terminal 3 software necessary for actuating the keyboard 33 if the access from the terminal 3 to the machine main body $\mathbf{1}$ is found to be the first with reference to the results of games played in the past and recorded therein.
[0082] The player delivers from the keyboard 33 a signal for rotating the reels $4,4,4,4(\mathrm{~S} 36)$. The changeover means 7 transmits this signal to the CPU 6. The remote control circuit 9 operates, causing the camera 5 to start to capture images. The CPU 6 energizes the motor drive circuit 61 for the rotation of the reels $4,4,4,4$. Images of the reels 4 in rotation are captured, transmitted from the sever 20 of the means 2 to the terminal $\mathbf{3}$ via the network 90 and presented on the display 32. When the images and sound from the video camera 5 are transmitted through a single communication line along with other communication data, these items of data are great in volume even if compressed and are likely to subject the line to stress. Accordingly, the images and sound from the camera 5 are transmitted only to the terminal 3 of the current player through a line of broad band which is independent of other communication lines.
[0083] If the images from the camera 5 are deflected from the small windows $\mathbf{1 1}, \mathbf{1 1}, \mathbf{1 1}, \mathbf{1 1}$, the player in the room R gives through the keyboard 33 an input for moving the camera 5 lefward, rightward, upward or downward. The remote control circuit 9 connected to the changeover means 7 energizes the camera motor, moving the camera 5 and transmitting sound or images at an angle desired by the player in the room $R$.
[0084] After the reels $4,4,4,4$ have rotated a number of turns corresponding to the number extracted by the random sampling circuit 67 , the reels $4,4,4,4$ come to a halt one by one (S37). The reel position sensors SE3 indicate which designs appear through the respective windows 11. When the designs displayed on the windows $\mathbf{1 1}, \mathbf{1 1}, \mathbf{1 1}, \mathbf{1 1}$ are in a predetermined combination in match with an arrangement
of designs stored in the ROM 60, the combination is interpreted as winning a corresponding prize, and the CPU 6 informs the changeover means 7 and the data management means 2 that a number of points corresponding to the number of medals to be delivered is added to the balance of points (S38, S39), and shows this information on the display $\mathbf{3 2}$ of the terminal $\mathbf{3}$ via the network 90.
[0085] The CPU 6 acts to give an output signal to the hopper drive circuit 64 , but the changeover means 7 sends this signal not to the circuit 64 but to the terminal $\mathbf{3}$, thus emulating a medal output signal. Since the signal is not fed to the hopper drive signal 64, actual medals are not discharged from the machine main body 1 . The CPU subtracts a number of points corresponding to one instance of playing from the number of points corresponding to the number of medals to be delivered ( $\mathbf{S 4 0}$ ), and stores the resulting number of points in the point memory 63. The result is shown on the display $\mathbf{3 2}$ via the terminal $\mathbf{3}$, indicating to the player whether points are still available for playing.
[0086] If the designs appearing through the small windows 11 fail to match any of the design arrangements stored in the ROM 60, the CPU subtracts a number of points corresponding to one instance of playing from the balance, and the result of calculation is stored in the point memory 63.
[0087] If the player delivers a signal for an interruption of the game from the keyboard 33 during playing ( $\mathbf{S 4 2 \text { ), the }}$ CPU 6 divides the balance of points by the number of points corresponding to one medal and read from the data management means 2 to calculate how many medals the balance of points corresponds to, and sends the result of calculation and the balance of points to the data management means 2 . The result is shown on the display $\mathbf{3 2}$ via the terminal $\mathbf{3 2}$ (S44). The result of calculation and the balance of points are written to the membership card by the card identifying device 30. If the keyboard $\mathbf{3 3}$ gives no input for at least a predetermined period of time, the CPU 6 may be made to operate the same way as when discontinuing the game.
[0088] When the balance of points in the point memory 63 reduces to zero due to continued playing ( $\mathrm{S43}$ ), the CPU 6 deenergizes the motor drive circuit 61 to halt the reels 4,4 , 4, 4 and informs the data management means 2 that the balance of points is zero. The means 2 transmits this information to the terminal $\mathbf{3}$, showing the point balance of zero on the display 32 (S44)
[0089] In the case where the presence in the parlor H of a person playing the game with the machine main body 1 is detected by the light receiving sensor SE1 and the pressure sensor SE2 according to the foregoing embodiment, the changeover means 7 informs the terminal $\mathbf{3}$ that the machine main body 1 is not usable. This enables the player in the parlor H to play the game without being interfered with by the terminal 3.
[0090] The changeover means 7 operates in conformity with an input from the terminal $\mathbf{3}$ disregarding the manipulation of the start button $\mathbf{1 5}$ when the absence in the parlor H of the person playing the game with use of the machine main body $\mathbf{1}$ is detected by the light receiving sensor SE1 and the pressure sensor SE2 and when the changeover means 7 receives a signal requesting the use of the machine main body $\mathbf{1}$ from the terminal $\mathbf{3}$ via the network 90 . The player in the parlor H is then unable to use the machine main
body 1 accessed by the terminal 3 , and the player at the terminal 3 can use the machine main body 1 exclusively without being interfered with by the player in the parlor H . When the changeover means 7 is removed from the machine main body 1 of the present embodiment, with altered connection wiring used instead of connection to the network 90 , the machine is usable as a usual game machine.
[0091] Thus, the common machine main body 1 is usable by both the visitor to the parlor H and the player manipulating the terminal $\mathbf{3}$, and is made operable at a higher rate.
[0092] Although the machine main body in the foregoing embodiment is a slot machine wherein the reels $\mathbf{4 , 4 , 4 , 4}$ are rotatable, the slot machine may be modified by replacing the reels 4 with a CRT wherein designs are movable vertically. The slot machine is provided with the start button 15, whereas a drive lever (not shown) may alternatively be used for rotating the reels $\mathbf{4}$ by a pulling-in movement of the lever.
[0093] A pachinko machine or a TV game machine wherein an animation screen is movable may be used as a substitute for the slot machine.
[0094] Furthermore, electron money, a credit card or bank card may be used in place of the membership card.

## What is claimed is:

1. A game machine comprising a main body having a panel for displaying the contents of a game and connectable to a terminal of a player via a network, and a video camera connectable to the terminal via the network for capturing images of what is displayed on the panel, the game machine being characterized in that:
the machine main body is provided with a manipulation unit manually operable by a player in an amusement parlor $H$, sensor means for recognizing in the parlor $H$ the presence of a person who plays the game using the machine main body, a CPU for receiving signals from the sensor means, and a changeover means provided between the CPU and the network,
the changeover means being operable to perform a first operation of transmitting a signal indicating that the machine main body is not usable to the terminal in the case where the sensor means recognizes in the parlor H the presence of the person playing the game using the machine main body,
the changeover means being operable to perform a second operation in conformity with an input from the terminal disregarding an input given by manually operating the manipulation unit when the sensor means detects in the parlor $H$ the absence of the person playing the game with use of the machine main body and when the changeover means receives a signal indicating that the player at the terminal desires to use the machine main body from the terminal via the network.
2. A game machine according to claim 1 wherein in the second operation, the CPU displays on the panel that manual operation of the manipulation unit is prohibited.
3. A game machine according to claim 1 wherein when the machine main body is already accessed by a terminal of other player, the changeover means performing the first operation transmits to a terminal of a player subsequently gaining access to the machine main body a signal indicating that the machine main body is not usable.
4. A method of playing a game with use of a game machine comprising a main body having a panel for displaying the contents of the game and connectable to a terminal of a player via a network, and a video camera connectable to the terminal via the network for capturing images of what is displayed on the panel, the method being characterized in that:
the machine main body is provided with a manipulation unit manually operable by a player in an amusement parlor H , sensor means for recognizing in the parlor H the presence of a person who plays a game using the machine main body, a CPU for receiving signals from the sensor means, and a changeover means provided between the CPU and the network,
the method having the steps of:
checking by the sensor means whether there is in the parlor H the person who plays the game using the machine main body, transmitting by the changeover means a signal indicating that the machine main body is not usable to the terminal in the case where the sensor means recognizes in the parlor $H$ the presence of the person playing the game using the machine main body, and
permitting the changeover means to operate in conformity with an input from the terminal disregarding an input given by manually operating the manipulation unit when the sensor means detects in the parlor H the absence of the person playing the game with use of the machine main body and when the changeover means receives a signal indicating that the player at the terminal desires to use the machine main body from the terminal via the network.
5. A game system comprising a game machine main body to be installed in an amusement parlor H and having a panel for displaying the contents of a game, a terminal of a player to be installed at a position away from the machine main body, a video camera for capturing images of what is displayed on the panel, and a network interconnecting the video camera and the terminal, the game system being characterized in that:
the machine main body is provided with a manipulation unit manually operable by a player in the parlor H , sensor means for recognizing in the parlor $H$ the presence of a person who plays the game using the machine main body, a CPU for receiving signals from the sensor means, and a changeover means provided between the CPU and the network,
the changeover means being operable to perform a first operation of transmitting a signal indicating that the machine main body is not usable to the terminal in the case where the sensor means recognizes in the parlor H the presence of the person playing the game using the machine main body,
the changeover means being operable to perform a second operation in conformity with an input from the terminal disregarding an input given by manually operating the manipulation unit when the sensor means detects in the parlor H the absence of the person playing the game with use of the machine main body and when the changeover means receives a signal indicating that the player at the terminal desires to use the machine main body from the terminal via the network.
