A grip (1) for sticks or poles with a loop (6) consists entirely of grip-friendly material such as foamed plastic and has a holding part (20) which is mounted solely on the shaft (5) for fixing the strip (7) which forms the loop (6). Thus the loop (6) can be attached to the shaft (5) without the grip (1) itself being used at the same time for attaching the loop (6); this makes it possible to produce the grip from grip-friendly material without the danger of the grip (1) being damaged by the forces applied by the loop (6).
The invention relates to a grip for sticks or poles which are used for example when skiing or for hiking. These grips are equipped with loops which facilitate the use of the stick or pole which is being grasped with the hand on the grip and which improve the use of the pole or stick.

In known sticks and poles the grip in one embodiment consists entirely of compact plastic which is placed over the top end of the shaft and is fixed there, the ends of the loop being fixed on the grip.

To fix the loop on/in the grip, in one known embodiment mounting screws are used which are driven essentially coaxially to the shaft into the grip from overhead. In another known embodiment the ends of the strip which forms the loop are inserted into a recess of the grip which is open towards one side and then fixed there. In this regard an embodiment is known in which a clamping part is molded onto one end of the belt or strip which forms the loop and is inserted into the recess in the head of the grip, the ends of the strip which forms the loop being placed around a pin which penetrates the head of the grip.

The disadvantage in the known embodiment is that the loop is attached to the grip and not directly to the shaft. The grip must therefore be made correspondingly strong.

Recently, grip-friendly materials such as foam plastics or natural cork have been used for grips for poles or sticks. The problem in these materials is that due to low strength of the grip-friendly materials it is not possible to attach the loop directly to the grip. Therefore it has been proposed that the head of the grip to which the loop is attached be produced as a separate molding which is formed from compact plastic, and only the part of the grip underneath the head be made from a grip-friendly material (foam plastic or natural cork). This embodiment is disadvantageous since the grip consists of at least two parts, specifically the head and the actual grip part which is located underneath. This complicates not only the production, but also the warehousing and finally the production of sticks or poles since several working processes are necessary to mount the grip. In addition the actual grip part of grip-friendly material after mounting the head of compact material on the shaft must be pushed over the entire shaft “from underneath” until it adjoins the head of the grip which is mounted on the top end of the shaft. Another disadvantage of this embodiment is that between the head of the grip and the actual grip part there is a joint which increases the danger of destruction or damage of the grip and moreover forms a site at which dirt can collect.

The object of the invention is to propose a grip in which at least its part taken into the hand by the user can consist entirely of grip-friendly material.

This object is achieved first of all with a grip which has the features of claim 1.

Preferred and advantageous embodiments of the grip as claimed in the invention are the subject matter of the dependent claims.

Since in the grip as claimed in the invention there is a means (holding part) which is used to attach the loop to the shaft and which is located within the grip, the grip itself is not used to attach the loop so that no forces are applied by the loop to the grip. Therefore the grip can be produced entirely of grip-friendly material; this not only improves comfort in using the stick or pole, but also saves weight since grip-friendly materials are lighter than the compact plastics used for a long time for the head of the grip.

In the grip as claimed in the invention it is a major advantage that there is a part for attaching the loop, the holding part, which part is attached to the shaft and which is separate from the external, preferably one-piece grip part. Thus, for the grip a material can be selected which is “grip-friendly”, conversely for the holding part independent thereof a material with the necessary strength properties can be chosen.

In the invention the grip can be produced in one piece from grip-friendly material so that the disadvantages of a two-part grip can be avoided.

Moreover the grip as claimed in the invention can be more easily mounted on the shaft since it can now be slipped onto the shaft from the “top” end of the stick or pole, since the means for attaching the loop is held entirely within the grip and thus can be made such that it does not project over the outside periphery of the shaft, therefore for example has the same diameter as the latter. Of course this does not preclude the grip itself and/or several parts or segments of the grip, for example those which increase the length of the grip, from also being slipped onto the shaft from underneath.

In one embodiment of the grip as claimed in the invention the holding part for fixing the loop is attached to the top end of the stick or pole and then the grip of grip-friendly material is pushed over the top end of the shaft provided with the holding part. Then the loop is joined to the grip in the conventional manner, for example either by driving a screw into the holding part coaxially to the axis of the shaft, or the type of fastening of the loop with a pin which penetrates the grip transversely and ends of the strip which forms the loop which are turned down in a U-shape, and with a clamp part molded on one end, is used.

It is apparent that in the embodiment as claimed in the invention the loop with its ends is attached to the holding part which is directly mounted on the shaft so that the grip itself is not loaded and can be produced from the correspondingly light and grip-friendly material.

In one embodiment of the invention the top end of the holding part projects through an opening on the top end of the grip. In this embodiment, in the top end of the holding part, which end is made for example in the shape of a shell, articles such as bodies which bear trademarks or other symbols and which consist of soft material, especially the material of the grip, can be used. Other articles such as a compass can be mounted in this way on the top end of the grip.

Other details, features and advantages of the invention follow from the description of preferred embodiments below using the drawings.

FIG. 1 shows a known grip for poles or sticks in a two-part embodiment in an axial section;

FIG. 2 shows a first embodiment of a grip as claimed in the invention in an axial section;

FIG. 3 shows a second embodiment of a grip as claimed in the invention;
FIG. 4a and FIG. 4b show the holding part which is used in the embodiment as shown in FIG. 3 for the loop in two different views;

FIG. 4c shows a section along line A-A in FIG. 4b;

FIG. 5 shows another embodiment in a section;

FIG. 6 shows the holding part from FIG. 5; and

FIG. 7 shows the holding part in another view.

The known grip 1 shown in FIG. 1 consists of two parts, specifically a head part 2 and a grip part 3. The head part 2 is placed with a sleeve-shaped shoulder 4 over the end of the shaft 5.

The head part 2 of the grip 1 consists of a strong, compact material, especially strong plastic, and is used to attach a loop 6 to the grip 1. To do this, on one end of the strip 7 which forms the loop 6 there is a clamping part 8. The two ends of the strip 7 are wound around a pin 9 which is inserted through the head part 2 of the grip 1. For this purpose the ends of the strip 7 bent in a U-shape are inserted into the recess 10 of the head part 2 and then the pin 9 is inserted through holes in the head part 2. Thus, the strip 7 which forms the loop 6 is attached to the grip 1, and the length of the loop 6 can be changed in the known manner.

To mount the grip, first the head part 2 is placed over the top end of the shaft 5 and attached there in some way, if not sufficient with an interference fit. The grip part 3 of the grip 1 is slipped over the shaft 5 from the other (bottom) end and is fixed for example by cementing. To do this it is necessary for the grip part 3 to be coated inside first with a slippery substance so that it can be pushed over the shaft 5 into the area of the cement layer.

Nevertheless, pushing on the grip part 3 is an activity which is complex and requires increased attention because the grip part 3 generally consists of grip-friendly material such as foamed plastic, foam rubber, natural cork or a natural cork granulate which is bonded with a binder.

In the first embodiment of the grip as claimed in the invention which is shown in FIG. 2 the grip 1 is made entirely and integrally of grip-friendly material. In the grip 1 in a segment of its top end there is an opening 10 through which the ends of the strip 7 which forms the loop 6 are routed.

A cylindrical holding part 12 is pressed into the top end of the shaft 5 such that its lengthwise segment 13 with a smaller diameter is held in the interior of the shaft 5, and the shoulder 14 on the top end of the segment 13 sits on the top end of the shaft 5. In the top segment of the holding part 12 which projects over the shaft 5 there is a hole 15 into which a screw 16 can be driven after it has been inserted through a corresponding hole 17 in the top segment of the grip 1 and through holes on the two ends of the strip 7 which forms the loop 6. Thus, the loop 6 is mounted on the shaft 5 without the grip 1 itself being loaded. It is therefore easily possible to produce the grip 1 entirely from one of the aforementioned grip-friendly materials.

Mounting of the grip 1 in the embodiment shown in FIG. 2 is also simplified since it can be entirely pushed simply from the top end of the shaft 5 onto it.

To change the size of the loop 6 in the embodiment shown in FIG. 2 there is an adjustment element 18 in the strip 7 which forms the loop 6.

In the embodiment shown in FIGS. 3 and 4, a, b, and c, within the embodiment of the grip which is made in one piece in the same way as in the embodiment of the grip as claimed in the invention shown in FIG. 1, there is a holding part 20 for the loop 6.

In the embodiment shown in FIGS. 3 and 4 the holding part 20 which can consist for example of plastic is slipped with a sleeve-shaped shoulder 21 over the top end of the shaft 5 so that it is located there with an interference fit. In the part 22 of the holding part 20 located above the shaft 5 and the sleeve-shaped shoulder 21 there is a recess 23 which is bordered by two side walls 25 and at the top by a transverse member 26, and underneath by an intermediate bottom 27. The intermediate bottom 27 also determines how far the holding part 21 can be pushed onto the top end of the shaft 5. In the walls 25 there are holes 24 through which the pin 9 which has already been described using FIG. 1 can be inserted, as is shown in FIG. 3. The ends of the strip 7 which forms the loop 6 are bent in a U-shape, pushed through the recess 10 into the space 23 in the holding part 20, and then the pin 9 is mounted in the holes 24 by which the loop 6 is attached to the holding part 20.

It is apparent that in the embodiment shown in FIGS. 3 and 4 the holding part is located entirely within the grip 1, and is used to attach the loop 6 without the grip 1 itself being used for attaching the loop 6.

It should be pointed out that in the embodiment shown in FIG. 2 the holding part 12 with its lower part 13, instead of being inserted into the shaft 5, can also be pushed over the shaft 5, in a manner similar to the case for the sleeve-shaped shoulder 21 of the holding part 20 from FIG. 3. Logically the holding part 20 with its lower shoulder can also be pushed into the interior of the shaft 5.

In the embodiment shown in FIGS. 5 to 7 the grip 1 and the holding part 20 are made similarly to the embodiment of the grip as claimed in the invention shown in FIGS. 3 and 4. In this embodiment the holding part 20 with its sleeve-shaped shoulder 21 is also placed over the top end of the shaft 5. The loop 6 of the grip 1 is mounted on the holding part 20 in the same way as in the embodiment as shown in FIGS. 3 and 4.

Above the transverse member 26 in the embodiment of the holding part 20 shown in FIGS. 5 to 7 there is a recess 30 which is open to the top. This recess 30 is located in the area of a hole 31 which is provided on the top end of the grip 1. Parts can be inserted into the recess 30. These parts can be sealing plugs which consist of the same material as the grip 1. But they can be parts which contrast with the material of the grip 1. These parts can bear for example marks or other symbols which refer for example to the user of the pole or stick. Other parts, such as compasses or the like, can also be inserted into the recess 30.

For the grip 1 all materials are possible which are “grip-friendly”, including foamed plastics, foam rubbers, natural cork, synthetic cork, and composite materials such as cork granulate bonded with a binder (synthetic resin).
In summary one embodiment of the invention can be described as follows:

A grip 1 for sticks or poles with a loop 6 consists entirely of grip-friendly material such as foamed plastic and has a holding part 20 which is mounted solely on the shaft 5 for fixing the strip 7 which forms the loop 6. Thus the loop 6 can be attached to the shaft 5 without the grip 1 itself being used at the same time for attaching the loop 6; this makes it possible to produce the grip from grip-friendly material and there is no danger of the grip 1 being damaged by the forces applied by the loop 6.

1. Grip 1 for a pole or stick with a shaft 5 and with a loop 6, for example a ski pole or hiking staff, characterized in that on the top end of the shaft 5 held in the grip 1 there is a holding part (12, 20) for fixing the ends of the strip 7 which forms the loop 6, and wherein the grip 1 which has been placed over the top end of the shaft 5 consists of grip-friendly material.

2. Grip as claimed in claim 1, wherein the grip 1 including its segment in which the holding part (12, 20) for the loop 6 is located consists of grip-friendly material.

3. Grip as claimed in claim 2, wherein the grip 1 consists integrally of grip-friendly material.

4. Grip as claimed in claim 2, wherein the grip 1 consists of foamed plastic.

5. Grip as claimed in claim 2, wherein the grip 1 consists of cork.

6. Grip as claimed in claim 1, wherein the holding part (12, 20) is located entirely within the grip 1.

7. Grip as claimed in claim 1, wherein there is a tube-shaped part on the shaft 5 underneath the grip 1.

8. Grip as claimed in claim 7, wherein the tube-shaped part is made integrally with the grip 1.

9. Grip as claimed in claim 7, wherein the tube-shaped part is a separate part which is located following the bottom end of the grip 1.

10. Grip as claimed in claim 1, wherein the holding part (12) has a cylindrical segment (13) which is inserted into the top end of the shaft 5.

11. Grip as claimed in claim 10, wherein the holding part (12) sits on the top end of the shaft 5 by means of a shoulder (14) on the top end of its segment (13) which is held in the shaft 5.

12. Grip as claimed in claim 1, wherein the holding part (20) is placed over the top end of the shaft 5 by means of the sleeve-shaped segment (21).

13. Grip as claimed in claim 12, wherein the holding part (20) has a transverse wall (27) which sits on the top end of the shaft 5 (FIG. 4c).

14. Grip as claimed in claim 1, wherein in the top end of the shaft 5 there is a plug-like holding part (12) into which a screw (16) which is coaxial to the axis of the shaft 5 is driven for fixing the ends of the strip 7 which forms the loop 6.

15. Grip as claimed in claim 1, wherein in the holding part (20) there is an opening (23) which is aligned transversely to the lengthwise axis of the shaft 5 for holding the ends of the strip 7 which forms the loop 6, and wherein there is a pin (9) which penetrates the grip 1 including the holding part (20) for the loop 6 and around which the ends of the strip 7 which forms the loop 6 are wrapped.

16. Grip as claimed in claim 15, wherein the opening (23) is bordered by two side walls (25) in which there are holes (24) for the pin (9).

17. Grip as claimed in claim 1, wherein on the top end of the holding part (12, 20) there is an open recess (30) away from the shaft 5.

18. Grip as claimed in claim 17, wherein the part of the holding part (12, 20) which has the recess (30) is located in a hole (31) on the top end of the grip 1.

19. Grip as claimed in claim 17, wherein the recess (30) is aligned coaxially to the axis of the shaft 5.

20. Grip as claimed in claim 17, wherein the hole (31) is aligned coaxially to the axis of the shaft 5 on the top end of the grip (1).

21. Grip as claimed in claim 17, wherein a body of the same material as the grip (1) is inserted into the recess (30).

22. Grip as claimed in claim 17, wherein a body with a trademark or other symbol is inserted into the recess (30).

23. Grip as claimed in claim 17, wherein a compass is inserted into the recess (30).

* * * * *