发明名称

嵌合抗原受体及其基因和重组表达载体、工程化 HER1 鞘向性的 NKT 细胞及其应用

摘要

本发明公开了一种嵌合抗原受体及其基因和重组表达载体、工程化 HER1 鞘向性的 NKT 细胞及其应用，所述嵌合抗原受体为 HER1ScFv-CD8-CD137-CD3ζ，由 HER1ScFv、CD8 的铰链区和跨膜区、CD137 的胞内信号结构域和 CD3ζ 的胞内信号结构域串联构成。采用本发明的嵌合抗原受体 HER1ScFv-CD8-CD137-CD3ζ 修饰的 NKT 细胞治疗进展期 HER1 阳性肺癌时，能够有效避免采用 HER1 酪氨酸激酶抑制剂时引起的耐药性，对肺癌细胞具有一定的特异杀伤活性。
1. 一种嵌合抗原受体，其特征在于，所述嵌合抗原受体为 HER1ScFv–CD8–CD137–CD3ζ，由 HER1ScFv、CD8 的铰链区和跨膜区、CD137 的胞内信号结构域和 CD3ζ 的胞内信号结构域串联构成。

2. 根据权利要求 1 所述的嵌合抗原受体，其中，所述嵌合抗原受体的氨基酸序列如 SEQ ID NO. 1 所示。

3. 编码权利要求 1 或 2 所述的嵌合抗原受体的基因。

4. 根据权利要求 3 所述的基因，其中，所述基因的核苷酸序列如 SEQ ID NO. 2 所示。

5. 含有权利要求 3 或 4 所述的基因的重组表达载体。

6. 根据权利要求 5 所述的重组表达载体，其中，所述重组表达载体为慢病毒表达载体。

7. 根据权利要求 6 所述的重组表达载体，其中，所述慢病毒表达载体为 pWPT–HER1ScFv–CD8–CD137–CD3ζ。

8. 一种工程化 HER1 靶向性的 NKT 细胞，其特征在于，所述 NKT 细胞是由权利要求 1 或 2 所述的嵌合抗原受体修饰的 NKT 细胞。

9. 权利要求 8 所述的工程化 HER1 靶向性的 NKT 细胞在制备用于治疗肿瘤的制剂中的应用。

10. 根据权利要求 9 所述的应用，其中，所述肿瘤是指进展期 HER1 阳性肺癌。
嵌合抗原受体及其基因和重组表达载体、工程化 HER1 靶向性的 NKT 细胞及其应用

技术领域

【0001】本发明属于肿瘤生物制品领域，具体地，涉及过继免疫治疗中的一种嵌合抗原受体 HER1ScFv–CD8–CD137–CD3 ζ 及其基因和重组表达载体、工程化 HER1 靶向性的 NKT 细胞 (CARHER1–NKT 细胞) 及其应用。

背景技术

【0002】EGFR (epithelial growth factor receptor, 表皮生长因子受体) 即 HER1,是原癌基因 c-erbB1 的表达产物，属于人类表皮生长因子受体 (HER) 家族，其本身具有酪氨酸激酶活性，一旦与表皮生长因子 (EGF) 组合可启动细胞核内的有关基因，从而促进细胞分裂增殖。HER1 在多种恶性肿瘤中高表达，研究发现 HER1 表达于大多数肺癌患者，表达水平达到 80%，其表达水平与肺癌疾病的进展及转移有关。尽管最近肺癌的治疗已经获得一定的进展，但是仍然未提高患者的生存率，因此亟需探讨新的疗法来克服这一困扰。

【0003】目前，在治疗进展期 HER1 阳性肺癌患者时，HER1 酪氨酸激酶抑制剂 (tyrosine kinase inhibitors, TKIs) 已经处于临床研究阶段，但是，临床结果表明，仅部分肺癌患者采用 HER1 酪氨酸激酶抑制剂治疗有效，并且患者最终会产生一定的耐药性，从而影响药物的疗效。

发明内容

【0004】本发明的目的是为了克服现有技术中采用 HER1 酪氨酸激酶抑制剂治疗进展期 HER1 阳性肺癌患者时引起的耐药性的缺陷，提供一种嵌合抗原受体 HER1ScFv–CD8–CD137–CD3 ζ 及其基因和重组表达载体、工程化 HER1 靶向性的 NKT 细胞 (CARHER1–NKT 细胞) 及其应用，嵌合抗原受体 HER1ScFv–CD8–CD137–CD3 ζ 修饰的 NKT 细胞在治疗进展期 HER1 阳性肺癌时，能够有效避免采用 HER1 酪氨酸激酶抑制剂时引起的耐药性，对肺癌细胞具有一定的特异靶向杀伤活性。

【0005】本发明的发明人经过研究发现，采用嵌合抗原受体 HER1ScFv–CD8–CD137–CD3 ζ 修饰的 NKT 细胞治疗进展期 HER1 阳性肺癌时，能够有效避免采用 HER1 酪氨酸激酶抑制剂时引起的耐药性，对肺癌细胞具有一定的特异性靶向杀伤活性。

【0006】因此，为了实现上述目的，一方面，本发明提供了一种嵌合抗原受体，所述嵌合抗原受体为 HER1ScFv–CD8–CD137–CD3 ζ，由 HER1ScFv、CD8 的铰链区 (hinge 区) 和跨膜区、CD137 的胞内信号结构域和 CD3 ζ 的胞内信号结构域串联构成。

【0007】另一方面，本发明提供了编码上述嵌合抗原受体的基因。

【0008】第三方面，本发明提供了含有上述基因的重组表达载体。

【0009】第四方面，本发明提供了一种工程化 HER1 靶向性的 NKT 细胞，所述 NKT 细胞是上述嵌合抗原受体 HER1ScFv–CD8–CD137–CD3 ζ 修饰的 NKT 细胞。

【0010】第五方面，本发明提供了上述工程化 HER1 靶向性的 NKT 细胞在制备用于治疗肿瘤
的制剂中的应用。

在治疗进展期HER1阳性肺癌时，本发明的嵌合抗原受体HER1ScFv-CD8-CD137-CD3ζ修饰的NKT细胞，即工程化HER1靶向性的NKT细胞能够特异性结合HER1抗原，明显延长免疫细胞在患者体内的存活时间，增强免疫细胞靶向识别肺癌细胞表面HER1抗原的能力，加强对肺癌细胞的特异性杀伤活性，而且确实能够有效避免采用HER1酪氨酸激酶抑制剂时引起的耐药性。本发明的工程化HER1靶向性的NKT细胞为治疗进展期HER1阳性肺癌提供了一种新的选择，具有良好的产业应用前景。

本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。

附图说明

图1为流式细胞术对分离培养的NKT细胞表型分析的结果。

图2为本发明的慢病毒表达载体pWPT-CD8-CD137-CD3ζ的限制性内切酶MluI/Sall双酶切片段的电泳鉴定图。

图3为本发明的慢病毒表达载体pWPT-HER1ScFv-CD8-CD137-CD3ζ的限制性内切酶BamHI/Sall双酶切片段的电泳鉴定图。

图4为本发明的慢病毒表达载体pWPT-HER1ScFv-CD8-CD137-CD3ζ的结构示意图，其中，逆时针序列为正向基因片段，顺时针为反向基因片段。

图5为流式细胞术检测含有嵌合抗原受体HER1ScFv-CD8-CD137-CD3ζ的病毒浓缩液对NKT细胞的感染效率。

图6为流式细胞术检测嵌合抗原受体HER1ScFv-CD8-CD137-CD3ζ修饰的NKT细胞(CARHER1-NKT细胞)表型鉴定的结果。

图7为本发明的CARHER1-NKT细胞对人肺癌细胞杀伤作用的细胞毒性分析图。

图8为本发明的CARHER1-NKT细胞对进展期HER1阳性肺癌患者治疗过程中，患者病灶部位HER1阳性肺癌细胞数目的变化。

图9为本发明的CARHER1-NKT细胞对进展期HER1阳性肺癌患者治疗过程中，患者病灶部位影像图变化。

具体实施方式

以下对本发明的具体实施方式进行详细说明。应当理解的是，此处所描述的具体实施方式仅用于说明和解释本发明，并不用于限定本发明。

本发明提供了一种嵌合抗原受体，所述嵌合抗原受体为HER1ScFv-CD8-CD137-CD3ζ，由HER1ScFv、CD8的铰链区和跨膜区、CD137的胞内信号结构域和CD3ζ的胞内信号结构域串联构成。优选情况下，嵌合抗原受体的氨基酸序列如SEQ ID NO.1所示。

本发明提供了编码上述嵌合抗原受体的基因。优选情况下，编码上述嵌合抗原受体的基因的核苷酸序列如SEQ ID NO.2所示。

本发明提供了含有上述基因的重组表达载体。优选情况下，重组表达载体为慢病毒表达载体。对于慢病毒表达载体没有特别的限定，只要能够与辅助载体共转染包装细胞如293T包装细胞，获得病毒浓缩液及嵌合抗原受体HER1ScFv-CD8-CD137-CD3ζ修饰的NKT
细胞即可，优选情况下，慢病毒表达载体为 pWPT-HER1ScFv-CD8-CD137-CD3 ζ。

对于慢病毒表达载体 pWPT-HER1ScFv-CD8-CD137-CD3 ζ 的制备方法没有特别的限定，可以为本领域技术人员能够想到的各种方法，优选情况下，慢病毒表达载体 pWPT-HER1ScFv-CD8-CD137-CD3 ζ 的制备方法包括以下步骤：

(1) 从 NKT 细胞 cDNA 中分别扩增 CD8 的 hinge 区和跨膜区、CD137 的胞内信号结构域和 CD3 ζ 的胞内信号结构域，并克隆至载体 pWPT-GFP 中，构建得到 pWPT-CD8-CD137-CD3 ζ；

(2) 合成编码大鼠生长激素信号肽和 HER1ScFv 的核苷酸序列，并克隆至 pWPT-CD8-CD137-CD3 ζ 中，经测序验证后得到序列正确的 pWPT-HER1ScFv-CD8-CD137-CD3 ζ。

步骤 (1) 中，对于从 NKT 细胞 cDNA 中分别扩增 CD8 的 hinge 区和跨膜区、CD137 的胞内信号结构域和 CD3 ζ 的胞内信号结构域的方法没有特别的限定，可以为本领域常用的各种方法，例如可以为 RT-PCR 法。其中，NKT 细胞可以通过分离人静脉血中单个核细胞，然后进行培养获得。

具体地，得到 pWPT-CD8-CD137-CD3 ζ 的方法可以包括：提取 NKT 细胞的总 RNA，逆转录获得 NKT 细胞 cDNA，以得到的 NKT 细胞 cDNA 为模板，利用引物 P1 (SEQID NO. 11) 和 P2 (SEQID NO. 12) 进行 PCR 扩增获得 CD8 基因的 hinge 区和跨膜区 (SEQID NO. 3)；利用引物 P3 (SEQID NO. 13) 和 P4 (SEQID NO. 14) 进行 PCR 扩增获得 CD137 基因的胞内信号结构域 (SEQID NO. 4)；利用引物 P5 (SEQID NO. 15) 和 P6 (SEQID NO. 16) 进行 PCR 扩增获得 CD3 ζ 基因的胞内信号结构域 (SEQID NO. 5)，将获得的 PCR 产物分别进行双酶切，然后与 MluI/SalI 酶切后的慢病毒表达载体 pWPT-GFP 连接。

步骤 (2) 中，对于合成编码大鼠生长激素信号肽和 HER1ScFv 的核苷酸序列的方法没有特别的限定，可以为本领域常用的各种方法，例如可以通过全基因合成技术合成。

具体地，得到序列正确的 pWPT-HER1ScFv-CD8-CD137-CD3 ζ 的方法可以包括：通过全基因合成技术合成编码大鼠生长激素信号肽和 HER1ScFv 融合基因的核苷酸序列 (SEQID NO. 8)，克隆至载体 pGSI 中，得到 pGSI-HER1ScFv；然后将 pGSI-HER1ScFv 进行 EcoRV/MluI 双酶切，与经限制性内切酶 BamHI 单酶切，用 Klenow Fragment 酶平头，再用 MluI 单酶切后的步骤 (1) 得到的重组质粒 pWPT-CD8-CD137-CD3 ζ 连接，经测序鉴定，得到序列正确的 pWPT-HER1ScFv-CD8-CD137-CD3 ζ。其中，大鼠生长激素信号肽的核苷酸序列如 SEQID NO. 6 所示，HER1ScFv 核苷酸序列如 SEQID NO. 7 所示。

本发明还提供了一种工程化 HER1 鞍向性的 NKT 细胞，所述 NKT 细胞是由上述嵌合抗原受体 HER1ScFv-CD8-CD137-CD3 ζ 修饰的 NKT 细胞（即 CARHER1-NKT 细胞）。

对于工程化 HER1 鞍向性的 NKT 细胞的制备方法没有特别的限定，可以为本领域技术人员能够想到的任何方法。优选情况下，该方法包括：包装携带 pWPT-HER1ScFv-CD8-CD137-CD3 ζ 编码基因的慢病毒，利用得到的慢病毒感染 NKT 细胞，使 NKT 细胞表达嵌合抗原受体 HER1ScFv-CD8-CD137-CD3 ζ。

对于包装携带 pWPT-HER1ScFv-CD8-CD137-CD3 ζ 编码基因的慢病毒的方法没有特别的限定，可以为本领域技术人员常用的各种方法。优选情况下，将慢病毒表达载体 pWPT-HER1ScFv-CD8-CD137-CD3 ζ 与辅助质粒（如 psPAX2、pMD2. G）共同转染 293T 包装细胞，
说明 书

48~72h 时收集病毒上清，离心、过滤，在滤液中添加 5×PEG6000-NaCl 进行混匀，离心后弃上清，沉淀用 0~4℃预冷的无菌 PBS 溶解，获得病毒浓缩液。

【0036】对于慢病毒感染 NKT 细胞的方法没有特别限定，可以为本领域常用的各种方法，优选情况下，该方法包括：取 1×10^7~5×10^7 个 NKT 细胞，弃掉旧的培养液，加入 2~4mL 新鲜 GT-T551 培养液，再加入 200~400 μL 病毒浓缩液，2~4 μL 1×10^5 mg/mL 鱼精蛋白和终浓度为 800~1200U/mL 的 IL-2，置于 30~37℃、饱和湿度为 3~6% 的 CO₂ 培养箱中感染 12~16h 后，弃培养液，将细胞转至未包被的培养瓶中，加入 20~50mL 的 GT-T551 培养基，再加入终浓度为 800~1200U/mL 的 IL-2，于 30~37℃、饱和湿度为 3~6% 的 CO₂ 培养箱中培养 12~18h，获得嵌合抗原受体 HER1ScFv-CD8-CD137-CD3ζ 修饰的 NKT 细胞。

【0037】进一步优选地，慢病毒感染 NKT 细胞的方法还包括：将上述培养后获得的慢病毒感染的 NKT 细胞用 IL-2 的终浓度为 800~1200U/mL 的 GT-T551 培养液进行体外诱导，待细胞的密度为 80~90% 时将细胞转入细胞培养瓶中，隔 1.5~2.5 天加入 IL-2 的终浓度为 800~1200U/mL 的新鲜 GT-T551 培养液进行扩增培养并将细胞扩增至总量为 1×10^8~2×10^9 个细胞。

【0038】嵌合抗原受体 HER1ScFv-CD8-CD137-CD3ζ 修饰的 NKT 细胞表达的嵌合抗原受体的成熟蛋白氨基酸序列如 SEQID NO.1 所示。其中，本领域技术人员应该理解的是，嵌合抗原受体前体蛋白由信号肽、HER1ScFv、CD8 的 hinge 区和跨膜区、CD137 的胞内信号结构域和 CD3ζ 的胞内信号结构域串联构成，蛋白质翻译后在细胞内粗面内质网切除信号肽后成为成熟嵌合抗原受体蛋白，分泌输出后并定位于 NKT 细胞的细胞膜上。该嵌合抗原受体的成熟蛋白氨基酸序列对应的基因编码序列如 SEQID NO.2 所示。该嵌合抗原受体以基因 CD8 的 hinge 区和跨膜区及 CD137 和 CD3ζ 的胞内信号结构域串联而成的结构为信号传导结构域，其氨基酸序列如 SEQID NO.9 所示，对应的基因编码序列如 SEQID NO.10 所示。

【0039】本发明还提供了上述方法制备得到的工程化 HER1 靶向性 NKT 细胞。

【0040】本发明还提供了工程化 HER1 靶向性的 NKT 细胞在制备用于治疗肿瘤的制剂中的应用。优选情况下，肿瘤是指进展期 HER1 阳性肺癌，尤其为复发难治的进展期 HER1 阳性肺癌。

【0041】实施例

【0042】以下的实施例将对本发明作进一步的说明，但并不因此限制本发明。

【0043】以下实施例中的实验方法，如无特殊说明，均为本领域常规方法。下述实施例中所用的实验材料，如无特殊说明，均为自常规生化试剂商店购买得到，其中：

【0044】NKT 细胞培养基 GT-T551 购自 TaKaRa 公司。

【0045】淋巴细胞分离液购自 TBD 公司。

【0046】CD3 单克隆抗体、重组纤维连接蛋白 (retronectin) 均购自 TaKaRa 公司。

【0047】重组人蛋白干扰素 -y、重组人白介素 2 购自 protech 公司。

【0048】总 RNA 提取试剂盒 RNaiso Reagent、高保真 DNA 聚合酶 (PrimeSTAR® HS DNA Polymerase)、T4DNA 连接酶购自 TaKaRa 公司。

【0049】RevertAid™ First Strand cDNA Synthesis Kit 购自 Fermentas 公司。

【0050】Bgl II、EcoRI、MluI、BamHI、SalI、EcoR V 购自 Fermentas 公司。

【0051】修饰酶 Klenow Fragment 购自 Fermentas 公司。
[0052] 琼脂糖凝胶 DNA 回收试剂盒、普通 DNA 产物纯化试剂盒、质粒小提试剂盒均购自天根生化科技有限公司。

[0053] pWPT-GFP、psPAX2、pMD2.G 均购自 Addgene 公司。

[0054] p65 购自北京天一辉远生物科技有限公司。

[0055] Trans1-T1 Phage Resistant 化学感受态细胞购自北京全式金生物技术有限公司。

[0056] Lipofectamine™ 2000 Transfection Reagent 转染试剂购自 Invitrogen 公司。

[0057] 293T 包装细胞购自美国 ATCC。

[0058] PEG6000–NaCl 中 PEG6000 终浓度为 25.5 mol%，NaCl 终浓度为 1.2 mol，PEG6000 和 NaCl 均购自上海索莱宝生物科技有限公司。

[0059] 胎牛血清购自德国 PAA 公司。

[0060] 高表达 HER1 的人肺腺癌细胞 A549 购自美国 ATCC。

[0061] Cell Counting Kit-8 (CCK8) 试剂盒购自北京沃比森科技有限公司。

[0062] 所有引物均购自北京天一辉远生物科技有限公司合成。

[0063] 实施例 1 NKT 细胞的制备

[0064] (1) 取人静脉血于含肝素的真空管中，采用淋巴细胞分离液，通过密度梯度离心方法分离获得单个核细胞 (PBMCs)。

[0065] (2) PBMCs 洗三次后，采用含有 0.6 体积%的胎牛血清的 NKT 细胞培养基 GT-T551 调整细胞终浓度为 2 × 10⁷ 个细胞 /ml；将细胞接种于预先经过终浓度为 5 μg/mL CD3 单克隆抗体及终浓度为 10 μg/mL 的 retromectin 包被的 75 cm² 细胞培养瓶中。然后在培养基中加入终浓度为 1000 U/ml 的重组人蛋白干扰素 γ 和 1000 U/ml 的重组人白介素 2，在 37°C、饱和湿度为 5% 的 CO₂ 培养箱中培养。

[0066] (3) 第四天，向培养瓶中补加 100 ml 含有 0.6 体积%的胎牛血清的 NKT 细胞培养基 GT-T551，并加入终浓度为 1000 U/ml 的重组人白介素 2。于 37°C、饱和湿度为 5% 的 CO₂ 培养箱中培养 4 天，得到 NKT 细胞，流式细胞术对 NKT 细胞表型进行分析。结果见图 1，其中 CD3⁺ : 92.80%；CD3⁺ CD4⁺ : 28.25%；CD3⁺ CD8⁺ : 67.11%；CD3⁺ CD56⁺ : 6.51%；CD8⁺ CD56⁺ : 6.00%。

[0067] 实施例 2 慢病毒表达载体 pWPT–HER1ScFv-CD8–CD137–CD3 重组的构建

[0068] (1) NKT 细胞 cDNA 的制备

[0069] 离心沉淀实施例 1 培养得到的 NKT 细胞，用总 RNA 提取试剂盒 RNAsio Reagent 提取细胞的总 RNA，–80°C 保存备用。提取的总 RNA 用逆转录试剂盒 RevertAid™ First Strand cDNA Synthesis Kit 逆转录得 NKT 细胞 cDNA，–20°C 保存备用。

[0070] (2) 慢病毒质粒 pWPT–CD8–CD137–CD3 重组的制备

[0071] 设计并合成如下引物序列（其中，下划线标记为保护碱基，方框为酶切位点）：

[0072] P1 (SEQID NO. 11) : GATC ACGCGT CTGAGCAACTCCCATGATCTTC

[0073] MluI

[0074] P2 (SEQID NO. 12) : GATC AGATCT GCAGTAAAGGTGATAACCAGTGA

[0075] BglII
[0076] P3 (SEQID NO. 13) :GATC AGATCT TAAACGGGGCAGAAAGAATCC

[0077] BglII

[0078] P4 (SEQID NO. 14) :GATC GAATTC CAGTTGACATCCTAGCTTCTCTTCT

[0079] EcoRI

[0080] P5 (SEQID NO. 15) :GATC GAATTC AGAGTGAAGTTGACCGGACCG

[0081] EcoRI

[0082] P6 (SEQID NO. 16) :GATC GTACAC TTAGCGAGGGGCGACGAG

[0083] SalI

[0084] 以步骤 (1) 中 NKT 细胞 cDNA 为模板，用引物 P1 和 P2 进行 PCR 扩增，得到长 287bp 的 CD8 的 hinge 区和跨膜区，核苷酸序列如 SEQID NO. 3 所示，两端分别含有 MluI 和 Bgl II 酶切位点和保护碱基；用引物 P3 和 P4 进行 PCR 扩增，得到长 146bp 的 CD137 胞内信号结构域，核苷酸序列如 SEQID NO. 4 所示，两端分别含有 Bgl II 和 EcoRI 酶切位点及保护碱基；用引物 P5 和 P6 进行 PCR 扩增，得到长 359bp 的 CD3 ε 的胞内信号结构域，核苷酸序列如 SEQID NO. 5 所示，两端分别含有 EcoRI 和 SalI 酶切位点及保护碱基。各步 PCR 扩增反应体系相同，以扩增 CD137 胞内信号结构域为例，进行 PCR 扩增，PCR 反应条件参照 PrimeSTAR® HS DNA Polymerase 的说明书，反应体系 (50 μL) 如下：

[0085] 双蒸水 :32.5 μL

[0086] 5X 反应 buffer :10 μL

[0087] dNTP 混合物 (每种 2.5mM) :4 μL

[0088] P3 (10mM) :1 μL

[0089] P4 (10mM) :1 μL

[0090] NKT 细胞 cDNA (200ng/μl) :1 μL

[0091] PrimeSTAR® HS DNA Polymerase :0.5 μL

[0092] 将上述 PCR 产物用 1% 的琼脂糖凝胶进行分离，用琼脂糖凝胶 DNA 回收试剂盒进行 DNA 片段回收。得到片段后分别进行双酶切反应，酶切产物用普通 DNA 产物纯化试剂盒回收备用。

[0093] 慢病毒表达载体 pWPT–GFP 用 MluI/SalI 双酶切，酶切产物经 1% 的琼脂糖凝胶进行分离，用琼脂糖凝胶 DNA 回收试剂盒回收大的载体片段，然后与之前回收的 CD8、CD137、CD3 ε 片段通过 T4DNA 连接酶连接，连接产物转化 Trans1-T1 Phage Resistant 化学感受态细胞，37°C 培养 16h 后挑取单克隆，37°C，250rpm 培养 12h 后用裂解小提试剂盒提取质粒。提取的质粒经限制性内切酶 MluI 和 SalI 双酶切鉴定，鉴定电泳图见图 2，其中，1 沸道 :DNA 分子量标记 D2000 ；2 沸道 : 质粒 pWPT–GFP 的酶切片段 (835bp) ；3 沸道 : 质粒 pWPT–CD8–CD137–CD3 ε 的酶切片段 (756bp)。将鉴定正确的质粒送北京天一辉远生物科技有限公司对插入的融合基因片段进行测序。将测序结果正确的重组质粒命名为 pWPT–CD8–CD137–CD3 ε。

[0094] (3) 慢病毒质粒 pWPT–HER1ScFv–CD8–CD137–CD3 ε 的制备
全基因合成编码大鼠生长激素信号肽和HER1ScFv融合基因的核苷酸序列，序列为SEQID No.8所示，由北京天一辉远生物科技有限公司合成，其5‘端含有EcoR V酶切位点，kozak序列，3‘端含有MluI酶切位点，将上述合成基因克隆在质粒pGSL中，命名为pGSL-HER1ScFv。质粒经EcoR V/MluI双酶切，酶切产物经1%琼脂糖凝胶进行分离，用琼脂糖凝胶DNA回收试剂盒回收目的片段备用。

pWPT-CD8-CD137-CD3ξ质粒经限制性内切酶 BamHI 单酶切，再用Klenow Fragment酶平头，然后进行MluI单酶切，酶切产物经1%琼脂糖凝胶进行分离，用琼脂糖凝胶DNA回收试剂盒回收载体片段备用。然后与回收大鼠生长激素信号肽和HER1ScFv的DNA片段通过T4DNA连接酶进行连接，具体方法见说明书。将连接产物转化Trans1-T1 Phage Resistant化学感受态细胞，37℃培养16h后挑取单克隆，37℃, 250rpm培养12h后，用质粒小提试剂盒提取质粒。提取的质粒经限制性内切酶BamHI/SalI双酶切鉴定，鉴定结果如图3所示，其中，M1 DNA分子量标记D15000；1泳道：质粒pWPT-HER1ScFv-CD8-CD137-CD3ξ的酶切片段（920bp）；2泳道：质粒pWPT-CD8-CD137-CD3ξ的酶切片段（774bp）；3泳道：质粒pWPT-GFP的酶切片段（853bp）；M2 DNA分子量标记D2000。将鉴定正确的质粒送北京天一辉远生物科技有限公司对插入的融合基因片段进行测序。测序结果正确的重组质粒命名为pWPT-HER1ScFv-CD8-CD137-CD3ξ，其结构示意图如图4所示，其中包括大鼠生长激素信号肽（核苷酸序列为SEQID No.6所示）、抗HER1单链抗体（核苷酸序列为SEQID No.7所示）、CD8的hinge区和跨膜区及CD137的胞内信号结构域和CD3ξ的胞内信号结构域，其中，该嵌合抗原受体以基因CD8的hinge区和跨膜区及CD137和CD3ξ的胞内信号结构域串联而成的结构为信号传导结构域，其氨基酸序列为SEQID No.9所示，对应的基因编码序列为SEQID No.10所示。

实施例3 嵌合抗原受体HER1ScFv-CD8-CD137-CD3ξ修饰的NKT细胞的制备

（1）慢病毒的包装和浓缩

用分光光度计分别测定慢病毒表达质粒pWPT-HER1ScFv-CD8-CD137-CD3ξ和辅助质粒psPAX2、pMD2.G的浓度，三种质粒以4：2：1的质量比用Lipofectamine™2000 Transfection Reagent转染试剂共转染293T包装细胞。分别在转染48h, 72h时收集病毒上清于50mLEP管中，4℃，2000g离心10min，移取两次得到的上清至新EP管中，用4.5μm滤器过滤过滤病毒上清，过滤的病毒上清与5×PEG6000-NaCl按体积比1：1的体积比混匀，4℃静置2h，然后4℃，10000g离心20min，弃上清，沉淀用1ml的4℃预冷的无菌PBS溶解，即得嵌合抗原受体的病毒浓缩液，按每管100μL进行分装，-80℃保存备用。

按照上述方法，利用慢病毒表达质粒pWPT-GFP和辅助质粒psPAX2、pMD2.G共转染293T包装细胞，收集病毒上清，浓缩，获得表达GFP绿色荧光蛋白的慢病毒浓缩液。

（2）慢病毒感染NKT细胞及感染后细胞的扩增培养

取实施例1的在75cm²培养瓶中培养的1×10⁷个NKT细胞，弃掉旧的培养液，加入2ml新鲜NKT细胞培养基GT-7551, 200μL步骤（1）得到的病毒浓缩液，2μL 1×10⁶mg/mL鱼精蛋白，终浓度为1000U/mL的重组人白介素2，置于37℃，饱和湿度为5%的CO₂培养箱中感染12小时后，弃培养液，得到的NKT细胞称为CARHER1-NKT细胞。同时用表达GFP绿色荧光蛋白的慢病毒浓缩液对NKT细胞进行同步感染（得到的NKT细胞称为CART-GFP细
胞），用于计算该病毒的感染效率。将感染后的细胞转至未经CD3和retronectin包被的
75cm²培养瓶中，加入20mL的NKT细胞培养基GT-T551，再加入终浓度为1000U/ml的重组
人白介素2，于37℃、饱和状态的5%的CO₂培养箱中培养18h。用流式细胞术检测该病毒的
感染效率，结果如图5所示，感染效率41.20%。

【0103】（3）体外诱导扩增CARHER1-NKT细胞群

【0104】将上述培养后的NKT细胞重组人白介素2的终浓度为1000U/ml的NKT细
胞培养基GT-T551进行体外诱导，待细胞的密度为85%时将细胞转入细胞培养袋中，隔2天加
入重组人白介素2的终浓度为1000U/ml的新鲜NKT细胞培养基GT-T551进行扩增培养，
待细胞扩增到总量为1.5×10⁷个细胞左右后，采用流式细胞仪对感染的细胞群体进行检
定，细胞表型一般达到CD3阳性细胞比例>90%；CD3CD8阳性细胞比例>70%；CD3CD56
双阳性细胞比例>5%，结果见图6, CD3⁺:96.46%；CD3⁺CD4⁺:16.71%；CD3⁺CD8⁺:75.68%；
CD3⁺CD56⁺:5.44%；CD8⁺CD56⁺:3.65%。

【0105】实施例4 CARHER1-NKT细胞对人肺癌细胞杀伤作用的细胞毒性分析

【0106】取高表达HER1的人肺癌细胞A549接种于96孔板，37℃培养箱培养过夜后，分
别取实施例3中制备的CARHER1-NKT细胞、CAR-GFP细胞和实施例1中培养的NKT细胞，以
效靶比（杀伤细胞：靶细胞）2：5:1:5.1:10:1:20:1与A549进行共培养，经过4h的共培养
后，每个孔加入10μL的CCK8进行染色。同时设置杀伤细胞对照组分别实施例3中制备的
CARHER1-NKT细胞、CAR-GFP细胞和实施例1中培养的NKT细胞，并加入相同量的CCK8
进行染色；以及设置靶细胞对照组为无加入免疫细胞杀伤处理的人肺癌细胞A549，并加入
相同量的CCK8进行染色。酶标仪对细胞凋亡情况进行检测，细胞凋亡量根据下面的公式
计算，凋亡率=[(实验组-杀伤细胞对照组-靶细胞对照组)/实验组]×100%，该公式
中，杀伤细胞对照组为只有杀伤细胞而未加靶细胞测得的吸光值，靶细胞对照组为只有
靶细胞而未加杀伤细胞测得的吸光值；实验组为加入相对应的靶比（杀伤细胞：靶细胞）
的免疫细胞杀伤处理后测得的吸光值，见图7。嵌合抗原受体HER1ScFv-CD8-CD137-CD3⁺
修饰的NKT细胞对高表达HER1的肺癌细胞具有特异杀伤活性，且CARHER1-NKT细胞的特异
杀伤活性显著优于NKT细胞。

【0107】实施例5 CARHER1-NKT细胞对进展期HER1阳性肺癌患者的治疗效果

【0108】取5×10⁸个HER1ScFv-CD8-CD137-CD3⁺修饰的NKT细胞（即CARHER1-NKT细
胞），经过100ml生理盐水稀释后，连续三天静脉回输到已对HER1酪氨酸激酶抑制剂产生耐
药性的进展期HER1阳性肺癌患者4期肺癌患者，在利用本发明的CARHER1-NKT细胞进行
靶向免疫治疗前，已经过多次治疗（如手术治疗、放疗、化疗及HER1酪氨酸激酶抑制剂治疗
等），但均无明显疗效）体内，回输后对患者的治疗状况进行评估。

【0109】图8为免疫组化检测CARHER1-NKT细胞回输到已对HER1酪氨酸激酶抑制剂产生
耐药性的进展期HER1阳性肺癌患者体内后，患者同一病灶部位HER1阳性肺癌细胞数目的
变化。对患者同一病灶部位穿刺标本结果表明，与治疗前相比，经过靶向免疫细胞治疗三个
月后，患者体内HER1阳性的肺癌细胞明显减少，说明CARHER1-NKT细胞能够对已对HER1酪
氨酸激酶抑制剂产生耐药性的进展期HER1阳性肺癌患者体内的靶细胞发挥杀伤活性。

【0110】如图9所示，CT分析CARHER1-NKT细胞治疗已对HER1酪氨酸激酶抑制剂产生耐药
性的进展期HER1阳性肺癌患者后，患者病灶部位的影像图变化。影像图结果表明，与治疗
前相比，靶向免疫细胞治疗后患者多处病灶有所回缩；并且与治疗后一个月相比，治疗三个月后病灶减少更加明显，同时患者的胸水也明显的减少，说明 CASHER1-NKT 细胞治疗能够使已对 HER1 酪氨酸激酶抑制剂产生耐药性的进展期 HER1 阳性肺癌患者的疾病有所缓解。

【0111】以上详细描述了本发明的优选实施方式，但本发明并不限于上述实施方式中的具体细节，在本发明的技术构思范围内，可以对本发明的技术方案进行多种简单变型，这些简单变型均属于本发明的保护范围。

【0112】另外需要说明的是，在上述具体实施方式中所描述的各个具体技术特征，在不矛盾的情况下，可以通过任何合适的方式进行组合，为了避免不必要的重复，本发明对各种可能的组合方式不再另行说明。

【0113】此外，本发明的各种不同的实施方式之间也可以进行任意组合，只要其不违背本发明的思想，其同样应当视为本发明所公开的内容。
序列表

<110> 中国人民解放军总医院

<120> 融合抗原受体及其基因和重组表达载体、工程化 HER1 靶向性的 NKT 细胞及其应用

<130> \[130859RMJ\]

<160> 16

<170> PatentIn version 3.3

<210> 1

<211> 494

<212> PRT

<213> 融合抗原受体 HER1ScFv-CD8-CD137-CD3 ε

<400> 1

Leu Pro Leu Met Ala Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val 1 5 10 15

Lys Lys Pro Gly Ser Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly 20 25 30

Thr Phe Ser Ser Tyr Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln 35 40 45

Gly Leu Glu Trp Met Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn 50 55 60

Tyr Ala Gln Lys Phe Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser 65 70 75 80

Thr Ser Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr 85 90 95

Ala Val Tyr Tyr Cys Ala Arg Thr Arg Leu Lys His Glu Trp Gly Gln 100 105 110

Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly 115 120 125

Gly Ser Gly Gly Ser Ala Leu Ser Ser Glu Leu Thr Gln Asp Pro Ala 130 135 140

Val Ser Val Ala Leu Gly Gln Thr Val Arg Ile Thr Cys Gln Gly Asp 145 150 155 160

Ser Leu Arg Ser Tyr Tyr Ala Ser Trp Tyr Gln Gln Lys Pro Gly Gln 165 170 175

[0002]
序列表

Ala Pro Val Leu Val Ile Tyr Gly Lys Asn Asn Arg Pro Ser Gly Ile
180 185 190

Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Asn Thr Ala Ser Leu Thr
195 200 205

Ile Thr Gly Ala Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Asn Ser
210 215 220

Arg Asp Ser Ser Gly Pro Val Phe Gly Gly Gly Thr Lys Leu Thr Val
225 230 235 240

Leu Gly Ala Ala Ala Thr Arg Leu Ser Asn Ser Ile Met Tyr Phe Ser
245 250 255

His Phe Val Pro Val Phe Leu Pro Ala Lys Pro Thr Thr Thr Pro Ala
260 265 270

Pro Arg Pro Pro Thr Pro Ala Pro Thr Ile Ala Ser Gln Pro Leu Ser
275 280 285

Leu Arg Pro Glu Ala Cys Arg Pro Ala Ala Gly Gly Ala Val His Thr
290 295 300

Arg Gly Leu Asp Phe Ala Cys Asp Ile Tyr Ile Trp Ala Pro Leu Ala
305 310 315 320

Gly Thr Cys Gly Val Leu Leu Leu Leu Val Ile Thr Leu Tyr Cys
325 330 335

Arg Ser Lys Arg Gly Arg Lys Leu Leu Tyr Ile Phe Lys Gln Pro
340 345 350

Phe Met Arg Pro Val Gln Thr Thr Gln Glu Gly Asp Gly Cys Ser Cys
355 360 365

Arg Phe Pro Glu Glu Glu Gly Gly Gly Cys Glu Leu Glu Phe Arg Val
370 375 380

Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gly Glu Asn
385 390 395 400

Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Gly Tyr Asp Val
405 410 415

Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg
420 425 430
Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys
435 440 445
Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg
450 455 460
Gly Lys Gly His Asp Gly Leu Tyr Glu Leu Ser Thr Ala Thr Lys
465 470 475 480
Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg
485 490

〈210〉 2
〈211〉 1485
〈212〉 DNA
〈213〉 依合抗原受体HER1ScFv-CD8-CD137-CD3 ̶
〈400〉 2

\[
\text{ttaacctcca tggcccaagt gcaagttggc agttggg acagctggtg acagctggtg}
\]
\[
\text{tcaggcccagtt gcaaggtcgg agttggg acagctggtg acagctggtg}
\]
\[
\text{cagaggtcagtt gcaaggtcgg agttggg acagctggtg acagctggtg}
\]
\[
\text{cttactggtcagtt gcaaggtcgg agttggg acagctggtg acagctggtg}
\]
\[
\text{cttactggtcagtt gcaaggtcgg agttggg acagctggtg acagctggtg}
\]

[0004]
gaattcagag tgaagtccag caggagccga aacgcceccgg tgtaccagcca gggcagagaac 1200
cagctcata acgcaccaaa tctaggaagag agagccacagt acgatgttttt gcacagagaga 1260
cgtgccccgg accctgagat ggcggggcagaccagagaga agoaccectca ggaaggcctg 1320
tctacagtac tgcagagaag aagatggcag gcggcctaga ctgagatgg gatgaaagcc 1380
gagcgcagga gggcagagg accagcagac etttaccaggg gtctcaglc acgcccaag 1440
gacacccag acgcctctca catgccaggc ctcgcccctc gcataa 1485

〈210〉 3
〈211〉 287
〈212〉 DNA
〈213〉 CD8 的 hinge 区和跨膜区
〈400〉 3

gatacgcgct ctgagacaact ccacatgtca ctctcagccac tctggtcggc gcttctgccc 60
agcgagccgg accagcagc caggcgcggt aaccaccaaa cccggcceca ccacacgtgtc 120
gcacccccgg ccctcagggc caggcagcct caggccgacg ggcgagccgg cagcagcagc 180
gcaggagcct gcacggtcct tccacactaa catctcgagtc cccctgccgc ggacagtggg 240
gctccttc gcgtcactgg ttaccaacct ttcgcagagat tcgtgacgct 287

〈210〉 4
〈211〉 146
〈212〉 DNA
〈213〉 CD137 的胞内信号结构域
〈400〉 4
gatacagacct cagcggcgaaa gaaaggaact ccgtcatata ttgaccaaca ccattttagag 60
accacgataca aacactcag accagagttg ccagtactgc cgatttcag aangaagaaga 120
agcagacctt gcacggtgact atgcagagttg ccagtactgc gcgttcag aangaagaaga 146

〈210〉 5
〈211〉 359
〈212〉 DNA
〈213〉 cd3ξ 的胞内信号结构域
〈400〉 5
gatcgagcctt acaggtgact tcagcagagag cgcagacgc cccccgttccag acgcagaggca 60
<210> 6
<211> 99
<212> DNA
<213> 大鼠生长激素信号肽
<400> 6

gatatggcct ccatggctg acacttcgaag ttccctggc tcctgaacct cagcttgctc
tgcctgtgt ggcctcaaga ggccttggtc tgtctcctc 60

<210> 7
<211> 732
<212> DNA
<213> HER1ScFv
<400> 7

atggeccagg tcgaatgctgt gcagtcgagg gcgtgggtagt agaagccctgg ggcctcgggg 60
aaggtctct gcgaaggtctt ggaacgact tgggagcact acttatatacg ctggtctggga 120
eagcctcggt ggcaaacgct tgggagcact ggaggtcctg ttccttatct tgggtcctga 180
actaagcag aagacttacag ggacagacat gcgcagact tgggtgcctc tgggtcctga 240
ggccttcag aatggaggag ctggtctgctt ggagacagct ggcctcctct ctggtctgctt 300
actggttta agactactgttg ggcccaaggt aaccttgcct ggcctcctgt ctggtctgctt 360
ggcctcctgt gcagcttactt ctcactgtct ctggtctgctt ggcctcctgt 420
getgtgtcttg ctcctggtctt ggagacatgtgc gcgaagagtc gcgaagagtc gcgaagagtc 480
agcttatatt ccgcgtgct aacgccgaag ccagcagcag cccctgttct gcacatctttat 540
gttaaacaagcgcggcctt acttcaggttc ggagctctgctt ctggtctgctt ggcctcctgt 600
cccgtcttt acttccgctt gcgctccttc cggagagtc gcgaagagtc gcgaagagtc gcgaagagtc 660
tgcgtgctt ggcctcctgt gcagcttactt ctcactgtct ctggtctgctt ggcctcctgt 720
gcgcagcct ggcttctgctt gcgctccttc cggagagtc gcgaagagtc gcgaagagtc gcgaagagtc 780
<210> 8
<211> 831
<212> DNA
<213> 大鼠生长激素信号肽和HER1 SeFv融合基因
<400> 8

gatcggcc caatagtccc aggcttcag aecctctgga tctgcacgct cagccctggt gctgggtgct
tgcctctggt ggacctcaaa acgcttcgct ttacctctca tggccccaggt gcagcctgggt
cagctctgat gctgggtgct cagccctggt gctgggtgct gctgcggtgaa gaagcttggtg
gcagcttcg tgctctctca tggccccaggt gcagcctgggt 60
gcagcttcg gggcgtat caaatcct tgcacgcgag cagccctggt gctgggtgct
gcaggtcag ggggtagtca gcctctcaaa acgcttcgct ccctgctggt 120
gcaggtcag ggggtagtca gcctctcaaa acgcttcgct ccctgctggt 180
gcaggtcag ggggtagtca gcctctcaaa acgcttcgct ccctgctggt 240
gcaggtcag ggggtagtca gcctctcaaa acgcttcgct ccctgctggt 300
gcaggtcag ggggtagtca gcctctcaaa acgcttcgct ccctgctggt 360
gcaggtcag ggggtagtca gcctctcaaa acgcttcgct ccctgctggt 420
gcaggtcag ggggtagtca gcctctcaaa acgcttcgct ccctgctggt 480
gcaggtcag ggggtagtca gcctctcaaa acgcttcgct ccctgctggt 540
gcaggtcag ggggtagtca gcctctcaaa acgcttcgct ccctgctggt 600
gcaggtcag ggggtagtca gcctctcaaa acgcttcgct ccctgctggt 660
gcaggtcag ggggtagtca gcctctcaaa acgcttcgct ccctgctggt 720
gcaggtcag ggggtagtca gcctctcaaa acgcttcgct ccctgctggt 780
gcaggtcag ggggtagtca gcctctcaaa acgcttcgct ccctgctggt 831

<210> 9
<211> 249
<212> PRT
<213> 信号传导结构域
<400> 9
Thr Arg Leu Ser Asn Ser Ile Met Tyr Phe Ser His Phe Val Pro Val
 1 5 10 15
Phe Leu Pro Ala Lys Pro Thr Thr Thr Pro Ala Pro Arg Pro Pro Thr
 20 25 30
Pro Ala Pro Thr Ile Ala Ser Gln Pro Leu Ser Leu Arg Pro Glu Ala
 35 40 45
Cys Arg Pro Ala Ala Gly Gly Ala Val His Thr Arg Gly Leu Asp Phe
 50 55 60

[0007]
 Ala Cys Asp Ile Tyr Ile Trp Ala Pro Leu Ala Gly Thr Cys Gly Val
65 70 75 80
Leu Leu Leu Ser Leu Val Ile Thr Leu Tyr Cys Arg Ser Lys Arg Gly
85 90 95
Arg Lys Lys Leu Leu Tyr Ile Phe Lys Gin Pro Phe Met Arg Pro Val
100 105 110
Gln Thr Thr Gin Glu Glu Arg Asp Gin Cys Ser Cys Arg Phe Glu Gin
115 120 125
Glu Glu Gly Gly Cys Glu Leu Glu Phe Arg Val Lys Phe Ser Arg Ser
130 135 140
Ala Asp Ala Pro Ala Tyr Gin Gin Gly Gin Asn Gin Leu Tyr Asn Gin
145 150 155 160
Leu Asn Leu Gly Arg Gin Arg Glu Tyr Asp Val Leu Asp Lys Arg Gin
165 170 175
Gly Arg Asp Pro Glu Met Gly Gin Lys Pro Arg Gin Lys Asn Pro Glu
180 185 190
Glu Gin Leu Tyr Gin Glu Gin Lys Gin Gin Leu Gin Lys Gin Gin Gin Gin
195 200 205
Ser Glu Ile Gin Met Gin Gin
210 215 220
Gly Lys Tyr Gin Gin Leu Ser Gin Thr Gin Gin Gin Gin Gin Gin Gin Gin Gin Gin
225 230 235 240
Leu His Gin Gin
245

〈210〉 10
〈211〉 750
〈212〉 DNA
〈213〉 信号传导结构域
〈400〉 10
agcgctctga gaaactccat catgtactc agccacttcg tgcgggttct cctgccacgc 60
aagccacca gcaegccage gcegcaacca ccaacacgg egeceaccact cgcgtdcag 120
cctctgtcct cgcgcaacca ggcgtgccag ccaegcagg ggcggcagct gcaacggcag 180
序列表

```
        ggaacctgact ttgcctgtga tacctacact tgggccgaggct tgtgtgaggtgc 240
        ccctctctgt caactgttat caccctttac tgcagatcta aaggggggca aaggaacctc 300
        ctgtatatatat tattatgaga ccagttcana ctaactcaaa gagagatgge 360
        tggactgctgc gattttcagga aagaagagaa ggagaagttg aactgtgaatt cagagtaagag 420
        ttcagcagga gtcgagace cccgccgatgc cagccaggggce agaaaaccgact ctataacgog 480
        ctcaattctag gacggaagga ggagtaagtgt ttggtgaca agagaagttg cccggacctt 540
        ggagatggggg guagccgag aaggaagagec ccctcagass gagctgtcag tgaactgcaag 600
        aaagataagag tggcgagga ctactgtgag atttgggaaga aaggcctacg cccgggggce 660
        aaggggagc agtgcttta ccaggtcttce agtacctgca ccaagcaca ctacagagce 720
        cttccatgc aggcctgtgc cccgtctaa 750
```

(210) 11
(211) 34
(212) DNA
(213) 人工序列
(400) 11

gatcagcgtc ctgcgacact cccattcgtta ctct 34

(210) 12
(211) 34
(212) DNA
(213) 人工序列
(400) 12

gatcagatct gcagtaagg gttataacca gtga 34

(210) 13
(211) 32
(212) DNA
(213) 人工序列
(400) 13

gatcagatct aacggggaga aagagaaact cc 32

(210) 14
＜211＞ 35
＜212＞ DNA
＜213＞ 人工序列
＜400＞ 14

gatcgaatc cagttcaact cctccttctt cttct 35

＜210＞ 15
＜211＞ 32
＜212＞ DNA
＜213＞ 人工序列
＜400＞ 15

gatcgaatc agagtgaaagt ttcacagggag cg 32

＜210＞ 16
＜211＞ 28
＜212＞ DNA
＜213＞ 人工序列
＜400＞ 16

gatcgtgagc ttacgaggg ggcagggc 28
图 6

图 7