
공개특허 특2001-0072477

(19) 대한민국특허청(KR)
(12) 공개특허공보(A)

(51) 。Int. Cl. 7

G06F 9/45
(11) 공개번호
(43) 공개일자

특2001-0072477
2001년07월31일

(21) 출원번호 10-2001-7001898
(22) 출원일자 2001년02월13일
 번역문 제출일자 2001년02월13일
(86) 국제출원번호 PCT/US1999/18158 (87) 국제공개번호 WO 2000/10081
(86) 국제출원출원일자 1998년08월10일 (87) 국제공개일자 2000년02월24일

(81) 지정국 국내특허 : 알바니아, 아르메니아, 오스트리아, 오스트레일리아, 아제르바이잔, 보스니아-
헤르체고비나, 바베이도스, 불가리아, 브라질, 벨라루스, 캐나다, 스위스, 리히텐슈타인, 중
국, 쿠바, 체코, 독일, 덴마크, 에스토니아, 스페인, 핀랜드, 영국, 그루지야, 헝가리, 이스라
엘, 아이슬란드, 일본, 케냐, 키르기즈, 북한, 대한민국, 카자흐스탄, 세인트루시아, 스리랑
카, 라이베리아, 레소토, 리투아니아, 룩셈부르크, 라트비아, 몰도바, 마다가스카르, 마케도
니아, 몽고, 말라위, 멕시코, 노르웨이, 뉴질랜드, 슬로베니아, 슬로바키아, 타지키스탄, 투
르크메니스탄, 터어키, 트리니다드토바고, 우크라이나, 우즈베키스탄, 베트남, 폴란드, 포르
투칼, 루마니아, 러시아, 수단, 스웨덴, 싱가포르, 코스타리카, 도미니카연방, 남아프리카,
아랍에미리트, 가나, 감비아, 크로아티아, 인도, 그레나다, 유고슬라비아, 짐바브웨, 인도네
시아, 시에라리온, 우간다,
AP ARIPO특허: 케냐, 레소토, 말라위, 수단, 스와질랜드, 우간다, 시에라리온, 가나, 감비
아, 짐바브웨, 모잠비크,
EA 유라시아특허: 아르메니아, 아제르바이잔, 벨라루스, 키르기즈, 카자흐스탄, 몰도바, 러
시아, 타지키스탄, 투르크메니스탄,
EP 유럽특허: 오스트리아, 벨기에, 스위스, 리히텐슈타인, 독일, 덴마크, 스페인, 프랑스,
영국, 그리스, 아일랜드, 이탈리아, 룩셈부르크, 모나코, 네덜란드, 포르투칼, 스웨덴, 핀랜
드, 사이프러스,
OA OAPI특허: 부르키나파소, 베넹, 중앙아프리카, 콩고, 코트디브와르, 카메룬, 가봉, 기
네, 말리, 모리타니, 니제르, 세네갈, 차드, 토고, 기네비쏘,

(30) 우선권주장 09/134,073 1998년08월13일 미국(US)

(71) 출원인 썬 마이크로시스템즈, 인코포레이티드
미국 94303 캘리포니아주 팔로 알토 산안토니오 로드 901

(72) 발명자 웅가데이비드
미국캘리포니아94303팔로알토드리프트우드드라이브844

(74) 대리인 이영필
권석흠

심사청구 : 없음

 - 1 -

공개특허 특2001-0072477

(54) 가상 머신 환경에서 네이티브 코드를 변환하고 실행하는방법 및 장치

요약

포인터 검사, 스레드 제어, 및 다른 유용한 특성을 가지도록 하기 위해 가상 머신 환경에서 네이티브 코드를 변환하고
실행하는 방법 및 장치가 제공된다. 가상 머신 임플리멘테이션의 디버깅은 보다 독립적인 플랫폼 및 스레드 관리 및 스
케줄링에 대한 제어를 허용하고, 네이티브 코드에서의 메모리 액세스 에러 식별을 제공하는 네이티브 코드의 바이너리
변환을 통해 보다 용이하게 된다. 네이티브 코드가 가상 머신 환경내에서 수행되는 경우, 네이티브 코드는 중간 형식으
로 변환된다. 상기 중간 형식은 메모리 액세스 및 블록킹 시스템 호출이 발생되는 경우 처리되어 결정된다. 유효성 체크
는 각각의 호출에 의해 액세스되는 메모리부가 허용된 범위내에 있는 지를 결정하기 위해 메모리 액세스 호출로 삽입된
다. 상기 네이티브 코드와 연관된 메모리 액세스 에러의 다른 소스들 및 와일드 포인터는 이와 같이 식별된다. 블록킹
시스템 호출은 비-블록킹 변수로 대체되고, 산출 동작은 시스템 호출 및 루프로 삽입된다.

수정된 네이티브 코드 구현 메모리 액세스 유효성 체크 및 비-블록킹 시스템 호출은 네이티브 코드에 의해 정의된 루
틴을 수행하기 위해 가상 머신에 의해 컴파일되고 인터프리팅된다. 상기 수정된 네이티브 코드는 다른 스레드를 방해하
지 않기 때문에, 스레트 스케줄링은 기초가되는 운영 시스템보다는 가상 머신에 의해 관리될 수 있으며, 협동 스케줄링
이 수행될 수 있다.

대표도
도 5

색인어
가상 머신 코드 변환 라이브러리 액세스

명세서

 기술분야

본 발명은 컴퓨터 시스템 분야, 좀더 구체적으로는, 가상 머신 런타임 환경에 관한 것이다.

솔라리스(Solaris), 선(Sun), 선 마이크로시스템즈(Sun Microsystems), 선 로고(Sun logo), 자바(Java), 및 모든
자바-기반 상표 및 로고는 미합중국과 다른 국가들에서 선 마이크로시스템즈 인코포레이티드의 상표 또는 등록된 상표
이다.

 배경기술

선 마이크로시스템즈에 의해 개발된 자바 프로그램 언어는 다른 프로그램 언어들에 비해 " 한번 쓰여지면 어디에서도
실행될 수 있는" 언어라는 장점을 가진다. 자바 프로그램 언어는 어플리케이션들 또는 바이트코드 클래스 파일의 형태
로 설계되고, 분배되고, 실행되는 " 애플릿(applets)" 에 대해 실질적으로 플랫폼에 독립적인 메커니즘을 제공한다. 자
바 가상 머신은 바이트코드들의 분석을 필수 플랫폼 의존적인 명령어 집합으로 처리하고, 따라서 자바 가상 머신을 포
함하는 모든 컴퓨팅 플랫폼들이 동일한 바이트코드 클래스 파일을 실행할 수 있다. 자바 프로그램 언어에 의해 지원되
지 않는 함수들이 필요할 때, 가상 머신내에서 실행하는 자바 어플리케이션이 링크된 라이브러리에 구현된 네이티브 코
드 함수들을 부를 수 있다. 네이티브 코드는 자바 프로그램이나 실행 요구사항에 종속적이지 않고, 따라서 덜 잘 제어된
실행 동작의 대가로 좀더 플래폼에 특유한 프로그래머빌리티를 제공한다. 자바 어플리케이션들과 애플릿들을 위한 처리
환경과, 네이티브 코드의 사용이 이하에서 좀더 상세히 설명된다.

 - 2 -

공개특허 특2001-0072477

처리 환경

자바 프로그램 언어는, 각 프로그램이 하나 이상의 오브젝트 클래스와 인터페이스를 가지는 객체-지향 프로그램 언어
이다. 하나의 프로그램이 머신 의존적인 실행가능한 프로그램 코드로 컴파일되는 많은 프로그램 언어들과 달리, 자바
프로그램 언어로 쓰여진 클래스는 머신 독립적인 바이트코드 클래스 파일들로 컴파일된다. 각 클래스는 클래스 파일 포
맷이라 불리는 플랫폼-독립적인 포맷의 코드와 데이터를 포함한다. 실행 매개체로서 기능하는 컴퓨터 시스템은 가상
머신(virtual machine)이라 불리는 프로그램을 포함하고, 이러한 가상 머신이 각 클래스의 코드를 실행하는 책임을 맡
는다.

애플리케이션들은 독립형의 자바 어플리케이션으로서 또는 HTML(하이퍼텍스트 마크업 랭귀지) 문서의 애플릿 태그
에 의해 확인되고 브라우저 어플리케이션에 의해 로드되는 자바 " 애플릿" 으로서 설계될 수 있다. 어플리케이션 또는
애플릿과 관련된 클래스 파일은 로컬 컴퓨팅 시스템 또는 네트워크상에서 액세스가능한 서버에 저장될 수 있다. 각 클
래스는 자바 가상 머신에 로드되는데, 필요하다면 " 클래스 로더" 에 의해 로드된다.

클라이언트가 네트워크상의 서버로부터 클래스 파일들을 액세스하게 하기 위 해, 웹서버 어플리케이션은 URL(univer
sal resource locators)을 포함하는 HTTP(하이퍼텍스트 전송 프로토콜) 요청에 대해 " 웹페이지" 로 불리는 HTML
문서로 응답하는 서버상에서 실행된다. 클라이언트 플랫폼상에서 실행되는 브라우저 어플리케이션이 HTML 문서(예를
들어, 웹서버에 URL을 보내는 것에 의해 HTML 문서를 요청하는 결과로서)를 수신할 때, 브라우저 어플리케이션은 H
TML을 분석하고, 그것이 HTML 문서의 애플릿 태그를 만날 때 규정된 바이트코드 클래스 파일의 다운로드를 자동적
으로 시작한다.

자바 애플릿의 실행동안 처음 참조될 때, 자바 애플릿의 클래스는 서버상에 저장된 네트워크 또는 로컬 파일 시스템으
로부터 요구에 따라 로드된다. 가상 머신은 각 클래스 파일의 위치를 지정하고, 로드하고, 클래스 파일 포맷을 분석하고,
클래스의 다수의 콤포넌트들에 대해 메모리를 할당하고, 상기 클래스를 이미 로드된 다른 클래스들과 링크한다. 이러한
프로세스는 클래스내의 코드를 가상 머신에 의해 실행가능하게 만든다.

자바 어플리케이션과 애플릿은 종종 클래스 라이브러리를 이용한다. 클래스 라이브러리의 클래스들은 " 네이티브 메쏘
드(native method)" 라 불리는 것을 포함할 수 있다. 애플리케이션과 애플릿은 때때로 상기 네이티브 메쏘드를 가지는
클래스를 포함할 수 있다. 네이티브 메쏘드는 키워드 " 네이티브" 와, 메쏘드의 이름과, 메쏘드의 리턴 타입과, 메쏘드
에 전달되는 모든 파라미터를 규정한다. 자바 프로그램 언어로 쓰여진 " 스탠다드 메쏘드" (넌-네이티브 메쏘드)와 대
조적으로, 각 클래스내에는 네이티브 메쏘드에 대한 바디가 없다. 오히려, 네이티브 메쏘드의 루틴은 링크된 라이브러
리를 지원하는 주어진 플랫폼에 특정한 링킹 설비를 이용하여 런타임시 가상 머신에서 주어진 클래스에 동적으로 링크
되는 컴파일된 네이티브 코드(예를 들어, C 나 C++ 프로그램 언어로 작성되고 바이너리 형태로 컴파일된)에 의해 실
행된다.

예를 들어, 솔라리스 또는 유닉스 환경에서, 네이티브 코드의 바이너리 형태를 포함하는 링크된 라이브러리는 " .so" 파
일로서 작성된 " 공유된 오브젝트" 라이브러리로 구현될 수 있다. 윈도우 환경에서, 상기 링크된 라이브러리는 " .dll"
파일로 작성된, 다이나믹하게 링크된(또는 다이나믹하게 로드가능한(dynamic loadable)) 라이브러리의 형태를 가질
수 있다. 네이티브 코드는 주어진 플랫폼의 특정화된 하드웨어(예, 디스플레이 하드웨어) 또는 소프트웨어(예, 데이터
베이스 드라이버)와의 인터페이싱 등과 같이, 자바 프로그램 언어에 의해 지원되지 않는 다른 기능들을 수행하는데 사
용될 수 있다. 네이티브 코드는 랜더링 등과 같이 계산적으로 강력한 기능들을 촉진하는데 사용될 수도 있다.

 - 3 -

공개특허 특2001-0072477

네이티브 메쏘드를 포함하는 클래스는 다음과 같이 각 링크된 라이브러리를 로드하는 호출을 또한 포함한다.

System.loadLibrary(" Sample");

여기서, " Sample" 은 호스트 오퍼레이팅 시스템(예, 유닉스, 윈도우 등)에 따라 " libSample.so" 또는 " Sample.dll"
라는 이름의 파일에 일반적으로 저장된 링크된 라이브러리의 이름이다. 링크된 라이브러리는 일반적으로 관련된 클래스
가 가상 머신내에서 인스턴스화될 때 로드된다.

네이티브 코드의 링크된 라이브러리는, 링크된 라이브러리가 클래스내의 네이티브 메쏘드의 메쏘드 서명을 인식하는 것
을 가능하게 하기 위해, 관련된 클래스의 스터브(stub)와 헤더 정보를 가지고 컴파일된다. 네이티브 메쏘드의 구현은
링크된 라이브러리의 네이티브 코드 함수(C 함수와 같은)으로서 제공된다. 런타임시, 네이티브 메쏘드에 대해 호출이
행해질 때, 호출된 메쏘드(예를 들어, 네이티브 메쏘드 프레임을 네이티브 메쏘드 스택상으로 밀어넣는 것을 통해서)에
대응하는 링크된 라이브러리의 함수로 제어가 전달된다. 링크된 라이브러리내의 네이티브 코드는 함수를 수행하고, 자
바 어플리케이션 또는 애플릿으로 다시 제어를 전달한다.

도 1은 처리 시스템의 컴파일과 런타임 환경을 예시한다. 컴파일 환경에서, 소프트웨어 개발자는 소스 파일(100)(예를
들어, 자바 프로그램 언어로)을 작성하고, 소스 파일은 데이터 구조, 메쏘드 구현, 다른 클래스의 참조를 포함하는 프로
그래머가 판독가능한 클래스 정의들을 포함한다. 소스 파일(100)은 자바 컴파일러(101)에 제공되고, 자바 컴파일러는
소스 파일(100)을 자바 가상 머신에 의해 실행가능한 바이트코드를 포함하는 컴파일된 " .class" 파일(102)로 컴파일
한다. 바이트코드 클래스 파일(102)은 서버에 (예를 들어, 임시 또는 영구 저장으로) 저장되고, 네트워크상에서 다운
로드하는데 이용가능하다. 선택적으로, 바이트코드 클래스 파일(102)은 클라이언트 플랫폼상의 디렉토리에 지역적으
로 저장될 수 있다.

자바 런타임 환경은, 바이트코드 클래스 파일을 실행할 수 있고, 실행시 필요할 때, 오퍼레이팅 시스템(109)에 대한 네
이티브 오퍼레이팅 시스템(" O/S") 호출을 실행할 수 있는 자바 가상 머신(JVM:105)을 포함한다. 자바 가상 머신(1
05)은 바이트코드 클래스의 머신 독립성과, 오퍼레이팅 시스템(109)의 플랫폼-의존적인 호출뿐만 아니라 하부 컴퓨
터 하드웨어(110)의 머신-의존적인 명령어 집합사이에 추상화 레벨을 제공한다.

클래스 로더와 바이트코드 검증기(" 클래스 로더")(103)는 바이트코드 클래스 파일(102)을 로드하고 필요하다면 자
바 가상 머신(105)으로 클래스 라이브러리(104)를 지원하는 책임이 있다. 클래스 로더(103)는 적절한 실행과 안전
규칙의 집행을 유지하기 위해 각 클래스 파일의 바이트코드를 검증한다. 런타임 시스템(108)의 환경내에서, 인터프리
터(106)는 직접적으로 바이트코드를 실행하거나 또는 " just-in-time" (JIT) 컴파일러(107)가 바이트코드를 머신
코드로 변환하고, 따라서 그들은 하드웨어(110)의 프로세서 또는 프로세서들에 의해 실행될 수 있다. 예를 들어, 링크
된 라이브러리(111)의 형태의 네이티브 코드는, 관련된 네이티브 메쏘드를 포함하는 클래스(예를 들어, 클래스 라이브
러리(104)로부터의)가 가상 머신내에서 인스턴스화될 때, 로드된다.

가상 머신(105)의 런타임 시스템(108)은 범용 스택 구조를 지원한다. 이러한 범용 스택 구조가 하부 하드웨어(110)
에 의해 지원되는 방법은 특정한 가상 머신 구현에 의해 결정되고, 바이트코드가 인터프리트되거나 또는 JIT 컴파일되
는 방법에 반영된다. 런타임 시스템의 다른 요소들은 스레드 관리(예를 들어, 스케쥴리)와 가비지 컬렉션 메커니즘(ga
rbage collection mechanism)을 포함한다.

도 2는 런타임 시스템(108)내에서 스택 구조를 지원하는 런타임 데이터 영역을 예시한다. 도 2에서, 런타임 데이터 영
역(200)은 하나 이상의 스레드-기반의 데이터 영역(thread-based data areas)(207)을 포함한다. 각 스레드-기반

 - 4 -

공개특허 특2001-0072477

의 데이터 영역(207)은 프로그램 카운터 레지스터(PC REG:208), 지역 변수 포인터 레지스터(VARS REG:209), 프
레임 레지스터(FRAME REG:210), 오퍼랜드 스택 포인터 레지스터(OPTOP REG:211), 스택(212)(예를 들어, 스탠
다드 메쏘드에 대한), 선택적으로 네이티브 메쏘드 스택(216)을 포함한다. 스택(212)은 오퍼랜드 스택(214)과 지역
변수(215)를 포함하는 하나 이상의 프레임(213)을 포함한다. 네이티브 메쏘드 스택(216)은 하나 이상의 네이티브 메
쏘드 프레임(217)을 포함한다.

런타임 데이터 영역(200)은 또한 공유된 히프(heap:201)를 포함한다. 히프(201)는 모든 클래스 인스턴스와 어레이
가 할당되는 메모리로부터의 런타임 데이터 영역이다. 공유된 히프(201)는 메쏘드 영역(202)을 포함하고, 상기 메쏘
드 영역은 모든 스레드들사이에 공유된다. 메쏘드 영역(202)은 각 로드된 클래스 파일로부터 추출된 정보를 저장하는
하나 이상의 클래스-기반의 데이터 영역(203)을 포함한다. 예를 들어, 클래스-기반의 데이터 영역(203)은 상수 풀(
constant pool:204)과, 필드 및 메쏘드 데이터(205)와, 메쏘드와 콘스트럭터의 코드(206)와 같은 클래스 구조를 포
함할 수 있다.

가상 머신은 한번에 많은 실행의 스레드를 지원할 수 있다. 각 스레드는 그자신의 스레드-기반의 데이터 영역(207)을
가진다. 어느 시점에서도, 각 스레드는 단일 메쏘드, 그 스레드에 대한 " 현재 메쏘드" 의 코드를 실행하고 있다. 만약 "
현재 메쏘드" 가 네이티브 메쏘드가 아니면, 프로그램 카운터 레지스터(208)는 현재 실행되고 있는 가상 머신 명령어
의 주소를 포함한다. 만약 " 현재 메쏘드" 가 네이티브 메쏘드이면, 프로그램 마운터 레지스터(208)의 값은 정의되지
않는다. 프레임 레지스터(210)는 메쏘드 영역(202)에서 현재 메쏘드의 위치를 가리킨다.

각 스레드는 스레드와 같은 때에 형성된 사설 스택(private stack:212)을 가진다. 스택(212)은 스레드에 의해 불려내
진 스탠다드 메쏘드와 관련된 하나 이상의 프레임(213)을 저장한다. 프레임(213)은 다이나믹 링킹을 수행하고, 메쏘
드에 대한 값을 리턴하고, 예외를 처리할 뿐만 아니라, 데이터와 부분적 결과들을 저장하는데 사용된다. 스탠다드 메쏘
드가 불러내질 때마다 새로운 프레임이 형성되어 스택에 넣어지며, 그것의 메쏘드가 완료될 때마다 현존하는 프레임은
스택으로부터 팝되고 파괴된다. 스레드에 의해 형성되는 프레임은 그 스레드에 대해 지역적이고, 일반적으로는 어떤 다
른 스레드에 의해 직접적으로 참조될 수 없다.

유일하게 한 프레임인 현재 실행되는 메쏘드에 대한 프레임은 제어의 주어진 스레드의 어느 시점에서도 액티브하다. 이
러한 프레임은 " 현재 프레임" 으로 불려지고, 그것의 메쏘드는 " 현재 메쏘드" 로 알려져 있다. 프레임은, 그것의 메쏘
드가 또다른 메쏘드를 불러내거나. 또는 그것의 메쏘드가 완료될 때, 현재상태이기를 멈춘다. 메쏘드가 불려내질 때, 새
로운 프레임이 형성되고, 제어가 새로운 메쏘드로 전달될 때 현재(current)가 된다. 메쏘드 리턴시에, 현재 프레임은
그것의 메쏘드 불러냄의 결과를 이전 프레임이 있다면 이전 프레임에 되돌린다. 이전 프레임이 현재 프레임이 될 때, 현
재 프레임은 무시된다.

각 프레임(213)은 그자신의 지역 변수들의 집합(215)과 그자신의 오퍼랜드 스택(214)을 가진다. 지역 변수 포인터
레지스터(209)는 현재 프레임의 지역 변수(215)를 포함하는 워드의 어레이의 베이스에 대한 포인터를 포함한다. 오퍼
랜드 스택 포인터 레지스터(211)는 현재 프레임의 오퍼랜드 스택(214)의 탑을 포인트한다. 대부분의 가상 머신 명령
어들은 현재 프레임의 오퍼랜드 스택으로부터 값을 취해서, 그 값에 연산을 하고, 그 결과를 동일한 오퍼랜스 스택에 리
턴한다. 오퍼랜드 스택(214)은 메쏘드로 아규먼트(arguments)를 전달하고 메쏘드 결과를 수신하는데 사용된다.

 - 5 -

공개특허 특2001-0072477

네이티브 메쏘드 스택(216)은 네이티브 메쏘드를 지원하여 네이티브 메쏘드 프레임(217)을 저장한다. 각 네이티브 메
쏘드 프레임은 스레드 실행 제어와, 메쏘드 아규먼트와, 스탠다드 메쏘드와 링크된 라이브러리에서 네이티브 코드 함수
로 구현되는 네이티브 메쏘드사이에 전달되는 메쏘드 결과들에 대한 메커니즘을 제공한다.

네이티브 메쏘드(native methods)는 표준메쏘드(standard method)에서처럼 클래스내에 있기 보다는 연결라이브러
리(linked library) 내에 있는 네이티브 코드에 의해 수행되기 때문에 네이티브 메쏘드는 자바 프로그램 언어 및 바이
트코드 검증기(bytecode verifier)에 의하여 부과된 제한을 받지 않는다. 이것은 컴파일된 자바 어플리케이션과 애플
릿들(Java application and applets)을 위한 바이트코드와는 달리 연결라이브러리에 있는 네이티브 코드는 런타임시
에(at runtime) 체크되지 않는 바람직하지 않고 허용되지 않는 동작(behavior)일 수 있다는 것을 의미한다. 예를 들어,
네이티브 코드에서는 '와일드' 포인터(" wild" pointers)(8개의 구성요소를 가지고 있는 배열에서 9번째 구성요소를
지정하는 것과 같이 포인터의 값이 금지된 범위를 벗어나는 포인터)의 발생과 부적절한 메모리 위치(즉, 제한되거나 범
위를 벗어나는)를 지정하는(address) 메모리 엑세스 메커니즘의 사용으로 인한 메모리 엑세스 에러가 발생할 수 있다.
이렇게 네이티브 메쏘드의 사용은 주로 포인터의 사용에 의한 프로그램 범위에 관한 버그(a range of programming b
ugs)가 발생할 수 있고, 이로 인해 특정 가상 머신의 수행을 디버깅하는 것을 더욱 어렵게 하고 있다.

게다가, 네이티브 코드는 블럭킹 시스템 호출(blociking system call)(즉, 외부 동작(external event)이 발생할 때까
지의 특정되지 않은 길이의 시간을 기다려야 할 지도 모르는 호출)을 포함하고 있을 수도 있다. 만약 가상 머신이 그 자
신의 스레드(thread)관리와 스케줄링(scheduling)을 수행하는 경우에는 연결 라이브러리에 있는 네이티브 코드 함수
에 의해 제어될 때 발생하는 블럭킹 시스템 호출은 전체 가상 머신의 수행을 막아버릴 수도 있다.

대부분의 가상 머신의 수행은 " 네이티브 스레딩(native threading)" 을 사용함으로 인해 네이티브 코드와 관련하여
문제되는 블럭킹 문제를 피하고 있다. 이것은 가상 머신 및 프로그램의 다중 스레드(multiple threads) 또는 가상 머신
이 수행하는 프로그램(어플리케이션 및/또는 애플릿츠)이 UNIX의 스레드처럼 기반 플랫폼(underlying platform)의
스레드로서 수행된다는 것을 의미한다. 이러한 구성(scheme)에서는 가상 머신의 스레드는 동시에 수행되어질 수 있다.
그러나, 네이티브 스레딩(native threading)이 사용되는 경우에는 가상 머신은 스레드 스케줄링에 대한 제어를 기반이
되는 운영시스템에 넘겨주어야 한다. 이렇게 네이티브 스레딩은 스레드 동작을 운영시스템과 하드웨어에 의존하도록 하
게 된다. 네이티브 스레딩을 이용하는 경우에는 스레드 수행의 상대적인 시간(relative timing)은 운영시스템과 하드
웨어 플랫폼에 따라 다르기 때문에, 가상 머신의 동작 중에 동시에 발생하는 관련된 버그들의 효과적인 디버깅은 어렵
게 된다.

도 3a와 도 3b는 런타인 환경에서의 스레드 사용을 나타내는 블럭선도이다. 도 3a는 네이티브 스레딩을 사용하지 않는
가상 머신을 포함하고 있다. 도 3b는 네이티브 스레딩을 사용하는 가상 머신을 포함하고 있다.

도 3a에서 운영 시스템(109)는 하드웨어(110)의 상(on top of hardware)에서 수행되고, 가상머신(105)는 운영시스
템(109) 상에서 실행된다. 가상 머신(105) 안에서는 애플릿 1(300)과 애플릿 2(301)과 같은 다중 어플리케이션 및
/또는 애플릿들이 실행된다. 애플릿 1(300)과 애플릿 2(301)는 각각 하나 이상의 바이트코드 클래스 파일들로 구성되
어 질 수 있다. 연결 라이브러리(302)는 애플릿 2에 연결되어 네이티브 메쏘드를 지원하게 된다. 라이브러리(302)는
연관된 네이티브 메쏘드를 포함하고 있는 애플릿 2의 클래스가 가상 머신(105) 내에서 구체화될 때 로딩되어어 연결
되어진다. 라이브러리(302)의 네이티브 코드는 바로 운영 시스템(109) 상에서 실행되고, 이는 라이브러리 연결 기능
및 하드웨어(110)를 지원하게 된다.

다중 스레드의 실행은 가상 머신(105)안에서 이루어진다. 예를 들어 애플릿 1이 T1과 T2의 2개의 스레드를, 애플릿
2이 T5와 T6의 2개의 스레드를, 가상 머신이 가비지 수집(garbage collection)과 같이 가상 머신의 프로세스를 수행

 - 6 -

공개특허 특2001-0072477

하는 T3와 T4의 2개의 스레드를 가질 수 있다. 스레드 T1-T6는 가상 머신(105)내에 있는 가상머신(VM) 스레드 스
케줄러(303)에 의하여 관리되고 스케줄된다. VM 스레드 스케줄러(303)은 우선순위와 시분할 메쏘드에 기초하여 예
를 들면, T1-T6 중 어떤 스레드가 현재 가상 머신에서 실행되어야 하는 스레드인지 여부, 즉 TVM(thread of virtu
al machine)을 운영시스템 수준에서 결정한다.

자바 가상 머신은 전통적으로 " 협동 스케줄링(cooperative scheduling)" 을 보조하는데, 여기서 실행 스레드들은 일
정한 간격(certain intervals) 또는 현재 실행중인 스레드와 관련하여 지연(delay)가 발생할 것 같은 때 프로세싱 자
원을 다른 스레드에게 주게 된다(yield). 예를 들어, 높은 우선 순위가 주어지는 스레드는 이러한 산출 연산(yield op
eraition)을 이용하여 현재 스레드(current thread)가 될 수 있다. 프로세서 자원을 보내는(yield) 것은 표준 메쏘드
에서는 명시적으로 프로그램되어 질 필요는 없다. 가상 머신은 일드(yields)를 메쏘드 호출(method calls)이나 내부
루프(within loop)(즉, 역 브랜치(backward branches)일 때)와 같이 실행중의 적절한 순간에 인터프릿팅 프로세스
나 컴파일된 코드에 삽입하여 협동 스케줄링을 할 수 있다.

운영시스템(109)는 어느 한 순간에 선택된 가상 머신 스레드(VTM)을 포함한 많은 스레드들을 제공할 수 있다. 예를
들어, 운영 시스템(109)는 다른 어플리케이션이나 운영시스템의 다른 프로세스를 보조하는 스레드 TA-TZ을 포함할
수 있다. 운영시스템 스케줄러(304)는 스레드 TA-TZ들로부터 어떤 스레드가 주어진 시간에 기반 하드웨어에 의해
실행될지를 결정한다. 하드웨어(110)이 다중 프로세서를 지원하는 경우에 다중 스레드는 운영시스템 스케줄러(304)
에 의해서 스케줄되어서 동시에 다른 프로세서에서 실행될 수 있다.

도 3a의 실시에서, 가상 머신 스레드(즉, T1- T6)는 실행제어권(execution control)을 연결 라이브러리(예를 들어
라이브러리 (302))에 전송하여 네이티브 메쏘드를 위한 함수를 수행할 수 있다. 예를 들어 스레드 T6는 도시된 바와
같이 라이브러리(302)의 네이티브 코드에 의해 지원되는 애플릿 2의 네이티브 메쏘드를 호출할 수 있다. 스레드 T6은
현재 가상 머신 스레드(TVM)로서 운영시스템(109)에 연결되어 있기 때문에 제어권(control)을 라이브러리(302)에
넘길수 있다. 가상 머신의 다른 스레드들은 스레드 T6이 공동 스케줄링에 의하여 일드(yield)할 때까지 대기하고 있어
야 한다.

그러나, 라이브러리(302)로의 제어권의 전송은 가상 머신 실행 문제(virtual machine execution problems)를 야기
할 수 있다. 가상 머신에서 실행되는 클래스들은 전통적으로 다른 클래스들의 메쏘드들(methods)만을 호출하며, 바로
시스템을 호출하지는 않는다. 그러나, 그 내부의 함수에 의존하는 네이티브 코드는 잦은 시스템으로의 호출을 하여 블
럭을 야기한다. 네이티브 코드는 컴파일된 코드로서 독립적으로 실행되기 때문에, 가상 머신 인터프릿터와 컴파일러를
사용하지 않고(bypass), 제어권이 표준 메쏘드로 돌아올 때까지 협동 스케줄링을 수행할 수 없다. 따라서, 가상 머신은
네이티브 코드 프로그래머에 의존하여 네이티브 코드 안에 yield() 호출을 명백히 제공하여야 한다.

만약 라이브러리(302)의 네이티브 코드가 파일을 다운로드 하기 위해 I/O 호출과 같이 블럭킹 시스템 호출을 하는 경
우, 가상 머신의 스레드 T6 및 운영 시스템 수준의 스레드(TVM)은 시스템 호출이 완료될 때까지 즉, 다운로드가 끝날
때까지 중지(block)될 것이다. 실행제어권이 라이브러리(302)의 네이티브 코드에 의해 관리될 때에는 전 가상 머신
실행도 역시 시스템 호출동안 중지된다. 블럭킹 시스템 호출이 완료되기까지 상대적으로 장시간이 걸리기 때문에, 가상
머신(109)의 모든 스레드들이 모두 중지(block)되는 것은 바람직하지 않다. 애플릿 1, 애플릿 2 및 가상머신(105)의
수행은 라이브러리(302)의 블럭킹 시스템 호출때문에 감소되게 된다. 이런 이유때문에 많은 가상 머신 장치(implem
entations)들은 도 3b에 도시된 바와 같이 네이티브 스레딩을 사용한다.

 - 7 -

공개특허 특2001-0072477

도 3b에서, 가상 머신 스레드 스케줄러(303)은 운영 시스템 수준에서 스레드로서 가상 머신의 다중 스레드들을 실행한
다. 이러한 스레드들은 TVM1-TVMn으로 표시되어 진다. 가상 머신 스레드 스케줄러(303)은 어떤 가상머신 스레드
들(T1-T6)이 주어진 시간에 OS 스레드인 TVM1-TVMn으로서 운영시스템(109)에 전달되는 지를 결정한다. 가상
머신의 각 스레드가 기반 운영시스템(109)의 개별적인(individual) 스레드로 실행되는 극단적인 경우에는, 가상 머신
(105)은 스레드 스케줄링을 위하여 가상머신 스케줄러(303)을 실행하는 것을 무시하고, 전적으로 OS 스레드 스케줄
러(304)에 의존할 수 있다.

도 3b에 따르면 가상머신(105)에서 다중 스레드가 동시에 활성이 되는 것을 허용해 준다. 이것은 라이브러리(302)의
네이티브 코드에 의한 블럭킹 시스템 호출이 완전히 가상머신(105)를 중지(block)시키지 않는다는 것을 의미한다. 오
히려, 제어권을 라이브러리(302)에 전달하는 TVM1-TVMn 그룹 중의 하나의 스레드는 블럭되지만, 나머지 스레드들
은 자유롭게 실행될 수 있다.

그러나, OS 또는 네이티브 스레드로서 가상 머신의 다중 스레드들을 실행시키는 것에 의해 가상 머신(105)는 가상 머
신의 스레드의 스케줄링에 대한 제어권을 가상머신 스레드 스케줄러로부터 OS 스레드 스케줄러(304)로 효과적으로
넘길수 있다. VM 스레드 스케줄러(303)에 의하여 행해지는 제어권의 상대적인 결핍때문에 가상머신의 스레드 사이에
서 동기화(synchfonization) 에러가 발생할 수 있다. 가상 머신(105)와 애플릿 1 및 애플릿 2가 다른 운영시스템(10
9) 및/또는 다른 시간 파라미터와 스케줄링 프로세스를 가진 다른 하드웨어(110)에서 실행될 때, 네이티브 스레딩의
OS 스레드 스케줄러(304)에 대한 의존성때문에 동기화 에러가 발생하지 않을 수도 있고, 다른 방식으로 발생할 수도
있다. 이렇게 에러들은 쉽게 되풀이 되지 않을 수 있고, 상기 시스템의 디버깅은 더욱 복잡해진다.

객체지향 프로그램

객체지향 프로그램 원칙의 일반적인 설명이 참조를 위하여 이하에 제공되어진다. 객체지향 프로그램은 컴퓨터 프로그램
을 어떤 기본적인 빌딩 블럭들을 결함함으로써 만들고, 상기 빌딩블럭들간의 관계를 만드는 메쏘드이다. 객체지향 프로
그램 시스템에서의 빌딩 블럭은 " 객체" 라고 불리워진다. 객체는 자료구조(하나 이상의 인스탄스 변수들)와 상기 자료
를 이용하거나 영향을 주는 연산(메쏘드)을 묶은 프로그램 단위이다. 이렇게 객체는 자료와 자료에 수행되는 하나이상
의 연산 또는 절차로 구성되어 있다. 자료와 연산을 조합하여 하나의(unitary) 빌딩 블럭으로 만드는 것을 인캡슐레이
션이라고 한다.

객체는 메세지를 받으면 그 메쏘드의 하나를 수행하도록 지시되어진다. 메세지는 객체에게 어떤 메쏘드을 실행하라는
명령이거나 지시이다. 메세지는 메쏘드 선택(예를 들어 메쏘드 이름)과 0개 이상의 인자들로 구성된다. 메세지는 받는
객체에게 어떤 동작을 수행할 것인지를 지시한다.

객체지향 프로그램의 하나의 장점은 메쏘드을 호출하는 방법이다. 메세지가 객체에 보내지면, 상기 메세지는 객체에게
특정메쏘드을 어떻게 수행할지에 대해 지시할 필요가 없다. 단지 객체에게 상기 메쏘드을 수행할 것을 요구하기만 하면
된다. 이것은 프로그램 개발을 매우 간단하게 만든다.

객체지향 프로그램언어는 대부분 클래스 방식에 기초하고 있다. 클래스에 기초한 객체지향 프로그램의 한 예가 " sma
lltalk-80: The Language" (by Adele Goldberg and David Robson, published by Addison-Wesley Publishin
g Company, 1989)에 나타나 있다.

 - 8 -

공개특허 특2001-0072477

클래스는 전통적으로 양 분야(즉, 변수들)와 상기 클래스를 위한 메쏘드를 포함하고 있는 객체의 타입을 정의한다. 객
체 클래스는 객체의 특별한 인스탄스를 생성하기 위하여 사용된다. 객체 클래스의 인스탄스는 변수들 및 클래스에 대하
여 정의된 메쏘드를 포함한다. 동일한 클래스로부터 복수개의 인스탄스(multiple instances)가 하나의 객체 클래스로
부터 생성될 수 있다. 상기 객체 클래스로부터 생성되는 각 인스탄스는 같은 형식 또는 클래스라고 불리워진다.

상세히 설명하면, 종업원 객체 클래스는 " 이름" 과 " 봉급" 이라는 인스탄스 변수와 " 봉급정하기" 라는 메쏘드를 포함
할 수 있다. 종업원 객체 클래스의 인스탄스들이 조직내의 각 종업원에 대하여 생성되거나 구체화될 수 있다. 각각의 객
체 인스탄스는 " 종업원" 타입이라고 불린다. 각각의 종업원 객체 인스탄스들은 " 이름" 과 " 봉급" 이라는 인스탄스 변
수들과 " 봉급정하기" 라는 메쏘드를 포함한다. 각 종업원 객체 인스탄스에서의 " 이름" 과 " 봉급" 변수에 관련된 값들
은 조직내의 한 종업원의 이름과 봉급을 포함한다. 메세지는 어떤 종업원의 종업원 객체 인스탄스에 보내져 " 봉급정하
기" 메쏘드를 호출하여 종업원의 봉급(즉, 상기 종업원의 종업원 객체에 있는 " 봉급" 변수)을 조정하게 된다.

클래스의 계층은 객체클래스정의가 하나 이상의 부클래스를 가질 수 있도록 정의되어질 수 있다. 부클레스는 부모(조부
모 등)의 정의를 상속받는다. 계층내의 각 부클래스는 그의 부모 클래스로부터 특정된 동작에 더하거나 동작을 변경하
게 된다. 일부의 객체지향 프로그램언어는 부클래스가 하나 이상의 부모클래스로부터 클래스 정의를 상속하는 다중 상
속을 지원한다. 자바 언어와 같은 다른 프로그램 언어는 부클래스가 오직 하나의 부모 클래스의 정의만을 상속하는 단
일 상속만을 지원한다. 자바 프로그램 언어는 상수와 추상 메서드 선언의 세트로 이루어진 " 인터페이스" 로 알려진 메
커니즘을 제공한다. 객체 클래스는 인터페이스에 정의된 추상 메서드들을 실행한다. 단일 및 다중 상속은 모두 인터페
이스에서 유효하다. 즉, 하나의 인터페이스는 하나 이상의 부모 인터페이스로부터 인터페이스 정의를 상속받을 수 있다.

객체는 객체지향 프로그램 환경에서 관련된 코드와 변수를 포함하는 모듈을 일컫는 일반적인 용어이다. 소프트웨어 어
플리케이션은 프로그램의 기능성이 객체를 이용하여 수행되는 객체지향 프로그램을 이용하여 작성되어 질 수 있다.

 발명의 상세한 설명

본 발명은 가상 머신 환경에서 네이티브 코드를 번역하고 실행하는 방법 및 장치에 관한 것이다. 이하에서는 많은 특정
한 세부사항들이 본 발명의 실시예를 통하여 제시될 것이다. 그러나, 본 발명이 속하는 기술분야에서 통상의 지식을 가
진자에게는 이러한 특정한 세부사항없이도 본 발명이 실시될 수 있으리라는 것은 명백하다. 한편, 본 발명을 불명료하
게 하지 않기 위해서 잘 알려진 예들이 기재되지 않았다.

비록 자바 프로그램 언어와 자바 가상 머신에 대하여 설명되었지만, 본 발명은 네이티브 메쏘드 또는 함수를 포함하고
있는 어떠한 가상 머신 환경하에서 수행되어질 수 있다.

 도면의 간단한 설명

도 1은 컴파일 및 실행 환경의 블록도.

도 2는 가상 머신의 하나의 실시예에 따른 실행시간 데이터 영역의 블록도.

도 3a는 링크된 라이버러리를 통해 구현된 네이티브 코드 및 다중 애플릿을 지원하는 가상 머신을 가지는 실행시간 환
경의 블록도.

도 3b는 네이티브 스레드 동작을 사용하는 가상 머신을 가지는 런타임 환경의 블록도.

도 4는 본 발명에 따른 한 실시예에서 적절한 실행 환경을 제공할 수 있는 컴퓨터 시스템의 하나의 실시예의 블록도.

 - 9 -

공개특허 특2001-0072477

도 5는 본 발명의 하나의 실시예에 따른 이진 변환 프로세스의 흐름도.

도 6a는 본 발명의 일 실시예에 따른 하나의 블록의 네이티브 코드를 중간 형식으로 이진 변환하는 것을 도시하는 예시
적인 실행 블럭의 일반적인 제어 흐름도.

도 6b는 본 발명의 일 실시예에 따라 수행된, 도 6a의 변형된 일반화된 제어 흐름도.

도 7은 본 발명의 일 실시예에 따라 네이티브 코드으 이진 변환을 구현하는 가상 머신을 가지는 컴퓨터 시스템의 블록
도.

 실시예

본 발명의 실시예는 도 4에 도시된 컴퓨터(400)과 같이 일반적인 목적의 컴퓨터 상에서 수행되는 컴퓨터가 판독가능
한 코드의 형태 또는 컴퓨터상에서 구동되는 자바 런타임 환경에서 수행가능한 바이트코드 클래스 파일의 형태인 컴퓨
터 소프트웨어로서 실행되어질 수 있다. 키보드(401)과 마우스(411)은 양방향 시스템 버스(418)에 연결되어진다. 상
기 키보드와 마우스는 사용자의 입력을 컴퓨터 시스템에 소개하거나 사용자 입력을 프로세서(413)에 전달하기 위해 사
용된다. 다른 적절한 입력장치가 마우스(411) 및 키보드(410)에 부가되거나 대체되어 사용되어질 수 있다. 양방향 시
스템 버스(418)에 연결된 I/O(입/출력) 단위(419)는 프린터, A/V(오디오/비디오) I/O 등과 같은 I/O 소자들을 나타
낸다

컴퓨터(400)은 키보드(410), 마우스(411) 및 프로세서(413)과 함께 양방향 시스템 버스(418)에 연결된 비디오 메
모리(414), 주메모리(415) 및 대용량기억장치(412)를 포함한다. 대용량기억장치(412)는 자기, 광학 또는 자기 광학
(magnetic optical) 저장 시스템 또는 어떤 다른 대용량 저장 기술과 같이 고정 및 탈착 가능한 미디어(media)를 포
함한다. 버스(418)은 일예로 비디오 메모리(414) 또는 주 메모리(415)을 어드레싱하기 위한 어드레스 라인을 포함한
다. 상기 시스템 버스(418)은 또한 일예로 프로세서(413), 주메모리(415), 비디오 메모리(414) 및 대용량기억장치(
412)와 같은 소자들 사이에 데이터를 전달하기 위한 데이터버스를 포함한다. 선택적으로, 멀티플렉스 데이터/어드레스
라인들이 별개의 데이타 및 어드레스 라인에 대신하여 사용될 수 있다.

본 발명의 실시예에서 프로세서(413)은 680X0프로세서와 같은 모토롤라에서 제작된 마이크로프로세서이거나, 80X8
6, 펜티엄과 같은 인텔사에서 제작된 마이크로프로세서이거나, 선 마이크로시스템의 SPARC 마이크로프로세서이다.
그러나, 어떤 다른 적절한 마이크로프로세서 또는 마이크로컴퓨터도 사용되어질 수 있다. 주 메모리(415)는 다이나믹
랜덤 엑서스 메모리(DRAM)로 구성되어진다. 비디오 메모리(414)는 듀얼 포트 비디오 랜덤 엑세스 메모리이다. 비디
오 메모리(414)의 한 포트는 비디오 증폭기(416)에 연결되어 진다. 비디오 증폭기(416)은 음극선관 래스터 모니터(
cathode ray tube raster monitor)(417)를 구동하기 위해 사용되어진다. 비디오 증폭기(416)는 당업계에서는 잘 알
려져 있고 다른 적절한 장치에 의해 수행되어 질 수 있다. 이 회로는 비디오 메모리(414)에 저장되어 있는 픽셀 데이터
를 모니터(417)에 의해 사용되기에 적합한 래스터 신호로 전환한다. 모니터(417)은 그래픽 이미지를 디스플레이하기
에 적절한 모니터 타입이다. 선택적으로 비디오메모리는 평판 또는 액정표시(LCD) 또는 어떤 다른 적절한 데이터 표현
장치를 구동하기 위해 사용될 수 있다.

컴퓨터(400)는 또한 버스(418)에 연결된 통신 인터페이스(420)를 포함할 수 있다. 통신 인터페이스(420)는 네트워
크 링크(421)를 통해 로컬 네트워크(422)로 양방향 데이터 통신 연결을 제공한다. 예컨대, 통신 인터페이스(420)가
통합 서비스 디지털 네트워크(ISDN) 카드 또는 모뎀이면, 통신 인터페이스(420)는 네트워크 링크(421)의 일부를 구
성하는 전화 회선의 대응 형태에 대한 데이터 통신 연결을 제공한다. 통신 인터페이스(420)가 근거리 네트워크(LAN)

 - 10 -

공개특허 특2001-0072477

카드이면, 통신 인터페이스(420)는 네트워크 링크(421)를 통해 호환성 LAN으로 데이터 통신 연결을 제공한다. 통신
인터페이스(420)는 또한 케이블 모뎀 또는 무선 인터페이스일 수 있다. 임의의 이러한 구현에서, 통신 인터페이스(42
0)는 다양한 형태의 정보를 나타내는 디지털 데이터 스트림들을 전달하는 전기, 전자기 또는 광학 신호들을 송수신한다.

네트워크 링크(421)는 전형적으로 일이상의 네트워크들을 통해 다른 데이터 디바이스들로 데이터 통신을 제공한다. 예
컨대, 네트워크 링크(421)는 로컬 네트워크(422)를 통해 로컬 서버 컴퓨터(423)로 또는 인터넷 서비스 공급자(ISP)
(424)에 의해 동작된 데이터 장비로 연결을 제공할 수 있다. ISP(424)는 차례로 " 인터넷" (425)으로 현재 일반적으
로 참조된 월드 와이드 패킷(world wide packet) 데이터 통신 네크워크를 통해 데이터 통신 서비스를 제공한다. 로컬
네트워크(422) 및 인터넷(425)는 디지털 데이터 스트림들을 전달하는 전기, 전자기 또는 광학 신호들을 이용한다. 디
지털 데이터를 컴퓨터(400)로 및 그로부터 전달하는, 다양한 네트워크들을 통한 신호들 및 네트워크 링크(421)상에
통신 인터페이스(420)를 통한 신호들은 정보를 전송하는 반송파들의 실례적인 형태들이다.

컴퓨터(400)는 네트워크(들), 네트워크 링크(421) 및 통신 인터페이스(420)를 통해 프로그램 코드를 포함하여, 메시
지들을 전송하고 데이터를 수신할 수 있다. 인터넷 예에서, 원격 서버 컴퓨터(426)는 인터넷(425), ISP(424), 로컬
네트워크(422) 및 통신 인터페이스(420)를 통해 어플리케이션 프로그램을 위한 요구된 코드를 전송할 수 있다.

수신된 코드는 이후의 실행을 위해 대용량 기억장치(412) 또는 다른 비휘발성 기억장치에 수신 및/또는 저장될 때 프
로세서(413)에 의해 실행될 수 있다. 이러한 방식에서, 컴퓨터(400)는 반송파의 형태로 어플리케이션 코드를 얻을 수
있다. 본 발명의 실시예에 따라서, 이러한 다운로드된 어플리케이션들의 실례들은 가상 머신, 클래스 로더, 클래스 바이
트코드 파일들, 클래스 라이브러리들 및 본 명세서에 기술된 네이티브 코드를 변환하고 실행하기 위한 장치와 같이, 실
행시간 환경의 일이상의 구성요소들을 포함한다.

어플리케이션 코드는 임의의 형태의 컴퓨터 프로그램 제품에 내장될 수 있다. 컴퓨터 프로그램 제품은 컴퓨터 판독가능
코드 또는 데이터를 저장하거나 전송하도록 구성된, 또는 컴퓨터 판독가능 코드 또는 데이터가 내장될 수 있는 매체를
구비한다. 컴퓨터 프로그램 제품들의 일부 예들은 CD-ROM 디스크들, ROM 카드들, 플로피 디스크들, 자기테잎들, 컴
퓨터 하드 드라이브들, 네트워크상의 서버들 및 반송파들이다.

전술된 컴퓨터 시스템들은 단지 실례를 위한 것이다. 본 발명의 실시예는 가상 머신을 지원하는 내장형 디바이스들(예
컨대, 웹 폰들 등) 및 " 박형" 클라이언트 처리 환경들(예컨대, 네트워크 컴퓨터들(NC's) 등)을 포함하여, 임의의 형태
의 컴퓨터 시스템 또는 프로그래밍 또는 처리 환경으로 구현될 수 있다.

네이티브 코드의 바이너리 변환

전술된 바와 같이, 가상 머신내에서 실행된 클래스들은 링크된 라이브러리내에 네이티브 코드 함수들에 의해 구현되는
네이티브 메쏘드들을 포함할 수 있다. 본 발명의 실시예에 따라서, 링크된 라이브러리의 네이티브 코드는 가상 머신의
구성요소들에 의해 처리되고 실행되어, 종래 기술의 네이티브 메쏘드의 실행 처리들에 비해 협력적 스케쥴링을 허용하
고, 향상된 디버깅 능력을 제공한다. 네이티브 코드의 처리는 바이너리 변환 과정의 일부로서, " 와일드" 포인터들에 의
해 초래될 수 있는 듯한 메모리 액세스 버그들에 대한 체크 삽입을 포함하고, 블록킹 시스템의 대체는 비블록킹 변동들
을 호출하여 네이티브 스레딩(threading)에 대한 요구없이 가상 머신에서 협력적 스케쥴링을 허용한다.

바이너리 변환은 전형적으로 디버깅 동작 동안에 가상 머신에서 인에이블되고, 정상 동작 동안에 디스에이블된다. 예컨
대, 인에이블될 경우에, " SystemloadLibrary()" 호출은 가상 머신내 인터프리트 또는 컴파일 실행을 위해 특정 라이
브러리의 바이너리 변환을 가져온다. 디스에이블될 경우에, 특정 라이브러리는 표준 방식으로 로드되고 링크된다. 또한,
일부 실시예들에서는 바이너리 변환이 디버깅 처리 동안만이 아니라 항상 수행되도록 할 수 있다.

 - 11 -

공개특허 특2001-0072477

도 5는 본 발명의 실시예에 따라 바이너리 변환을 수행하기 위한 방법의 순서도이다. 단계 500에서, 각각의 네이티브
코드는 링크된 라이브러리로부터 얻어진다. 이 단계는 예컨대, 각각의 클래스가 가상 머신내에서 변환될 경우에, 링크
된 라이브러리의 소스 파일을 결정하고, 소스 파일로부터 네이티브 코드(즉, 머신 코드)의 이진 형태을 판독하는 것을
포함할 수 있다. 바이너리 변환은 또한 가상 머신에서 실행에 앞서 수행될 수 있다.

단계 501에서, 네이티브 코드의 이진 형태는 가상 머신의 바이너리 변환 요소에 의해, 바이트코드들, 추상적 구문 트리
또는 제어 순서도 등의 중간 형태로 변환된다. 바이트코드들은 예컨대, 자바 컴파일러(도 1의 구성요소(101))에 의해
생성된 표준 바이트코드들과 유사하게 구현될 수 있다. 추상적 구문 트리들 및 제어 순서도들은 트리 또는 그래프의 노
드들과 같이 실행 동작을 명시하는 프로그램 실행의 표현들이다. 전형적으로, 중간 형태(또한, 본 명세서에서는 " 변환
된 형태" 로 참조)는 메모리 액세스 포인트들 및/또는 호출들 및 브렌치 동작들의 식별을 간소화한 것이다.

단계 502에서, 메모리 액세스 호출들의 위치들이 결정되고, 메모리 액세스 호출이 제한된 또는 달리 경계들을 벗어난
메모리의 일부를 액세스하려고 시도한다면, 체크들이 실행 동안에 신호에 삽입된다. 신호는 예컨대, 에러 메시지를 디
스플레이하고(예컨대, 다이얼로그 박스내), 에러를 로그 파일로 로깅하고, 선행 동작들의 예외 또는 일부 조합을 버리
는 것을 포함할 수 있다. 따라서, 와일드 포인터들의 디버깅 및 네이티브 코드와 관련된 다른 메모리 액세스 디버그들은
발생할 때마다 각각의 불법 메모리 액세스 이벤트를 보고함으로써 실행 동안에 결정될 수 있다. 메모리 액세스 체크들
의 일부에서, 네이티브 코드의 구성요소들에 의해 합법적으로 액세스가능한 메모리의 이들 부분들은 포인터 값들과의
비교를 위해 추적된다.

단계 503에서, 블록킹 시스템 호출들은 중간 형태로 식별되고, 가능할 경우에 시스템 호출들의 비블록킹 변형들이 삽입
된다. 단계 504에서, " yield()" 함수들은 호출들 및 루프들에 삽입된다. 루프들을 위한 산출 포인트들(즉, yield() 함
수들의 삽입을 위한 포인트들)은 예컨대, 백워드 브렌치 동작들에 근거하여 결정될 수 있다. 단계들 503 및 504의 영
향은 가상 머신의 실행 및 임의의 실행중인 어플리케이션들 및/또는 애플릿들을 가능한 한 많이 네이티브 코드의 활성
에 대한 의존성으로부터 자유롭게 한다는 것이다. 가상 머신의 다른 스레드는 네이티브 코드의 시스템 호출들에 의해
블록킹되지 않고, 산출 포인트들은 호출로 루프들내에 설정되어 다른 대기 스레드에 대한 처리 자원들을 산출한다. 따
라서, 가상 머신은 모든 관련된 스레드의 협력 스케쥴링을 수행하도록 인에이블된다. 이 협력 스케쥴링은 동기화 또는
동시성 관련 버그들이 신뢰성있게 식별되고 기초적인 운영체제 및 하드웨어에 독립적으로 정정되도록 한다.

단계 505에서, 그 중간 또는 변환된 형태의 교정된 네이티브 코드는 가상 머신에 의해 컴파일되거나 인터프리트되어 그
내에 함수들을 실행시킨다. 일부 실시예들에서, 추가적인 변환 단계가 중간 형태를 표준 인터프리터 및 JIT-컴파일러
에 의해 인터프리테이션 또는 컴파일레이션에 적합한 바이트코드들로 변환하도록 수행될 수 있다. 네이티브 코드 함수
들의 실행과 관련된 스레드의 스케쥴링은 가상 머신의 임의의 다른 인터프리트된 또는 컴파일된 처리와 같은 VM 스레
드 스케쥴링 처리에 의해 제어될 수 있다. 메모리 액세스 체크들이 수행될 때, 위반이 로깅된다. 필요할 경우에, 개별적
인 비동기 스레드는 추가적인 처리가 가상 머신에서 다른 스레드에 독립적으로 발생하도록 야기될 수 있다.

일부 실례들에서, 네이티브 코드는 단계 501에서 완전히 분해(parse)될 수 없다. 루틴의 시작 또는 컴퓨팅된 브렌치와
같은 코드의 어떤 면들은 변환된 코드가 단계 505단계에서 실행될 때(예컨대, 루틴이 실제로 호출될때)까지 알려질 수
없다. 이런 이유로, 변환 처리는 실행 동안에 결정된 새로운 정보에 근거하여 이전에 분해되지 않은 네이티브 코드를 분
해하고 변환하기 위해(또는 이미 분해된 코드의 일부들을 재분해하기 위해), 이전 피드백 화살표(506)로 지시된 바와
같이, 단계 505로부터 단계 501로 리턴할 수 있다.

 - 12 -

공개특허 특2001-0072477

바이너리 변환을 수행하는 네이티브 메쏘드의 일반화된 중간 형태의 일예는 도 6a 및 도 6b에 예시되어 있다. 도 6a는
본 발명의 실시예에 따라 네이티브 코드의 블럭의 중간 형태로의 바이너리 변환을 예시하는 실행 블럭의 일반화된 제어
순서도이다. 도 6b는 본 발명의 실시예에 따라 변형이 수행된 도 6a의 일반화된 제어 순서도를 예시한다. 이 실시예에
서, 루프들내에 산출 포인트들의 식별은 백워드 브렌치 동작들의 발생에 근거한다.

예시된 동작들의 식별을 위해, 도 6a 및 도 6b에 대한 범례는 다음과 같다:

RD ="메모리" 판독 동작(memory read operation)

WR ="메모리" 기록 동작(memory write operation)

BR ="브렌치" 동작(branch operation(예컨대, " if"))

MC ="메쏘드(함수)" 호출(method(function) call)

BSC ="블록킹" 시스템 호출(blocking system call)

OP ="다른" 일반 동작(다양한)

CHK ="포인터" 체크 동작(pointer check operation)

YLD ="산출" 동작(yield operation)

NBSC ="비블록킹" 시스템 호출(non-blocking system call)

FLAG ="신호" 액세스 위반(signal access violation)

도 6a에서, 실행 블럭은 일반 동작(600)으로 시작하고, 판독 동작(603)이 뒤따른다. 판독 동작(603)은 이어서 일반
동작들(605,606 및 607)이 뒤따른다. 이후에, 일반 동작(607), 기록 동작(610)이 수행되고, 일반 동작들(612,613)
및 브렌치 동작(614)이 뒤따른다. 브렌치 동작은 일반 동작(616)으로 포워드로 이동하거나, 또는 일반 동작(606)으
로 백워드로 분기한다. 일반 동작(616)으로부터, 메쏘드 호출(618)이 형성되고, 일반 동작(619), 블록킹 시스템 호울
(621A) 및 일반 동작(622)이 뒤따른다.

바이너리 변환 과정에 대한 주요 동작들은 판독 동작(603), 기록 동작(610), 브렌치 동작(614), 메쏘드 호출(618)
및 블록킹 시스템 호출(621A)이며, 그 각각이 강조된다. 메모리 액세스 관련 동작들과 같이, 판독 동작(603) 및 기록
동작(610)은 포인터 체크들의 삽입을 위해 설정된다. 브렌치 동작(614) 및 메쏘드 호출(618)은 yield() 호출들의 삽
입을 위해 설정된다. 블록킹 시스템 호출(621A)은 비블록킹 시스템 호출 변동에 의한 대체를 위해 설정된다.

도 6b에서, 도 6a의 실행 블럭의 중간 형태에 대한 변형이 예시되어 있다. 판독 동작(603)은 포인터 체크 동작(601),
브렌치 동작(602), 판독 동작(603) 및 플래그 동작(604)에 의해 대체된다. 체크 동작(601)은 포인터 값이 합법적 범
위내에 있는지를 판단하고, 브렌치 동작(602)이 뒤따른다. 브렌치 동작(602)은 포인터가 유효하면 판독 동작(603)을
수행하고, 그렇지않으면 플래그 동작(604)를 수행하여 포인터 체크가 무효한 포인터를 나타내도록 시그널링한다. 동작
들(603 및 604) 각각은 동작(605)에 선행한다.

기록 동작(610)은 전술된 판독 동작(603)을 위해 수행된 삽입과 유사한 체크 및 플래그 삽입에 따른다. 기록 동작(6

 - 13 -

공개특허 특2001-0072477

10)은 포인터 체크 동작(608), 브렌치 동작(609), 기록 동작(610) 및 플래그 동작(611)에 의해 대체된다. 체크 동작
(608)은 포인터 값이 합법적 범위내에 있는지를 판단하고, 브렌치 동작(609)이 뒤따른다. 브렌치 동작(609)은 포인
터가 유효하면 기록 동작(610)을 수행하고, 그렇지않으면 플래그 동작(611)을 수행하여 포인터 체크가 무효한 포인터
를 나타내도록 시그널링한다. 동작들(610 및 611) 각각은 동작(612)에 선행한다.

백워드 브렌치 동작(614)은 동작(606)으로의 리턴 루프에 삽입된 산출 동작(615)을 갖는다. 삽입된 산출 동작(615)
은 브렌치 동작(614)에 의해 형성된 루프가 한번 더 시작하기 전에, 다른 스레드가 프로세서 자원들을 얻을 기회를 허
용한다. 이것은 긴 루프 회귀 처리가 프로세서 자원들의 다른 스레드를 빼앗지 않도록 하고, 협력적 스케쥴링을 증진시
킨다. 마찬가지로, 산출 동작(617)은 메쏘드 호출(618) 이전에 삽입되어, 새로운 메쏘드가 현재 스레드에 의해 초기화
되기 전에 필요할 경우에, 다른 스레드가 실행되도록 한다.

블록킹 시스템 호출(621A)은 비블록킹 시스템 호출(621B)에 의해 도 6b에서 대체된다. 선택적으로, 산출 동작(620)
은 시스템 호출 이전에 삽입될 수 있다. 필요할 경우에, 비블록킹 시스템 호출(621B)은 새로운 비동기 스레드를 야기
시켜, 변환된 함수의 활성을 독립적으로 실행된 스레드로서 실행할 수 있다. 가상 머신에 의해 인터프리트되거나 컴파
일될 경우에, 도 6b의 교정된 실행 블럭은 종래 기술의 네이티브 메쏘드 실행에 비해 유효한 디버깅 및 스케쥴링 효과
들을 제공한다.

도 7은 본 발명의 실시예에 따라 바이너리 변환을 구현하는 실행 시간 환경을 예시하는 블럭도이다. 도 7에서, 운영 체
제(109)는 하드웨어(110)의 최상위를 실행하고, 가상 머신(105)은 운영 체제(109)의 최상위를 실행한다. 운영 체제
(109)의 실행은 하드웨어(110)에 의해 지원된다. 도 3a 및 도 3b에서와 같이, 가상 머신(105) 및 운영 체제(109)는
각각 스레드 실행을 관리하기 위한 VM 스레드 스케쥴러(303) 및 OS 스레드 스케쥴러(304)를 구비한다. 부가적으로,
가상 머신(105)은 바이너리 변환 처리(701)를 포함한다.

가상 머신(105)내의 실행은 애플릿1(300) 및 애플릿2(301)와 같이, 다중 어플리케이션들 및/또는 애플릿들이다. 애
플릿1 및 애플릿2는 각각 일이상의 바이트코드 클래스 파일들을 구비할 수 있다. 링크된 라이브러리 파일(LIB)(302)
은 네이티브 메쏘드들을 지원하도록 애플릿2와 관련된다. 라이브러리 파일(302)의 네이티브 코드는 가상 머신(105)
의 바이너리 변환 처리(701)에 의해 분해되고 변환되어 변환된 라이브러리(700)를 발생한다.

변환된 라이브러리(700)는 메모리 액세스 체크들, 산출들 및 비블록킹 호출 변동들을 포함하여 네이티브 코드의 중간
형태를 포함한다. 애플릿2의 네이티브 메쏘드가 스레드T6으로 칭해질 경우에, 변환된 라이브러리(700)는 가상 머신(
105)내에서 인터프리트되거나 컴파일되어 소망의 함수를 실행한다. 변환된 라이브러리(700)의 중간 형태에 따라서,
변환된 라이브러리에 대한 인터프리팅 또는 컴파일링 처리는 애플릿1 및 애플릿2의 클래스들에 적용된 인터프리팅 또
는 컴파일링 처리와 다를 수 있거나 그렇지 않을 수 있다. 그러나, 가상 머신(105)에 의한 변환된 라이브러리(700)의
일반 동작 및 그에 가해진 제어는 애플릿1 및 애플릿2에 대한 것과 일치한다. 일부 실시예들에서, 변환된 라이브러리(
700)는 네이티브 메쏘드 스택(216)을 통해서 보다 스택(212)에서의 프레임들을 통해 스레드T6에서 처리될 수 있다.
효과적으로, 변환된 라이브러리(700)는 변환된 라이브러리(700)가 변경되지 않은 네이티브 코드의 결함없이 부가적
인 표준 메쏘드들을 제공하고 있는 것처럼 실행할 수 있다.

링크된 라이브러리의 변환된 네이티브 코드 함수들이 운영 체제(109)를 통해 실행된 개별적인 링크된 라이브러리 처리
와 달리, 가상 머신(105)을 통해 실행되고, 블록킹 호출들이 변환된 라이브러리(700)내에 존재하지 않기 때문에, 협력

 - 14 -

공개특허 특2001-0072477

적 스케쥴링이 VM 스레드 스케쥴러(303)에 의해 수행될 수 있다. 따라서, 도 3b에 구현된 바와 같은 네이티브 스레딩
은 반드시 필요하지는 않다. 가상 머신(105)내 스레드 이벤트들의 동기화는 기초적인 운영 체제 및 하드웨어에 독립적
이고, 디버깅은 운영 체제에 근거된 동시성 발행들의 고려없이 수행될 수 있다.

 산업상 이용 가능성

따라서, 가상 머신 환경에서 네이티브 코드를 변환하고 실행하는 방법 및 장치는 일이상의 특정 실시예들과 관련하여
기술되어졌다. 본 발명은 특허청구범위 및 그 동등물들의 완전한 범위에 의해 한정된다.

(57) 청구의 범위

청구항 1.

컴퓨터 시스템에 있어서,

라이브러리(library)의 네이티브 코드(native code)를 얻는 단계와,

상기 네이티브 코드를 변환된 형식(translated form)으로 변환하는 단계와,

상기 네이티브 코드의 상기 변환된 형식을 실행하는 단계를 포함하는 방법.

청구항 2.

제1항에 있어서, 상기 네이티브 코드의 상기 변환된 형식을 실행하는 단계는 가상 머신(virtual machine)에서 수행되
는 방법.

청구항 3.

제1항에 있어서, 상기 변환된 형식에서 블록킹 시스템 호출(blocking system call)을 식별하는 단계와, 상기 블록킹
시스템 호출을 비-블록킹 시스템 호출로 대체하는 단계를 포함하는 방법.

청구항 4.

제1항에 있어서, 상기 변환된 형식에서 메모리 액세스 오퍼레이션(memory access operation)을 식별하는 단계와, 상
기 메모리 액세스 오퍼레이션에 메모리 액세스 위반(memory access violation)을 위한 체크(check)를 부가하는 단
계를 더 포함하는 방법.

청구항 5.

제1항에 있어서, 상기 변환된 형식에서 산출 포인트(yield point)를 식별하는 단계와, 상기 산출 포인트에 산출 함수를
삽입하는 단계를 더 포함하는 방법.

청구항 6.

제5항에 있어서, 상기 산출 포인트를 식별하는 단계는 메쏘드 호출(method call)을 식별하는 단계를 포함하는 방법.

청구항 7.

제5항에 있어서, 상기 산출 포인트를 식별하는 단계는 루프(loop)를 식별하는 단계를 포함하는 방법.

 - 15 -

공개특허 특2001-0072477

청구항 8.

제7항에 있어서, 상기 루프를 식별하는 단계는 백워드 브랜치(backward branch)를 식별하는 단계를 포함하는 방법.

청구항 9.

네이티브 코드를 변환 및 실행하기 위해 컴퓨터에 의해 판독 가능한 코드가 내장된 컴퓨터 사용가능 매체(computer u
sable medium)를 포함하며,

상기 컴퓨터 사용가능 매체는 상기 컴퓨터가 라이브러리의 네이티브 코드를 얻고, 상기 네이티브 코드를 변환된 형식으
로 변환하고, 상기 네이티브 코드의 상기 변환된 형식을 실행하도록 구성된 컴퓨터 프로그램 제품.

청구항 10.

제9항에 있어서, 상기 프로그램 제품은 반송파(carrier wave)인 컴퓨터 프로그램 제품.

청구항 11.

제9항에 있어서, 컴퓨터가 상기 변환된 형식을 실행하도록 구성된 상기 컴퓨터 판독가능 코드는 가상 머신이 상기 변환
된 형식을 실행하도록 구성된 컴퓨터 프로그램 제품.

청구항 12.

제9항에 있어서, 상기 컴퓨터 판독가능 매체는 컴퓨터가 상기 변환된 형식에서 블록킹 시스템 호출을 식별하고, 상기
블록킹 시스템 호출을 비-블록킹 시스템 호출로 대체하도록 구성된 컴퓨터 프로그램 제품.

청구항 13.

제9항에 있어서, 상기 컴퓨터 판독가능 코드는 컴퓨터가 상기 변환된 형식에서 메모리 액세스 오퍼레이션을 식별하고,
상기 메모리 액세스 오퍼레이션에 메모리 액세스 위반에 대한 체크를 부가하도록 구성된 컴퓨터 프로그램 제품.

청구항 14.

제9항에 있어서, 상기 컴퓨터 판독가능 코드는 컴퓨터가 상기 변환된 형식에서 산출 포인트를 식별하고, 상기 산출 포
인트에서 산출 함수를 삽입하도록 구성된 컴퓨터 프로그램 제품.

청구항 15.

제14항에 있어서, 상기 산출 포인트를 식별하도록 구성된 상기 컴퓨터 판독가능 코드는 컴퓨터가 메쏘드 호출을 식별하
도록 구성된 컴퓨터 프로그램 제품.

청구항 16.

제14항에 있어서, 상기 산출 포인트를 식별하도록 구성된 상기 컴퓨터 판독가능 코드는 컴퓨터가 루프를 식별하도록 구
성된 컴퓨터 프로그램 제품.

청구항 17.

제16항에 있어서, 컴퓨터가 상기 루프를 식별하도록 구성된 상기 컴퓨터 판독가능 코드는 컴퓨터가 백워드 브랜치를 식
별하도록 구성된 컴퓨터 프로그램 제품.

 - 16 -

공개특허 특2001-0072477

청구항 18.

라이브러리에서의 네이티브 코드에 의해 지원되는 네이티브 메쏘드를 포함하는 클래스(class)와,

변환된 형식에서 상기 네이티브 코드를 실행하기 위해 구성되며, 상기 클래스를 처리하는 가상 머신을 포함하며, 상기
가상 머신은

협동 스케줄링(cooperative scheduling)을 구현하는 스레드 스케줄러(thread scheduler)와,

상기 네이티브 코드를 상기 변환된 형식으로 변환하기 위해 구성된 변환 처리부를 포함하는 장치.

청구항 19.

제18항에 있어서, 상기 변환 처리부는 상기 변환 형식에서 블록킹 시스템 호출을 비-블록킹 시스템 호출로 대체하도록
구성된 장치.

청구항 20.

제18항에 있어서, 상기 변환 처리부는 상기 변환된 형식에서 메모리 액세스 오퍼레이션에서 메모리 액세스 체크(mem
ory access check)를 삽입하도록 구성된 장치.

청구항 21.

제18항에 있어서, 상기 변환 처리부는 상기 변환된 형식에서 산출 포인터에서 산출 오퍼레이션을 삽입하도록 구성된 장
치.

청구항 22.

제21항에 있어서, 상기 산출 포인트는 호출과 연관된 장치.

청구항 23.

제21항에 있어서, 상기 산출 포인트는 루프와 연관된 장치.

청구항 24.

제23항에 있어서, 상기 산출 포인트는 상기 루프의 백워드 브랜치와 연관된 장치.

도면

 - 17 -

공개특허 특2001-0072477

도면 1

 - 18 -

공개특허 특2001-0072477

도면 2

 - 19 -

공개특허 특2001-0072477

도면 3a

 - 20 -

공개특허 특2001-0072477

도면 3b

 - 21 -

공개특허 특2001-0072477

도면 4

 - 22 -

공개특허 특2001-0072477

도면 5

 - 23 -

공개특허 특2001-0072477

도면 6a

 - 24 -

공개특허 특2001-0072477

도면 6b

 - 25 -

공개특허 특2001-0072477

도면 7

 - 26 -

	문서
	서지사항
	요약
	대표도
	명세서
	기술분야
	배경기술
	발명의상세한설명
	도면의간단한설명
	실시예
	산업상이용가능성

	청구의범위
	도면
	도면1
	도면2
	도면3a
	도면3b
	도면4
	도면5
	도면6a
	도면6b
	도면7

