Mandataires: GILLARD, Marie-Louise etc.; Cabinet Beau de Loménie, 55, rue d'Amsterdam, F-75008 Paris (FR).

Etats désignés: AT (brevet européen), AU, BB, BE (brevet européen), BF (brevet OAPI), BG, BJ (brevet OAPI), BR, CA, CF (brevet OAPI), CG (brevet OAPI), CH (brevet européen), CI (brevet OAPI), CM (brevet OAPI), CS, DE (brevet européen), DK (brevet européen), ES (brevet européen), FI, FR (brevet européen), GA (brevet OAPI), GB (brevet européen), GN (brevet OAPI), GR (brevet européen), HU, IT (brevet européen), JP, KP, LK, LU (brevet européen), MG, ML (brevet OAPI), MN, MR (brevet OAPI), MW, NL (brevet européen), NO, PL, RO, RU, SD, SE (brevet européen), SN (brevet OAPI), TD (brevet OAPI), TG (brevet OAPI), US.

Publiée

Avec rapport de recherche internationale. Avant l'expiration du délai prévu pour la modification des revendications, sera republiée si de telles modifications sont reçues.

Title: METHOD OF MEASURING LUMINESCENCE IN AN ASSAY BY LUMINESCENCE

Titre: PROCEDE DE MESURE DE LA LUMINESCENCE EMISE DANS UN DOSAGE PAR LUMINESCENCE

Abstract

A method for measuring luminescence in an assay by luminescence is described wherein certain disturbances due to the measuring medium can be corrected. The method is characterized in that it employs at least one luminescent tracer compound and a luminescent compound used as an internal reference which, when exposed to the same excitation wavelength, are capable of emission at different wavelengths, \(\lambda_2 \) et \(\lambda_1 \) respectively, either by direct luminescence or by induction of luminescent emission, and that the measurement of tracer compound luminescence at wavelength \(\lambda_2 \) is corrected on the basis of the measurement of reference compound luminescence at wavelength \(\lambda_1 \). The use of the method in a homogeneous analyte detection and/or determination process, and a device for its implementation, are also described.

Abrégé

La présente invention a pour objet un procédé de mesure de la luminescence émise dans un dosage par luminescence permettant de corriger certaines perturbations dues au milieu de mesure. Le dit procédé est caractérisé en ce qu'il met en œuvre au moins un composé luminescent traceur et un composé luminescent utilisé comme référence interne qui, lorsqu'ils sont soumis à une même longueur d'onde d'excitation, sont susceptibles d'émettre soit par luminescence directe, soit par induction d'une émission de luminescence, à des longueurs d'onde différentes, respectivement \(\lambda_2 \) et \(\lambda_1 \), et en ce qu'on corrigé la mesure de la luminescence émise par le composé traceur à la longueur d'onde \(\lambda_2 \) par la mesure de la luminescence émise par le composé de référence à la longeur d'onde \(\lambda_1 \). L'invention concerne également l'utilisation dudit procédé dans un procédé homogène de détection et/ou de détermination d'un analyte ainsi qu'un dispositif pour sa mise en œuvre.
UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les États parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

<table>
<thead>
<tr>
<th>Code</th>
<th>Pays</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Autriche</td>
</tr>
<tr>
<td>AU</td>
<td>Australie</td>
</tr>
<tr>
<td>BB</td>
<td>Barbade</td>
</tr>
<tr>
<td>BE</td>
<td>Belgique</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarie</td>
</tr>
<tr>
<td>BJ</td>
<td>Bénin</td>
</tr>
<tr>
<td>BR</td>
<td>Brésil</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
</tr>
<tr>
<td>CF</td>
<td>République Centrafricaine</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
</tr>
<tr>
<td>CH</td>
<td>Suisse</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroun</td>
</tr>
<tr>
<td>CS</td>
<td>Tchécoslovaquie</td>
</tr>
<tr>
<td>DE</td>
<td>Allemagne</td>
</tr>
<tr>
<td>DK</td>
<td>Danemark</td>
</tr>
<tr>
<td>ES</td>
<td>Espagne</td>
</tr>
<tr>
<td>FI</td>
<td>Finlande</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>GB</td>
<td>Royaume-Uni</td>
</tr>
<tr>
<td>GN</td>
<td>Guinée</td>
</tr>
<tr>
<td>GR</td>
<td>Grèce</td>
</tr>
<tr>
<td>HU</td>
<td>Hongrie</td>
</tr>
<tr>
<td>IE</td>
<td>Irlande</td>
</tr>
<tr>
<td>IT</td>
<td>Italie</td>
</tr>
<tr>
<td>JP</td>
<td>Japon</td>
</tr>
<tr>
<td>KR</td>
<td>République de Corée</td>
</tr>
<tr>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>MN</td>
<td>Mongolie</td>
</tr>
<tr>
<td>MR</td>
<td>Mauritanie</td>
</tr>
<tr>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>NL</td>
<td>Pays-Bas</td>
</tr>
<tr>
<td>NO</td>
<td>Norvège</td>
</tr>
<tr>
<td>PL</td>
<td>Pologne</td>
</tr>
<tr>
<td>RO</td>
<td>Roumanie</td>
</tr>
<tr>
<td>RU</td>
<td>Fédération de Russie</td>
</tr>
<tr>
<td>SD</td>
<td>Soudan</td>
</tr>
<tr>
<td>SE</td>
<td>Suède</td>
</tr>
<tr>
<td>SN</td>
<td>Sénégal</td>
</tr>
<tr>
<td>SU</td>
<td>Union soviétique</td>
</tr>
<tr>
<td>TD</td>
<td>Tchad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>US</td>
<td>États-Unis d'Amérique</td>
</tr>
</tbody>
</table>
Procédé de mesure de la luminescence émise dans un dosage par luminescence.

L'invention a pour objet un procédé de mesure de la luminescence émise dans un dosage par luminescence permettant de corriger certaines perturbations dues au milieu de mesure.

L'utilisation de dosages immunologiques pour l'analyse qualitative et quantitative de composés dans des fluides biologiques est à l'heure actuelle largement répandue.

Parmi les techniques existantes, les dosages par fluorimétrie ont pris une importance croissante.

En effet, ils présentent un certain nombre d'avantages parmi lesquels la sensibilité, la rapidité de la mesure, la stabilité et l'innocuité des réactifs marqués par des composés fluorescents et le coût relativement réduit.

Il est connu que les méthodes de détection utilisant la fluorescence sont intrinsèquement très sensibles et pourraient permettre des limites de détection inférieures à celles atteintes par des dosages immunologiques utilisant des réactifs radiomarqués, en particulier par l'utilisation de sources lumineuses modulables laser (I. Wieder, Immunofluorescence and related staining techniques, 1978, Elsevier).

De nombreuses molécules fluorescentes utilisables comme traceur dans ce type de dosages ont été précédemment décrites; parmi celles-ci, on peut citer notamment les complexes de terre rare qui possèdent des propriétés intéressantes.

Par "traceur", on entend soit une molécule luminescente émettant une luminescence directe, soit une molécule luminescente capable d'induire une émission de luminescence, ladite molécule étant susceptible d'être couplée à l'un des réactifs du dosage, et l'émission de luminescence, directe ou induite, permettant la détection et/ou la détermination de l'analyte recherché.

L'utilisation de complexes particuliers, les cryptates de terre rare, est décrite par exemple dans les demandes EP 0 321 353, 0 180 492, 0 232 348 ou la demande internationale WO 90/04791.
Ces cryptates de terre rare présentent l'avantage d'être très stables en milieu protéique et salin, cette propriété étant particulièrement importante dans le cas des dosages immunologiques homogènes.

La sensibilité de la mesure est néanmoins limitée par différents paramètres interférents parmi lesquels on peut citer :
- les propriétés spectroscopiques du milieu, et en particulier sa fluorescence intrinsèque, due notamment aux émissions parasites des molécules présentes dans le milieu de mesure et susceptibles d'être excitées et d'émettre à des longueurs d'ondes proches de celles du traceur fluorescent et/ou avec de fortes intensités ; son absorption, qui entraîne une perte de lumière excitatrice ; ses propriétés de diffusion de la lumière lorsque le milieu de mesure n'est pas limpide,
- l'extinction de la fluorescence émise ("quenching") par des inhibiteurs présents dans le milieu,
- la composition de l'appareillage, et notamment les réflexions parasites causées par l'appareillage.

L'ensemble de ces interférences affecte considérablement la sensibilité et la reproductibilité de la mesure.
Certains de ces problèmes ont déjà été résolus par diverses techniques.

En particulier, les méthodes de mesure de fluorescence en temps résolu permettent de remédier partiellement aux émissions parasites (bruit de fond). Le principe de ces méthodes réside dans le fait qu'on effectue la mesure de la fluorescence émise par une molécule traceur ayant une durée de vie d'émission relativement longue, la mesure étant retardée dans le temps au-delà de la durée de vie d'émission des autres molécules présentes.

Il est dans ce cas nécessaire d'utiliser des molécules fluorescentes traceurs à durée de vie relativement longue telles que les chélatés et les cryptates de terre rare.

Néanmoins, aucune solution satisfaisante n'a été apportée aux limitations dues aux propriétés spectroscopiques du milieu, et en particulier à son absorption.

En effet, parmi les techniques proposées pour éviter
l'effet de filtre du milieu, aucune ne permet à la fois une mise en oeuvre aisée, peu coûteuse ainsi que l'obtention d'une grande sensibilité et d'une très bonne reproductibilité dans la mesure.

En particulier, la solution consistant à diluer fortement l'échantillon est défavorable à la sensibilité de la détection.

Par ailleurs, la mise en œuvre d'un système à double faisceau d'excitation, entraîne l'utilisation d'appareillages coûteux et de cuvettes de mesure spéciales, difficiles à standardiser. De plus, la mesure systématique de l'absorption du milieu avant la mesure de la fluorescence de l'échantillon alourdit le procédé de dosage.

La demande EP 355 849 décrit une méthode et un appareillage automatique permettant de vérifier la fiabilité de la mesure de fluorescence d'un échantillon et de corriger cette mesure par rapport à une référence interne. Ceci nécessite préalablement à la mesure de l'échantillon à tester, d'effectuer une mesure avec 2 échantillons de référence, un "blanc" ne contenant que le milieu de mesure et l'autre contenant le milieu de mesure et le marqueur fluorescent.

La demande EP 91 126 concerne un fluorimètre permettant de mesurer, parallèlement à la fluorescence de l'échantillon, la transmission de celui-ci et les fluctuations de l'énergie d'excitation, afin de corriger la fluorescence mesurée. Ce système nécessite une cellule de mesure particulière laissant passer le faisceau d'excitation, car la mesure de la transmission doit s'effectuer dans l'alignement du faisceau d'excitation.

L'invention a donc pour objet un procédé de mesure de la luminescence émise dans un dosage par luminescence, caractérisé en ce qu'on met en œuvre au moins un composé luminescent traceur et un composé luminescent utilisé comme référence interne qui, lorsqu'ils sont soumis à une même longueur d'onde d'excitation, sont susceptibles d'émettre
soit par luminescence directe, soit par induction d'une émission de luminescence, à des longueurs d'onde différentes, respectivement λ_2 et λ_1, la luminescence du composé de référence reflétant la qualité optique du milieu, et en ce qu'on corrige la mesure de la luminescence émise par le composé traceur à la longueur d'onde λ_2 par la mesure de la luminescence émise par le composé de référence à la longueur d'onde λ_1.

Par "composé de référence" on entend soit une molécule luminescente émettant une luminescence directe, soit une molécule luminescente capable d'induire une émission de luminescence, ladite émission de luminescence, directe ou indirecte, n'étant pas perturbée par le système réactif du dosage.

Les composés luminescents utilisables dans le procédé de mesure selon l'invention peuvent soit émettre directement à leur longueur d'onde d'émission ou à une autre longueur d'onde comme par exemple dans le cas d'un déplacement de spectre lié au système réactif du dosage.

Les composés luminescents utilisables dans le procédé de mesure selon l'invention peuvent le cas échéant émettre indirectement en induisant une émission de luminescence, comme notamment dans le cas de méthodes homogènes par transfert d'énergie.

Avantageusement, les émissions de luminescence aux longueurs d'onde λ_2 et λ_1 sont détectées simultanément.

Le procédé selon l'invention, qui met en œuvre un seul faisceau d'excitation, permet d'effectuer de manière aisée et fiable la mesure de la luminescence émise dans un dosage par luminescence sans nécessiter d'appareillage complexe, en éliminant les perturbations dues aux propriétés spectroscopiques du milieu de dosage.

De manière avantageuse, les longueurs d'onde d'émission du composé luminescent traceur et du composé luminescent de référence λ_1 et λ_2 seront différentes mais de préférence proches (en ayant une différence par exemple inférieure ou égale à 100 nm) de façon à ce que la perturbation de l'émission de luminescence due à l'absorption du milieu se produise de la même
manière vis-à-vis de l'émission du composé traceur et de celle du composé de référence.

On notera que, avantageusement, le procédé selon la présente invention ne nécessite pas que l'échantillon à doser soit placé dans une cuve de mesure particulière.

L'émission de luminescence du composé de référence à longueur d'onde λ_1 permet de corriger la mesure réalisée à la longueur d'onde λ_2. On peut effectuer la correction par exemple, en divisant cette dernière mesure par la mesure réalisée à la longueur d'onde λ_1. D'autres moyens de correction sont utilisables, tel que, par exemple, une méthode de correction intégrée à l'appareillage dans laquelle on fixe un taux de comptage sur le canal mesurant l'émission de luminescence du composé de référence à la longueur d'onde λ_1. Lorsque ce taux est atteint, on déclenche la fin de la mesure sur le canal mesurant l'émission de luminescence à la longueur d'onde λ_2. La valeur obtenue sur ce canal est de ce fait directement corrigée.

D'autres méthodes de correction connues de l'homme du métier sont également utilisables.

Dans un aspect préféré, l'invention a pour objet un procédé de mesure de la fluorescence émise dans un dosage par fluorométrie, caractérisé en ce qu'on met en œuvre au moins un composé fluorescent traceur et un composé fluorescent utilisé comme référence interne qui, lorsqu'ils sont soumis à une même longueur d'onde d'excitation sont susceptibles d'émettre, soit par fluorescence directe, soit par induction d'une émission de fluorescence, à des longueurs d'onde différentes, respectivement λ_2 et λ_1, la fluorescence du composé de référence reflétant la qualité optique du milieu, et la mesure de la fluorescence émise par le composé traceur étant alors corrigée par la mesure de la fluorescence émise par le composé de référence.

Le procédé selon l'invention permet d'atteindre une sensibilité de mesure de l'ordre de la picomole/litre, alors que les phénomènes évoqués plus haut limitent habituellement la sensibilité du dosage, notamment lors de dosages homogènes en
milieu sérique, à des concentrations en analyte de l'ordre de la micromole/litre.

Dans un aspect avantageux de l'invention, le composé luminescent traceur et le composé de référence sont un seul et même composé.

Cette première variante du procédé selon l'invention s'applique de préférence lors de l'utilisation d'un procédé homogène de détection et/ou de détermination par luminescence d'un analyte dans un milieu susceptible de le contenir dans lequel la mesure de la luminescence émise représentative de la quantité d'analyte dans le milieu est effectuée à une longueur d'onde d'émission différente de celle du composé traceur.

Par exemple, ce cas se présente lorsque la luminescence émise représentative de l'analyte résulte d'un transfert d'énergie entre un composé luminescent donneur et un composé luminescent accepteur, ce dernier émettant à une longueur d'onde \(\lambda_2 \) alors que le composé donneur servant également de composé de référence émet à une longueur d'onde \(\lambda_1 \).

Notamment ce cas se présente également lorsque le composé traceur émet à des longueurs d'onde différentes \(\lambda_1 \) et \(\lambda_2 \) selon qu'il est, respectivement, non engagé ou engagé dans le système réactiv du dosage.

Par "procédé homogène", on entend un procédé de dosage dans lequel la mesure ne nécessite pas la séparation préalable des constituants du dosage.

De manière surprenante, on a en effet trouvé que l'intensité du signal émis par le composé luminescent de référence à la longueur d'onde \(\lambda_1 \) est pratiquement constante. Le signal émis est donc fonction uniquement des propriétés optiques du milieu dans lequel on effectue le dosage et non de la quantité d'analyte, et peut servir de référence.

Dans le cas d'une émission de luminescence résultant d'un transfert d'énergie, le signal reflétant à la fois la quantité d'analyte à doser et les propriétés optiques du milieu de mesure est détecté à une longueur d'onde \(\lambda_2 \) et corrigé par la mesure réalisée à la longueur d'onde \(\lambda_1 \).
De préférence, on utilisera cette première variante du procédé selon l'invention dans un procédé homogène de détection et/ou de détermination par luminescence d'un analyte dans un milieu susceptible de le contenir à l'aide d'une méthode par excès consistant :

1) à ajouter, audit milieu contenant l'analyte recherché, un premier réactif constitué par au moins un récepteur dudit analyte, couplé avec un composé luminescent donneur,

2) à ajouter un second réactif constitué par un ou plusieurs autres récepteurs dudit analyte, ledit second réactif étant couplé avec un composé luminescent accepteur,

3) à faire incuber ledit milieu après chaque addition de réactifs ou après l'addition des deux réactifs,

4) à exciter le milieu résultant à la longueur d'onde d'excitation du composé luminescent donneur,

5) à mesurer le signal du composé luminescent donneur à une longueur d'onde λ_1, cette mesure servant de référence, et le signal résultant du transfert d'énergie à une longueur d'onde différente λ_2.

Dans un aspect avantageux, le premier réactif et le second réactif utilisés dans les procédés de détection et/ou de détermination par luminescence d'un analyte indiqués ci-dessus sont ajoutés simultanément au milieu contenant l'analyte recherché.

Dans un autre aspect de l'invention, on peut utiliser cette variante du procédé dans un procédé homogène de détection et/ou de détermination par luminescence d'un analyte dans un milieu susceptible de le contenir à l'aide d'une méthode de compétition consistant :

1) à ajouter, audit milieu contenant l'analyte recherché, un premier réactif constitué par au moins un récepteur dudit analyte, couplé avec un composé luminescent donneur,

2) à ajouter un second réactif constitué de l'analyte couplé avec un composé luminescent accepteur,

3) à faire incuber ledit milieu après chaque addition de réactifs ou après l'addition des deux réactifs,
4) à exciter le milieu résultant à la longueur d'onde d'excitation du composé luminescent donneur,

5) à mesurer le signal du composé luminescent donneur à une longueur d'onde λ_1, cette mesure servant de référence, et le signal résultant du transfert d'énergie à une longueur d'onde différente λ_2.

On peut également avantageusement utiliser cette variante du procédé dans un procédé homogène de détection et/ou de détermination par luminescence d'un analyte dans un milieu susceptible de le contenir à l'aide d'une méthode par compétition consistant :

1) à ajouter, audit milieu contenant l'analyte recherché, un premier réactif constitué par au moins un récepteur dudit analyte, couplé avec un composé luminescent accepteur,

2) à ajouter un second réactif constitué de l'analyte couplé avec un composé luminescent donneur,

3) à faire incuber ledit milieu après chaque addition de réactifs ou après l'addition des deux réactifs,

4) à exciter le milieu résultant à la longueur d'onde d'excitation du composé luminescent donneur,

5) à mesurer le signal du composé luminescent donneur à une longueur d'onde λ_1, cette mesure servant de référence, et le signal résultant du transfert d'énergie à une longueur d'onde différente λ_2.

Dans une autre utilisation avantageuse du procédé de l'invention, l'un au moins des récepteurs de l'analyte est fixé à un support solide.

Dans un autre aspect avantageux, le composé luminescent traceur et le composé de référence sont 2 composés distincts excitables à la même longueur d'onde, le composé de référence émettant à une longueur d'onde différente de celle utilisée pour mesurer la quantité d'analyte.

Cette seconde variante du procédé de l'invention est préférée en particulier dans l'utilisation d'un procédé homogène...
de détection et/ou de détermination par luminescence d'un analyte dans un milieu susceptible de le contenir dans lequel on utilise un réactif couplé avec un composé luminescent traceur et un réactif couplé avec un atome lourd ou des motifs contenant un atome lourd susceptible de moduler le signal du composé luminescent traceur. Un procédé de dosage de ce type est décrit dans la demande EP 232 348.

Dans ce cas, on utilisera en plus du composé luminescent traceur couplé au récepteur de l'analyte et émettant à une longueur d'onde λ_2, un autre composé luminescent libre servant de référence émettant à une longueur λ_1 dont le signal n'est pas modulé par l'effet d'atome lourd et reflète les propriétés optiques du milieu de mesure, ces 2 composés étant excités à la même longueur d'onde.

Avantageusement, cette seconde variante du procédé selon l'invention est utilisée dans un procédé homogène de détection et/ou de détermination par luminescence d'un analyte dans un milieu susceptible de le contenir consistant :

1) à ajouter audit milieu un premier réactif constitué d'un récepteur dudit analyte,

2) à ajouter un second réactif choisi parmi l'analyte ou au moins l'un de ses récepteurs, l'un des deux réactifs étant couplé avec un composé luminescent traceur et l'autre réactif comportant un atome lourd ou des motifs contenant un atome lourd, ainsi qu'un composé luminescent servant de référence interne,

3) à faire incuber le milieu resultant soit après l'addition de chaque réactif, soit après l'addition des deux réactifs,

4) à exciter le milieu resultant, et

5) à mesurer d'une part le signal émis par le composé luminescent traceur, ledit signal étant modulé par l'effet d'atome lourd à une longueur d'onde λ_2, et d'autre part le signal émis par le composé de référence à une longueur λ_1.

Cette seconde variante du procédé dans laquelle le composé luminescent traceur et le composé de référence sont deux composés distincts est également avantageusement utilisable dans des procédés homogènes de détection et/ou de détermination d'un
analyte dans un milieu susceptible de le contenir par des méthodes
par excès ou par compétition mettant en jeu un système donneur/
accepteur, telles que décrites plus haut pour la première variante
du procédé de l'invention.

Néanmoins, dans le cas de la seconde variante, il y a
lieu d'ajouter un composé luminescent servant de référence interne
au cours de l'une des étapes d'addition des réactifs.

On mesurera alors le signal du composé luminescent de
référence à une longueur d'onde λ_1 et le signal résultant du
transfert d'énergie à une longueur d'onde λ_2; cette mesure pouvant
alors être corrigée par la mesure effectuée à λ_1.

Dans la présente description on définit par :
- "analyte" toute substance ou groupe de substances
 analogues à détecter et/ou déterminer ;
- "récepteur" toute substance capable de se fixer
 spécifiquement sur un site dudit analyte ;
- "atome lourd" un atome de nombre atomique élevé et
dont la présence à proximité d'une molécule fluorescente est
capable d'induire une augmentation du couplage spin-orbite de
celle-ci. A titre d'exemples d'atomes lourds appropriés, on peut
citer notamment les atomes d'halogènes, le mercure, le thallium,
le plomb, l'argent ;
- "motif contenant au moins un atome lourd" toute
 substance chimique comportant naturellement au moins un atome
 lourd ou sur laquelle on peut fixer au moins un atome lourd.

Dans un aspect préféré, le milieu de mesure est un milieu
biologique tel qu'un milieu sérique.

En tant que composés luminescents de référence et/ou
utilisables comme composés traceurs, on utilisera avantageusement
des composés fluorescents.

Notamment, on utilisera avantageusement un composé
fluorescent tel qu'un chélate ou un cryptate de terre rare, en
particulier un chélate ou un cryptate de terbium, europium,
dysprosium, samarium ou néodymium. On utilisera de préférence un
cryptate de terbium ou d'europium.

Dans les procédés de détection et/ou de détermination
par fluorescence utilisant le procédé de mesure de l'invention, on
choisira avantageusement un cryptate de terre rare décrit dans les
demandes de brevets EP 180 492 et 321 353.

De préférence, on utilisera le cryptate de terbium : Tb
trisbipyridine ou le cryptate d'europium : Eu trisbipyridine, tels
que décrits dans la demande EP 180 492 ou les cryptates Eu trisbi-
pyridine diamine et Tb trisbipyridine diamine décrits dans la
demande EP 321 353.

Dans un aspect avantageux le composé fluorescent donneur
est un cryptate d'europium et le composé fluorescent accepteur est
choisi parmi l'alloxycocyanine, l'alloxycocyanine B, la C
phytocyanine ou la R phycocyanine.

On peut également utiliser comme composé luminescent de
référence ou comme composé traceur donneur, un composé phospha-
rescent tel que l'éosine ou l'erythrosine. Dans ce cas, on
utilisera avantageusement un composé fluorescent accepteur choisi
parmi les chlorophylles telles que celles citées dans les demandes
EP 71 991 et EP 314 406, ou les porphyrines telles que citées dans
la demande EP 71 991 ou encore les phtalocyanines telles que
celles de la demande internationale WO 88 04777.

Dans le cas d'un dosage en milieu liquide utilisant des
composés donneurs phosphorescents, la lecture sera effectuée soit
sur un support solide, soit en ajoutant au milieu de mesure des
molécules capteurs d'oxygène, ces techniques étant connues de
l'homme du métier.

Les chlorophylles et les phtalocyanines peuvent également
être utilisées comme composés accepteurs fluorescents en utilisant
comme composé donneur un cryptate ou un chélate d'europium.

Dans un aspect préféré, le composé luminescent traceur
et/ou le composé luminescent de référence ont une durée de vie
supérieure à une microseconde.

Comme source de lumière permettant l'excitation des
composés luminescents traceurs et de référence, on utilisera
avantageusement une source de lumière modulable telle que celles
décrites dans Lakowicz, Principles of fluorescent spectroscopy,

En particulier, le procédé de mesure de l'invention peut être avantageusement utilisé dans les dosages immunologiques en milieu sérique.

Un aspect ultérieur de l'invention concerne un dispositif pour la mise en œuvre du procédé de mesure selon l'invention.

Ce dispositif est caractérisé en ce qu'il comprend une source lumineuse d'excitation, des moyens pour collecter le faisceau lumineux émis à la suite de ladite excitation et des moyens pour permettre la mesure de la luminescence à deux longueurs d'onde distinctes.

Avantageusement, ce dispositif comprend également des moyens pour diviser le faisceau émis à la suite de l'excitation.

Un tel dispositif est illustré, à titre d'exemple, sur la figure 1.

La figure 1 représente :
- en 1, une source lumineuse d'excitation ;
- en 2, une lentille focalisant le faisceau excitant vers un filtre 3 sélectionnant la longueur d'onde souhaitée pour l'excitation ;
- un filtre dichroïque 4 placé à 45° réfléchissant les rayons ultraviolets et transmettant la lumière visible, qui réfléchit le faisceau excitant sur une lentille 5, celle-ci le focalisant sur la microplaque 6 contenant les échantillons ;
- en 7, une lentille collecte en combinaison avec la lentille 5 l'émission de luminescence résultant de l'excitation et la projette sur un filtre dichroïque 8 qui divise le faisceau lumineux émis ;
- les filtres 9 et 10 permettent de sélectionner les signaux émis par le composé de référence et le composé traceur, avant leur arrivée sur des photomultiplicateurs 11 et 12.
L'invention sera mieux comprise à l'aide des exemples ci-après qui ne présentent aucun caractère limitatif.

EXEMPLE 1 :

Correction de la fluorescence à 665 nm par détection d'un ajout de cryptate de terbium (trisbipyridine diamine (Tb³⁺)) dans un dosage immunofluorescent homogène de la prolactine.

Cet exemple est réalisé sur la détection d'une gamme standard en antigène et sur le dosage de 5 échantillons sériques de concentration en prolactine inconnue.

MÉTHODOLOGIE :

Dans ce dosage, on utilise comme composés fluorescents donneur le cryptate d'europium trisbipyridine diamine (Eu³⁺) (traceur) et composé de référence le cryptate de terbium trisbipyridine diamine (Tb³⁺) préparés comme décrit dans la demande EP 321 353 (exemples 3 et 4).

Comme composé fluorescent accepteur, on utilise l'allophycocyanine (Cyanotech, USA).

On utilise des anticorps monoclonaux anti-prolactine E₁ et 3D3 (CIS bio international, France) reconnaissant 2 épitopes distincts de la prolactine. La préparation des anticorps marqués par le cryptate d'europiumtrisbipyridine diamine (Eu³⁺) ou par l'allophycocyanine est décrite ci-dessous :

On utilise les abréviations suivantes :

- APC = allophycocyanine
- DTT = dithiothreitol
- EuTBP = cryptate d'europium trisbipyridine diamine (Eu³⁺)
- HSA = serum albumine humaine
- IgG = immunoglobuline G
- SPDP = N-succinimidyl 3(2-pyridyl)dithio)propionate
- Sulfo-SMCC = sulfo-succinimidyl 4(n-maléimidométhyl)cyclohexane 1-carboxylate.

1) **PREPARATION DES IgG E₁-APC**

a) Activation de l'APC par le sulfo-SMCC

L'APC (3 mg) commercialement fournie sous forme
précipitée dans une solution à 60 % de sulfate d'ammonium, est
centrifugée. Après élimination du surnageant, le culot est repris
par 250 µl de tampon phosphate 100 mM, pH 7,0, puis filtré à 0,8
µm afin d'éliminer les éventuelles particules en suspension.

Le filtrat est purifié par chromatographie d'exclusion
sur colonne G25 superfine (Pharmacia, Suède) dans le même tampon.
La concentration d'APC élue dans le volume d'exclusion est
déterminée à 650 nm, en considérant un $\varepsilon_{650\text{nm}}$ de 731000 M$^{-1}$ cm$^{-1}$.

L'activation de l'APC est réalisée en ajoutant une
solution de sulfo-SMCC préparée extemporanément à raison de 6,9 mM
dans un tampon phosphate 100 mM pH 7,0 et en laissant la réaction
se produire pendant une heure, à température ambiante, sous
agitation douce (rapport molaire de 15 à 75 sulfo-SMCC par APC).
L'APC-maléimide est alors purifiée sur colonne G25 superfine en
tampon phosphate 100 mM, EDTA 5 mM, pH 6,5 et conservée à 4°C avant
couplage sur IgG 3b3.

b) Activation des IgG E$_i$ par le SPDP

Simultanément, 5 mg d'IgG E$_i$ à raison de 10 mg/ml dans
un tampon phosphate 100 mM, pH 7,0 sont activés par l'ajout d'une
solution de SPDP (Pierce, USA) à raison de 6,4 mM dans du dioxane
dans un rapport molaire de 4 à 16 SPDP par IgG E$_i$.

Après 35 min d'activation à température ambiante, l'IgG
pyridine-2 thione est purifiée sur colonne G25 superfine dans un
tampon phosphate 100 mM, EDTA 5 mM, pH 6,5.

Les protéines sont concentrées et les groupes 2-pyridyl
disulfides sont réduits par une solution de DTT (Sigma, USA) ayant
une concentration finale de 19 mM pendant 15 min à température
ambiante. Le DTT et la pyridine-2-thione sont éliminés par
purification sur colonne G25 superfine en tampon phosphate 100 mM,
EDTA 5 mM, pH 6,5. La concentration en IgG-SH est déterminée à 280
nm avec un $\varepsilon_{280\text{nm}}$ de 210000 M$^{-1}$ cm$^{-1}$.

c) Conjugaison des IgG E$_i$-SH avec APC-maléimide

La fixation des groupements thiols sur les maléimides
est réalisée en ajoutant 2,51 mg d'APC activées par mg d'IgG
E$_i$-SH. Après 18 heures d'incubation à 4°C et à l'obscurité sous
agitation douce, les fonctions thiol restées libres sont bloquées par l'addition d'une solution à 100 mM de N-méthyl maléimide (Sigma, USA) ayant une concentration finale de 20 mM pendant une heure à température ambiante.

Le milieu réactionnel est purifié par gel filtration sur colonne TSK G3000SW semi-préparative (Beckmann, USA) en tampon phosphate 100 mM pH 7,0.

Les concentrations en APC et en IgG E_1 du conjugué purifié, élue dans le premier pic, sont déterminées par les absorptions à 280 nm et à 650 nm, selon le calcul suivant:

\[
\text{[APC]} \text{ Mole/l } = \frac{A_{650\text{nm}}}{710000} \\
\text{[IgG]} \text{ Mole/l } = \frac{(A_{280\text{nm}}-A'_{280\text{nm}})}{210000}
\]

avec $A'_{280\text{nm}}$ étant la contribution à cette longueur d'onde de l'APC-maléimide.

De l'albumine sérique humaine (HSA) est rajoutée à concurrence de 1 g/l au conjugué qui est ensuite réparti en aliquotes puis congelé à -20°C.

2) PREPARATION DES CONJUGUES IgG 3D3 - Eu TBP

La préparation de IgG 3D3-SH est réalisée selon le protocole décrit plus haut pour les IgG E_1 mais avec un rapport molaire de 7,5 SPDP par IgG 3D3.

À 5 mg (5 10^{-6} moles) de Eu TBP est ajoutée une solution à 25 mM de sulfo-SMCC, en tampon phosphate 20 mM, diméthylformamide 10 % (v/v) pH 7,0 dans une proportion de 2,5 moles d'activateur par mole de EuTBP.

Après 45 min d'activation à température ambiante, le milieu réactionnel est filtré à 0,8 μm afin d'éliminer le précipité éventuellement formé. Les produits réactionnels indésirables (sulfo-SMCC, N-hydroxysuccinimide, acide (N-maléimidométhyl) carboxylique) sont éliminés par chromatographie échangeuse d'ions sur colonne Mono Q (Pharmacia, Suède) en tampon phosphate 20 mM diméthylformamide 10 % (v/v), pH 7,0 sous choc de NaCl. La concentration en Eu TBP maléimide est déterminée à 307 nm avec un $E_{307\text{nm}}$ de 25000 M$^{-1}$ cm$^{-1}$ ainsi que le rapport A 307nm / A 280nm.

De façon similaire à celle décrite plus haut on fait
réagir les fonctions maléimides avec les fonctions thiols fixés sur l'anticorps, dans des proportions molaires variant de 10 à 30 Eu TBP maléimide par IgG 3D3-SH.

Après 18 heures d'incubation à 4°C et blocage des groupements thiols (éventuellement restés libres) par N-méthylmaléimide, le Eu TBP non couplé est éliminé par dialyse en tampon phosphate 100 mM pH 7,0 à 4°C jusqu'à épuisement (plus de fluorescence dans les bains de dialyse).

Les caractéristiques du conjugué sont déterminées par ses absorptions à 307 nm et à 280 nm en utilisant les valeurs suivantes en tenant compte de l'absorption propre du cryptate déterminée par le rapport A_{307nm}/A_{280nm}:

- **Eu TBP-maléimide:**
 - $\varepsilon_{307nm} = 25000 \text{ M}^{-1}\text{cm}^{-1}$
 - $A_{307nm}/A_{280nm} :$ déterminé expérimentalement.

- **IgG 3D3-SH:**
 - $\varepsilon_{280nm} = 210000 \text{ M}^{-1}\text{cm}^{-1}$
 - $\varepsilon_{307nm} = 0 \text{ M}^{-1}\text{cm}^{-1}$

3) dans des barrettes de 12 puits (Microstrip Labsystem Oy, Finlande) sont ajoutés successivement:

- 100 µL de standard (standards prolactine de la trousse ELSA-PRL, (CIS Bio international) en sérum de veau nouveau-né) ou 100 µL d'échantillon à doser (sérum humain),
- 100 µL d'anticorps monoclonal anti-prolactine 3D3, marqués au cryptate d'europium trisbipyridine diamine (Eu^{3+}), à la concentration de 0,5 g/ml d'anticorps en tampon phosphate 100 mM, NaF 150 mM, BSA (sérumalbumine bovine) 1 g/l, pH 7,0,
- 50 µL d'anticorps monoclonal anti-prolactine E1 marqués à l'allophtocyanine à la concentration de 7 µg/ml d'anticorps en tampon phosphate 100 mM, NaF 150 mM, BSA 1 g/l, pH 7,0,
- 50 µL de cryptate de terbium trisbipyridine diamine (Tb^{3+}) 10^{-7} M en tampon phosphate 100 mM, NaF 150 mM, BSA 1 g/l, pH 7,0.
Après une heure d'incubation à 37°C, la fluorescence de chaque puits est mesurée selon deux protocoles :

Dans un premier protocole, la fluorescence à 665 nm est détectée en temps résolu, avec un délai de mesure de 50 μs et un temps d'intégration de 400 μs. La durée de la mesure est de 1 s. L'excitation est provoquée par une lampe flash, pulsée à 1000 Hz. La longueur d'onde d'excitation est centrée par un filtre interférentiel à 307 nm, maximum d'absorption du trisbipyridine diamine (Eu³⁺) et trisbipyridine diamine (Tb³⁺). L'intensité de fluorescence relevée, reflet du transfert d'énergie, est proportionnelle à la concentration en antigène prolactine présent dans le milieu d'incubation.

La mesure est réalisée au moyen d'un fluorimètre ARCUS (LKB, Suède) en utilisant un filtre interférentiel adapté à l'émission du composé fluorescent accepteur et du composé de référence.

On peut également réaliser la mesure en une seule étape en utilisant le fluorimètre prototype décrit dans l'exemple 2. Dans ce cas on utilisera pour la mesure une microplaque blanche de 96 puits (Dynatech, USA).

La courbe standard FLUO₆₆₅ₙₘₙ = f ([Prolactine]) est tracée et la concentration des 5 échantillons est mesurée.
Les résultats sont rapportés dans le tableau I ci-après :

TABLEAU I

<table>
<thead>
<tr>
<th>05</th>
<th>Standard ELSA-PRL</th>
<th>Prolactine μUI/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD₀</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>STD₁</td>
<td></td>
<td>165</td>
</tr>
<tr>
<td>STD₂</td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>STD₃</td>
<td></td>
<td>920</td>
</tr>
<tr>
<td>STD₄</td>
<td></td>
<td>3100</td>
</tr>
<tr>
<td>STD₅</td>
<td></td>
<td>6500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Sérum à doser</th>
<th>Prolactine (FLUO₆₆₅) μUI/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ech1</td>
<td></td>
<td>141</td>
</tr>
<tr>
<td>Ech2</td>
<td></td>
<td>951</td>
</tr>
<tr>
<td>Ech3</td>
<td></td>
<td>113</td>
</tr>
<tr>
<td>Ech4</td>
<td></td>
<td>287</td>
</tr>
<tr>
<td>Ech5</td>
<td></td>
<td>699</td>
</tr>
</tbody>
</table>

Dans un second protocole la fluorescence à 665nm est mesurée de la même façon que décrite précédemment. Mais une seconde mesure du même puits est réalisée à 545nm après une seconde excitation, sous les mêmes paramètres temporels de lecture (délai, temps d'intégration et durée de la mesure). L'émission de fluorescence ainsi mesurée en temps résolu à 545 nm est caractéristique de l'émission du trisbipyridine diamine (Tb³⁺) utilisé comme référence interne et reflète les propriétés optiques du milieu à doser.

La courbe standard FLUO₆₆₅nm / FLUO₅₄₅nm = f(Prolactine) est tracée et la concentration des 5 échantillons est mesurée.
Les résultats sont rapportés dans le tableau II ci-après:

TABLEAU II

<table>
<thead>
<tr>
<th>Standard ELSA-PRL</th>
<th>Prolactine µUI/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td></td>
</tr>
<tr>
<td>STD₀</td>
<td>0</td>
</tr>
<tr>
<td>STD₁</td>
<td>165</td>
</tr>
<tr>
<td>STD₂</td>
<td>300</td>
</tr>
<tr>
<td>STD₃</td>
<td>920</td>
</tr>
<tr>
<td>STD₄</td>
<td>3100</td>
</tr>
<tr>
<td>STD₅</td>
<td>6500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sérum à doser</th>
<th>Prolactine (FLUO₆₆₅/FLUO₅₄₅) µUI/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Ech₁</td>
<td>580</td>
</tr>
<tr>
<td>Ech₂</td>
<td>428</td>
</tr>
<tr>
<td>Ech₃</td>
<td>417</td>
</tr>
<tr>
<td>Ech₄</td>
<td>71</td>
</tr>
<tr>
<td>Ech₅</td>
<td>2044</td>
</tr>
</tbody>
</table>

Enfin, en temps que référence, les 5 échantillons sont également dosés par le kit de dosage radio-immunométrique ELSA-PRL (CIS bio international, France).

Les comparaisons des résultats de dosages effectués sur les cinq échantillons sont rassemblés dans le tableau III ci-après:

TABLEAU III

<table>
<thead>
<tr>
<th>ELSA-PRL</th>
<th>FLUO₆₆₅</th>
<th>FLUO₆₆₅/FLUO₅₄₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ech₁</td>
<td>612</td>
<td>141</td>
</tr>
<tr>
<td>Ech₂</td>
<td>395</td>
<td>951</td>
</tr>
<tr>
<td>Ech₃</td>
<td>425</td>
<td>113</td>
</tr>
<tr>
<td>Ech₄</td>
<td>59</td>
<td>287</td>
</tr>
<tr>
<td>Ech₅</td>
<td>1870</td>
<td>699</td>
</tr>
</tbody>
</table>
Ces résultats montrent que les mesures des concentrations des échantillons de prolactine par la méthode comprenant une correction de l'intensité de fluorescence (FLUO₆₆₅/FLUO₅₄₅) sont en bonne corrélation avec les résultats obtenus à l'aide du dosage radio-immunométrique ELSA-PRL, alors que ce n'est pas le cas lorsque la concentration est mesurée uniquement par l'intensité de fluorescence à 665nm sans correction (FLUO₆₆₅).

EXEMPLE 2 :

Correction de la fluorescence à 665nm par détection de la fluorescence du conjugué anticorps-cryptate à 620nm dans un dosage immuno-fluorescent homogène de la prolactine.

La mesure de la fluorescence est réalisée à l'aide d'un fluorimètre prototype, qui est décrit ci-après :

Un Laser N2 VSL 337 (LSI, USA) est utilisé comme source d'excitation (longueur d'onde à 337 nm). La durée des pulsations est spécifiée à 3 nanosecondes et est répétée sous une fréquence de 10 Hertz. Le faisceau passe à travers un filtre (CORNING) afin d'éliminer toute lumière parasite à l'excitation autre que 337 nm.

Après être rentré dans la chambre de mesure, le faisceau est réfléchi par un filtre dichroïque, placé à 45 degrés, qui a la propriété de réfléchir les ultraviolets et de pouvoir transmettre la lumière visible.

Le faisceau réfléchi par le filtre dichroïque est focalisé sur le puits à mesurer d'une microplaque par une lentille en silice fondu. L'émission de fluorescence est collectée selon un angle solide de 20 degrés, collimatée par la même lentille, et passe directement à travers le filtre dichroïque (fluorescence en lumière visible).

Un filtre interférentiel, de caractéristiques définies selon la longueur d'onde de fluorescence à détecter, permet de se débarrasser des lumières pouvant parasiter le signal, dont l'intensité est ensuite mesurée par un photomultiplicateur (HAMAMATSU R2949).

Le compteur de photons utilisé est un SR-400 (STANFORD RESEARCH SYSTEMS), dont les opérations et la synchronisation avec
le laser sont contrôlées par un ordinateur de type IBM PC-AT via une sortie RS 232. Les pulsations provenant du photomultiplicateur sont enregistrées pendant une fenêtre de temps \(t_g \) et après un délai \(t_d \) déterminés à condition qu'elles soient supérieures à un niveau discriminant sélectionné par le compteur de photons afin d'optimiser le rapport signal/bruit du photomultiplicateur.

Une table X-Y, pilotée par l'IBM PC-AT, permet les différents positionnements de la microplaque de mesure par des moteurs pas à pas, incluant les manoeuvres de chargement, de positionnement sous le faisceau excitant, de lecture automatique en séquentiel des 96 puits, et de sortie.

I. Variation du signal d'un conjugué cryptate à 620nm en fonction du sérum.

Dans une microplaque blanche de 96 puits (Dynatech, USA) on introduit :

- 100 \(\mu l \) de sérum à tester
- 200 \(\mu l \) d'un conjugué anticorps anti-prolactine-cryptate d'europium à la concentration de 0,5 \(\mu g/ml \) d'anticorps en tampon phosphate 100 mM pH 7,5, HSA 1 g/l, NaF 150 mM.

Le cryptate d'europium utilisé est le trisbipyridine diamine (Eu\(^{3+}\)) dont la préparation est décrite dans la demande EP 321 353 (exemples 3 et 4).

L'anticorps anti-prolactine utilisé est l'anticorps 3D3 (CIS bio international, France).

Le conjugué anticorps 3D3-cryptate d'europium est préparé comme décrit dans l'exemple 1.

Après 1 heure d'incubation à 37\(^{0}\)C, la fluorescence est détectée à 620nm, en temps résolu, avec un délai de mesure de 50 \(\mu s \) et un temps d'intégration de 400 \(\mu s \). La durée de mesure est de 1 s.

La densité optique du sérum est mesurée à 310nm à l'aide d'un spectrophotomètre Lambda 15 PERKIN ELMER (UK).
Les résultats sont rapportés dans le tableau IV ci-après :

<table>
<thead>
<tr>
<th>Sérum</th>
<th>Do à 310 nm</th>
<th>Signal à 620 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>0,66</td>
<td>25 693</td>
</tr>
<tr>
<td>2</td>
<td>3,3</td>
<td>7 754</td>
</tr>
<tr>
<td>3</td>
<td>0,33</td>
<td>33 156</td>
</tr>
<tr>
<td>4</td>
<td>0,90</td>
<td>24 959</td>
</tr>
</tbody>
</table>

Ces résultats montrent que le signal mesuré varie fortement en fonction de la densité optique du sérum.

Dans ces conditions, il est impossible de réaliser un dosage fiable car le résultat ne dépend pas seulement de la quantité d'analyte dans le sérum mais également de la qualité optique du sérum.

II. Correction du signal de l'accepteur.

On réalise ensuite un immunoessai en ajoutant successivement dans la microplaquette :

- 100 µl de sérum
- 100 µl de conjugué anticorps monoclonal anti-prolactine 3D3-cryptate d'euporium trisbipyridine diamine (Eu$^{3+}$) à la concentration de 0,5 µl/ml d'anticorps dans le tampon phosphate ci-dessus,
- 100 µl de conjugué anticorps monoclonal anti-prolactine E$_1$-allophycocyanine à la concentration de 3,5 µg/ml d'anticorps dans le même tampon.

Ce conjugué anticorps E$_1$ (CIS bio international France)-allophycocyanine (Cyanotech, USA) est préparé comme décrit dans l'exemple 1.

La mesure est réalisée à 665nm et la valeur mesurée est corrigée en divisant cette valeur par la valeur de la fluorescence mesurée à 620nm qui reflète les propriétés optiques du milieu.

Les valeurs de concentrations déterminées à l'aide d'une courbe étalon comme indiqué dans l'exemple 1, avec ou sans correction, sont comparées avec les valeurs obtenues en utilisant
comme référence le kit de dosage radio-immunométrique ELSA-PRL (CIS bio international France).

Les résultats sont rapportés dans le tableau V ci-après dans lequel figurent les valeurs des concentrations en prolactine exprimées en µU/ml déterminées respectivement par le dosage ELSA-PRL (ELSA) et par la mesure de la fluorescence à 665nm non corrigée (FIA\textsubscript{665}) et corrigée (FIA\textsubscript{665/620}), ainsi que la valeur de la fluorescence mesurée pour les différents échantillons à 620nm (FLUO\textsubscript{620}) exprimée en coups par seconde.

<table>
<thead>
<tr>
<th>Echantillon n°</th>
<th>ELSA</th>
<th>FIA\textsubscript{665/620}</th>
<th>FIA\textsubscript{665}</th>
<th>FLUO\textsubscript{620}</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>358</td>
<td>394</td>
<td>195</td>
<td>42148</td>
</tr>
<tr>
<td>2</td>
<td>530</td>
<td>592</td>
<td>91</td>
<td>28272</td>
</tr>
<tr>
<td>3</td>
<td>65</td>
<td>92</td>
<td>18</td>
<td>40495</td>
</tr>
<tr>
<td>4</td>
<td>153</td>
<td>178</td>
<td>94</td>
<td>43363</td>
</tr>
<tr>
<td>5</td>
<td>251</td>
<td>289</td>
<td>86,7</td>
<td>38007</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>161</td>
<td>146</td>
<td>86,4</td>
<td>44531</td>
</tr>
<tr>
<td>7</td>
<td>179</td>
<td>189</td>
<td>77</td>
<td>40873</td>
</tr>
<tr>
<td>8</td>
<td>285</td>
<td>297</td>
<td>161</td>
<td>41403</td>
</tr>
<tr>
<td>9</td>
<td>310</td>
<td>330</td>
<td>106</td>
<td>35214</td>
</tr>
<tr>
<td>10</td>
<td>2744</td>
<td>3427</td>
<td>1470</td>
<td>31670</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>196</td>
<td>153</td>
<td>15</td>
<td>36551</td>
</tr>
<tr>
<td>12</td>
<td>244</td>
<td>198</td>
<td>55</td>
<td>38134</td>
</tr>
<tr>
<td>13</td>
<td>447</td>
<td>477</td>
<td>300</td>
<td>40340</td>
</tr>
<tr>
<td>14</td>
<td>251</td>
<td>234</td>
<td>350</td>
<td>58615</td>
</tr>
</tbody>
</table>

Ces résultats confirment la variabilité du signal mesuré en fonction de l'échantillon de sérum dosé.

En effet, étant donné que le conjugué anticorps-cryptate se trouve en excès dans le dosage par rapport à l'analyte recherché, le signal mesuré à 620nm (qui correspond au conjugué non engagé dans le complexe) devrait être constant.
De plus, on remarque que les valeurs de concentrations en prolactine déterminées à partir de la mesure du signal à 665nm (FIA_{665}) ne correspondent pas aux valeurs obtenues par le dosage de référence, alors que les valeurs obtenues par la mesure corrigée (FIA_{665/620}) sont en bonne corrélation avec celles-ci.

Cette corrélation est illustrée par les courbes des figures 2 et 3, sur lesquelles sont représentées en abscisse la concentration en prolactine déterminée par le test ELSA-PRL en UI/ml et en ordonnée, respectivement, la concentration déterminée par la mesure corrigée FIA_{665/620} (figure 2), ou par la mesure non corrigée FIA_{665} (figure 3), exprimée en UI/ml.

Les résultats obtenus sur 97 sera, montrent que la corrélation n'est obtenue qu'avec la correction du signal mesuré à 665nm.
REVENDICATIONS

1. Procédé de mesure de la luminescence émise dans un dosage par luminescence, caractérisé en ce qu'on met en œuvre au moins un composé luminescent traceur et un composé luminescent utilisé comme référence interne qui, lorsqu'ils sont soumis à une même longueur d'onde d'excitation, sont susceptibles d'émettre soit par luminescence directe, soit par induction d'une émission de luminescence, à des longueurs d'onde différentes, respectivement \(\lambda_2 \) et \(\lambda_1 \), et en ce qu'on corrige la mesure de la luminescence émise par le composé traceur à la longueur d'onde \(\lambda_2 \) par la mesure de la luminescence émise par le composé de référence à la longueur d'onde \(\lambda_1 \).

2. Procédé selon la revendication 1, caractérisé en ce que le composé luminescent traceur et le composé de référence sont un seul et même composé.

3. Procédé selon la revendication 1, caractérisé en ce que le composé luminescent traceur et le composé de référence sont distincts.

4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le composé luminescent traceur et/ou le composé de référence sont des composés fluorescents.

5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le composé luminescent traceur et/ou le composé de référence sont des chélates ou des cryptates de terre rare.

6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le composé luminescent traceur et/ou le composé de référence ont une durée de vie supérieure à une microseconde.

7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'on effectue simultanément la mesure de la luminescence émise par le composé de référence et par le composé traceur, respectivement, aux longueurs d'onde \(\lambda_1 \) et \(\lambda_2 \).

8. Utilisation du procédé selon la revendication 1 dans un procédé homogène de détection et/ou de détermination d'un analyte dans un milieu susceptible de le contenir.
9. Utilisation selon la revendication 8, dans un procédé homogène de détection et/ou de détermination d'un analyte dans un milieu susceptible de le contenir à l'aide d'une méthode par excès consistant :

1) à ajouter, audit milieu contenant l'analyte recherché, un premier réactif constitué par au moins un récepteur dudit analyte, couplé avec un composé luminescent donneur,

2) à ajouter un second réactif constitué par un ou plusieurs autres récepteurs dudit analyte, ledit second réactif étant couplé avec un composé luminescent accepteur,

3) à faire incuber ledit milieu après chaque addition de réactifs ou après l'addition des deux réactifs,

4) à exciter le milieu résultant à la longueur d'onde d'excitation du composé luminescent donneur,

5) à mesurer le signal du composé luminescent donneur à une longueur d'onde λ_1, cette mesure servant de référence, et le signal résultant du transfert d'énergie à une longueur d'onde λ_2.

10. Utilisation selon la revendication 8, dans un procédé homogène de détection et/ou de détermination d'un analyte dans un milieu susceptible de le contenir à l'aide d'une méthode par compétition consistant :

1) à ajouter, audit milieu contenant l'analyte recherché, un premier réactif constitué par un récepteur dudit analyte, couplé avec un composé luminescent donneur,

2) à ajouter un second réactif constitué de l'analyte couplé avec un composé luminescent accepteur,

3) à faire incuber ledit milieu après chaque addition de réactifs ou après l'addition des deux réactifs,

4) à exciter le milieu résultant à la longueur d'onde d'excitation du composé luminescent donneur,

5) à mesurer le signal du composé luminescent donneur à une longueur d'onde λ_1, cette mesure servant de référence, et le signal résultant du transfert d'énergie à une longueur d'onde différente λ_2.
11. Utilisation selon la revendication 8, dans un procédé homogène de détection et/ou de détermination d'un analyte dans un milieu susceptible de le contenir à l'aide d'une méthode par compétition consistant:

05 1) à ajouter, audit milieu contenant l'analyte recherché, un premier réactif constitué par un récepteur dudit analyte, ledit récepteur étant couplé avec un composé luminescent accepteur,

10 2) à ajouter un second réactif constitué de l'analyte couplé avec un composé luminescent donneur,

15 3) à faire incuber ledit milieu après chaque addition de réactifs ou après l'addition des deux réactifs,

20 4) à exciter le milieu résultant à la longueur d'onde d'excitation du composé luminescent donneur,

25 5) à mesurer le signal du composé luminescent donneur à une longueur d'onde λ₂, cette mesure servant de référence, et le signal résultant du transfert d'énergie à une longueur d'onde différente λ₁.

12. Utilisation selon la revendication 8, dans un procédé homogène de détection et/ou de détermination d'un analyte dans un milieu susceptible de le contenir à l'aide d'une méthode consistant:

20 1) à ajouter audit milieu un premier réactif constitué d'un récepteur dudit analyte,

25 2) à ajouter un second réactif choisi parmi l'analyte ou au moins l'un de ses récepteurs, l'un des deux réactifs étant couplé avec un composé luminescent traceur et l'autre réactif comportant un atome lourd ou des motifs contenant un atome lourd, ainsi qu'un composé luminescent servant de référence interne,

30 3) à faire incuber le milieu résultant soit après l'addition de chaque réactif soit après l'addition des deux réactifs,

35 4) à exciter le milieu résultant, et

40 5) à mesurer d'une part le signal émis par le composé luminescent traceur, ledit signal étant modulé par l'effet d'atome lourd à une longueur d'onde λ₂, et d'autre part le signal émis par le composé de référence à une longueur λ₁.
13. Utilisation selon l'une quelconque des revendications 9 à 12, caractérisée en ce qu'on effectue simultanément la mesure de la luminescence émise par le composé de référence et par le composé traceur, respectivement, aux longueurs d'onde λ_1 et λ_2.
05
14. Utilisation selon l'une quelconque des revendications 9 à 11, caractérisée en ce qu'au moins l'un des récepteurs de l'analyte est fixé à un support solide.
10
15. Dispositif pour la mise en oeuvre du procédé selon la revendication 1, caractérisé en ce qu'il comprend une source d'excitation lumineuse, des moyens pour collecter le faisceau lumineux émis à la suite de ladite excitation, et des moyens pour permettre la mesure de la luminescence à deux longueurs d'ondes distinctes.
15
16. Dispositif selon la revendication 15, caractérisé en ce qu'il comprend également des moyens pour diviser le faisceau émis à la suite de l'excitation.
20
17. Dispositif selon l'une des revendications 15 ou 16, caractérisé en ce qu'il comprend également une méthode de correction de la mesure réalisée à la longueur d'onde λ_2 intégrée à l'appareillage, consistant à fixer un taux de comptage sur le canal mesurant l'émission de luminescence du composé de référence à la longueur d'onde λ_1, puis, lorsque ce taux est atteint, à déclencher la fin de la mesure sur le canal mesurant l'émission de luminescence à la longueur d'onde λ_2.
INTERNATIONAL SEARCH REPORT

International Application No PCT/FR92/00069

I. CLASSIFICATION OF SUBJECT MATTER (If several classification symbols apply, indicate all) *

According to International Patent Classification (IPC) or to both National Classification and IPC

Int. Cl. 5: G01N 21/64

II. FIELDS SEARCHED

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Minimum Documentation Searched 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int. Cl. 5</td>
<td>G01N</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched *

III. DOCUMENTS CONSIDERED TO BE RELEVANT *

<table>
<thead>
<tr>
<th>Category 6</th>
<th>Citation of Document, 11 with indication, where appropriate, of the relevant passages 12</th>
<th>Relevant to Claim No. 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP, A, O 278 149 (BECTON DICKINSON & CO) 17 August 1988, see columns 6-16</td>
<td>1,3,4,7</td>
</tr>
<tr>
<td>X</td>
<td>GB, A, 2 228 081 (LOUGHBOROUGH CONS. ET AL.) 15 August 1990, see pages 6-12</td>
<td>1,3,4,7</td>
</tr>
<tr>
<td>X</td>
<td>US, A, 4 100 416 (T. HIRSCHFELD) 11 July 1978, see columns 3-6</td>
<td>1,4,8</td>
</tr>
<tr>
<td>X</td>
<td>GB, A, 2 215 838 (NATIONAL RESEARCH DEVELOPMENT) 27 September 1989, see columns 5-11</td>
<td>1,4</td>
</tr>
<tr>
<td>X</td>
<td>EP, A, 0 266 881 (ASTROMED LIM.) 11 May 1988, see column 2-4</td>
<td>1,3,4,7,8</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4 868 103 (J. STAVRIPLOUS ET AL.) 19 September 1989, see columns 5-11</td>
<td>1,3,4,5,8</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4 341 957 (I. WIEDER) 27 July 1982, see columns 3-7</td>
<td>1,5</td>
</tr>
</tbody>
</table>

* Special categories of cited documents: 10

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"Y" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"W" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"6" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

27 May 1992 (27.05.92)

Date of Mailing of this International Search Report

12 June 1992 (12.06.92)

International Searching Authority

European Patent Office

Signature of Authorized Officer

Form PCT/ISA/210 (second sheet) (January 1985)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US, A, 4 542 104 (L. STRYER ET AL.) 17 September 1985, see columns 1-3</td>
<td>1,8</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4 876 190 (D. RECKTENWALD) 24 October 1989, see columns 8-9</td>
<td>1,4</td>
</tr>
</tbody>
</table>

Form PCT ISA 210 (extra sheet) (January 1985)
This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.
The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 27/05/92

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU-B- 600274</td>
<td>09-08-90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A- 7377187</td>
<td>14-07-88</td>
</tr>
<tr>
<td>GB-A-2228081</td>
<td>15-08-90</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>US-A-4100416</td>
<td>11-07-78</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO-A- 8907757</td>
<td>24-08-89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T- 3503314</td>
<td>25-07-91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 62240864</td>
<td>21-10-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A, B, C 2628158</td>
<td>03-02-77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-C- 2660391</td>
<td>07-08-86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR-A, B 2316595</td>
<td>28-01-77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A- 1560403</td>
<td>06-02-80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A- 1560402</td>
<td>06-02-80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 52010796</td>
<td>27-01-77</td>
</tr>
<tr>
<td>US-A-4542104</td>
<td>17-09-85</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 1147368</td>
<td>09-06-89</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82
I. CLASSEMENT DE L'INVENTION
Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

CIB 5 GOIN21/64

II. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

<table>
<thead>
<tr>
<th>Système de classification</th>
<th>Symboles de classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIB 5</td>
<td>GOIN</td>
</tr>
</tbody>
</table>

Documentation consultée autre que la documentation minimale dans la mesure où de tels documents font partie des domaines sur lesquels la recherche a porté

III. DOCUMENTS CONSIDERES COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec indication, si nécessaire des passages pertinents</th>
<th>No. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP,A,0 278 149 (BECTON DICKINSON & CO) 17 Août 1988 voir colonne 6 - colonne 16</td>
<td>1,3,4,7</td>
</tr>
<tr>
<td></td>
<td>GB,A,2 228 081 (LOUGHBOROUGH CONS.ET AL.) 15 Août 1990 voir page 6 - page 12</td>
<td>1,3,4,7</td>
</tr>
<tr>
<td></td>
<td>US,A,4 100 416 (T.HIRSCHFELD) 11 Juillet 1978 voir colonne 3 - colonne 6</td>
<td>1,4,8</td>
</tr>
<tr>
<td></td>
<td>GB,A,2 215 838 (NATIONAL RESEARCH DEVELOPMENT) 27 Septembre 1989 voir colonne 5 - colonne 11</td>
<td>1,4</td>
</tr>
<tr>
<td></td>
<td>EP,A,0 266 881 (ASTROMED LIM.) 11 Mai 1988 voir colonne 2 - colonne 4</td>
<td>1,3,4,7,8</td>
</tr>
</tbody>
</table>

* Catégories spéciales de documents cités

- A* document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- E* document antérieur, mais publié à la date de dépôt international ou après cette date
- L* document intéressant un douze sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (dite qu'indiquée)
- O* document ne relevant d'une divagation ou à un usage, à une exposition ou tous autres moyens
- P* document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

IV. CERTIFICATION

Date à laquelle la recherche internationale a été effectivement achevée 27 MAI 1992

Date d'expédition du présent rapport de recherche internationale 12. 06. 92

Administration chargée de la recherche internationale OFFICE EUROPÉEN DES BREVETS

Signature du fonctionnaire autorisé BOEHM C.E.
<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec indication, si nécessaire des passages pertinents</th>
<th>No. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US, A, 4 868 103 (J. STAVRIANOPoulos ET AL.) 19 Septembre 1989 voir colonne 5 - colonne 11</td>
<td>1, 3, 4, 5, 8</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4 341 957 (I. Wieder) 27 Juillet 1982 voir colonne 3 - colonne 7</td>
<td>1, 5</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4 542 104 (L. Stryer ET AL.) 17 Septembre 1985 voir colonne 1 - colonne 3</td>
<td>1, 8</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4 876 190 (D. Recktenwald) 24 Octobre 1989 voir colonne 8 - colonne 9</td>
<td>1, 4</td>
</tr>
<tr>
<td>Document brevet cité au rapport de recherche</td>
<td>Date de publication</td>
<td>Membre(s) de la famille de brevet(s)</td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 600274</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A- 7377187</td>
</tr>
<tr>
<td>GB-A-2228081</td>
<td>15-08-90</td>
<td>Aucun</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO-A- 8907757</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T- 3503314</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 62240864</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A, B, C 2628158</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-C- 2660391</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR-A, B 2316595</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A- 1560403</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A- 1560402</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 52010796</td>
</tr>
<tr>
<td>US-A-4542104</td>
<td>17-09-85</td>
<td>Aucun</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 1147368</td>
</tr>
</tbody>
</table>