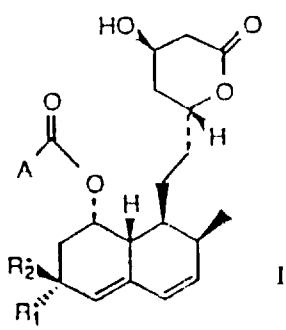


27006

2906

METHOD FOR TOPICAL TREATMENT
OF SKIN DISEASES


5

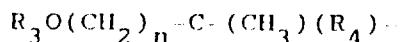
10


Abstract

Compounds of formula I and II

15

I



II

25

wherein R_1 is hydrogen and R_2 is hydroxy or R_1 is 30
methyl and R_2 is hydrogen; A is alkyl; cycloalkyl;
alkenyl; alkyl substituted with trifluoromethyl; phenyl;
halophenyl; phenyl- C_{1-3} alkyl; phenyl- C_{1-3} alkyl
substituted on the phenyl with 1 to 3 substituents
selected from the group consisting of halo, C_{1-3}
alkyl, or C_{1-3} alkoxy; or A is

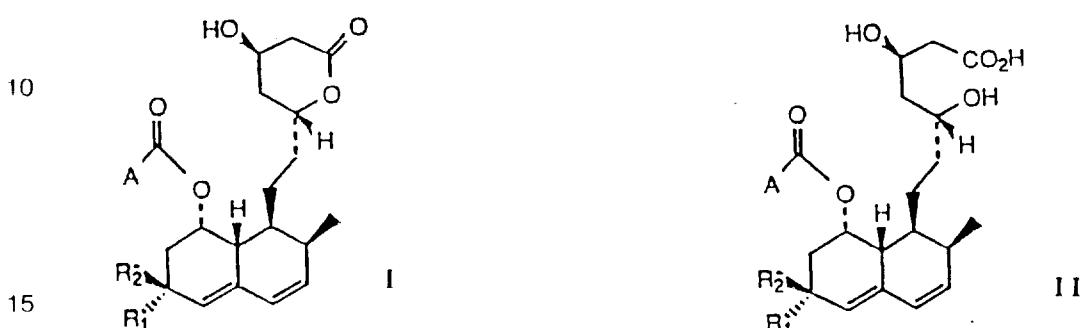
35

wherein R_3 is hydrogen or $(C_{1-5}\text{-alkyl})C-(O)-$,
 R_4 is hydrogen or methyl, and n is 1 to 5; or a
pharmaceutically acceptable salt, $C_{1-4}\text{-alkyl ester}$,
5 α -monoglyceride of a compound of formula II are useful
 α -monoglyceride of a compound of formula II are useful
in the treatment of hyperproliferative diseases, such as
psoriasis.

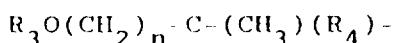
10

15

20


25

30


35

METHOD FOR TOPICAL TREATMENT
OF SKIN DISEASES

5 The present invention is concerned with the use of
compounds of the formulas

20 wherein R_1 is hydrogen and R_2 is hydroxy; or R_1 is
methyl and R_2 is hydrogen; A is alkyl; cycloalkyl;
alkenyl; alkyl substituted with trifluoromethyl; phenyl;
halophenyl; phenyl C_{1-3} alkyl; phenyl C_{1-3} alkyl
substituted on the phenyl with 1 to 3 substituents
25 selected from the group consisting of halo, C_{1-3}
alkyl, and C_{1-3} alkoxy; or A is

30 wherein R_3 is hydrogen or $(C_{1-5}$ alkyl) $C-(O)-$,
 R_4 is hydrogen or methyl, and n is 1 to 5;
and pharmaceutically acceptable salts, C_{1-4} -alkyl esters,
 $acetyl$ amino- C_{1-4} -alkyl esters, phenyl- C_{1-4} -alkyl esters;
 $dimethyl$ amino- C_{1-4} -alkyl esters or

35
Grn/22.8.89

- 2 -

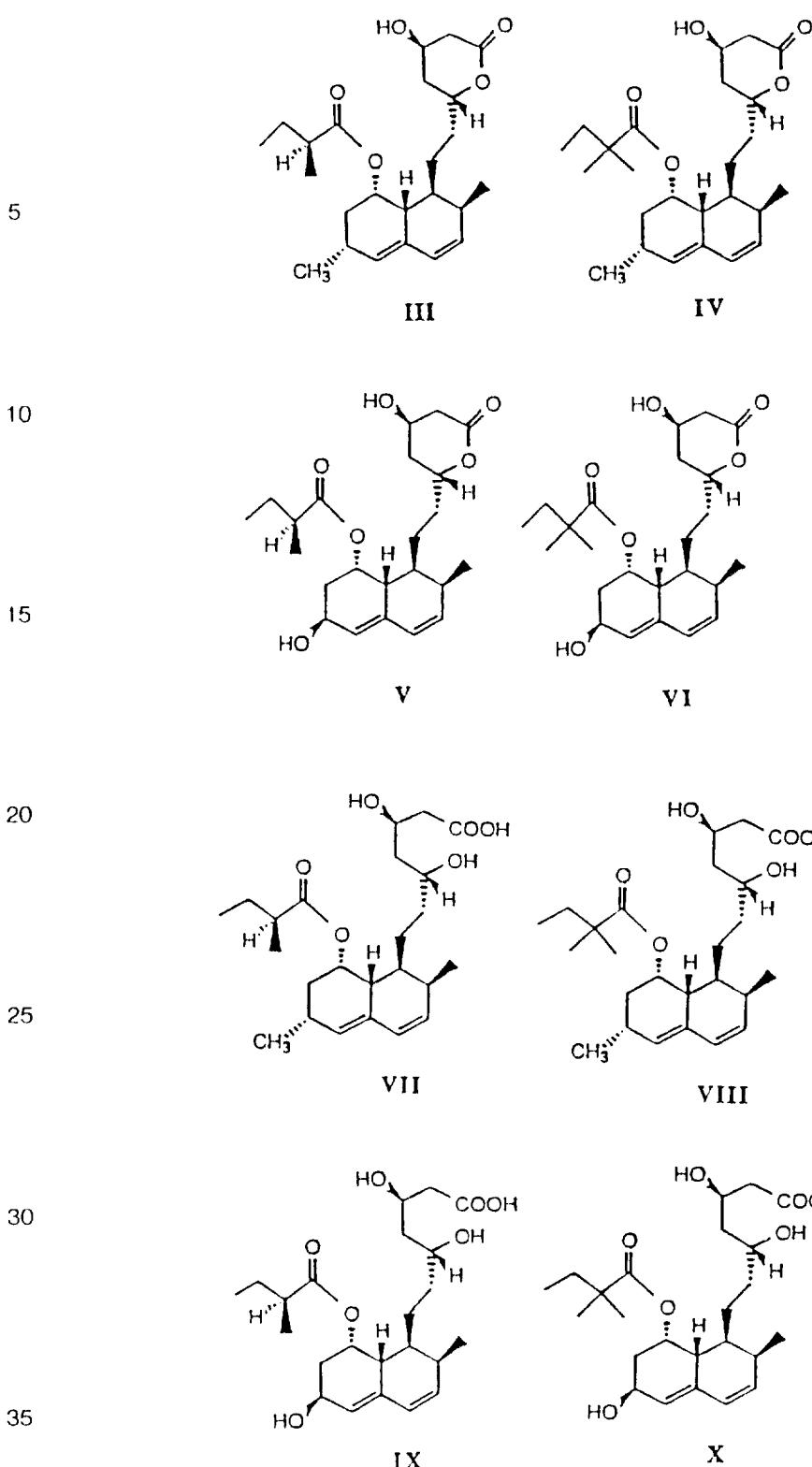
α -monoglycerides of the compounds of formula II.

Preferred compounds of the formulas I and II are
compounds of formulas

5

10

15


20

25

30

35

- 3 -

It has been unexpectedly found that the compounds of formulas I and II and the above-identified esters and monoglycerides of the compounds of formula II are useful in the treatment of hyperproliferative skin diseases, such as 5 psoriasis, basal cell carcinomas, squamous cell carcinomas, keratosis, and disorders of keratinization. These compounds may be administered either orally or topically.

Pharmaceutical compositions for topical applications 10 containing a compound of the formula I and II and the above-identified esters and monoglycerides of the compounds of formula II are novel and are also an object of the present invention.

15 Compounds of formulas I and II wherein R_1 is methyl and A is as described above may be prepared by methods disclosed in U.S. Patent 4,444,784 and 4,450,171.

20 Compounds of formula I are converted into the compound of formula II in a manner analogous to that discussed in U.S. Patent 4,444,784.

Compounds of formulas V, VI, IX and X may be prepared by 25 known methods discussed in U.S. Patent No. 4,346,227.

As used herein, the term "psoriasis" refers to a hyperproliferative skin disease which alters the skin's regulatory mechanisms. In particular, lesions are formed which involve primary and secondary alterations in epidermal 30 proliferation, inflammatory responses of the skin, and an expression of regulatory molecules such as lymphokines and inflammatory factors. Psoriatic skin is morphologically characterized by an increased turnover of epidermal cells, thickened epidermis, abnormal keratinization, inflammatory 35 cell infiltrates into the dermis layer and polymorphonuclear leukocyte infiltration into the epidermis layer resulting in an increase in the basal cell cycle. Additionally,

hyperkeratotic and parakeratotic cells are present.

The terms "keratosis," "basal cell carcinomas" and "disorders of keratinization" refer to hyperproliferative 5 skin diseases in which the regulatory mechanisms for the proliferation and differentiation of normal skin cells are disrupted.

The compounds of formulas I and II and the above-identified 10 esters and monoglycerides of the compounds of formula II are active as skin hyperproliferation antagonists, that is, as agents which decrease the proliferation of human keratinocytes. The compounds further antagonize alterations 15 in the differentiation of keratinocytes. Accordingly, the compounds are useful as agents for the treatment of hyperproliferative skin diseases such as psoriasis, basal cell carcinomas, disorders of keratinization and keratosis.

As used herein the term "halo" means chloro, fluoro, 20 bromo, or iodo.

As used herein the term "alkyl" denotes a straight or branched chain saturated hydrocarbon having 1 to 10 carbon 25 atoms such as methyl, ethyl, propyl, isopropyl and the like.

The term "cycloalkyl" denotes a cycloalkyl having 3 to 10 carbon atoms such as cyclopropyl, cyclobutyl, and the like.

30 The term "alkenyl" denotes a straight or branched chain alkenyl having 2 to 10 carbon atoms such as ethenyl, propenyl and the like.

35 The term "alkyl substituted with trifluoromethyl" denotes a C₁₋₁₀ straight or branched chain alkyl having

one hydrogen replaced by trifluoromethyl.

The term "halophenyl" denotes a phenyl substituted with up to three halogens.

5

The term "phenyl C₁₋₃ alkyl" denotes an alkyl having 1-3 carbon atoms and one of whose hydrogens is replaced by a phenyl.

10

In the formulas presented herein, the various substituents are illustrated as joined to the carbon framework by one of the following notations: a tapered line (—) indicates a substituent which is above the plane of the molecule (β -orientation) and a dotted line (---) or (---) indicates a substituent which is below the plane of the molecule (α -orientation).

20

Especially preferred of the compounds of formula I is the compound of the formula III which is referred to herein as mevinolin; and the compound of the formula IV which is referred to herein as synvinolin.

25

The compounds of formulas III and IV are known and can be made with known methods, such as those described in U.S. Patent No. 4,346,227.

30

The compounds of formulas I and II and the above-identified esters and monoglycerides of the compounds of formula II can be administered orally, for the treatment of hyperproliferative skin diseases such as psoriasis, basal cell carcinomas, squamous cell carcinomas, disorders of keratinization and keratosis to warm-blooded animals which need such treatment. While dosages may vary depending upon the severity of the disease, these compounds can be administered orally to the adult human in dosages that are in the range of about 10 to 80 milligrams per day and preferably about 10-50 milligrams per day for the treatment

of hyperproliferative skin diseases such as psoriasis, basal cell carcinomas, squamous cell carcinomas, disorders of keratinization and keratosis.

5 The compounds of formulas I and II can be administered topically, for treatment of hyperproliferative skin diseases, such as psoriasis, basal cell carcinomas, squamous cell carcinomas, disorders of keratinization and keratosis to warm blooded animals which need such treatment. While
10 dosages may vary depending upon the severity of the disease, these compounds can be administered topically in dosages that are about 1 to about 200 micrograms per gram of topical formulation per day for the treatment of such diseases, preferably about 1 to about 50 micrograms per gram of
15 topical formulation per day.

20 The useful activity of compounds of formulas I and II and the above identified esters and monoglycerides of the compounds of formula II as agents for the treatment of hyperproliferative skin diseases can be demonstrated by the ability of these compounds to inhibite the keratinocyte proliferation in cell cultures of keratinocytes obtained from human neonatal foreskins. The results are compiled in Table 1 below:

25

30

35

TABLE 1

INHIBITION OF COMPOUNDS OF FORMULA I on
KERATINOCYTE PROLIFERATION

5

	Compound	Dosage of Compound (M)	Percent Inhibition on Keratinocyte Proliferation	Standard Deviation
10	1. ETOH Control		0.00	24.48
15	2. Mevinolin	10 ⁻¹⁰	23.2	26.7
		10 ⁻⁸	28.9	17.57
		10 ⁻⁷	38.6	12.82
		10 ⁻⁶	84.21	14.51
20	3. Synvinolin	10 ⁻¹⁰	0.00	24.08
		10 ⁻⁸	11.17	26.42
		10 ⁻⁷	33.60	26.34
		10 ⁻⁶	62.06	24.31

20 Each compound is tested in triplicate, at each concentration.

25 The foregoing results evidence that compounds of formula I at a dosage of 10⁻⁶M inhibit keratinocyte cell proliferation at a rate greater than 50% without toxicity to the cells. For example, mevinolin at this dosage inhibits 84.21% of keratinocyte proliferation and synvinolin inhibits 62.06% of keratinocyte proliferation at this dosage.

30 These data indicate that the compounds of formula I restrain the proliferation of human keratinocyte cells in vitro, without toxicity to the cells. From these results it can be seen that each of the tested compounds is useful as an agent in the treatment of hyperproliferative skin 35 diseases such as psoriasis.

For the manufacture of oral dosage forms compounds of formulas I and II and the above-identified esters and monoglycerides of compounds of formula II may be incorporated in capsules, tablets and the like with 5 pharmaceutically acceptable carrier materials.

Illustrative of the pharmaceutically acceptable carrier materials which may be incorporated into capsules, and the like are the following: a binder such as gum tragacanth, 10 acacia, corn starch, or gelatin; an excipient such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, algenic acid, and the like; a lubricant such as magnesium stearate, a sweetening agent such as sucrose, lactose, or saccharin; a flavoring agent 15 such as peppermint, oil of wintergreen or cherry. Various other materials may be present as coating or to otherwise modify the physical form of the dosage unit. For instance, tablets may be coated with shellac, sugar, or both. A syrup or elixir may contain the active compound, sucrose as a 20 sweetening agent, methyl and propyl parabens as preservatives, a dye, and a flavoring such as cherry or orange flavor.

A preferable formulation for an oral dosage of the 25 compound of Formulas I and II in capsule form is presented in Example 1 below:

Example 1

30 Oral dosage formulation (capsule) for Compounds of Formulas I-X.

30	1.	Compound of Formula I or II.	20 milligrams
	2.	Lactose	150 milligrams
35	3.	Starch	30 milligrams
	4.	Talc	20 milligrams

Manufacturing Process

5 A. Mix 1 with a portion of 2.
 B. Add 3 and 4, and mix.
 C. Add the remainder of 2, mix thoroughly, and pass
 through a suitable mill. Capsules are filled with
 the composition thus prepared.

10 As used herein, the term "topical" denotes the use of
 the active ingredient, incorporated in a suitable
 pharmaceutical carrier, and applied at the site of
 inflammation for the exertion of local action. Accordingly,
 the topical compositions include those pharmaceutical forms
 in which the compound is applied externally by direct
15 contact with the skin. The topical dosage forms comprise
 gels, creams, lotions, ointments, powders, aerosols and
 other conventional forms for applying medications to the
 skin obtained by admixing the compounds of formula I with
 known pharmaceutical topical carrier materials. In addition
20 to the application to the skin, the topical compositions of
 this invention can also be employed in the treatment of
 inflammations of mucous membranes, where such membranes are
 accessible to topical application of medication. For
 example, the topical composition can be applied to the
25 mucous lining of the mouth or lower colon.

30 A preferable formulation for a topical dosage of the
 compounds of Formulas I or II is presented in Example 2
 below:

- 11 -

Example 2Preferred Formulation for Topical Dosage of Compounds of
Formulas I or II

5	1.	Compound of Formula I or II,	10.0 micrograms
	2.	Stearyl alcohol	4.0 g
	3.	Cetyl alcohol	4.0 g
	4.	Mineral oil	3.0 g
10	5.	Polysorbate 60	4.5 g
	6.	Sorbitan stearate	4.5 g
	7.	Propylene glycol	10.0 g
	8.	Methyl paraben	0.18 g
	9.	Propyl paraben	0.02 g
15	10.	Water	q.s. to 100.00 g

Manufacturing Process

- A. Heat 2 through 6 to 80°C, which melts all ingredients (oil phase).
- 20 B. Dissolve 1 in oil phase.
- C. Heat 7 and 10 to 90°C (aqueous phase).
- D. Dissolve 8 and 9 in aqueous phase.
- E. Add aqueous phase to the oil phase and stir rapidly to form emulsion.
- 25 F. Cool slowly to 50°C to allow to congeal.
- G. Continue stirring slowly to room temperature.

30

35

- 12 -

CLAIMS:

1. A method for treating a hyperproliferative skin disease in a patient in need of such treatment comprising:
5 administering an antihyperproliferatively effective amount of mevinolin or synvinolin.

10 2. The method of claim 1 wherein the compound is orally administered.

15 3. The method of Claim 2 wherein the dosage range of the compound is about 10 to about 80 milligrams per day.

20 4. The method of Claim 1 wherein the compound is administered topically.

25 5. The method of Claim 4 wherein the dosage range of the compound is about 1 to about 200 micrograms per gram of a composition.

25

JOHN ARTHUR MCCLANE
MILLAN RADOJE USKOKOVIC
(Inventors)

30

35

BAD ORIGINAL