(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

3 April 2003 (03.04.2003) PCT

(10) International Publication Number

WO 03/027886 Al

(51) International Patent Classification”: GO6F 15/173
(21) International Application Number: PCT/US02/30974

(22) International Filing Date:
27 September 2002 (27.09.2002)

(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
60/325,704 28 September 2001 (28.09.2001) US
10/051,321 18 January 2002 (18.01.2002) US

(71) Applicant: MARANTI NETWORKS, INC. [US/US];
3061-B Zanker Road, San Jose, CA 95134-2127 (US).

(72) Inventors: LOLAYEKAR, Santosh, C.; 655 S. Fair Oaks
Avenue, #G-208, Sunnyvale, CA 94086 (US). CHENG,
Yu-Ping; 1170 Garrett Court, San Jose, CA 95120 (US).

74

81

(34

HEGDE, Anoop, R.; 417 E. Maude Avenue, #17, Sunny-
vale, CA 94086 (US). ASTHANA, Sunil, K.; 3479 Wood-
side Terrace, Fremont, CA 94539 (US). MARANON, Re-
nato, E.; 2247 Normandy Circle, Livermore, CA 94550
(US). LEE, Wan-Hui; 303 Oakhurst Way, Milpitas, CA
95035 (US). FREY, Robert, T.; 605 Clyde Court, Milpi-
tas, CA 95035 (US). TAN, Enyew; 1919 Fruitdale Avenue,
Apt. E213, San Jose, CA 95128 (US).

Agent: WILLIAM, Harmon, J., III; Vierra Magen Mar-
cus & DeNiro, LLP, 685, Market Street, Suite 540, San
Francisco, CA 94105 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, T], TM, TN, TR, TT, TZ, UA, UG, UZ, VN,
YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

[Continued on next page]

(54) Title: STORAGE SWITCH FOR STORAGE AREA NETWORK

A 00 N O O

300
servers
e
N
302 302 302
Py
7- FCor
st " > .[.'.:::f GigE
TTTTTRTTATT O T T2 / 308
AN ~o
304 304
e T
e storage storage MAN/WAN
< switch switch
FCor
\© <zl GIgE
e o]
QL
~
g mgmt
~ stations 306 storage - 306 306
(o8] devices or
& subsystems
O (57) Abstract: A system (300) that contains a storage switch (304) to connect servers (302) to storage devices (306) that include

both iSCSI and Fibre Channel Protocol to create a Storage Area Network (SAN). The storage swithc is also connected to a wide area
network (308) and management stations (310) to manage the SAN (306).

w0 03/027886 A1 NN 000 .00 0O

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), — before the expiration of the time limit for amending the
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, claims and to be republished in the event of receipt of
ES, Fl, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, amendments

TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,

GW, ML, MR, NE, SN, TD, TG).
For two-letter codes and other abbreviations, refer to the "Guid-

Published: ance Notes on Codes and Abbreviations" appearing at the begin-

— with international search report ning of each regular issue of the PCT Gazette.

10

15

20

25

30

35

WO 03/027886 PCT/US02/30974

-1-

STORAGE SWITCH FOR STORAGE AREA NETWORK

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to Provisional Application Serial No.
60/325,704, entitled STORAGE SWITCH FOR STORAGE AREA NETWORK,

and filed September 28, 2001, and incorporated by reference herein.

[0002] This application is also related to the following applications, all filed

concurrently herewith and all incorporated herein by reference:

PROTOCOL TRANSLATION IN A STORAGE SYSTEM,
Serial No. 10/051,415; ‘

SERVERLESS STORAGE SERVICES,
Serial No. 10/051,164;

» PACKET CLASSIFICATION IN A STORAGE SYSTEM
Serial No. 10/051,093;

VIRTUALIZATION IN A STORAGE SYSTEM,
Serial No. 10/051,396;

ENFORCING QUALITY OF SERVICE IN A STORAGE NETWORK,
Serial No. 10/051,339;

10

15

20

25

30

WO 03/027886

-2

POOLING AND PROVISIONING STORAGE RESOURCES IN A STORAGE
NETWORK,
Serial No. 10/050,974; and

LOAD BALANCING IN A STORAGE NETWORK,
Serial No. 10/051,053.

FIELD OF INVENTION
[0003] The present invention relates to storage area networks (SANs).
BACKGROUND
[0004] Therapid growth in data intensive applications continues to fuel the

demand for raw data storage capacity. As companies rely more and more on e-
commerce, online transaction processing, and databases, the amount of information that
needs to be managed and stored can be massive. As a.result, the ongoingneed to add
more storage, service more users and back-up more data has become a daunting task.
[0005] To meet this growing demand for data, the concept of the Storage Area
Network (SAN) has been gaining popularity. A SAN is defined by the Storage
Networking Industry Association (SNIA) as a network whose primary purpose is the
transfer of data between computer systems and storage elements and among storage
elements. Unlike connecting a storage device directly to a server, e.g., with a SCSI
connection, and unlike adding a storage device to a LAN with a traditional interface such
asEthemnet (e.g., aNAS system), the SAN forms essentially an independent network
that does not tend to have the same bandwidth limitations as its direct-connect SCSI and
NAS counterparts.

[0006] More specifically, in a SAN environment, storage devices (e.g., tape
drives and RAID arrays) and servers are generally interconnected via various switches
and appliances. The connections to the switches and appliances are usually Fibre
Channel. This structure generally allows for any server on the SAN to communicate with

any storage device and vice versa. It also provides alternative paths from server to

PCT/US02/30974

10

15

20

25

WO 03/027886

-3-

storage device. In other words, if a particular server is slow or completely unavailable,
another server on the SAN can provide access to the storage device. A SAN also
makes it possible to mirror data, maidng multiple copies available and thus creating more
reliability in the availability of data. When more storage isneeded, additional storage
devices can be added to the SAN without the need to be connected to a specific server;
rather, the new devices can simply be added to the storage network and can be
accessed from any point.

[0007] An example of a SAN is shown in the system 100 illustrated in the
functional block diagram of Fig. 1. As shown, there are one or more servers 102.
Three servers 102 are shown for exemplary purposes only. Servers 102 are connected

through an Ethernet connection to a LAN 106 and/or to a router 108 and then to a

- WAN 110, such as the Internet. In addition, each server 102 is connected through a

Fibre Channel connection to each of a plurality of Fibre Channel switches 112
sometimes referred to as the “fabric” of the SAN. T§vo switches 112 are shown for
exemplary purposes only. Each switch 112 is in turn connected to each of a plurality of
SAN appliances 114. Two appliances 114 are shown for exemplary purposes only.
Each appliance is also coupled to each of a plurality of storage devices 116, such as tape
drives, optical drives, or RAID arrays. In addition, each switch 112 and appliance 114
is coupled to a gateway 118, which in turn is coupled to router 108, which ultimately
connects to a Wide Area Network (WAN) 118, such as the Internet. Fig. 1 shows one
example of a possible configuration of a SAN 119, which includes switches 112,
appliances 114, storage devices 116, and gateways 118. Still other configurations are
possible. Forinstance, one appliance may be connected to fewer than all the switches.
[0008] Appliances 114 perform the storage management of the SAN. When
the appliance 114 receives data, it stores the data in a memory in the appliance. Then,
with aprocessor (also in the appliance), analyzes and operates on the data in order to
forward the data to the correct storage device(s). This store-and-forward process

typically slows down data access.

PCT/US02/30974

10

15

20

25

WO 03/027886

-4-

[0009] While the appliances do perform some switching, because there may be
alarge number of servers (many more than three), and because each appliance has few
ports (usually only two or four), switches 112 areneeded to connect the many servers
to the few appliances. Nevertheless, switches 112 have little built-in intelligence and
merely forward data to a selected appliance 114.

[0010] One limitation of appliances is the fact that an appliance typically has
very few ports, e.g., only two ports. As aresult, the bandwidth available through the
appliance can be limited. Adding ports to an appliance, although possible, is typically

very expensive. Every one or two ports are supported by an expensive CPU or server

- card. So generallyto add ports, entire file cards (which perform virtualization and store-

and-forward functions) must be added to the device, which is usually very costly. In the

- alternative, appliances are simply added to the SAN, but again, this tends to be very

costly.

[0011] In addition, SANS, usually in the appliances 114, generally perform a
functionknown as “virtualization.” Virtualization occurs when sp ace o1 one Or more
physical storage devices is allocated to a particular user, but the physical location of that
space remains unknown to the user. For instance, a user may access its company’s
“engineering storage space,” ENG:, accessing and “seeing” the virtual space ENG: as
he or she would access or “see” an attached disk drive. Nonetheless, the ENG: space
may be divided over several physical storage devices or even fragmented on a single
storage device. Thus, when a server requests a virtual device (e.g., ENG:) and block
number, the appliance must determine the device(s) that physically correlate to the virtual
device requested and direct the data accordingly.

[0012] In general, SANs are formed using a single protocol to interconnect the
devices. Although Fibre Channel is the most commonly used, Ethernet connections have
also been used. Nonetheless, if both protocols are desired to be used, some kind of
transition between the two protocols must occur. In such instances, a Fibre Channel
SAN 119is typically coupled to an Ethernet SAN 122 viaabridge 121. To transition

from one protocol to the other, a packet isreceived by the bridge and stored in memory.

PCT/US02/30974

10

15

20

25

WO 03/027886

-5-

Once the packet is stored in a memory, a processor operates on the packet to remove
the headers of one protocol and build the headers of the other protocol, thereby
constructing an entirely new packet. More specifically, referring to Fig. 2, when a
request (which may be comprised of one or more packets) is received by bridge 121,
itis received, for example, by a Host Bus Adapter (HBA) 202 over a Fibre Channel
connection 204. The entire request is stored in memory 206 until a processor 208 is
ready to analyze and operate on it, i.e., to rebuild the request in accordance with the
outgoing protocol. Once the request has been operated on by the processor 208, the
requestis sent to the Network Interface Card (NIC) 210 and then out over the ethernet
connection 212. Of course, the same process could occur vice versa (ethernet to fibre
channel). Hence, the transition between protocols requires significant memory and
processor resources, whichnot only cause delays in transmitting data but also increase
the cost of the system in both money and real estate. Nonetheless, the only alternative
currently available is to keep the protocols isolated on distinct networks.

[0013] Gateways 118 (Fig. 1), in addition to connecting a SAN to a WAN, are

often used to connect two ormore SANs together. Gateways usually do not transition

- the various protocols, but rather encapsulate the data in IP packets, as is known in the

art. Nonetheless, when multiple SANs are connected, there must be a unique address
for each connected device. However, although the IP protocol contains 32 bits for
addressing, the Fibre Channel protocol only contains 24 bits. Hence, because most
SANSs use Fibre Channel, scalability can be a problem despite the use of a gateway,
limiting use of SANSs over the Internet.

[0014] Although SANs were introduced several years ago, interoperability
problems, lack of available skills, and high implementation costs remain major obstacles
to widespread use. Forinstance, SANs as they currently exist have high deployment
costs and highmanagement costs. Referring again to Fig. 1, each switch, appliance, and
gateway typically come from different vendors, creating a lack of management standards
thathasresulted in the proliferation of vendor-specific management tools. As aresult,

to deploy a SAN, equipment must be purchased from multiple vendors. And, as shown

PCT/US02/30974

10

15

20

25

WO 03/027886

-6-

mFig. 1, each switch, appliance, gateway, storage device, server, and router will have
its own management, shown as management stations 120. Although independent
physical management stations are shown, it is to be understood that independent
management is frequently in the form ofindependent, vendor-specific software on a

single computer but which software does not communicate with one another. As a

result, there is no centralized management of the SAN and its management costs are high

given that there are usually multiple management stations that frequently require many

people to manage.

SUMMARY
[0015] A storage switch in accordance with an embodiment of the invention is
ahighly scalable switch that allows the creation of a SAN that is easy to deploy and that
can be centrallymanaged. Moreover, such a storage switch also allows the deployment
ofa global infrastructure, allowing the resources of the SAN, such as storage devices,
to essentially be positioned anywhere on the globe. Further, a storage switch in
accordance with the invention allows a multi-protocol SAN, e.g., one that includes both
1SCSI (arecently introduced protocol carried over an Ethernet connection) or Fibre
Channel, and to process any data packets at “wire speed” —that is, without introducing
any more latency that would be introduced by a switch that merely performed switching
or routing functions —and thus a switch in accordance with the invention has a high
bandwidth. Typicallyto process data at wire speed, a storage switch in accordance with
an embodiment of the invention will not buffer packets, unlike that done conventionally.
Thus, compared to conventional practices, an architecture in accordance with an
embodiment of the invention allows the required time to process a packet to be minimal.
[0016] More specifically, a switch in accordance with the invention offers
virtualization and translation services at wire speed. To perform such wire-speed
processing, “intelligence” is distributed at every port of the switch linecard. Each
linecard is further able to classify a packet and thus separate data packets from control

packets. Because of the distributed intelligence, each linecard also performs

PCT/US02/30974

10

15

20.

25

WO 03/027886 PCT/US02/30974

-7 -

virtualization (converting a virtual address to a physical one) and protocol translation
(converting an incoming packet of a first protocol to an outgoing packet of a second
protocol) when necessary on the data packets and can do so without a user or a server
having to be aware of or involved in the necessity for the virtualization or translation.
Having distributed intelligence allows many linecards to be made that are less expensive
than traditional CPU or server cards, allowing for further ease of scalability of the
storage switch, e.g., to accommodate more ports.

[0017] In addition, each switch is able to offer serverless storage services such
asmirroring, mirroring over aslow link, snapshot, virtual target cloning (replication), third
party copy, periodic snapshot and backup, and restore. Once the switch receives a
request for such services, it is able to perform those services without the assistance of

any other device, such as a server or management station.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] The present invention is described with respect to particular exemplary
embodiments thereof and reference is accordingly made to the drawings in which:
[0019] Fig. 1isa generalized function block diagram of a SAN in accordance
with a conventional system;

[0020] Fig. 2 is a generalized function block diagram of a device used for
interfacing between protocols in accordance with conventional methodologies;
[0021] Fig. 3 isa generalized function block diagram of a SAN system using a
storage switch in accordance with an embodiment of the invention;

[0022] Fig. 4isa generalized function block diagram of another embodiment
of asystem using a storage switch in accordance with an embodiment of the invention;
[0023] Fig. 5isageneralized function block diagram of yet another embodiment
of asystem using a storage switch in accordance with an embodiment of the invention;
[0024] Fig. 6 is a generalized function block diagram of a storage switch in

accordance with an embodiment of the invention;

10

15

20

25

WO 03/027886

-8-

[0025] Fig. 71s a generalized function block diagram ofa linecard usedina
storage switch in accordance with an embodiment of the invention;

[0026] Fig. 7ais a generalized block diagram of a Virtual Target Descriptor
used in a storage switch in accordance with an embodiment of the invention;
[0027] Figs. 8a-8e are generalized block diagrams of various iSCSIPDUS, as
are known in the art;

[0028] Figs. 8-8i are generalized block diagrams of Fibre Channel Protocol
(FCP) frames and payloads, as are known in the art;

[0029] Figs. 9ais a flow diagram illustrating a classification process of iSCSI
packets in the ingress direction as the process occurs in the PACE, in accordance with
an embodiment of the invention;

[0030] Figs. 9bis a flow diagram illustrating a classification process of iSCSI
packets in the egress direction as the process occurs in the PACE, in accordance with
an embodiment of the invention;

[0031] Figs. 10a and 10b illustrate block diagrams of TCP packets as they
enter a storage switch in accordance with the invention and how the packets are
modified for use within the storage switch;

[0032] Fig. 11 is a generalized block diagram of a Local Header used in a
storage switch in accordance with an embodiment of the invention;

[0033] Figs. 12ais a flow diagram illustrating a classification process of FCP
frames in the ingress direction as the process occurs in the PACE, in accordance with
an embodiment of the invention;

[0034] Figs. 12bis a flow diagram illustrating a classification process of FCP
frames as in the egress direction as the process occurs in the PACE, in accordance with
an embodiment of the invention;

[0035] Figs. 13ais a flow diagram illustrating a classification process in the
ingress direction as the process occurs in the PPU, in accordance with an embodiment

of the invention;

PCT/US02/30974

10

15

20

25

WO 03/027886

-9.

[0036] Figs. 13bis a flow diagram illustrating a classification process in the
egress direction as the process occurs in the PPU, in accordance with an embodiment
of the invention;

[0037] Fig. 14is aflow diagram illustrating a virtualization process in the ingress
direction for command packets or frames, in accordance with an embodiment of the
invention;

[0038] Fig. 15is aflow diagram illustrating a virtualization process in the egress
direction for command packets or frames, in accordance with an embodiment of the
invention;

[0039] Figs. 14aand 15aillustrate block diagrams of the local header and task
control blocks (ITCB and ETCB) during a virtualization process, where Fig. 14a shows
theheader and ITCB for acommand packet in the ingress direction (from the initiator
server/port) and where Fig. 15a shows a header and ETCB for a command packet in
the egress direction (from the fabric/traffic manager);

[0040] Fig. 16 1s a flow diagram illustrating a virtualization process in the ingress
direction for R2T/XFR_RDY packets or frames, in accordance with an embodiment of
the invention;

[0041] Fig. 171s aflow diagram illustrating a virtualization process in the egress
direction for R2T/XFR_RDY packets or frames, in accordance with an embodiment of
the invention;

[0042] Figs. 16aand 17aillustrate block diagrams of the local header and task
control blocks (ITCB and ETCB) during a virtualization process, where Fig. 16a shows
theheader and ETCB foraR2T/XFR_RDY packet inthe ingress direction (from the
target storage device/port) and where Fig. 17a shows a header and ITCB for a
R2T/XFR_RDY packet in the egress direction (from the fabric/traffic manager);
[0043] Fig. 18is a flow diagram illustrating a virtualization process in the ingress
direction for write data packets or frames, in accordance with an embodiment ofthe

invention;

PCT/US02/30974

10

15

20

25

WO 03/027886

-10-

[0044] Fig. 19is a flow diagram illustrating a virtualization process in the egress
direction for write data packets or frames, in accordance with an embodiment of the
invention;

[0045] Figs. 18aand 19aillustrate block diagrams ofthe local header and task
control blocks (ITCB and ETCB) during a virtualization process, where Fig. 18ashows
the header and ITCB for a write data packet in the ingress direction (from the intiator
server/port) and where Fig. 15a shows a header and ETCB for a write data packet in
the egress direction (from the fabric/traffic manager);

[0046] Fig. 20is a flow diagram illustrating a virtualization process in the ingress
direction for read data packets or frames, in accordance with an embodiment of the
invention; '

[0047] Fig. 21 isa flow diagram illustrating a virtualization process in the egress
direction for read data packets or frames, in accordance with an embodiment of the
invention;

[0048] Figs.20a and 21aillustrate block diagrams ofthe local header and task
control blocks (ITCB and ETCB) during a virtualization process, where Fig. 20a shows
the header and ETCB for aread data packet in the ingress direction (from the target
storage device/port) and where Fig. 21a shows a header and ITCB for a read data
packet in the egress direction (from the fabric/traffic manager);

[0049] - Fig. 22 is a flow diagram illustrating a virtualization process in the ingress
direction for response packets or frames, in accordance with an embodiment of the
invention;

[0050] Fig. 23 isa flow diagram illustrating a virtualization process in the egress
direction for response packets or frames, in accordance with an embodiment of the
invention;

[0051] Figs. 22aand 23aillustrate block diagrams of the local header and task
control blocks (ITCB and ETCB) during a virtualization process, where Fig. 22a shows

the header and ETCB for aresponse packet in the ingress direction (from the target

PCT/US02/30974

10

15

20

25

WO 03/027886

-11 -

storage device/port) and where Fig. 23a shows a header and ITCB for a response
packet in the egress direction (from the fabric/traffic manager);

[0052] Fig. 24 is a flow diagram illustrating the general steps taken to perform
storage services in accordance with an embodiment of the invention;

[0053] Fig. 25 is a flow diagram illustrating the steps taken for the storage
service of mirroring over a slow link in accordance with an embodiment of the invention;
[0054] Fig. 26 is a flow diagram illustrating the steps taken for the storage
service of snapshot in accordance with an embodiment of the invention;

[0055] Fig. 27 is a flow diagram illustrating the steps taken for the storage
service of cloning in accordance with an embodiment of the invention; and
[0056] Fig. 28 is a flow diagram illustrating the steps taken for the storage

service of third party copy in accordance with an embodiment of the invention.

DETAILED DESCRIPTION

[0057] A system 300 that includes a storage switch in accordance with the

- inventionisillustrated in Fig. 3. Asshown, such a system is greatly simplified over

existing systems. In one embodiment, system 300 includes a plurality of servers 302.
For purposes of illustration only, three servers 302 are shown, although more or fewer

servers could be used in other embodiments. Althoughnot shown, the servers could

- alsobecoupled to aLAN. Asshown, each server 302 is connected to a storage switch

304. In other embodiments, however, each server 302 may be connected to fewer than
all of the storage switches 304 present. The connections formed between the servers
and switches can utilize any protocol, although in one embodiment the connections are
either Fibre Channel or Gigabit Ethernet (carrying packets in accordance with the iSCSI
protocol). Other embodiments may use the Infiniband protocol, defined by Intel Inc.,
or other protocols or connections. Inthe embodiment illustrated, each switch is in turn
connected to each of a plurality of storage devices or subsystems 306. Nonetheless, in
other embodiments, each switch may be connected to fewer than all of the storage

devices or subsystems 306. The connections formed between the storage switches and

PCT/US02/30974

10

20

25

WO 03/027886 PCT/US02/30974

-12-

storage devices can utilize any protocol, although in one embodiment the connections are
either Fibre Channel or Gigabit Ethernet. In some embodiments, one or more switches
304 are each coupled to a Metropolitan Area Network (MAN) or Wide Area Network
(WAN)), such as the Internet 308. The connection formed between a storage switch and
a WAN will generally use the Internet Protocol (IP) in most embodiments. Although

-shown as directly connected to MAN/WAN 308, other embodiments may utilize a

router (not shown) as an intermediary between switch 304 and MAN/WAN 308. In
addition, respective management stations 310 are connected to each storage switch 304,
to each server 302, and to each storage device 306. Although management stations are
illustrated as distinct computers, it is to be understood that the software to manage each
type of device could collectively be on a single computer.

10058] Fig. 4 shows an alternative embodiment of a system in accordance with

theinvention. Insuch anembodiment, two SANs 402, 404 are formed, each using one

_ormore storage switches 304 in accordance with an embodiment of the invention. The

SANSs 402 and 404 are coupled through a WAN 308, such as the Internet, by way of
switches 304. Connections 308 can be any standard or protocol, but in one
embodiment will be Packet over SONET (PoS) or 10 Gigabit Ethernet.

[0059] Fig. 5 shows still another embodiment of a system in accordance with
the invention wherein switches 304 are coupled directly to one another. In any of the
embodiments shown in Figs. 3 or 4, if more than one switch is used, those switches
could be coupled as illustrated in Fig. 5.

[0060] A storage switch in accordance with the invention enables a centralized
management of globally distributed storage devices, which can be used as shared storage
pools, instead ofhaving ahuge number of management stations distributed globally and
an army of skilled management personnel. Such a storage switch is an “intelligent”
switch, and, as can be seen by comparing Fig. 3 to Fig. 1, the functions of switch,
appliance, and gateway have effectively been united in a storage switch 304 in
accordance with an embodiment of the invention. Such a storage switch 304, in addition

toits switching function, provides the virtualization and storage services (e.g., mirroring)

10

15

20

25

WO 03/027886

-13 -

that would typically be provided by appliances in conventional architectures, and it also
provides protocol translation. A storage switch in accordance with some embodiments
ofthe invention also performs additional functions (for instance, data security through a
Virtual Private Network). Such additional functions include functions that are performed
by other devices in conventional systems, such as load balancing, which is traditionally
performed by the servers, as well as other functions not previously available in
conventional systems.

[0061] Theintelligence of a storage switch in accordance with an embodiment
ofthe mvention is distributed to every switch port. ThlS distributed intelligence allows
for system scalability and availability.

[0062] Further, the distributed intelligence allows a switch in accordance with
an embodiment of the invention to process data at “wire speed,”” meaning that a storage
switch 304 introduces no more latency to a data packet than would be introduced by
a typical network switch (such as switch 112 in Fig. 1). Thus, “wire speed” for the
switch is measured by the connection to the particular port. Accordingly, in one
embodiment having OC-48 connections, the storage switch can keep up with an OC-48
speed (2.5 bits perns). A two Kilobyte packet (with 10 bits per byte) moving at OC-
48 speed takes as little as eight microseconds coming into the switch. A oneKilobyte
packet takes as little as four microseconds. A minimum packet of 100 bytes only
elapses merely 400 ns. Nonetheless, when the term “wire-speed” processing is used
herein, it does not mean that such processing needs as few as 400 ns to process a 100-
byte packet. However, it does mean that the storage switch can handle the maximum
Ethernet packet of 1500 bytes (with ten-bit encoding, so that a byte is ten bits) at OC-
48 speed, i.e.,in about 6 us (4 ps per Kilobyte or 2.5 bits per ns), in one embodiment.
In embodiments with a 1 Gb Ethernet port, where processing is generally defined as one
bit per nanosecond, “wire-speed” data for that port will be 10 ps per Kilobyte,
indicating that the switch has up to 10 ps to process aKilobyte. In embodiments with
a 2 Gb Fibre Channel port, “wire speed” will be 5 pus per Kilobyte. Still other

embodiments may process data at ten Gigabit Ethernet or OC-192 speeds or faster.

PCT/US02/30974

10

15

20

25

WO 03/027886

-14 -

[0063] Asused herein, “virtualization” essentially means the mapping of a virtual
target space subscribed to by a user to a space on one or more physical storage target
devices. Theterms “virtual” and “virtual target” come from the fact that storage space
allocated per subscription can be anywhere on one or more physical storage target

devices connecting to a storage switch 304. The physical space can beprovisioned as

-a““virtual target” which may include one or more “logical units” (LUs). Each virtual

target consists of one or more LUs identified with one or more LU numbers (LUNS),
which are frequently used in the iSCSIand FC protocols. Each logical unit, and hence
each virtual target, is generally comprised of one or more extents—a contiguous slice of
storage space on aphysical device. Thus, a virtual target may occupy a whole storage
device (one extent), a part of a single storage device (one or more extents), or parts of
multiple storage devices (multiple extents). The physical devices, the LUs, the number
of extents, and their exact locations are immaterial and invisible to a subscriber user.
[0064] ‘While the storage space may come from a number of different physical
devices, each virtual target belongs to one or more domains. Only users of the same
domain are allowed to share the virtual targets in their domain. A domain-set eases the
management of users of multiple domains. The members of a domain set can be
members of other domains as well. But a virtual target can only be in one domain in an
embodiment of the invention.

[0065] Fig. 6 illustrates a function block diagram of a storage switch 304 in
accordance with an embodiment of the invention. In one embodiment, the storage switch
304 includes a plurality of linecards 602, 604, and 606, a plurality of fabric cards 608,
and two system control cards 610, each of which will be described in further detail
below.

[0066] System Control Cards. Each of the two System Control Cards (SCCs)

610 connects to every line card 602, 604, 606. In one embodiment, such connections
are formed by I°C signals, which are well known in the art, and through an Ethernet
connection with the SCC. The SCC controls power up and monitors individual

linecards, as well as the fabric cards, with the °C connections. Using inter-card

PCT/US02/30974

10

15

20

25

WO 03/027886

-15 -

communication over the ethernet connections, the SCC also initiates various storage
services, €.g., snapshot and replicate, to be discussed further later.

[0067] In addition the SCC maintains a database 612 that tracks configuration
information for the storage switch as well as all virtual targets aﬁd physical devices
attached to the switch, e.g., servers and storage devices. In addition, the database
keeps information regarding usage, error and access data as well as information
regarding different domains and domain sets of virtual targets and users. The records
of the database are referred to herein as “objects.” Each initiator (e.g., aserver) and
target (e.g., a storage device) has a World Wide Unique Identifier (WWUTI), which are
knownin the art. The database is maintained in amemory device within the SCC, which
in one embodiment is formed from flash memory, although other memory devices will
also be satisfactory.

[0068] The storage switch 304 can be reached by amanagement station (310)
through the SCC 610 using an ethernet connection. Accordingly, the SCC also includes
an additional Ethernet port for connection to amanagement station. An administrator
atthe management station can discover the addition or removal of storage devices or
virtual targets, as well as query and update virtually any object stored in the SCC
database 612.

[0069] Ofthe two SCCs 610, one is the main operating SCC while the other
is abackup, remaining synchronized to the actions in the storage switch, but not directly
controlling them. The SCCs operate in a high availabilitymode wherein if one SCC fails,
the other becomes the primary controller.

{0070] Fabric Cards. In one embodiment of switch 304, there are three fabric
cards 608, although other embodiments could have more or fewer fabric cards. Each
fabric card 608 is coupled to each of the linecards 602, 604, 606 in one embodiment
and serves to connect all of the linecards together. In one embodiment, the fabric cards
608 can each handle maximum traffic when all linecards are populated. Such traffic
loads handled by each linecard are up to 160 Gbps in one embodiment although other

embodiments could handle higher or lower maximum traffic volumes. Ifone fabric card

PCT/US02/30974

10

15

20

25

WO 03/027886

-16 -

608 fails, the two surviving cards still have enough bandwidth for the maximum possible
switch traffic: in one embodiment, each linecard generates 20 Gbps of traffic, 10 Gbps
ingress and 10 Gbps egress. However, under normal circumstances, all three fabric
cards are active at the same time. From each linecard, the data traffic is sent to any one
of the three fabric cards that can accommodate the data.

[0071] Linecards. Thelinecards form connections to servers and to storage
devices. In one embodiment, storage switch 304 supports up to sixteen linecards
although other embodiments could support a different number. Further, in one
embodiment, three different types of linecards are utilized: Gigabit Ethernet (GigE) cards
602, Fibre Channel (FC) cards 604, and WAN cards 606. Other embodiments may
include more or fewer types of linecards. The GigE cards 602 are for Ethernet
connections, connecting in one embodiment to either iISCSIservers oriSCSI storage
devices (or other Ethernet based devices). The FC cards 604 are for Fibre Channel
connections, connecting to either Fibre Channel Protocol (FCP) servers or FCP storage
devices. The WAN cards 606 are for connecting to a MAN or WAN.

[0072] Fig. 7 illustrates a functional block diagram ofa generic line card 700
used in one embodiment of a storage switch 304 in accordance with the invention. The
illustration shows those components that are common among all types of linecards, e.g.,
GigE 602, FC 604, or WAN 606. In other embodiments other types of linecards can
be utilized to connect to devices using other protocols, such as Infiniband. The
differences in the linecards are discussed subsequently.

[0073] Ports. Each linecard 700 includes a plurality of ports 702. The
ports form the linecard’s connections to either servers or storage devices. Eight ports
are shown in the embodiment illustrated, but more or fewer could be used in other
embodiments. For example, in one embodiment each GigE card can support up to eight
1Gb Ethernet ports, each FC card can support up to either eight 1 Gb FC ports or four
2Gb FC ports, and each WAN card can support up to four OC-48 ports or two OC-

192 ports. Thus, inone embodiment, the maximum possible connections are 128 ports

PCT/US02/30974

10

15

20

25

WO 03/027886 PCT/US02/30974

-17 -

per switch 304. The ports of each linecard are fisll duplex and connect to either a server
or other client, or to a storage device or subsystem.

[0074] In addition each port 702 has an associated memory 703. Although only
one memory device is shown connected to one port, it is to be understood that each port
may have its own memory device or the ports may all be coupled to a single memory
device. Only one memory device is shown here coupled to one port for clarity of
illustration.

[0075] Storage Processor Unit. In one embodiment, each port is

associated with a Storage Processor Unit (SPU) 701. The SPU rapidly processes the
data traffic allowing for wire-speed operations. In one embodiment, the SPU includes

several elements: a Packet Aggregation and Classification Engine (PACE) 704, a Packet

- Processing Unit (PPU) 706, an SRAM 705, and a CAM 707. Still other embodiments

may use more or fewer elements or could combine elements to obtain the same
functionality.

[0076] PACE. Bachportis coupled to a Packet Aggregation
and Classification Engine (PACE) 704. Asillustrated, the PACE 704 aggregates two
portsinto asingle data channel having twice the bandwidth. For instance, the PACE
704 aggregates two 1Gb ports into a single 2Gb data channel. The PACE classifies
eachreceived packet into a control packet or a data packet, as will be discussed further
below. Control packets are sent to the CPU 714 for processing, via bridge 716. Data
packets are sent to a Packet Processing Unit (PPU) 706, discussed below, with a local
header added. In one embodiment the local header is sixteen bytes resulting in a data
“cell” or “local packet” of 64 bytes (16 bytes of header and 48 bytes of payload). The
local header is used to carry information and used internally by switch 204. The local
header is removed before the packet leaves the switch. Accordingly, asused hereina
“cell” or a “local packet” is a transport unit that is used locally in the switch that includes
a local header and the original packet (in some embodiments, the original TCP/IP
headers are also stripped from the original packet). Nonetheless, not all embodiments

of the mvention will create alocal header or have “local packets™ (cells) that differ from

10

15

20

25

WO 03/027886

-18 -

external packets. Accordingly, the term “packet” as used herein can refer to either
“local” or “external” packets.

[0077] The classification function helps to enable a switch to perform storage
virtualization and protocol translation functions at wire speed without using a store-and-
forward model of conventional systems. Each PACE has a dedicated path to a PPU
706 while all four PACEs in the illustrated embodiment share a path to the CPU 714,
which in one embodiment is a 104MHz/32 (3.2 Gbps) bit data path.

[0078] Packet Processing Unit (PPU). The PPU 706 performs

virtualization and protocol translation on-the-fly, meaning, the cells (local packets) are
not buffered for such processing. It also implements switch-based storage service
functions, described later. The PPU is capable, in one embodiment, of moving cells at
OC-48 speed or 2.5 Gbps for both the ingress and egress directions, while in other
embodiments it can move cells at OC-192 speeds or 10 Gbps. The PPU in one
embodiment includes an ingress PPU 706, and an egress PPU 706,, which both run
concurrently. The ingress PPU 706, receives incoming data from PACE 704 and sends
datato the Traffic Manager 708 while the egress PPU 706, receives data from Traffic
Manager 708 and sends data to a PACE 704.

[0079] Alarge number of storage connections (e.g., server to virtual target) can

be established concurrently at each port. Nonetheless, each connection is unique to a

-virtual target and can be uniquely identified by a TCP Control Block Index (in the case

of1SCSI connections) and a port number. When a connection is established, the CPU
714 of the linecard 700 informs the PPU 706 of an active virtual target by sending it a
Virtual Target Descriptor (VTD) for the connection. The VTD includes all relevant
information regarding the connection and virtual target that the PPU will need to propetly
operate on the data, e.g., perform virtualization, translation, and various storage services.
The VTD is derived from an object in the SCC database and usually contains a subset
of information that is stored in the associated object in the SCC database. Anexample

of the fields in a VTD in one embodiment of the invention are shown in Fig. 7a.

PCT/US02/30974

10

15

20

25

WO 03/027886

-19-
Nonetheless, other embodiments of the invention may have a VTD with more, fewer, or
different fields.
[0080] ‘To store the VTDs and have quick access to them, in one embodiment
the PPUs 706 are connected to an SRAM 705 and CAM 707. SRAM 705 stores a
VTD database. Alistingof VID identifiers (VTD IDs), or addresses, is also maintained
in the PPU CAM 707 for quick accessing of the VIDs. The VTID IDs are indexed
(mapped) using a TCP Control Block Index and a LUN. In addition, for IP routing
services, the CAM 707 contains a route table, which is updated by the CPU when

- routes are added or removed.

- [0081] Note that although only one CAM and an SRAM are illustrated as

connected to one PPU, this is to maintain clarity of the illustration. In various
embodiments, each PPU will be connected with its own CAM and SRAM device, or
the PPUs will all be connected to a single CAM and/or SRAM.

[0082] For each outstanding request to the PPU (e.g., reads or writes), a task
control block is established in the PPU SRAM 707 to track the status of the request.
There are ingress task control blocks (ITCBs) tracking the status of requests received
by the storage switch on the ingress PPU and egress task control blocks (ETCBs)
tracking the status of requests sent out by the storage switch on the egress PPU. For
each virtual target connection, there can be a large number of concurrent requests, and
thus many task control blocks. Task control blocks are allocated as arequest begins
and freed as the request completes.

[0083] Traffic Manager. There are two traffic managers (TMs) 708 on
each linecard 700: one TM for ingress traffic and one TM for egress traffic. The ingress
TMreceives packets from all four SPUs, in the form of multiple 64-byte data cells, in
one embodiment. In such an embodiment, each data cell has 16 bytes oflocal header
and 48 bytes of payload. Theheader contains a FlowID that tells the TM the destination
port of the cell. In some embodiments, the SPU may also attach a TM header to the cell
prior to forwarding the cell to the TM. Either the TM or the SPU can also subdivide the

cell into smaller cells for transmission through the fabric cards in some embodiments.

PCT/US02/30974

10

15

20

25

WO 03/027886

-20-

[0084] The ingress TM sends data cells to the fabric cards viaa 128-bit 104
Mhz interface 710 in one embodiment. The egress TM receives the data cells from the
fabric cards and delivers them to the four SPUs.

[0085] Both ingress and egress TMs have a large buffer 712 to queue cells
(local packets) for delivery. Both buffers 712 for the ingress and egress TMs are
64MB, which can queue a large number of packets. The SPUs can normally send cells
to the ingress TM quickly as the outgoing flow of the fabric cards is as fast as the
mcoming flow. Hence, the cells are moving to the egress TM quickly. On the other
hand, an egress TM may be backed up because the outgoing portis jammed or being
fed by multiple ingress linecards. In such a case, a flag is set in the header of the
outgoing cells to inform the egress SPU to take actions quickly. The egress TM sends
arequest to the ingress SPU to activate a flow control function. Itis worthnoting that,
unlike communications traffic over the Internet, for storage traffic dropping a packet s
unacceptable. Therefore, as soon as the amount of cells in the buffer exceeds a specified
threshold, the SPU must activate its flow control function to slow down the incoming

traffic to avoid buffer overflow.

10086] Fabric Connection. The fabric connection 710 converts the
256-bit parallel signals of the TM (128 bits ingress and 128 bits egress, respectively),
into a 16-bit serial interface (8-bit ingress and 8-bit egress) to the backplane at 160
Gbps. Thus the backplane is running at one sixteenth of the pins but sixteen times faster
mspeed. This conversion enables the construction of a high availability backplane at
areasonable cost without thousands of connecting pins and wires. Further, because
there are three fabric cards in one embodiment, there are three high-speed connectors
on each linecard in one embodiment, wherein the connectors each respectively connect
the 8-bit signals to a respective one of the three fabric cards. Of course, other
embodiments may not require three fabric connections 710.

[0087] CPU. Oneverylinecard thereis a processor (CPU) 714, which
in one embodiment is a PowerPC 750 Cxe. In one embodiment, CPU 714 connects

to each PACE with a 3.2 Gb bus, via a bus controller 715 and a bridge 716. In

PCT/US02/30974

10

15

20

25

WO 03/027886

-21-

addition, CPU 714 also connects to each PPU, CAM and TM, however, in some
embodiments this connection is slower at 40 Mbps. Both the 3.2 Gb and 40 Mb paths
allow the CPU to communicate with most devices in the linecard as well as to read and
write the internal registers of every device on the linecard, download microcode, and
send and receive control packets.

[0088] The CPU on each linecard is responsible to initialize every chip at power
up and to download microcode to the SPUs and each port wherever the microcode is
needed. Once the linecard is in running state, the CPU processes the control traffic. For
information needed to establish a virtual target connection, the CPU requests the
information from the SCC, which in turn gets the information from an appropriate object
in the SCC database.

[0089] Distinction in Linecards - Ports. The portsin each type of linecard, e.g.,

GigE, FC, or WAN are distinct as each linecard only supports one type of port in one
embodiment. Each type of port for one embodiment is described below. Of course
other linecard ports could be designed to support other protocols, such as Infiniband in
other embodiments.

[0090] GigE Port. A gigabit Ethernet port connects to iSCSI servers and
storage devices. While the GigE port carries all kinds of Ethernet traffic, the only
network traffic generally to be processed by a storage switch 304 at wire speed in
accordance with one embodiment of the invention is an iISCSI Packet Data Unit (PDU)
inside a TCP/IP packet. Nonetheless, in other embodiments packets in accordance with
other protocols (like Network File System (NFS)) carried over Ethernet connections
may be received at the GigE Port and processed by the SPU and/or CPU.

[0091] The GigE portreceives and transmits TCP/IP segments for virtual targets
oriSCSIdevices. To establish a TCP connection for a virtual target, both the linecard
CPU 714 and the SCC 610 are involved. When a TCP packet is received, and after
initial handshaking is performed, a TCP control block is created and stored in the GigE
portmemory 703. A VID must also beretrieved from an object of the SCC database
and stored in the CPU SDRAM 705 for the purpose of authenticating the connection

PCT/US02/30974

10

15

20

25

WO 03/027886

-22

and understanding the configuration of the virtual target. The TCP Control Block
identifies a particular TCP session or iSCSI connection to which the packet belongs, and
contains in one embodiment, TCP segment numbers, states, window size, and potentially
other information about the connection. In addition, the TCP Control Block is identified
by an index, referred to herein as the “TCP Control Block Index.” A VTD for the
connection must be created and stored in the SPU SRAM 705. The CPU creates the
VID by retrieving the VID information stored in its SDRAM and originally obtained
from the SCC database. A VTD ID is established in a list of VTD IDs in the SPU
CAM 707 for quick reference to the VTD. The VTD ID is affiliated with and indexed
by the TCP Control Block Index.

[0092] When the port receives iSCSI PDUS, it serves essentially as a
termination point for the connection, but then the switch initiates anew connection with
thetarget. Afterreceivingapacketon theingress side, the port delivers theiSCSIPDU
to the PACE with a TCP Control Block Index, identifying aspecific TCP connection.
For a non-TCP packet or a TCP packet not containing an iSCSI PDU, the port
receives and transmits the packet without acting as a termination point for the
connection. Typically, the port 702 communicates with the PACE 704 that aniSCSI
packetis received or sent by using a TCP Control Block Index. When the TCP Control
Block Index of a packet is —1, it identifies a non-iSCSI packet.

[0093] FCPort. An FC port connects to servers and FC storage devices. The
FC port appears as a fibre channel storage subsystem to the connecting servers,
meaning, it presents a large pool of virtual target devices that allow the initiators (e.g.,
servers) to perform a Process Login (PLOGI or PRLI), as are understood in the art, to
establish a connection. The FC port accepts the GID extended link services (ELSs) and
returns a list of target devices available for access by that initiator (e.g., server).
[0094] When connecting to fibre channel storage devices, the port appears as
afibre channel F-port, meaning, it accepts a Fabric Login, as is known in the art, from
the storage devices and provides name service functions by accepting and processing

the GID requests.

PCT/US02/30974

10

15

20

25

WO 03/027886

-23.

[0095] Attheportinitialization, the linecard CPU must go through both sending
Fabric Logins, Process Logins, and GIDs as well as receive the same. The SCC
supports an application to convert FC ELS’s to iSNS requests and responses. As a
result, the same database in the SCC keeps track both the FC initiators (e.g., servers)
and targets (e.g., storage devices) as if they were iSCSI initiators and targets.
[0096] When establishing an FC connection, unlike for a GigE port, an FC port
does not need to create TCP control blocks or their equivalent; all the necessary
information is available from the FC header. But,a VID (indexed by aD ID) will still
need to be established in a manner similar to that described for the GigE port.
[0097] An FC port can be configured for 1Gb or 2Gb. As a 1Gb port, two
ports are connected to a single PACE as illustrated in Fig. 7; but in an embodiment
where it is configured as a 2Gb port, port traffic and traffic that can be accommodated
by the SPU should match to avoid congestion at the SPU. The port connects to the
PACE withaPOS/PHY interface in one embodiment. Each port can be configured
separately, i.e. one PACE may have two 1 Gb ports and another PACE has a single 2
Gb port.

[0098] WAN Ports. In embodiments that include a WAN linecard, the WAN
linecard supports OC-48 and OC-192 connections in one embodiment. Accordingly,
there are two types of WAN ports: OC-48 and OC-192. For OC-48, there is one port
for each SPU. Thereisno aggregation function in the PACE, although there still is the
classification function. A WAN port connects to SONET and works like a GigE port
as it transmits and receives network packets such as ICMP, RIP, BPG, IP and TCP.
Unlike the GigE port, a WAN port in one embodiment supports network security with
VPN and IPSec that requires additional hardware components.

[0099] Since OC-192 results ir; a faster wire speed, a faster SPU will be

required in embodiments that support OC-192.

PCT/US02/30974

10

15

20

25

WO 03/027886

24 .

Switch-Based Storage Operations

[0100] A storage switch in accordance with an embodiment of the invention
performs various switch-based storage operations, including classification of packets,
virtualization, and translation. These services are generally performed by the SPU. In
one embodiment, every port has an SPU, enabling the processing of data traffic as fast
as possible while passing control traffic to the CPU, which has the resources to handle
the control traffic. AsshowninFig. 7, four SPUs share a single CPU supporting eight
ports. Thus, minimum resources and overhead are used for data traffic, allowing a large
number of low cost ports each with the intelligence to process storage traffic at wire
speed. The SPU functions will be described in detail below.

[0101] Before discussing the SPU functions, however, a brief overview of
iSCSIPDU’s (Packet Data Units) and FC IUs (Information Units) will be useful.
Nonetheless, a general knowledge of the iISCSI and FC protocols is assumed. For
more information oniSCSIrefer to “draft-ietf-ips-iISCSI-07.txt,” an Internet Draft and
work in progress by the Internet Engineering Task Force (IETF), July 20, 2001,
incorporated by reference herein. For more information about Fibre Channel (FC) refer
to “Information Systems - dpANS Fibre Channel Protocol for SCSL,” Rev. 012,
December 4, 1995 (draft proposed American National Standard), incorporated by
reference herein.

[0102] A brief description of relevant PDUs and IUs follows below.

[0103] 1SCSI Command PDU. AniSCSICommand PDU is shown inFig. 8a.
Asshown it includes 48 bytes having the following fields. In the first byte (Byte 0), the
Xbitisused as aRetry/Restart indicator for PDUs from initiator to target. The I bitis
used as an immediate delivery marker. The Opcode 0x01 indicates that the type of
1SCSIPDU is a command. Byte 1 has a number of flags, F (final), R (read), and W
(write). Byte 1 also has atask attribute field ATTR, which is usually 3 bits. CRN in Byte
3 isa SCSIcommand reference number. Total AHSLength represents the total length

of any additional optional header segments (not shown) in 4-byte words.

PCT/US02/30974

10

15

20

25

WO 03/027886

-25 -

DataSegmentLength indicates the length of the payload. LUN specifies a logical unit
number. The Initiator Task Tag identifies a task tag assigned by the initiator (e.g., a
server) to identify the task. Expected Data Transfer Length states the number of bytes
of data to be transferred to or from the initiator for the operation. CmdSN is a command
sequence number. ExpStatSN is an expected status sequence number and ExpDataSN
is an expected data sequence number. The Command Descriptor block (CDB) is

generally 16 bytes and embodies the SCSI command itself.

[0104] iSCSIR2T PDU. AniSCSIR2T PDU is shown in Fig. 8b. Inbyte 0,

0x31 identifies the packet as an R2T packet. The Initiator Task Tag is the same as for
the Command PDU. The Target Transfer Tag is assigned by the target (e.g., a storage
device) and enables identification of data packets. The StatSN field contains a status
sequence number. ExpCmdSN identifies the next expected CmdSN from the initiator
and MaxCmdSN identifies the maximum CmdSN acceptable from the initiator. R2ZTSN
identifies the R2T PDUnumber. Desired Data Transfer Length specifies how many bytes
the target wants the initiator to send (the target may request the data in several chunks).
The target, therefore, also specifies a Buffer Offset that indicates the point at which the

data transfer should begin.

[0105] 1SCSI Write and Read Data PDUs. An iSCSI Write Data PDU is
shown in Fig:. 8c. AniSCSIRead Data PDU is shown in Fig. 8d. Inbyte 0, 0x05

identifies the packet as a write packet and 0x25 identifies the packet as aread packet.
Most of the fields in these PDUs are the same as for those PDUs described above. In
addition, the DataSN identifies a data sequence number and Residual Count identifies
how many bytes were not transferred out of those expected to be transferred, for

instance if the initiator's Expected Data Transfer Length was too small.

[0106] 1SCSIResponse PDU. AniSCSIResponse PDUis shown in Fig. 8e.
InByte 0, 0x21 identifies the packet as aresponse packet. The Status field is used to

PCT/US02/30974

10

15

20

25

WO 03/027886

-26 -

report the SCSI status of the command. The response field contains aniSCSI service
response code that identifies that the command is completed or that there has been an
error or failure. Basic Residual Count identifies how manybytes were not transferred out
ofthose expected to be transferred, for instance if the initiator's Expected Data Transfer
Length was too small. Bidi Read Residual Count indicates how many bytes were not
transferred to the initiator out ofthose expected to be transferred. Other fields are the

same as those discussed previously for other PDUs.

[0107] FCP Frame Header. Each FCP Information Unit (IU) uses the Frame

Header shown in Fig. 8f and which will be followed by a payload, described below.
The R_CTL field identifies the frame as part of an FC operation and identifies the
information category. D_ID identifies the destination ofthe frame. S_ID identifies the
source of the frame. TYPE is generally set to 0x08 for all frames of SCSI FCP
sequences. F_CTL manages the beginning and normal or abnormal termination of
sequences and exchanges. SEQ_ID identifies each sequence between a particular
exchange originator and exchange responder with aunique value. DF_CTL indicates any
optional headers that may be present. SEQ_CNT indicates the frame order within the
sequence. The OX_ID field is the originator (initiator) identification of the exchange. The
RX_ID field is the responder (target) identification of the exchange. The RLTV_OFF
field indicates the relative displacement of the first byte of each frame's payload with

reference to the base address of the information category.

[0108] FCP_CMND Payload. The payload for a FCP command IU is shown
in Fig. 8g. FCP_LUN is a logical unit number. FCP_CNTL is a control field that
contains a number of control flags and bits. FCP_CDB contains the actual SCSICDB

to be interpreted by the addressed logical unit. FCP_DL contains a count of the greatest

number of data bytes expected to be transferred to or from the target.

PCT/US02/30974

10

15

20

25

WO 03/027886

-27 -

[0109] FCP XFR RDY Payload. The payload for an FCP XFR_RDY IU is
showninFig. 8h. TheDATA RO field indicates the contents of the RLTV_OFF field
for the first databyte of thenext FCP_DATATU. The BURST LEN field indicates the

amount of buffer space prepared for the next FCP_ DATA IU and requests the transfer
of an TU of that exact length.

[0110] FCP DATA IU. The payload for adataIU is the actual data transferred.

[0111] FCP_RSP_IU. The payload for an FCP response IU is shown in Fig.
8i. The FCP_ STATUS field is set to 0 upon the successful completion of a command
task. Otherwise it indicates various status conditions. The FCP_RESID field contains
a count of the number of residual data bytes which were not transferred in the
FCP_DATAIU forthis SCSIcommand. FCP SNS_LEN specifies the number of bytes
inthe FCP_SNS_INFO field. FCP_RSP_LEN specifies the number of bytes in the
FCP_RSP_INFO field. The FCP_RSP_INFO field contains mformation describing any
protocol failures detected. The FCP_SNS_INFO field contains any sense data present.
[0112] The details of each iISCSI PDU and FC IU have been only generally
described. Further details regarding iSCSIPDUs, FC IUs, and their respective fields

can be found in the iSCSI and FC documents referenced above.

Classification for Storage Switch

[0113] Aspackets or frames (generically referred to herein as “packets”) arrive
at the storage switch they are separated at each port into data and control traffic. Data
traffic is routed to the PPU for wire-speed virtualization and translation, while control
traffic such as connection requests or storage management requests are routed to the
CPU. This separation is referred to herein as “packet classification” or just
“classification” and is generally initiated in the PACE of the SPU. Accordingly, unlike
the existing art, which forwards all packets to the CPU for processing, a system in

accordance with the invention recognizes the packet contents, so that data traffic can be

PCT/US02/30974

10

15

20

25

WO 03/027886

-8 -

processed separately and faster, aiding in enabling wire-speed processing. GigE packets
and FC frames are handled slightly differently, as described below.

[0114] For packets arriving at a GigE port in the ingress direction (packets
arriving at the switch), the following steps will be described with reference to Fig. 9a.
A GigE port will receive a packet, which in one embodiment is either an IP packet or
an iSCSI packet, step 902. Once the packet is received, the PACE determines if a
virtual target access is recognized by whether it receives from the port a valid TCP
Control Block Index with the packet (e.g., an index thatis not -1), step 904. Ifthere
isavalid TCP Control Block Index, the PACE next checks the flags of the packet’s
TCP header, step 906. Ifthe SYN, FIN, and RST flags of the TCP header are set, the
packet is forwarded to the CPU, step 916, as the CPU would be responsible to
establish and terminate a TCP session. Once aniSCSITCP session is established, for
managing the TCP session, the GigE port will receive a valid TCP control block from
the CPU. Butifthe flags are not set, then in one embodiment the PACE will remove the
TCP, IP, and MAC headers, step 908, leaving the iSCSI header, and then add a local
header, step 910. Other embodiments, however, may leave the TCP, IP and MAC
headers, and simply add a local header. Once the local header is added, the packetis
sent to the PPU, step 912.

[0115] Referring additionallyto Fig. 10a, if step 9101is performed, the received
TCP packet 1002 would be converted to a local packet 1004, having the IP, TCP, and
MAC headers 1006, 1008, 1009 removed (in one embodiment) and a local header
1010 added. In some cases, however, the payload for an iSCSI packet may be split
over two TCP/IP packets. Thus, referring to Fig. 10b, sometimes a received TCP
packet 1012 includes a second portion 1014 of a payload, where the first part of the
payload was sent in aprevious packet. The packet containing the second portion of the
payload may additionally contain a new independent payload 1016. The received
packet 1012 would be divided into two local packets, 1018 and 1020. Local packet
1018 includes alocal header 1022 and the second portion of the payload 1024 from a

PCT/US02/30974

10

15

20

25

WO 03/027886

-29 .

previous packet, but not an iISCSI header. Local packet 1020 includes the local header
1026, the iSCSI header 1028, and the new payload 1030.

[0116] An example local header 1100 used in one embodiment is shown in Fig.
11. Thelocal header 1100 includes the following fields in one embodiment. AVTDID
field is used to identify a VID for a particular connection. A FlowID specifies the
destination port for a packet. A TCP Control Block Index specifies a TCP control
block for a particular connection (ifa TCP connection). The Type field specifies the
packet classification, e.g., data or control. The Size field indicates the packet size. The
Task Index is used to track and direct the packet within the switch as well as to locate
stored information related to the packet for the particular task. The local header further
includes some hardware identifiers such as source identifiers (e.g., identifying a source
port, PACE, linecard, and/or CPU) and destination identifiers (e.g., identifying a
distinction Port, PACE linecard, and/or CPU).

[0117] The local header is used by various devices (e.g., PACE, PPU)
throughout the switch. Accordingly, in some instances not all fields of the local header
will be fully populated and in some instances the field contents may be changed or
updated.

[0118] Referring again to Fig. 9a, in the event that there is no valid TCP Control
Block Index, step 904, then it is determined ifthe packet is an IP packet, step 914. If
the packet is not an IP packet, it is forwarded to the CPU, step 916. Ifthe packet is
an IP packet, then the PACE checks the destination IP address, step 918. If the IP
address matches that of the port of the storage switch, the packet is sent to the CPU,
step 916, for processing. Ifthe IP address does not match that of the port ofthe storage
switch, then it is routing traffic and is forwarded to the PPU, step 912.

[0119] Referringto Fig. 9b, when a packet destined for a GigE portisreceived
in the egress direction by the PACE from an PPU or CPU, step 950, the PACE
removes the local header, step 952. If the packet is for a TCP session, step 954, the
PACE sets a control flag in its interface with the port to so inform the GigE port, step
956. Ifthe packét 1s for a TCP session, the PACE passes the packet and the TCP

PCT/US02/30974

10

15

20

25

WO 03/027886

-30 -

Control Block Index to the port ﬁsing interface control signals, step 958. Ifthereisno
TCP session, the packet is simply passed to the port, step 960.

[0120] Fig. 12a illustrates the steps that occur at the PACE in classifying
packets that arrive from an FC port. Unlike for a GigE port, the PACE for an FC port
does not have to deal with a TCP Control Block Index. Instead, upon receiving a
packet at an FC port, step 1202, the S_ID field of the FCP frame header can be
consulted to determine if the frame belongs to an open FC connection, however, this
step is performed after the packet is passed to the PPU. Thus, the PACE only need
determine if the frame is an FCP frame, step 1204, which can be determined by
consultingtheR_CTL and TYPE fields of the frame header. A local header 1100 (Fig.
11)is added, step 1206, although the FCP frame header is not removed at this point as
the data in the header will be useful to the PPU later. The local packet is then passed
to the PPU, step 1208. Ifthe frame is not an FCP frame, it is passed to the CPU, step
1210.

[0121] Referring to Fig. 12b, when a packet destined for an FC portis received
in the egress direction by the PACE from an PPU or CPU, step 1250, the PACE simply
removes the local header, step 1252, before passing the ﬁarﬁe to the FC port, step
1254. The local header will indicate to the PACE which port (of the two ports the
PACE is connected to) the packet is destined for.

[0122] For packets received at either a GigE or FC port and that are passed
to the PPU, the PPU further separates control traffic in one embodiment. Referring to
Fig. 13a, when the PPU receives a packet from the PACE, step 1302, the PPU
determines if it is an IP or TCP packet, step 1304. If the packet is an IP packet, the
PPU searches its CAM to obtain the FlowID of the packet from its route table, step
1306. Ifthe search fails, the packet has an unknown destination IP address, and it is
passed to the CPU, step 1308, which in turn sends an ICMP packet back to the source
IP address step 1310. Ifthe search returns a FlowID, then the packet is forwarded to
the Traffic Manager, step 1311.

PCT/US02/30974

10

15

20

25

WO 03/027886

-31-

[0123] When the packet received is a TCP packet, step 1304, the PPU
searches its CAM using the TCP Control Block Index, which identifies the TCP session,
together with the LUN from the iISCSI header, which identifies the virtual target, to get
a virtual target descriptor ID (VTD ID), step 1312. The VTD ID’s are essentially
addresses or pointers to the VTDs stored in the PPU SRAM. The PPU uses the VID
ID to obtain the address of the VID, step 1312, so a search of VID ID’s allows the
ability to quickly locate a VID. Ifthe VTD cannot be obtained, then the iISCSI session
has not yet been established, and the packet is sent to the CPU, step 1314. Butifthe
VTD ID is obtained in step 1312, the PPU determines if the packet contains an iSCSI
PDU,step 1315. Ifthe packet does not contain an iSCSIPDU, it is forwarded to the
CPU, step 1314. Butifitdoes include aniSCSIPDU, the PPU determines ifthe PDU
is a data moving PDU (e.g., read or write command, R2T, write data, read data,
response), step 1316. Ifthe PDU isnot adatamoving PDU, then the packet is passed
to the CPU, step 1314. Butifthe PDU is adata moving PDU, then the PPU performs
further processing on the packet, step 1318, e.g., virtualization and translation, as will
be described later.

[0124] ‘When the PPU receives an FCP frame with an FCP command IU in the
ingress direction, the PPU performs similar steps to those described in Fig. 13a, steps
1302,1312-1318, except that the CAM searchinstep 1312 usesthe S_ID address and
the LUN from the FCP frame to find the VID ID.

[0125] In the egress direction, shown in Fig. 13b, after receiving apacket from
the traffic manager, step 1350, the PPU checks the Type field of the local header, step
1352. Ifthe field indicates that the packet is an IP packet or a packet destined for the
CPU, then the PPU sends the packet to the PACE, step 1354. Otherwise, the PPU
performs further processing on the packet, step 1356, e.g., virtualization and translation,
as will be described later.

[0126] Asdescribed above, the CPU will be passed packets from the SPU in

several situations. These situations include;:

PCT/US02/30974

10

15

20

25

WO 03/027886

PCT/US02/30974

-32.

A non-TCP packet having the storage switch as its destination. Such
a packet could Be an ICMP, IP, RIP, BGP, or ARP packet, as are
understood in the art. The CPU performs the inter-switch
communication and IP routing function. The packet may also be SLP
or iSNS requests that will be forwarded to the SCC.

An TP packet without a CAM matchto a proper routing destination.
‘While this situation will not frequently occur, if it does, the CPU returns
an JCMP packet to the source IP address.

A non-iSCSITCP packet. Such apacket would generally be for the
CPU to establish or terminate a TCP session for iSCSI and will
typically be packets with SYN, FIN, or RST flags set.

A non-FCP FC frame. Such frames are FLOGI, PLOGI, and other
FCP requests for name services. Similar to iSCSITCP session, these
frames allow the CPU to recognize and to communicate with the FC
devices. In one embodiment, the CPU needs to communicate with the
SCC to complete the services.

AniSCSIPDU thatisnota SCSIcommand, response, or data. Such
apacket maybe a ping, login, logout, or task management. Additional
1SCSI communication is generally required before a full session is
established. The CPU will need information from the SCC database to
complete the login.

An iSCSI command PDU with a SCSI command that is not
Read/Write/Verify. These commands are iSCSI control commands to
be processed by the CPU where the virtual target behavior is
implemented.

AnFCP frame with a SCSI command thatis not Read/Write/Verify.
These commands are FCP control commands to be processed by the

CPU where the virtual target behavior is implemented.

10

15

20

25

WO 03/027886 PCT/US02/30974
-33.
Virtualization
[0127] After the packet is classified, as described above, the PPU performs

wire-speed virtualization and does so without data buffering in one embodiment. For
each packet received, the PPU determines the type of packet (e.g., command,
R2T/XFR_RDY, Write Data, Read Data, Response, Task Management/Abort) and
then performs either an ingress (where the packet enters the switch) or an egress (where
the packet leaves the switch) algorithm to translate the virtual target to a physical target
or vice versa. Thus, the virtualization function is distributed amongst ingress and egress
ports. To further enable wire-speed processing, virtual descriptors are used in
conjunction with a CAM, to map the request location to the access location. In addition,
for each packet there may be special considerations. For instance, the virtual target to
which the packet is destined may be spaced over several noncontiguous extents, may
bemirrored, or both. (Mirroring is discussed in the “Storage Services” section of this
document.) The ingress and egress process for each packet type is described below.
However, generally, the ingress process for each packet validates the virtual target,
determines the egress port to send the packet to, and leaves trace tags so responsive
packets canbe tracked. The egress process generally continues to maintain trace tags
and makes adjustments to the block addresses to translate from the virtual world to the
physical one.
Command Packet — Ingress

[0128] To initiate a transfer task to or from the virtual target, a SCSI command
is always sent by an iSCSI or FC initiator in an iSCSIPDU or FCP IU, respectively.
Referring to Fig. 14 and 14a, when such a packet is received at the PPU (after
classification), step 1402, the PPU CAM is next checked to determine ifa valid VID
ID exists, using the TCP Control Block Index and the logical unit number (LUN), in the
case of aniSCSlinitiator, orthe S_ID and the LUN, in the case of an FC initiator, step
1404. The LUNs in each case are found in the respective iSCSIPDU or FCP IU. If
no valid VID ID is found, then a response packet is sent back to the initiator, step

1406. Ifavalid VTD is found, then a check is made for invalid parameters, step 1408.

10

15

20

25

WO 03/027886

-34 -

Such checks may include checking to determine if the number of outstanding commands
for the virtual target has exceeded a maximum allowable number or if the blocks
requested to be accessed are in an allowable range. If invalid parameters exists, a
response packet is sent back to the iSCSI or FC initiator, step 1406.

[0129] Ifall parameters checked are valid, then a Task Index is allocated along
with an Ingress Task Control Block (ITCB), step 1410 and shown in Fig. 14a. The
Task Index points to or identifies the ITCB. The ITCB stores the FlowID (obtained
from the VTD), the VID ID, CmdSN (from the iSCSI packet itself), as well as the
initiator _task tagsentintheiSCSIPDU orthe OX_ID inthe FCP frameheader. The
ITCB is stored in the PPU SRAM. Of course there may be many commands in
progress at any given time, so the PPU may store anumber of ITCBs at any particular
time. Each ITCB will be referenced by its respective Task Index.

[0130] The VTD tracks the number of outstanding commands to a particular
virtual target, so when a new ITCB is established, it must increment the number of
outstanding commands, step 1412. In some embodiments, VTDs establish a maximum
number of commands that may be outstanding to any one particular virtual target. The
FlowID, the VTD ID, and the Task Index are all copied into the local header, step
1414. The FlowlD tells the traffic manager the destination linecards and ports. Later,
the Task Index will be returned by the egress port to identify a particular task of a
packet. Finally, the packet is sent to the traffic manager and then the routing fabric, so
that it ultimately reaches an egress PPU, step 1416.

[0131] When a virtual target is composed of multiple extents, then there will be
multiple FlowIDs identified in the VTD, one for each extent. The PPU checks the block
address for the packet and then selects the correct FlowID. For example, if a virtual
target has two 1 Gb extents, and the block address for the command is in the second
extent, then the PPU selects the FlowID for the second extent. In other words, the
FlowID determines the destination/egress port. Ifaread command crosses an extent
boundary, meaning that the command specifies a starting block address in a first extent

and an ending block address in a second extent, then after reading the appropriate data

PCT/US02/30974

10

15

20

25

WO 03/027886

-35-

from the first extent, the PPU repeats the command to the second extent to read the
remaining blocks. For a write command that crosses an extent boundary, the PPU
duplicates the command to both extents and manages the order of the write data. When
aread command crosses an extent boundary, there will be two read commands to two
extents. The second read command is sent only after completing the first to ensure the
data are returned sequentially to the initiator.

[0132] Note thatinreference to Fig. 14a, not all fields in the local header are

necessarily illustrated.

Command Packet — Egress
[0133] Referring to Figs. 15 and 15a, after the command PDU or IU has

passed through the switch fabric, it will arrive at an PPU, destined for an egress port,
step 1502. The PPU then attempts to identify the physical device(s) that the packet is
destined for, step 1504. To do so, the VTD ID from the local header is used to search
the PPU CAM for aPTD ID (Physical Target Descriptor Identifier): The VID ID is
affiliated with and indexes a particular PTD ID associated with the particular egress
PPU. PTDs are stored in the PPU SRAM, like VTDs, and also contain information
similar to that found in a VID. Ifthe search is unsuccessful, it is assumed that thisis a
command packet sent directly by the CPU and no additional processing is required by
the PPU, causing the PPU to pass the packet to the proper egress port based on the
FlowID in the local header. Ifthe search is successful, the PTD ID will identify the
physical target (including extent) to which the virtual target is mapped and which isin
communication with the particular egress linecard currently processing the packet.
[0134] The PPU next allocates a Task Index together with an egress task
control block (ETCB), step 1506, and shown in Fig. 15a. In an embodiment, the Task
Index used for egress is the same as that used for ingress. The Task Index also identifies
the ETCB. In addition, the ETCB also stores any other control information necessary
forthe command, including CmdSN ofan iSCSIPDU or an exchange sequence for an

FCP IU.

PCT/US02/30974

10

15

20

25

WO 03/027886

-36 -

[0135] Next, using the contents of the PTD, the PPU converts the SCSIblock
address from a virtual target to the block address of a physical device, step 1508.
Adding the block address of the virtual target to the beginning block offset of the extent
can provide this conversion. For instance, if the virtual target block sought to be
accessed is 1990 and the starting offset of the corresponding first extent is 3000, then
the block address of the extent to be accessed is 4990. Next the PPU generates proper
iSCSICmdSN or FCP sequence ID, step 1510 and places them in the iSCSIPDU or
FCP frame header. The PPU also constructs the FCP frame header if necessary (in
some embodiments, after the ingress PPU reads the necessary information from the FCP
header, it will remove it, although other embodiments will leave it intact and merely
update or change the necessary fields at this step) or for a packet being sent to an
1SCSI target, the TCP Control Block Index is copied into the local header from the
PTD, step 1512. In addition, the PPU provides any flags or other variables needed for

- the 1SCSI or FCP headers. The completed iISCSIPDU or FCP frame are then sent to

the PACE, step 1514, which in turn strips the local header, step 1516, and passes the
packet to appropriate port, step 1518.

[0136] For avirtual target of multiple extents, each extent has a different starting
offset. So when a command must be split between two extents, the PPU must determine

the proper address. For instance, assume a virtual target includes two extents defined

in Table 1:
Table 1
Extent 1 2
Starting offset 3000 5000
Size in blocks 2000 2500
[0137] Ifitis desired to access the virtual target starting at address 1990 for 30

blocks, then the PPU for the first extent sends the command to address 4990 for 10
blocks (5120 bytes of data—in one embodiment a block is 512 bytes). The PPU for

PCT/US02/30974

10

15

20

25

WO 03/027886

-37 -

the second extent sends the command to address 5000 for 20 blocks (10,240 bytes of
data). In other words, the PPU for the first extent must add the address to be accessed
to the starting offset of the first extent (3000 + 1990) and then subtract that address from
its total size (2000 - 1990) to determine how many blocks it can access. The PPU for
the second extent will start at its starting offset (5000) and add the remaining blocks (20)
from there (5000-5019). As a further example, ifit was desired to access virtual block
2020, the PPU for the second extent would subtract the size of the first extent (2000),
before adding the offset for the second extent (5000), to achieve the resulting address
5020.

R2T or XFR. RDY — Ingress

[0138] Referringto Fig. 16 and 16a, after acommand has been sent to a target
storage device as described above, and the command is a write command, an R2T PDU
oranXFR_RDY IU will be received from a storage device when it is ready to accept
write data, step 1602. The PPU identifies the corresponding ETCB, step 1604, by
using the initiator task tagor OX ID insidethe packet. In some embodiments, the
initiator_task tag or OX ID of the packet is the same as the Task Index, which
identifies the ETCB. Ifthe PPU cannot identify a valid ETCB because of an invalid
initiator_task tagor OX_ID, the packet is discarded. Otherwise, once the ETCB is
identified, the PPUretrieves the Ingress Task Index (if different from the Egress Task
Index) and the VTD ID from the ETCB, step 1606. The PPU also retrieves the FlowID
from the PTD, which is also identified in the ETCB by the PTD ID. The FlowID
indicates to the traffic manager the linecard of the original initiator (ingress) port. The
FlowID, the VITD ID, and the Task Index are copied into the local header of the packet,
step 1608. Finally the packet is sent to the traffic manager and the switch fabric, step
1610.

PCT/US02/30974

10

15

20

25

WO 03/027886 PCT/US02/30974
-38-
R2T or XFR_RDY — Egress
[0139] AftertheR2T or XFR_RDY packet emerges from the switch fabric, it

is received by a PPU, step 1702, on its way to be passed back to the initiator (the
device that initiated the oriéinal command for the particular task). The Task Index
identifies the ITCB to the PPU, step 1704, from which ITCB the original
initiator task tagand the VID ID canbe obtained. The R2T/XFR_RDY Desired Data
Transfer Length or BURST LEN field is stored in the ITCB, step 1706. The local
header is updated with the FCP D_ID or the TCP Control Block Index for the TCP
connection, step 1708. Note that the stored S_ID from the original packet, which is
stored in the ITCB, becomes the D_ID. If necessary an FCP frame header is
constructed or its fields are updated, step 1710. The destination port number is
specified in the local header in place of the FlowID, step 1712, and placed along with
the initiator_task tag in the SCSIPDU or, for an FC connection, the RX ID and
OX_ID areplaced inthe FCP frame. The PPU also places any other flags or variables
that need to be placed in the PDU or FCP headers. The packet is forwarded to the
PACE, step 1714, which identifies the outgoing port from the local header. The local
header is then stripped, step 1716 and forwarded to the proper port for transmission,
step 1718.

[0140] In the event that the command is split over two or more extents, e.g., the
command starts in one extent and ends in another, then the PPU must hold the R2T or
XFR_RDY ofthe second extent until the data transfer is complete to the first extent, thus
ensuring a sequential data transfer from the initiator. In addition, the data offset of the
R2T or XFR_RDY ofthe second extent will need to be modified by adding the amount
of data transferred to the first extent. Referring to the example of Table 1, if the
command is to access block 1990 for 30 blocks, then the data offset for the R2T or
XFR_RDY ofthe second extent must add 10 blocks so thatblock 11 is the first block

to be transferred to the second extent.

10

15

20

25

WO 03/027886

PCT/US02/30974
-39 -
Write Data Packet — Ingress
[0141] After an initiator receives an R2T or XFR_RDY packet it returns a

write-data packet. Referring to Figs. 18 and 18a when a write-dataiSCSIPDU or FC
[WUisreceived from an initiator, step 1802, the ITCB to which the packet belongs must
beidentified, step 1804. Usually, the ITCB can be identified using the RX_ID or the
target task tag, which isthe same as the Task Index in some embodiments. The SPU
further identifies that received packets are in order. In some circumstances, however,
the initiator will transfer unsolicited data: data that is sent prior to receiving an R2T or
XFR RDY. In such a case, the PPU must find the ITCB by a search through the
outstanding tasks of a particular virtual target. Butifthe ITCB isnot found, then the
packetis discarded. Ifthe ITCB is found, the total amount of data to be transferred is
updated in the ITCB, step 1806. The FlowID and Task Index are added to the local
header ofthe packet, step 1808. The packet is then forwarded to the traffic manager
and ultimately to the switch fabric, step 1810.

[0142] Inthe event that a command is split between two extents because the
command starts in one and ends in the second, the PPU must determine the extent to
which the particular data belongs and forward the data packet to the correct egress
linecard. The PPU sets the proper FléWID to the extent. After completing the data
transfer on the first extent, the PPU checks if the R2T or XFR_RDY of the second
extent wasreceived. Until the data transfer is completed on the first extent, the data will

not be sent to the second extent to ensure sequential transfer.

Write Data Packet — Egress

[0143] Referring to Figs. 19 and 19a, when a write-data packet is received
from the switch fabric (via the traffic manager), step 1902, the ETCB for the packet
needs to beidentified, step 1904. Typically, the ETCB can be identified using the Task
Index in the local header. Once the ETCB is found, using the information inside the
ETCB, the PPU generates proper iSCSI DataSN or FCP sequence ID, step 1906,
along with any other flags and variables, e.g, data offset, for the PDU or FCP frame

10

15

20

25

WO 03/027886

- 40 -

header. The local header is updated with the TCP Control Block Index or the FCP
D _ID from the PTD, step 1908. The port number is also added to the local header.
The finished iSCSIPDU or FCP frame is sent to the PACE, step 1910, which removes
the local header, step 1912, and forwards the packet to the appropriate port, 1914.
[0144] In the event that the command is split between two extents, the data
offset of the packet to the second extent must be adjusted. Using the example of
Table 1, if the command is to access virtual addresses starting at 1990 for 30 blocks,
then the data offset of the write data packet to the second extent must be subtracted by

ten blocks because the block 11 from an initiator is actually the first of the second extent.

Read Data Packet — Ingress

[0145] Referring to Fig. 20 and 20a, after receiving a read command, the target
device will respond with aread-data packet, which will bereceived at the PPU (after
undergoing classificationin the PACE), step 2002. The ETCB for the packet is then
identified, usingthe OX_I[D orinitiator _task tag, step 2004. The PPU further verifies
ifthe packet was received in order using sequence numbers or verifying that data offsets
are in ascending order, step 2006. If the packet was not in order, the read command
is terminated in error. Ifthe packet is in proper order, however, the VID ID, Task
Index, and FlowID are retrieved from the ETCB and VTD and copied into the local
header, step 2008. The packet is sent to the traffic manager and ultimately the switch
fabric, step 2010.

[0146] In the event that a read-data packet crosses an extent boundary, the
data offset of the packet from the second extent must be modified. This offset isusually
performed on the egress side, described below, as the FlowID will identify the packet
from the second extent. Inaddition, in order to ensure sequentially returned data, the
read command to the second extent will not be sent until completion of theread from the

first extent.

PCT/US02/30974

10

15

20 -

25

WO 03/027886 PCT/US02/30974
-41 -
Read Data Packet — Egress
[0147] Referring to Fig. 21 and 21a, when aread-data packet isreceived by

an PPU from the switch fabric, step 2102, the ITCB for the packet is identified, step
2104, usually using the Task Index in the local héader. From the ITCB, the PPU
retrieves the initiator task tagor OX ID, step 2106. Using the saved data in the ITCB,
the PPU generates proper iISCSIDataSN or FCP sequence IDs as well as other flags
or variables of the PDU or FCP frame header, step 2108. The local header is updated
with the TCP Control Block Index or FCP S_ID from the VTD, step 2110. Note,
however, that for a packet going back to the initiator, the S_ID from the original packet
willbeused asthe D_ID. The outgoing port number is also added to the local header.
The packet is then sent to the PACE, step 2112, which removes the local header, step
2114, and forwards the packet to the appropriate port, step 2116.

[0148] In the event that a command is split between two extents (a fact tracked
inthe ITCB), the data offset of the packet from the second extent must be modified in

a way similar to that described previously.

Response Packet — Ingress
[0149] Referring to Figs. 22 and 22a, aresponse packet will be received from

atarget device, step 2202. The ETCB for the packet is then identified, step 2204,
using the initiator_task tag or OX_ID of the packet. In some embodiments the
initiator_task tagor OX ID will be the same as the Task Index. Ifthe ETCB isnot
found, the packetis discarded. However, if the ETCB is found, then the Task Index is
copied into the local header of the packet along with the VTD ID and the FlowID, step
2206. The packet is sent to the traffic manager and ultimately to the switch fabric, step
2208. Finally, because the response packet signals the completion of atask, the ETCB
for the task is released, step 2210.

10

15

20

25

WO 03/027886

PCT/US02/30974
-42 -
Response Packet — Egress
[0150] Referring to Fig. 23 and 23a, after aresponse packet has been through

the switch fabric, it will be received by an egress PPU, step 2302. The ITCB for the
packetis identified, step 2304, using the Task Index from the local header. Ifthe ITCB
is not found, the packet is discarded. Ifthe ITCB is found, the outstanding command
count for the virtual target is decremented in the VID, step 2306. The PPU generates
the LUN, iSCSI ExpStatSN or FCP sequence ID from information in the ITCB and,
ifnecessary, constructs or updates the proper FCP header, step 2308. The PPU also
constructs other flags and variables for the PDU or FC frame header. The PPU updates
the local header with the TCP Control Block Index or FCP S_ID (which becomes the
D_ID)retrieved from the VID, step 2310. The packet is forwarded to the PACE, step
2312, which removes the local header, step 2314, and forwards the packet to the
appropriate port, step 2316. The PPU frees the ITCB, step 2318.

[0151] When a write command has been sent to more than one extent, a

response packet is not sent to the initiator until completion of the write to all extents.

[0152] Note that for all Figs. 9-23, although the steps are described to occur
in a particular order, in other embodiments, the order of some of the steps may be

changed and some may be performed simultaneously.

Task Management PDU, Abort, Abort Sequence/Exchange—Ingress
[0153] An ABORT iSCSI function or Abort Sequence/Exchange terminates the
command abnormally. The PPU finds the ITCB using the OX_ID orinitiator_task tag

ofthe packet. Ifno ITCB is found, the command is assumed to have been completed
ornever received and a response will be generated indicating TASK-NOT-FOUND.
Ifthe ABORT is received from a target device, the PPU finds the ETCB and frees it.
An ACK is returned to the target device, and the ABORT is passed to a linecard
connecting to the initiator to terminate the command. Ifthe ABORT is received from an
initiator, the ABORT is passed to the linecard connecting to the target to terminate the

command. The PPU frees the respective task control blocks, ITCB and ETCB.

10

15

20

WO 03/027886

-43 -

Task Management PDU. Abort, Abort Sequence/Exchange—Egress
[0154] An ABORT from the ingress linecard indicates to the egress linecard to

send an ABORT to the target device. When the completionresponseis returned from
the target, the ETCB is freed. If the ETCB is not found, the ABORT is ignored.

Translation

[0155] As discussed previously, a storage switch in accordance with the
invention can be coupled to devices that transmit data in accordance with any of a
plurality of protocols. And as also discussed previously, in one embodiment; the
protocols utilized by servers and storage devices are iSCSI and Fibre Channel.
However, if a switch i1s coupled to a server that operates in accordance with one
protocol and a storage device that operates in accordance with a second protocol, or
vice versa, then the switch must perform protocol translation. Conventionally, to do such
translation, the packet must be stored in memory and then oberated onbya CPU before
it can be forwarded out, if such a conventional system can perform protocol translation
at all. In contrast, a storage switch in accordance with the invention can perform
protocol translation without any buffering of the packets in the switch.

[0156] BothiSCSIPDUs and Fibre Channel IUs are designed to carry SCSI
CDBs (command descriptor blocks) in their respective packet or frame. Assuch, these
protocols have similar semantics, as recognized by the inventors of the present invention.

Table 2 below illustrates a comparison between the protocols.

PCT/US02/30974

10

15

20

25

WO 03/027886 PCT/US02/30974
-44 -

Table 2
SCSI Phase 1SCSI Protocol FC Protocol
Arbitrate and Select Sending Ethernet packet | Sending fibre channel

frame
Command Command PDU Command Frame
Disconnect Receiving a packet Receiving a frame
Reconnect for data R2T PDU XFR_RDY frame
transfer
Data Data PDU in TCP Data sequences in frames
segments

- Status Response PDU Response frame
Abort and reset 1SCSI task management | Fibre channel ELS
Queue full status MaxCmdSN window Task set Full
No session login 1SCSI Login and logout | PLOGI and LOGO

[0157]
1SCSI Command PDU and FC Command Frame, an R2T PDU and XFR_RDY

Fromthe above table, it can be seen that there is a correlation between

Frame, a Data PDU and Data Frame, and a Response PDU and Response Frame.
Such correlations lend themselves to straightforward translation, which is performed in
the PPU by mapping the fields from one packet to another and without buffering as will
be described below. Abort-and-reset, session login-and-logout, and queue-full happen
infrequently relative to the other packets and are passed to the CPU of the linecard for
processing (except for the abort of a SCSI data movement (e.g., read/write) command
which is performed by the PPU). Note that for SCSI Arbitrate-and-select and
Disconnect, both iSCSI and FC simply send or receive a packet/frame.

[0158] Upon arrival of a packet to the PPU, as with virtualization, the PPU
identifies the VID associated with the packet by searching the CAM to determine ifthe

incoming command belongs to a particular session (either iSCSI or FC) and a particular

virtual target. The CAM search is conducted, as previously described, using the TCP

10

15

20

25

WO 03/027886

-45 .

Control Block Index and LUN (in the case of an iSCSI packet) or the S_ID and the
LUN (in the case of an FC frame). However, in one embodiment of the invention,
translationis performed at the egress PPU (the PPU that receives the packet after it has
traveled through the switch fabric). The egress PPU also searches the CAM, but uses
the VID ID that is in the local header of the packet to find the PTD.

[0159] Note that although the CAM search is described for both the
virtualization and translation functions, it is to be understood that it, as well as other steps
described with respect to the various functions, need only be performed once by the
PPU and that the steps performed with respect to all described functions (e.g.,
classification, virtualization, and translation) can be integrated in many respects.
[0160] Asalso previously discussed with respect to the virtualization function,
while the VID keeps track of variables for the virtual target and physical target, the PPU
also keeps track of variables that are typically not shared between the protocols in their
ITCBs and ETCBs (one of each per SCSI command). Such variables includes task
tags, CmdSN, DataSN, and StatSN for iSCSI, and OX_ID, RX ID, exchange
sequence numbers, and sequence initiation flags for Fibre Channel. Once the PPU has
the VID (or PTD), as well as the respective ETCB or ITCB, then it has all of the
information necessaryto perform the translation. Translation from iSCSIto FC or vice
versa generally entails taking the information from the field of the incoming packet (e.g,.
1SCSI) and mapping the information to a corresponding field in the outgoing packet (e.g.,

~ FCP).

[0161] iSCST Initiator to FC Target. Translation from an iSCSI initiator

(server) to an FC target (storage device) will be described first. Translation of aniSCSI
Command PDU to an FCP_CMND IU occurs in accordance with Table 3 below.

Reference should also be made to Figs. 8a-8i.

PCT/US02/30974

10

15

20

25

WO 03/027886

- 46 -

Table 3

from iSCSI Command PDU to FCP_CMND IU

LUN field of iSCSI PDU FCP_LUN
ATTR (3 bits) FCP_CNTL
CDB field FCP_CDB
Expected data transfer length FCP_DL

OX_ID, SEQ ID, SEQ CNT

[0162]
PDU are mapped to the FCP_LUN field of the FCP_CMND IU. The LUN for the
Physical Target is obtained from the PTD. Only the 3 bits of the iSCSI Task Attribute
field ATTR are mapped to the FCP_CNTL field. The contents of CDB field of the

According to the table above, the contents of LUN field of the iSCSI

1SCSIPDU are mapped to the FCP_CDB field. The contents of the data transfer size
field are mapped to the FCP_DL field. Since OX_ID is unique to the FCP frame
header, itis filled in by the PPU, typically with the Task Index from the ETCB for easy
identification of responsive packets from the target. Other fields in the FCP Frame
Header can be easily generated with information from the PTD or VID.

[0163]
XFR_RDY frame, which must be translated back to the iSCSI R2T PDU:

When the FC storage device responds, it will respond with an FC

PCT/US02/30974

Table 4
from FCP XFR_RDY to R2T iSCSI PDU
DATA_RO Buffer Offset
BURST LEN Data Transfer Length
Initiator Task Tag and other fields
[0164] Asshownin Table 4, the Buffer Offset and Data Transfer Length fields

canbemapped directly from the FCP XFR_RDY frame. However, other fields such

10

15

20

25

WO 03/027886

PCT/US02/30974

-47 -

as StatSN, ExpCmdSN, MaxCmdSN, and R2TSN must be taken from the ITCB. In

addition variables like task tags unique to the iSCSIR2T PDU are also placed in the

packet by the PPU, usually using fields from the PTD or VTID.

[0165] Afterreceiving an R2T, the iISCSI initiator will send a Write Data PDU,

which must be translated to an FCP Data IU:

Table 5
from iSCSI Write Data PDU FCP DATAIU
Buffer Offset RLTV_OFF
payload payload
OX_ ID, SEQ_CNT
10166] AsshowninTable 5, the RLTV_OFF field for the FCP data IU will be

mapped from the Buffer Offset field of the iSCSI PDU. The payload for each

packet/frame isidentical. In addition, variables unique to the FCP frame are added,

such as OX_ID and SEQ_CNT, taken from the ETCB.

[0167] ‘When the iISCSI command sent initially from the iSCSI initiatoris aread

datacommand, the FC target will respond with an FCP_DATA IU, which needs tobe

translated to an iSCSI Read Data PDU:

Table 6
from FCP DATA IU to iSCSI Read Data PDU
RLTV_OFF Buffer Offset
Data Payload Data Payload
Initiator Task Tag, Residual Count

10

15

20

25

WO 03/027886

- 48 -
[0168] As shown in Table 6, the Buffer_offset field for the iSCSIPDU will be
mapped from the RLTV_OFF field ofthe FCP IU. All other fields are taken from the
ITCB as well as variables unique to the PDU such as task tags.

[0169]
then the FCP target sends a response packet (FCP_RSP IU) that must be translated

Once the task is complete (e.g., reading or writing of data is finished),

into an iSCSI format:

PCT/US02/30974

Table 7
from FCP RESPONSE 1U to iSCSI Response PDU
FCP_STATUS Flags and status fields
FCP_SNS LEN DataSegmentLength
FCP_RESID BasicResidualCount
FCP_SNS INFO Sense Data
FCP_RSP_INFO error codes
Initiator Task Tag, MaxCmdSN,
ExpCmdSN
[0170] As shown in Table 7, the Status field of the FCIU is mapped to the flag

and status fields of the iSCSI PDU. FCP_SNS LEN, FCP_RESID, and
FCP_SNS INFO are mapped to DataSegmentLength, BasicResidualCount and Sense
Data, respectively. The FCP_RSP_INFO field is for transport errors that must be
mapped to the ISCSI error codes. Finally, variables like the Task Tag or ExpCmdSn,
StatSN, MaxCmdSN, ExpDataSN, and ExpR2TSN that are unique to the iISCSI Status
PDU are added from the ITCB or VID.

[0171] When there are flags in the FCP_CNTL for task management like Abort
Task Set, a separate iSCSI task management command will be sent to the iSCSI
initiator devices. Similarly, if an iSCSI task management PDU is received, an NOP FC

command with proper flags in the FCP_CNTL will be sent to the target device.

10

15

20

25

WO 03/027886

- 49 -

[0172] Note that not all fields that are unique to either the iISCSI PDU or FCP
frame are listed in the above-described tables. Reference canbe madeto Figs. 8a- 81
for a complete listing of fields. It is to be understood that for any unlisted fields the
information can be obtained from the relevant task control block, the VTD, the PTD, or

can be easily generated (e.g., the FCP Type field is always 0x08).

[0173] FC Initiator to iSCSI Target. The FCP to iSCSI translation is the

reverse of the iISCSI to FCP translation. Again, the translation is performed at the
egress PPU. The FCP initiator will first send an FCP command, which must be
translated for the 1SCSI target:

Table 8
from FCP Command IU to iSCSI Command PDU
FCP_LUN LUN
FCP_CNTL ATTR
FCP_CDB CDB
FCP_DL Expected Data Transfer Length
CmdSN, task tag, ExpStatSN
[0174] As shown in Table 8, the LUN, CNTL, CDB, and DL fields of the FC

JUmap into the LUN, ATTR, CDB, and Data Transfer Size fields ofthe iSCSIPDU.

In addition, variables that are unique to the iSCSIPDU are created by the PPU such as
CmdSN and a task tag, both of which can be obtained from the ETCB. Note that the
DataSegmentLength field will be zero as there will be no immediate data for FCP
frames.

[0175] AftertheiSCSItarget hasreceived the command (and the command is
awrite command), the target will respond with an R2T PDU, which must be translated
into an FCP XFR_RDY IU:

PCT/US02/30974

10

i5

20

25

WO 03/027886 PCT/US02/30974
-50-
Table 9
from iSCSI R2T PDU to FCP XFR_RDY IU
Buffer Offset DATA RO
Data Transfer Length BURST_LEN
RX ID, SEQ_ID
[0176] As shownin Table 9, the Buffer Offset and Data Transfer Length fields

oftheiSCSI PDUmap intothe DATA. ROand BURST LEN fields ofthe XFR_RDY
IU. In addition, the PPU also adds variables unique to the FCP IU suchasRX_ID and
SEQ ID, available in tlie ITCB.

[0177] After the FC initiatorreceives the XFR_RDY IU, it will send write data,

which needs to be translated into an iSCSI format:

Table 10
from FCP Data IU to iSCSI Write data PDU
RLTV_OFF Buffer offset
payload payload
Data SN, ExpCmdSN, target task tag
[0178] As shown, for write data, the RLTV_OFF ofthe FCP IU maps into the

Buffer offset field of the iSCSI PDU, while the payload for each is the same. In
addition, other fields are taken from the ETCB, including variables like DataSN, which
is unique to the iSCSI Data PDU.

[0179] Ifthe original initiator command was a read command, then the iISCSI

target will respond with read data that must be placed in FCP format:

10

15

20

25

WO 03/027886 PCT/US02/30974
-51-
Table 11
from iSCSI Read Data PDU to FCP DATAIU
Buffer Offset RLTV_OFF
payload payload
RX ID, SEQ ID
[0180] Asshownin Table 11, the Buffer offset field mapsinto theRLTV_OFF

field of the FCP IU, and the payload for both is the same. In addition, the PPU must
add variables that are unique to the FCP IU such as RX_ID and SEQ ID, which can
be found in the ITCB.

[0181]
PDU, which must be translated to the FCP RSP IU:

Finally, once the task is complete, the ISCSI target will send a Response

Table 12

from iSCSI Response PDU to FCP RSP IU

Flags and status FCP_STATUS

DataSegmentLength FCP_SNS LEN

BasicResidualCount FCP_RESID

Sense data FCP_SNS_INFO

transport errors FCP_RSP_INFO
OX ID, SEQ ID

[0182]
to the STATUS field of the FCP IU. The iSCSI fields DataSegmentLength,
BasicResidualCount, and Sense Data allmap to FCP_SNS_LEN, FCP_RESID, and

As shown in Table 12, the flags and status fields of the iSCSIPDU map

FCP_SNS_INFO, respectively, of the FCP IU. Transport errors are mapped to the
FCP_RSP_INFO field ofthe FCP IU. In addition, variables that are unique to the FCP
IU, such as OX_ID and SEQ_ID are added by the PPU.

10

15

20

25

WO 03/027886

-52-

[0183] If an iSCSI task management packet such as Abort Task Set is
received, it will be sent to the FC device using an NOP command with the task
management flags in the FCP_CNTL field.

[0184] Note that not all fields that are unique to either the iSCSI PDU or FCP
frame are listed in the above-described tables. Reference canbe madeto Figs. 8a-81
for a complete listing of fields. It is to be understood that for any unlisted fields the
information can be obtained from the relevant task control block, the VID, the PTD, or

can be easily generated (e.g., the FCP Type field is always 0x08).

Storage Services

[0185] A switch in accordance with an embodiment of the invention can provide
switch-based storage services at wire speed, again by distributing tasks on multiple
linecards, thereby maximizing throughput. Storage services that are provided in one
embodiment of the invention include local mirroring, mirroring over slow link, snapshot,
virtual target cloning (replication), third party copy, periodic snapshot and backup, and
restore. Each of these services will be described in further detail below. Other
embodiments may provide more or fewer services.

[0186] Before discussing specific services, referring to Fig. 24, in general,
storage services are initially activated by amanagement station (or other device) over an
ethernet connection to the storage switch, step 2402. Such ethernet communication
occurs in one embodiment with the SCC 610 (Fig. 6). The SCC through its database,
determines the linecards for the service é.nd passes all relevant information to perform
the service to those linecards, including VTD and LUN information, step 2404. All
information is passed from the SCC to the linecards using intercard communication over
the ethernet connection that the SCC has with each linecard. The linecards then perform
the actual service requested, step 2406. When the task is completed, the SCC will
initiate a response to be returned to the management station, step 2408, indicating that
the serviceis complete. Hence, unlike conventional systems, the management station

need not be involved in the service at all except to initiate a request for the service.

PCT/US02/30974

10

15

20

25

WO 03/027886

-53-

Local Mirroring

[0187] When a virtual target is mirrored, i.e., an identical copy of the datais
stored in two separate physical locations, often referred to as “members” of the mirrored
virtual target. The FlowID in the VTD indicates that the packet is to be multicast to
multiple egress ports. In a mirrored virtual target, when a write command crosses an
extent boundary, the PPU will duplicate the packet for each extent for each member of
the mirrored target. The PPU also provides proper FlowIDs to the traffic manager,
which in turn sends each command it receives to multiple egress ports. Whenreading
from amirrored virtual target, the PPU selects the one member of the mirrored target
that has the smallest average response time. The FlowID of that member directs the
read command to the selected egress port. The response time is available in the VID.
[0188] In the event that the R2T or XFR_RDY is received from one of the
members of amirrored target after sending a write command, then the PPU waits until
everymember and/or extent has returned the R2T or XFR_RDY. Once all members
haveresponded, then the PPU will prepare to send the initiator the R2T or XFR__RDY
that specifies the smallest block available to receive data: when the data is returned, it
will be multicast to all mirrored members, but a member cannot receive more data then
ithasrequested. Thus, the PPU must also track in the ITCB the amount of requested
dataspecified inthe R2T or XFR_RDY for each extent. Once the smallest amount of
dataisreceived (from the initiator) and multicast to each member of the mirrored target,
then the PPU waits for the extent that asked for the smallest amount of data to send
another R2T or XFR_RDY. In the event that two (or more) targets asked for the
smallest amount of data (i.e., they both asked for the same amount), then the PPU waits
until both (or all) targets that asked for the smallest amount to send another R2T or
XFR RDY. Then the PPU returns another R2T or XFR_RDY of the smallest
remaining amount of all the extents. The process continues until all of the extents have

all the required data. An example is shown in Table 13 below:

PCT/US02/30974

10

15

20

25

WO 03/027886 PCT/US02/30974

-54 -
Table 13
Extent 1 Extent 2 To
initiator
Total Data to be written 4k 4k
Size specified in first R2T or XFR RDY 2k 3k
PPU requests from initiator 2k
Unsatisfied R2T or XFR_RDY (after 2k Ok 1k
written)
Size specified in second R2T or 2k
XFR_RDY
PPU requests from initiator 1k
Unsatisfied R2T or XFR_RDY (after 1k 1k Ok
written)
Size specified in third R2T or XFR_RDY 1k
PPU requests from initiator 1k
Unsatisfied R2T or XFR_RDY (after 1k Ok 0k
written)
Remote Mirroring Over Slow Link
[0189] Aspreviously discussed, mirroring occurs when two identical sets of

data are each respectively stored in separate physical locations. Most conventional
systems only support local mirroring —that is, mirroring in devices that are both on the
same SAN. However, an embodiment of the invention supports mirroring over slow link
— for instance, when one copy of datais on one SAN and a second copy s stored ata
remote location from the SAN, e.g., on asecond SAN. For instance, referring to Fig.
4, alocal copy of the data may be in SAN 402 while a remote mirrored copy may be
in SAN 404. Thus, remote mirroring is made possible in a switch in accordance with
an embodiment of the invention that enables exporting (or importing) of data to a target

through a WAN such as the Internet.

10

15

20

25

WO 03/027886

-55-

[0190] One significant distinction between mirroring over slow link and local
mirroring, however, is the latency inherent in communicating with the remote target. For
instance, the average latency when communicating over a WAN with aremote target is
8 uspermile. Thus, ifaremotetarget is halfway around the globe, the latency is 100 ms
(200 ms round trip), which will be significantly slower than when communicating with a
local target.

[0191] In one embodiment, in mirroring two (or more) local virtual targets, as
previously described after a write command is sent, a switch in accordance with the
invention will wait toreceive an R2T or XFR_RDY from all targets before requesting
write data from the initiator (e.g., the server). Then the write data is multicast to all
targets. For mir;oring over slow link, however, to avoid a long network latency, the
switch does not wait toreceive an R2T or XFR_RDY from the remote target. Instead,
when the switch receives an R2T or XFR_RDY from the local target, it immediately
requests the write data from the initiator and writes to the local target. When the linecard
connecting to the remote devicereceives the R2T or XFR_RDY from the remote target,
it reads the data from the local target and then writes it to the remote target.
[0192] More specifically, referring to Fig. 25, a switch will receive a write
command from a server, step 2502. As with local mirroring, the ingress PPU will
multicast the command to the egress linecards for both the local and remote target, step
2504. However, the FlowID ofthe command destined for the remote target is a special
FlowlID so that the packet will be directed to the egress linecard CPU, instead of being
handled directly by the PPU as would be done in other circumstances. Still, the packet
destined for the local target is handled by the PPU. The command is then sent to each
of the targets, local and remote, by the respective egress linecards, step 2506.
[0193] Duetonetwork latency, an R2T or XFR_RDY will bereceived by the
switch from the local target first, step 2508. The R2T or XFR_RDY is then passed
back to the initiator (server), step 2510. The initiator will then send its write data to the

switch, and the data are then passed to the local target for writing, step 2512. When the

PCT/US02/30974

10

20

25

WO 03/027886

- 56 -

writeis finished at the local target, the local target will send aresponse packet indicating
that the task is complete, step 2514.

[0194] Eventually, anR2T or XFR_RDY isreceived from the remote target by
the linecard, step 2516. Note that because the CPU for the linecard connecting to the
remote target sent the write command, the remote R2T or XFR_RDY isreceived also
by the linecard CPU, which manages the commands to the remote target. The linecard
CPU for the remote target converts the received R2T or XFR_RDY to aread command
to the local target, step 2518, to read the data previously written. The read data
received from the local target is received by the PPU of the linecard for the remote
target, step 2520. The PPU then forwards the read data as write data to the remote
target, step 2522. When the write is complete, the remote target will send a Response
packet so indicating, which packet is received by the linecard CPU for the remote target,

step 2524. The linecard CPU receives the status for both the read and write commands.

[0195] IfanR2T or XFR_RDY ofthe remote target is received before the local
write is complete, the remote linecard waits until the local write is complete before
proceeding to read the data from the local target, in one embodiment.

[0196] In the event there is an error from either the read or the write, the
linecard CPU reports the errorto the SCC. In the event of an error, the remote target
will be out-of-sync with the local one and the linecard.

[0197] Thus, forthe local target, the write commands are executed on the PPU
ofthe linecard ofthe local target. But for the remote target, the write commands are
managed by the CPU ofthe linecard for the remote target except that the PPU of that

linecard forwards the read data as write data.

PCT/US02/30974

10

15

20

25

WO 03/027886

PCT/US02/30974
-57-
Snapshot
[0198] “Snapshot” is generally mirroring a virtual target up until a particular point

in time, and then breaking away the mirrored member, thereby freezing the mirrored data
in the mirrored member at the time of the break away. In other words, a seeming
“snapshot” of the data at a particular time is kept. Once a snapshot is taken, auser can
access the removed member (as another virtual target) to retrieve old information at any
time without requiring arestore. Hence, by using “snapshot,” some users of aswitchin
accordance with the invention will avoid the need to perform traditional backups and
restores. Moreover, by using a switch in accordance with the invention, snapshots can
be made quickly, taking only a few milliseconds, compared to traditional backup which
may require a backup window of hours to copy a virtual target to tape media (and
usually also preventing access to the data being copied). Snapshot of a virtual target can
also take place at regular intervals. Further, each snapshot can be a different member
of the mirrored virtual target, allowing for the availability of multiple snapshots (e.g., a
snapshot from Tuesday, one from Wednesday, etc.).

[0199] Specifically, referring to Fig. 26, to perform snapshot services in
accordance with one embodiment of the invention, a snapshot request is received from
amanagement station by the switch, step 2602. The SCC informs the ingress linecard
CPU (the linecard that connects to the server) of the change to remove a mirrored
member, step 2604. The SCC also updates the virtual target object in the SCC
database. The linecard CPU updates the FlowID stored in the VTD (in the PPU
SRAM) for the virtual target so that it no longer reflects the removed member, step
2606. With this change, the incoming writes are no longer multicast to the removed
member. Once the VTD isupdated, the CPU acknowledges the change to the SCC,
which in turn sends a response back to the management station to indicate that the
snapshot is complete, step 2608.

[0200] In addition, prior to beginning any snapshot, there should be no

outstanding requests to the virtual target. Thus, when a snapshot takes place, the server

10

15

20

25

WO 03/027886

-58-

must be notified to quiesce all outstanding requests to the virtual target, in one

embodiment. The server activity resumes after the snapshot.

Virtual Tareet Cloning (Replication)

[0201] A switch in accordance with the invention can support the addition of
anew member to amirrored virtual target, referred to herein as cloning (or replication),
and can do so without taking the virtual target offline. In general, a new member is
added by changing the Virtual Target Object in the SCC database, and the content of
the mirrored target is replicated onto the new member while normal access is still active
to the virtual target. Depending on the size of the virtual target, the replication will take
some time to complete. Nonetheless, the replication is controlled by the switch, is
transparent to the user, and does not generally interfere with access to the virtual target
by a server.

[0202] More specifically, referring to Fig. 27, areplicate request is received by
the SCC, step 2702. The SCC sets a cloning-in-progress flag in the Virtual Target
Object, step 2704, and informs the CPU of the linecard that connects to the server of
the change, step 2706. The linecard CPU updates the VID in the PPU SRAM to
change the FlowID of the virtual target to add the new member, step 2708. With the
FlowID changed, incoming writes are now multicast. Nonetheless, although incoming
writes are multicast, the FlowID is set to direct writes to the egress linecard CPU for the
new member so that the CPU handles the writes instead of the PPU. The egress
linecard CPU will temporarily manage the traffic to the new member until replication is
complete as described further below.

[0203] The CPU of the linecard connecting to the new member prepares a
change descriptor specifying the contents of the virtual target to be copied to the new
member, step 2710. The descriptor sets forth an offset and block count: (offset, block
count). For example, to copy a 10 GB target, the change descriptor is (0, 20,000,000)
— note that in one embodiment each block is 512 bytes and a 10 GB target has 20

million blocks.

PCT/US02/30974

10

15

20

25

WO 03/027886

-59.-

[0204] Using the change descriptor, the linecard CPU manages the copy
function a few blocks at a time. First, the linecard CPU sends a write command to the
new member, step 2712. When an R2T or XFR_RDY is returned, step 2714, the
linecard CPU initiates aread request to the old member, but specifies a FlowID directing
the read data to the linecard CPU of the new member, step 2716. Any read or write
error aborts the copy and is reported to the SCC.

[0205] After copying a set of blocks the change descriptor is updated, step
2718. For example, after copying 50 blocks, the change descriptor for the above
example becomes (50, 19,999,950), since the first 50 blocks are now in sync. The
process of copying a set of blocks continues until all of the blocks have been copied,
step 2720.

[0206] In the event that a virtual target is comprised of multiple extents, if each
extent is coupled to the switch through distinct linecards, then the replication process for
both extents can be run concurrently. But, if both extents are coupled to the switch
through the same linecard, then the replication process must be run sequentially, i.e., the
second extent cannot be replicated until the completion of replication for the first extent.
[0207] In the meantime, during the replicate process, write requests to the
virtual target may be received from a server and must be written to the all mirrored
members, including the member that is still in the process of receiving all of the data of
the virtual target. In such an instance, when the write request is multicast, it isreceived
bythe CPU of'the linecard for the new member, step 2722, rather than being processed
by the PPU on the respective linecards, as it will be for the old members of the mirrored
target. The linecard CPU determines if the write is to any block that has not yet been
copied by checking the write location against the offset of the change descriptor, step
2724. Ifthe write is to data blocks that have been already copied, the write command
is simply passed to the PPU, step 2726. However, if the write is to data blocks that
have not yet been copied, then the write to the new member is discarded, step 2728,
and aresponse to the initiator that the task is complete is sent. Nonetheless, the new

data will eventually be copied into the new member from the old member during the

PCT/US02/30974

10

15

- 20

25

WO 03/027886

- 60 -

continuing replication process. The process continues to perform the replication until
completed, step 2720.

[0208] In the alternative, if during the replicate process a write request to the
virtual target is received, then changes made to the virtual target can be tracked by the
linecard CPU. Whenreplication is complete, then those changed and tracked portions
can be updated.

[0209] When the replication process is complete, the linecard CPU notifies the
SCC, step 2730. The SCC updates the Virtual Target Object to remove the cloning-in-
progress flag, step 2732. On the ingress linecard connecting to the initiator, the FlowID
is updated, step 2734, so that write commands follow their normal progressionto the

PPU rather than being directed to the linecard CPU of the new member.

Third Party Copy

[0210] A third party function copies an offline virtual target (one that is not being
accessed) to or from an archiving device such as awritable CD or tape drive. The copy
is termed a “third party copy” because the server is not involved until the copy is
complete -- rather the copy is executed by the switch. In many embodiments, such a
third party copy will be made from a snapshot of a virtual target previously taken. In
most conventional systems, to perform such a copy the target device must be a “smart”
device, e.g., a smart tape device, meaning that such a device is generally actively
involved in and at least partially controls the copy process. In contrast, the third party
copy service of the present system does not rely on any intelligence outside of the
storage switch itself.

[0211] Referring to Fig. 28, the switch will receive a copy request from a
management station, step 2802. The SCC ensures that there are no outstanding
connections for writing to the virtual target, step 2804. During the copy, the virtual target
is available forread only in one embodiment. The SCC then sets a copy-in-progress

flag in the Virtual Target Object in the SCC database, step 2806, to ensure no other

PCT/US02/30974

10 -

15

20

25

WO 03/027886

-61 -

connections to the target for writing. The SCC next instructs the CPU for the linecard
connected to the copy-destination device to execute the copy, step 2808.

[0212] Each virtual target may be comprised of several extents, each of which
may be on adistinct physical device. Thus, the CPU for the destination linecard must
obtain data from each extent. To do so, the CPU for the destination linecard sends each
linecard for each extent an extent descriptor, step 2810. The extent descriptor specifies
the extent as well as the destination linecard (for the destination copy). The CPUs of

each of the linecards for the respective extents then set up their respective PPUs (e.g.,

. the VITDs and CAMs) to enable the PPUs to process the read requests, step 2812.

[0213] After getting the extent linecards set up, the destination linecard CPU
then sends a write command to the destination device, step 2814. When an R2T or
XFR_RDY isreceived by the destination linecard from the destination device, step

2816, the destination linecard sends a read command to one of the extents via the

. respective extent linecard, step 2818. The Read data is sent directly to the destination

linecard and processed by the destination linecard PPU as write data, step 2820, which
is written to the destination device. The process is repeated until the entire extent is
copied. Any error condition terminates the copy. Then ifless then all of the extents have
been copied, step 2822, then the process returns to step 2814, where it is performed
for the next extent. If all the extents have been copied, step 2822, then the CPU for the
destination linecard reports the completion of the copyto the SCC, step 2824. Onan
erroneous completion, the SCC terminates the copy. But if the copy is complete without
error, then the SCC resets the copy-in-progress flag on the Virtual Target Object in the
SCC database, step 2826, and reports back to the management station the completion

status, step 2828. The source virtual target is now available for writing again.

PCT/US02/30974

10

15

20

25

WO 03/027886 PCT/US02/30974

-62 -

Periodic Snapshot & Backup

[0214] A switch in accordance with an embodiment of the invention can provide
periodic snapshot and backups of a virtual target. Such a backup function generally

comprises three steps:

1. Snapshot the virtual target,
2. Third party copy the virtual target from the snapshot, and
3. Rejoin the member carrying the snapshot to the virtual target as a

mirrored member, and bring current all mirrored data on the member.

[0215] The third step can be performed by replication (previously described)
or by otherwise tracking updated data for the virtual target from the time the snapshot
is taken until the member is rejoined. Forinstance, arecord of all changes made to the
virtual target can be kept and then the mirrored member is simply updated with those
changes upon rejoining the virtual target as a mirrored member.

[0216] Ifauser has plenty of storage space, the second and third steps may not
be necessary as each snapshot virtual target will be accessible to auser. Thus, itis only
amatter of allocating the snapshot targets and naming them. For example, ifthe virtual
target is to be backed up every workday for the current week, monthly for the last six
months, and thereafter, quarterly up to one year, then only a finite set of snapshot targets

need to be allocated that might be named as follows:

ign.com.marantinetworks.company.server.master
ign.com.marantinetworks.company.server.backup.monday
ign.com.marantinetworks.company.server.backup.tuesday
ign.com.marantinetworks.company.server.backup.wednesday
ign.com.marantinetworks.company.server.backup.thursday
ign.com.marantinetworks.company.server.backup.friday
ign.com.marantinetworks.company.server.backup.february
ign.com.marantinetworks.company.server.backup.march

ign.com.marantinetworks.company.server.backup.april

10

15

20

25

WO 03/027886

-63 -

ign.com.marantinetworks.company.server.backup.may
iqn.com.marantinetworks.company.server.backup.june
ign.com.marantinetworks.company.server.backup.july
ign.com.marantinetworks.company.server.backup.2000qg3
ign.com.marantinetworks.company.server.backup.2000q4
ign.com.marantinetworks.company.server.backup.2001q1

ign.com.marantinetworks.company.server.backup.2001q2.

[0217] The switch allocates the snapshot targets and schedules the periodic
activities according to a known policy. The switch also manages the naming and
renaming of the targets. For instance, for the backup.2001q3, the switch will reuse the

target for the backup.2000q3 and rename it for the backup.2001.q3.

Restore

[0218] For various reasons, many industries need to keep backup copies of
data on archiving media (e.g., typically removable or portable media such as tapes or
CDs). The switch can use the third party copy function to move a backup or snapshot
target to an archiving media. The switch tracks the archiving media on its database.
Each time a copy to the archiving media is performed, the SCC fetches the virtual target
object to determine all destination extents and arecord is entered into a database at the
management station to track the media. Using amanagement station, a user can view
a list of archiving media, e.g., a set of tapes or CDs, and select one for restoring.

[0219] The restore operation itselfis another third party copy function to be
scheduled by the switch. The operation, however, involves user intervention, as
someone must place the media into a tape or CD drive. Nonetheless, as with other
storage services described herein, the CPU of the source target device controls the work

for the Restore operation while multiple destination SPU’s are involved one at a time.

PCT/US02/30974

10

15

20

25

WO 03/027886

- 64 -

[0220] A switch in accordance with one embodiment of the invention supports
three different priorities of restoring: urgent, important, and normal. Anurgentrestore
is started immediately regardless of the current traffic situation on the system. An
important restore is not started when there is congestion in the system, bﬁt is started
within a few hours. A normal restore is completed within 24 hours depending on the

traffic congestion of the system.

Conclusion

[0221] Thus in accordance with an embodiment of the invention, a storage
switch has been disclosed that provides wire-speed processing of data packets,
including classifying the packets, performing virtualization functions on the packets, and
performing any necessary protocol translation of the packets. Compared to
conventional practices, the architecture disclosed allows the required time to process a
packet to be minimal. Such wire-speed processing is in part accomplished by
distributing the intelligence of the switch to all of the linecards and generally avoiding the
need forbuffering. Such distributed intelligence allows a system that not only has ahigh
bandwidth butis also easily scalable. Further, such a switch, using its linecards can also
perform serverless storage services, that is, services where no entity outside of the switch
need be involved in the control of performance of such services.

[0222] It should be understood that the particular embodiments described
above are only illustrative of the principles of the present invention, and various
modifications could be made by those skilled in the art without departing from the scope
and spirit of the invention. Thus, the scope of the present invention is limited only by the

claims that follow.

PCT/US02/30974

10

15

20

25

WO 03/027886

-65 -

CLAIMS

‘What is claimed 1s:

1. A switch for use in a network, comprising:
a plurality of linecards, each including:
a plurality of ports; and
aplurality of processing units, wherein each processing unit is associated
with at least one port, thereby distributing processing resources amongst linecard

ports.

2. The switch of claim 1, wherein additional linecards can be added to the plurality of

linecards.

3. The switch of claim 1, wherein linecards can be removed from the plurality of

linecards.

.4. The switch of claim 1, wherein each linecard is designed to handle packets formatted

in accordance with any respective one of a plurality of protocols.

5. The switch of claim 4, wherein:

a first set of linecards in the plurality is designed to send and receive packetsin
accordance with an iSCSI protocol; and

asecond set of linecards in the plurality is designed to send and receive packets

in accordance with a Fibre Channel protocol.

6. The switch of claim 4, wherein one of the plurality of protocols is Infiniband.

PCT/US02/30974

10

15

20

25

WO 03/027886

-66 -

7. The switch of claim 1, wherein the switch is capable of processing packets without

buffering the packets.

8. The switch of claim 1, wherein the switch is capable of processing packets at wire

speed.

9. The switch of claim 1, wherein the switch is capable of receiving a packet at a first
port of a first linecard destined for a virtual target and formatted in accordance with a
first protocol, determining if the packet is a data or control packet, and if the packet is
a data packet, sending the packet formatted in accordance with a second protocol to

a physical target, all without buffering the packet,

10. The switch of claim 1, wherein the switch is capable of receiving a packet at a first
port of a first linecard destined for a virtual target and formatted in accordance witha
first protocol, determining if the packet is a data or control packet, and if the packet is
a data packet, sending the packet formatted in accordance with a second protocol to

a physical target, all at wire speed.

11. The switch of claim 1, wherein the switch is capable of performing a storage service
at the request of a second device without any additional involvement of the second
device.

12. The switch of claim 11, wherein the second device is a server.

13. The switch of claim 11, wherein the second device is a management station.
14. The switch of claim 11, wherein the storage service is any one of local mirroring,

mirroring over slow link, snapshot, replication, third-party copy, periodic backup, and

restore.

PCT/US02/30974

10

15

20

25

WO 03/027886 PCT/US02/30974

-67 -

15. A switch for use in a network, comprising:
a plurality of linecards, each linecard including:
a plurality of ports;
aplurality of processing units, wherein each processing unitis associated
with at least one port and is associated with a memory;
a CPU in communication with the processing units; and
a fabric in communication with each linecard, thereby allowing packets to pass

from an ingress linecard to an egress linecard.

16. The switch of claim 15, wherein:
each processing unit includes apacket aggregation and classification unitand a
packet processing unit; and

the associated memory includes a CAM and an SRAM.

17. Theswitch of claim 15, wherein the associated memory is included in the processing

unit.

18. The switch of claim 15, wherein the associated memory is associated with each

processing unit.

19. The switch of claim 15, wherein the switch further includes a traffic manager in

communication with each processing unit.

20. A switch for usein a system for storing and accessing data, the switch comprising:
a plurality of linecards, each linecard including:
atleast one port and at least one processing unit, wherein each
processing unit is associated with at least one port, and each processing
unit includes a classifier, a virtualizer, and a translator;

a CPU in communication with each processing unit; and

10

15

20

25

WO 03/027886

-68 -

a fabric in communication with each linecard.

21. A switch foruse in asystem for storing and accessing data, the switch comprising:
a plurality of linecards, each linecard including:
at least one port, and
means associated with each port for performing wire speed processing

of packets.

22. The switch of claim 21, wherein processing of packets includes at least one of data

packet virtualization and data packet protocol translation.

23. The switch of claim 22, wherein processing of packets further includes classifying

packets as data packets or control packets.

24. A storage network, comprising:
a switch including a plurality of linecards, each linecard including:
a plurality of ports, and
aplurality of processing units, wherein each processing unit is
associated with at least one port; and
a plurality of initiators and targets,
wherein a first set of initiators and targets operate in accordance with a
first protocol and a second set of initiators and targets operate in accordance
with a second protocol, and
wherein a third set of initiators and targets are local with respect to the
switch and a fourth set of initiators and targets are remote with respect to the

switch.

25. The storage network of claim 24, wherein the first set, the second set, the third set,

and the fourth set are not mutually exclusive.

PCT/US02/30974

10

15

20

25

WO 03/027886 PCT/US02/30974

-69 -

26. The storagenetwork of claim 24, wherein the storage network includes a plurality
of switches, each switch including a plurality of linecards, each linecard including a
plurality of ports and a plurality of processing units, wherein each processing unit is
associated with at least one port, wherein some of the switches are remotely located with

respect to other switches.

27. The storage network of claim 24, wherein the switch is designed to process data
packets, including virtualization and translation, without buffering the data packets.
28. The storage network of claim 24, wherein the switch is designed to process data

packets, including virtualization and translation, at wire speed.

'29. The storage network of claim 24, wherein each linecard is designed to handle

packets formatted in accordance with any respective one of a plurality of protocols.

30. The storage network of claim 24, wherein additional linecards can be added to the

plurality of linecards.

31. The storage network of claim 24, wherein linecards can be removed from the

plurality of linecards.

32. The storage network of claim 24, wherein the storage network includes a plurality
of switches, each including a plurality of linecards, each including a plurality of ports and
aplurality of processing units, wherein each processing unit is associated with at least

one port, and wherein additional switches can be added to the plurality of switches.

33. The storage network of claim 24, wherein the storage network includes a plurality
of switches, each including a plurality of linecards, each including a plurality of ports and
aplurality of processing units, wherein each processing unit is associated with at least

one port, and wherein additional switches can be removed from the plurality of switches.

10

15

20

25

WO 03/027886

-70 -

34. The storage network of claim 24, wherein the storage network includes a plurality
of switches, each including a plurality of linecards, each including a plurality of ports and
aplurality of processing units, wherein each processing unit is associated with at least
one port, wherein only one management stationis required to manage the plurality of

switches.

35. A storage network, comprising:

a switch;

a server in communication with the switch, the server operating in accordance
with a first protocol;

a storage device in communication with the switch, the storage device operating
in accordance with a second protocol;

the switch having an input for receiving a data access command fora virtual
target formatted in accordance with the first protocol; and

the switch having an output for sending the data access command to a physical

target formatted in accordance with the second protocol at wire speed.

36. The storage network of claim 35, wherein the switch includes a plurality of
linecards, each linecard including a plurality of ports and a plurality of processing units,
wherein each processing unit is associated with at least one port.

37. The storage network of claim 35, including a plurality of switches.

38. The storage network of claim 37, wherein only one management station isrequired

to manage the plurality of switches.

39. The storage network of claim 37, wherein some of the switches are remotely

located with respect to other switches.

PCT/US02/30974

10

15

20

25

WO 03/027886

-71 -

40. The storage network of claim 35, wherein the server is remotely located with

respect to the switch.

41. The storage network of claim 35, wherein the storage device is remotely located

with respect to the switch.

42. A method for use by a device in a system for storing and accessing data, the
method comprising:

receiving a packet from an initiator destined for a virtual target and formatted in
accordance with a first protocol; and

sending the packet to a physical target formatted in accordance with a second

protocol at wire speed.

43. A method for use by a device in a system for storing and accessing data, the
method comprising:

receiving a packet from an initiator destined for a virtual target and formatted in
accordance with a first protocol;

determining if the packet is a data or control packet;

if a data packet, sending the packet to a physical target formatted in accordance
with a second protocol; and

wherein all of the above steps are performed without buffering.

44, The method of claim 43, wherein all of the steps are further performed at wire

speed.

PCT/US02/30974

PCT/US02/30974

WO 03/027886

1/38

44>

L "B

L2i™

ebpug

6L

oLt

9L}

S80JABp
abeio)s oLl

gl | Aemeyeb

801

Jsjnol

oLl

NVT

90l

i
{
|
|
|

04"

suonels
bW

8Ll

Aemeyefl

Bulayle

¥l 1~ oouejdde py ™~ eoueldde
o4
Sl yomms o4 | CHYT] youms o4
¥ < > N
04 [T AT
O o] =g 2]
= /3
£ | ——
sloAleg = =
= =
o ARy

PCT/US02/30974

WO 03/027886

2/38

Joussu|

INYT

EINENE)

Z b1
rAYAM v0Z
Y
ol eqy
01z [
202
~H Alowawl Josseaooud
902 y
~ {
V2L 802

o4

NVS

PCT/US02/30974

WO 03/027886

3/38

80¢

NYMWNVYIN

¢ Bi-

00¢

swisysAsqgns
10 sao1A8p

ebelo}s ggg

T —— o —— — — — - — -

Youms
abelo)s

Youms
abeliols

e —— — — — —— — —— — " ——— — —— —— oo — — —— — "

[r—
==
=

~ =

[AV}> ==

N
N
SIBAIBS

syoyels

WO 03/027886 PCT/US02/30974
4/38

—
{J

—
—

<
ko)
L
o s 4
[- i
o T T ~ c"‘)\k N)
\\:: ________ ::________:—f-’/
N
ERIO0 FED) |

AN

g0

g0

ethernet
ethernet

NV NV

PCT/US02/30974

WO 03/027886

5/38

(D(D , @D

G "Bi4

10 36 Jouiaye
\ 04 40 30l m
B
(=]
i 4oims ==
abelos . M
Y Johel-piniy =
N) B
(.
¥0¢
Jeussyie
70e7 =
1 C =
=
youms =
obelo)s M
| Joke- =
i NN =
/ =
0440 3619

NV

NV

PCT/US02/30974

WO 03/027886

6/38

9 B4
spled aull NVM
)
906 | _
spJeo ouqe4 spJeo sul| O
~ Amyom_nov. 5
Z19 |eseqeeq o
uoyels / ‘ 809
JWBW
wosy/y \/w | wEmo/_M — | _ spJeo auj| 3619
019 |OJUOD) WBISAS)
/
_ 209 _ _
0%

Sa2I|AsD obeio}s pue
SJOAI8S W01}/0}

So0Inep obeio)s pue
SJOAISS UIOIY/0}

S92IA8D abelo)s pue
SI9AISS WL/}

PCT/US02/30974

WO 03/027886

7/38

5 VN 9l
| \
yRSIE Ndo obpug WvHas
(1o snq|” Sl ,20L
llllll —_— b — e — — 1
Ndd I0Vd LJ_\w e
> -t -
- . ——F———f——— - — Hod
ZLl L 90/ 0.
n >l L_\‘ Hod
- - | Ndd < o 3ovd [|
s | ||| || —====——; i iyl hp T
O_Lﬂmqlv O_Lmﬂ_m% _ IIIIII - -1 — - = —/
wouy/oy | »L\‘ Hod
| Ndd | | Fovd ||
N\ i] S— |/~ oy
g— 4
O—‘Nrﬂl S—-—- < - N |I©-O..ml [(R .IJNON)
A Hod
- _ ssaliba L\‘
18YNg | —p T F-ooEa—- <« 30vd | |
) > ssaJbuj | 4,_/7 Tog
N—.\N wQN _ 3 / .vO\.\I - s
| 904 90. Ndd _1 FoZ) ~ 20L
| §gol3! nds
m_o_mw%m__mw e NVHS mew: | S0EN | wvwas
_ | | | w0 doL \
— sal alA — ~ SALA |
0Z L0 souT N 0l

PCT/US02/30974

WO 03/027886

8/38

e/ bl

saousnbaes uado jejo
NSPWOXEN

a amda s

X8pul 400jq |04U00 DL
NN

auwlf} ssuodsay

SPUBLLIWIOD JO # Xe
spuewwod Buipueisino o #
(uoneooj ‘azis “'6'e) sioiduosaq uexy
dammold

al alA

ain

WO 03/027886 PCT/US02/30974

9/38
Byte o Byte 0 | Bytet | Byte2 | Byte3 |
X1 001 IFRW 00 ATTR Rsvd | CRN or Rsvd

3 TotalAHSLength] DataSegmentLength

Logical Unit Number
(LUN)
Initiator Task Tag
Expected Data Transfer Length
CmdSN
ExpStatSN or ExpDataSN

16}
20
24
28
32

SCSI Command
Descriptor Block (CDB)

48

iISCSI Command PDU
Fig. 8a

Byte Byte 0 | Byte1 | Byte 2 | Byte 3 |
11 ox31 |1 Rsvd (0)

Rsvd (0)

16
.20
24
28
32
36
40
44
48

Initiator Task Tag
Target Transfer Tag
StatSN
ExpCmdSN
MaxCmdSN
R2TSN
Buffer Offset
Desired Data Transfer Length

iISCSI R2T PDU
Fig. 8b

WO 03/027886 PCT/US02/30974

10/38
Byte Byte 0 | Byte1 I Byte 2 | Byte 3 |
0

4 00 0x05 |F Rsvd (0)
8 Rsvd (0) DataSegmentLength

LUN or Reserved (0)

16
20
24
28
32
36
40
44
48

Initiator Task Tag
Target Transfer Tag or Oxffffftff
Rsvd (0)
ExpCmdSN
Rsvd (0)
DataSN
Buffer Offset
Rsvd (0)

Data

iISCSI Write Data PDU
Fig. 8¢

Byte0 | Byted | Byte2 | Byte3d |

11 0x25 |F O U S| Rsvd(0) Status or Rsvd
Rsvd (0) DataSegmentLength

Rsvd (0)

-

(o]

16
20
24

Initiator Task Tag
Rsvd (0)

28 StatSN or Rsvd (0)
39 ExpCmdSN

36 MaxCmdSN
DataSN

Buffer Offset
Residual Count

40
44
48

Data

iSCSI Read Data PDU
Fig. 8d

WO 03/027886 PCT/US02/30974

11/38

Byte0 | Bytel | Byte2 | Byte3 |

11 0x21 | 1rsvQuOu0| Status Response
Rsvd (0) DataSegmentLength

Rsvd (0)

16
20
24

Initiator Task Tag
Basic Residual count

o8 StatSN
ExpCmdSN
39| =XP

36| MaxCmdSN '

40 ExpDataSN or Rsvd (0)
44 ExpR2TSN or Rsvd (0)
48 Bidi-Read Residual Count

Sense Data and Response Data (optional)

iISCSI Response PDU
Fig. 8e

WO 03/027886

12/38

PCT/US02/30974

Bits 31-24 23-16 15-08 07-00
Word
0 R_CTL D_ID
1 rsvd S ID
2 TYPE F_CTL
3 SEQ ID | DF_CTL | SEQ_CNT
4 OX_ID RX_ID
5 RLTV_OFF
FC Frame Header
Fig. 8f
Field Name Description Size
FCP_LUN logical unit number 8 bytes
FCP_CNTL control field 4 bytes

FCP_CDB | SCSI command descriptor block | 16 bytes

FCP_DL

Data Length 4 bytes

FCP_CMND Payload

Fig. 8g

WO 03/027886 PCT/US02/30974

13/38
Field Name Description Size
DATA_RO Relative offset of first byte of | 4 bytes

. FCP_DATA IU that follows
BURST_LEN length of FCP_DATA IU that follows| 4 bytes

rsvd 4 bytes
FCP_XFR_RDY Payload
Fig. 8h

Field Name ' Description Size
rsvd 4 bytes
rsvd 4 bytes
FCP_STATUS | field validity and SCSI status 4 bytes
FCP_RESID residual count 4 bytes

FCP_SNS_LEN Length of FCP_SNS_INFO field | 4 bytes
FCP_RSP_LEN Length of FCP_RSP_INFO field { 4 bytes
FCP_RSP_INFQ FCP response info m bytes
FCP_SNS_INFG FCP sense info n bytes

FCP_RSP Payload
Fig. 8i

WO 03/027886

14/38

Receive
Packet at
GigE Port

914

alid TCP ctrl
block index?

remove TCP &
IP headers

912

~ Fig9a
(Classification - PACE -
iISCSI - ingress)

no

PCT/US02/30974

950

Receive Packet
from PPU or CPU

remove local
header

Fig 9b
(Classification - PACE -
iSCSI - egress) 960

Pkt to port

TCP ctri blk adr
& pkt to port

WO 03/027886

PCT/US02/30974

15/38
iSCSI
payload header Tep IP MAC V1OO.2
L1008 “oos ‘009
1010
-
iSCSI | jocal |—1004
payload header | header
Fig. 10a
1016 1014 1(92
Z L
new iISCS! remaining
payload header payload TCP P MAC
1030 1028 * \ 1024 1022
new iISCSI local remaining local
payload header | header payload header
\1026 1018
1020

Fig. 10b

WO 03/027886 PCT/US02/30974

Local Header

VIDID

FlowlD

TCP Control Block Index
Type

Size

Task Index

Source (Port, PACE, Linecard, CPU)
Destination (Port, PACE, Linecard,
CPU)

Fig. 11

WO 03/027886 PCT/US02/30974

Receive packet at

add lo
heade

cal
r

Fig. 12a

(classification - PACE -
FCP - ingress)

Fig. 12b
(classification - PACE -
FCP - egress)

WO 03/027886 PCT/US02/30974

18/38

Receive pkt from

get FlowlD es FlowlD

no
FlowlD

1314 CPU sends 1311
ICMP pkt
g. 13a
(Class:f ication - PPU -
ingress)
- 1354
i further
Fig. 13b
(Classification - PPU - Rrocessing

egress)

WO 03/027886 PCT/US02/30974

19/38
1402
1404
invalid

Find VTD ID

allocate Task Index and
ITCB

Fig. 14

1412 (Virtualization
Ingress - cmd)

copy into local header
FlowlD, VTD ID,
Task Index

WO 03/027886 PCT/US02/30974

20/38

receive cmd pkt
from fabric/TM

1504

allocate ETCB and

Task Index 1506

generate CmdSN o
sequence ID

eonstruct or update FCP frame

eader or copy TCP Ctrl Blk Index
to local header;

provide flags/variables

to outgoing
. port
POt 1518

Fig. 15

(Virtualization -
Egress - cmd)

PCT/US02/30974
21/38

WO 03/027886

jebie] Hod/3ovd

T O_an&\—\/:n
Xapuj yse
‘al”a/xepul iq B 4oL N o4
‘adA L ‘# wod 10 NAd I1SOS!
Japeay [eoo| pwig - ssaubu|
eyl B4
* I
‘bag abueyoxy
40 NSpWO Xopuj yse
dldld ‘al aLA . niod
N ai din ‘adAL ‘gimold 40 NAd ISOS!
xapu| ysel Topeay |80
Xapul
d0.14d A1d MO d01
di XO
/1L Jojeniul
‘beg abueyox3y
pwo - ssaibg : . 40 NSPWO
B ‘Bi aldiA
gl "Did Qimol4-
Xopu| ¥se|
goll
ars
/Xepul }Iq |30 JOL niod
‘edA) Jo Ndd I1SOS!
Jepesy |eo0] fpe—

30Vd/HodMoeniu]

WO 03/027886

PCT/US02/30974

22/38
1602

Receive R2T or
XFR_RDY pkt

Retrieve Task Index

1608

copy FlowlD, VTD ID,
Task Index to local header

Fig. 16
(Virtualization - Ingress -
R2T/XFR_RDY)

WO 03/027886 PCT/US02/30974

23/38

Receive R2T or
FR_RDY from fabric

1702

1704
get ITCB

save size of R2ZT/XFR_RDY

1706
update local header with
D_ID or TCP block ctrl index;
flags/variables 1708
construct or update 1710
FCP header
specifiy port #
1712
1714

1716

remove local header
1718

(Virtualization - Egress -
R2T/XFR_RDY)

PCT/US02/30974
24/38

WO 03/027886

SHged/NL Jojeqiu|/Uod/30vd

AQY YdX/12Y - ssasbuj Xapu] e
. g 110 dOL
egl ‘bl . eyep Jo Jue /X8PUI %00[q |19 dOL| NI 04
arxo ‘edAL ‘#10od |40 NAd ISOS!
/11 Joyeniul 18pesy [eo0]
ai diA
Xopuj yse Al o4 gimol4
dl dlA ‘edAL ‘gmold 10 N4d 189S Xopu| yse.L
Jopeay [ed0] g91
‘bag ebueyoxg
10 NSpWO
alald
—l- al alA
*opul xEeL AQHYSX/ L2y - sseib3
e/l "bi4
RN
ars
/XepulYiq 110 4oL NI o4
‘adAL Jo nad 1sos!
Japesy |Beoo
> pesy [e20]

J0Vd/Hodnebiel

WO 03/027886 PCT/US02/30974

25/38

Receive write data
packet from PACE

identify ITCB

update amount o
date transferred

update local header with .
FlowlD, Task Index

1810

Fig. 18
(Virtualization - Ingress -
write data packet)

WO 03/027886

26/38

Receive write data packet
from TM/fabric

identify ETCB

generate DataSN or Sequence
ID; flags/variables

update local header

Fig. 19

(Virtualization - Egress -
write data pkt)

PCT/US02/30974

PCT/US02/30974

WO 03/027886

27/38

Jobie | uod/30vd
T

.4l a/xspul
Mg M3 dOL ‘edA] ‘# Wod

Nl o4
10 Ndd ISOS!

lepeay [eo0]

A

‘beg abueyox3g
10 NSPWO
aldid
dardiA
Xapu| ysel

8014

ejep sjum - ssaibg

egl "Bi-

oUqe/NL.
egl

.Tllll

eleq SN - ssaibu|

"Bid

Xapuj ¥sel
‘al alA N1 o4

‘adA] ‘gqimold 10 NAd I1SOS!

Jopesy [ed0]

Xspul
Mg 1O 401
Blep jo jue
alr xo
/L1 loyemul
NSpPWo
ai dlA

aimoid
Xepu| yset

g0l

ars
/X8pul 130{q 110 4O.L
‘adA]

Niod .
10 NAd (SOS!

Jepeay |ed0]

D

30VdMod/Moieniul

WO 03/027886 PCT/US02/30974

28/38

Receive read data pkt from
target

copy VTD ID, Task
Index, and FlowlD to
local header

Fig. 20
(Virtualization - Ingress -
Read Data pkt)

WO 03/027886

PCT/US02/30974
29/38
Receive read data pkt
M .
from TM/fabric 2102
identify ITCB ‘
2104
retrieve
initator_task_tag or
OX_ID 2106
generate DataSN or Sequence
ID; variables/flags -
2108
2110
update local header
remove local header
‘ 2114
2116
Fig. 21

(Virtualization - Egress-
Read Data pkt)

PCT/US02/30974

WO 03/027886

30/38

olUged/NL
eleq pesy - ssalbu]
eqz b xepu
0¢ Dl Aig M0 JOL
ai Xo
> [LL Joyeniul
NSpPWO
. dl diA
xm_oc%mm._. Al o4 aimol4
‘ ‘e ‘ammo Xopu| yse
aldlA L dimoid 10 N4 1S0S! pul3sel
Jopesy |edo| a1l
‘bog abueyoxy
Jo NSpWO
araild
- al alA
Xopu| ysel
g013
as
[X8pul 3iq 1130 dO.L nod
‘adAL Jo nad 1sos!

1 9 Ummr_ _NOO_

JOvd/Modnebiel

Jojeliu|Hod/30vd
l

ara

/Xepul 400|q 410 401 N o4
‘adA] ‘# Hod 10 NAdd ISOS!

lapesy |Bo0| ‘

eleq peoy - ssaibg

ez ‘B4

WO 03/027886

PCT/US02/30974

31/38

Receive response
packet from target

identify ETCB

copy Task Index, VTD ID, and

FlowlD to local header
206

release ETCB

Fig. 22

(Virtualization - Ingress -
response pkt) -

2210

WO 03/027886

PCT/US02/30974

32/38

Receive response
pkt from TM/fabric

2302

identify ITCB

2304

decrement VTD
command #s 2306

generate LUN, iSCSI ExpStatS
or FCP Sequence ID; proper FCP
header; flags/variables

2308

update local header

@ 2312

remove local header
2314

218 Fig. 23
release ITCB (Virtualization - Egress -
response pkt)

2310

PCT/US02/30974

WO 03/027886

33/38

asuodsey - ssaibuj

eze Oid

l

Xapu| yseL

‘al LA 'edAL ‘gimold

N1 Od
10 NAd ISOS!

Japeay [ed0]

‘bag ebueyoxg

10 NSPWD
aidld

di diA
Xepu| seL

g0.1d

ars
‘adA)

/XepUi g 130 401

Nl o4
10 Ndd 1SS!

l
30Vd/Modnebiey

Japeay [eo0]

ouqged/NL

Jojefiujod/3ovd

 ———

xspu
Mg O 4oL
arxo

ara
/X8pul %00iq |30 dOL
‘edA L ‘% Hod

ni o4
10 Ndd ISOS!

/11 Jojeniul
NSpWH
ardia

dimol4
Xapuj yse

Jepesay [eo0]

801l

.mmcoammm - ssalbg

egg B4

WO 03/027886 PCT/US02/30974

34/38

Switch receives 2402
service request from
mgmt station

2404
SCC determines
linecards

— 2406

linecards
perform service

2408

SCC responds to mgmt
station that task complete

Fig.24

WO 03/027886

35/38
2502

receive write

command from server
(at local switch)

2504
multicast command to

egress linecards of local &
remote targets

2506

linecards send
ommand to target

2508

receive R2T or XFR_RDY
from local target

2510-

send R2T to server

2512

write data to local target

2514

local target
completes write

2516

receive R2T or
XFR_RDY from remote
target

PCT/US02/30974

2518
~

CPU converts R2T to a
read command from local

PPU of egress linecard for
remote target receives read
data from local target

PPU forwards read data as write
data to remote target

PU of egress linecard for remote
target receives status for both
read and write commands

Fig. 25

WO 03/027886

36/38

260

receive snapshot
request from server

2604\

SCC notifies
inecard of change

2606

update VTD

2608~ |

CPU acknowledges
change to SCC

Fig. 26

PCT/US02/30974

WO 03/027886

2702

receive clone

request from
server

2704

Set cloning-in-
progress flag in

VT object
2706
inform ingress
linecard CPU
2708

Update FlowlD in
VTD to add new
member

2710
prepare
change
descriptor
2712

CPU sends write
cmd to new membert,

2714

receive R2T or
XFR_RDY

2716~

PU initiates read
request to old member
with Flow ID to new
. member

2718

update change
descriptor

2720
continue to copy

block by block unti
complete

PCT/US02/30974

pass write to

PPU

notify SCC that
complete

SCC removes

change FlowlD

WO 03/027886

2802

receive third party
copy request from
mgmt station

2804

SCC verifies no
outstanding writes to.
target

2806:-

SCC sets flag in
VT object

2808

CC instructs CPU o
linecard for copy
destination device

2810

CPU sends extent
descriptors to each extent

.2812
set up PPUs

2814

destination linecard CP
sends write cmd to
destination devices

2816

receive R2T o
XFR_RDY

PCT/US02/30974

sends read cmd to first

ead data send to
destination linecard

CPU reports
completion to
SCC

SCC reports
back to mgmt
station

Fig. 28

International application No.

INTERNATIONAL SEARCH REPORT

PCT/US02/30974
A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) : GO6F 15/173
USCL : 709/226

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 709/226 '

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
Please See Continuation Sheet

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 5,596,569 A (MADONNA et al.) 21 January 1997 (21.01.1997), col. 1, line 60 - col. 4, 14,7, 8, 11-18
line 25.
Y US 6,260,120 B1 (BLUMENAU et al.) 10 July 2001 (10.07.2001), col. 8, line 22 - col. 10, 14,7, 8, 11-18
line 67 and col. 23, line 48 - col. 26, line 57.
A US 5,954,799 A (GOHEEN et al.) 21 September 1999 (21.09.1999), see entire document. 1, 15, 20, 21, 24, 35
X,P US 6,400,730 B1 (LATIF et al.) 04 June 2002 (04.06.2002), col. 2, line 15 - col. 4, line 48 1-44

and col. 6, line 6 - col. 8, line 14.

D Further documents are listed in the continuation of Box C. [_—_‘ See patent family annex.

* Special categories of cited d : “T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
“A” defining the g 1 state of the art which is not considered to be principle or theory underlying the invention
of particular relevance
“Xn document of particular relevance; the claimed invention cannot be
“E” earlier application or patent published en or after the international filing date considered novel or cannot be considered to involve an inventive step

when the document is taken alone
“L" document which may throw doubts on priority claim(s) or which is cited to

establish the publication date of another citation or other special reason (as “yn document of particular relevance; the claimed invention cannot be
specified) considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
“O™ document referring to an oral disclosure, use, exhibition or other means being obvious to 2 person skilled in the art
“P" document published prior to the international filing date but later than the “&” document member of the same patent family
priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report

20 January 2003 (20.01.2003) 11 F EB 2003

Name and mailing address of the ISA/US Authorized officer P [‘
Commissioner of Patents and Trademarks
Box PCT Jason D Cardone 0’9676"’\ WV\OZ'/(

Washington, D.C. 20231
Facsimile No. (703)305-3230 Telephone No. (703) 305-3900

Form PCT/ISA/210 (second sheet) (July 1998)

PCT/US02/30974
INTERNATIONAL SEARCH REPORT

Continuation of B. FIELDS SEARCHED Item 3:
EAST (BRS)
search terms: SAN, protocol, switch, linecard, port, fibre channel, ethernet

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

