

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
29 June 2006 (29.06.2006)

PCT

(10) International Publication Number
WO 2006/066971 A1

(51) International Patent Classification:
C08F 2/38 (2006.01) *C08F 2/24* (2006.01)
C08F 220/00 (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(21) International Application Number:
PCT/EP2005/014169

(22) International Filing Date:
22 December 2005 (22.12.2005)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
0413813 23 December 2004 (23.12.2004) FR

(71) Applicant (for all designated States except US):
ARKEMA [FR/FR]; 4-8, Cours Michelet, F-92800 Puteaux (FR).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MAGNET, Stéphanie [FR/FR]; Maison Cabet, F-64370 Morlanne (FR). GUERRET, Olivier [FR/FR]; 9, rue des Roches, F-69890 La Tour De Salvagny (FR). LEFAY, Catherine [FR/FR]; 16 bis, Quai Jean Baptiste Clément, F-94140 Alfortville (FR). CHARLEUX, Bernadette [FR/FR]; 13, rue du Lieutenant Heitz, F-94300 Vincennes (FR).

(74) Agent: LHOSTE, Catherine; Arkema, Département Propriété Industrielle, 4-8, Cours Michelet - La Défense 10, F-92091 Paris La Défense Cedex (FR).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- of inventorship (Rule 4.17(iv))

Published:

- with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2006/066971 A1

(54) Title: USE OF COPOLYMERS WITH A COMPOSITION GRADIENT AS STABILIZERS IN EMULSION FREE-RADICAL POLYMERIZATION

(57) Abstract: The present invention describes the use of copolymers with a composition gradient as sole stabilizer in emulsion free-radical polymerization. The copolymers of the invention are prepared via controlled free-radical polymerization and comprise at least one hydrophilic monomer such as acrylic acid and at least one hydrophobic monomer such as styrene.

USE OF COPOLYMERS WITH A COMPOSITION GRADIENT AS STABILIZERS IN EMULSION FREE-RADICAL POLYMERIZATION

The present invention relates to the field of emulsion free-radical polymerization, particularly using macromolecular compounds as surfactants for this type of polymerization.

Surfactants are commonly used by those skilled in the art in emulsion polymerization processes to stabilize organic species such as monomer molecules or polymer particles in an aqueous medium. These surfactants have a quite specific structure, since they have on the same backbone a hydrophilic species and a hydrophobic species. In general, small ionic or nonionic molecules are the surfactants most commonly used in emulsion polymerization. Mention will be made, in a non-exhaustive manner, of sodium lauryl sulphate (SLS) and sodium dodecylbenzenesulphonate (NaDDBS).

However, the use of such surfactants may generate problems in the final application of latices. The reason for this is that these surfactant molecules generally of low molar mass have a tendency to migrate to the polymer-substrate interface, which is generally reflected by an impairment in the properties of the films or particles produced with the latices.

Thus, mastering the properties of the surfactant makes it possible to control the application properties of latices, for instance control of the viscosity of the latex, or control of the "plate-out" phenomena (formation of deposits on extrusion tools), which is of interest in various fields of use of latices, such as paint formulations, plastics additives or cosmetic formulations.

In order to circumvent the difficulties mentioned above, alternative methods, for instance the use of reactive surfactant molecules, have been used. This method considerably increases the performance qualities of the latex due to the capacity of the surfactant to react covalently with the monomer. With the surfactant thus attached to the surface of the polymer particles, all problems of migration are thus avoided.

Still in the perspective of minimizing the migration of the surfactant, an alternative method consists in using macromolecular surfactants in the emulsion

polymerization process. Due to their macromolecular nature, these polymeric surfactants make it possible to overcome the problems mentioned above associated, in the majority of cases, with the migration of small molecules.

These macromolecular surfactants are amphiphilic copolymers that 5 combine a hydrophilic species and a hydrophobic species chemically bonded together on the macromolecular backbone.

The amphiphilic copolymers commonly used as surfactants in emulsion polymerization are block, random, grafted or alternating copolymers or alternatively star copolymers.

10 These macromolecular stabilizers may be synthesized via various polymerization techniques such as anionic polymerization, standard free-radical polymerization or controlled free-radical polymerization.

The amphiphilic copolymers derived from standard free-radical polymerization are random copolymers more generally grouped under the term 15 ASR (meaning alkali-soluble resin). They are formed from hydrophobic monomer(s), for instance styrene or α -methylstyrene, and from hydrophilic monomer(s), for instance acrylic acid or methacrylic acid. Examples of ASRs that may be mentioned include the **Joncryl** copolymers from **Jonhson Polymer** (styrene-acrylic resins), the **Neocryl** copolymers (styrene-acrylic 20 copolymers) and **Haloflex** copolymers (vinyl-acrylic copolymers) from **NeoResins** or the **Morez 101** copolymers (styrene-acrylic resins) and **Tamol®** copolymers from **Rohm & Haas**. The latter copolymers may be copolymers of diisobutylene and of maleic acid or alternatively copolymers of maleic anhydride sodium salts.

25 Other examples of commonly used amphiphilic copolymers are the **SMA®** products produced and sold by **SARTOMER**. These are styrene-maleic anhydride copolymers with a molar ratio of these two monomers of between 1:1 and 4:1.

30 The examples of emulsion polymerization describing the use of such amphiphilic copolymers as surfactants show that these copolymers are generally not used alone, but in combination with surfactant molecules of low molar mass (US 4 529 787, US 4 414 370, US 6 160 059).

When the amphiphilic copolymers mentioned above are used as sole emulsion polymerization surfactants, a major drawback lies in the need to introduce large amounts of them in order to obtain stable latices (up to 50% by weight relative to the weight content of monomers). The reason for this is that, 5 due to the composition polydispersity of the macromolecular chains directly associated with the free-radical polymerization process that is well known to those skilled in the art, an appreciable number of polymer chains do not participate efficiently in stabilization of the latex. Even though, overall, the polymer derived from the process comprises a hydrophobic/hydrophilic ratio in 10 proportions adequate for the surfactant property desired according to the application, the distribution of these units is not uniform in the polymer chains. These chains are then either too hydrophilic (dissolution in the aqueous phase) or too hydrophobic (dissolution in the monomers) to be present at the aqueous phase/organic phase interface as required for the application. To understand 15 the role of the polymerization process on the distribution of the monomers in the polymer chains, reference may be made to the publication by B. Charleux (*Macromol. Symp.* **2002**, 182, 249-260), which deals with the case of hydrophobic monomers, but which may also be generalized to the case of hydrophilic/hydrophobic monomer mixtures.

20 One method for overcoming the problems of homogeneity of composition of polymer chains that is well known to those skilled in the art is the Controlled Free-Radical Polymerization process (generally referred to as CFRP). Thus, the copolymerization of a hydrophilic monomer and a hydrophobic monomer according to the CFRP process leads to an amphiphilic copolymer in which the 25 chemical composition of the polymer chains is uniform and similar from one chain to another. Under these conditions, a majority of macromolecular chains participate in stabilizing the latex since the composition is suited to the surfactant property of the copolymer.

30 In the field of amphiphilic copolymers derived from Controlled Free-Radical Polymerization, the prior art reports the use of structured materials, generally block copolymers (FR 2 838 653, WO 2002/068550, WO

2002/068487, DE 196 54 168, DE 197 04 714, DE 196 02 538, *Polymeric Materials Science and Engineering* **1998**, 79 440-441).

These materials have the advantage of forming micellar aggregates in certain solvents. These micelles may then serve as sites for creating particles.

5 The efficacy of block copolymers as surfactants has moreover already been demonstrated. Examples that will be mentioned include the case of emulsion polymerization of a methyl methacrylate/butyl acrylate mixture of 35/65 mass ratio containing 45% solids, in which the use of only 0.15% by weight of polystyrene-b-sodium polyacrylate block copolymer (in which the polystyrene

10 block has a degree of polymerization of 10 and the poly(sodium acrylate) block has a degree of polymerization of 56), relative to the weight content of monomers makes it possible to obtain a stable latex with a mean particle diameter of about 156 nm.

However, these copolymers suffer from a preparation process that is

15 often long and expensive, which involves a multi-step synthesis. Specifically, the preparation of block copolymers involves a sequence of at least two polymerization steps (successive construction of the polymer blocks) between which is a step or devolatilization of the residual monomers present at the end of the first step. Furthermore, until very recently, the controlled free-radical

20 polymerization techniques proposed to those skilled in the art, such as ATRP (meaning Atom-Transfer Radical Polymerization) and NMP (meaning Nitroxide-Mediated Polymerization) did not allow the direct polymerization of functionalized monomers such as acrylic acid or methacrylic acid. The introduction of the acrylic unit into the chain thus required an additional step of

25 acidolysis of copolymers based on tert-butyl acrylate.

The Applicant has found that the use of certain amphiphilic copolymers with a composition gradient produced via Controlled Free-Radical Polymerization, and more specifically via the nitroxide technique, constitutes an effective solution to the problems described above, especially the problem of

30 the reduced efficacy of random copolymers and the problem of the relatively high cost of block copolymers.

Recently, the control of polymerization of the acrylic acid monomer in Controlled Free-Radical Polymerization via the nitroxide route has been reported (*Macromolecules* 2003, 36, 8260-8267), thus opening up a direct route of access to amphiphilic copolymers (styrene/acrylic acid type). Furthermore, the 5 polymerization used is a process in which the hydrophilic and hydrophobic monomers are introduced simultaneously into the reactor at start of polymerization. By carefully selecting the initial ratios of the two monomers, this polymerization process allows access to amphiphilic copolymers with a composition gradient.

10 A first subject of the invention is thus the use, as sole stabilizer, in an emulsion polymerization process, of a copolymer with a composition gradient comprising at least two monomers, one (M_1) is hydrophilic and represents at least 55 mol% relative to the total of the monomers of which the copolymer is composed, the other (M_2) is hydrophobic and represents not more than 15 45 mol% of the copolymer, characterized in that the said copolymer comprises at least one monomer M_i such that the probability of encountering M_i in any standardized position x on the polymer chain is non-zero.

More specifically, the term "copolymers with a composition gradient" denotes copolymers in which the local monomer composition changes 20 continuously along the chain. They may thus be differentiated from block copolymers in which the local composition changes discontinuously along the chain, and they are also different from random copolymers, which do not have any continuous variation of the composition either.

Copolymers with a composition gradient thus have physical and chemical 25 properties that are different from those of block or random copolymers.

It would not constitute a departure from the scope of the invention if the copolymers with a composition gradient were used as stabilizer as a mixture with at least one surfactant chosen from the macromolecular or non-macromolecular surfactants usually used in emulsion polymerization. Non-limiting examples that may be mentioned include sodium lauryl sulphate (SLS), sodium dodecylbenzenesulphonate (NaDDBS) or the random copolymers described above.

The present invention also describes the conditions of specific polymerization processes that give access to amphiphilic copolymers with a composition gradient whose surfactant activity has been demonstrated in examples of emulsion polymerization of styrene, acrylic or methacrylic 5 monomers.

As described hereinbelow, there are various polymerization methods for obtaining a copolymer with a composition gradient. It is possible in particular to use a copolymerization process of batch type or a semi-continuous polymerization process (i.e. one of the monomers is added continuously or 10 discontinuously to the polymerization medium).

• In the case of a batch process, the formation of the copolymer with a composition gradient depends on the difference between the reactivity ratios of the two monomers and also on the concentration of comonomers in the initial mixture. This is then referred to as a spontaneous composition gradient. This is 15 possible in the case of a monomer pair with widely different reactivity ratios. Mention may be made of the example of acrylate/methacrylate and styrene/n-butyl acrylate pairs.

• In the case of a semi-continuous process, the addition of one of the monomers promotes the formation of the copolymer with a composition 20 gradient. This polymerization process applies in particular when the monomers used have similar reactivity ratios (*J. Phys. Org. Chem.* **2000**, 13, 775-786, *Macromolecules* **1998**, 31, 5582-5587). These are then referred to as copolymers with a forced composition gradient.

It is quite obvious that, whatever the mode of synthesis used (batch or 25 semi-continuous), the gradient nature is proportionately more pronounced the greater the difference between the reactivity ratios of the monomers.

The process for synthesizing copolymers with a composition gradient of the invention is a batch process developed by the Applicant and described in WO 04/055 071.

30 In its search to solve the problems stated previously, the Applicant's choice fell to a family of amphiphilic copolymers with a composition gradient,

based on acrylic acid as hydrophilic monomer (**M_{1a}**) and styrene as hydrophobic monomer (**M₂**).

However, it would not constitute a departure from the context of the invention if the hydrophobic monomer (**M₂**) were chosen from acrylic and 5 methacrylic esters, styrene or vinyl monomers, and the ionic hydrophilic monomer (**M_{1a}**) were chosen from ethylenic carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid or fumaric acid. Furthermore the presence of a neutral or cationic hydrophilic monomer (**M_{1b}**) should not be excluded, this monomer possibly being introduced to a maximum proportion of 50% by weight 10 relative to the ionic hydrophilic monomer (**M_{1a}**).

The neutral or cationic hydrophilic monomer (**M_{1b}**) is chosen from the family of (alkoxy)polyalkylene glycol (meth)acrylates, the family of (alkoxy)polyalkylene glycol (meth)acrylamides, unsaturated carboxylic acid amides, for instance acrylamide or methacrylamide and N-substituted 15 derivatives thereof, carboxylic anhydrides bearing a vinyl bond, such as maleic anhydride or fumaric anhydride, dialkylaminoalkyl (meth)acrylates or trialkylammoniumalkyl (meth)acrylate halides.

When the hydrophobic monomer is styrene and the hydrophilic monomer is acrylic acid as described by the Applicant, on account of the difference 20 between the values of the reactivity ratios of the two monomers ($r_{St} = 0.72$ and $r_{AA} = 0.27$), the copolymer obtained has a structure with a composition gradient if conditions are used such that, at the start of reaction, it is largely above the azeotropic composition of the mixture, i.e. under conditions such that the mole 25 fraction of acrylic acid, written f_{AA} , is greater than 28% (*Macromol. Chem. Phys.* 2003, 204, 2055-2063).

The copolymers with a composition gradient of the invention have a number-average mass (M_n) of between 3000 and 10 000 g /mol and preferably from 5000 to 7000, and a polydispersity index of between 1.1 and 2.5 and preferably between 1.1 and 2.

30 According to one preferred mode of the invention, the copolymers with a composition gradient are used in a proportion of from 1% to 10% and preferably

from 3% to 6% by weight relative to the total weight of the monomers to be polymerized.

The examples that follow illustrate the invention without limiting its scope.

5

Example 1: Synthesis of styrene/acrylic acid copolymers with a composition gradient

The copolymers of the invention are prepared according to the standard recipe described below.

10 Into a 250 mL glass reactor equipped with a variable-speed stirring motor, inlets for introducing reagents, bleed lines for introducing inert gases to flush out the oxygen, for instance nitrogen, and measuring probes (e.g., for measuring the temperature) and a heating system composed of an oil bath, is introduced, at room temperature, a solution composed of:

15 • styrene (Aldrich, 99% pure), noted as "St"
• acrylic acid (Aldrich), noted as "AA"
• 1,4-dioxane (Aldrich, for synthesis), noted as "Diox"
• 2-methyl-2-[N-tert-butyl-N-(diethoxyphosphoryl-2,2-dimethylpropyl)aminoxy]propionic acid, which will be referred to hereinbelow
20 by the abbreviation "Alkox" (from Arkema – 99% pure)
• N-tert-butyl-N-(1-diethylphosphono-2,2-dimethylpropyl) nitroxide, noted as "SG1" (from Arkema – 85% pure).

The amount of alkoxyamine introduced depends on the target molar masses of the copolymers. The amounts of starting materials used are described in the

25 table below.

Degassing is then performed by sparging with nitrogen at room temperature for 5 minutes and with stirring at 300 rpm.

A pressure of 2 bar is then applied and the nominal temperature of the reactor is set at 120°C.

30 The time zero for the polymerization is chosen when the temperature of the reactor reaches 90°C. Samples are taken regularly and immersed in an ice bath

to stop the polymerization. The conversion over time for each of the monomers is determined by ^1H NMR.

When the overall molar conversion targeted is reached (generally 80/85%), the copolymer solution is cooled to room temperature and then recovered.

5 The various experimental conditions are collated in the following table, in which:

- $m(\text{AA})_0$, $m(\text{St})_0$ and $m(\text{diox})_0$ denote the initial masses, respectively, of acrylic acid, styrene and dioxane in grams of material,
- targeted M_n denote the targeted number-average molar masses of the copolymer, expressed in gram per mole,
- 10 • t is the polymerization time, expressed in minutes,
- F_{AA} , M_n and I_p are, respectively, the overall molar composition of acrylic acid in the copolymer, the number-average molar mass of the copolymer (in grams per mole), and the polydispersity index of the copolymer chains.

15

Polymer	$m(\text{AA})_0$ (g)	$m(\text{St})_0$ (g)	$m(\text{diox})_0$ (g)	Targeted M_n (g/mol)	% mol SG1/ Alkox	t (min)	F_{AA}	M_n (g/mol)	I_p
1	20.7	30	139	11 500	5	240	0.39	8400	1.21
2	110	40	500	10 500	5	180	0.63	6000	1.30
3	167.5	103	400	10 000	0	90	0.55	6200	1.21
4	32	11.5	145	10 500	5	50	0.54	3600	1.22
5	32	11.5	145	5500	5	180	0.64	3600	1.25
6	32	11.5	145	10 500	5	480	0.67	6600	1.49
7	32	11.5	145	15 700	5	480	0.67	8500	1.49
8	110	40	500	10 500	5	480	0.67	6500	1.53

Example 2: Use of styrene/acrylic acid copolymers with a composition gradient as surfactants in the emulsion polymerization of styrene

20

- **Example 2A:** The examples that follow describe the synthesis of styrene latex containing 25% solids, at 70°C, batchwise and using 6% by weight of styrene/acrylic acid copolymer as sole emulsion surfactant.

To begin with, a solution is prepared composed of:

- 100 g of water,
- 0.12 g of NaHCO_3 such that $[\text{NaHCO}_3]_{\text{aq}} = 0.012 \text{ mol.L}^{-1}$
- 5 • 2.4 g of styrene/acrylic acid copolymer with a composition gradient as prepared according to Example 1,
- a sodium hydroxide solution of normality 1N, the amount of which is adjusted as a function of the copolymer used so as to neutralize all of the acid functions of the copolymer. The number of acid functions per gram 10 of copolymer is determined beforehand by assaying with a sodium hydroxide solution of normality 0.1N.

This solution is heated to 70°C for 20 minutes and the pH is then adjusted to 10 by adding a sodium hydroxide solution of normality 0.1N.

15 Into a 250 mL reactor equipped with a variable-speed stirring motor, inlets for introducing reagents, bleed lines for introducing inert gases to flush out the oxygen, for instance nitrogen, and measuring probes (e.g., for measuring the temperature), a system of vapour condensation with reflux, and a jacket for heating/cooling the contents of the reactor by circulating a heat-exchange fluid therein, is introduced the aqueous solution prepared above. This solution is 20 then heated to 70°C and degassed by sparging with nitrogen for 45 minutes while stirring at 300 rpm.

Separately, 40g of styrene are degassed by sparging with nitrogen for 45 minutes and then added to the above solution at 70°C.

25 The reaction medium is stirred at 70°C for 15 minutes, and 0.18g of potassium persulphate $\text{K}_2\text{S}_2\text{O}_8$ such that $[\text{K}_2\text{S}_2\text{O}_8]_{\text{aq}} = 0.006 \text{ mol.L}^{-1}$ is then added. The time zero for the polymerization corresponds to the addition of the initiator solution to the reactor.

The polymerization is performed for 3 hours at 70°C with stirring at 300 rpm. Samples are taken regularly and then cooled in an ice bath to stop the reaction. 30 Each sample is analysed by dynamic light scattering (DLS) and the conversion is determined by gravimetry.

The various examples are collated in the following table, in which:

- Mn and F_{AA} are, respectively, the number-average molar mass of the copolymer (in grams per mole) and the overall molar composition of acrylic acid in the copolymer,
- Z, the mean particle diameter of the latex in nm, is determined by 5 dynamic light scattering (DLS),

Polymer	Mn (g.mol ⁻¹)	FAA	Z(nm) (DLS)	Visual observation of the latices
1	8400	0.39	nd	Sedimentation
4	3600	0.54	160	Sedimentation
5	3600	0.64	130	Stable
3	6200	0.55	180	Stable
6	6600	0.67	100	Stable
7	8500	0.67	120	Stable

nd = not determined

- **Example 2B:** The following examples describe the synthesis of styrene latex containing 45% solids, at 70°C, via continuous addition of monomer 10 and using 3% by weight of styrene/acrylic acid copolymer with a composition gradient as sole emulsion surfactant.

Firstly, a solution is prepared composed of:

- 44 g of water,
- 15 • 0.055 g of NaHCO₃ such that [NaHCO₃]_{aq} = 0.012 mol.L⁻¹
- 1.37 g of styrene/acrylic acid copolymer with a composition gradient as prepared according to Example 1,
- a sodium hydroxide solution of normality 1N, the amount of which is adjusted as a function of the copolymer used so as to neutralize all of the 20 acid functions of the copolymer. The number of acid functions per gram of copolymer is determined beforehand by assaying with a sodium hydroxide solution of normality 0.1N.

This solution is heated at 70°C for 20 minutes and the pH is then adjusted to 10 by addition of a sodium hydroxide solution of normality 0.1N.

25 The aqueous solution prepared above is introduced into a 250 mL reactor equipped with a variable-speed stirring motor, inlets for introduction of reagents, bleed lines for introduction of inert gases to flush out the oxygen, for instance

nitrogen, and measuring probes (e.g., for measuring the temperature), a system of vapour condensation with reflux, and a jacket for heating/cooling the contents of the reactor by circulating a heat-exchange fluid therein. This solution is then heated to 70°C and degassed by sparging with nitrogen for 45 minutes with 5 stirring at 300 rpm.

Separately, 45.5 g of styrene are degassed by sparging with nitrogen for 45 minutes and then added continuously to the reactor using a peristaltic pump over a period of 4 hours. When the addition of the styrene is commenced, 10 0.06 g of potassium persulphate $K_2S_2O_8$ such that $[K_2S_2O_8]_{aq} = 0.006 \text{ mol.L}^{-1}$ is added. The time zero for the polymerization corresponds to the addition of the initiator solution to the reactor.

The polymerization is performed for the 4 hours of addition of the styrene at 70°C with stirring at 300 rpm, and is then continued for 1 hour under the same conditions, with addition of an additional amount of initiator. A sample is taken 15 at the end of the reaction and then cooled in an ice bath to stop the reaction. This sample is analysed by dynamic light scattering (DLS) and the conversion is determined by gravimetry.

An example is presented in the table below, in which:

20

- M_n and F_{AA} are, respectively, the number-average molar mass of the copolymer (in grams per mole) and the overall molar composition of acrylic acid in the copolymer,
- Z , the mean particle diameter of the latex in nm, is determined by dynamic light scattering (DLS).

25

Polymer	$M_n \text{ (g.mol}^{-1}\text{)}$	F_{AA}	$Z(\text{nm})$ (DLS)	Visual observation for latices
8	6500	0.67	160	Stable

Example 3 – Comparative with Example 2B:

Use of styrene/acrylic acid random copolymers as surfactants in the emulsion polymerization of styrene

This example describes the use, as sole surfactant, of styrene/acrylic acid random copolymers in the synthesis of styrene latex containing 45% solids, at 70°C, via continuous addition of monomer.

5 The random copolymers tested are JONCRYL® 682 and JONCRYL® 683. They are noted hereinbelow, respectively, as J682 and J683, and their characteristics as described by *Johnson Polymer* are presented in the table below.

Copolymers	J682	J683
Weight-average molar mass (g/mol)	1750	8700
Number of acid functions (on solid)	238	166

In the case of using 3% (25%) by weight of copolymer relative to the monomer, a solution is prepared, on the one hand, composed of:

10 • 50 g (10 g) of water,
 • 0.055 g (0.045 g) of NaHCO₃ such that [NaHCO₃]_{aq} = 0.012 mol.L⁻¹
 • 1.37 g (11.4 g) of styrene/acrylic acid copolymer,
 • a sodium hydroxide solution of normality 1N, the amount of which is adjusted as a function of the copolymer used so as to neutralize all of the
 15 acid functions of the copolymer. The number of acid functions per gram of copolymer is determined beforehand by assaying with a sodium hydroxide solution of normality 0.1N.

This solution is heated at 70°C for 20 minutes and the pH is then adjusted to 10 by adding a sodium hydroxide solution of normality 0.1N. The solution is then
 20 heated for a further 30 minutes at 70°C and then for 20 minutes at 80°C.

The aqueous solution prepared above is introduced into a 250 mL reactor equipped with a variable-speed stirring motor, inlets for introduction of reagents, bleed lines for introduction of inert gases to flush out the oxygen, for instance nitrogen, and measuring probes (e.g., for measuring the temperature), a system of vapour condensation with reflux, and a jacket for heating/cooling the contents of the reactor by circulating a heat-exchange fluid therein. This solution is then heated to 70°C and degassed by sparging with nitrogen for 45 minutes with stirring at 300 rpm.

Separately, 45.5 g of styrene are degassed by sparging with nitrogen for 45 minutes and then added continuously to the reactor using a peristaltic pump over a period of 4 hours. When the addition of the styrene is commenced, 0.09 g (0.075 g) of potassium persulphate $K_2S_2O_8$ such that $[K_2S_2O_8]_{aq} = 0.006$ 5 mol.L⁻¹ is added. The time zero for the polymerization corresponds to the addition of the initiator solution to the reactor.

The polymerization is performed for the 4 hours of addition of the styrene at 70°C with stirring at 300 rpm, and is then continued for 1 hour under the same conditions, with addition of an additional amount of initiator. A sample is taken 10 at the end of the reaction and then cooled in an ice bath to stop the reaction. This sample is analysed by dynamic light scattering (DLS) and the conversion is determined by gravimetry.

The various examples are collated in the following table, in which:

15 • Z, the mean particle diameter of the latex in nm, is determined by dynamic light scattering (DLS)

Polymer	weight % polymer/St	Z(nm) (DLS)	Visual observation of the latices
8	3	155	Stable
J683	3	nd	Unstable
J682	3	nd	Unstable
J683	25	220	Stable

nd means not determined

The "polymer 8" example is according to the invention.

20

Example 4: Use of styrene/acrylic acid copolymers with a composition gradient as surfactants in the emulsion polymerization of butyl acrylate

The following example describes the synthesis of butyl acrylate latex containing 25 25% solids, at 70°C, via continuous addition of monomer and using from 5% to 20% by weight of styrene/acrylic acid copolymer as sole emulsion surfactant.

Firstly, a solution is prepared composed of:

- an amount of water ranging between 45 and 100 g

- 0.12g of NaHCO₃ such that [NaHCO₃]_{aq} = 0.012 mol.L⁻¹
- the appropriate amount of styrene/acrylic acid copolymer with a composition gradient as prepared according to Example 1,
- a sodium hydroxide solution of normality 1N, the amount of which is 5 adjusted as a function of the copolymer used so as to neutralize all of the acid functions of the copolymer. The number of acid functions per gram of copolymer is determined beforehand by assaying with a sodium hydroxide solution of normality 0.1 N.

This solution is heated at 70°C for 20 minutes and the pH is then adjusted to 10 10 by addition of a sodium hydroxide solution of normality 0.1N.

The aqueous solution prepared above is introduced into a 250 mL reactor equipped with a variable-speed stirring motor, inlets for introduction of reagents, bleed lines for introduction of inert gases to flush out the oxygen, for instance nitrogen, and measuring probes (e.g., for measuring the temperature), a system 15 of vapour condensation with reflux, and a jacket for heating/cooling the contents of the reactor by circulating a heat-exchange fluid therein. This solution is then heated to 70°C and degassed by sparging with nitrogen for 45 minutes with stirring at 300 rpm.

Separately, 40 g of butyl acrylate are degassed by sparging with nitrogen for 45 20 minutes and then added continuously to the reactor using a peristaltic pump over a period of 4 hours. When the addition of the monomer is commenced, 0.18 g of potassium persulphate K₂S₂O₈ such that [K₂S₂O₈]_{aq} = 0.006 mol.L⁻¹ is added. The time zero for the polymerization corresponds to the addition of the initiator solution to the reactor.

25 The polymerization is performed for the 4 hours of addition of the monomer at 70°C with stirring at 300 rpm, and is then continued for 1 hour under the same conditions, with addition of an additional amount of initiator. A sample is taken at the end of the reaction and then cooled in an ice bath to stop the reaction. This sample is analysed by dynamic light scattering (DLS) and the conversion is 30 determined by gravimetry.

The various examples are presented in the table below, in which:

- M_n and F_{AA} are, respectively, the number-average molar mass of the copolymer (in grams per mole) and the overall molar composition of acrylic acid in the copolymer,
- Z , the mean particle diameter of the latex in nm, is determined by dynamic light scattering (DLS).

5

Polymer	M_n (g.mol ⁻¹)	FAA	Weight % polymer 8	Z (nm) (DLS)	Visual observation of the latices
8	6500	0.67	20	125	Stable
8	6500	0.67	15	125	Stable
8	6500	0.67	10	135	Stable
8	6500	0.67	7.5	135	Stable
8	6500	0.67	5	130	Stable

Example 5: Use of styrene-acrylic acid copolymers with a composition gradient as surfactants in the emulsion polymerization of a methyl methacrylate/butyl acrylate mixture (35/65% by weight)

10 The following example describes the synthesis of methyl methacrylate/butyl acrylate latex containing 45% solids, at 70°C, via continuous addition of monomers and using 3% by weight of styrene/acrylic acid copolymer with a composition gradient as sole emulsion surfactant.

15 Firstly, a solution is prepared composed of:

- 44 g of water,
- 0.055 g of NaHCO₃ such that [NaHCO₃]_{aq} = 0.012 mol.L⁻¹
- 1.37 g of styrene/acrylic acid copolymer with a composition gradient as prepared according to Example 1,

20 • a sodium hydroxide solution of normality 1N, the amount of which is adjusted as a function of the copolymer used so as to neutralize all of the acid functions of the copolymer. The number of acid functions per gram of copolymer is determined beforehand by assaying with a sodium hydroxide solution of normality 0.1 N.

25 This solution is heated at 70°C for 20 minutes and the pH is then adjusted to 10 by addition of a sodium hydroxide solution of normality 0.1N.

The aqueous solution prepared above is introduced into a 250 mL reactor equipped with a variable-speed stirring motor, inlets for introduction of reagents, bleed lines for introduction of inert gases to flush out the oxygen, for instance nitrogen, and measuring probes (e.g., for measuring the temperature), a system 5 of vapour condensation with reflux, and a jacket for heating/cooling the contents of the reactor by circulating a heat-exchange fluid therein. This solution is then heated to 70°C and degassed by sparging with nitrogen for 45 minutes with stirring at 300 rpm.

Separately, a mixture of 16 g of methyl methacrylate and 30 g of butyl acrylate 10 is degassed by sparging with nitrogen for 45 minutes and then added continuously to the reactor using a peristaltic pump over a period of 4 hours. When the addition of the monomers is commenced, 0.06 g of potassium persulphate $K_2S_2O_8$ such that $[K_2S_2O_8]_{aq} = 0.006 \text{ mol.L}^{-1}$ is added. The time zero for the polymerization corresponds to the addition of the initiator solution to 15 the reactor.

The polymerization is performed for the 4 hours of addition of the monomers at 70°C with stirring at 300 rpm, and is then continued for 1 hour under the same conditions, with addition of an additional amount of initiator. A sample is taken at the end of the reaction and then cooled in an ice bath to stop the reaction. 20 This sample is analysed by dynamic light scattering (DLS) and the conversion is determined by gravimetry.

An example is presented in the table below, in which:

- Mn and F_{AA} are, respectively, the number-average molar mass of the 25 copolymer (in grams per mole) and the overall molar composition of acrylic acid in the copolymer,
- Z, the mean particle diameter of the latex in nm, is determined by dynamic light scattering (DLS).

Polymer	Mn (g.mol ⁻¹)	FAA	Z(nm) (DLS)	Visual observation of the latices
8	6500	0.67	200	Stable

Example 6 - Comparative with Example 5:**Use of styrene/acrylic acid random copolymers as surfactants in the emulsion polymerization of a methyl methacrylate/butyl acrylate mixture (35/65% by weight)**

5 This example describes the use, as sole surfactant, of styrene/acrylic acid random copolymers (J682 and J683 as described in Example 3) in the synthesis of latex of a methyl methacrylate/butyl acrylate mixture containing 45% solids, at 70°C, via continuous addition of monomers.

10 In the case of using 3% (25%) by weight of copolymer relative to the monomers, a solution is prepared, on the one hand, composed of:

- 50 g (10 g) of water,
- 0.055 g (0.045 g) of NaHCO₃ such that [NaHCO₃]_{aq} = 0.012 mol.L⁻¹
- 1.37 g (11.4 g) of styrene/acrylic acid copolymer,

15 • a sodium hydroxide solution of normality 1N, the amount of which is adjusted as a function of the copolymer used so as to neutralize all of the acid functions of the copolymer. The number of acid functions per gram of copolymer is determined beforehand by assaying with a sodium hydroxide solution of normality 0.1N.

20 This solution is heated at 70°C for 20 minutes and the pH is then adjusted to 10 by adding a sodium hydroxide solution of normality 0.1N. The solution is then heated for a further 30 minutes at 70°C and then for 20 minutes at 80°C.

25 The aqueous solution prepared above is introduced into a 250 mL reactor equipped with a variable-speed stirring motor, inlets for introduction of reagents, bleed lines for introduction of inert gases to flush out the oxygen, for instance nitrogen, and measuring probes (e.g., for measuring the temperature), a system of vapour condensation with reflux, and a jacket for heating/cooling the contents of the reactor by circulating a heat-exchange fluid therein. This solution is then

30 heated to 70°C and degassed by sparging with nitrogen for 45 minutes with stirring at 300 rpm.

Separately, a mixture of 16 g of methyl methacrylate and 30 g of butyl acrylate is degassed by sparging with nitrogen for 45 minutes and then added continuously to the reactor using a peristaltic pump over a period of 4 hours. When the addition of the monomers is commenced, 0.09 g (0.075 g) of 5 potassium persulphate $K_2S_2O_8$ such that $[K_2S_2O_8]_{aq} = 0.006 \text{ mol.L}^{-1}$ is added. The time zero for the polymerization corresponds to the addition of the initiator solution to the reactor.

10 The polymerization is performed for the 4 hours of addition of the monomers at 70°C with stirring at 300 rpm, and is then continued for 1 hour under the same conditions, with addition of an additional amount of initiator. A sample is taken at the end of the reaction and then cooled in an ice bath to stop the reaction. This sample is analysed by dynamic light scattering (DLS) and the conversion is determined by gravimetry.

The various examples are collated in the following table, in which:

15 • Z, the mean particle diameter of the latex in nm, is determined by dynamic light scattering (DLS)

Polymer	Weight % polymer/monomers	Z(nm) (DLS)	Visual observation of the latices
8	3	200	Stable
J683	3	nd	Unstable
J682	3	nd	Unstable
J683	25	nd	Unstable

nd means not determined

Claims

1. Use as sole stabilizer, in an emulsion polymerization process, of a copolymer with a composition gradient comprising at least two monomers, one (M_1) is hydrophilic and represents at least 55 mol% relative to the total of the monomers of which the copolymer is composed, the other (M_2) is hydrophobic and represents not more than 45 mol% of the copolymer, characterized in that the said copolymer comprises at least one monomer M_i such that the probability of encountering M_i in any standardized position x on the polymer chain is non-zero.
5
2. Use according to Claim 1, characterized in that the reaction medium also comprises at least one other stabilizer chosen from the macromolecular or non-macromolecular surfactants usually used in emulsion polymerization such as random copolymers or block copolymers comprising at least one hydrophilic monomer and at least one hydrophobic monomer, sodium lauryl sulphate (SLS) or sodium dodecylbenzenesulphonate (NaDDBS).
15
3. Use according to Claim 1 or 2, characterized in that the said copolymer is introduced to a proportion of from 1 to 10% and preferably from 3% to 20 6% by weight relative to the total weight of the monomers to be polymerized.
4. Use according to one of the preceding claims, characterized in that the said copolymer has a number-average mass (M_n) of between 3000 and 10 000 g/mol and preferably from 5000 to 7000, and a polydispersity index of between 1.1 and 2.5 and preferably between 1.1 and 2.
25
5. Use according to one of the preceding claims, characterized in that the said hydrophilic monomer represents at least 65 mol% of the copolymer.
6. Use according to one of the preceding claims, characterized in that the hydrophilic monomer (M_1) is an ionic hydrophilic monomer noted as (M_{1a}) and chosen from ethylenic carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid or fumaric acid, (M_{1a}) being used as sole
30

hydrophilic monomer or in combination with a neutral or cationic hydrophilic monomer (**M_{1b}**) chosen from the family of (alkoxy)polyalkylene glycol (meth)acrylates, the family of (alkoxy)polyalkylene glycol (meth)acrylamides, unsaturated carboxylic acid amides, for instance acrylamide or methacrylamide and N-substituted derivatives thereof, carboxylic anhydrides bearing a vinyl bond such as maleic anhydride or fumaric anhydride, dialkylaminoalkyl (meth)acrylates or trialkylammoniumalkyl (meth)acrylate halides, (**M_{1b}**) possibly being introduced to a maximum proportion of 50% by weight relative to the ionic hydrophilic monomer (**M_{1a}**).

- 5 7. Use according to Claim 6, characterized in that the hydrophilic monomer is acrylic acid.
- 10 8. Use according to one of Claims 1 to 6, characterized in that the hydrophobic monomer is chosen from the group of acrylic or methacrylic esters, and styrene or vinyl monomers.
- 15 9. Use according to Claim 7, characterized in that the hydrophobic monomer is styrene.
- 20 10. Latex obtained via emulsion free-radical polymerization stabilized with a copolymer with a composition gradient according to any one of the preceding claims.
11. Latex obtained according to Claim 10, characterized in that it has a viscosity of greater than 1000 centipoises.
- 25 12. Use of the latices obtained according to Claim 10 or 11 in paint formulations.
13. Use of the latices obtained according to Claim 10 or 11 for formulations in cosmetics.
14. Use of the latices obtained according to Claim 10 or 11 in the field of plastics additives of "core/shell" additive type.
- 30 15. Use of the latices obtained according to Claim 10 or 11 for hot-melt adhesive formulations.

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2005/014169

A. CLASSIFICATION OF SUBJECT MATTER
 INV. C08F2/38 C08F220/00 C08F2/24

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C08F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 2004/055071 A (ATOFINA; GUERRET, OLIVIER) 1 July 2004 (2004-07-01) the whole document -----	1-15
A	MATYJASZEWSKI K ET AL: "GRADIENT COPOLYMERS BY ATOM TRANSFER RADICAL COPOLYMERIZATION" JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, WILEY, GB, vol. 13, 2000, pages 775-786, XP009027123 ISSN: 0894-3230 the whole document -----	1-15
A	DE 196 02 538 A1 (BASF AG, 67063 LUDWIGSHAFEN, DE; MAX-PLANCK-INSTITUT, 55128 MAINZ, DE) 31 July 1997 (1997-07-31) cited in the application the whole document ----- -/-	1-15

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

4 April 2006

11/04/2006

Name and mailing address of the ISA/
 European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Authorized officer

Gold, J

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2005/014169

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	FR 2 838 653 A (RHODIA CHIMIE) 24 October 2003 (2003-10-24) cited in the application the whole document -----	1-15

INTERNATIONAL SEARCH REPORT

International application No

FR/EP2005/014169

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
WO 2004055071	A 01-07-2004	AU	2003296815 A1	09-07-2004
		CA	2509828 A1	01-07-2004
		CN	1738841 A	22-02-2006
		EP	1583781 A1	12-10-2005
		FR	2848557 A1	18-06-2004
		US	2006058467 A1	16-03-2006
DE 19602538	A1 31-07-1997	WO	9727222 A1	31-07-1997
		EP	0876404 A1	11-11-1998
		US	6218468 B1	17-04-2001
FR 2838653	A 24-10-2003	AU	2003246819 A1	10-11-2003
		EP	1494795 A2	12-01-2005
		WO	03090916 A2	06-11-2003
		US	2005245650 A1	03-11-2005