SENSITIVE PULSE THRESHOLD DETECTOR

Inventor: Robert P. Farnsworth, Los Angeles, Calif.

Assignee: Hughes Aircraft Company, Culver City, Calif.

Filed: Apr. 16, 1973

Appl. No.: 351,686

U.S. Cl. 307/235 R, 307/322, 328/146, 330/9, 330/25

Int. Cl. H03k 5/20, H03k 17/58, H03f 1/02

Field of Search 307/235 R, 235 A, 239, 307/286, 322, 290, 269; 328/146, 148, 149; 150, 151, 203, 206; 330/9, 25, 30 D, 69

References Cited

UNITED STATES PATENTS

3,427,472 2/1969 Karner 307/235
3,628,059 12/1971 Niu 307/235 R
3,753,139 8/1973 Spencer 330/30 D X

OTHER PUBLICATIONS

Primary Examiner—Rudolph V. Rolince
Assistant Examiner—L. N. Anagnos
Attorney, Agent, or Firm—W. H. MacAllister; Lawrence V. Link, Jr.

ABSTRACT

A sensitive pulse detector which in one embodiment incorporates a tunnel diode is disclosed. The tunnel diode prior to the application of a gate pulse of a selected duration during which an input pulse may be received is pre-biased in the absence of the gate pulse so that the current passing therethrough is equal to its peak current, with the diode being maintained in its low voltage state. The application of the gate pulse produces a current bias which reduces the diode current from its peak current value by a known value. Switching to the high voltage state takes place only if, an input current produced in response to an input pulse, raises the diode current above the peak current value. In another embodiment incorporating an amplifier, the latter's offset voltage is automatically compensated for to enable pulse detection independent of the offset voltage. In yet another embodiment, pulse detection is accomplished with a regenerative voltage circuit pre-biased to one of its trigger points.

25 Claims, 12 Drawing Figures
Fig. 1.

Fig. 2.

Voltage

\[I_D \]

\[I_P \]
Fig. 7.

Fig. 10.
1 SENSITIVE PULSE THRESHOLD DETECTOR

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to a pulse threshold detector and, more particularly, to a sensitive circuit for detecting very small signals which exceed a selectable threshold.

2. Description of the Prior Art

There are a number of applications in which it is desired to indicate the presence of very small input pulses which exceed a selected threshold level by generating for each input pulse a large output pulse. Such applications include, though not limited to, receiver circuits of a radar system or a laser ranging system. Herebefore such input pulses have been detected by threshold circuits which incorporate Schmitt trigger circuits or other analog comparators. Generally, the sensitivity of Schmitt trigger circuits and analog comparators is limited, thereby limiting their usefulness to pulse detection at signal levels in the range of several millivolts up to several volts. To detect smaller pulses, amplification is required. Some circuits which eliminate the need for amplification employ pre-biased tunnel diodes.

As is known, the voltage drop across a tunnel diode changes from a low voltage state to a high state when the current flowing across the diode exceeds its peak current value. When used as a threshold detector, the tunnel diode is pre-biased to below its peak current value, so that if the input pulse contributes a current which together with the pre-biased current value exceed the peak current value, the voltage drop across the diode switches to its high state thereby indicating the presence of the input pulse. For example, a 1 micromicroampere (\(\mu\)A) threshold signal can be detected by pre-biasing a tunnel diode with a peak current value of 1 milliamperes (mA) with a current of 999\(\mu\)A. However, since the peak current value is not constant, but rather is subject to change due to various factors, including diode temperature variations, the system's sensitivity is limited by how well the pre-bias can be made to track the peak current value so as to maintain a constant threshold setting. Generally, the pre-bias is manually adjusted, a task which is very tedious if high sensitivity without oscillation is to be achieved.

OBJECTS AND SUMMARY OF THE INVENTION

It is a primary object of the present invention to provide a new pulse threshold detector which eliminates or greatly minimizes the disadvantages of prior art detectors.

Another object of the present invention is to provide a sensitive pulse threshold detector in which pulse amplification is not required.

A further object of the invention is to provide a sensitive pulse threshold detector in which manual adjustment tasks are eliminated and in which pre-biasing is provided automatically at the point of optimum performance.

These and other objects of the invention are achieved in one detector embodiment incorporating a tunnel diode. In this embodiment, the arrival of any input pulse to be detected may occur at any point during the duration of a gate pulse which is applied to the detector. In the absence of a gate pulse, the current flowing through the diode is automatically controlled by a control circuit which responds to the voltage drop across the diode to be substantially equal to the peak current value of the diode, irrespective of changes in the peak current value due to temperature or other factors. The current provided by the control circuit may be defined as \(I_p\), the current flowing through the diode as \(I_d\) and its peak current value \(I_{dp}\). In the absence of a gate pulse, after current stabilization is achieved, \(I_d = I_{dp} = I_p\), and the diode is effectively maintained in its low voltage state. Any change in the peak current value is automatically compensated for by the control circuit which adjusts \(I_d\) to equal the diode's peak current value prior to the application of the gate pulse.

The application of a gate pulse accomplishes two objectives. It causes the control circuit to provide current for the diode at the amplitude existing just prior to the gate pulse which is substantially equal to the peak current value. Thus, during the gate pulse duration \(I_d = I_p\).

Also, the gate pulse activates a bias circuit which automatically biases the diode current by passing part of the current \(I_d\) from flowing through the diode. By the time a current definable as \(I_n\) may be thought of as a bias current. Thus, due to the bias current, \(I_p = I_d - I_n = I_d - I_p\), and since \(I_p\) is less than \(I_d\), the diode remains in its low voltage state.

If during the duration of the gate pulse an input pulse is applied to the diode, the current diode \(I_d\) is increased by a factor \(I_p\). Thus, during the presence of the input pulse \(I_d = I_p - I_n + I_p\). The current \(I_d\) is related to the amplitude of the input pulse. As long as \(I_d\) is not greater than the bias current, \(I_n\), \(I_d\) is not greater than \(I_p\) and therefore the voltage drop across the diode is low. However, if due to the input pulse amplitude, \(I_d\) is greater than \(I_p\), \(I_d > I_p\), and therefore the diode switches to its high voltage state. Such a diode state, during the presence of a gate pulse, indicates the detection of an input pulse, whose amplitude exceeds the threshold level defined by the bias current. After the gate pulse duration, the control circuit resumes once more automatic control of the diode current, adjusting it to equal \(I_p\) in preparation for the arrival of a subsequent gate pulse. The bias current may be held constant during the entire gate pulse duration, or made to vary, thereby varying the detector's sensitivity which increases with decreased bias current.

The novel features of the invention are set forth with particularity in the appended claims. The invention will best be understood from the following description when read in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified diagram of an embodiment of the detector incorporating a tunnel diode;

FIG. 2 is a diagram of voltage versus current of a tunnel diode;

FIG. 3 is a detailed diagram of the embodiment of FIG. 1;

FIGS. 4, 5, and 6 are diagrams useful in explaining additional features of the embodiment shown in FIG. 3;

FIG. 7 is a simplified diagram of an embodiment of the detector incorporating an operational amplifier;

FIGS. 8, 9, and 10 are diagrams useful in explaining the operation of the embodiment with the operational amplifier, with FIG. 9 being a detailed diagram thereof;
FIG. 11 is a diagram of an embodiment of the detector incorporating a regenerative voltage circuit, and FIG. 12 is an output voltage versus input voltage diagram of a regenerative voltage circuit.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Attention is now directed to FIG. 1 which is a simplified block diagram of one detector embodiment of the present invention incorporating a tunnel diode \(D \), shown connected between a junction point \(P \) and a reference potential, e.g., ground. As is known, the voltage drop across the diode, i.e., the voltage at the anode connected to point \(P \) with respect to ground, depends on the current flowing through the diode which in FIG. 1 is designated \(I_D \). The diode’s typical voltage versus current relationship is diagrammed in FIG. 2. As is seen, the voltage \(I_D \) is constant when the entire diode is assumed to be in its low voltage state as long as \(I_D \) is not greater than a peak current value \(I_p \). Once \(I_D \) exceeds \(I_p \), the voltage switches to a high value, which represents the diode’s high voltage state.

In accordance with the present invention, the voltage across the diode is sensed by a control circuit 12 which is connected through a resistor \(R_1 \) to point \(P \). The control circuit is also connected to a gate terminal 14 which is connected to point \(P \) through a bias source 15. An input terminal 16 is connected to an input circuit 18 which is in turn connected to point \(P \). The latter and gate terminal 14 are shown connected to two separate input terminals of AND gate 20.

As a sensitive pulse detector, the function of the detector is to sense the presence of an input pulse 22 at terminal 16 and provide an output only if the amplitude of pulse 22 exceeds a selected threshold. In the present invention, the threshold is controlled by bias source 15 when a pulse is applied to the terminal 22. For explanatory purposes, it is assumed that the leading edge of pulse 22 occurs at \(t \), and that its duration is \(L \), it being further assumed that pulse 22 occurs only during the period \(L \).

Briefly, the function of control unit 12 is to provide a current \(I_{x} \) which flows to junction point \(P \), while the function of input circuit 18 is to provide a current \(I_{y} \) which flows to point 10 when input pulse 22 is applied at terminal 16. The amplitude of \(I_{y} \) is directly related to the amplitude of input pulse 22. The function of bias source 15 is to cause a bias current \(I_{P} \) to flow from the point 10 to the source 15 when a pulse is applied at terminal 14. For the present, it is assumed that the amplitude of \(I_{y} \) is constant when the entire diode is assumed to be in its low voltage state as long as \(I_{y} \) is not greater than a peak current value \(I_{p} \). Once \(I_{y} \) exceeds \(I_{p} \), the voltage switches to a high value, which represents the diode’s high voltage state.

In the absence of gate pulse 24 and input pulse 22, \(I_{x} = 0 \) and \(I_{y} = 0 \), and therefore \(I_{P} = I_{y} \). The control unit 12 operates in two modes. In the absence of the gate pulse 24, it senses the voltage across the diode which is applied thereto via line 26 and controls the current \(I_{x} \) to equal \(I_{y} \). In the peak current value of \(D \), so that \(I_{x} = I_{y} = I_{p} \). The manner in which such control is accomplished will be described hereafter in detail. Briefly, if during power turn-on, \(I_{x} \) is greater than \(I_{p} \), the diode is switched between its two states and unit 12 reduces the amplitude of \(I_{x} \) until it equals \(I_{p} \). On the other hand, if \(I_{x} \) is less than \(I_{p} \), the diode remains in its low voltage state causing unit 12 to increase the amplitude of \(I_{x} \) until it equals \(I_{p} \). Once \(I_{x} \) is adjusted to equal \(I_{p} \), unit 12 automatically maintains \(I_{x} \) to be substantially equal to \(I_{y} \), and the diode remains effectively in its low voltage state. For explanatory purposes, it is assumed that just prior to \(t \), when gate pulse 24 is applied, \(I_{x} = I_{p} \).

When the gate pulse is applied, it switches unit 12 to its second mode in which \(I_{x} \) is maintained constant during the entire gate pulse duration \(L \). Its amplitude just prior to \(t \), i.e., at \(I_{p} \). Thus, during the entire gate pulse duration, \(I_{x} = I_{p} \). When gate pulse 24 is applied, the bias current \(I_{y} \) flows from junction point 10 to source 15. Thus, \(I_{y} = I_{p} - I_{x} = I_{p} - I_{p} \). Consequently, since the diode current \(I_{x} \) is less than \(I_{p} \), the diode voltage is low. It remains low during the entire gate pulse period unless an input pulse is directed at terminal 16 which causes circuit 18 to provide a current \(I_{x} \) which exceeds \(I_{p} \) so that \(I_{y} \) equals \(I_{p} \), less \(I_{x} \) becomes greater than \(I_{p} \). When such an occurrence takes place, AND gate 20 is enabled to provide a true output which indicates the presence of an input pulse whose amplitude exceeds the threshold defined by \(I_{p} \).

It should be stressed that in the present invention prior to the gate pulse, the control unit automatically adjusts the diode current \(I_{y} \) to equal the actual peak current value of the diode just prior to the gate pulse arrival rather than to a fixed peak current value. Thus, any change in \(I_{y} \) due to any reasons, e.g., temperature variations is automatically accounted for. This is done at the point of optimum performance, namely just prior to the arrival of the gate pulse. The latter biases the diode by reducing its current from \(I_{y} \) to \(I_{x} = I_{y} \). Once biased to a threshold defined by \(I_{p} \), an input pulse is assumed to be detected only if its amplitude is such as to provide a current \(I_{x} \) which is greater than \(I_{y} \).

Clearly, if \(I_{y} \) is constant during the gate pulse period, the detector’s sensitivity is constant. For example, assuming that \(I_{y} = 2 \mu A \) during the entire period the detector provides an output only if during the period an input pulse is received whose amplitude produces current \(I_{x} \) which is greater than \(2 \mu A \). If, however, during the gate pulse period, \(I_{y} \) varies, e.g., from \(2 \mu A \) to \(0 \mu A \), the detector’s sensitivity is varied by a factor of 10 since when \(I_{y} = 2 \mu A \), an input pulse is detected if its amplitude produces \(I_{x} > 2 \mu A \), while when \(I_{y} = 0 \mu A \), an input pulse 1/10 the amplitude will be detected since the current \(I_{x} \), which is needed for pulse detection is only slightly greater than \(0.1 \mu A \).
to the emitter of Q2 through a Zener diode 42. The Q2 emitter is also connected to ground through a hot carrier (or Shottky Barrier) diode (HCD) 43, while the collector and base of Q2 are connected respectively to point 10 and ground. A HCD 44 is connected between the Q2 collector and ground. The 1 output of one-shot 35 is connected through series resistors R6 and R7 to +12v, with the junction point of the two resistors, designated by numeral 46, being connected through gate 36 to the input of amplifier A. Gate 36 is connected via enabling line 48 to gate terminal 14.

In FIG. 3, resistor R8, which is connected between the terminal 14 and point 10 represents the bias source 15. Resistor R6 connected between terminal 16 and point 10 and resistor R9 connected between terminal 16 and ground, represent the input circuit 18.

The operation of the control circuit 12 in the absence of a gate pulse will now be described. Assuming that when power is first applied to the detector, the current Iy exceeds Ip. Since Iy = Ip, Iy > Ip, and therefore diode D is in its high voltage state. Consequently, Q1 is turned on thereby triggering one-shot 34 to provide a pulse of duration defined as Tp, during which a logic 0 state is at the 0 output of 34. This state causes Q2 to conduct. As a result, the current Iy is bypassed to ground. Therefore, the diode current if any, falls below a current level which causes the diode to switch to its low voltage state, turning off Q1. However, Q2 remains conducting for the duration Tp of the pulse from 34.

The logic 1 state at the 0 output of one-shot 34 triggers one-shot 35 which provides a pulse of duration Tp, during which the 0 output of 35 is at a logic 1 state.

As seen from FIG. 3, terminal 46 is connected to the input of integrator 38 through gate 36. The latter is closed during the absence of a gate pulse, and therefore the voltage at terminal 46 is directly applied to the input of the amplifier A of the integrator 38. A positive voltage at terminal 46 causes the output of 38 to become more negative at a rate determined by the biasing resistors R6 and R7 and the feedback capacitor C. On the other hand, a negative voltage at terminal 46 results in the integrator's output becoming more positive. Thus, the voltage polarity at terminal 46 affects the output of the integrator. When gate 36 is opened and the terminal 46 is decoupled from the integrators, the latter's output, ignoring leakage, remains constant.

In the present embodiment, when the 0 output of one-shot 35 is at a logic 1, which occurs when the one-shot produces a pulse of period Tp, the voltage at terminal 46 is positive, thereby decreasing the output of the integrator. As a result, the current Iy, which flows to the diode D decreases. On the other hand, if the 0 output of one-shot 35 is at a logic 0 state, the voltage at terminal 46 is negative, thereby increasing the output of the integrator. Thus, Iy which flows to the diode, increases.

In the present example, when one-shot 34 triggers one-shot 35, during the duration Tp of its output pulse, the output of integrator 38 decreases, thus decreasing Iy. At the end of the pulse of one-shot 34, Q2 is turned off. Thus, diode current is no longer bypassed through Q2. If Iy is still greater than Ip, diode D switches again to its high voltage state. As a result, Q1 is again turned on, triggering one-shot 34 which in turn triggers one-shot 35. This causes a positive voltage to be applied once more or if Tp > Tp, to continue to be applied at terminal 46. It further reduces the output of integrator 38, in turn reducing the amplitude of Iy, which flows to the diode, or through Q2 when the latter is turned on. Thus, as long as Iy > Ip, Q1 and the one-shot 34 will continue to oscillate, being re-triggered each time the one-shot 34 recovers and Q2 is turned off. As a result, the output of the integrator 38 continuously becomes more negative, which causes the amplitude of Iy to decrease until Iy = Ip. When Iy = Ip, the diode D remains in its low state. Thus, Q1 is not turned on and therefore the one-shot's 34 and 35 are not triggered. When the latter is not triggered, the voltage at terminal 46 is negative. Thus, the output of the integrator increases, which causes Iy to increase. When the latter exceeds Ip, the retriggering operation is resumed.

FIG. 4 illustrates the variation of Iy versus time for two starting conditions, one in which Iy = Ip + I2. Iy is shown to be equal to Ip, at time t4. Thereafter, and before a gate pulse is received, the control circuit 12 controls Iy to be as close as possible to Ip. As Iy increases only by an infinitesimal amount above Ip as represented by x1, the diode switches to its high voltage state. In practice, x1 = 1y is so small that 1y can be regarded as equal to 1y. Once the diode is switched to its high voltage state, the one-shot 34 is again triggered, in turn triggering one-shot 35 so that during the period of Tp of its pulse, the output of integrator 38 decreases, in turn decreasing Iy. At the end of Tp, Ip = Ip and the integrator's output rises again increasing Iy to Ip, at which time the diode is again switched to its high state. Thus, during this phase, which can be regarded as the stabilization phase, Iy varies between x1 and x2. 1y = 1x represents the change in Iy which occurs as a result of the change in the output of the integrator 38 during the period Tp of each pulse of one-shot 35. In practice, x1 = Ip = x2 = 1x can be minimized so that Iy can be regarded as being continuously equal to Ip. This is achieved by either decreasing or increasing the rate of charge change during Tp. In one embodiment actually reduced to practice, Iy is 0.5ns, Tp is 1µs and Ip = Ip = 0.5µA.

It is thus seen, that once the control unit 12 adjusts Iy to equal Ip at time t4, it maintains Iy equal to Ip. When the gate pulse is applied, two things take place. Gate 36 is opened and remains open for the duration L of the gate pulse. Thus, the input of integrator 38 does not change during the gate pulse duration. Consequently, Iy remains fixed at Ip for the gate pulse duration. Also, the negative gate pulse at terminal 14 produces a voltage drop across R8. Thus, the bias current Ip flows from point 10 to terminal 14 through R8. Consequently, Ip = Ip = Ip = Ip. In the particular embodiment in which the bias circuit 15 is the single fixed resistor R8, the amplitude of 1Ip which defines the detector's threshold level is controlled by the amplitude of the gate pulse and the value of R8.

The input current I1 depends on the amplitude of the input pulse applied at input terminal 16. From the foregoing, it should thus be apparent that during the gate pulse period, the diode current Ip = Ip = Ip in the absence of an input pulse, and in the presence of an input pulse Ip = Ip = Ip. During the gate pulse period, Ip can be greater than Ip, thereby causing the diode to switch to its high voltage state, only if x is greater than Ip. This occurs only if the input pulse has an amplitude greater than a threshold level defined by I1. When this occurs, gate 20 (see FIG. 1) is enabled to indicate the presence of such an input pulse which exceeds the threshold level.
It should be pointed out that I_T need exceed I_P only by the infinitesimal amount needed for I_T to exceed I_P so that the diode switches to its high state. Otherwise, the diode remains in its low voltage state during the entire gate pulse duration and no output pulse is produced by the detector, thereby indicating the absence of an input pulse of an amplitude above the selected threshold level during the gate pulse duration. It should further be pointed out that if during the gate pulse period the diode switches to the high state Q_1, Q_2 and one-shot 34 reset it to the low state so that additional sensing can take place on multiple pulses during a single gate pulse duration.

From the foregoing, it is thus seen that in the previously described embodiment prior to the gate pulse, the diode is pre-biased by the current I_T to equal I_P. Any change in the latter is automatically compensated for by a change in I_T. Thus, at a point of optimum performance, i.e., just prior to the gate pulse $I_T = I_X = I_P$. The gate pulse when received, biases the diode current by I_T so that $I_T = I_P - I_X$. The bias current I_T defines the detector's threshold. For an input pulse to be detected, an input current I_T must be produced which exceeds I_X by an infinitesimal amount to switch the diode to its high state. In practice, I_T can be made as small as desirable, e.g., less than $1\mu A$ thereby enabling the detection of extremely small pulses. In some applications, such as in a laser range finder system, it may be desirable to vary the detector's sensitivity during the gate pulse from a low level at the start of the gate pulse to a high level at the end of the pulse. Gating may start at the start of the laser pulse transmission time and end with maximum range of the laser receiver. Variable detector sensitivity may be achieved by connecting a capacitor C_1 (see FIG. 5) which is connected in series with a resistor R_9 across R_8. In such a case, the bias current will decrease as shown in FIG. 6 from an initial maximum value of I_{B1} at time t_1 when the gate pulse is applied, to I_{B2} at the end of the gate pulse period. From the foregoing, it should thus be apparent that the required amplitude of the input signal needed to produce I_T which is greater than I_X decreases during the gate pulse period. Thus, at the start of the pulse period L_1, a large input pulse is needed to trigger the detector while a much smaller input pulse is needed toward the end of the gate pulse period. The tunnel diode in the foregoing described embodiment can be thought of as a regenerative current circuit with a double valued current over a finite voltage range. The diode will remain in the low voltage state as long as I_T is not greater than I_P. When I_T is exceeded, the diode switches to its high voltage state. As is known, a tunnel diode remains in the high voltage state even though the current may drop below I_T. However, once the I_T falls below a current value defined by the diode's load line (not shown), the diode switches to its low voltage state. In the present invention, switching from the high to the low voltage state is done by bypassing the current through Q_2 so that effectively I_T drops to zero. In the described embodiment, the diode is pre-biased or stabilized so that I_T is at or very near I_P which is the trigger point for switching the diode to the high voltage state. The bias current I_T biases the diode current below I_T, thereby moving the diode current away from the trigger point. The input current I_T is however raised to the current level at the trigger point which when exceeded causes the diode to switch to its high state.

Although herebefore the invention has been described in connection with an embodiment incorporating a tunnel diode, the teachings of the invention are not intended to be limited thereto. Generally stated, the invention is directed to automatically providing pre-biasing to a comparing-type device at the point of optimum performance, namely before an input pulse is received, so that when a bias signal is applied, which defines a threshold which the input pulse has to exceed, only when this threshold is exceeded is an indication of the presence of the input pulse produced.

Attention is now directed to FIG. 7 which is a simplified diagram of an embodiment of the present invention incorporating an operational amplifier 55 which is used as the comparing device. As used herein, the term operational amplifier is intended to include any circuit or device whose output voltage (or current) varies linearly over a selected output region as a function of the voltage (or current) difference between two inputs or one of which may be at a fixed reference voltage. Thus, broadly, the term operational amplifier is intended to include, in addition to conventional operational amplifiers, differential amplifiers, video amplifiers, single ended amplifiers, voltage or current comparators, and single transistor amplifiers.

As is known, in an operational amplifier, the output voltage depends on the voltage difference between its two inputs. In FIG. 7, the output voltage is designated by e_9 and the voltages at the inverting input 1 and non-inverting input 2 are designated by e_1 and e_2, respectively. In FIG. 7, the latter is assumed to be at ground or zero potential. In an "ideal" inverting operational amplifier, the output voltage e_9 is at a midpoint level between upper and lower saturation levels when $e_1 - e_2 = 0$.

In FIG. 8, which is a diagram of e_9 versus e_2, (where $e_2 = 0$), lines 57 and 58 designate the amplifier's upper and lower saturation levels and line 60 represents the linear region of the ideal amplifier's output when the difference between e_1 and e_2 is less than that required to drive the amplifier to saturation at either level. This voltage difference, designated Δe may be made quite small by increasing the amplifier's gain. The amplitude of the upper saturation level 57, the lower saturation level and the midpoint 51 of the linear region 60 are designated as e_{u2}, e_{l2} and e_{m2}, respectively. Line 60 represents the linear region of the output of an ideal amplifier since its midpoint 61 is assumed to occur when $e_1 = 0 = e_{u2}$, i.e., when the difference between the two inputs is zero.

In practice, nearly every operational amplifier exhibits an offset voltage or voltage as a result of which its operating characteristics deviate from that of an ideal amplifier. Manufacturers of operational amplifiers designate the offset voltage of each amplifier type. Generally, any amplifier of a particular type may have an offset voltage of plus or minus (±) the designated offset value. Also, the offset voltage of any particular amplifier is not constant but rather is subject to change due to changing environmental conditions, e.g., temperature changes. The offset voltage is generally defined as the voltage difference between the amplifier's inputs (which is other than zero) for which the output voltage is at the midpoint between its saturation levels.

Offset values are typically several millivolts. For example, in FIG. 8, line 63 designates the linear region of an operational amplifier with an offset voltage desig-
nated $\pm e_{\text{off}} = \pm 6\text{mV}$. In such an amplifier (assuming $e_b = 0$), the output of the amplifier is at the midpoint of the linear region only when $e_b = 6\text{mV}$, rather than at 0. Thus, in such an amplifier, switching occurs when $e_b = +6\text{mV} \pm \Delta e$. On the other hand, line 64 represents the linear region of an amplifier with an offset of $e_{\text{off}} = -6\text{mV}$, in which switching occurs when $e_b = -6\text{mV} \pm \Delta e$. It is the offset voltage property of operational amplifiers that herebefore has prevented their use to detect small signals with amplitudes which are less than these offset voltages. In accordance with the present invention, the offset voltage of amplifier 55, irrespective of its value, is automatically compensated for so that it can be used to detect input pulses with amplitudes which are much smaller than the amplifier's offset value.

In accordance with the present invention, the effect of the offset voltage of the amplifier 55, which as previously pointed out is variable due to changing operating conditions, is automatically compensated for by pre-biasing the amplifier input with a pre-biasing voltage before an input signal to be detected is received, so that the output voltage of the amplifier is at a selected level in its linear region. Prior to receiving the input signal to be detected, a gate pulse of a selected duration is received. It, like in the previous embodiment which includes the tunnel diode, performs two functions. During the gate pulse duration, the pre-bias voltage is held during the entire gate pulse duration at its amplitude just prior to the gate pulse. Also, the gate pulse causes a bias voltage V_b of a selected level to be applied to the amplifier input. The bias voltage which may be constant or variable during the gate pulse duration represents a threshold voltage. Depending on its amplitude, polarity and the amplifier input to which the bias voltage V_b is applied prior to receiving an input signal, the bias voltage causes the output voltage to shift from its previous selected level in the linear region.

Assuming that due to the bias voltage, e_b decreases as a result of V_b when an input signal is received, an input voltage V_i related to the input signal amplitude is applied. V_i is applied to the amplifier input so as to shift the output e_o back toward its selected level. When the amplitude of V_i is exactly equal and of opposite polarity to V_b, e_o returns to the selected level. Only if the amplitude of V_i exceeds the amplitude of V_b does e_o increase above the selected level. By making Δe very small, e.g., 1 mV and assuming that the selected level of e_b is the midpoint, a difference of 1 mV between V_i and V_b is sufficient to drive the amplifier to its upper saturation level e_{sat}. This level when produced indicates the presence of an input signal exceeding (by at least Δe) the threshold level defined by V_b.

In practice, any output voltage level spaced from the selected level may be chosen to indicate the presence of an input signal whose amplitude exceeds V_b. As shown in FIG. 7, the output e_o of amplifier 55 is supplied to a pre-bias circuit 65 whose output is connected to a voltage summing point 67 which is connected to the inverting input 1. Ignoring for a moment the rest of the circuitry, in the absence of a gate pulse at gate terminal 63, the function of circuit 65 is to apply a pre-bias voltage V_b to terminal 1 through summing point 67 so that the output e_b is at a selected level within the linear region of the amplifier. The selected level need not be the midpoint level e_{sat} although for explanatory purposes, it will be helpful to assume that it is. Assuming a positive offset voltage, V_b is automatically adjusted to be effectively equal to the amplifier's existing offset voltage. If V_b, which is supplied by circuit 65 is less than the offset voltage, the output voltage e_b is above the midpoint level (see line 63 in FIG. 8). Consequently, circuit 65 increases V_b until it equals the offset voltage which occurs when e_b is at midpoint. On the other hand, if V_b is greater than the offset voltage, the output voltage e_b is below the midpoint, causing circuit 65 to reduce V_b.

When a gate pulse is applied at terminal 68, the circuit 65 holds V_b at its level just prior to the gate pulse application during the entire gate pulse duration. Thus, during the gate pulse period, circuit 65 supplies V_b which is equal to the offset voltage of the amplifier at the start of the gate pulse. The gate pulse also activates bias circuit 70 to apply the bias voltage V_b to the inverting 1 input of the amplifier. Assuming V_b to be of a positive polarity and equal to 5mV and further assuming Δe to be 1 mV when V_b is applied it drives the amplifier output to its lower saturation level e_{sat}.

During the gate pulse period, if any input signal received at terminal 72 activates an input circuit 73 to provide an input voltage V_i which in FIG. 7 is shown applied to summing point 67. In such an arrangement with V_b having a positive polarity, the polarity of V_i is negative and its amplitude is related to the input signal amplitude. In the particular example, as long as the amplitude of V_i is not greater than 5mV, the output e_b will not exceed its midpoint level e_{sat}. If, however, the amplitude of V_i exceeds 6mV, it will drive the amplifier to its upper saturation level e_{sat} (since Δe is assumed to be equal to 1 mV). In the particular example, it is assumed that when the output e_b is at its saturation level e_{sat}, it indicates at output terminal 75 the presence of an input signal. It is thus seen that for such presence to be indicated V_i produced as a function of the input signal has to exceed the threshold voltage V_b by Δe, and is independent of the amplifier's actual offset voltage at the time of detection.

As previously indicated, any output level, rather than the midpoint level e_{sat} along the linear region 63, may be selected as the output of e_b prior to the application of the gate pulse, such as the level indicated by point 76 which is below the midrange level e_{sat}. Also, any level, such as that indicated by point 78, along the linear region, which when exceeded, indicates the presence of an input signal, may be selected. In such a case, the presence of an input signal is indicated when V_i exceeds V_b by a minimal voltage necessary to raise the output voltage e_b from the level indicated by point 76 to or above the level indicated by point 78. The minimal voltage is designated in FIG. 8 by Δe. Since in practice Δe depends on the difference between the levels designated by points 76 and 78, and the gain of the operational amplifier and is generally very small as compared with V_b, it can be ignored. Thus, it can be stated that herein an input signal is assumed to be detected whenever the amplitude of V_i exceeds the V_b amplitude.

Attention is now directed to FIG. 9 which is a detailed diagram of an embodiment incorporating operational amplifier 55. In this embodiment, the bias voltage with a negative polarity is applied to the inverting input 1 while the input voltage V_i is applied to the non-inverting input 2. Also, in this embodiment, the input signal is detected only if V_i is of a negative polarity and...
its amplitude exceeds the V_a amplitude. In FIG. 9, the inverting input 1 is shown connected through a resistor R_{11} to a terminal 80 at which $-12v$ is applied and through a resistor R_{12} to terminal 81 to which the source (S) electrode of a voltage follower FET 82 is connected. The drain (D) electrode of FET 82 is connected to terminal 82 at which $+12v$ is applied. The gate (G) electrode of FET 82 is connected at terminal 84 to a capacitor C2 which is connected at one end to ground. Thus, the voltage at the source electrode of FET 82 follows the voltage across the capacitor. The output terminal 85 of the amplifier is connected to the detector output terminal 75 and through a resistor R_{13} to an FET 86 which is also connected to terminal 84 and whose gate electrode is connected to a terminal 88, which forms part of the bias circuit 70.

Circuit 70 is shown comprising a transistor Q3 whose base 88 and through resistor R_{14} to its emitter which is connected to $-12v$ at terminal 80. The Q3 collector is connected at terminal 88 to a resistor R_{15} which is also connected to $+12v$ and to the cathode of a diode 90. The anode of the diode is connected through a resistor R_{16} to the inverting input 1. Thus, resistor R_{16}, diode 90 and the collector-to-emitter path of Q3 are connected in series across R11. Q3 is off except during the gate pulse period. The input circuit 73 comprises resistors R_{17} and R_{18}, the former being connected between input terminal 72 and non-inverting input 2 and the latter between terminal 72, and ground. Resistor R_{18} is quite small so that in the absence of an input signal at terminal 72 input terminal 2 is effectively at ground.

In the absence of a gate pulse at terminal 68, Q3 is off and therefore the resistance between terminal 1 and terminal 80 is only the resistance of R11. Since the input signal is only expected during the period of the gate pulse, in the absence of the latter, non-inverting terminal 2 is at ground. Also, in the absence of a gate pulse FET 86 is turned on and therefore capacitor C2 is charged up through R_{13} and FET 86 to the output voltage e_0. Consequently, the voltage at terminal 81 is controlled by the output voltage e_0.

With terminal 80 at $-12v$, the values of R_{11} and R_{12} are chosen to stabilise the output voltage e_0 of amplifier 55 at a selected level within its linear region irrespective of the amplifier's offset voltage or any changes therein. Assuming that the amplifier's lower and upper saturation levels are ground, i.e., 0v and 4v, respectively, for a linear region of 4 volts any level within this region may be selected. For example, 1.2v represented by point 92 on line 94 in FIG. 10 is assumed to be selected. The midpoint level of 2v is represented by point 95. With terminal 80 at $-12v$, R_{11} and R_{12} are chosen so that the voltage e_0 is at ground. The gate to source voltage V_{gs} of FET 82 is assumed to be zero. With

$$R_{11} = 10 \text{ (in K} \Omega)$$

and representing the resistance of R_{12} in KΩ as R_{12}

$$12 + 1.2/10 + R_{12} = 1.2 = -0/R_{12}$$

Therefore, $R_{12} = 1$.

Assuming that the offset voltage is zero with both terminals 1 and 2 at ground, $(e_1 = e_0 = 0)$, the output of the amplifier tries to move toward the midpoint level of 2.0v. However, any small increase of the output voltage about 1.2v increases the voltage at the inverting input 1. Due to the large gain of the operational amplifier 55 even a very small increase in e_1 causes a significant change in the output voltage. For example, assuming that $\Delta e = 2mv$, only an increase of 0.8mv in e_1 is necessary to lower the voltage e_0 from 2v to 1.2v. With R_{11} and R_{12}, 10kΩ and 1kΩ, respectively an increase in the output voltage from 1.2v of 0.88mv is sufficient to increase the voltage e_0 by 0.8mv. It is thus seen that the output voltage e_0 remains effectively at 1.2v. If for any reason the offset voltage changes from zero, it is automatically adjusted and e_0 remains effectively at 1.2v. For example, assuming that the offset voltage rises to (or is) +4mv, e_0 rises by 4.4mv from 1.2v to 1.2044v to provide the required offset voltage. Again, since 4.4mv as compared with 1.2v is insignificant, it can be stated that e_0 remains effectively at 1.2v during the stabilisation phase prior to the arrival of the gate pulse. That is, e_0 is maintained at the selected level in its linear region.

When the gate pulse is applied at terminal 68, Q3 is turned on and it remains on during the entire gate pulse duration. As a result, FET 86 is turned off, thereby decoupling the amplifier output terminal 85 from capacitor C2. Consequently, the voltage across the latter remains constant and therefore the voltage at terminal 81 does not change during the gate pulse duration. As a result, the bias voltage, represented by the voltage at terminal 81, is unchanged. Also, when Q3 is turned on and ignoring the resistance across diode 90 and the collector-to-emitter path of Q3, R_{16} is effectively connected in parallel across R11. The value of R_{16} is chosen so that the voltage at the inverting terminal 1, i.e., e_1 drops from its voltage just prior to the application of the gate pulse by a selected value, defined as V_{th}. Since the voltage at the inverting terminal 1 drops, the output voltage e_0 rises.

Depending on the amplitude of V_{th}, e_1 may remain in its linear region or become saturated at its higher level of $e_0 = 4v$. The rise of e_0 is represented by arrow 96 in FIG. 10. The output voltage e_0 does not change from the level to which it is driven when V_{th} is applied until an input signal is applied at terminal 72. When applied, a voltage V_I related to the input signal amplitude is applied to the non-inverting terminal 2. In the particular example, the polarity of the input signal and that of V_I is assumed to be negative. Consequently, $e_1 - e_2$ increases and therefore e_0 decreases. The direction of change of e_0 as a function of V_I is represented by arrow 97.

If the amplitude of V_I is not greater than the amplitude of V_{th}, e_0 does not fall below 1.2v. If, however, the amplitude of V_I exceeds the V_{th} amplitude, e_0 will be lower than 1.2v. In the particular example in which $\Delta e = 2mv$. If V_I exceeds V_{th} by approximately 1.2mv, e_0 saturates at its lower level of 0 volt. Such an output level can be used to indicate the presence of an input signal. In practice, any level in the linear region below 1.2v such as that represented by point 99 may be selected to indicate the presence of the input signal. The selected level however should be sufficiently spaced from 1.2v to insure that it is not responsive to $e_0 \approx 1.2v$.

From the foregoing, it should thus be apparent that herein by eliminating the effect of the offset voltage any signal can be detected when producing a voltage V_I which exceeds V_{th} by a minimal amplitude, which can be neglected or regarded as part of V_{th}. Since e_0 can be made quite small, any small signal can be detected.
This is not the case in the prior art in which due to the offset voltage which is generally in the range of several millivolts and which may be of either positive or negative polarity, only signals which exceed a bias voltage by more than twice the maximum possible offset voltage can be detected with any degree of accuracy.

In the foregoing described embodiment, advantage is taken of the linear region of the operational amplifier to stabilize the detector at a level in this linear region. The teachings of the invention are equally applicable to a regenerative voltage circuit which can be thought of as having a double valued output \(e_n \) over a known region of the input \(e_{in} \) as diagrammed in FIG. 11. The input \(e_{in} \) is the difference between \(e_1 \) and \(e_2 \), where \(e_1 \) is the voltage at an inverting input terminal 1 and \(e_2 \) is the voltage at a noninverting input terminal 2, of an amplifier 100 shown in FIG. 12. The regenerative property is realized by the positive feedback via resistor R20. In the regenerative voltage circuit, \(e_{in} \) is at one level, e.g., high level 102 as long as \(e_2 \) does not exceed a trigger level or point \(e_T \); when this point is exceeded, it causes the output to switch to the lower level 103. Once switched, \(e_2 \) remains at this level until \(e_2 \) falls below a trigger level or point \(e_T \) which is less than \(e_T \) when switching to the upper level takes place. Between \(e_T \) and \(e_T \), the output \(e_2 \) depends on \(e_{in} \) and its present state or level.

In accordance with the present invention, the circuit 100 is stabilized at one of the trigger points, e.g., \(e_T \) prior to the application of the gate pulse. Therein \(e_2 \) is controlled so that \(e_1 - e_2 = e_T \) and \(e_2 \) is at its upper level 102. Then the gate pulse applies a bias voltage \(V_T \) which lowers \(e_T \) by exactly \(V_T \). When the input signal is received, \(e_2 \) switches to the lower level 103 only if \(V_T \), produced in response to the input signal, exceeds \(V_T \). Otherwise \(e_2 \) remains at the upper level 102.

As seen from FIG. 11, the non-inverting terminal 2 is connected through a resistor R21 to a terminal 105 at which \(+ \) is applied, and through a resistor R22 to a terminal 106. The latter is the output terminal of voltage integrator 38, similar to that shown in FIG. 3. Similarly, one-shots 34 and 35, and gate 36 perform functions similar to those of corresponding circuits in FIG. 3. Briefly, assuming that circuit 100 is stabilized at \(e_T \) if \(e_{in} > e_T \), and is at the lower level, one-shot 34 is triggered. It in turn triggers one-shot 35, and since in the absence of a gate pulse 36 is closed, during the pulse of one-shot 35 the output of integrator 38 rises raising \(e_2 \). During the absence of the pulse from one-shot 35, the output of integrator 38 decreases thereby lowering \(e_2 \). During the pulse of one-shot 34, terminal 2 is shorted to ground via switch 108. Thus, circuit 100 is driven to its high level. At the end of the pulse from one-shot 34, if \(e_{in} \) is still greater than \(e_T \), the process is repeated until \(e_2 \) is pre-biased so that \(e_1 - e_2 = e_T \).

When the gate pulse is received, the integrator's output remains constant during the gate pulse duration since gate 36 is open. Thus, the prebias voltage at \(e_2 \) is constant. The bias \(+70 \) biases \(e_T \) by \(V_T \), e.g., increases \(e_T \) by \(V_T \). When an input signal is applied, input circuit 73 provides \(V_T \) to inverting terminal 1. In the present example, \(V_T \) is of a positive polarity and therefore \(e_T \) is increased. As long as \(V_T \leq V_{in} \), \(e_{in} \) is not greater than \(e_T \) and therefore \(e_2 \) remains at the high level. However, if \(V_T > V_{in} \), \(e_{in} \) exceeds \(e_T \) and therefore \(e_2 \) switches to the lower level, indicating the presence of the input signal.

It should be apparent that if desired, the circuit may be stabilized at trigger point \(e_T \). In such an embodiment, during stabilization \(e_T \) would be decreased until \(e_1 - e_T = e_T \) and both \(V_B \) and \(V_T \) would be of a negative polarity. In such an embodiment, level 102 would indicate the presence of an input signal. The direction of change of \(e_T \) when \(e_T \) is used as the stabilization point due to \(V_B \) and \(V_T \) are represented in FIG. 12 by arrows 110 and 111 respectively, while arrows 113 and 114 designate the direction of change when trigger point \(e_T \) is chosen for stabilization.

From the foregoing, it is thus seen that the last described embodiment is similar to the embodiment incorporating the tunnel diode, except that in the former a regenerative voltage circuit is employed rather than the tunnel diode which is effectively a regenerative current circuit. Also, in the regenerative voltage circuit, either one of two trigger points may be selected for stabilization, while in the tunnel diode the peak current is selected as the trigger point.

Although particular embodiments of the invention have been described and illustrated herein, it is recognized that modifications and variations may readily occur to those skilled in the art and consequently it is intended that the claims be interpreted to cover such modifications and equivalents.

What is claimed is:

1. A signal detector comprising:
 first means having input means which comprise first and second input terminals for providing an output voltage at a level which is a function of the voltage difference between said input terminals; a gate terminal at which a gate pulse of a selected duration is applicable;
 control means coupled to said first means and to said gate terminal for applying during the absence of a gate pulse a prebias voltage to said input means as a function of the output voltage of said first means to maintain the output voltage substantially constant at a selected level and for applying said prebias voltage to said input means during the duration of said gate pulse at the same level at which the prebias voltage was applied at the start of said gate pulse;
 second means for applying a bias voltage to said input means during said gate pulse period; and
 third means responsive to an input signal for applying an input voltage, which is related to the input signal amplitude, to said input means, whereby the output voltage of said first means deviates in a selected direction from said selected level by at least a selected first factor only when the amplitude of said input voltage exceeds the bias voltage amplitude by a selected second factor, which is independent of the amplitude of the prebias voltage applied to said input means during the gate pulse duration.

2. A signal detector as recited in claim 1 wherein said control means include voltage storage means for storing a voltage at an amplitude related to the amplitude of the output voltage of said first means during the absence of said gate pulse and for retaining the voltage stored therein related to the amplitude of the output voltage of said first means just prior to said gate pulse during the entire gate pulse duration; and
 means coupled to said voltage storage means for controlling the prebias voltage amplitude as a function
of the voltage amplitude stored in said voltage storage means.

3. A signal detector as recited in claim 2 wherein said second means include means for maintaining the bias voltage amplitude constant during the gate pulse duration.

4. A signal detector as recited in claim 2 wherein said second means comprise means for varying the bias voltage amplitude during the gate pulse duration.

5. A signal detector comprising:

an amplifier of the type having first and second input terminals defining amplifier input means and an output terminal for providing at said output terminal an output voltage at an amplitude which is a function of the amplitude difference of the voltages at said first and second input terminals, said output voltage amplitude varying linearly between a first amplitude and a second lower amplitude;

gate means including a gate terminal at which a gate pulse of a selected duration is applied to applying a bias voltage, definable as \(V_B \), to said amplifier input means during said gate pulse duration;

circuit input means including a circuit input terminal at which an input signal is applied during said gate pulse period for applying an input voltage, definable as \(V_I \), to said amplifier input means, the amplitude of \(V_I \) being a function of the input signal amplitude; and

control means coupled to said amplifier and to said gate means for applying during the absence of a gate pulse a prebias voltage to said amplifier input means at an amplitude which is a function of the amplitude of the amplifier output voltage so as to maintain the output voltage of said amplifier substantially constant at a selected amplitude in its linear region, and for applying during the gate pulse period said prebias voltage to said amplifier input means at a constant amplitude equal to the prebias voltage amplitude applied to said amplifier input means at the start of said gate pulse period, whereby when said bias voltage \(V_B \) and said input voltage \(V_I \) are applied to said amplifier input means, the output voltage amplitude deviates in a given direction from said selected amplitude by more than a selected first factor only when the amplitude difference between \(V_B \) and \(V_I \) is not less than a known second factor.

6. A signal detector as recited in claim 5 wherein said gate means include means for maintaining said bias voltage amplitude constant during the gate pulse duration.

7. A signal detector as recited in claim 5 wherein said gate means include means for varying the bias voltage amplitude during the gate pulse duration.

8. A signal detector as recited in claim 5 wherein said amplifier with said first and second input terminals being the inverting and non-inverting input terminals of said operational amplifier, which is characterized by a varying offset voltage representing the voltage difference between said input terminals required to maintain the output voltage substantially constant at said selected level under varying operating conditions of said operational amplifier, and said control means include means for automatically applying said prebias voltage to said input means at an amplitude corresponding to the amplitude of said offset voltage as a function of the output voltage amplitude so as to maintain said output voltage at said selected amplitude during the absence of said gate pulse.

9. A signal detector as recited in claim 8 wherein said gate means include means for maintaining the amplitude of said bias voltage substantially constant during said gate pulse duration.

10. A signal detector as recited in claim 8 wherein said gate means include means for varying the bias voltage amplitude during the gate pulse duration.

11. In combination with an amplifier of the type including a pair of input terminals, defining amplifier input means, and an output terminal at which an output voltage is produced which is a function of the voltage difference between said input terminals, said output voltage varying linearly in a linear region between an upper saturation level and a lower saturation level, said amplifier being characterized by a varying offset voltage definable as \(V_{off} \) which represents the required voltage difference between said input terminals needed to maintain the output voltage at the same level in its linear region under different operating conditions, the arrangement comprising:

gate means including a gate terminal at which a gate pulse of a selected duration is applied for applying a bias voltage definable as \(V_B \) to said amplifier input means;

control means coupled to said amplifier and to said gate means for providing a variable prebias voltage to said amplifier input means as a function of the amplifier output voltage during the absence of said gate pulse so as to maintain said output voltage at a selected substantially constant level in its linear region, and for applying said prebias voltage to said amplifier input means during the gate pulse duration at a level which is constant and equal to the prebias voltage at the start of said gate pulse; and

circuit means including a circuit input terminal at which an input signal is applied during the gate pulse duration for applying an input voltage definable as \(V_I \) to said amplifier input means, whereby during the gate pulse duration, the deviation of the output voltage from said selected substantially constant level is a function of the difference between \(V_B \) and \(V_I \) and is substantially independent of said offset voltage.

12. The combination as recited in claim 11 wherein said gate means comprise means for applying said bias voltage \(V_B \) at a constant amplitude during the gate pulse duration.

13. The combination as recited in claim 11 wherein said control means include voltage storage means and connecting means for connecting said voltage storage means to the amplifier output terminal during the absence of said gate pulse, and for decoupling said voltage storage means from said output terminal during the gate pulse duration, whereby in the absence of said gate pulse, said voltage storage means stores the output voltage and during the gate pulse duration said voltage storage means retains the last voltage stored therein, and means for applying said prebias voltage to said amplifier input means as a function of the voltage stored in said voltage storing means.

14. The combination as recited in claim 13 wherein said arrangement includes means for applying a first reference voltage to said first input terminal during at least the absence of said gate pulse, and means for con-
controlling the voltage at said second terminal with respect to said first reference voltage as a function of the voltage stored in said voltage storing means so that the output voltage in the absence of said gate pulse is at substantially said selected level.

15. The combination as recited in claim 14 wherein said first and second input terminals are the non-inverting and inverting input terminals of said amplifier, said control means including a source of a second reference voltage, a first resistor connected between said second reference voltage and said second input terminal and a second resistor connected between said second input terminal and means at which a voltage is applied which is substantially equal to the voltage stored in said voltage storing means, whereby an increase in the voltage in said voltage storing means increases the voltage at said second inverting input terminal.

16. The combination as recited in claim 15 wherein said gate means include means for varying the resistance between said second reference voltage source and said second input terminal during the gate pulse period to thereby change the voltage thereat the voltage applied thereto prior to the gate pulse by the bias voltage V_p.

17. In combination with a regenerative voltage circuit of the type including first and second input terminals defining input means and an output terminal at which an output voltage is provided at a level which is a function of the voltage difference between said output terminals, said output voltage level being switchable from a first level to a second level when said voltage difference exceeds a value defining a first trigger value of said circuit, with said output voltage being switchable from said second level to said first level when the voltage difference is less than a value defining a second trigger value of said circuit, which differs from said first trigger value, an arrangement comprising:

a gate terminal at which a gate pulse of a selected duration is applied;

control means coupled to said circuit and responsive to said gate pulse for automatically adjusting said voltage difference to equal said first trigger value so as to maintain the output voltage of said circuit at substantially said first level in the absence of said gate pulse and for biasing said input means by a bias voltage definable as V_p during the gate pulse duration so as to vary the voltage difference from said trigger value by V_p in a direction which maintains said output voltage at said first level, said control means including means for resetting said circuit in said first level when said output voltage is at said second level;

means including an input terminal at which an input signal is applied during the gate pulse duration coupled to said circuit for varying the voltage difference between said first and second input terminals in a direction toward said first trigger value by an input voltage, definable as V_t, which is related to the input signal amplitude, so that said voltage difference exceeds said first trigger value and said output voltage switches from said first level to said second level only when the amplitude of V_t exceeds the amplitude of V_p.

18. The arrangement as recited in claim 17 wherein said control means include means for maintaining said bias voltage constant during the gate pulse duration.

19. The arrangement as recited in claim 17 wherein said control means include means for varying said bias voltage during said gate pulse duration.

20. In combination with an operational amplifier of the type including a pair of input terminals, defining amplifier input means, and an output terminal at which an output voltage is produced which is a function of the input voltage difference between said input terminals, said output voltage varying linearly in a linear region between an upper saturation level and a lower saturation level, said amplifier being characterized by a varying offset voltage definable as V_{off} which represents the required voltage difference between said input terminals needed to maintain the output voltage at the same level in its linear region under different operating conditions, the arrangement comprising:

a gate terminal at which a gate pulse of a selected duration is applied;

control means coupled to said amplifier and responsive to said gate pulse for automatically controlling said input voltage difference during the absence of said gate pulse so that the output voltage is substantially constant at a first selected level in said linear region spaced apart from a second selected level, and for varying the input voltage difference during the gate pulse duration by a bias voltage definable as V_p, from the input voltage difference at the start of said gate pulse so that the output voltage level changes from said first selected level to a third level in a direction away from said second selected level; and

means coupled to said circuit and including an input terminal at which an input signal is applied during the gate pulse duration for applying an input voltage to said circuit input means, said input voltage definable as V_t being related to the amplitude of said input signal, said input voltage varying the input voltage difference in a direction so that said output voltage varies from said third level toward said first level, exceeding said second level only when the amplitude of said input voltage V_t exceeds the amplitude of the bias voltage V_p by a fixed factor which is independent of said off-set voltage.

21. In combination with a regenerative voltage circuit of the type including a pair of input terminals defining input means and an output terminal, the output voltage at said output terminal being switchable between said first and second levels, with the output voltage switching from said first to said second level only when the voltage difference between said input terminals deviates in a first direction from a first trigger value and said output voltage switches from said second level to said first level when the voltage difference deviates in a second direction from a second trigger value, which differs from said first trigger value, the arrangement comprising:

a gate terminal at which a gate pulse of a selected duration is applied;

control means coupled to said regenerative voltage circuit and to said gate terminal for applying to the input means of said circuit a prebias voltage to control said voltage difference to equal a selected one of said trigger values during the absence of a gate pulse and for maintaining said prebias voltage constant at the level applied just prior to the gate pulse during the gate pulse duration;
bias means responsive to said gate pulse for applying a bias voltage to said input means during the gate pulse duration so as to bias said voltage difference away from said selected trigger value; and circuit means responsive to an input signal and coupled to said input means for applying to said input means an input voltage at an amplitude related to the input signal amplitude to bias said voltage difference toward said selected trigger value thereby said output voltage changes from its level prior to the gate pulse to the other level only if the amplitude of said input voltage exceeds the bias voltage amplitude.

22. The arrangement as recited in claim 21 wherein said bias means include means for maintaining said bias voltage constant during said gate pulse duration.

23. The arrangement as recited in claim 21 wherein said bias means include means for varying the bias voltage during said gate pulse duration.

24. A signal detector responsive to applied input signals and gate pulses for providing an output signal which is indicative of the simultaneous occurrence of an input signal that exceeds a threshold value and a gate pulse, said detector having: a tunnel diode which is switchable from a low to a high voltage state in response to a current which exceeds a first value flowing therethrough and which is switchable from said high to said low voltage state when the current through the tunnel diode is less than a second value; control means for providing during the gate pulse intervals a pre-bias current substantially equal to said first value; bias means for reducing during the gate pulse intervals the current flowing through said tunnel diode by an amount which is a function of said threshold value; means for coupling said input signals to said tunnel diode during the gate pulse intervals; output means for producing an output signal when said tunnel diode is in its high voltage state during a gate pulse interval; and wherein the improvement comprises said control means including means for sensing when said tunnel diode is in its high voltage state; means for reducing the current through said tunnel diode below said second value for a first time interval following each time the high voltage state of said tunnel diode is sensed; means for producing a control signal, having a duration of a second time interval, following each time a high voltage state of said tunnel diode is sensed, with said second time interval being longer than said first time interval; integrator means for providing during the interval between gate pulses a pre-bias current which increases substantially linearly during the absence of said control signal and for providing a pre-bias current during the gate pulse intervals which is substantially equal to the value of the pre-bias current at the start of each respective gate pulse; and means for applying said pre-bias current to said tunnel diode.

25. The signal detector of claim 24 wherein said bias means includes means for varying, during the gate pulse interval, the current flowing through said tunnel diode.
UNIVERS STATES PATENT OFFICE
CERTIFICATE OF CORRECTION

Patent No. 3,828,204 Dated August 6, 1974

Inventor(s) Robert P. Farnsworth

It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Column 15, line 11, "am" should be --an--.
Column 17, line 49, after "said" insert --first--.
Column 19, line 9, "thereby" should be --whereby--.

Signed and sealed this 29th day of October 1974.

(SEAL)
Attest:

McCoy M. Gibson Jr.
Attesting Officer

C. Marshall Dann
Commissioner of Patents