ITALIAN PATENT OFFICE

Document No.

102012902112662A1

Publication Date

20140620

Applicant

DELTA MED SPA UNIPERSONALE

Title

AGO-CANNULA CON ELEMENTO DI PROTEZIONE

DESCRIZIONE

Campo di applicazione

L'invenzione riguarda un ago-cannula con elemento di protezione, generalmente utilizzabile per permettere agli operatori sanitari di maneggiare un ago-cannula con la massima sicurezza senza il pericolo di pungersi accidentalmente.

5

Stato della Tecnica

Sono noti numerosi apparati per uso medico che 10 comprendono un ago per eseguire iniezioni in vasi sanguigni di pazienti e che sono forniti di dispositivi di protezione per evitare che, dopo l'uso, gli operatori possano ferirsi accidentalmente.

In particolare, questi dispositivi di sicurezza sono 15 utilizzati per impedire che attraverso una accidentale puntura, possano trasmettersi malattie infettive tra un paziente e gli operatori sanitari che lo hanno in cura e che esequono le terapie previste.

Tipicamente, i dispositivi di protezione noti 20 consistono in molle sagomate o arpionismi che destinate a restare disattivati quando l'ago è utilizzato e che sono invece attivati dopo l'uso dell'ago, cioè dopo quest'ultimo è estratto dal vaso sanguigno paziente dopo la iniezione.

25 In dettaglio, i dispositivi di protezione noti sono

realizzati in modo tale da poter scorrere sul fusto di un ago e per disporsi in modo irreversibile in una posizione di completa copertura della punta di questo.

Questi dispositivi sono sistemati all'interno di appositi elementi di alloggiamento, normalmente in forma di gusci scatolari, che li contengono e che permettono agli operatori di afferrarli e di farli scorrere lungo il fusto dell'ago per portarli dalla posizione disattivata a quella attiva di protezione.

Altri dispositivi di protezione noti sono realizzati in modo tale da potersi armare in modo automatico durante la fase di estrazione dell'ago dal vaso sanguigno del paziente.

Anche in questo caso, il dispositivo di sicurezza è alloggiato all'interno di un guscio scatolare che, come nei casi descritti in precedenza, è sistemato tra una estremità prossimale dell'ago ed il porta-ago e che, pertanto, risulta un elemento aggiuntivo costantemente presente sull'apparato sia durante, sia dopo l'impiego di quest'ultimo.

Questo stato della tecnica ha alcuni inconvenienti.

Un primo inconveniente consiste nel fatto che per poter disporre di questi dispositivi di protezione è sempre necessario prevedere un guscio scatolare che lo contenga.

Questo implica che i costi di produzione degli apparati che sono dotati di dispositivi di protezione aumentino sensibilmente, sia perché è richiesto un apposito guscio che contenga il dispositivo di sicurezza, sia perché è necessario assemblare i dispositivi i sicurezza inserendoli all'interno dei rispettivi queci.

Un secondo inconveniente consiste nel fatto che i gusci, per quanto possano essere realizzati con dimensioni ridotte, rappresentano sempre un corpo addizionale che è presente sul fusto dell'ago e che, di conseguenza, ne limita la libertà di manovra da parte degli operatori sanitari.

È necessario ricordare che le dimensioni degli aghi utilizzati normalmente in ambito medico per eseguire iniezioni nei vasi sanguigni di pazienti sono estremamente ridotte e che gli operatori devono indossare guanti di protezione che limitano la sensibilità delle dita e, di conseguenza, la sicurezza della presa.

Pertanto, la presenza di un elemento addizionale

20 diventa una ulteriore limitazione alla libertà di
movimenti, come indicato in precedenza.

Presentazione dell'invenzione

Scopo dell'invenzione è quello di migliorare lo stato della tecnica nota.

25 Un altro scopo dell'invenzione

5

10

Un ulteriore scopo dell'invenzione

Secondo un aspetto dell'invenzione è previsto un agocannula con elemento di protezione, in accordo con le caratteristiche della rivendicazione 1.

- 5 L'invenzione permette di ottenere i seguenti vantaggi:
 - realizzare un ago-cannula che contenga al proprio interno l'elemento di protezione, eliminando la necessità di prevedere corpi aggiuntivi di contenimento;
- 10 migliorare le condizioni di manovra dell'agocannula, essendo assente tra porta-ago ed ago il contenitore dell'elemento di protezione;
 - attivare in modo automatico l'elemento di protezione durante la fase di estrazione dell'ago dalla cannula dopo che questa è stata inserita in una vaso sanguigno di un paziente.

15

20

Breve descrizione dei disegni

Ulteriori caratteristiche e vantaggi dell'invenzione risulteranno maggiormente evidenti dalla descrizione dettagliata di forme di realizzazione preferite, ma non esclusive, di un ago-cannula con elemento di protezione, illustrate a titolo di esempio non limitativo nelle unite tavole di disegno in cui:

la FIG. 1 è una vista interrotta, molto schematica ed 25 in scala ingrandita di una sezione longitudinale di un ago-cannula secondo l'invenzione, in una configurazione di utilizzo, presa secondo un piano di traccia I-I di Figura 14;

la FIG. 2 è una vista dell'ago-cannula di Figura 1,
5 in una configurazione successiva all'utilizzo;

la FIG. 3 è una vista di dettaglio di un tratto di un fusto di un ago sul quale è montato un elemento di protezione della punta, in una configurazione disattivata e privata del porta-cannula per una migliore visione;

10 la FIG. 4 è una vista del tratto di un fusto dell'ago di Figura 3, in una configurazione attivata dell'elemento di protezione;

la FIG. 5 è una vista laterale dell'elemento di protezione secondo l'invenzione;

15 la FIG. 6 è una vista in prospettiva dell'elemento di protezione, secondo un primo punto di osservazione;

la FIG. 7 è una vista in prospettiva dell'elemento di protezione, secondo un secondo punto di osservazione opposto a quello di Figura 6;

le FIGG. da 8a a 8d mostrano schematicamente ed in scala ridotta i passaggi da una condizione disattivata ad una condizione attivata dell'elemento di protezione di Figura 1;

la FIG. 9 è una vista in prospettiva di un porta-ago 25 in cui l'elemento di protezione è nella configurazione attivata

5

la FIG. 10 è una vista in sezione longitudinale di una cannula in cui è montato un elemento di protezione secondo l'invenzione presa secondo un piano di traccia X-X di Figura 14;

la FIG. 11 è una vista in sezione longitudinale ed in scala ingrandita di un dettaglio della cannula di Figura 10, presa secondo un piano di traccia XI-XI di Figura 13;

la FIG. 12 è una vista in scala ulteriormente

10 ingrandita dell'elemento di protezione in una
configurazione attivata;

la FIG. 13 è una vista in sezione trasversale della cannula di Figura 10, presa secondo un piano di traccia XIII-XIII nella Figura 10;

15 la FIG. 14 è una vista di insieme ed in scala leggermente ridotta dell'ago-cannula secondo l'invenzione, in una configurazione assemblata e pronta all'uso.

Descrizione dettagliata di un esempio di realizzazione preferito.

20 Con riferimento alle figure, con 1 è indicato complessivamente un ago-cannula, generalmente utilizzabile per eseguire iniezioni in un vaso sanguigno di un paziente.

L'ago-cannula 1 comprende un porta-ago 2 che supporta 25 un ago 3 che ha un asse longitudinale "A" e che è

destinato ad essere inserito coassialmente in una cannula 4 flessibile, per renderla temporaneamente resistente alla flessione, fungendo da introduttore di questa all'interno del vaso sanguigno senza flettersi.

5 La cannula 4 è supportata alla estremità distale di un porta-cannula 5 e si prolunga da questo verso l'esterno.

L'ago 3 forma una punta 3a alla estremità distale del fusto 3b e, in prossimità di questa, un elemento di 10 impegno trasversale, nel caso specifico, una bugna 9 in rilievo.

Nel porta-cannula 5 è ricavata una cavità interna assiale 6 che è delimitata da pareti 7 e nella quale è destinato ad essere ricevuto di precisione e trattenuto in modo rimovibile un elemento di protezione 8.

15

20

Questo elemento di protezione 8 è costituito da un corpo laminare, realizzato normalmente con un materiale metallico come, ad esempio, acciaio armonico, che è sagomato in modo tale da formare una parete prossimale 10 trasversale al fusto 3b dell'ago 3 e due bracci 11 e 12 che si prolungano da due bordi opposti e piegati 10a della parete 10, rivolti in direzione della punta 3a.

Il braccio 11 è realizzato in modo tale da mantenere una posizione spontaneamente obliqua rispetto al braccio 25 12, in modo tale da tendere a convergere verso questo e,

di conseguenza, verso il fusto 3b dell'ago 3.

5

Inoltre, il braccio 11 forma, alla estremità opposta a quella che si collega con la parete 10, una seconda parete 13 che è piegata in direzione del braccio 12 e che è suddivisa in due sezioni 13a e 13b tra loro consecutive e leggermente piegate una rispetto all'altra.

Nella parete 10 è ricavata una prima apertura 14 che ha perimetro circolare ed attraverso la quale è destinato a passare in modo scorrevole il fusto 3b dell'ago 3.

- Nella sezione 13a della seconda parete 13 è ricava una seconda aperura 15, anche questa destinata ad essere attraversata dal fusto 3b, quando l'elemento di protezione 8 si trova in una configurazione disattivata come visibile nelle Figure 3, 8a, 8b, 8c.
- Il braccio 11 forma anche due paratie laterali 16 che sono piegate perpendicolarmente ad esso e che, insieme alla seconda parete 13 alla quale sono accostate, creano una sorta di testa scatolare 16a che, tuttavia, ha la parte rivolta verso la parete 10 completamente aperta.
- La seconda sezione 13b sagoma, alla propria estremità terminale libera, un labbro 17 che è ripiegato in direzione del braccio 11 e la cui funzione sarà descritta più avanti.
- Il braccio 12 è sostanzialmente rettilineo e fisso 25 rispetto alla parete prossimale 10, risultando

sostanzialmente perpendicolare a questa.

Il braccio 12 ha una estremità distale libera che forma un secondo labbro 18 che è piegato verso il braccio 11 e, di conseguenza, verso il fusto 3b dell'ago 3.

Si deve notare che il diametro della apertura 14 è leggermente inferiore al diametro della bugna 9 e, per questa ragione, la bugna 9 non può attraversarla quando l'ago 3 scorre rispetto all'elemento di protezione 8.

Al contrario, le dimensioni della seconda apertura 15
10 sono leggermente maggiori del diametro esterno della bugna
9, cosicché questa può attraversarla quando l'ago 3 scorre
rispetto all'elementi di protezione 8.

L'elemento di protezione 8 è normalmente trattenuto in configurazione disattiva all'interno della cavità 6, normalmente per aderenza tra i bordi delle paratie laterali 16 e le pareti 7, come visibile in dettaglio nella Figura 13.

15

20

Il fusto 3b, quando l'ago-cannula 1 non è utilizzato, attraversa entrambe le aperture 14 e 15, e spinge trasversalmente sul braccio 11, costringendolo a flettersi verso la parete 7 fino a mantenere una posizione elasticamente forzata che è sostanzialmente parallela al braccio 12.

Questa condizione è visibile in dettaglio schematico 25 nelle Figure 1, 3, e più in generale nelle Figure 8a, 8b, 8c.

5

Dopo l'uso dell'ago-cannula 1, quando invece l'elemento di protezione 8 è in posizione attivata, il braccio 11 assume la propria posizione naturale obliqua rispetto alla parete prossimale 10 e la seconda parete 13 si dispone davanti alla punta 10a, come visibile nelle Figure 2 e 12.

Il funzionamento è il seguente: quando l'ago-cannula

1 è in configurazione di non utilizzo, oppure di

10 preparazione all'utilizzo, si trova nella condizione
illustrata nella Figura 8a.

In dettaglio, l'elemento di protezione 8 è inserito all'interno della cavità assiale 6 e trattenuto in questa dall'aderenza tra le paratie 16 e le pareti interne 7.

15 L'ago 3 attraversa entrambe le pareti 10 e 13 dell'elemento di protezione 8, passando nelle aperture 14 e 15.

deve notare che la seconda apertura è leggermente ellittica per poter essere allineata alla 20 prima apertura 14 in questa condizione di disattivazione dell'elemento di protezione 8, nonostante che la seconda parete 13 di questo sia obliqua rispetto alla parete prossimale 10: questa condizione di allineamento che permette lo scorrimento dell'ago 3 è visibile in dettaglio 25 nella Figura 13.

Dopo che l'operatore sanitario ha eseguito una iniezione con l'ago-cannula 1 introducendolo in un vaso sanguigno di un paziente, procede ad estrarre l'ago 3 dalla cannula 4 con una manovra di ritrazione, cioè mantenendo la cannula 4 nel vaso sanguigno del paziente e contemporaneamente sfilando in direzione prossimale l'ago 3, afferrando il porta-ago 2.

5

In questa manovra di sfilamento, il fusto 3b dell'ago 3 scorre progressivamente all'interno delle due aperture 10 14 e 15 (si veda la Figura 8b) fino a quando la bugna 9, dopo aver attraversato la seconda apertura 15, si arresta contro il bordo perimetrale della prima apertura 14: questa condizione è visibile nella Figura 8c.

Continuando la azione di sfilamento, l'operatore vince la forza di aderenza che trattiene l'elemento di protezione 8 nella cavità 6 e lo sfila progressivamente insieme all'ago 3, fino ad estrarlo completamente dalla cavità 6: questa condizione è visibile nella Figura 8d.

Quando la punta dell'ago 3a 3. 20 dall'elemento di protezione 8 oltrepassa la disimpegnandosi da questa, aperura 15 11 braccio riprende istantaneamente la propria posizione obliqua e la seconda apertura 15 risulta definitivamente ed irreversibilmente disallineata rispetto alla prima 25 apertura 14 ed alla punta За che viene

completamente ed in modo automatico dalla prima sezione 13a della seconda parete 13 (si veda la Figura 12), proteggendo gli operatori da punture accidentali durante il completamento della manovra di estrazione e di successivo smaltimento dell'ago 3.

5

10

Come si nota nella Figura 12, nella configurazione attivata, l'elemento di protezione 8 si dispone leggermente inclinato rispetto all'asse "A" del fusto 3b dell'ago 3 ed il secondo labbro 18 va ad appoggiarsi sul fusto 3b rendendo maggiormente stabile la posizione dell'elementi di protezione 8 sull'ago 3.

Si è in pratica constatato come l'invenzione raggiunga gli scopi prefissati.

L'invenzione come concepita è suscettibile di 15 modifiche e varianti, tutte rientranti nel concetto inventivo.

Inoltre, tutti i dettagli sono sostituibili con altri elementi tecnicamente equivalenti.

Nella attuazione pratica, i materiali impiegati
20 nonché le forme e le dimensioni potranno essere qualsiasi,
a seconda delle esigenze, senza per questo uscire
dall'ambito di protezione delle seguenti rivendicazioni.

RIVENDICAZIONI

- 1. Un ago-cannula (1) comprendente:
- Un porta-ago (2) che supporta in modo accoppiabile coassialmente con una cannula (4)esequire una iniezione in un vaso sanguigno, un ago (3) che ha un fusto (3b) che ha un asse longitudinale (A), una (3a) (9)distale ed un elemento di impegno trasversale posizionato in prossimità di detta punta (3a);
- Un porta-cannula (5) da una estremità distale dal 10 quale si prolunga detta cannula (4) e che, alla opposta estremità prossimale, forma una cavità interna (6) di accoppiamento con detto porta-ago (5) e che ha pareti interne (7);
- Un elemento di protezione (8) di detta punta (3a) 15 dell'ago (3) spostabile da una posizione disattivata ad una irreversibile posizione attivata dopo l'uso dell'agocannula (1) in cui è posizionato oltre la punta (3a) dell'ago (3);
- caratterizzato dal fatto che detto elemento di 20 protezione (8) in detta posizione disattivata è trattenuto in modo rimuovibile tra dette pareti (7) di detta cavità interna (6).
- Un ago-cannula secondo la rivendicazione 1, in cui tra detta cavità interna (6) e detto elemento di
 protezione (8) sono interposti mezzi di ritenzione

rimuovibile (16) di detto elemento di protezione (8), configurati in modo tale da trattenerlo in detta posizione disattivata e rilasciarlo verso detta posizione attivata.

- 3. Un ago cannula secondo la rivendicazione 1 o 2, 5 in cui detto elemento di protezione (8) comprende un corpo laminare che sagoma:
 - una parete prossimale (10) trasversale a detto ago (3)
 nella quale è ricavata una prima apertura di passaggio
 (14) di detto fusto (3b) che ha un perimetro di arresto di
 detto elemento di impegno trasversale (9);

10

- una primo ed un secondo braccio (11, 12) che si prolungano da detta parete prossimale in direzione di detta punta (3a);
- almeno detto primo braccio (11) sagomando una seconda 15 parete (13) rivolta trasversalmente a detto ago (3) e nella quale è ricavata una seconda apertura di passaggio (15)detto \mathtt{di} fusto (3b) che in detta posizione disattivata è allineata con detta prima apertura (14) e che in detta posizione attivata è disallineata da detta 20 prima apertura (14).
 - 4. Un ago-cannula secondo le rivendicazioni 2 e 3, in cui detti mezzi di ritenzione comprendono una coppia di paratie laterali (16) che si prolungano bilateralmente da almeno uno di detti primo e secondo braccio (11, 12) e che convergono verso detta seconda parete (13), dette paratie

laterali (16) avendo rispettivi bordi di impegno aderente contro dette pareti interne (7) di detta cavità interna (6).

- 5. Un ago-cannula secondo la rivendicazione 1, in cui detto primo braccio (11) in detta posizione attivata è normalmente obliquo rispetto a detta parete prossimale trasversale (10).
- Un ago-cannula secondo la rivendicazione 1, in cui detto secondo braccio (12) è normalmente
 perpendicolare a detta parete prossimale trasversale (10).
 - 7. Un ago-cannula secondo qualunque una rivendicazioni precedenti, in cui detto elemento di protezione (8) è scorrevolmente retraibile da detta cavità (6) con la ritrazione di detto ago (3), a contrasto di detti mezzi di ritenzione (16) rimuovibile, quando detti mezzi di impegno trasversale (9) arrestati contro detto perimetro di arresto di detta prima apertura di passaggio (14).

20

15

CLAIMS

1. A cannula-needle (1) comprising:

5

25

- A needle holder (2) that holds a needle (3) which is designed to be coaxially coupled with a cannula (4) for making an injection into a blood vessel and having a stem (3b) having a longitudinal axis (A), a distal tip (3a) and transversal engaging means (9) fitted in the proximity of said tip (3a);
- A cannula holder (5) from one of its ends said

 10 cannula (49 extends and that at the opposing proximal end shapes an inner cavity (6) for coupling with said needle holder (2) and having inner walls (7);
- A protective member (8) of said needle tip (3a) which can be moved from a deactivated position to an irreversible activated position after the use of the cannula-needle (1) wherein it is placed over the needle tip (3a);

characterized in that said protective member (8) in said deactivated position is retained in a removable way 20 among said walls (7) of said inner cavity (6).

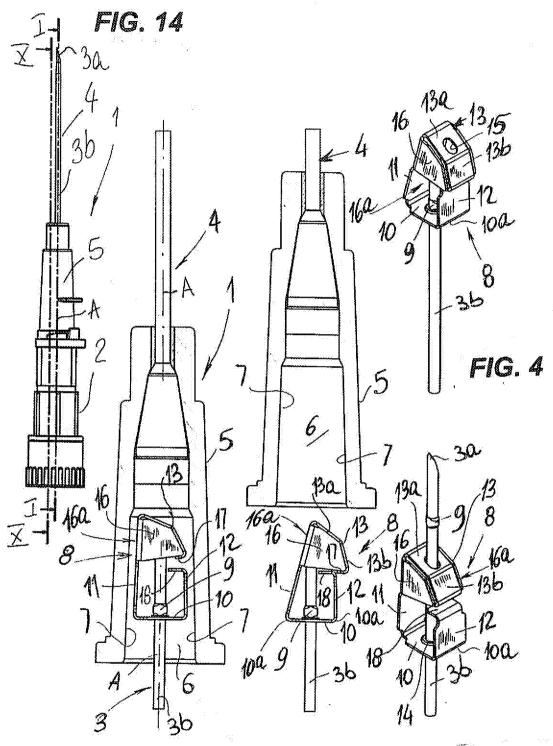
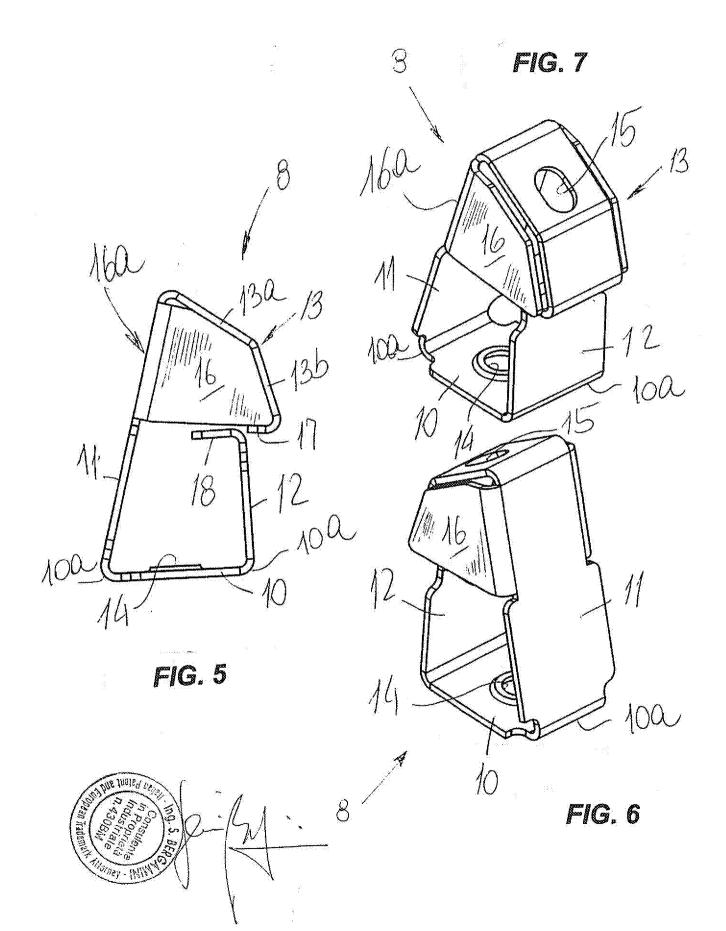
2. A cannula-needle as claimed in claim 1, wherein between said inner cavity (6) and said protective member (8) removable retention means (16) of said protective member (8) are interposed, so configured to restraint it in said deactivated position and to release it toward said

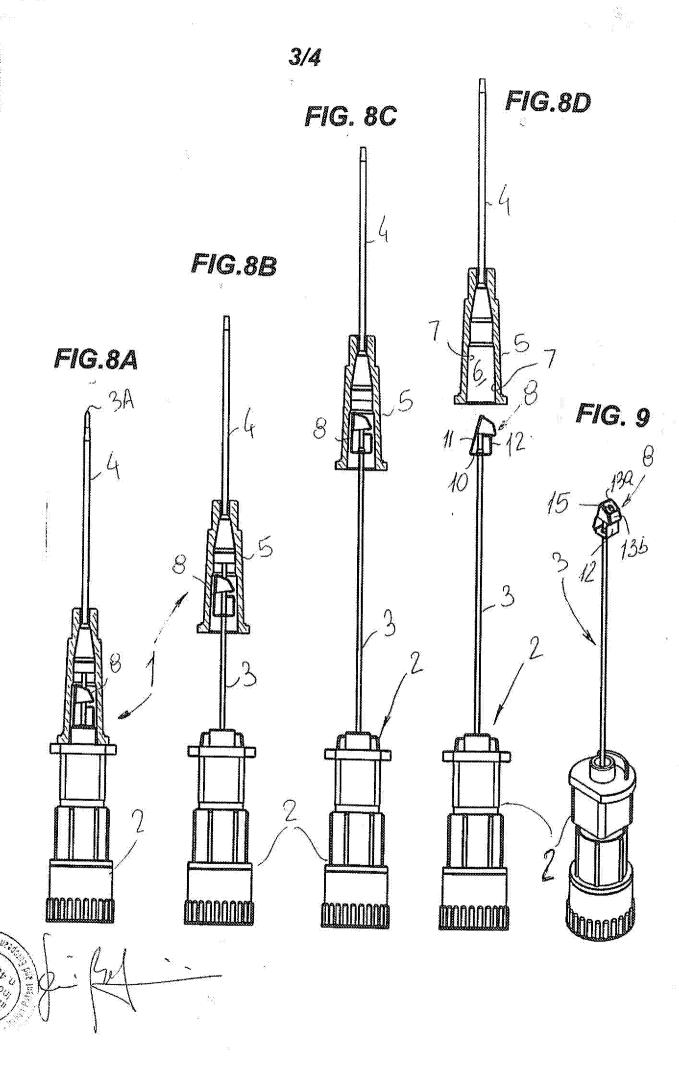
activated position.

- 3. A cannula-needle as claimed in claim 1 or 2, wherein said protective member (8) comprises a flat body which shapes:
- A crosswise proximal wall (10) to said needle wherein a first passage opening (14) for said stem (3b) is obtained and having a blocking perimeter of said transversal engaging means (9);
- A first and a second arm (11, 12) which extend 10 from said proximal wall (10) toward said tip (3a);
- At least said first arm (11) shaping a second wall (13) transversally fitted with respect of said needle (3) and wherein a second passage opening (15) of said stem (3b) is obtained, said second passage opening (15) in said deactivated position being aligned with said first passage opening (14) and in said deactivated position being misaligned from said first passage opening (14).
- 4. A cannula-needle as claimed in claims 2 and 3, wherein said retention means comprise a couple of lateral 20 surfaces (16) that extends from at least one of said first and second arms (11, 12) and converging toward said second wall (13), said lateral surfaces (16) having respective gripping edges on said inner walls (7) of said inner cavity (6).
- 25 5. A cannula-needle as claimed in claim 1, wherein

said first arm (11) in said activated position is normally oblique with respect of said transversal proximal wall (10).

- 6. A cannula-needle as claimed in claim 1, wherein 5 said second arm (12) is normally perpendicular to said transversal proximal wall (10).
- 7. A cannula-needle as claimed in anyone of preceding claims, wherein said protective element (8) is slidingly withdrawn from said inner cavity (6) during the retraction of said needle (3), in contrast with said removable retention means (16), when said transversal engaging means (9) are blocked against said blocking perimeter of said first passage opening (14).


FIG. 1

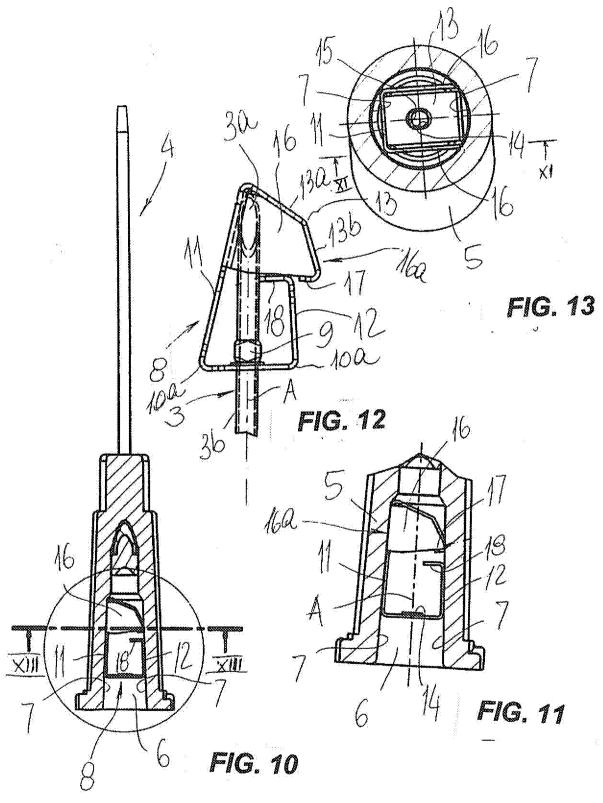

FIG. 2

FIG. 3

