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(54) 발명의 명칭 생체 인식 인증을 위한 특징 추출 및 정합과 템플릿 갱신

(57) 요 약

특징 추출 및 패턴 정합 시스템에서, 영상 선명화는 눈의 가시 혈관 구조로부터 관심 지점들을 검출하기 위한 혈

관 지점 검출(VPD)을 가능하게 할 수 있다.  확장 다중 반경 국소 이진 패턴의 패턴 히스토그램 및/또는 확장 다

중 반경 중심 대칭 국소 이진 패턴의 패턴 히스토그램은 관심 지점을 둘러싸고 있는 영상들의 부분들의 설명을 

(뒷면에 계속)
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제공할 수 있고, VPD를 통해 검출된 지점들 및 대응하는 기술자들을 사용하여 등록 및 검증 템플릿들이 생성될
수 있다.  정상치 지점 쌍들이 등록 및 검증 템플릿들로부터 선택될 수 있고, 2개의 템플릿들의 유사도를 나타
내는 제1 정합 점수가 정상치 지점 쌍들의 개수 및 정상치 검출에 의해 선택된 변환의 하나 이상의 파라미터들
에 기초하여 계산될 수 있다.  제2 정합 점수가 선택된 변환을 적용하는 것에 의해 계산될 수 있고, 점수들 중
어느 하나 또는 둘 다가 사용자를 인증하는 데 사용될 수 있다.  등록 템플릿은, 혈관 지점들(VPD) 및
EMR-LBP(Enhanced Multi-Radii Local Binary Patterns), PH-EMR-LBP(Pattern Histograms of Enhanced
Multi-Radii Local Binary Patterns), PH-EMR-CS-LBP(Pattern histograms of Enhanced Multi-Radii
Center-Symmetric Local Binary Patterns), 및 EMR-CS-LBP(Enhanced Multi-Radii Center-Symmetric Local
Binary Patterns)와 같은 대응하는 특징들과 같은, 관심 지점들의 집합체일 수 있다.  일부 구현들에서, 획득된
영상이 세그먼트화된 공막 영역의 크기에 대한 VPD 지점들의 비에 기초한 특정 임계치를 초과하는 경우에만 등
록 템플릿이 생성될 수 있다.  단일의 사용자에 대해 하나 초과의 등록들이 가능하다.  획득된 스캔들에 영향을
미치는 행동 및/또는 환경 변동들에 대응하기 위해 등록 템플릿들이 갱신될 수 있다.  검증을 사용하여 등록 템
플릿들을 갱신하는 것은 후보 검증 템플릿의 품질, 정합 점수, 및/또는 다른 영상 및 노출 유사도 척도들에 기

초할 수 있다.
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명 세 서

청구범위

청구항 1 

영상 기반 생체 인식 인증을 위한 컴퓨터 구현 방법으로서,

혈관 구조를 포함하는 눈의 적어도 일부의 영상을 수신하는 단계;

영상에서 복수의 혈관 지점(vascular points)을 식별하는 단계; 및

식별된 혈관 지점들에 전체적으로 또는 부분적으로 기초하여 템플릿을 생성하는 단계

를 포함하고,

상기 식별하는 단계는

(a) 영상 내의 지점을 후보 혈관 지점으로서 선택하는 단계;

(b) 후보 혈관 지점을 둘러싸는 제1 이웃 지점을 정의하는 단계;

(c) 후보 혈관 지점 및 제1 이웃 지점의 적어도 일부를 둘러싸는 상이한 제2 이웃 지점을 정의하는 단계; 및

(d) 제1 및 제2 이웃 지점의 각각의 강도를 후보 혈관 지점의 강도와 비교하여 후보 혈관 지점이 혈관 지점인지

결정하는 단계

를 포함하는, 방법.

청구항 2 

제1항에 있어서, 영상은 영상 세트에 기초하는 선명화된 영상(sharpened image)을 포함하는, 방법.

청구항 3 

제2항에 있어서,

평균 영상을 생성하기 위해 세트 내의 영상을 평균하는 단계;

컨볼루션된 영상(convolved image)을 획득하기 위해 평균 영상을 가우시안-라플라시안(Laplacian of Gaussian,

LoG) 커널과 컨볼루션하는 단계;

차분 영상(difference image)을 획득하기 위해 컨볼루션된 영상의 각각의 픽셀을 최대 픽셀 값으로부터 차감하

는 단계; 및

선명화된 영상을 획득하기 위해 차분 영상과 평균 영상을 픽셀 단위로 곱하는 단계를 추가로 포함하는, 방법.

청구항 4 

제2항에 있어서,

평균 영상을 생성하기 위해 세트 내의 영상을 평균하는 단계; 및

선명화된 영상을 획득하기 위해 평균 영상을 상이한 각도로 배향되어 있는 복수의 가버 커널(Gabor kernels)과

컨볼루션하는 단계를 추가로 포함하는, 방법.

청구항 5 

제1항에 있어서, 후보 혈관 지점이 혈관 지점인지 결정하는 단계는

제1 이웃 지점의 수에 대응하는 복수의 상태를 비교에 기초하여 결정하는 단계; 및

복수의 상태를 집계(aggregating)하는 단계를 포함하고,
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후보 혈관 지점은 집계된 상태에 적어도 부분적으로 기초하여 혈관 지점으로 결정되는, 방법.

청구항 6 

제5항에 있어서,

비교는 (i) 제1 이웃 지점 내의 지점의 강도가 후보 혈관 지점의 강도보다 임계치만큼 더 큰지를 결정하는 것,

및 (ii) 제2 이웃 지점 내의 대응하는 지점의 강도가 후보 혈관 지점의 강도보다 임계치만큼 더 큰지를 결정하

는 것을 포함하고;

복수의 상태를 결정하는 단계는 비교 결정 (i) 및 (ii) 중 어느 하나가 참인 경우 제1 이웃 지점 내의 지점 및

제2 이웃 지점 내의 대응하는 지점에 대응하는 상태를 제1 값으로 설정하고, 그렇지 않은 경우 상태를 제2 값으

로 설정하는 것을 포함하는, 방법.

청구항 7 

제5항에 있어서,

복수의 상태를 집계하는 단계는 복수의 상태를 합산하는 단계를 포함하고;

후보 혈관 지점이 혈관 지점인지 결정하는 단계는 집계된 상태의 합산된 값이 선택된 카운트를 초과하는지 결정

하는 단계를 포함하는, 방법.

청구항 8 

제1항에 있어서, 후보 혈관 지점이 혈관 지점인지 결정하는 단계는 (i) 제1 이웃 지점 내의 지점의 강도가 임계

치보다 더 큰 경우, 및 (ii) 제2 이웃 지점 내의 대응하는 지점의 강도가 임계치보다 더 큰 경우 중 적어도 하

나인 경우, 후보 혈관 지점이 혈관 지점이 아님을 결정하는 단계를 포함하는, 방법.

청구항 9 

제1항에 있어서,

단계 (a)-(d)를 영상 내의 복수의 지점에 대해 수행하는 단계; 및

혈관 지점으로 결정된 각각의 후보 혈관 지점을 제1 값으로 설정하고 다른 후보 혈관 지점을 제2 값으로 설정하

여 이진 혈관 맵(binary vascular map, BVM)을 획득하는 단계를 추가로 포함하는, 방법.

청구항 10 

제9항에 있어서, (i) 경계에 대응하고, (ii) 제1 값으로 설정된 적어도 하나의 혈관 지점을 제외시키는 것에 의

해 BVM을 씨닝(thinning)하는 단계를 추가로 포함하는, 방법.

청구항 11 

제1항에 있어서, 복수의 감지된 혈관 지점 각각에 대해 적어도 하나의 개별 국소 영상 기술자를 생성하는 단계

를 추가로 포함하는, 방법.

청구항 12 

제11항에 있어서, 템플릿은 생성된 국소 영상 기술자에 추가로 기초하여 생성되는, 방법.

청구항 13 

제11항에 있어서, 감지된 혈관 지점에 대한 국소 영상 기술자를 생성하는 단계는 (i) 검출된 혈관 지점을 둘러

싸는 영상 영역의 확장 다중 반경 국소 이진 패턴(extended multi-radii local binary patterns)의 패턴 히스

토그램, 및 (ii) 검출된 혈관 지점을 둘러싸는 영상 영역의 확장 다중 반경 중심 대칭 국소 이진 패턴(extended

multi-radii center-symmetric local binary patterns)의 패턴 히스토그램 중 적어도 하나를 계산하는 단계를

포함하는, 방법.

청구항 14 
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영상 기반 생체 인식 인증 시스템으로서,

컴퓨터-실행가능한 명령어를 저장하는 적어도 하나의 메모리; 및

적어도 하나의 메모리 상에 저장된 명령어를 실행하는 적어도 하나의 프로세서

를 포함하고,

명령어의 실행은 적어도 하나의 프로세서가

혈관 구조를 포함하는 눈의 적어도 일부의 영상을 수신하는 단계;

영상에서 복수의 혈관 지점을 식별하는 단계; 및

식별된 혈관 지점들에 전체적으로 또는 부분적으로 기초하여 템플릿을 생성하는 단계

를 포함하는 동작을 수행하도록 프로그래밍되고,

식별하는 단계는

(a) 영상 내의 지점을 후보 혈관 지점으로서 선택하는 단계;

(b) 후보 혈관 지점을 둘러싸는 제1 이웃 지점을 정의하는 단계;

(c) 후보 혈관 지점 및 제1 이웃 지점의 적어도 일부를 둘러싸는 상이한 제2 이웃 지점을 정의하는 단계; 및

(d) 제1 및 제2 이웃 지점의 각각의 강도를 후보 혈관 지점의 강도와 비교하여 후보 혈관 지점이 혈관 지점인지

결정하는 단계

를 포함하는, 시스템.

청구항 15 

제14항에 있어서, 영상은 영상 세트에 기초하는 선명화된 영상을 포함하는, 시스템.

청구항 16 

제15항에 있어서, 동작은

평균 영상을 생성하기 위해 세트 내의 영상을 평균하는 단계;

컨볼루션된 영상을 획득하기 위해 평균 영상을 가우시안-라플라시안(LoG) 커널과 컨볼루션하는 단계;

차분 영상을 획득하기 위해 컨볼루션된 영상의 각각의 픽셀을 최대 픽셀 값으로부터 차감하는 단계; 및

선명화된 영상을 획득하기 위해 차분 영상과 평균 영상을 픽셀 단위로 곱하는 단계를 추가로 포함하는, 시스템.

청구항 17 

제15항에 있어서, 동작은

평균 영상을 생성하기 위해 세트 내의 영상을 평균하는 단계; 및

선명화된 영상을 획득하기 위해 평균 영상을 상이한 각도로 배향되어 있는 복수의 가버 커널과 컨볼루션하는 단

계를 추가로 포함하는, 시스템.

청구항 18 

제14항에 있어서, 후보 혈관 지점이 혈관 지점인지 결정하는 단계는

제1 이웃 지점의 수에 대응하는 복수의 상태를 비교에 기초하여 결정하는 단계; 및

복수의 상태를 집계하는 단계를 포함하고,

후보 혈관 지점은 집계된 상태에 적어도 부분적으로 기초하여 혈관 지점으로 결정되는, 시스템.

청구항 19 
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제18항에 있어서,

비교는 (i) 제1 이웃 지점 내의 지점의 강도가 후보 혈관 지점의 강도보다 임계치만큼 더 큰지를 결정하는 것,

및 (ii) 제2 이웃 지점 내의 대응하는 지점의 강도가 후보 혈관 지점의 강도보다 임계치만큼 더 큰지를 결정하

는 것을 포함하고;

복수의 상태를 결정하는 단계는 비교 결정 (i) 및 (ii) 중 어느 하나가 참인 경우 제1 이웃 지점 내의 지점 및

제2 이웃 지점 내의 대응하는 지점에 대응하는 상태를 제1 값으로 설정하고, 그렇지 않은 경우 상태를 제2 값으

로 설정하는 것을 포함하는, 시스템.

청구항 20 

제18항에 있어서,

복수의 상태를 집계하는 단계는 복수의 상태를 합산하는 단계를 포함하고;

후보 혈관 지점이 혈관 지점인지 결정하는 단계는 집계된 상태의 합산된 값이 선택된 카운트를 초과하는지 결정

하는 단계를 포함하는, 시스템.

청구항 21 

제14항에 있어서, 후보 혈관 지점이 혈관 지점인지 결정하는 단계는 (i) 제1 이웃 지점 내의 지점의 강도가 임

계치보다 더 큰 경우, 및 (ii) 제2 이웃 지점 내의 대응하는 지점의 강도가 임계치보다 더 큰 경우 중 적어도

하나인 경우, 후보 혈관 지점이 혈관 지점이 아님을 결정하는 단계를 포함하는, 시스템.

청구항 22 

제14항에 있어서, 동작은

단계 (a)-(d)를 영상 내의 복수의 지점에 대해 수행하는 단계; 및

혈관 지점으로 결정된 각각의 후보 혈관 지점을 제1 값으로 설정하고 다른 후보 혈관 지점을 제2 값으로 설정하

여 이진 혈관 맵(BVM)을 획득하는 단계를 추가로 포함하는, 시스템.

청구항 23 

제22항에 있어서, 동작은, (i) 경계에 대응하고, (ii) 제1 값으로 설정된 적어도 하나의 혈관 지점을 제외시키

는 것에 의해 BVM을 씨닝하는 단계를 추가로 포함하는, 시스템.

청구항 24 

제14항에 있어서, 동작은, 복수의 감지된 혈관 지점 각각에 대해 적어도 하나의 개별 국소 영상 기술자를 생성

하는 단계를 추가로 포함하는, 시스템.

청구항 25 

제14항에 있어서, 템플릿은 생성된 국소 영상 기술자에 추가로 기초하여 생성되는, 시스템.

청구항 26 

제14항에 있어서, 감지된 혈관 지점에 대한 국소 영상 기술자를 생성하는 단계는 (i) 검출된 혈관 지점을 둘러

싸는 영상 영역의 확장 다중 반경 국소 이진 패턴의 패턴 히스토그램, 및 (ii) 검출된 혈관 지점을 둘러싸는 영

상 영역의 확장 다중 반경 중심 대칭 국소 이진 패턴의 패턴 히스토그램 중 적어도 하나를 계산하는 단계를 포

함하는, 시스템.

발명의 설명

기 술 분 야

관련 출원들의 상호 참조[0001]

본  출원은  2013년  9월  16일자로  출원된,  발명의  명칭이  "Image  feature  Detection,  Authentication,  and[0002]
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Information Hiding"인 미국 가출원 제61/878,588호(이는 참고로 그 전체가 본 명세서에 포함됨)에 관한 것으로

서 이를 우선권 주장한다.

기술분야[0003]

본 개시 내용은 일반적으로 2개의 영상들 간의 유사도를 결정하기 위한 영상 비교 기법에 관한 것으로서, 상세[0004]

하게는, 눈의 영상들에 기초한 생체 인식 인증(biometric authentication)에 관한 것이다.

배 경 기 술

특정의 개인들에 대해 재산 또는 자원들에의 액세스를 제한하는 것이 종종 바람직하다.  생체 인식 시스템은 자[0005]

원에의 액세스를 허용하거나 거부하기 위해 개인의 신원을 인증하는 데 사용될 수 있다.  예를 들어, 개인의 홍

채에 있는 특유한 구조들에 기초하여 개인을 식별하기 위해 홍채 스캐너들이 생체 인식 보안 시스템에 의해 사

용될 수 있다.

전형적인 영상 기반 생체 인식 인증 시스템에서, 권한 있는 사용자라고 주장하는 사람으로부터 하나 이상의 영[0006]

상들이 획득된다.  그 영상들이 하나 이상의 권한 있는 사용자들에 의해 제공된 것으로 알려져 있는 하나 이상

의 참조 영상들과 비교된다.  주장자 제공 영상들이 하나 이상의 참조 영상들과 제대로 정합하는 경우에만, 주

장자가 권한 있는 사용자인 것으로 결정될 수 있다.  2개의 영상들 간의 정합(match)(즉, 2개의 영상들 간의 유

사도의 척도)은 그 영상들의 특징들에 기초할 수 있다.  특징들은 영상에서의 하나 이상의 관심 지점들의 집합

체, 및 이러한 관심 지점들을 둘러싸고 있는 영상의 부분들의 설명들을 포함할 수 있다.

발명의 내용

본 명세서는 눈의 영상들에 기초한 생체 인식 인증에 아주 적합한 기술들을 설명하고 있다.  상세하게는, 영상[0007]

선명화 기법은 효율적인 특징 검출에 도움이 될 수 있다.  VPD(Vascular Point Detection: 혈관 지점 검출) 기

법은 눈의 가시 혈관 구조(visible  vasculature)로부터 관심 지점들을 검출할 수 있고, PH-EMR-LBP(Pattern

Histograms of Extended Multi-Radii Local Binary Patterns: 확장 다중 반경 국소 이진 패턴의 패턴 히스토그

램)  및/또는  PH-EMR-CS-LBP(Pattern  Histograms  of  Extended  Multi-Radii  Center  Symmetric  Local  Binary

Patterns: 확장 다중 반경 중심 대칭 국소 이진 패턴의 패턴 히스토그램)는 혈관 구조의 관심 지점을 둘러싸고

있는 영상들의 부분들의 설명을 효율적으로 제공할 수 있다.  가시 혈관 구조는 눈의 흰자위를 포함하고 눈의

흰자위를  둘러싸고  있는  영상  부분을  눈  영상으로부터  제외하는  이진  영상  마스크일  수  있는  공막  마스크

(scleral mask)를 사용하여 획득될 수 있다.  본원에 기술되는 정합 기법들은 이상치 검출(outlier detectio

n)을 사용함으로써 거리 또는 상관 기반 정합의 효율성 및/또는 정확도를 향상시킬 수 있다.  기술된 기법들은

또한, 예컨대, 상이한 위치에서 그리고 상이한 때에 포착된 영상들에서의 자연적으로 일어나는 변동들을 최소화

하기 위해, 최상 품질의 다양한 영상들이 인증에서 사용되도록, 참조 영상들로부터 도출되고 인증을 위해 사용

되는 템플릿들(일반적으로 이하의 논의에서 등록 템플릿(enrollment template)이라고 지칭됨)을 갱신하는 것을

가능하게 한다.

특징 추출 및 패턴 정합 시스템에서, 영상 선명화는 눈의 가시 혈관 구조로부터 관심 지점들을 검출하기 위한[0008]

VPD(vascular point detection)를 가능하게 할 수 있다.  확장 다중 반경 국소 이진 패턴의 패턴 히스토그램 및

/또는 확장 다중 반경 중심 대칭 국소 이진 패턴의 패턴 히스토그램은 관심 지점을 둘러싸고 있는 영상들의 부

분들의 설명을 제공할 수 있고, VPD를 통해 검출된 지점들 및 대응하는 기술자들을 사용하여 등록 및 검증 템플

릿들이 생성될 수 있다.  정상치 지점 쌍(inlier  point  pair)들이 등록 및 검증 템플릿들로부터 선택될 수

있고, 2개의 템플릿들의 유사도를 나타내는 제1 정합 점수(match score)가 정상치 지점 쌍들의 개수 및 정상치

검출에 의해 선택된 변환의 하나 이상의 파라미터들에 기초하여 계산될 수 있다.  제2 정합 점수가 선택된 변환

을 적용하는 것에 의해 계산될 수 있고, 점수들 중 어느 하나 또는 둘 다가 사용자를 인증하는 데 사용될 수 있

다.

등록  템플릿은,  혈관  지점들(VPD)  및  EMR-LBP(Enhanced  Multi-Radii  Local  Binary  Patterns),  PH-EMR-[0009]

LBP(Pattern  Histograms  of  Enhanced  Multi-Radii  Local  Binary  Patterns),  PH-EMR-CS-LBP(Pattern

histograms  of  Enhanced  Multi-Radii  Center-Symmetric  Local  Binary  Patterns),  및  EMR-CS-LBP(Enhanced

Multi-Radii Center-Symmetric Local Binary Patterns)와 같은 대응하는 특징들과 같은, 관심 지점들의 집합체

일 수 있다.  일부 구현들에서, 획득된 영상이 세그먼트화된 공막 영역의 크기에 대한 VPD 지점들의 비에 기초

한 특정 임계치를 초과하는 경우에만 등록 템플릿이 생성될 수 있다.  단일의 사용자에 대해 하나 초과의 등록
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들이 가능하다.  획득된 스캔들에 영향을 미치는 행동 및/또는 환경 변동들에 대응하기 위해 등록 템플릿들이

갱신될 수 있다.  검증을 사용하여 등록 템플릿들을 갱신하는 것은 후보 검증 템플릿(candidate verification

template)의 품질, 정합 점수, 및/또는 다른 영상 및 노출 유사도 척도(exposure similarity measure)들에 기

초할 수 있다.

그에 따라, 일 양태에서, 컴퓨터 구현 방법은 다수의 포착된 영상들에 기초하여 선명화된 영상을 획득하는 단계[0010]

를 포함한다.  하나 이상의 포착된 영상들은 혈관 구조의 영상들을 포함할 수 있다.  더욱이, 본 방법은 선명화

된 영상에서 몇 개의 혈관 지점들을 검출하는 단계, 및 다수의 검출된 혈관 지점들 각각에 대해, 하나 이상의

상이한 국소 영상 기술자들을 생성하는 단계를 포함한다.  본 방법은 또한 검출된 혈관 지점들 및 그 각자의 국

소 영상 기술자들 중 하나 이상을 포함하는 템플릿을 생성하는 단계를 포함한다.  이 양태의 다른 실시예들은

대응하는 시스템들, 장치들, 및 컴퓨터 프로그램들을 포함한다.

일 구현에서, 특정의 선명화된 영상을 획득하는 단계는 평균 영상을 생성하기 위해 몇 개의 포착된 영상들로부[0011]

터 하나 이상의 영상들을 선택하고 선택된 영상들을 평균하는 단계를 포함한다.  본 방법은 또한 컨볼루션된 영

상(convolved image)을 획득하기 위해 평균 영상을 LoG(Laplacian of Gaussian: 가우시안-라플라시안) 커널과

컨볼루션하는 단계, 및 차분 영상(difference image)을 획득하기 위해 컨볼루션된 영상의 각각의 픽셀을 최대

픽셀 값으로부터 차감하는 단계를 포함한다.  그에 부가하여, 본 방법의 이 구현은 특정의 선명화된 영상을 획

득하기 위해 차분 영상과 평균 영상을 픽셀 단위로 곱하는 단계를 포함한다.  일부 구현들에서, LoG 커널을 사

용하는 것, 차분 영상을 계산하는 것 및 차분 영상과 평균 영상을 곱하는 것 대신에, 선명화된 영상을 직접 획

득하기 위해, 상이한 각도들로 배향된 다수의 가버 커널(Gabor kernel)들이 평균 영상을 컨볼루션하는 데 사용

될 수 있다.

다른 구현에서, 선명화된 영상을 획득하기 위해, 평균 영상이 짝수 가버 커널(even Gabor kernel)들의 세트와[0012]

컨볼루션될 수 있다.  다양한 각도들에 걸쳐 배향되어 있는 짝수 가버 커널들의 세트는, 입력 영상의 해상도 및

스케일 그리고 가시 혈관 구조의 평균 폭과 같은, 몇 개의 파라미터들에 기초하여 조정될 수 있다.  이 컨볼루

션된 영상은 앞서 언급된 LoG 기반 선명화된 영상 대신에 또는 그에 부가하여 사용될 수 있다.

일 구현에서, 다수의 혈관 지점들을 검출하는 단계는 선명화된 영상 내의 지점을 후보 혈관 지점으로서 선택하[0013]

는 단계를 포함한다.  이어서, 후보 혈관 지점에 중심을 둔 제1 창에 따른 몇 개의(예컨대, N개의(단, N은 1보

다 큼)) 제1 이웃 지점들이 식별될 수 있다.  그에 부가하여, 후보 혈관 지점에 중심을 둔 상이한 제2 창에 따

른 몇 개의(예컨대, N개의) 다른 제2 이웃 지점들이 또한 식별될 수 있다.  이 구현에서, 본 방법은 N개의(단,

N은 1보다 큼) 상태들을 결정하는 단계를 추가로 포함한다.  N개의 상태들 각각은 제1 이웃의 지점들인 N개의

지점들 중의 하나의 이웃 지점에 대응한다.  상태는 제1 이웃 지점들 중 하나(즉, 제1 창에 따른 N개의 지점들

중 하나), 제2 이웃의 대응하는 지점(즉, 제2 창에 따른 N개의 지점들 중 하나), 및 후보 혈관 지점의 각자의

강도들에 적어도 부분적으로 기초하여 비교를 수행하는 것에 의해 결정될 수 있다.  본 방법은 또한 N개의 상태

들을 집계하는 단계, 및 집계된 상태들의 값에 적어도 부분적으로 기초하여 후보 혈관 지점을 혈관 지점으로서

지정하는 단계를 포함할 수 있다.

일부 구현들에서, 후보 혈관 지점과 제1 창에서의 제1 이웃 지점 사이의 기하학적 거리는 후보 혈관 지점과 제2[0014]

창에서의 제1 이웃 지점 사이의 기하학적 거리보다 더 작으며, 여기서 제2 창에서의 제1 이웃 지점은 제1 창에

서의 제1 이웃 지점에 대응한다.  비교는 제1 이웃의 N개의 지점들 중의 지점의 강도가 후보 혈관 지점의 강도

보다 제1 임계치만큼 더 큰지를 테스트하는 것을 포함할 수 있다.  대안적으로 또는 그에 부가하여, 비교는 제2

이웃의 N개의 지점들 중의 대응하는 지점의 강도가 후보 혈관 지점의 강도보다 제1 임계치만큼 더 큰지를 테스

트하는 것을 포함할 수 있다.  대응하는 상태를 결정하는 단계는 2개의 테스트들 중 임의의 것이 참인 경우 상

태를 제1 값(예컨대, 논리 하이 값 또는 "1")으로 설정하고 그렇지 않은 경우 상태를 제2 값(예컨대, 논리 로우

값 또는 "0")으로 설정하는 단계를 포함할 수 있다.  일 구현에서, N개의 상태들을 집계하는 단계는 N개의 상태

들을 합산하는 단계를 포함하고, 지정하는 단계는 집계된 상태들의 합산된 값이 선택된 카운트를 초과하는지를

테스트하는 단계를 포함한다.  선택된 카운트는 N일 수 있거나, 일부 구현들에서, N보다 더 작을 수 있다.

다른 비교는 제1 이웃의 N개의 지점들 중의 임의의 지점의 강도가 제2 임계치보다 더 큰지를 테스트하는 것, 및[0015]

/또는 제2 이웃의 N개의 지점들 중의 대응하는 지점의 강도가 제2 임계치보다 더 큰지를 테스트하는 것을 포함

할 수 있다.  대응하는 상태를 결정하는 단계는 2개의 테스트들 중 임의의 것이 참인 경우 상태를 제2 값(예컨

대, 논리 로우 값 또는 "0")으로 설정하는 단계를 포함할 수 있다.

일부 구현들에서, 본 방법은 선명화된 영상 내의 다수의 지점들에 대해 선택하는 단계, 식별하는 단계, 결정하[0016]
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는 단계, 집계하는 단계, 및 지정하는 단계를 수행하는 단계, 및 정맥들을 표현하는 BVM(binary vascular map:

이진 혈관 맵)을 획득하기 위해 혈관 지점으로서 지정된 각각의 후보 혈관 관심 지점을 제1 값(예컨대, 논리 하

이 값 또는 "1")으로 설정하고 다른 후보 혈관 관심 지점들을 제2 값(예컨대, 논리 로우 값 또는 "0")으로 설정

하는 단계를 포함한다.  BVM은 (i) 혈관 구조의 폭에 걸쳐 경계들에 대응하는 그리고 (ii) 제1 값으로 설정된

적어도 하나의 혈관 지점을 제외시키는 것에 의해 씨닝(thinning)될 수 있다.  본 방법은 또한 제1 값으로 설정

된 하나 이상의 혈관 지점들을 국소적으로 억압하는 단계를 포함할 수 있다.  국소적 억압은 선명화된 영상의

일부분에 관련된 또는 선명화된 영상 전체에 관련된 그래디언트 크기 맵(gradient magnitude map)에 적어도 부

분적으로 기초할 수 있다.

일부 구현들에서, 각자의 하나 이상의 국소 영상 기술자들을 생성하는 단계는 (i) 검출된 혈관 지점을 둘러싸고[0017]

있는 영상 영역의 PH-EMR-LBP(pattern histogram of extended multi-radii local binary patterns), 및 (ii)

검출된 혈관 지점을 둘러싸고 있는 영상 영역의 PH-EMR-CS-LBP(pattern  histogram  of  extended  multi-radii

center-symmetric local binary patterns) 중 적어도 하나를 계산하는 단계를 포함한다.

다른 양태에서, 하나 이상의 검증 템플릿들을 하나 이상의 등록 템플릿들과 정합시키는 컴퓨터 구현 방법은 다[0018]

수의 정합 지점 쌍들을 식별하는 단계를 포함한다.  각각의 정합 지점 쌍은 특정의 검증 템플릿으로부터의 제1

지점 및 등록 템플릿으로부터의 대응하는 제2 지점을 포함한다.  각각의 제1 지점은 (i) 검증 템플릿에 대응하

는 검증 영상(verification image) 내의 관심 지점의 위치, 및 (ii) 각각이 검증 영상 내의 관심 지점을 둘러싸

고 있는 근방(locality)을 기술하는, 다수의 상이한 유형의 기술자들을 포함한다.  각각의 제2 지점은 (i) 등록

템플릿에 대응하는 등록 영상(enrollment image)의 관심 지점의 위치, 및 (ii) 각각이 등록 영상 내의 관심 지

점을 둘러싸고 있는 근방을 기술하는, 다수의 상이한 유형의 기술자들을 포함한다.

본 방법은 또한 검증 및 등록 템플릿들에 걸쳐 이상치 검출을 수행하는 것에 의해 다수의 정합 지점 쌍들로부터[0019]

선택된 몇 개의 정상치 지점 쌍들을 획득하는 단계를 포함한다.  그에 부가하여, 본 방법은 몇 개의 정상치 지

점 쌍들에 기초하여 정합 점수를 계산하는 단계(예컨대, 스테이지 1 정합 점수), 전처리의 일부로서 이상치 검

출 동안 식별된 기하 변환을 사용하는 단계(예컨대, 스테이지 2 정합 점수를 계산할 때), 또는 둘 다를 포함한

다.  이 양태의 다른 실시예들은 대응하는 시스템들, 장치들, 및 컴퓨터 프로그램들을 포함한다.

일 구현에서, 몇 개의 정합된 지점 쌍들을 식별하는 단계는, 검증 템플릿에서의 각각의 제1 지점에 대해, 제1[0020]

지점과 연관된 기술자들과 등록 템플릿의 제2 지점들 중 하나 이상과 연관된 기술자들 간의 각자의 거리들을 계

산하는 단계를 포함한다.  제2 지점들 중 하나가 각자의 거리들에 기초하여 제1 지점에 대응하는 것으로서 지정

될 수 있고, 따라서 제1 지점 및 대응하는 제2 지점을 포함하는 정합 지점 쌍(match point pair)이 식별된다.

검증 템플릿에서의 특정의 제1 지점과 연관된 기술자들과 등록 템플릿의 제2 지점과 연관된 기술자들 간의 각자[0021]

의 거리를 계산하는 단계는 특정의 제1 지점과 연관된 각각의 기술자와 등록 템플릿의 제2 지점의 각각의 대응

하는 기술자 간의 거리를 계산하는 단계를 포함한다.  특정의 제1 지점과 연관된 기술자들과 등록 템플릿의 제2

지점과 연관된 기술자들 간의 거리를 획득하기 위해 계산된 거리들이 가중 평균으로서 결합될 수 있다.

일 구현에서, 투표 방법에 따라 몇 개의 정합 지점 쌍들을 식별하는 단계는, 검증 템플릿에서의 각각의 제1 지[0022]

점에 대해, 제1 지점과 연관된 기술자들 각각과 등록 템플릿의 하나 이상의 제2 지점들과 연관된 대응하는 기술

자 간의 각자의 거리들을 계산하는 단계를 포함한다.  각자의 거리 임계치들을 초과하지 않는 거리들의 개수가

카운트될 수 있고, 거리들의 개수의 카운트에 기초하여 제2 지점들 중 하나가 제1 지점에 대응하는 것으로 지정

될 수 있다.  이와 같이, 제1 지점 및 대응하는 제2 지점을 포함하는 정합 지점 쌍이 생성된다.

다양한 구현들에서, 각자의 거리들을 계산하는 단계는 해밍 거리(Hamming distance), 유클리드 거리(Euclidean[0023]

distance), 맨하탄 거리(Manhattan distance), 상관, 및 마할라노비스 거리(Mahalanobis distance)로서 계산될

수 있다.  일부 구현들에서, 국소 기술자 분산(local descriptor variance)들에 기여하지 않는 차원들을 제거하

기 위해, PCA(principal component analysis: 주 성분 분석)를 사용하여 국소(비이진(non-binary)) 기술자들이

단축될  수  있다.   특정의  기술자는  EMR-LBP(Extended  Multi-Radii  Local  Binary  Patterns),  H-EMR-

LBP(Histograms  of  Extended  Multi-Radii  Local  Binary  Patterns),  PH-EMR-LBP(Pattern  Histograms  of

Extended  Multi-Radii  Local  Binary  Patterns),  EMR-CS-LBP(Extended  Multi-Radii  Center  Symmetric  Local

Binary Patterns), HCS-LBP(Histograms of EMR-CS-LBPs), PH-EMR-CS-LBP(Pattern Histograms of EMR-CS-LBP),

HoG(Histograms  of  Oriented  Gradients),  SURF(Speeded  Up  Robust  Features),  또는  FREAK(Fast  Retina

Keypoint)를 사용하여 도출될 수 있다.  몇 개의 정상치 지점 쌍들을 획득하는 단계는 제1 지점들을 대응하는

제2  지점들에  맞춰  정렬하기  위해  RANSAC(random  sample  consensus),  MSAC(M-estimator  sample  and
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consensus), 또는 GROUPSAC을 사용하는 단계를 포함할 수 있다.

일부 구현들에서, 정합 점수를 계산하는 단계는 정합된 제1 지점들 및 대응하는 제2 지점들로부터 검출된 정상[0024]

치 지점들의 위치들의 상관을 계산하는 단계를 포함한다.  제1 정합 점수를 계산하는 단계는 또한 정상치 지점

쌍들의 개수 및 정렬 기하 변환의 하나 이상의 파라미터들과 같은 위치 상관 이외에 부가의 파라미터들 및 절차

를 포함한다.  기하 변환의 파라미터는 정상치 지점 쌍들로부터의 계산된 기하 변환의 결과로서의 검증 영상의

스케일의 변화 또는 정상치 지점 쌍들로부터의 기하 변환의 결과로서의 검증 영상의 각도의 변화일 수 있다.

일 구현에서, 양 파라미터가 제1 정합 점수를 계산하는 데 사용된다.  다른 구현들에서, 변환 유형에 따라, 전

단(shear)과 같은 부가의 파라미터들이 사용될 수 있다.  본인 분포(genuine distribution)로부터의 그의 도출

을 보여주는 기하 변환의 다른 계산된 척도들도 만족스럽다.  일부 구현들에서, 본 방법은, 후보 (정상치) 지점

들을 식별하기 전에, 평균된 검증 영상을 가버 필터링(Gabor filtering)을 통해 수정하는 단계를 포함한다.  등

록 템플릿도 또한 가버 필터링을 통해 수정될 수 있다.

일부 구현들에서, 정합 점수를 계산하는 단계는 변환된 영상을 생성하기 위해 검증 영상에 기하 변환을 적용하[0025]

는 것에 의해 제2 정합 점수를 계산하는 단계를 포함한다.  본 방법은 또한 변환된 영상을 필터링하고 변환된

영상의 배향된 국소 이진 패턴 버전들을 인코딩하는 단계, 및 등록 템플릿에 대해 사용되는 영상에 동일한 프로

세스를 적용하는 단계를 포함한다.  각각의 버전은 다수의 레이어들을 포함하고 여기서 각각의 레이어는 인코딩

의 상이한 차원에 대응한다.  본 방법은 각각의 레이어에 대한 각자의 레이어 척도(layer measure)를 획득하기

위해 인코딩된 변환된 영상 및 등록 템플릿에 대응하는 인코딩된 영상의 각각의 레이어에서의 하나 이상의 대응

하는 타일들을 비교하는 단계를 추가로 포함할 수 있다.  제2 정합 점수를 획득하기 위해 레이어 척도들이 집계

될 수 있다.  필터링은 가버 필터링 또는 가버 필터링의 로그(logarithm)를 포함할 수 있고, 인코딩은 그레이

코딩(Gray coding)을 포함할 수 있다.

일부 구현들에서, 본 방법은, 비교 이전에, 가시 혈관 구조가 실질적으로 없는 영역에 대응하는 하나 이상의 타[0026]

일들을 제외시키는 단계를 포함한다.  대응하는 타일들을 비교하는 단계는 대응하는 타일들 사이의 해밍 거리,

정규화된 해밍 거리, 또는 슬라이딩 창 상관(sliding window correlation)을 계산하는 단계를 포함할 수 있다.

본 방법은 제2 정합 점수에 부가하여 제1 정합 점수를 계산하는 단계를 추가로 포함할 수 있다.  제1 정합 점수

는 정상치 지점 쌍들의, 각각, 검증 및 등록 템플릿들로부터의, 2개의 대응하는 지점들의 좌표들 간의 상관을

계산하는 것에 의해 계산될 수 있고, 정상치 지점 쌍들의 개수 및 기하 변환의 하나 이상의 파라미터들과 같은

파라미터들에 기초할 수 있고 그리고/또는 정상치 지점 쌍들의 개수의 함수에 기초할 수 있다.  정합 점수가 이

어서 제1 정합 점수와 제2 정합 점수의 가중 합으로서 계산될 수 있다.

일 구현에서, 제1 정합 점수에 대한 상관은 을 계산하는 것을 포함하고, 여기서 검증 및 등록 템플릿들[0027]

에 걸친 정상치 지점들의 좌표들은 쌍들에서의 각각의 지점의 X 및 Y 좌표들을 포함하고, Cx 및 Cy는, 각각, 검

증 및 등록 템플릿들에 걸친 정상치 정합된 지점(inlier matched point)들의 X 및 Y 좌표들의 상관들이다.  스

테이지 1 정합 점수는 하기 식으로서 계산될 수 있다:

[0028]

이 계산에서, N은 정상치 지점 쌍들의 개수이고, RS는 계산된 위치 맞춤 기하 변환(registration geometric[0029]

transformation)의 결과로서의 검증 영상의 스케일의 변화이고, RA는 계산된 위치 맞춤 기하 변환의 결과로서의

검증 영상의 각도의 변화이다.  본 방법은 기하 변환의 적어도 하나의 파라미터가 그 파라미터의 공칭 범위를

벗어나는 경우 제1 정합 점수를 정합 점수로부터 제외시키는 단계를 추가로 포함할 수 있다.  아핀 변환(affine

transformation)이 가정될 때 RS 및 RA는 전단에 의해 보강될 수 있다.  Cx, Cy, N, 및 변환 행렬 도출 파라미

터(transformation matrix-derived parameter)들의 함수인 제1 스테이지 정합 점수가 또한 인공 신경 네트워크

(artificial neural network) 또는 선형 판별 분석(linear discriminant analysis)과 같은 분류기(classifie

r)를 훈련시키기 위해 부정 행위자 및 본인 비교들의 라벨링된 데이터세트(labeled dataset)를 사용하여 직접

알게 될 수 있다.  선택적으로, 분류 이전에 PCA 전처리 스테이지가 적용될 수 있다.

일부 구현들에서, 변환 행렬 도출 파라미터들 RS 및 RA 대신에, 변환의 다른 기능이 그의 행렬 요소들로부터 직[0030]
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접 계산될 수 있다.  본인 및 부정 행위자 비교들로부터 도출되는 변환 행렬들을 고려하여, 그의 분포에서 최대

본인-부정 행위자 분리를 산출하는 대응하는 변환 행렬 요소들의 함수를 생성하는 것이 요망된다.  이 목적을

달성하는  한  가지  방식은  회귀  함수를  훈련시키고,  FDR(Fisher  discriminant  ratio)과  같은,  분류가능성

(classifiability)의 척도를 최대화하기 위해 부정 행위자와 본인 비교들의 라벨링된 데이터세트의 변환 행렬들

을 사용하는 것이다.

다른 양태에서, 등록 템플릿들을 갱신하는 컴퓨터 구현 방법은 몇 개의 관심 지점들을 포함하는 검증 템플릿을[0031]

수신하는 단계를 포함한다.  각각의 관심 지점은 각각이 대응하는 관심 지점을 둘러싸고 있는 하나 이상의 근방

들을 기술하는 다수의 상이한 각자의 기술자들과 연관되어 있다.  본 방법은 또한 검증 템플릿을 등록 템플릿들

의 집합체 중의 하나 이상의 등록 템플릿들과 비교하는 것에 의해 검증 템플릿에 대한 정합 점수를 계산하는 단

계를 포함한다.  정합 점수가 등록 임계치와 정합하거나 그를 초과하는 것에 적어도 기초하여 검증 템플릿들이

등록 템플릿들의 집합체에 추가될 수 있다.

일부 구현들에서, 본 방법은, 등록 템플릿들의 집합체 중의 각각의 템플릿에 대해, 등록 템플릿들의 집합체 중[0032]

의 하나 이상의 다른 템플릿들과의 각자의 정합 점수를 생성하는 단계를 포함한다.  템플릿에 대해 각자의 메디

안 정합 점수가 계산되고, 최소 메디안 정합 점수를 가지는 템플릿이 등록 템플릿들의 집합체로부터 제거될 수

있다.  이 양태의 다른 실시예들은 대응하는 시스템들, 장치들, 및 컴퓨터 프로그램들을 포함한다.

일부 구현들에서, 본 방법은 씨닝된 BVM 및 공막 마스크를 사용하여 등록들에 대한 품질 점수를 생성하는 단계[0033]

를 포함할 수 있다.  공막 마스크는 눈의 흰자위를 포함하고 눈의 흰자위를 둘러싸고 있는 영상 부분을 눈 영상

으로부터 제외하는 이진 영상 마스크일 수 있다.  품질 점수는 공막 마스크에서의 트루 픽셀(true pixel)(1)들

의 개수에 대한 씨닝된 BVM에서의 검출된 혈관 지점들의 개수의 비일 수 있다.  본 방법은 또한 특정 품질 점수

를 통과하지 못하는 등록 템플릿들을 제거하는 단계를 포함한다.

일부 구현들에서, 본 방법은 노출 차이, 영향 임계치, 또는 둘 다에 따라 정합 점수를 조절하는 단계를 포함한[0034]

다.  노출 차이는 검증 템플릿과 연관된 검증 노출 템플릿과 등록 템플릿과 연관된 등록 노출 템플릿 간의 차이

를 포함할 수 있다.  본 방법은 또한 검증 노출 템플릿 및/또는 등록 노출 템플릿을 생성하는 단계를 포함할 수

있다.

일부 구현들에서, (등록 및/또는 검증에 대한) 노출 템플릿들을 생성하는 단계는 등록 및/또는 검증 영상들에[0035]

대응하는 눈 ROI(region of interest: 관심 영역)를 2개 이상의 섹션들로 분할하는 단계, 및 각각의 섹션에 대

해, 강도들의 히스토그램에서의 각각의 강도에 대해 실질적으로 그 강도를 가지는 ROI의 섹션 내의 픽셀들의 수

를 나타내는 그 히스토그램을 생성하는 단계를 포함한다.  ROI는 눈에 중심을 둔 영상의 구역일 수 있다.  일부

구현들에서, 이 구역은 눈 발견기(eye finder)에 의해 발견된다.  일부 구현들에서, ROI는 공막 마스크의 경계

상자에 따라 눈의 영상을 크로핑(cropping)하는 것 및 크로핑된 영상을 지정된 수의 픽셀들(예컨대, 50개의 픽

셀들)로 패딩(padding)하는 것에 의해 발견된다.  일 구현에서, ROI는 4개의 사분역(quadrant)들로 분할된다.

일부 구현들에서, 눈의 영상이 하나의 눈 모서리(eye corner)로부터 다른 눈 모서리까지 그리고 하나의 눈꺼풀

로부터 다른 눈꺼풀까지의 경계 상자를 사용하여 크로핑될 수 있다.  크로핑된 영상이 지정된 수의 픽셀들로 패

딩될 수 있다.

일 구현에서, 노출 차이는 -1×노출 유사도이다.  본 방법은 각각의 사분역 j에 대해: (i) 히스토그램 차이의[0036]

정규화된 절댓값(ABSNdist_j), (ii) 히스토그램 교집합 유사도(INTRsim_j), (iii) 히스토그램들의 상관 계수 유

사도(CORRsim_j), 및 (iv) 바타차리야 거리(Bhattacharyya distance)(BHATdist_j) 중 하나 이상을 결정하는 단

계를 포함한다.  노출 유사도는 하기의 식으로서 계산될 수 있다:

[0037]

이상의 4개의 행렬들의 다른 선형 또는 비선형 결합들이 가능하다.[0038]

일 구현에서, 하나 이상의 노출 템플릿들을 생성하는 단계는 다수의 노출 척도들을 생성하는 단계를 포함한다.[0039]

노출 척도들 각각은 영상의 EXIF 파일에 포함된 ROI의 노출 측정(exposure metering)(EXIF 척도), YUV 영상의

Y 성분의 통계 파라미터, 및 RGB 영상의 G 성분의 통계 파라미터일 수 있다.

일부 구현들에서, 노출 차이 및/또는 노출 유사도는 하나 이상의 히스토그램 척도들에 기초하여 계산된다.  상[0040]

이한 히스토그램 척도들은 히스토그램 차이의 정규화된 절댓값(ABSNdist), 히스토그램 교집합 유사도(INTRsim),

히스토그램들의 상관 계수 유사도(CORRsim), 및 바타차리야 거리(BHATdist) 중 임의의 것일 수 있다.
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일부 구현들에서, 본 방법은, 정합 점수를 계산하는 단계 이전에, 검증 템플릿과 연관된 검증 노출 템플릿과 등[0041]

록 템플릿들의 집합체 중의 각각의 등록 템플릿과 연관된 각각의 등록 노출 템플릿 사이의 각자의 노출 차이들

에 따라 등록 템플릿들의 집합체를 정렬하는 단계를 포함할 수 있다.  그에 따라, 검증 템플릿의 검증이 신속히

처리될 수 있는데, 그 이유는 일반적으로 검증이 가장 낮은 노출 차이를 가지는 것들로부터 시작하여 검증 템플

릿을 몇 개의 등록 템플릿들과 비교하는 것에 의해 진행되고 따라서 검증 템플릿과 정확하게 정합할 가능성이

더 많기 때문이다.

도면의 간단한 설명

특허 또는 출원 파일은 컬러로 제작되는 적어도 하나의 도면을 포함한다.  컬러 도면(들)을 갖는 이 특허 또는[0042]

특허 출원 공보의 사본들이 요청 및 필요한 수수료의 지불 시에 특허청에 의해 제공될 것이다.

도 1a는 등록 템플릿들을 생성하기 위한 예시적인 2-스테이지 시스템을 개략적으로 나타낸 도면.

도 1b는 검증 템플릿을 생성하고 그 템플릿을 등록 템플릿과 비교함으로써 2개의 템플릿들에 대응하는 2개의 영

상들 간의 유사도를 결정하기 위한 예시적인 2-스테이지 시스템을 개략적으로 나타낸 도면.

도 2a 내지 도 2d는 혈관 지점 검출 및 국소 영상 기술자 생성을 돕기 위한 예시적인 영상 선명화를 나타낸 도

면.

도 2e 및 도 2f는 예시적인 혈관 지점 검출 절차를 나타낸 도면.

도 3a 내지 도 3c는, 각각, 눈으로부터 검출된 혈관 지점들의 예시적인 이진 영상, 대응하는 씨닝된 이진 영상,

및 씨닝된 이진 영상과 원본 이진 영상의 오버레이를 나타낸 도면.

도 4a 및 도 4b는 검출된 혈관 지점들을 표현하는 씨닝된 이진 영상을 희소화(sparse)하는 데 사용되는 예시적

인 마스크들을 나타낸 도면.

도 4c는 도 3c에 나타낸 씨닝된 이진 영상에 대응하는 희소 이진 영상(sparse binary image)을 나타낸 도면.

도 5a 내지도 5c는, 각각, 눈의 예시적인 원본 영상, 예시적인 ROI(region of interest) 마스크, 및 원본 영상

으로부터의 ROI를 나타낸 도면.

도 5d 내지 도 5f는, 각각, 도 5c에 나타낸 ROI에 대응하는 BVM(binary vascular map), 대응하는 씨닝된 BVM,

및 대응하는 희소 BVM을 나타낸 도면으로서, 이들 각각은 도 5a에 나타낸 원본 영상 상에 오버레이되어 있음.

도 6은 예시적인 눈 혈관 구조에 대응하는 가버 필터링된 OLBP(oriented local binary patterns: 배향된 국소

이진 패턴) 영상을 나타낸 도면.

도 7a 내지 도 7c는 예시적인 픽셀 창(pixel window)에 대응하는 그레이 코딩된 OLBP 패턴들을 생성하는 것을

나타낸 도면.

도 8은 등록 템플릿들을 단계적으로(on a rolling basis) 갱신하는 예시적인 프로세스를 나타낸 도면.

다양한 도면들에서 유사한 참조 번호들 및 명칭들은 유사한 요소들을 나타낸다.

발명을 실시하기 위한 구체적인 내용

도 1a 및 도 1b는 사용자 인증을 위해 사용될 수 있는 가시 혈관 구조의 등록 템플릿들을 생성하고 저장하기 위[0043]

한 예시적인 다중 스테이지 생체 인식 시스템을 개략적으로 나타낸 것이다.  일 구현에서, 가시 혈관 구조는 눈

의 흰자위에 보이는 혈관 구조에 대응한다.  눈의 흰자위는 다수의 층들을 갖는다.  공막은 콜라겐 및 탄성 섬

유를 포함하는 눈의 불투명한 섬유질 보호층이다.  공막은 결막으로 덮여 있고, 결막은 그를 통해 그리고 그 위

를 지나가는 특히 많은 수의 혈관들 및 정맥들을 갖는다.  상공막(episclera)은 안구 결막(bulbar conjunctiv

a)으로 덮여 있고, 안구 결막은 눈꺼풀이 열릴 때 눈꺼풀 또는 환경과 접하는 얇은 투명 막이다.  혈관들(일반

적으로, 혈관 구조)은 눈의 흰자위의 이 층들 모두를 통해 지나가고, 눈의 영상들에서 검출될 수 있다.  사용자

인증 동안, 사용자의 눈의 하나 이상의 영상들이 포착되고, 포착된 영상 또는 영상들로부터 하나 이상의 검증

템플릿들이 생성되며, 등록 및 검증 템플릿들에 표현된 대응하는 혈관 구조들을 정합시키는 것에 의해 사용자의

신원이 검증될 수 있다.

도 1a 및 도 1b를 참조하여 기술되는 시스템들 및 방법들이 눈 혈관 구조로 제한되지 않는다는 것을 잘 알 것이[0044]
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다.  예를 들어, 생체 인식 인증이 눈의 혈관 구조를 사용하여 수행될 수 있다.  상세하게는, 근적외선 카메라

(예를 들어, 전화기의 수화기 근방에 구현되는 경우) 및 적외선 광원을 사용하여, 본원에 기술되는 바와 같이,

귀 혈관 구조의 영상들이 획득될 수 있고 그 영상들을 사용하여 사용자 인증이 수행될 수 있다.

단계(102)에서, 사용자의 눈의 영상들이 사용자에 의한 액세스가 인증되어야 하는 디바이스(예컨대, 스마트폰,[0045]

스마트 시계, 스마트 안경, 노트북 컴퓨터, 태블릿 컴퓨터 등)와 연관되어 있는 영상 센서(예컨대, 카메라)를

사용하여  포착된다.   예시로서,  카메라는 디지털 카메라,  3차원(3D)  카메라,  또는  라이트 필드 센서(light

field sensor)일 수 있다.  일부 구현들에서, 카메라는 안경 폼 팩터를 갖고 웨어러블 디바이스 내의 안쪽으로

향해 있는 모듈일 수 있고, 생체 인식 인증을 위해 사용자의 눈의 흰자위의 영상들을 포착하는 데 사용될 수 있

다.  영상들은 정지 모드 또는 비디오 모드 중 어느 하나로 포착될 수 있다.  일부 구현들에서, 영상이 포착되

는 동안 사용자는 (시각적, 또는 청각적, 또는 햅틱 피드백에 의해) 좌측 또는 우측 또는 위쪽을 또는 똑바로

보라고 프롬프트될 수 있다.  좌측 또는 우측을 보는 것은 데이터 포착을 위한 홍채의 우측 또는 좌측에 눈의

흰자위의 더 큰 면적을 노출시킬 수 있는 반면, 똑바로 보는 것은 각각의 눈에서의 홍채의 좌측 및 우측에 눈의

흰자위의 2개의 더 작은 세그먼트들을 제공할 수 있다.  단계(104)에서, 일반 관심 영역이 식별된다(예컨대, 한

쪽 눈 또는 양쪽 눈이 위치 확인될 수 있다).  이를 위해, 상이한 주시하는 눈 영상들에 대해 훈련된 Viola-

Jones 알고리즘들이 사용될 수 있다.  그 후에, 선택된 응시 방향이 검출되면, Haar 필터들을 사용하는 것과 같

은 응시 추적 알고리즘이 하나 이상의 영상들을 획득하기 위해 응시의 정도를 양자화하는 데 사용될 수 있다.

전형적으로, 획득된 영상들은 하나 이상의 눈들의 RGB 영상들을 획득하기 위해 크로핑된다.  이후부터, "영상"

또는 "포착된 영상"은 일반적으로 눈의 크로핑된 RGB 영상을 지칭한다.

영상 센서로부터 포착되는 영상들은, 예를 들면, 노출 및 움직임 블러 아티팩트들로 인해 다양한 품질을 가질[0046]

수 있다.   동작 단계(106)에서, 영상 잡음을 감소시키기 위해 몇 개의 영상들이 위치 맞춤(즉, 공간적으로

정렬)되고 평균될 수 있다.  일부 구현들에서, 평균하기 위한 영상들을 정렬하고 (예컨대, 움직임 블러 또는 눈

깜빡임으로 인해) 가장 상이하고 따라서 위치 맞춤 및 평균하기에 적합하지 않은 것들을 폐기하기 위해 영상 상

관 방법들이 획득된 영상들 간의 비유사도(dissimilarity)를 측정하는 데 사용된다.  예를 들어, 순차적으로 포

착된 4개의 영상들은, 영상들이 그다지 상이하지 않다면, 위치 맞춤 이후에 평균될 수 있다.  평균되는 영상들

의 개수는 영상 센서의 프레임 레이트 및 잡음 레벨에 의존할 수 있다.  몇 개의 평균된 영상들이 생성될 때,

후속 단계들에서 사용하기 위한 최고 품질의 것을 선택하기 위해 품질 메트릭이 사용될 수 있다.  일부 구현들

에서, (이하에서 기술되는 바와 같이 도출되는) 선명화된 영상의 녹색 채널의 픽셀 값들의 표준 편차가 품질 메

트릭으로서 사용될 수 있다.  다른 품질 메트릭들이 가능하다.

품질 검사 단계(106)에 의해 생성되는 영상들은 2-스테이지 정합기(two-stage matcher)에 대한 템플릿들을 생성[0047]

하는 데 사용되고, 그 후에 원본 영상들은 보안 및 개인 정보 보호를 이유로 보통 폐기된다.  스테이지 1 템플

릿은 다수의 (관심 지점, 특징 벡터) 요소들을 포함할 수 있다.  스테이지 2 템플릿은 원본 영상들에 대응하는

인코딩된(예컨대, 그레이 코딩된) OLBP(oriented local binary patterns)를 포함할 수 있다.  등록 모드(이하

에서 기술됨)에서, 하나 이상의 포착된 영상들이 등록 영상들로서 지정되고, 그로부터 등록 템플릿들이 생성된

다.  일부 구현들에서, 포착된 영상들의 노출 프로필들의 국소 히스토그램들에 기초한 대응하는 노출 템플릿들

이 생성되어 저장된다.  인증/검증 모드(역시 이하에서 기술됨)에서, 하나 이상의 포착된 영상들이 검증 영상들

로서 지정되고, 등록 템플릿들과 정합하기 위해 그로부터 검증 템플릿들이 생성된다.

도 1a를 참조하면, 스테이지 1에서, 등록 영상들 또는 검증 영상들일 수 있는 하나 이상의 평균된 영상들이 단[0048]

계(108)에서 전처리되고, 하나 이상의 스테이지 1 템플릿들을 생성하기 위해, 전처리된 영상들로부터의 특징들

이 단계(110)에서 추출된다.  스테이지 1에서, 전처리는 영상 선명화 또는 가버 필터링을 포함할 수 있고, 특징

추출은 VPD(vascular point detection) 및 특징 기술자들(PH-EMR-LBP, PH-EMR-CS-LBP, SURF, EMR-LBP, HoG 및

FREAK), 그리고 그들의 PCA 전처리를 포함할 수 있으며, 이들 모두는 이하에서 상세히 기술된다.  스테이지 2에

서, 하나 이상의 평균된 영상들이 단계(112)에서 전처리되고, 하나 이상의 스테이지 2 템플릿들을 생성하기 위

해, 전처리된 영상들로부터의 특징들이 단계(114)에서 추출된다.  스테이지 2에서, 예를 들어, 전처리는 가버

필터링을 포함할 수 있고 특징 추출은 OLBP(oriented local binary patterns)의 검출을 포함할 수 있다.  등록

템플릿은, 저장 이전에, 단계(116)에서 암호화될 수 있다.

검증 모드에서(즉, 검증 영상들이 처리될 때), 스테이지 1의 단계(110)는 검출된 정상치들로부터 기하 변환(예[0049]

컨대, 아핀 변환, 또는 자기 유사도 변환(self-similarity transformation)을 도출하기 위해 등록 템플릿과 정

합되는 후보 관심 지점들 및 특징 기술자들을 식별하는 것 및 식별된 변환의 하나 이상의 파라미터들 및 정상치

좌표들에 기초하여 제1 정합 점수를 계산하는 것을 포함한다.  스테이지 2의 단계(114)는 전처리된 검증 영상을
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식별된 기하 변환, 가버 필터링 및 위상 임계화(phase thresholding)를 사용하여 변환하는 것, 및 그 결과를

OLBP로 인코딩하여 스테이지 2 검증 템플릿을 얻는 것, 그리고 검증 및 등록 템플릿들의 타일링된 OLBP 레이어

들의 상관을 사용하여 제2 정합 점수를 계산하는 것을 포함한다.  하나 초과의 제1 정합 점수가 단계(110)를 반

복하는 것에 의해 계산될 수 있고, 각각의 반복은 그 반복에서 식별되는 상이한 기하 변환에 대응한다.  하나

이상의 제1 정합 점수들과 제2 정합 점수가 단계(118)(도 1b)에서 결합될 수 있고, 결합된 점수에 기초하여 검

증 영상 또는 영상들이 진정성 있는 것으로 결정될 수 있다.  일부 구현들에서는, 제1 정합 점수 또는 점수들만

이 진정성을 결정하는 데 사용되는 반면, 다른 구현들에서는, 제1 정합 점수가 대응하는 기하 변환의 하나 이상

의 파라미터들에 기초하여 폐기될 수 있다.  일부 구현들에서, 하나 초과의 제1 및 제2 정합 점수들이 단계들

(110 및 114)을 반복하는 것에 의해 계산될 수 있다.  하나 이상의 제1 정합 점수들과 제2 정합 점수들이 단계

(118)(도 1b)에서 결합될 수 있고, 결합된 점수에 기초하여 검증 영상 또는 영상들이 진정성 있는 것으로 결정

될 수 있다.  일부 구현들에서, 결합 규칙은 최대 규칙(max rule), 곱 규칙(product rule), 또는 합 규칙(sum

rule)일 수 있다.  일부 구현들에서, 결합 규칙은 선형 판별 분석에 의해 결정되는 선형 혼합(linear mixture)

일 수 있다.

구체적으로는, 도 1b에 도시된 바와 같이, 스테이지 1 처리 및 분석은 등록 및 검증 템플릿들에서의 대응하는[0050]

위치들 사이의 상관을 결정하는 것, 관심 지점들의 공간적 대응 관계를 찾아내기 위해 등록 및 검증 템플릿들에

대응하는 영상들에서의 검출된 관심 지점들을 둘러싸고 있는 근방들을 기술하는 그 템플릿들의 영상 기술자들을

비교하는 것, 및 이상치 관심 지점들을 제거하는 것을 포함한다.  이 스테이지에서, 위치 맞춤 변환 행렬 및 정

합 점수가 생성된다.  변환 행렬은 스테이지 2 정합기(Stage 2 matcher)에 대한 들어오는 검증 영상들을 위치

맞춤하는 데 사용될 수 있다.  일부 구현들에서, 스테이지 2로 진행함이 없이 검증 영상이 진정성 있는 것인지

에 관한 결정을 하기 위해 스테이지 1 정합 점수가 단독으로 사용된다.  일부 구현들에서, 스테이지 1이 만족스

러운 스케일, 회전, 및/또는 전단 한계들 내에서 위치 맞춤 행렬을 계산하지 못하거나 제공하지 못하는 경우,

스테이지 2가 ROI 내의 홍채의 경계들에 기초하여, 예를 들면, 단계(104)에 의해 제공되는 보조 위치 맞춤 행렬

을 사용하거나 사용함이 없이 자체적으로 정합 점수를 생성하기 위해 진행될 수 있다.

영상 선명화[0051]

일부 구현들에서, 전처리(단계(108))는 포착된 영상들에서의 혈관 구조의 가시성을 향상시키기 위해 사용될 수[0052]

있다.  하나의 이러한 방법은 눈의 혈관 구조와 주변의 흰자위 사이의 콘트라스트를 최대로 할 수 있는 RGB 영

상 데이터로부터의 색 성분을 선택하는 것이다.  일부 구현들에서, 이 영상은 청색 및 녹색 레이어들의 선형 결

합을 포함할 수 있다.  구체적으로는, 일 구현에서, 3-단계 프로세스를 사용하여 대응하는 선명화된 영상을 획

득하기 위해 각각의 평균된 영상이 선명화된다.  제1 단계는, 컨볼루션된 영상을 획득하기 위해, 하나 이상의

포착된  영상들로부터  도출되는  평균된  영상의  녹색  채널의  픽셀  값들  또는  청색  및  녹색  채널들의  일부를

LoG(Laplacian of Gaussian) 커널과 컨볼루션하는 것을 포함한다.  제2 단계는 영상에서 도달 가능한 최댓값으

로부터 LoG 필터링된 영상을 차감하는 것을 포함한다.

마지막으로, 제3 단계에서, 선명화된 영상을 획득하기 위해, 제2 단계로부터 획득되는 처리된 영상의 각각의 픽[0053]

셀이 평균된 영상의 대응하는 픽셀과 곱해진다.  도 2a는, 예를 들어, 하나 이상의 포착된 영상들로부터 획득된

눈의 평균된 영상을 나타낸 것이다.  도 2b는 대응하는 녹색 채널을 나타낸 것이고, 도 2c는 대응하는 LoG 필터

링된 영상을 나타낸 것이다.  제3 단계에서 획득되는 선명화된 영상의 표준 편차는 평균된 영상들의 시퀀스를

정렬(sort)하고 추가의 처리를 위한 평균된 영상을 선택하는 데 사용되는 영상 품질 메트릭일 수 있다.  일 구

현에서, 선명화를 위해 사용되는 LoG 커널은 하기 식으로 표현될 수 있고:

[0054]

여기서 필터 커널 크기는 5x5 픽셀이고 가우시안 표준 편차(σ)는 0.4이다.  LoG 필터링의 파라미터들이 획득된[0055]

영상의 해상도에 기초하여 최적화될 수 있다.  이상의 예시적인 파라미터들은 100 x 110 픽셀들(± 20 픽셀들)

의 대략적인 차원들을 가지는 크로핑된 눈 영상에 대해 선택되었다.  유지되는 품질 정렬된 선명화된 평균된 영

상들의 개수는 적용 분야에 따라 변할 수 있다.  예를 들어, 적용 분야가 등록 템플릿들을 생성하고 저장하는

것인 경우, 상위 4개의 선명화된 평균된 영상들이 유지될 수 있다.  적용 분야가 검증 스테이지에 있는 경우, 2

개와 같은, 상이한 수의 영상들이 유지될 수 있다.

일부 구현들에서, LoG 기반 영상 선명화에 부가하여, 평균된 영상의 다른 향상된 사본이 하기 식에 의해 정의되[0056]
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는 가버 필터들의 뱅크와 컨볼루션하는 것에 의해 획득될 수 있고:

[0057]

여기서 이고 이며,[0058]

σx 및 σy는, 각각, x-축 및 y-축을 따른 가우시안 엔벨로프(Gaussian envelope)의 표준 편차를 정의하고, f는[0059]

변조 사인파 또는 코사인파(modulating sine or cosine)의 주파수이며, θ는, 각각이 π/6 라디안 떨어져, 0부

터 5π/6까지 6회 변화되는 커널의 배향각이다.  그 결과 얻어진 6개의 필터들이 전술한 영상 향상을 위해 사용

된다.  일부 구현들에서, 가우시안 필터 뱅크의 홀수 또는 짝수 부분의 크기만이 사용될 수 있다.  일부 구현들

에서, f는 0.22이고 σx = σy =1.9이다.  이 값들은 ROI의 해상도에 따라 변할 수 있다.  일 구현에서, 평균된

영상을 향상시키기 위해 짝수 가버 필터들만이 사용된다.

일부 구현들에서, 선명화된 평균된 영상들의 부가적인 전처리는 CLAHE(Contrast  Limited  Adaptive  Histogram[0060]

Equalization)와 같은 영상 히스토그램 및 콘트라스트 조절을 포함한다.  CLAHE는 일반적으로 타일이라고 불리

우는 영상의 작은 영역들에서 동작한다.  전형적으로, 출력의 히스토그램이 특정의 분포(예컨대, 균등, 지수,

또는 Rayleigh  분포)에 의해 지정되는 히스토그램과 대략 정합하도록 각각의 타일의 콘트라스트가 향상된다.

임의의  인위적으로  유발된  경계들을  제거하기  위해,  이웃  타일들이  이어서  보간(예컨대,  이중  선형  보간

(bilinear interpolation))을 사용하여 결합된다.  일부 구현들에서, 혈관들과 배경 사이의 최상의 콘트라스트

를 가지는 적색, 녹색, 또는 청색 성분들의 선형 또는 비선형 결합을 선택하는 것에 의해 영상 영역이 향상될

수 있다.  예를 들어, 눈의 RGB 영상에서의 녹색 성분이 선호될 수 있는데, 그 이유는 혈관들과 배경 사이의 최

상의 콘트라스트를 제공할 수 있기 때문이다.  일부 구현들에서, 녹색 및 부분 청색 픽셀 값들이 사용될 수 있

다.  일부 구현들에서, CLAHE 전처리가 사용되지 않는다.  3-단계 선명화 이전에, 예를 들어, 공막 마스크를 적

용하는 것에 의해, 평균된 영상으로부터 ROI(Region  of  Interest)가 선택될 수 있다.  ROI의 선택의 안정성

(soundness)을 보장하기 위해 검사가 사용될 수 있다.  예를 들어, 공막 마스크를 적용하는 것에 의해 선택되는

면적이 적어도 특정의 지정된 퍼센트(예컨대, 평균된 영상 크기의 약 25 퍼센트)가 아닌 경우, 대응하는 영상이

추가의 처리로부터 제거된다.

혈관 지점 검출[0061]

관심 영역 내의 두드러진 또는 관심 지점들을 식별하기 위해 다양한 지점 검출 알고리즘들이 사용될 수 있다(단[0062]

계(104)).  두드러진 또는 관심 지점들은 전형적으로 어쩌면 식별 가능한 혈관 또는 다른 방식으로 특유한 관심

패턴들이 일반적으로 있는 곳이다.  관심 지점 검출을 위해 이용될 수 있는 일부 공지된 기법들은 SURF(Speeded

Up Robust Features) 알고리즘, FAST(Accelerated Segment Test) 알고리즘, 및 HS(Harris and Stephens) 알고

리즘을 포함한다.  이 일반 기법들은 종종 영상 영역 내의 혈관 패턴들 상의 대부분의/모든 지점들을 검출하지

는 않는다.  따라서, 일부 구현들에서, VPD(Vascular Point Detection) 알고리즘이 사용된다.  VPD는 혈관 유

사 객체들 상에 중심을 두는/위치되는 지점들을 발견하는 경향이 있는 지점 발견기(point finder)이다.  VPD 알

고리즘은, 그 지점이 관심 객체(object of interest)(예컨대, 혈관 패턴에서의 혈관) 상에 위치되어 있는지를

결정하기 위해, 강도 영상의 잠재적 관심 지점(픽셀)의 원단 이웃(distal neighborhood)들을 고려한다.  VPD 알

고리즘이, 예를 들어, 인자들 중에서도 특히, 영상의 스케일 및 해상도, 픽셀 강도 동적 특성(pixel intensity

dynamics), 그리고 지정된 지점 검출 감도에 기초하여 조절될 수 있다.

VPD 알고리즘의 일 구현에서, 도 2d에 도시된 바와 같이, 영상의 영역이 선택된다.  도 2e에 도시된 바와 같이,[0063]

다양한 원단 이웃 지점들이 VPD 계산에 고려된다.  도 2f를 참조하면, 관심 지점 후보(P0)에 중심을 둔 예시적

인 픽셀 이웃에서, 2개의 패턴 창들(202, 204)이 식별된다.  일부 구현들에서, 부가의 패턴 창들이 각각의 픽셀

이웃 내에 포함(embed)될 수 있다.  각각의 픽셀 이웃은 잠재적 관심 지점(예컨대, P0) 상에 놓인다.  2개의 패

턴 창들(202, 204)의 크기는 상이하다.  도 2f에 도시된 일 구현에서, 제1 패턴 창은 지점들(P1 내지 P8)을 포

함하는 5x5 픽셀 커널인 반면, 제2 패턴 창은 지점들(P1' 내지 P8')을 포함하는 7x7 픽셀 커널이다.  각각의 패
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턴 창은 이하에서 기술되는 계산들을 위해 사용되는 8 개의 주변 픽셀들을 포함한다.

중심 지점(P0)이 관심 지점인지를 결정하기 위해, VPD는 후보 픽셀(P0)과 픽셀(P0)의 이웃에 있는 16개의 다른[0064]

픽셀들(즉, P1 내지 P8과 P1' 내지 P8') 간의 강도 차이를 계산한다.  각각의 비교는 상태인 것으로 간주되고,

각각의 상태는 다음과 같이 정의된다:

Si = ( (Pi - P0) > t ) || ( (Pi' - P0) > t )[0065]

구체적으로는, P0의 강도가 대응하는 에지 픽셀들(Pi 및 Pi')의 강도들과 비교된다.  P0와 Pi의 강도들 간의 차[0066]

이가 강도 임계치 t를 초과하는 경우 또는 P0와 Pi'의 강도들 간의 차이가 강도 임계치 t를 초과하는 경우, 상

태는 하이 논리 값(예컨대, "1")으로 설정된다.  그렇지 않은 경우, 상태는 로우 논리 값(예컨대, "0")으로 설

정된다.  강도 임계치 t가 영상들의 품질 및 영상들에서의 잡음의 양에 기초하여 변경될 수 있다.  이 예에서,

8 번의 비교가 있기 때문에, 최대 카운터 값은 8이다.  8 개의 상태들 모두의 합이 특정 카운트(예컨대, 6)를

초과하는 경우, 후보 지점이 혈관 지점으로서 라벨링되거나 지정된다.

일부 구현들에서, 창에서의 임의의 픽셀의 강도 값이 제2 강도 임계치 초과인 경우, 중심 지점이 추가의 분석으[0067]

로부터 폐기될 수 있다.  이 상황에서, 픽셀은 이상(aberration), 눈부심(glare), 또는 다른 영상 아티팩트가

후보 지점의 잘못된 식별을 가져올 수 있는 영상의 구역을 표현할 수 있다.  예를 들어, 제2 강도 임계치가 240

인 경우(단, 최대 강도는 256임) 그리고 에지 픽셀의 강도가 240을 초과하는 경우, 대응하는 중심 픽셀이 잠재

적 VPD 후보 지점들의 풀(pool)로부터 폐기된다.

앞서 제공된 값들은 예시적인 값들이고, 다른 값들이 사용될 수 있다.  예를 들어, 2개 초과의 창들이 사용될[0068]

수 있고, 창들 중 어느 하나 또는 둘 다의 크기가 이 예에서의 크기와 상이할 수 있으며, 임계치 값들 및 강도

스케일이 또한 다양한 인자들에 기초하여 조절될 수 있다.  예를 들어, 비교적 낮은 해상도를 갖는 영상은 하나

의 3x3 창 및 하나의 5x5 창과 같은 2개의 작은 픽셀 창들을 사용할 수 있는 반면, 비교적 높은 해상도의 영상

은 하나의 7x7 창, 하나의 9x9 창, 및 하나의 11x11 창과 같은 3 개의 더 큰 픽셀 창들을 사용할 수 있다.  영

상 영역의 모든 픽셀들, 또는, 영상 영역의 경계로부터 특정의 거리 내의 각각의 픽셀과 같은, 픽셀들의 서브세

트에  대해  VPD  프로세스가  사용될  수  있다.   일반적으로,  VPD는  국소  이웃  연산(local  neighborhood

operation)이고 슬라이딩 창 기법(sliding window technique)은 앞서 기술된 바와 같이 상태들을 결정하는 데

그리고 후보 지점이 혈관 지점인지를 결정하는 데 이용될 수 있다.  그에 따라, VPD는 혈관 지점들인 것으로 결

정된 모든 지점들에 논리 하이 값(예컨대, "1")을 할당하는 것에 의해 그리고 모든 다른 후보 지점들에 논리 로

우 값(예컨대, "0")을 할당하는 것에 의해 눈의 ROI를 이진화(binarize)한다.  그 결과 얻어진 이진 마스크는,

도 3a에 도시된 바와 같이, BVM(binary vascular map)이라고 지칭된다.

BVM에서,  크기가  미리  정의된  수의  픽셀들  미만인  모든  블롭(blob)들은,  그들을  비혈관  지점(non-vascular[0069]

point)들인 것으로 간주함으로써, 제거될 수 있다.  일부 구현들에서, BVM으로부터 획득된 각각의 개별적인 연

결된 혈관 구조(블롭)이 씨닝될 수 있고, 그 결과 도 3b에 도시된 바와 같은 씨닝된 이진 혈관 맵 또는 씨닝된

BVM이 얻어질 수 있다.  씨닝 프로세스는 혈관 구조의 중심을 통해 지나가는 혈관 자취(vascular trace)를 생성

한다.  예시적인 씨닝된 BVM을 대응하는 BVM 상에 오버레이한 것이 도 3c에 도시되어 있다.

일부 구현들에서, 혈관 지점들의 개수를 추가로 감소시키기 위해, 국소적 지점 억압(local point suppression)[0070]

이 적용될 수 있다.  일반적으로, 국소적 억압은 ROI의 그레이 스케일 선명화된 영상으로부터 획득된 그래디언

트 크기 맵에 기초한다.  그래디언트 크기 맵은 에지들을 강조하기 위해 소벨 필터(Sobel filter)를 그레이 스

케일 영상과 컨볼루션하는 것에 의해 획득될 수 있다.  소벨 연산자(Sobel operator)는 일반적으로 그래디언트

크기 마스크(gradient magnitude mask)를 산출하기 위해 ROI 영상을 3x3 수평 및 수직 그래디언트 커널들과 컨

볼루션한다.  예시적인 그래디언트 커널들은 도 4a 및 도 4b에 도시되어 있다.

일 구현에서, 씨닝된 BVM은 5x5 비중복 블록들의 이웃들로 나누어진다.  각각의 블록에서, 임의의 씨닝된 BVM[0071]

지점들이 존재하는 경우, 대응하는 그래디언트 크기 마스크에서의 가장 높은 그래디언트 값에 매핑되는 하나의

혈관 지점만이 선택된다.  이 국소적 억압 프로세스는 혈관 지점의 개수를 거의 절반으로 감소시키고, 따라서

템플릿 크기를 감소시켜 정합 프로세스에 도움을 준다.  감소된 관심 지점들의 세트는 이후부터 "희소 VPD 지점

(sparse VPD point)들"이라고 지칭된다.  도 3b에 도시된 예시적인 BVM에 대응하는 예시적인 희소 VPD 지점들의

세트는 도 4c에 도시되어 있다.  5X5 이웃은 예시적인 것에 불과하고, 영상 해상도 및 스케일에 기초하여 변경

될 수 있다.  도 5a 내지 도 5f는 예시적인 원본 영상, 예시적인 ROI 마스크, 원본 영상으로부터의 ROI, ROI에

대응하는 BVM이 원본 영상 상에 오버레이된 것, 대응하는 씨닝된 BVM이 원본 영상 상에 오버레이된 것, 및 대응
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하는 희소 BVM(희소 VPD라고도 불리움)이 원본 영상 상에 오버레이된 것을 나타내고 있다.

일 구현에서, FAST, HS, 및 SURF와 같은 다른 지점 발견기들로부터의 후보 지점들이, 최소 거리 임계치를 만족[0072]

시키기만 하면, 희소 VPD 지점들의 세트에 추가될 수 있다.  예를 들어, 일 구현에서, FAST 지점들이 VPD 지점

들로부터 적어도 3 픽셀 떨어져 있다면, FAST 지점들이 희소 VPD 지점들에 추가된다.  일부 구현들에서, 관심

지점들이 앞서 기술된 관심 지점 발견기들의 전부 또는 일부로부터 도출될 수 있다.  일부 구현들에서, 관심 지

점들이 다수의 스케일들에서 식별될 수 있다.  예를 들어, 관심 지점들이 3-스테이지 가우시안 영상 피라미드

(three stage Gaussian image pyramid)로부터 검출될 수 있다.  다른 다중 스케일 영상 분해들이 가능하다.

국소 영상 기술자[0073]

관심 지점들이 앞서 기술된 하나 이상의 지점 검출 알고리즘들을 사용하여 식별된 후에, 하나 이상의 국소 영상[0074]

기술자들의 세트가 각각의 후보 지점을 둘러싸고 있는 ROI 근방들로부터 획득될 수 있다(단계(110)).  이 국소

영상 패치 기술자(local image patch descriptor)들은 SIFT 기술자들을 기반으로 하지만 Haar 웨이블릿(Haar

wavelet)  및 적분 영상(integral image)을 사용하여 더 나은 계산 효율을 갖는 HoG(histograms of oriented

gradients) 및 SURF(Speeded Up Robust Features)와 같은 각종의 알고리즘들을 사용하여 생성될 수 있다.  국

소 영상 기술자들은 또한 FREAK(Fast Retina Keypoint)라고 불리우는 이진 국소 영상 기술자 알고리즘을 사용하

여 계산될 수 있다.  EMR-LBP(Extended Multi-Radii Local Binary Pattern) 및 PEMR-CS-LBP(Pattern Extended

Multi-Radii Center- Symmetric Local Binary Patterns)는 2개의 다른 이진 영상 특징 추출기들이다.  일반적

으로, 이 기법들은 눈 정맥 정합에 대해 최적화되어 있지 않다.

이하에서 더 상세히 기술되는, 특징 기술자 알고리즘들과 같은 PH-EMR-LBP(Pattern Histograms of EMR-LBP) 및[0075]

PH-EMR-CS-LBP(Pattern Histograms of EMR-CS-LBP)는 눈 정맥 정합을 위해 커스터마이즈되어 있다.  ROI의 각

각의 관심 지점들 주변에 몇 개의 영상 기술자들을 생성하기 위해, 이 기법들 각각이 개별적으로, 결합하여, 그

리고/또는 앞서 기술된 다른 특징 기술자 알고리즘들과 결합하여 사용될 수 있다.

일반적으로, 다음과 같이 관심 지점들 주위에서 LBP 기술자들이 계산되고: 현재 관심 지점이 픽셀 위치 (x0,y0)[0076]

에 있는 것으로 가정된다.  중심 지점 (x0,y0)과 바로 접해 있는 8 개의 이웃들의 강도 값들 {(xi,yi)}, i = 1,

2, ...  8}이 중심 지점의 강도 값과 비교되고, 그 결과들이 Ki에 저장된다.  이웃의 강도가 중심 지점의 강도

보다 작거나 그와 같을 수 있고, 대응하는 결과가 "0"과 같은 논리 로우 값일 수 있다.  강도가 더 큰 경우, 결

과는 "1"과 같은 논리 하이 값일 수 있다.  비교들 후에, (x0,y0)에 대한 LBP8이라고 불리우는 8-비트 코드가 다

음과 같이 획득된다:

[0077]

일 구현에서, LBP8의 외부 정사각형 내의 픽셀들에 대해 앞서 기술된 프로세스가 반복됨으로써, 특정의 관심 지[0078]

점에 대한 16-비트(2 바이트) LBP16 코드를 생성할 수 있다.  이와 같이, 각각의 관심 지점에 대한 총 3 바이트

의 LBP 코드가 생성될 수 있다.  이 프로세스가 (x0,y0)의 5x5 픽셀 이웃에 대해 반복되어, 특정의 중심 지점 주

위에서 상기 LB8(1 바이트)+LBP16(2 바이트) 계산들을 총 5x5=25회 반복하여 산출함으로써, 그 결과 (x0,y0)과

같은 각각의 중심 관심 지점에 대한 3x25=75 바이트 이진 기술자가 얻어질 수 있다.  이 75 바이트 이진 기술자

는 EMR-LBP(Extended Multi-Radii Local Binary Patterns)로서 지정될 수 있다.  창들이 2로 제한되지 않으며;

영상 해상도에 기초하여 다른 크기들이 가능하다.

EMR-CS-LBP 기반 구현에서, 각각의 쌍별 픽셀 비교에 대한 참조 지점은, 중심 지점의 강도 값 대신에, 중심 관[0079]

심 지점의 8-픽셀 또는 16-픽셀 이웃에서 대각으로 반대쪽에 있는 픽셀을 포함함으로써, EMR-LBP 특징들에 비해

비트 수가 절반으로 된다.  EMR-LBP 및 EMR-CS-LBP 기술자들 둘 다는 이진수이다.

HoG는 전형적으로 관심 지점 주위에서 정의된 특정 크기(단위: 픽셀)의 이웃을 사용하여 계산된다.  그 이웃은[0080]

미리 정의된 수의 하위 영역들로 나누어질 수 있고, 그 하위 영역들 내에서 특정 각도들에서의 에지 배향들의

히스토그램들이 생성되고 전체적으로 그 관심 지점에 대한 국소 기술자로서 사용될 수 있다.  이 히스토그램 기

반 기술자들은 실수 벡터들이다.  일 구현에서, 4x4  픽셀 크기의 이웃은 각각이 30도 떨어져 있는 6개의 빈

(bin)으로 비닝되는 배향들의 히스토그램들을 갖는 2x2 하위 영역들로 타일링되고, 특징 기술자로서 사용된다.
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일 구현에서, 6개의 빈(각각이 30도 떨어져 있음)으로 비닝되는 배향들의 히스토그램들을 갖는 3x3 하위 영역들

로 타일링되는 4x4 픽셀 크기의 이웃이 특징 기술자로서 사용될 수 있다.

HEMR-LBP 기술자들이 또한 관심 지점 주위에서 특정 크기(단위: 픽셀)의 이웃을 사용하여 계산될 수 있다.  이[0081]

웃의 각각의 픽셀에 대한 EMR-LBP 코드들(앞서 기술됨)이 도출된다.  EMR-LBP 코드들의 그 이웃은 미리 정의된

수의 하위 영역들로 나누어진다.  다음에, 히스토그램들을 생성하기 위해, 하위 영역 내에서의 각각의 비트 위

치의 출현에 대한 카운트들이 생성된다.  모든 하위 영역들에 걸쳐 EMR-LBP 코드들의 이러한 히스토그램들의 연

결(concatenation)들이 PH-EMR-LBP 특징들로서 지정될 수 있다.  이 기술자들은 실수 벡터들이다.  다양한 구현

들에서, mxm 픽셀(m = 4, 5, ..., 11, 기타) 크기의 이웃이 nxn (n = 2, 3, ..., 7, 기타) 중복 하위 영역들

(타일들)로 타일링되고, 이웃 또는 하위 영역 내에서의 각각의 EMR-LBP 비트 위치의 출현의 히스토그램들의 연

결이 특징 기술자로서 사용될 수 있다.  m  및 n의 선택은 획득된 영상 해상도에 기초하여 행해질 수 있다.

HEMR-LBP는 PH-EMR-LBP와 유사하지만 하위 영역들을 갖지 않는데, 그 이유는 히스토그램들이 이웃 전체에 대해

계산되기 때문이다.  HLBP는 HEMRLBP와 유사하지만, LBP만을 사용한다.

일 구현에서, 9x9 픽셀 크기의 이웃(앞서 기술된 바와 같이, 그의 LBP8 및 LBP16 코드들이 이미 생성되어 있[0082]

음)이 16개의 3x3 하위 영역들(각각이 한 픽셀 중복됨)로 타일링된다.  LBP8 코드들의 각각의 3x3 하위 영역이

9개의 부호없는(unsigned) 8-비트 숫자들의 스트링(string)으로 변환되고, 이와 유사하게 LBP16은 9개의 부호없

는 16-비트 숫자들로 변환된다.  LBP8 스트링들의 부호없는 8-비트 숫자들은 부호없는 16-비트 숫자 스트링으로

변환된다.  9개의 부호없는 16-비트 스트링들의 각각의 비트 위치의 출현의 히스토그램들이 계산되고, 각각은

16 비트 길이의 벡터를 전달할 수 있다.  이와 같이, 각각의 하위 영역은 16개의 하위 영역들을 사용하여 512개

의 부호없는 16-비트 숫자들의 최종 길이를 전달하기 위해 연결되는 LBP8 및 LBP16 코드들로부터의 길이 16의 2

개의 벡터들을 가질 수 있다(영상 패치의 PH-EMR-LBP 기술자).

PH-EMR-CS-LBP는 후보 지점 주위에서 특정 크기(단위: 픽셀)의 이웃을 사용하여 계산될 수 있다.  이웃에서의[0083]

각각의 픽셀에 대해 EMR-CS-LBP 코드들을 생성한 후에, 그 이웃이 미리 정의된 수의 하위 영역들로 나누어진다.

다음에, 하위 영역 내에서의 각각의 비트 위치의 출현에 대한 카운트들이 생성된다.  EMR-CS-LBP 코드들의 이러

한 히스토그램들의 연결들이 PH-EMR-CS-LBP 특징들을 제공할 수 있다.  이 기술자들은 실수들이다.  mxm 픽셀(m

= 4, 5, 6, 7, 8, 9, 10, 11, 기타) 크기의 이웃이 중복 타일들을 가질 수 있는 nxn 하위 영역들(n = 2, 3, 4,

5, 6, 7, 기타)로 타일링될 수 있다.  이웃 또는 하위 영역 내의 각각의 비트 위치의 출현의 히스토그램들이 특

징 기술자들로서 사용될 수 있다.  m 및 n의 선택은 획득된 영상 해상도에 기초하여 행해질 수 있다.  HEMR-CS-

LBP는 PH-EMR-CS-LBP와 유사하지만 하위 영역들을 갖지 않는데, 그 이유는 히스토그램들이 이웃 전체에 대해 도

출되기 때문이다.

일 구현에서, 7x7 픽셀 크기의 이웃(앞서 기술된 바와 같이, 그의 CS-LBP8 및 CS-LBP16 코드들이 이미 생성되어[0084]

있음)이 9개의 3x3 하위 영역들(각각이 한 픽셀 중복됨)로 타일링된다.  CS-LBP8 및 CS-LBP16 코드들의 각각의

3x3 하위 영역은 각각의 CS-LBP8 및 CS-LBP16 코드에 대한 9개의 부호없는 8-비트 숫자들의 스트링으로 변환된

다.  CS-LBP8에 대한 8 개의 빈들 및 CS-LBP16에 대한 8 개의 빈들을 산출할 수 있는 각각의 비트 위치의 출현

의 히스토그램들이 계산된다.  9개의 하위 영역들 모두를 연결시키는 것은 144개의 부호없는 16-비트 숫자들의

벡터 길이(영상 패치의 PH-EMR-CS-LBP 기술자)를 산출할 수 있다.

일부 구현들에서, 관심 지점 주위의 영상 패치에 대한 특징 기술자들이 단일의 특징 기술자 알고리즘으로부터[0085]

또는 앞서 기술된 다수의 상이한 특징 기술자 알고리즘들을 사용하여 도출될 수 있다.  예를 들어, 이하의 기술

자들 중 하나 이상이 스테이지 1 템플릿을 생성하기 위해 각각의 관심 지점 주위의 영상 패치를 특성 분석하는

데 사용될 수 있다: EMR-LBP, CS-LBP, HoG, SURF, PH-EMR-LBP, 및 PH-EMR-CS-LBP.  일부 구현들에서, 후보 지

점들 주위에서 다수의 영상 스케일들로 특징 기술자들이 도출될 수 있다(다중 스케일 특징 추출을 산출함).  예

를 들어, 3-스테이지 가우시안 영상 피라미드를 사용하여 관심 지점들 및 그들의 대응하는 국소 영상 기술자들

을 검출할 수 있다.  다른 다중 스케일 영상 분해들이 가능하다.

정합을 통한 검증 또는 인증[0086]

일반적으로, 정합은 사용자와 연관된 하나 이상의 저장된 등록 템플릿(들)과 그 신원의 주장자의 하나 이상의[0087]

검증 템플릿(들) 간의 유사도를 찾아내는 프로세스이다.  주장자의 검증 템플릿과 등록 템플릿 간의 유사도(이

는 정합 점수로서 표현될 수 있음)가 지정된 임계치를 초과하면, 주장자는 인증된 사용자로서 검증될 수 있다.

그렇지 않은 경우, 주장자는 거부될 수 있다.
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스테이지 1 패턴 정합[0088]

등록 또는 검증(단계(110)) 시에 생성되는 스테이지 1 템플릿은 도출된 관심 지점들 및 그들 주위의 대응하는[0089]

영상 특징 기술자들을 포함할 수 있다.  등록 및 검증 템플릿들 간의 최상의 정합된 지점 쌍들을 찾아내기 위해

이진 기술자들(FREAK, EMR-LBP 및 PEMR-CS-LBP)에 대해 해밍 거리가 계산된다.  해밍 거리가 낮을수록 비교된

지점들이 유사하다.  실숫값 기술자 벡터들에 대해, 등록 템플릿의 SURF, HoG, PH-EMR-LBP 및 PH-EMR-CS-LBP

기술자들과 검증 템플릿의 각자의 SURF, HoG, PH-EMR-LBP 및 PH-EMR-CS-LBP 기술자들 간의 유클리드, 맨하탄,

상관, 또는 마할라노비스 거리가 계산되어, 그 거리들 중 하나 이상이 지정된 대응하는 임계치들을 충족시키는

지를 결정할 수 있다.  다른 거리 척도들이 또한 정합 지점 쌍들을 결정하는 데 사용될 수 있다.  상세하게는,

이하의 히스토그램 거리 또는 유사도 메트릭들 중 하나 이상이 PH-EMR-LBP 및 PH-EMR-CS-LBP와 같은 히스토그램

기반 영상 기술자들을 정합시키는 데 사용될 수 있다: (i)  히스토그램 차이의 정규화된 절댓값(ABSNdist_j),

(ii) 히스토그램 교집합 유사도(INTRsim_j), (iii) 히스토그램들의 상관 계수 유사도(CORRsim_j), 및 (iv) 바

타차리야 거리(Bhattacharyya distance)(BHATdist_j).

일반적으로, 스테이지 1 템플릿은 이하의 포맷으로 된 ti(관심 지점, 특징 벡터들) 요소들의 세트를 포함하고[0090]

[0091]

여기서 (xi, yi)는 관심 지점 i의 위치이고, 는 픽셀 좌표 (xi, yi)에 있는 관심 지점 주[0092]

위의 국소 영상 패치들을 기술하는 d 상이한 유형의 기술자 벡터들의 집합체이다.

일부 구현들에서, 정합기는, 하나 이상의 정합 지점 쌍들을 선택하기 위해, 등록 템플릿 내의 모든 관심 지점들[0093]

에 대한, 관심 지점 i와 연관된 각각의 특징 벡터 와 검증 템플릿 내의 모든 관심 지점들의 모든 대응하는

특징  벡터들  간의  거리들을  계산하는,  전체  검색(exhaustive  search)(단계(110))을  수행한다.   일부

구현들에서, 제1 최근접 정합 거리(closest match distance) 대 제2 최근접 정합 거리 비가 특정 임계치 초과인

모호한 대응 관계들이 불분명한 정합(ambiguous match)들로서 폐기되도록 비 테스트(ratio test)가 구현된다.

다른 구현들에서, FLANN(Fast Library for Approximate Nearest Neighbors) 정합기에 의해 구현되는 최근접 이

웃 알고리즘(nearest neighbor algorithm)들을 사용하여 특징들을 정합시키기 위해 kd-트리(kd-tree) 기반 기

법이 사용될 수 있다.  이것은 고차원 데이터 지점들 간의 더 빠른 최근방 이웃 검색을 가능하게 할 수 있다.

일부  구현들에서,  등록  및  검증  템플릿들로부터  대응하는  정합  지점들을  선택하기  위해  기술자들  Vi
k
(단,[0094]

k=1,2,...d)의 전부 또는 일부에 걸쳐 투표 방법이 사용될 수 있다.  예를 들어, 대응하는 국소 영상 기술자들

의 대부분이 거리 임계치를 충족시키는 경우에만, 하나의 템플릿으로부터의 하나 이상의 지점들이 다른 템플릿

으로부터의 대응하는 하나 이상의 지점들과 쌍을 이룬다.  각각의 유형의 기술자가 단독으로 동일한 정합된 지

점 쌍들의 세트를 노출시키지 않을 수 있을 때 투표 방법이 사용될 수 있다.  따라서, 일 예에서, 2개의 템플릿

들에서의 지점들이 총 5 개 유형의 상이한 기술자들 중 (적어도) 임의의 3 개를 사용하여 정합되는 경우, 검증

템플릿에서의  대응하는  지점들이  등록  템플릿에서의  대응하는  지점들과  정합된  것으로  간주된다.

구체적으로는, 일 예에서, 각각의 관심 지점에 대해, 템플릿들이 5 개 유형의 기술자들(즉, EMR-LBP, PH-EMR-

LBP, PH-EMR-CS-LBP, HoG, 및 SURF 기술자들)을 사용하는 경우, PH- EMR-LBP, PH-EMR-CS-LBP, 및 SURF 기술자

들이 거리 임계치를 통과하지만 다른 것들은 통과하지 않고 정합을 나타내면, 관심 지점이 정합된 지점 쌍에 대

한 후보인 것으로 간주될 수 있다.

기술자 융합(descriptor fusion)을 이용하는 일부 구현들에서, 결합된 기술자들을 정규화한 후에, 사용되는 상[0095]

이한 유형의 기술자들(예컨대, SURF, HoG, EMR-LBP, EMR-CS-LBP, PH-EMR-LBP, 및 PH-EMR-CS-LBP 기술자들)의

전부 또는 일부를 결합하는 것에 의해, 식별된 지점에 대한 단일의 기술자 벡터가 획득될 수 있다.

일부 구현들에서, 정합 메트릭 기반 융합(match metric based fusion)을 이용하여, 등록 및 검증 템플릿들 간의[0096]

상이한 기술자들의 개별적인 비교로부터의 정규화된 거리 점수들이, 2개의 템플릿들 간의 대응하는 정합 관심

지점 쌍을 찾아내기 위해, 거리 임계치와 비교하기 전에 가중 평균을 사용하여 결합될 수 있다.  다중 스케일

정합에서, 하나의 템플릿의 상이한 스케일들(예컨대, 영상 피라미드로부터의 스케일 0, 스케일 1 및 스케일 2)

로부터의 식별된 템플릿 지점들 및 그들의 기술자들이 다른 템플릿들로부터의 대응하는 스케일들의 것들과 개별
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적으로 정합될 수 있거나, 하위 스케일들로부터의 지점들의 좌표들이 정합 이전에 스케일 0으로 업스케일링될

수 있다.

일반적으로, 거리 임계치를 충족시키지 않는 기술자들을 갖는 2개의 템플릿들 간의 지점들이 후속 처리로부터[0097]

폐기될 수 있다.  그 후에, 이하에 기술되는 바와 같이 하나 이상의 아핀 변환 또는 유사한 기하 변환들을 근사

화(fitting)하는 것에 의해 등록 영상들과 검증 영상들 사이의 정상치 지점 쌍 서브세트를 찾기 위해 비폐기된

위치들이 사용될 수 있다.  정상치 지점 쌍들의 개수, 그들의 위치 상관들, 그리고 필요한 변환 스케일 및 회전

의 도함수가 이어서 제1 스테이지 정합 점수를 생성하기 위해 사용될 수 있다.  기술자 유사도 점수들을 고려하

는 것들을 비롯하여, 다른 정합 점수 생성 방법들이 또한 사용될 수 있다.

일부 구현들에서, 검증 템플릿에서의 후보 지점들을 제1 등록 템플릿에서의 관심 지점들과 정렬하는 데 필요한[0098]

변환을 결정하기 위해 RANSAC(random sample consensus) 또는 다른 이상치 검출 방법들이 사용될 수 있고, 여기

서 전술한 지점들은 이전의 기술자 정합 프로세스에서 발견된 지점 쌍들이다.  RANSAC 이상치 검출 방법은, 예

컨대, 혈관 패턴들을 통해 등록 및 검증 템플릿들에 인코딩된 눈의 관심 영역들의 기하학적 형태들의 면에서,

정합된 지점 쌍에서의 대응하는 지점들 간의 가정된 기하 변환을 근사화하지 않는 이상치들을 거부할 수 있다.

예를 들어, 하나 이상의 변환 행렬들이 정합된 쌍들에서의 검증 템플릿으로부터의 지점들에 적용되어, 본인 정

합(genuine match)이 있는 경우, 그의 좌표의 면에서 등록 템플릿의 대응하는 지점들과 정렬되어 있는 변환된

지점들의 세트를 생성할 수 있다.  관여된 변환은 정합된 지점 쌍들의 기술자 정합들에 기초하여 정합된 지점

쌍들의 최대 컨센서스(largest consensus)(정상치) 서브세트로부터 도출될 수 있다.  RANSAC과 같은, 가설 기반

이상치 검출 및 영상 위치 맞춤 방법들이 가장 많은 정상치 지점 쌍들을 갖는 변환된 템플릿 위치들을 생성하는

하나 이상의 아핀 변환들 또는 유사한 변환들을 식별하는 데 사용될 수 있다.  정상치 지점 쌍은, 정렬된 지점

들의 위치들 사이의 유클리드 또는 다른 거리 메트릭이 거리 임계치를 초과하지 않도록, 도출된 변환 행렬을 사

용하여 등록 템플릿에서의 지점에 정렬될 수 있는 검증 템플릿에서의 지점을 포함할 수 있다.  정상치 지점 쌍

은 또한 다른 등록-검증 지점 쌍들과 비교하여 기술자 공간(descriptor  space)에서 최근접 거리를 산출하고

RANSAC 또는 유사한 이상치 검출 프로세스를 성공적으로 통과하는 지점들의 쌍일 수 있다.  이상치 검출 프로세

스는 등록-검증 템플릿 비교들로부터 정상치 지점 쌍 위치들 간의 기하학적 또는 제한된 탄성 변환을 가정한다.

일반적으로,  정상치인 검증 템플릿으로부터의 변환된 지점들은 정렬된 지점(aligned  point)이라고 지칭된다.

검증 영상의 변환은 스테이지 1에서 수행되지 않는다.

스테이지 1 정합 점수는 등록 및 검증 템플릿들에 걸친 정상치 지점들의 상관 점수의 함수, 그리고 검출된 변환[0099]

행렬로부터의 복구된 스케일 및 회전 인자들 및 정상치들의 개수의 함수에 기초하여 생성될 수 있다.  일부 구

현들에서, 변환 행렬 또는 행렬들의 다른 특성 분석 함수들이 사용될 수 있다.  일부 구현들에서, 상관 이외의

유사도 메트릭들이 사용될 수 있다.  예를 들어, 정상치 지점 쌍들의 개수(N)가 등록 및 검증 템플릿들 간의 유

사도를 측정하는 데 사용될 수 있다.  예를 들어, 정상치 지점 쌍들의 개수가 많은 것이 정상치 지점 쌍들의 개

수가 비교적 적은 것보다 더 높은 제1 스테이지 정합 점수를 나타낼 수 있다.  일부 구현들에서, 상관 점수는,

예를 들어, 등록 및 검증 템플릿들에 걸친 위치 맞춤된 정상치 지점 위치들 간의 거리, 등록 및 검증 템플릿들

로부터의  대응하는  정합된  지점들의  기술자들  간의  거리,  등록  및  검증  템플릿  지점들  간의  정합된  성상

(constellation)의 지점들의 위치들 간의 상관, 기하학적 정렬을 위해 필요할 수 있는, 2개의 템플릿들 간의 복

구된 위치 맞춤 스케일 및/또는 회전, 또는 이들 및/또는 다른 척도들 중 하나 이상의 조합에 기초한다.  상관

점수가 스테이지 1 정합 점수를 결정하기 위해 단독으로 또는 다른 척도와 결합하여 사용될 수 있다.

일 예에서, 정합 점수는 검증 템플릿에서의 정상치 관심 지점들과 등록 템플릿에서의 대응하는 지점들 간의 x,[0100]

y 좌표 상관을 계산하는 것, 및 상관 계수를 N(즉, 정상치 지점 쌍들의 개수)과 곱하는 것에 의해 결정될 수 있

다.

일부 구현들에서, 스테이지 1 정합 점수는 정규화된 정상치 쌍 위치의 상관 점수이다.  다른 구현들에서, 스테[0101]

이지 1 정합 점수(FMS)는 다음과 같이 계산될 수 있고:

[0102]

여기서 Cx 및 Cy는, 각각, 대응하는 등록 및 검증 템플릿 정상치 지점들의 x 및 y 좌표들 간의 상관 점수이다.[0103]
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N은 이 정상치 지점 쌍들의 개수이고, RA는 위치 맞춤을 위해, 정상치 정합된 검증 지점들의 등록 지점들로의

변환으로 인한 각도의 변화를 나타내는 복구된 각도이며, RS는 그 변환으로 인한 스케일의 변화를 나타내는 복

구된 스케일이다.  RA 및 RS는 정상치 지점 쌍들을 식별하기 위해 사용되는 RANSAC 또는 유사한 연산의 결과로

부터 얻어지는 아핀 또는 유사한 변환 행렬로부터 도출될 수 있다.

Cx, Cy, N, 및 변환 행렬 도출 파라미터들의 함수인 제1 스테이지 정합 점수가 또한 인공 신경 네트워크 또는[0104]

선형 판별 분석과 같은 분류기를 훈련시키기 위해 부정 행위자 및 본인 비교들의 라벨링된 데이터세트를 사용하

여 직접 알게 될 수 있다.  선택적으로, 분류 이전에 PCA(principal component analysis) 전처리 스테이지가

적용될 수 있다.  일부 구현들에서, 국소 기술자 분산들에 기여하지 않는 PCA 후 차원(post-PCA dimension)들을

제거하기 위해, PCA 투영을 사용하여 국소(비이진) 기술자들이 단축될 수 있다.  이것이 특징 차원은 감소시키

면서 분류 정확도는 향상시킬 수 있다.  각각의 계열의 기술자 세트(descriptor set)에 대해 재훈련된 총 분산

(total variance)의 퍼센트가 변할 수 있다.  예를 들면, PCA 투영 및 단축의 일 구현에서, 확장 다중 반경 국

소 이진 패턴 특징들의 패턴 히스토그램들의 차원이 PCA 단축후 그의 분산의 약 86%를 유지하도록 감소될 수 있

다.  이와 유사하게, SURF 기반 특징들은 PCA를 통해 원래의 분산의 약 85%를 유지하도록 그의 차원이 감소될

수 있고, 확장 다중 반경 중심 대칭 국소 이진 패턴들의 패턴 히스토그램들은 PCA 투영 및 단축후 그의 분산의

약 95%를 유지하도록 단축될 수 있다.  PCA 부하(PCA loading)는 눈 템플릿(ocular template)들의 훈련 데이터

베이스를 사용하여 미리 계산될 수 있다.  분산 단축의 다른 퍼센트들이 가능하고; 선명화 방법들 및 영상에서

의 잡음 레벨들에 의존한다.

일부 구현들에서, 변환 행렬 도출 파라미터들 RS 및 RA 대신에, 변환의 다른 기능이 그의 행렬 요소들로부터 직[0105]

접 계산될 수 있다.  본인 및 부정 행위자 비교들로부터 도출되는 변환 행렬들을 고려하여, 그의 분포에서 최대

본인-부정 행위자 분리를 산출하는 대응하는 변환 행렬 요소들의 함수를 생성하는 것이 요망된다.  이 목적을

달성하는 한 가지 방식은 회귀 함수를 훈련시키고, FDR(Fisher discriminant ratio)과 같은, 분류가능성의 척도

를 최대화하기 위해 부정 행위자와 본인 비교들의 라벨링된 데이터세트의 변환 행렬들을 사용하는 것이다.

일부 구현들에서, 영상 영역의 다중 스케일 템플릿을 생성하기 위해 다수의 영상 스케일들이 사용될 때, 원본[0106]

스케일로부터의 것이 아닌 지점 좌표들(대응하는 기술자들이 아님)을 원본 스케일로 투영하기 위해 그 지점 좌

표들이 스케일링 인자와 곱해져, 모든 스케일들로부터의 정상치 지점들(즉, 정상치 지점 쌍들에서의 대응하는

지점들)을 원본 스케일로 투영하는 것에 의해 그 정상치 지점들을 결합시킬 수 있다.  일부 구현들에서, 스테이

지 1 정합 점수는 관심 지점 발견기들 및 특징 기술자 유형들의 상이한 조합들로부터 생성되는 상이한 RANSAC

변환들로부터의 몇 개의 상관 점수들의 가중 합일 수 있다.  일부 구현들에서, 앞서 기술된 스테이지 1 정합 점

수를 생성하기 위해, 검증 템플릿으로부터의 정상치 지점들이 기하 변환된 템플릿의 정렬된 지점들에 의해 대체

될 수 있다.

사용자를 인증하기 위해, 검증 템플릿이 등록 템플릿과 충분히 유사한지를 결정하는 데 스테이지 1 정합 점수가[0107]

개별적으로 또는 하나 이상의 다른 척도들과 결합하여 사용될 수 있다.  일부 구현들에서, 복구된 스케일 RS가

특정 값들 미만이거나 초과인 경우, 그리고/또는 복구된 각도 RA가 특정 임계치 초과인 경우, 스테이지 1 정합

점수를 사용하여 사용자를 인증하지 않기로 하는 결정이 행해질 수 있고, 스테이지 2 정합 점수가 계산되지 않

는다.  일부 구현들에서, 이러한 위치 맞춤 실패가 일어나는 경우, 이하에서 기술되는 스테이지 2 정합을 여전

히 가능하게 하기 위해 상이한 위치 맞춤 알고리즘이 사용될 수 있거나 어떤 위치 맞춤 알고리즘도 사용되지 않

을 수 있다.

스테이지 2 패턴 정합[0108]

검증 영상 영역의 지점들을 등록 템플릿에 의해 표현되는 등록 영상 영역의 지점들에 정렬시킬 수 있는 이상치[0109]

검출 프로세스(예컨대, RANSAC 프로세스)로부터의 변환 행렬을 사용하여 스테이지 2 정합기에 대해 검증 영상

영역이 변환(위치 맞춤)된다(단계(114)).  일부 구현들에서, 이 변환은 검증 영상 영역에 적용되는 하나 이상의

아핀 또는 유사한 변환들을 포함한다.  예를 들어, 변환된 영상 영역을 생성하기 위해 검증 영상 영역이 평행

이동되고, 스케일링되며, 스큐잉(skew)되고, 그리고/또는 회전될 수 있으며, 여기서 변환된 영상 영역의 지점들

은 등록 영상 영역에서의 대응하는 지점들의 위치들과 유사한 위치들에 있다.

스테이지 2 정합 점수는, 예를 들어, 가버 필터링된 등록 및 검증 영상들의 배향된 국소 이진 패턴들을 정합시[0110]

키는 것에 의해 생성될 수 있다.  일부 구현들에서, 변환된 검증 영상 영역은, 필터링 후에, OLBP(oriented

local binary patterns) 영상을 도출하는 데 사용된다(단계(114)).
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일부 구현들에서, 필터링 프로세스는 필터링된 검증 영상 영역을 생성하기 위해 변환된 검증 영상 영역에 몇 개[0111]

의 컨볼루션 필터들을 적용하는 것을 포함한다.  예를 들어, 다양한 각도들에서의 복소 가버 필터들의 세트, 또

는 가버 필터들의 복소 로그의 세트가 변환된 검증 영상 영역에 적용될 수 있다(단계(112)).  영상 영역에 묘사

되는 혈관들의 간격, 배향, 및 둘레(girth)의 변동들을 고려하기 위해, 가버 필터의 파라미터들이 경험적으로

결정될 수 있다.  복소 가버 필터링된 영상의 위상은 일반적으로 상이한 각도들에서의 혈관 패턴들을 반영한다.

가버 필터링된 영상들의 위상은 - π부터 + π 라디안까지 변할 수 있다.  예를 들어, 가버 커널들의 세트에 의

해 필터링된 위상 영상에서(예를 들어, 파장 = 6 픽셀; x에서의 확산(표준 편차) = 2.5 픽셀; y에서의 확산(표

준 편차) = 2.5 픽셀; 각도 = 0°, 30°, 60°, 90°, 120°, 150°), 0.25 라디안 초과 -0.25 라디안 미만의

위상 값들은 혈관 구조들에 대응할 수 있다.  위상 영상을 임계화하는 것은 0.25 또는 -0.25로 제한되지 않고,

이것은 적용 분야 및 사용되는 가버 커널들의 세트에 기초하여 변경될 수 있다.

일부 구현들에서, 위상 영상을 임계화하기 위해, 0.25 초과 또는 -0.25 미만의 모든 위상 값들은 유지되고 나머[0112]

지 값들은 0으로 설정되어 임계화된 영상(thresholded image)을 도출한다.  이 결과, 대응하는 위상 영상에서

실질적으로 잡음이 없는 혈관 구조의 더 선명한 묘사가 얻어질 수 있다.  상이한 각도들에서 몇 개의 가버 커널

들을 적용하는 것으로부터 얻어지는 영상들에 대해 이 연산이 수행될 수 있다.  일부 구현들에서, 그 결과 얻어

진 임계화된 영상들이 추가되어, 도 6에 도시된 것과 같은, 세밀하고 생생한 혈관 구조를 보여주도록 되어 있는

필터링된 영상이 얻어질 수 있다.

일부 구현들에서, 스테이지 1 정합 점수를 생성함에 있어서, 앞서 기술된 바와 같이 관심 지점 발견기(SURF,[0113]

FAST, HS, 및 VPD) 및/또는 국소 영상 기술자 알고리즘들(예컨대, HoG, SURF, EMR-LBP, PH-EMR-LBP, EMR-CS-

LBP 및 PH-EMR-CS-LBP)이 적용되는 영상 영역들은 짝수 가버 필터링된 영상 영역의 크기 또는 상이한 각도들에

서의 모든 짝수 가버 필터링된 영상 영역들의 크기 또는 상이한 각도들에서의 위상 영상 영역 또는 위상 영상

영역들의 합 또는 상이한 각도들에서의 임계화된 위상 영상 영역들 또는 모든 임계화된 위상 영상 영역들의 합

일 수 있다.  일부 구현들에서, 로그 가버 커널(log Gabor kernel)이 가버 커널을 대체할 수 있다.

일반적으로, 필터링된 영상 영역이 OLBP 템플릿을 도출하는 데 사용될 수 있다(단계(114)).  일부 구현들에서,[0114]

필터링된 영상 영역은 상이한 각도들에서의 임계화된 위상 영상들의 합이다.  OLBP 영상을 생성하기 위해, 필터

링된 영상 영역에서의 각각의 비경계 픽셀에 대해 도 7a에 도시된 예시적인 3x3 픽셀 창과 같은 픽셀 창들이 생

성된다.  3X3 픽셀 창은 일반적으로 중심 픽셀에 대한 값, 및 8 개의 주변 픽셀들에 대한 값들을 포함한다.  다

른 크기(예컨대, 5x5, 7x7 등)의 픽셀 창들이 또한 사용될 수 있다.  각각의 픽셀에 대한 값들은, 예를 들어,

대응하는 픽셀의 강도 또는 픽셀에 대한 위상 정보를 나타낼 수 있다.  일부 구현들에서, 영상 경계 픽셀들(예

컨대, 필터링된 영상 영역의 외측 경계에 있는 픽셀들)에 대해서는 픽셀 창들이 생성되지 않는데, 그 이유는 경

계 픽셀들이 8 개의 주변 픽셀들을 갖지 않기 때문이다.  중심 픽셀에 대한 8 개의 주변 픽셀들 각각에 대해,

주변 픽셀이 중심 픽셀의 값 이상 또는 중심 픽셀의 값(즉, 강도 또는 위상) 미만의 값을 가지는지를 나타내는

이진 값을 가지는 이진 픽셀 창들이 생성될 수 있다.  예를 들어, 어느 주변 픽셀 값들이 중심 픽셀 값 이상 또

는, 대안적으로, 그 미만인지를 나타내기 위해 논리 하이 값(즉, "1")들 및 논리 로우 값(즉, "0")들을 포함하

는 도 7b에 도시된 바와 같은 이진 픽셀 창을 생성하기 위해 도 7a의 픽셀 창이 이진화된다.  예를 들어, 도 7b

를 참조하면, "1"의 값은 연관된 픽셀이 중심 픽셀의 픽셀 강도 값 이상의 픽셀 강도 값을 갖는다는 것을 나타

내고, "0"의 값은 연관된 픽셀이 중심 픽셀의 픽셀 강도 값 미만의 픽셀 강도 값을 갖는다는 것을 나타낸다.

각각의 이진 픽셀 창에 대해, 가장 긴 주변 "1"들(또는 일부 구현들에서, "0"들)의 스트링의 중심에 대응하는[0115]

위치가 식별된다(단계(114)).  도 7b에 도시된 예시적인 이진 픽셀 창에서, 창을 둘러싸고 있는 숫자들은 픽셀

위치들을 나타내고, 가장 긴 주변 "1"들의 스트링은 위치 0부터 위치 3까지이다.  그 "1"들의 스트링의 중심은

위치 1과 위치 2 사이에 있고, 이 구현에서, 작은 쪽 위치(즉, 위치 1)가 가장 긴 주변 "1"들의 스트링의 중심

으로서 식별된다.  일부 구현들에서, 큰 쪽 위치(예컨대, 이 예에서, 위치 2)가 가장 긴 1들의 스트링의 중심으

로서 식별될 수 있다.

가장 긴 주변 "1"들의 스트링의 중심의 위치를 식별한 후에, 4-비트 이진 그레이 코드(Gray code)가 생성될 수[0116]

있다(단계(114)).  이진 그레이 코드는 "1"들과 "0"들의 스트링이고, 여기서 각각의 연속적인 값이 단지 하나의

비트만 상이하다.  도 4b에 도시된 예에 대한 그레이 코드에의 예시적인 매핑 위치는 (도 7c에 도시된 바와 같

이) "0001"이다.  이 예에서, 픽셀 위치 1이 가장 긴 주변 "1"들의 스트링의 중심으로서 식별되었고, 위치 1은

그레이 코드 값 "0001"에 대응한다.  3X3 픽셀 창이 생성되었던 픽셀(즉, 도 7a 및 도 7b에 도시된 창의 중심에

있는 픽셀)에 대해 이 그레이 코드가 생성된다.  필터링된 등록 영상 영역에서의 모든 비경계 픽셀에 대해 OLBP

들 및 그레이 코드들이 식별될 때, 각각의 픽셀은 그 픽셀에 대한 강도의 배향을 나타내는 4-비트 그레이 코드
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를 가질 수 있다.

필터링된 등록 영상 영역의 각각의 비경계 픽셀에 대한 그레이 코드를 생성한 후에, 필터링된 등록 영상 영역에[0117]

대해 4개의 이진 레이어들이 생성될 수 있다.  (예컨대, 제3 차원에서의) 각각의 이진 레이어는 4-비트 그레이

코드의 하나의 비트에 대응한다.  예를 들어, 위치 (10, 10)에 있는 픽셀이 "1100"의 그레이 코드 값을 가진다

면, 제1 이진 레이어의 위치 (10, 10)에 있는 이진 값은 "1"이고, 제2 이진 레이어의 위치 (10, 10)에 있는 이

진 값은 "1"이며, 제3 이진 레이어의 위치 (10, 10)에 있는 이진 값은 "0"이고, 제4 이진 레이어의 위치 (10,

10)에 있는 이진 값은 "0"이다.  스테이지 2 정합 점수를 생성하기 위해, 유사한 절차가, 제1 그레이 코딩된 영

상(즉, 스테이지 2 등록 템플릿)과 비교될 수 있는 제2 그레이 코딩된 영상(즉, 스테이지 2 검증 템플릿)을 생

성하도록, 변환된 검증 영상에 적용된다.

일부 구현들에서, 각각의 이진 레이어가 등록-검증 템플릿 비교를 위해 타일링될 수 있다(단계(114)).  일 예시[0118]

적인 구현에서, 이진 레이어들이 24개의 타일들의 4X6 격자로 타일링된다.  타일링은 가시 혈관 구조를 포함하

지 않고 그에 따라 인증에 중요하지 않은 영역들을 회피하거나 최소화할 수 있다.  타일링은 또한 위치 맞춤 아

티팩트들을 최소화할 수 있다.  일부 구현들에서, 유효하지 않은 타일들이 식별되고 추가의 분석으로부터 폐기

된다.  예를 들어, 특정의 타일에 대응하는 구역이 가시적인 눈 혈관 구조를 그다지 포함하지도 않고 피부 또는

홍채의 대부분을 포함하지도 않는 경우, 타일은 유효하지 않은 것으로 결정될 수 있다.  이 유효성 결정은, 예

를 들어, 타일에 포함된 구역의 이진 값들의 합을 임계치 값과 비교하는 것, 속눈썹 검출 알고리즘들을 사용하

는 것, 및/또는 눈부심 검출 알고리즘들을 사용하는 것에 의해 행해질 수 있다.  일부 구현들에서, 눈의 흰자위

(이는 세그먼트화 프로세스에 의해 차례로 결정됨) 내에 있는 이상 픽셀(aberration pixel)들(예컨대, 검출된

눈부심 및 속눈썹들)의 집합체가 생성될 수 있다.  하나 이상의 타일들이 유효하지 않은지 여부는 대응하는 타

일들에 속하는 눈 흰자위 픽셀들의 개수에 대한 이상 픽셀 카운트들의 개수의 비에 기초하여 결정될 수 있다.

눈의 흰자위 내의 타일의 면적을 타일의 총 면적으로 나눈 것은 타일 내의 공막의 범위(extent)를 반영할 수 있[0119]

다.  그에 따라, 일 구현에서, 공막 마스크 내의 80% 미만 범위(coverage)를 갖는 타일들은 유효하지 않은 것으

로 간주될 수 있고, 따라서 폐기될 수 있다.  어떤 경우들에서, 타일 구역의 부분들이 눈부심 또는 속눈썹 또는

다른 아티팩트 및 폐색(occlusion)들에 의해 가려질 수 있고, 충분히 심각한 경우, 그 결과 타일이 유효하지 않

게 될 수 있다.  공막 마스크는 전형적으로 눈의 흰자위에 속하지 않는 영상 픽셀들을 제외한 이진 영상 마스크

이다.  일부 구현들에서, 비혈관 타일들을 폐기하기 위해 혈관 구조의 존재의 척도가 사용될 수 있다.  예를 들

어, 0 초과의 가버 값들의 임계화된 위상을 갖는 타일의 면적을 타일의 총 면적으로 나눈 것은 가시 혈관 구조

의 양을 검출할 수 있다.

다양한 구현들에서, 스테이지 2 정합 점수를 결정하기 위해, 그레이 코딩된 스테이지 2 검증 템플릿의 각각의[0120]

이진 레이어에서의 각각의 비트가 그레이 코딩된 스테이지 2 등록 영상의 대응하는 레이어에서의 대응하는 비트

와 비교된다(단계(114)).  예를 들어, 스테이지 2 검증 템플릿의 4개의 이진 레이어들이 스테이지 2 등록 템플

릿의 대응하는 4개의 레이어들과 레이어별로 비교될 수 있다.  일부 구현들에서, 스테이지 2  정합 점수는,

각각, 그레이 코딩된 스테이지 2 검증 및 등록 템플릿들의 대응하는 이진 레이어들 간의 해밍 거리에 기초한다.

일부 구현들에서, 스테이지 2 정합 점수는 그레이 코딩된 스테이지 2 검증 및 등록 템플릿들의 이진 레이어들

간의 상관에 기초한다.  이진 레이어의 타일들에 대한 상관 점수를 결정하기 위해 슬라이딩 창 상관이 사용될

수 있다.  이진 레이어들이 타일링되는 구현들에서, 유효한 타일들 간의 거리 또는 상관만이 스테이지 2 정합

점수를 결정하는 데 사용될 수 있다.  일부 구현들에서, 해밍 거리가, 영상 영역 전체에 대해 또는 각각의 레이

어에 대해, 예컨대, 0과 1 사이의 값으로 정규화될 수 있다.  예를 들어, 각각의 레이어에 대한 정규화된 해밍

거리는 0과 1 사이의 숫자일 수 있고, 여기서 "1"은 그레이 코딩된 스테이지 2 검증 템플릿의 레이어의 이진 값

들과 그레이 코딩된 스테이지 2 등록 템플릿의 대응하는 레이어의 이진 값들 간의 정확한 정합(차이 없음)을 나

타내고, "0"은 정합 없음을 나타낸다.  일부 구현들에서, 상관이, 영상 영역 전체에 대해 또는 각각의 레이어에

대해, 예컨대, -1과 1 사이의 값으로 정규화될 수 있다.

스테이지 2 정합 점수는, 예를 들어, 그레이 코딩된 스테이지 2 검증 및 등록 템플릿들의 대응하는 이진 레이어[0121]

의 각각의 쌍에 대해 계산된 정규화된 해밍 거리들을 가산하고, 그 결과 0과 4 사이의 스테이지 2 정합 점수가

얻어지는 것에 의해, 생성될 수 있다.  스테이지 2 정합 점수는, 일부 구현들에서, 0과 1 사이의 값으로 추가로

정규화될 수 있다.  일부 구현들에서, 스테이지 2 정합 점수는 타일들 사이의 정규화된 해밍 거리에 기초하여

(예컨대, 유효한 타일들의 개수를 모든 유효한 타일들에 걸쳐 계산된 정규화된 해밍 거리의 평균과 곱하는 것에

의해) 생성될 수 있다.  예를 들어, 4개의 레이어들이 있고 각각의 레이어에 10개의 유효한 타일들이 있는
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경우, 스테이지 2 정합 점수는 0과 40 사이(즉, 타일들 각각에 대한 정규화된 해밍 거리의 합)일 수 있다.

일부 구현들에서, 스테이지 2 정합 점수는, 예를 들어, 그레이 코딩된 스테이지 2 검증 및 등록 템플릿들에 걸[0122]

쳐 각각의 이진 레이어에 대해 계산된 정규화된 상관 점수를 가산하고, 그 결과 -4과 4 사이의 스테이지 2 정합

점수가 얻어지는 것에 의해, 생성될 수 있다.  스테이지 2 정합 점수는, 일부 구현들에서, -1과 1 사이의 값으

로 추가로 정규화될 수 있다.  다른 예로서, 스테이지 2 정합 점수는 타일들 사이의 정규화된 상관에 기초하여

(예컨대,  유효한 타일들의 개수를 모든 유효한 타일들에 걸쳐 계산된 정규화된 상관의 평균과 곱하는 것에

의해) 생성될 수 있다.  일부 구현들에서, 상관 점수에 의해 생성된 스테이지 2 정합 점수는 검증 영상을 제공

하는 사용자가 인증될 수 있는지를 결정하기 위해 임계치와 비교될 수 있다.  예를 들어, 스테이지 2 정합 점수

가 (-4부터 4까지의 스케일에서) 1.0 미만인 경우, 검증 시도가 거부될 수 있고, 사용자는 권한 없는 것으로 결

정될 수 있다.

융합[0123]

2-스테이지 융합에서, 제3(최종) 정합 점수를 생성하기 위해, 스테이지 2 정합 점수가 스테이지 1 정합 점수와[0124]

결합될 수 있다(단계(118)).  그에 따라, 일부 구현들에서, 제3 정합 점수를 생성하기 위해 스테이지 1 정합 점

수와 스테이지 2 정합 점수가 곱해지고 그리고/또는 합산될 수 있다.  일부 구현들에서, 제3 정합 점수는 스테

이지 1 정합 점수와 스테이지 2 정합 점수의 가중 합일 수 있다.  가중치들은 과거의 정합 기록들에 기초하여

경험적으로 결정될 수 있다.  예를 들어, 스테이지 1 정합 점수가 스테이지 2 정합 점수보다 실제 정합을 더 잘

나타내는지 또는 특정 정합 점수 값들이 실제 정합을 대체로 나타내는지를 결정하기 위해 인증 실패 및 성공의

과거의 인스턴스들이 분석될 수 있고, 대응하는 데이터가 스테이지 1 및 스테이지 2 정합 점수에 대한 하나 이

상의 가중치들을 훈련시키는 데 사용될 수 있다.  검증 영상이 눈의 등록 영상과 정합하는지를 결정하기 위해

제3 정합 점수가 임계치 점수와 비교될 수 있다.  일부 구현들에서, 스테이지 1과 스테이지 2 정합 점수들을 결

합하여 제3 정합 점수를 생성하기 위해 최소 또는 최대 융합 규칙 또는 선형 판별(linear discriminant)이 사용

될 수 있을 것이다.

일 구현에서, 각각이 상이한 유형의 영상 선명화, 상이한 유형의 기술자 및 상이한 RANSAC 실행에 기초하는, 몇[0125]

개의 스테이지 1 점수들이 획득된다.  다양한 스테이지 1 정합 점수들 및 하나의 스테이지 2 정합 점수에 기초

하여 융합 정합 점수를 생성하기 위해 가중 합산(weighted summation)이 사용될 수 있다.  일 예에서, 이하의

점수들은 스테이지 1 검증 및 등록 템플릿들을 정합시키는 것에 의해 획득된다:

Score1 = 스테이지 1 (지점 발견기 = 스케일 0 및 스케일 1에서 FAST 및 VPD; 특징 기술자 = EMR-LBP)[0126]

Score2 = 스테이지 1 (지점 발견기 = 스케일 0 및 스케일 1에서 FAST 및 VPD; 특징 기술자 = PH-EMR-LBP)[0127]

Score3 = 스테이지 1 (지점 발견기 = 스케일 0 및 스케일 1에서 FAST 및 VPD; 특징 기술자 = PH-EMR-CS-LBP)[0128]

Score4 = 스테이지 1 (지점 발견기 = 스케일 0 및 스케일 1에서 FAST 및 VPD; 특징 기술자 = SURF)[0129]

Score5 = Score2에 대응하는 변환 행렬을 사용한 스테이지 2 점수.  융합 점수는 이하에 의해 주어지는, 앞서[0130]

기술된 점수들 모두의 가중 합일 수 있다:

융합 점수 = 0.1*Score1 + 0.2*Score2 + 0.2*Score3 + 0.2*Score4 + 0.1*Score5[0131]

상기 예에서의 가중치들 및 결합들은 일 구현에 대한 것이다.  피라미드 스케일들, 피라미드 유형들, 지점 발견[0132]

기들, 및 특징 기술자들의 다른 조합들이 이용될 수 있다.  일부 구현들에서, 2개 이상의 스테이지 2 정합 점수

들이 또한 융합 점수에 포함될 수 있다.

다른 구현에서, 이하의 점수들은 스테이지 1 검증 및 등록 템플릿들을 정합시키는 것에 의해 획득된다:[0133]

Score1 = 스테이지 1 (지점 발견기 = 스케일 0 및 스케일 1에서 FAST 및 VPD; 특징 기술자 = PH-EMR-LBP)[0134]

Score2 = 스테이지 1 (지점 발견기 = 스케일 0 및 스케일 1에서 FAST 및 VPD; 특징 기술자 = PH-EMR-CS LBP)[0135]

융합 점수는 이하에 의해 주어지는, 앞서 기술된 점수들의 가중 합일 수 있다:[0136]

융합 점수 = 0.5*Score1 + 0.5*Score2[0137]

다른 구현에서, 몇 개의 스테이지 1 점수들이 몇 개의 상이한 RANSAC 절차들을 적용하는 것에 의해 획득되고,[0138]

하나의 스테이지 2 점수가 획득된다.  융합 정합 점수를 생성하기 위해, 이 점수들이 가중 합산을 사용하여 결

등록특허 10-2113911

- 24 -



합될 수 있다.  일 예에서, 이하의 점수들은 검증 및 등록 템플릿들을 정합시키는 것에 의해 획득된다:

Score1 = 스테이지 1 (지점 발견기 = 스케일 0에서 FAST 및 VPD; 특징 기술자 = EMR-LBP, PH-EMR-LBP, PH-EMR-[0139]

CS-LBP, SURF, HoG; 정합 메트릭 기반 융합을 벗어난 지점들에 대해 RANSAC이 실행됨)

Score2 = 스테이지 1 (지점 발견기 = 스케일 1에서 FAST 및 VPD; 특징 기술자 = EMR-LBP, PH-EMR-LBP, PH-EMR-[0140]

CS-LBP, SURF, HoG; 정합 메트릭 기반 융합을 벗어난 지점들에 대해 RANSAC이 실행됨)

Score3 = Score1로부터 도출되는 변환 행렬을 사용한 스테이지 2 점수.[0141]

융합 점수는 이하에 의해 주어지는, 점수들 모두의 가중 합일 수 있다:[0142]

융합 점수 = 0.4*Score1 + 0.3*Score2 + 0.3*Score3[0143]

상기 예들에서 사용되는 가중치들 및 결합들이 예시적인 것에 불과하다는 것과, 다른 가중치들, 다른 수 및 유[0144]

형의 기술자들, 그리고 다른 RANSAC 실행들(일반적으로, 정상치 검출 절차들)이 이용될 수 있다는 것을 잘 알

것이다.  정합 메트릭 기반 융합에 대한 지점 발견기들, 특징 기술자들, 피라미드 스케일들, 및 피라미드 유형

들의 다른 조합들이 또한 이용될 수 있다.

다른 구현에서, 몇 개의 스테이지 1 점수들이 상이한 방식으로 선명화된 영상들에 대해 몇 개의 상이한 RANSAC[0145]

절차들을 적용하는 것에 의해 획득된다.  융합 정합 점수를 생성하기 위해, 이 점수들이 가중 합산을 사용하여

결합될 수 있다.  일 예에서, 이하의 점수들은 검증 및 등록 템플릿들을 정합시키는 것에 의해 획득된다:

Score1 = 스테이지 1 (선명화 = LoG 기반; 지점 발견기 = 스케일 0에서 FAST 및 VPD; 특징 기술자 = EMR-LBP,[0146]

PH-EMR-LBP, PH-EMR-CS-LBP, SURF, HoG; 정합 메트릭 기반 융합을 벗어난 지점들에 대해 RANSAC이 실행됨)

Score2 = 스테이지 1 (선명화 = LoG 기반; 지점 발견기 = 스케일 1에서 FAST 및 VPD; 특징 기술자 = EMR-LBP,[0147]

PH-EMR-LBP, PH-EMR-CS-LBP, SURF, HoG; 정합 메트릭 기반 융합을 벗어난 지점들에 대해 RANSAC이 실행됨)

Score3 = 스테이지 1 (선명화 = 가버 기반; 지점 발견기 = 스케일 0에서 FAST 및 VPD; 특징 기술자 = EMR-LBP,[0148]

PH-EMR-LBP, PH-EMR-CS-LBP, SURF, HoG; 정합 메트릭 기반 융합을 벗어난 지점들에 대해 RANSAC이 실행됨)

Score4 = 스테이지 1 (선명화 = 가버 기반; 지점 발견기 = 스케일 1에서 FAST 및 VPD; 특징 기술자 = EMR-LBP,[0149]

PH-EMR-LBP, PH-EMR-CS-LBP, SURF, HoG; 정합 메트릭 기반 융합을 벗어난 지점들에 대해 RANSAC이 실행됨)

융합 점수는 이하에 의해 주어지는, 점수들 모두의 가중 합일 수 있다:[0150]

융합 점수 = 0.3*Score1 + 0.2*Score2 + 0.3*Score3 + 0.2*Score4[0151]

상기 예들에서 사용되는 가중치들 및 결합들이 예시적인 것에 불과하다는 것과, 다른 가중치들, 다른 수 및 유[0152]

형의 기술자들, 그리고 다른 RANSAC 실행들(일반적으로, 정상치 검출 절차들)이 이용될 수 있다는 것을 잘 알

것이다.  정합 메트릭 기반 융합에 대한 지점 발견기들, 특징 기술자들, 피라미드 스케일들, 및 피라미드 유형

들의 다른 조합들이 또한 이용될 수 있다.

일부 구현들에서, 융합 점수가 단일의 등록 템플릿 및 단일의 검증 템플릿을 사용하여 획득된다.  일부 구현들[0153]

에서, 최종 정합 점수가 하나 이상의 검증 템플릿들을 하나 이상의 등록 템플릿들과 비교하는 것에 의해 생성될

수 있다.  예를 들어, 2개의 검증 템플릿 및 2개의 등록 템플릿들이 있는 경우, 4개의 융합 점수들이 생성될 수

있다.  일부 구현들에서, 최종 정합 점수가 최대 규칙 또는 합 규칙을 사용하여 생성될 수 있다.  다른 구현들

에서, (몇 번의 이상치 검출 실행들을 통해 식별되는) 가장 높은 N의 정상치 지점들의 정합 점수 및/또는 최상

의 품질 점수가 최종 정합 점수로서 선택된다.  일부 구현들에서, 정합 점수가 특정 임계치에 도달할 때까지 또

는 모든 또는 미리 정의된 수의 선택된 비교들이 수행될 때까지 정합 점수들이 순차적으로(serially) 생성된다.

일부 구현들에서, 검증 템플릿과 등록 템플릿 사이의 유사도의 정도를 결정하기 위한 제3 정합 점수를 생성하기

위해, 스테이지 1 정합 점수가 스테이지 2 정합 점수와 결합하여 사용될 수 있다.  일부 구현들에서, 정합 점수

융합에 의해, 검증 템플릿과 등록 템플릿 사이의 유사도의 정도를 결정하기 위한 제3 정합 점수를 생성하기 위

해, 스테이지 1 정합 점수들이 사용될 수 있다.  일부 구현들에서, 융합에 의해, 검증 템플릿과 등록 템플릿 사

이의 유사도의 정도를 결정하기 위한 제3 정합 점수를 생성하기 위해, 스테이지 2 정합 점수들이 사용될 수 있

다.

다중 템플릿 정합을 위한 단계적 템플릿 갱신 및 지능적 템플릿 재호출[0154]

도 8은 등록 템플릿들을 단계적으로 갱신하는 예시적인 프로세스를 나타낸 것이다.  사용자의 각각의 눈 ROI마[0155]
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다 몇 개의 등록 템플릿들을 효율적으로 관리하기 위해, 하나 이상의 템플릿 뱅크들(예컨대, 도 1a 및 도 1b에

도시된 데이터베이스(120))에 저장된 등록 템플릿들이 세분화되고 갱신될 수 있다.  저장될 등록 템플릿들의 개

수는, 선택적으로, 등록 시에 감소될 수 있다.  이를 위해, 일 구현에서, 각각의 ROI로부터의 N개의 초기 등록

템플릿들이 서로 쌍별로 정합되고, 가장 높은 총 교차 정합 점수(overall cross match score)들을 가지는 그 템

플릿들만이 저장된다(단계(802)).  예를 들어, N개의 초기 등록 템플릿들이 주어진 경우, 대칭적 거리 메트릭

(symmetric distance metric)을 가정하여 N(N-1)/2개의 가능한 쌍들이 정합된다.  이어서, 가장 낮은 메디안

정합 점수를 갖는 템플릿이 제외된다.  메디안 정합 점수는 각각의 등록 템플릿에 대한 N-1 개의 정합 점수들의

메디안일 수 있고, 각각의 정합 점수는 등록 뱅크에 포함시키기 위해 테스트되는 템플릿과 나머지 N-1 개의 등

록 템플릿들 간의 비교에 대응한다.  하나 이상의 부가적인 등록 템플릿들을 템플릿 뱅크 또는 뱅크들로부터 제

외시키기 위해 이 절차가 반복될 수 있다.

일부 구현들에서, 모든 등록 템플릿들 및 검증 템플릿에 대해 품질 점수가 생성된다.  검증 및 등록 템플릿들은[0156]

BVM(binary vascular map)들에 기초하는 희소 혈관 지점들을 포함한다.  일부 구현들에서, 템플릿에 대응하는

품질 점수는 템플릿과 연관된 씨닝된 BVM을 생성하는 데 사용되는 공막 마스크에서의 트루 픽셀들의 수에 대한

그 BVM에서의 트루 픽셀들(즉, 논리 하이 값으로 지정된 픽셀들)의 비를 포함한다.  다른 방법에서, 등록 및/또

는 검증 템플릿의 품질 점수는 공막 마스크에서의 트루 픽셀들의 개수에 대한 템플릿과 연관된 BVM에서의 트루

픽셀들의 비로서 계산될 수 있다.  품질 점수는 눈 영상에 존재하는 가시 혈관 구조의 양의 척도를, 정합 프로

세스에서의 추가적인 처리에 대한 그의 적격성을 평가하기 위해, 제공할 수 있다.  특정 임계치 미만의 품질 점

수를 가지는 등록 영상들은 등록 영상에 포함시키기 위해 처리되지 않는다.

일부 실시예들에서, 템플릿 뱅크 또는 뱅크들은, 그에 부가하여 또는 대안적으로, 검증 시에 적격의 검증 템플[0157]

릿(들)을 부가의 등록 템플릿(들)으로서 추가하는 것에 의해 또는 더 낮은 품질의 이전에 저장된 등록 템플릿들

을 상대적으로 더 나은 품질의 검증 템플릿들로 대체하는 것에 의해 갱신된다.  적격으로 되기 위해, 들어오는

검증 템플릿은 하나 이상의 등록 템플릿들과 제대로 정합되어야 하고, 선택적으로, 템플릿 뱅크에 추가될 그 검

증 템플릿에 대한 앞서 언급된 품질 척도를 통과해야만 한다(단계(804)).  템플릿 뱅크가, 예컨대, 메모리 용량

제약, 등록 템플릿 개수 제약 등으로 인해, 부가의 템플릿을 저장할 수 없는 경우, 가장 덜 바람직한 이전에 저

장된 등록 템플릿이, 예컨대, 상기 프로세스를 사용하여, 제외될 수 있다(단계(806)).  일부 실시예들에서, 예

컨대, 초기 등록 프로세스로부터 충분히 다양한 템플릿들이 없는 것으로 인해, 더 큰 등록 뱅크가 필요한 경우,

그럼에도 불구하고, 더 낮은 품질의 등록 템플릿이 보존되고, 여기서 다양성은 본인 사용자가 다양한 조건들 하

에서 자신의 눈을 스캔하는 동안 외부로부터 유발된 템플릿들의 변동들의 척도로서 정의된다.

일부 실시예들에서, 다중 등록 템플릿 시스템에서의 각각의 템플릿의 노출 프로필이 또한 (예컨대, 도 1a에 도[0158]

시된 단계(108)에서) 템플릿 다양성의 척도로서 템플릿과 함께 저장된다.  다수의 방법들을 사용하여 미리 위치

맞춤된 ROI(pre-registered ROI)에 대해, 저장될 템플릿에 대응하는 각각의 영상의 노출 프로필이 계산될 수 있

다.  예시적인 방법들은 카메라의 고유 노출 측정 변수들(예컨대, 영상의 EXIF 파일에서 발견되는 것들)을 사용

하는 것, 노출 프로필에 대해 영상의 YUV 표현에서의 Y 성분의 메디안, (평균, 표준 편차) 쌍, 및/또는 히스토

그램, 또는 녹색 레이어만을 사용하는 것을 포함한다.  후자의 경우에, 2 번의 포착들 사이의 노출 유사도 점수

를  구하기  위해,  콜모고로프-스미르노프(Kolmogorov-Smirnov),  정규화된  절대차(normalized  absolute

difference),  히스토그램 교집합, 평균 제곱 오차, 카이 제곱(Chi-squared)  기반 거리, 쿨백-라이블러 발산

(Kullback-Leibler divergence), 바타차리야 거리, 또는 상관 계수와 같은, 히스토그램 거리 척도가 사용될 수

있다.  비대칭 조명 및 노출의 공간적 분포에 대한 감도가 영상을 2개 또는 4개의 세그먼트들(또는 중복할 수

있는 다른 공간 배열들)로 분할하는 것에 의해 및, 노출 프로필 유사도들을 측정하기 전에, 각각의 세그먼트마

다 계산된 앞서 기술된 노출 척도들을 연결시키는 것에 의해 증가될 수 있다.

앞서 기술된 절차들은 템플릿들 간의 노출 및/또는 조명으로 유발된 차이들을 대체로 보여줄 수 있는 비교적 간[0159]

단한 통계적 영상 유사도 척도들이다.  유사도 척도의 정확도를 향상시키기 위해, 영상들이 선택된 ROI(예컨대,

눈 전체의 경계 상자 또는 특정 응시 방향의 세그먼트화된 공막)에 맞춰 미리 위치 맞춤되고 크로핑될 수 있다.

일 구현에서, 미리 위치 맞춤(pre-registration)이 양안 거리(inter-ocular distance)로부터 스케일을 찾아내

는 것, 및 홍채 및/또는 공막 및/또는 눈의 중심의 조합으로부터의 평행 이동에 의해 수행될 수 있다.  회전 각

도가 이전의 2개의 지점들을 연결시키는 라인으로부터 결정될 수 있고, 미리 위치 맞춤이 스케일, 회전 각도 등

에 기초한 유사도 기하 변환을 사용하여 달성될 수 있다.  검증 동안, 들어오는 검증 템플릿과 가장 유사한 노

출 프로필들을 가지는 등록 템플릿들 간의 정합이 시작될 수 있고, 이는 첫 번째 최상 다중 비교(first-best

multi-comparison)에서(즉, 정합 임계치에 도달하자마자 정합 결정을 끝내는 것에 의해) 정합 시간을 감소시킬
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수 있다.

일부 구현들에서, 노출 인식 단계적 템플릿 갱신(exposure-aware rolling template update)을 위해, 계산된 정[0160]

합 메트릭이 변조되어, 등록 템플릿의 것들과 상이한 조명 및 노출 조건들을 가지는 템플릿들에 제한된 장점을

제공하는 것에 의해 노출 다양성을 가능하게 한다(도 1b에 도시된 단계(118)).  이러한 차이들은 다른 방식으로

이 검증 템플릿들을 불리한 입장에 둘 수 있는데, 그 이유는 그의 정합 점수들이 적어도 부분적으로 노출 차이

로 인해 더 낮기 때문이다.  일반적으로, 검증 및 등록 템플릿들 간의 상당한 노출 차이가 변조된 메트릭을 극

복할 수 있게 함으로써 비슷한 부정 행위자 템플릿이 잘못하여 등록 템플릿 뱅크에 추가될 수 있게 하지 않는

것이 유익하다.  따라서, 템플릿들 T1 및 T2에 대해, 하나의 선형적 구현에 따르면 다음과 같다:

enhanced_match_metric  (T1,T2)  =  a  *  match_score  (T1,T2  +  (1-a)  *  (min  (exposure_difference  (T1,T2),[0161]

influence_threshold)

influnce_threshold는 노출 차이 레버리지(exposure difference leverage)가 특정 레벨을 초과하지 않도록 보[0162]

장할 수 있다.  적당한 influence_threshold는, 라벨링된 훈련 데이터세트(labeled training dataset)에 걸쳐,

최상의 성능을 위해 파라미터 'a'에 따라 결정될 수 있다.  상기 향상된 정합 메트릭에 따라, 템플릿들 T1 및 T2

를 생성한 영상들 간의 상당한 노출 차이를 갖는 꽤 약한 정합이 이러한 노출 차이가 없다면 강한 정합일 수 있

고, 그에 따라, 단계적 템플릿 갱신에서 선택되기 위해 들어오는 검증 템플릿이 이용될 수 있다.  저품질 영상

들(즉, 블러, 반사 및 폐색 등으로 인해 적절한 잘 정의된 혈관 구조가 없는 영상들)로부터의 템플릿들이 또한

등록 템플릿들로서 선택되지 않도록 추가로 보장하기 위해 혈관 분포(vascularity)/영상 품질의 척도가 이 수식

에 추가될 수 있다.

히스토그램 기반 노출 유사도 메트릭의 일 구현에서, 눈 영상이 공막 마스크의 경계 상자에 따라 크로핑되고,[0163]

특정 수의 픽셀들(예컨대, 약 50개의 픽셀들)로 패딩되거나, 그렇지 않고 눈 영상이 눈에 대해 중심에 오게 된

다.  이어서, 제1 및 제2 영상의 각각의 사분역의 녹색 레이어의 64 빈 히스토그램(64 bin histogram)이 계산된

다.  32 빈 또는 128 빈 히스토그램들과 같은 다른 히스토그램들이 또한 사용될 수 있다.  이 히스토그램들은

노출 프로필 또는 노출 템플릿으로서 그의 대응하는 템플릿들과 함께 저장된다.  다음에, 템플릿들의 쌍 사이의

각각의 대응하는 사분역들의 히스토그램들 간의 히스토그램 거리 또는 유사도 메트릭이 계산된다.  구체적으로

는, 다음과 같은 메트릭들이 계산된다: 히스토그램 차이의 정규화된 절댓값(ABSNdist), 히스토그램 교집합 유사

도(INTRsim), 히스토그램들의 상관 계수 유사도(CORRsim), 및 그의 바타차리야 거리(BHATdist).  다른 구현들에

서, 더 적은 및/또는 다른 메트릭들이 사용될 수 있다.  마지막으로, 이 메트릭들이 다음과 같이 단일의 유사도

메트릭으로 결합된다:

[0164]

유사도 메트릭이 높을수록, 2개의 템플릿들이 유사하다.  비유사도 또는 노출 차이는 유사도 메트릭의 음의 값[0165]

(negated value)일 수 있다.

여기에 기술되는 시스템들 및 기법들은 (예컨대, 데이터 서버로서의) 백 엔드 구성요소를 포함하는, 또는 미들[0166]

웨어 구성요소(예컨대, 애플리케이션 서버)를 포함하는, 또는 프런트 엔드 구성요소(예컨대, 그래픽 사용자 인

터페이스 또는 웹 브라우저 - 이를 통해 사용자는 여기에 기술되는 시스템들 및 기법들의 구현과 상호작용할 수

있음 - 를 가지는 클라이언트 컴퓨터)를 포함하는, 또는 이러한 백 엔드, 미들웨어, 또는 프런트 엔드 구성요소

들의 임의의 조합을 포함하는 컴퓨팅 시스템에서 구현될 수 있다.  시스템의 구성요소들이 임의의 디지털 데이

터 통신 형태 또는 매체(예컨대, 통신 네트워크)에 의해 상호연결될 수 있다.  통신 네트워크들의 예들은 근거

리 네트워크("LAN"), 원거리 네트워크("WAN"), 및 인터넷을 포함한다.

컴퓨팅 시스템은 클라이언트들 및 서버들을 포함할 수 있다.  클라이언트 및 서버는 일반적으로 서로 멀리 떨어[0167]

져 있고, 전형적으로 통신 네트워크를 통해 상호작용한다.  클라이언트와 서버의 관계는 컴퓨터 프로그램들이

각자의 컴퓨터들 상에서 실행되고 서로 클라이언트-서버 관계를 갖는 것으로 생긴다.  다수의 실시예들이 기술

되어 있다.  그럼에도 불구하고, 본 발명의 사상 및 범주를 벗어남이 없이 다양한 수정들이 행해질 수 있다는
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것을 잘 알 것이다.

본 명세서에 기술되어 있는 발명 요지 및 동작들의 실시예들이 디지털 전자 회로로, 또는 본 명세서에 개시된[0168]

구조들 및 그의 구조적 등가물들을 비롯한 컴퓨터 소프트웨어, 펌웨어 또는 하드웨어로, 또는 이들 중 하나 이

상의 조합으로 구현될 수 있다.  본 명세서에 기술된 발명 요지의 실시예들은 하나 이상의 컴퓨터 프로그램들,

즉 데이터 처리 장치에 의해 또는 데이터 처리 장치의 동작을 제어하기 위해 실행하기 위한 컴퓨터 저장 매체

상에  인코딩된  하나  이상의  컴퓨터  프로그램  명령어  모듈로서  구현될  수  있다.   대안적으로  또는  그에

부가하여, 프로그램 명령어들이 인위적으로 발생된 전파 신호(예컨대, 데이터 처리 장치에 의한 실행을 위해 적

당한 수신기 장치로 전송하기 위한 정보를 인코딩하기 위해 생성되는 머신 발생 전기, 광, 또는 전자기 신호)에

인코딩될 수 있다.  컴퓨터 저장 매체가 컴퓨터 판독 가능 저장 디바이스, 컴퓨터 판독 가능 저장 기판, 랜덤

또는 직렬 액세스 메모리 어레이 또는 디바이스, 또는 이들 중 하나 이상의 조합일 수 있거나, 이들에 포함될

수 있다.  더욱이, 컴퓨터 저장 매체가 전파 신호(propagated signal)가 아닌 반면, 컴퓨터 저장 매체가 인위적

으로 발생된 전파 신호에 인코딩된 컴퓨터 프로그램 명령어들의 소스 또는 목적지일 수 있다.  컴퓨터 저장 매

체가 또한 하나 이상의 개별적인 물리적 구성요소들 또는 매체들(예컨대, 다수의 CD들, 디스크들, 또는 다른 저

장 디바이스들)일 수 있거나, 이들에 포함될 수 있다.

본 명세서에 기술된 동작들은 하나 이상의 컴퓨터 판독 가능 저장 디바이스들에 저장되어 있거나 다른 소스들로[0169]

부터 수신되는 데이터에 대해 데이터 처리 장치에 의해 수행되는 동작들로서 구현될 수 있다.

"데이터 처리 장치"라는 용어는, 예로서, 프로그램 가능 프로세서, 컴퓨터, 시스템 온 칩, 또는 다수의 이들 또[0170]

는 상기한 것들의 조합을 비롯한, 데이터를 처리하는 모든 종류의 장치, 디바이스, 및 머신을 포괄한다.  장치

는  특수  목적  논리  회로,  예컨대,  FPGA(field  programmable  gate  array)  또는  ASIC(application-specific

integrated circuit)을 포함할 수 있다.  장치는 또한, 하드웨어에 부가하여, 문제의 컴퓨터 프로그램에 대한

실행 환경을 생성하는 코드, 예컨대, 프로세서 펌웨어, 프로토콜 스택, 데이터베이스 관리 시스템, 운영 체제,

교차-플랫폼 런타임 환경, 가상 머신, 또는 이들 중 하나 이상의 조합을 구성하는 코드를 포함할 수 있다.  장

치 및 실행 환경은 각종의 상이한 컴퓨팅 모델 인프라들(웹 서비스들, 분산 컴퓨팅 및 그리드 컴퓨팅 인프라들

등)를 실현할 수 있다.

컴퓨터 프로그램(프로그램, 소프트웨어, 소프트웨어 애플리케이션, 스크립트, 또는 코드라고도 알려져 있음)이[0171]

컴파일된 또는 인터프리트된 언어, 선언적 또는 절차적 언어를 비롯한 임의의 형태의 프로그래밍 언어로 작성될

수 있고, 독립형 프로그램 또는 모듈, 구성요소, 서브루틴, 객체, 또는 컴퓨팅 환경에서 사용하기에 적당한 다

른유닛을 비롯한 임의의 형태로 배포(deploy)될 수 있다.  컴퓨터 프로그램이 파일 시스템에서의 파일에 대응할

수 있지만, 꼭 그럴 필요는 없다.  프로그램이 다른 프로그램들 또는 데이터를 보유하는 파일의 일부분에(예컨

대, 마크업 언어 자원에 저장되는 하나 이상의 스크립트들), 문제의 프로그램에 전용된 단일의 파일에, 또는 다

수의 통합된 파일(coordinated file)들(예컨대, 하나 이상의 모듈들, 서브프로그램들, 또는 코드의 일부분들을

저장하는 파일들)에 저장될 수 있다.  컴퓨터 프로그램이 하나의 컴퓨터 상에서 또는 하나의 사이트에 위치하거

나 다수의 사이트들에 걸쳐 분산되어 통신 네트워크에 의해 상호연결되어 있는 다수의 컴퓨터들 상에서 실행되

기 위해 배포될 수 있다.

본 명세서에 기술된 발명 요지의 실시예들은 (예컨대, 데이터 서버로서의) 백엔드 구성요소를 포함하는, 또는[0172]

미들웨어 구성요소(예컨대, 애플리케이션 서버)를 포함하는, 또는 프런트 엔드 구성요소(예컨대, 그래픽 사용자

인터페이스 또는 웹 브라우저 - 이를 통해 사용자는 본 명세서에 기술되는 발명 요지의 구현과 상호작용할 수

있음 - 를 가지는 클라이언트 컴퓨터)를 포함하는, 또는 하나 이상의 이러한 백 엔드, 미들웨어, 또는 프런트

엔드 구성요소들의 임의의 조합을 포함하는 컴퓨팅 시스템에서 구현될 수 있다.  시스템의 구성요소들이 임의의

디지털 데이터 통신 형태 또는 매체(예컨대, 통신 네트워크)에 의해 상호연결될 수 있다.  통신 네트워크들의

예들은 근거리 네트워크("LAN") 및 원거리 네트워크("WAN"), 인터네트워크(inter-network)(예컨대, 인터넷), 및

피어-투-피어 네트워크들(예컨대, 애드 혹 피어-투-피어 네트워크들)을 포함한다.

컴퓨팅 시스템은 클라이언트들 및 서버들을 포함할 수 있다.  클라이언트 및 서버는 일반적으로 서로 멀리 떨어[0173]

져 있고, 전형적으로 통신 네트워크를 통해 상호작용한다.  클라이언트와 서버의 관계는 컴퓨터 프로그램들이

각자의 컴퓨터들 상에서 실행되고 서로 클라이언트-서버 관계를 갖는 것으로 생긴다.  일부 실시예들에서, 서버

는 (예컨대, 클라이언트 디바이스와 상호작용하는 사용자에게 데이터를 디스플레이하고 그로부터 사용자 입력을

수신하기 위해) 데이터(예컨대, HTML 페이지)를 클라이언트 디바이스로 전송한다.  클라이언트 디바이스에서 생

성되는 데이터(예컨대, 사용자 상호작용의 결과)는 클라이언트 디바이스로부터 서버에 수신될 수 있다.
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하나 이상의 컴퓨터들의 시스템은 동작 중에 시스템으로 하여금 특정의 작업들 또는 동작들을 수행하게 하는 소[0174]

프트웨어, 펌웨어, 하드웨어, 또는 이들의 조합을 시스템에 설치하는 것에 의해 그 동작들을 수행하도록 구성될

수 있다.  하나 이상의 컴퓨터 프로그램들은, 데이터 처리 장치에 의해 실행될 때, 장치로 하여금 특정의 작업

들 또는 동작들을 수행하게 하는 명령어들을 포함하는 것에 의해 그 동작들을 수행하도록 구성될 수 있다.

본 명세서가 많은 구체적인 구현 상세들을 포함하고 있지만, 이들이 임의의 발명들의 범주 또는 청구될 수 있는[0175]

것의 범주에 대한 제한으로서 해석되어서는 안되고 오히려 특정의 발명들의 특정의 실시예들에 특유한 특징들에

대한 설명으로서 해석되어야 한다.  개별적인 실시예들과 관련하여 본 명세서에서 기술되는 어떤 특징들이 또한

단일의 실시예에서 결합하여 구현될 수 있다.  이와 반대로, 단일의 실시예와 관련하여 기술되는 다양한 특징들

이 또한 다수의 실시예들에서 개별적으로 또는 임의의 적당한 서브컴비네이션으로 구현될 수 있다.  게다가, 특

징들이 어떤 조합들로 작용하는 것으로 이상에서 기술되어 있을 수 있고 심지어 초기에 그 자체로서 청구될 수

있지만, 청구된 조합으로부터의 하나 이상의 특징들이 어떤 경우에 그 조합으로부터 삭제될 수 있고, 청구된 조

합이 서브컴비네이션 또는 서브컴비네이션의 변형에 관한 것일 수 있다.

이와 유사하게, 동작들이 도면들에서 특정의 순서로 도시되어 있지만, 이것이, 바람직한 결과를 달성하기 위해,[0176]

이러한 동작들이 도시된 특정의 순서로 또는 순차적인 순서로 수행되어야 하는 것으로 또는 모든 예시된 동작들

이 수행되어야 하는 것으로 이해되어서는 안된다.  어떤 상황들에서, 멀티태스킹 및 병렬 처리가 유리할 수 있

다.  더욱이, 앞서 기술한 실시예들에서 다양한 시스템 구성요소들이 분리되어 있는 것이 모든 실시예들에서 이

러한 분리를 필요로 하는 것으로 이해되어서는 안되고, 기술된 프로그램 구성요소들 및 시스템들이 일반적으로

단일의 소프트웨어 제품에 하나로 통합되거나 다수의 소프트웨어 제품들에 패키지화되어 있을 수 있다는 것을

잘 알 것이다.

따라서,  발명  요지의  특정의  실시예들이  기술되어  있다.   다른  실시예들이  이하의  청구범위의  범주  내에[0177]

속한다.  어떤 경우에, 청구범위에 기술된 동작들이 다른 순서로 수행되어도 여전히 바람직한 결과를 달성할 수

있다.  그에 부가하여, 첨부 도면에 도시된 프로세스들이, 바람직한 결과를 달성하기 위해, 반드시 도시된 특정

의 순서 또는 순차적인 순서를 필요로 하는 것은 아니다.  특정 구현들에서, 멀티태스킹 및 병렬 처리가 유리할

수 있다.
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