US 20170187395A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2017/0187395 A1l

Watanabe et al. 43) Pub. Date: Jun. 29, 2017
(54) MEMORY CONTROLLER, MEMORY (52) US. CL
SYSTEM AND METHOD CPC ... HO3M 13/2909 (2013.01); GOGF 11/1068
(2013.01); G1IC 29/52 (2013.01); HO3M
(71) Applicant: KABUSHIKI KAISHA TOSHIBA, 1372927 (2013.01); HO3M 13/6502 (2013.01)
Minato-ku (JP)
57 ABSTRACT
(72) Inventors: Daiki Watanabe, Yokohama Kanagawa
(IP); Daisuke Fujiwara, Yokohama According to an embodiment, a memory controller for
Kanagawa (JP); Kosuke Morinaga, controlling a nonvolatile memory in which multi-dimen-
Yokohama Kanagawa (JP); Osamu sional error correction code having two or more component
Torii, Setagaya Tokyo (JP) codes is stored, the memory controller configured to read out
the multi-dimensional error correction code; acquire a
(73) Assignee: KABUSHIKI KAISHA TOSHIBA, received word of the multi-dimensional error correction
Minato-ku (JP) code; hold an intermediate decoded word of the multi-
dimensional error correction code; perform a first decoding
(21) Appl. No.: 15/456,994 process which is decoding a first component code included
) in the intermediate decoded word; when a first error symbol
(22) Filed: Mar. 13, 2017 included in the first component code is detected by the first
L. decoding process, perform a first rewriting process which is
Related U.S. Application Data rewriting a value corresponding to the first error symbol in
(63) Continuation-in-part of application No. 14/845,875, the intermediate decoded word, and record first recurrence
filed on Sep. 4, 2015, now abandoned. information for reproducing a value of the first error symbol
. L before rewriting; perform a second decoding process which
(60) Provisional application No. 62/130,902, filed on Mar. is decoding a second component code included in the
10, 2015. intermediate decoded word, of which dimension is different
A . . from that of the first component code; determine whether the
Publication Classification fi L . .
rst rewriting process is erroneous correction based on a
(51) Int. CL result of the second decoding process; and when it is
HO3M 1329 (2006.01) determined that the first rewriting process is erroneous
G1I1C 29/52 (2006.01) correction, perform a counter process which is undoing the
HO3M 13/00 (2006.01) first rewriting process based on the recorded first recurrence
GOG6F 11/10 (2006.01) information.
51
SEMICONDUCTOR MEMORY DEVICE
g2 <3
MEMORY CONTROLLER $23
5§29 PROCESSOR <31 27 528
DATA READING || WRITING
MANAGING|} CONTROL {] CONTROL
b UNIT UNIT UNIT DRAM 1| ROM
b
L
4 ¥ _$20 NONVOL-
v 52 1 MEMIORY
5
HOST (21 fzs e
< o Host ENCODER 1 MEMO- | by
' /F a RYIUF [|
DECODER
UNIT P28

Patent Application Publication Jun. 29, 2017 Sheet 1 of 26 US 2017/0187395 A1
51
SEMICONDUCTOR MEMORY DEVICE
52 <3
MEMORY CONTROLLER 23
s20 PROCESSOR <31 27 <28
DATA READING || WRITING
MANAGING|} CONTROL || CONTROL
34 UNIT UNIT UNIT DRAM || ROM
E F 3 A
v 0 ¥ ¥ 520 | | NONVOL-
y 3 ot X ATILE
521 f v 522
P o Host ENCORER 1 meEMo- | |
- : F ™M ry F [T
DECODER
UNIT P28
FIRST DATA LENGTH
A
Vs 2
1
I b~ 2011
SECOND
DATA <
LENGTH
\

i)
[

Patent Application Publication Jun. 29, 2017 Sheet 2 of 26 US 2017/0187395 A1

SUCCESS OF COMPONENT FAILURE OF COMPONENT
CODE WORD CALCULATION CODRE WORD CALCULATION
i - AN A ~
FAILURE OF
SUCCESS OF ERROR ERRONEQUS
COMPONENT CODE
CORRECTION CORRECTION WORD CALCULATION
. N A N A
SUCCESS OF ERROR FAILURE OF ERROR

CORRECTION CORRECTION

US 2017/0187395 Al

P Old

Patent Application Publication

1INA ¥30003a AN
=
LINA NOIHLOZHE0D |, | 3ovdols
HOWST *)

° P 03Lvadn
o
= £z8) e
o)
g
K-
wn
r~
-
>
o 4
& LINA ONININY3LIQ S0RROLS #
. | ’ ;
= 3000 ININOANoD [~ HNOLYadN oM [a2
= I EINELE

zzed 126 Le? 70

9z 12

AHCRWIN
dOLONANODINIS

Patent Application Publication

(A)

(B)

(C)

Jun. 29, 2017 Sheet 4 of 26 US 2017/0187395 Al

FIG.5
411
{} ERROR CORRECTION
f421
'g\" N) v,(_.%.,\: o ;
{} ROLLBACK CONTROL

f431

Patent Application Publication Jun. 29, 2017 Sheet 5 of 26 US 2017/0187395 A1

FIG.6
511
(A) gt 501
7 -] 502

504 505 @ERROR CORRECTION

\ \ 521
""L) NN P f
() %
VJ’//’/ P~ S
7 o 501
l 1502
522 623 @ ROLLBACK CONTROL

f53'¥

()

I
HEEE

532 533

Patent Application Publication

(A

(B)

()

Jun. 29, 2017 Sheet 6 of 26 US 2017/0187395 Al

D
N

FIG.7
~—511
7w 501
7z — 502

535 Q ERROR CORRECTION

524
o
RSN S

fSZ’!

/

501

502

(

~

522 523 @ ROLLBACK CONTROL

f531

— 501

502

7
7 —f—
((
532 533

Patent Application Publication Jun. 29, 2017 Sheet 7 of 26 US 2017/0187395 A1

FIG.8
~511
(A) T 501
;4% i 502

504 05 @ERROR CORRECTION

Vo) 521
mim

(B) 7 N
A1 501
I 1502

522 523 {} ROLLBACK CONTROL
524 525

f 531
[\\\\

{C}

532 533

Patent Application Publication Jun. 29, 2017 Sheet 8 of 26 US 2017/0187395 A1

FIG.9

911 912

{A) AN

S

501 902 {} ERROR CORRECTION

AN

N o2

(B) N

Q ROLLBACK CONTROL

f 833

(C) | D

Patent Application Publication Jun. 29, 2017 Sheet 9 of 26 US 2017/0187395 A1

FIG.10
60
|
i 611
(A) At —|—604

601 802 QERROR CORRECTION

\ \} , fezn
ROLLBACK
- CONTROL
(B} ;;/;fol n E>
}//O T 1 604
| 603
{

622 623 {} ROLLBACK CONTROL

THH

(C)

632 633

Patent Application Publication Jun. 29, 2017 Sheet 10 of 26 US 2017/0187395 A1l

C st) FIG.11

DOES NOT
PRODUCT CODE INCLUDE
ERROR?

CALCULATION OF

COMPONENT CODE WORD
PERFORMED PREDETERMINED
NUMBER OF
TIMES?

YES

(5703 NG [
SELECT ONE OF COMPONENT CODES
FORMING PRODUCT CODE AND PERFORM
ERROR CORRECTION PROCESS ON
COMPONENT CODE WORD OF SELECTED
COMPONENT CODE

DOES CODE
WORD CALCULATION (ERROR
CORRECTION PROCESS)
SUCCEED?

IS

CHANGE OF ANOTHER
COMPONENT CODE WORD
ACCOMPANIED?

IS INVERSION
NUMBER EQUAL TO OR
GREATER THANM REFERENC
VALUE §i?

NO

.—‘-I'YES

PERFORM ROLLBACK CONTROL l

COMPONENT CODE
WORDS IN COLUMN DIRECTION OR
ROW DIRECTION
SELECTED?

NO

(END)

US 2017/0187395 Al

LINA ¥300234 Hvya
Iy
LINA NOILOTHM0D | 3owvdols

STeE! < ® JHOM JUOD
2 a2 1vadn
s czey A ae A
H ‘
g LINM ONIDYNYI AMOWIW
2 o— N NV HOLONANODINSS
r~
= crg> 4
K ¥ y
ot v3dy
G S > mbéawﬁwzqzé < wwmy%%m « 0 A
E 3409 ININOIOD M SniSoay NI

Z19 L1g Lie P
108} 12 £

¢l Old

Patent Application Publication

Patent Application Publication

Jun. 29, 2017 Sheet 12 of 26 US 2017/0187395 Al

1411
(A) Attt 1402
7“7 1403
{} ERROR CORRECTION
1421
N N
®) %
{} ROLLBACK CONTROL
REFERENGE
VALUE | < 27
(©) NO YES
NOT ROLLBACK
ROLLBACK CONTROL
CONTROL TARGET

TARGET

Patent Application Publication Jun. 29, 2017 Sheet 13 of 26 US 2017/0187395 A1l

FIG.14
1033 1032
4 {
1031 1
(C) - T
; /:-/f/ 3 '
7
1003 1001 1011
/ /)
k k (1021
) o % ~Z~
N | (B) ‘
(A 7 .. » N
) | N ROLLBACK '
AN N
Y N I~ 1002 >
1004

1013 1012 1023 1022

US 2017/0187395 Al

Jun. 29,2017 Sheet 14 of 26

Patent Application Publication

gill ThH Sl ZLL
\2:
N i X =
w N e N %
\E: N NN
W (@) N 7 o) N 7
L
N / N f)\z\llam,_ NN
AR 4
A A A
LOLY
3009 ININOIWOD 40 NOLLYNINY313a /
MovaTIcoH ﬂ
p00 14— B %Y
o Ll
g0k =~ T\
20l —F= 777
L~} o S
GOL L \
bbb
8%

mN_L Nm_‘l vNIu \m
Q0L

Gl Old

Patent Application Publication

ERROR?

DOES NOT
PRODUCT CODE INCLUDE

Jun. 29,2017 Sheet 15 0of 26 US 2017/0187395 Al
s1201
NO
'S 51202
COMPONENT
" YES CODE WQRD CALCULATION
€ PERFORMED PREDETERMINED
NUMBER OF
NES?

51203 NO e
SELECT ONE OF COMPONENT CODES
FORMING PRODUCT CODE AND PERFORM
ERROR CORRECTION PROCESS ON
COMPONENT CODE WORD OF SELECTED
COMPONENT CODE

4 ¢51204

PERFORNM ROLLBACK CONTROL BASED
ON RESULT OF PERFORMING CODE
WORD CALCULATION (ERRCOR
CORRECTION PROCESS)

51208

ARE
ALL COMPONENT CODE
WORDS IN COLUMN DIRECTION
OR ROW DIRECTION
SELECTED?

NG

Patent Application Publication Jun. 29, 2017 Sheet 16 of 26 US 2017/0187395 A1l

FIG.17

(START)

v
ACQUIRE NUMBER OF TIMES OF ERROR

CORRECTION ITERATED FROM PROGRESS 81301
MANAGING UNIT

DETERMINE COMPONENT CODE WORD AS
ROLLBACK CONTROL TARGET IN S1302

CONSIDERATION OF NUMBER OF TIMES OF b
ERROR CORRECTION ITERATED

51303

18
COMPONENT CODE WORD AS
ROLLBACK CONTROL TARGET
PRESENT?

R (51304

NO SELECT ANY ONE OF ENTIRE ROLLBACK
CONTROL AND PARTIAL ROLLBACK

CONTROL BASED ON NUMBER OF TIMES

OF ERROR CORRECTION ITERATED

{ (51305

PERFORM ANY ONE OF ENTIRE ROLLBACK
CONTROL AND PARTIAL ROLLBACK
CONTROL ON DETERMINED COMPONENT
CODE WORD AND UFPDATE URDATED
PRODUCT CODE STORAGE AREA

¢S1306

UPDATE NUMBER OF TIMES OF ERROR
CORRECTION ITERATED

US 2017/0187395 Al

Jun. 29,2017 Sheet 17 of 26

Patent Application Publication

LINN ¥3Q023d Wv¥ad
LINN VIHY IOVHOLS
NOILOIHHOD |e d¥OM 3A02
MOMYT 31vddN-¥3.1dV
£ze’ vzl f
A 4
LINN ONINIA LINA V¥V IOVHOLS
A3 A0 Sivaan [AYOM Q0D |e
ININOJWOD 31vddN-3¥d
zze’ 128 vile
92> JFa

AHOW3IIN
HO1LONANOD
-INGS
A/

AHO |

-W3W

0
£

Patent Application Publication Jun. 29, 2017 Sheet 18 of 26 US 2017/0187395 A1l

DOES
DECODING OF PRODUCT CODE
SUCCEED?

YES IS CALCULATION

OF COMPOMENT CODE WORD
PERFORMED PREDETERMINED
NUMBER CQF TIMES?

YES

58703 -

SELECT ONE OF COMPONENT CODES FORMING
PRODUCT CODE AND PERFORM ERROR
CORRECTION PROCESS OF COMPONENT CODE
WORD OF SELECTED COMPONENT CODE

1S UPDATE
CONDITION OF COMPOMNENT
CODE WORD STORED IN PRE-UPDATE
CODE WORD STORAGE AREA
SATISFIED?

NO

§S1 402

UPDATE RELEVANT COMPONENT CODE IN PRE-UPDATE
CODE WORD STORAGE AREA BY COMPONENT CODE
WORD SUBJECTED TO ERROR CORRECTION
|

OES
CODE WORD CALCULATION
{(ERROR CORRECTION PROCEES)
SUCCEED?

IS CHANGE OF
ANOTHER COMPONENT CODE WORD
ACCOMPANIED?

1S
INVERSION NUMBER EQUAL TO OR
GREATER THAN REFERENCE VALUE
i?

» YES (S707

| PERFORM ROLLBACK CONTROL I

|

ARE ALL
COMPONENT CODE
WORDS IN COLUMN DIRECTION
OR ROW DIRECTON
SELECTED?

END

Patent Application Publication Jun. 29, 2017 Sheet 19 of 26 US 2017/0187395 A1l
1500
ﬂ
rr—"-"_'zw—“-"—"ﬂ F-T_T_"_r—__—.:'_:'{'_.—__ TTTT .
I I N 2 R
:-;“--d---ﬂr‘:--&---t“; ------ i T il
: xm“?wiu“ﬁul;w??w!. m?fhihfisw“l | }1512
| s | P] ps i Pe Il Py i F1513
0 Pe P g Ps o Pe i Pao)
- G i = A= s
. P Pz i| Pis | Paa il Pis 1] }"514
f!"""“! """" it P T !
| Pl Pzl Pas | Pio i Pao !f }1515

1521 1522 1523 1524 1525
NONVOLATILE
MEMORY ~3
I
MEMORY |._5o
I/E 16{)0
4 (1610 1630
DATA RECEIVING CONTROL UNIT
UNIT
l 1620 I 1640
DECODED DATA COMPONENT CODE
MEMORY " DECODER
A 4
Host IIF ~21
v
HOST 4

Patent Application Publication Jun. 29, 2017 Sheet 20 of 26 US 2017/0187395 A1l

FIG.22

(START)

4
SELECT COMPONENT CODE TO BE DECODED S1701
v

READ INFORMATION REQUIRED FOR
DECODING OF SELECTED COMPONENT ~S51702
CODE FROM DECODED DATA MEMORY

v

PERFORM DECODING PROCESS ON
COMPONENT CODES BY USING ~851703
COMPONENT CODE DECODER

HAS
INFORMATION RELATING
TO ERROR SYMBOL BEEN
DETECTED?
51704

REWRITE DATA IN DECODED DATA MEMORY
BASED ON INFORMATION RELATING TO ~S1705
DETECTED ERROR SYMBOL

IS END CONDITION SATISFIED? NO

{
~To $1706

CEve D)

Patent Application Publication Jun. 29, 2017 Sheet 21 of 26 US 2017/0187395 A1l

NONVOLATILE
MEMORY 3
v
MEMORY
22
I/E 1800
q
! 1610 1630
DATA ﬁﬁ?TE'V'NG CONTROL UNIT
l (1620 I 1640
DECODED DATA COMPONENT CODE
MEMORY DECODER
1821 1841
CORRECTION COMPONENT CODE
SYMBOL LIST DATA BUFFER
SYMBOL DATA 1842
MEMORY BOUNDED DISTANCE
‘1822 | DECODER
Host IIE |~21
v

HOST 4

Patent Application Publication Jun. 29, 2017 Sheet 22 of 26 US 2017/0187395 A1l

FIG.24

I INITIALIZE SYMBOL DATA MEMORY b s1e01

&

I SELECT COMPONENT CODE TO BE DECODED l\rS1902

¥
DECIDE WHETHER TO PERFORM S1903
COUNTER PROCESS ’

IS
COUNTER PROCESS TO BE
(s1911 PERFORMED?
NS S1904
READ REWRITTEN CONTENT INFORMATION

REGISTERED REGARDING COMPONENT CODE
TO BE DECODED FROM CORRECTION SYMBOL LIST

HAS
REWRITING PROCESS BEEN
UNDONE?

g
(51913 NO s1912

YES

UNDO REARITING IN PAST ON COMPONENT CODE
TO BE DECODED IN SYMBOL DATA MEMORY BASED
ON READ RENVRITTEN CONTENT INFORMATION

READ COMPONENT CODE WORD OF COMPONENT
CODE TO BE DECODED FROM SYMBOL DATA - S1905
MEMORY AND TRANSFER COMPONENT CODE
WORD TO COMPONENT CODE DATA BUFFER

+
DETECT POSITION INFORMATION OF ERROR

SYMBOL PRESENT IN COMPONENT CODE WQORD I~S10068
BY USING BOUNDED DISTANCE DECODER

HAS
POSITION INFORMATION
OF ERROR SYMBOL BEEN
DETECTED?

REWRITE RELEVANT SYMBOL IN SYMBOL DATA
MEMORY BASED ON PCSITION INFORMATION 51908
OF ERROR SYMBOL

v

REGISTER REWRITTEN CONTENT INFORMATION
INCLUDING PCSITION INFORMATION OF b S1000
REWRITTEN SYMBOL AND REWRITTEN

CONTENTS IN CORRECTION SYMBOL LIST

NO
1S END CONDITION SATISFIED?

YES 6S’EQ‘! 0

END

Patent Application Publication Jun. 29, 2017 Sheet 23 of 26 US 2017/0187395 A1l

FIG.25

HAS POSITION
INFORMATION OF ERROR
SYMBOL BEEN DETECTED IN
PAST REGARDING COMPO-
NENT CODE TO BE
DECODED?

52002

IS NUMBER
OF INTERATIONS OF
ITERATED DECODING
PROCESS EQUAL TO OR GREATER
THAN PREDETERMINED
NUMBER OF
TIMES?

IS THERE
HIGH POSSIBILITY
THAT REWRITING PROCESS
PERFORMED IN PAST ON COMPONENT
CODE TO BE DECODED HAS
BEEN ERRONEOQOUS
CORRECTION?

(52005

DECIDE THAT COUNTER PROCESS
CANNOT BE PERFORMED

(52004

DECIDE THAT COUNTER PROCESS
CAN BE PERFORMED

y
(. RETURN ,

Patent Application Publication Jun. 29, 2017 Sheet 24 of 26 US 2017/0187395 A1l

NONVOLATILE 3
MEMORY
1
ME%SRY,MZZ
2100
§
1610 <1630
DATA RECEIVING CONTROL UNIT
1620 I <1640
CORRECTION DATA COMPONENT CODE
MEMORY DECODER
2121 2141
ERROR SYMBOL SYNDROME DATA
LIST BUFFER
SYNDROME (1842
INFORMATION BOUNDED DISTANCE
RECODING UNIT DECODER
2123
SYNDROME
MEMORY
2124
FLAG MEMORY
2122 |
Host I/F p~21

!

HOST ~4

Patent Application Publication

Jun. 29, 2017 Sheet 25 of 26 US 2017/0187395 Al
FIG.27
25—
| INITIALIZE SYNDROME MEMORY b s2201
| RESET FLAG MENMORY s202

le

+*

| SELECT COMPONENT CODE TO BE DECODED

bs2203

¥

I DECIDE WHETHER TO PERFORM

COUNTER PROCESS

52213

15
COUNTER PROCESS TQ BE

PERFORMED?

DELETE POSITION INFORMATION OF RELEVANT
ERROR SYMBOL IN ERROR SYMBOL LIST
BASED ON RESTORED POSITION INFORMATION
OF ERROR SYMBOL

NO

S2214 v

UPDATE SYNDROME VALUE RELATING TO
COMPONENT CODE IN OTHER DIMENSION
N SYNDROME MEMORY

52215 +

| UPDATE CORRECTED FLAG TO "UNCORRECTED"

522058

1
A]
READ SYNDROME OF COMPONENT CODE TO BE
DECODED FROM SYNDROME MEMORY AND TRANS-
FER SYNDROME TO SYNDROME DATA BUFFER

¥

DETECT POSITION INFORMATION OF ERROR
SYMBOL INCLUDED IN COMPONENT CODE
BY USING BOUNDED DISTANCE DECODER

52207

D
APPROPRIATE
POSITION INFORMATICN
OF ERROR SYMBOL
DETECTED?

ADRD POSITION INFORMATION OF ERROR SYMBOL
1M ERROR SYMBOL LIST
¥
UPDATE SYNDROME VALUE RELATING TO
COMPONENT CODE IN OTHER DIMENSION
IN SYNDROME MEMORY
¥
UPDATE CORRECTED FLAG ON COMPONENT CODE
TO BE DECODED TO "UPDATED"

o

S2200

- S2210

52211

1S END CONDITION SATISFIED? HO

{so012

FIG.28

SYNDROME VALUE
OF COMPONENT CODE TO BE
DECO%JED 0"

YES
‘382303

UPDATE CORRECTED FLAG TO

"CORRECTED" NO

NO CORRECTED FLAG INDICATE

"CORRECTED"?

NUMBER OF
YES ITERATIONS OF ITERATED
GREATER THAN PREDETER-
MINED NUMBER OF
TIMES?

DECODING PROCESS EQUAL TO OR

READ SYNDROME OF COMPONENT
CODE TO BE DECODED FROM
SYNDROME MEMORY AND
TRANSFER SYNDROME TO
SYNDROME DATA BUFFER

Patent Application Publication Jun. 29, 2017 Sheet 26 of 26 US 2017/0187395 A1l

~352305

¥

RESTORE POSITION INFORMATION
OF ERROR SYMBOL INCLUDED IN
COMPONENT CODE BY USING
BOUNDED DISTANCE DECODER

52306

IS THERE
HIGH POSSIBILITY
THAT REWRITING PROCESS
PERFORMED IN PAST ON COMPO-
NENT CODE TO BE DECODED
HAS BEEN ERRONEOUS
CORR%CTION

§S2309

DECIDE THAT COUNTER PROCESS
CANNOT BE PERFORMED

YES (52308

DECIDE THAT COUNTER PROCESS
CAN BE PERFORMED

(_RETURN)

US 2017/0187395 Al

MEMORY CONTROLLER, MEMORY
SYSTEM AND METHOD

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation-in-part of U.S.
application Ser. No. 14/845,875, filed on Sep. 4, 2015, now
allowed, and claims the benefit of priority from U.S. Pro-
visional Application No. 62/130,902, filed on Mar. 10, 2015;
the entire contents of which are incorporated herein by
reference.

FIELD

[0002] Embodiments of described herein generally relate
to a memory controller, a memory system and a method.

BACKGROUND

[0003] When user data stored in a nonvolatile memory is
read from the memory, a phenomenon in which the read user
data is changed to a value other than an original value or the
like may occur.

[0004] In order to cope with this problem, a method of
performing error-correction encoding on user data to gen-
erate parity data and managing the user data and the parity
data as a set is generally used. A Bose Chaudhuri Hoc-
quenghem (BCH) code or Reed-Solomon (RS) code is used
as an error correcting code. A product code has been
proposed as a method of combining codes to improve
correction capability.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 1 is a block diagram illustrating a configura-
tion example of a memory system according to a first
embodiment;

[0006] FIG. 2 is a diagram illustrating a configuration
example of a product code which is generated by an encoder
unit in the first embodiment;

[0007] FIG. 3 is a diagram illustrating a pattern formed
when error correction is performed on user data in the first
embodiment;

[0008] FIG. 4 is a block diagram illustrating a configura-
tion of a decoder unit, a DRAM, and a semiconductor
memory in the first embodiment;

[0009] FIG. 5 is a diagram illustrating a state in which
rollback control is performed because an inversion number
is greater than a reference value when generation of a
component code word by error correction succeeds in the
first embodiment;

[0010] FIG. 6 is a diagram illustrating a state in which
rollback control is performed depending on a relation to
another component code when generation of a component
code word by error correction succeeds in the first embodi-
ment;

[0011] FIG. 7 is a diagram illustrating a state in which
rollback control is performed based on a calculation result of
a code word of a component code in another direction which
is subsequently performed when generation of a component
code word by error correction succeeds in a modified
example;

[0012] FIG. 8 is a diagram illustrating a state in which
rollback control is performed based on a calculation result of
a code word of a component code in another direction which

Jun. 29, 2017

is subsequently performed when generation of a component
code word by error correction succeeds in a modified
example;

[0013] FIG. 9 is a diagram illustrating another state in
which rollback control is performed in a memory controller
according to a modified example;

[0014] FIG. 10 is a diagram illustrating a case in which
generation of a component code word by error correction
fails in the first embodiment;

[0015] FIG. 11 is a flowchart illustrating a process flow up
to rollback control in a memory controller according to the
first embodiment;

[0016] FIG. 12 is a block diagram illustrating a configu-
ration of a controller, a DRAM, and a semiconductor
memory according to a second embodiment;

[0017] FIG. 13 is a diagram illustrating a flow of deter-
mining a rollback control target in a component code
dynamic determining unit in the second embodiment;
[0018] FIG. 14 is a diagram illustrating rollback control in
a dynamic update unit when generation of a code word by
error correction fails in the second embodiment;

[0019] FIG. 15 is a diagram illustrating a flow of recur-
sively determining a component code word to be subjected
to rollback control in the component code dynamic deter-
mining unit in the second embodiment;

[0020] FIG. 16 is a flowchart illustrating a process flow up
to rollback control in a memory controller according to the
second embodiment;

[0021] FIG. 17 is a flowchart illustrating a rollback control
flow in a decoder unit in the second embodiment;

[0022] FIG. 18 is a block diagram illustrating configura-
tions of a decoder unit and a DRAM according to a third
embodiment;

[0023] FIG. 19 is a flowchart illustrating a process flow up
to rollback control in a memory controller according to the
third embodiment;

[0024] FIG. 20 is a diagram illustrating a schematic con-
figuration example of a multi-dimensional error correction
code to be used as an example in a fourth embodiment;
[0025] FIG. 21 is a block diagram illustrating a schematic
configuration example of a decoder exemplified in the fourth
embodiment;

[0026] FIG. 22 is a flowchart illustrating an example of an
iterated decoding process performed by a decoder exempli-
fied in FIG. 21;

[0027] FIG. 23 is a block diagram illustrating a schematic
configuration example of the decoder according to the forth
embodiment;

[0028] FIG. 24 is a flowchart illustrating an example of an
iterated decoding process according to the fourth embodi-
ment;

[0029] FIG. 25 is a flowchart illustrating an example of an
operation to decide whether to perform a counter process
according to the fourth embodiment;

[0030] FIG. 26 is a block diagram illustrating a schematic
configuration example of a decoder according to a fifth
embodiment;

[0031] FIG. 27 is a flowchart illustrating an example of an
iterated decoding process according to the fifth embodiment;
and

[0032] FIG. 28 is a flowchart illustrating an example of an
operation to decide whether to perform a counter process
according to the fifth embodiment.

US 2017/0187395 Al

DETAILED DESCRIPTION

[0033] According to an embodiment, a memory controller
that controls a nonvolatile memory in which multi-dimen-
sional error correction code having two or more component
codes is stored, the memory controller comprising: a
memory interface that reads out the multi-dimensional error
correction code; a receiving unit configured to acquire a
received word of the multi-dimensional error correction
code; an intermediate decoded word memory that holds an
intermediate decoded word of the multi-dimensional error
correction code; a decoder configured to perform a decoding
process and detect information relating to an error symbol;
a recurrence information holding unit configured to hold
recurrence information for reproducing the information
relating to the error symbol detected by the decoding pro-
cess; and a control unit configured to instruct the decoder to
perform a first decoding process of a first component code
included in the intermediate decoded word, when a first error
symbol included in the first component code is detected by
the first decoding process, perform a first rewriting process
which is rewriting a value corresponding to the first error
symbol in the intermediate decoded word, and record first
recurrence information for reproducing a value of the first
error symbol before rewriting in the recurrence information
holding unit, instruct the decoder to perform a second
decoding process of a second component code included in
the intermediate decoded word, of which dimension is
different from that of the first component code, determine
whether the first rewriting process is erroneous correction
based on a result of the second decoding process, and when
it is determined that the first rewriting process is erroneous
correction, perform a counter process which is undoing the
first rewriting process based on the first recurrence infor-
mation recorded in the recurrence information holding unit.
[0034] Hereinafter, a memory system, a memory control-
ler and a memory control method according to embodiments
will be described in detail with reference to the accompa-
nying drawings. The present invention is not limited to the
embodiments.

First Embodiment

[0035] FIG. 1 is a block diagram illustrating a configura-
tion example of a memory system according to a first
embodiment. A semiconductor memory device (storage
device) 1 according to this embodiment includes a memory
controller 2 and a nonvolatile memory 3. The storage device
1 can be connected to a host 4 and a state in which the
storage device is connected to the host 4 is illustrated in FIG.
1. The host 4 is, for example, an electronic device such as a
personal computer or a portable terminal. The semiconduc-
tor memory device (storage device) 1 according to this
embodiment may be a memory card or a solid state drive
(SSD) in which the memory controller 2 and the nonvolatile
memory 3 are incorporated into a package.

[0036] The nonvolatile memory 3 is a memory that stores
data in a nonvolatile manner and is, for example, a NAND
memory. An example in which a NAND memory is used as
the nonvolatile memory 3 is described therein, but a storage
unit other than the NAND memory, such as a three-dimen-
sional flash memory, a resistance random access memory
(ReRAM), and a ferroelectric random access memory (Fe-
RAM), may be used as the nonvolatile memory 3. In this
embodiment, an example in which a nonvolatile memory is

Jun. 29, 2017

used as a storage unit is described, but a nonvolatile memory
in which an error correction process of this embodiment is
applied to a storage unit other than the nonvolatile memory
may be employed.

[0037] The memory controller 2 controls writing to the
nonvolatile memory 3 in accordance with a writing com-
mand (command) from the host 4 and controls reading from
the nonvolatile memory 3 in accordance with a reading
command (command) from the host 4. The memory con-
troller 2 includes a host I/F 21, a memory I/F 22, a processor
23, an encoder/decoder unit 24, and a dynamic random
access memory (DRAM) 27. The encoder/decoder unit 24
includes an encoder unit 25 and a decoder unit 26. The host
I/F 21, the memory I/F 22, the processor 23, the encoder unit
25, the decoder unit 26, the DRAM 27, and a read only
memory (ROM) 28 are connected to each other via an
internal bus 20. The ROM 28 stores firmware to be executed
by the processor 23 or the like.

[0038] The processor 23 comprehensively controls ele-
ments of the semiconductor memory device 1. The function
of the processor 23 realizes a data managing unit 29, a
reading control unit 30, and a writing control unit 31, for
example, by executing the firmware stored in the ROM 28
or the like. Accordingly, the memory controller 2 can
perform reading of data from the nonvolatile memory 3 or
writing of data to the nonvolatile memory 3 in accordance
with a command from the host 4. The data managing unit 29,
the reading control unit 30, and the writing control unit 31
may be realized by hardware. The storage destination of the
firmware is not limited to the ROM 28, but may be the
nonvolatile memory 3.

[0039] The data managing unit 29 manages the position in
the nonvolatile memory 3 at which data is stored. The data
managing unit 29 includes an address conversion table (not
illustrated) in which logical addresses given from the host 4
are correlated with physical positions in the nonvolatile
memory 3, and perform garbage collection depending on
usage of blocks in the nonvolatile memory 3.

[0040] The reading control unit 30 performs control of
reading data from the nonvolatile memory 3 in accordance
with a command transmitted from the host 4 via the host I/F
21. For example, the reading control unit 30 acquires a
physical position in the nonvolatile memory 3 correspond-
ing to a logical address of read data from the data managing
unit 29 and notifies the memory I/F 22 of the physical
position. The read data is transmitted to the host 4 via the
decoder unit 26 and the DRAM 27.

[0041] The writing control unit 31 performs a process of
writing data to the nonvolatile memory 3 in accordance with
a command transmitted from the host 4 via the host I/F 21.
For example, the writing control unit 31 acquires a physical
position in the nonvolatile memory 3 to which data will be
written from the data managing unit 29 and outputs the
physical position and a code word output from the encoder
unit 25 to the memory I/F 22.

[0042] The host I/F 21 performs a process based on an
interface standard with the host 4 and outputs command
received from the host 4, user data, and the like to the
internal bus 20. The host I/F 21 transmits user data read from
the nonvolatile memory 3, a response from the controller 23,
and the like to the host 4.

US 2017/0187395 Al

[0043] The memory I/F 22 controls the process of writing
data to the nonvolatile memory 3 and the process of reading
data from the nonvolatile memory 3 based on an instruction
of the controller 23.

[0044] The DRAM 27 is used as an area in which user data
are temporarily stored when the user data is read or the user
data is written. For example, the DRAM 27 is used as a
storage unit storing user data on which error correction is not
yet performed by the decoder unit 26 and user data on which
the error correction is performed when the error correction
is performed on the user by the decoder unit 26. In this
embodiment, the area in which the user data is temporarily
stored is not limited to the DRAM. For example, a static
random access memory (SRAM) may be used as the area in
which the user data is temporarily stored. The DRAM 27 is
installed in the memory controller 2 in this embodiment, but
may be installed independently of the memory controller 2.
The DRAM may be embodied as a built-in memory in a chip
of the memory controller 2.

[0045] The controller 23 is a control unit comprehensively
controlling the elements of the semiconductor memory
device 1. The controller 23 performs control based on a
command when the command is received from the host 4 via
the host I/F 21.

[0046] There is a possibility that an error is included in the
data read by the memory I/F 22. This means that there is a
possibility that the data read by the memory I/F 22 is not the
code word of the original product code that does not include
an error. However, in the description below, for simplifying
the description, “data that becomes a code word by remov-
ing an error” is also referred to as “code word”.

[0047] For example, when a writing command is received
from the host 4, the controller 23 determines a storage area
(memory area) in the nonvolatile memory 3 for user data
stored in the DRAM 27. The controller 23 manages a writing
destination of user data. Correspondence between the logical
address of the user data received from the host 4 and the
physical address indicating the storage area in the nonvola-
tile memory 3 in which the user data is stored as an address
conversion table. When a writing command is received from
the host 4, the controller 23 instructs the encoder unit 25 to
encode the user data. When a reading command is received
from the host 4, the controller 23 converts a logical address
designated by the reading command into a physical address
using the address conversion table, and instructs the memory
1/F 22 to read the user data from the physical address. When
a reading command is received from the host 4, the con-
troller instructs the memory I/F 22 to read a code word from
the nonvolatile memory 3 and instructs the decoder unit 26
to perform error correction using the read code word loaded
to the DRAM 27.

[0048] Ina NAND memory, writing units (minimum writ-
ing) called a page are generally present, writing and reading
are performed by pages, and erasing is performed by data
units called a block. When the nonvolatile memory 3 is a
NAND memory, the nonvolatile memory 3 includes plural
word lines, and plural memory cells (memory cell transis-
tors) are connected to the word lines. In this embodiment,
memory cells connected to the same word line are referred
to as a memory cell group. When a memory cell is a
single-level cell (SLC), one memory cell group corresponds
to one page. When a memory cell is a multi-level cell
(MLC), one memory cell group corresponds to plural pages.
Each memory cell is connected to a word line and a bit line.

Jun. 29, 2017

Each memory cell can be identified by an address for
identifying a word line and an address for identifying a bit
line.

[0049] The encoder unit 25 performs an error correction
encoding process based on the user data stored in the DRAM
27 to generate a code word. The encoder unit 25 of this
embodiment uses a product code that improves correction
capability as a method of combining codes. Error correction
codes to be combined are not particularly limited and, for
example, a Bose Chaudhuri Hocquenghem (BCH) code or a
Reed-Solomon (RS) code can be used. For example, the RS
code and the BCH code may be combined, and different
types of codes may be combined in this way.

[0050] FIG. 2 is a diagram illustrating a configuration
example of a product code generated by the encoder unit 25
of this embodiment. The encoder unit 25 generates a code
word in the row direction illustrated in FIG. 2 by the number
of rows forming the product code. A code word 201 is an
example of the code word in the row direction. The encoder
unit 25 generates a code word in the column direction by the
number of columns forming the product code. A code word
202 is an example of the code word in the column direction.
For example, the encoder unit 25 encodes user data of a first
data length to generate a component code word in the row
direction. The encoder unit encodes user data of a second
data length including data of each of plural component code
words in the row direction to generate a component code
word in the column direction. In the product code, the user
data is doubly protected by two code words of the compo-
nent code word in the column direction and the component
code word in the row direction.

[0051] In other words, the product code can be called a
code word including plural first component code words in
the row direction and plural second component code words
in the column direction. In this embodiment, the first com-
ponent code words in the row direction are generated based
on a second data row including plurality of pieces of first
data (for example, bits) as a unit for correction. In this
embodiment, the second component code words in the
column direction are generated based on a third data column
including plurality of pieces of first data (for example, bits)
as a unit for correction, which are respectively selected from
plural second data rows. One piece of first data (for example,
bit) included in one third data column does not duplicate
with another piece of first data (for example, bit) included in
another third data column.

[0052] The decoder unit 26 performs an error correction
process of a product code based on the code words read from
the nonvolatile memory 3. The error correction process
includes a decoding process and a process of correcting a bit
value (inverting the bit value) at an error position calculated
through the decoding process. The decoder unit 26 outputs
user data on which the error correction process is performed
to the internal bus 20. The decoder unit 26 acquires a code
word read out of the nonvolatile memory 3 from the memory
1/F 22 and decodes the acquired code word. The decoder unit
26 notifies the reading control unit 30 of a reading error
when the error correction in the decoding fails.

[0053] In this embodiment, when user data is written to the
nonvolatile memory 3 in units of a page, the encoding using
a product code is performed to generate a code word in units
of a page, but the product code may be formed in units of
plural pages or plural product codes may be included in one
page. In this embodiment, the BCH codes are used as the

US 2017/0187395 Al

codes in the row direction and the column direction of a
product code, but another code may be used. In this embodi-
ment, a product code is used as an error correction target, but
another code may be used as an error correction target.

[0054] When a product code is used, an error of user data
is corrected by iterating calculation for each component
code at the time of decoding. The component code means a
row code or a column code in a product code. That is, a
component code in the column direction means the entire
code words in the column direction (code words in the
column direction corresponding to the number of columns
forming the product code), and a component code in the row
direction means the entire code words in the row direction
(code words in the row direction corresponding to the
number of rows forming the product code). The component
code words mean code words of each component code. The
decoder unit 26 performs calculation (error correction pro-
cess) of each component code word of the component code
in the row direction and then performs calculation of each
component code word of the component code in the column
direction when a non-corrected error remains. The decoder
unit 26 performs calculation of each component code word
of the component code in the column direction and then
performs calculation the component code in the row direc-
tion when a non-corrected error remains. By iterating the
calculation for each component code in this way, an error of
the user data forming the product code is reduced. However,
even when the calculation of the component code words
succeeds, the code word acquired by the calculation of the
component code words may not be a correct code word (the
user data written to the nonvolatile memory 3 may not be
correctly reconstructed).

[0055] FIG. 3 is a diagram illustrating a pattern formed
when error correction is performed on user data.

[0056] In FIG. 3, a case in which a correct code word is
acquired by performing calculation of the component code
of an arbitrary column or row is indicated to be “success of
component code word calculation”. On the other hand, a
case in which a component code word is not acquired by
performing calculation of the component code in an arbi-
trary column or row is indicated to be “failure of component
code word calculation”

[0057] Even when a correct code word is acquired by
“success of component code word calculation”, the user data
may be erroneous. In this embodiment, a case in which the
component code word calculation succeeds but the code
word acquired as the calculation result is not correct is called
“erroneous correction”. In case of erroneous correction,
since the component code word calculation succeeds but the
code word acquired as the calculation result is not correct,
the error correction actually fails.

[0058] That is, when “success of component code word
calculation” is resulted and correct user data is acquired, the
error correction succeeds. When the erroneous correction is
resulted or the component code word calculation fails, the
error correction fails.

[0059] The memory controller 2 according to this embodi-
ment performs control of updating user data on which
calculation is performed to user data on which the calcula-
tion is not yet performed in the case of the erroneous
correction or the failure of component code word calcula-
tion. In this embodiment, the control of updating the user

Jun. 29, 2017

data on which calculation is performed to the user data on
which the calculation is not yet performed is referred to as
rollback control.

[0060] In a component code word calculation method
which is generally used, for example, a component code
word calculation method called a bounded distance decod-
ing algorithm, or the like, when the component code word
calculation succeeds, it is difficult to determine whether the
code word acquired as the calculation result is correct. That
is, it is difficult to determine whether erroneous correction
occurs.

[0061] Therefore, the decoder unit 26 of the memory
controller 2 according to this embodiment sets a condition in
which there is a possibility that erroneous correction occurs,
considers that there is a possibility that erroneous correction
occurs when the condition is satisfied, and performs rollback
control. The decoder unit 26 performs the rollback control
even when the component code word calculation fails.
[0062] A configuration realized in the decoder unit 26 and
the DRAM 27 will be described below. FIG. 4 is a block
diagram illustrating the configuration in the decoder unit 26
and the DRAM 27. A received word storage area 311 and an
updated code word storage area 312 are installed in the
DRAM 27. The decoder unit 26 includes an update unit 321,
a component code word determining unit 322, and an error
correction unit 323. The decoder unit 26 may be realized by
a processor and may realize the update unit 321, the com-
ponent code determining unit 322, and the error correction
unit 323 by executing a program (not illustrated). The
controller 23 may include the update unit 321, the compo-
nent code word determining unit 322.

[0063] The memory I/F 22 transmits a code word stored in
the nonvolatile memory 3 to the DRAM 27 in response to a
reading command of user data from the host 4.

[0064] The received word storage area 311 is an area in
which a received word (code word) received from the
nonvolatile memory 3 in response to the reading command
via the memory I/F 22 is temporarily stored. In other words,
the received word storage area 311 stores a code word (data)
on which error correction is not yet performed by the error
correction unit 323.

[0065] The updated code word storage area 312 is an area
in which a code word acquired by performing the compo-
nent code word calculation on the code word stored in the
received word storage area 311 is stored. In this embodi-
ment, when a code word is read to the received word storage
area 311, the code word is copied to the updated code word
storage area 312. Thereafter, the error correction unit 323
performs error correction using the code word stored in the
updated code word storage area 312. In this embodiment, the
entire product code is stored in the received word storage
area 311 and the updated code word storage area 312 of the
DRAM 27, but only partial data instead of the entire product
code may be stored.

[0066] Based on a product code read from the nonvolatile
memory 3 and then stored in the updated code word storage
area 312, the error correction unit 323 performs the error
correction of code words forming the product code for each
component code included in the product code.

[0067] The error correction unit 323 of this embodiment
performs the error correction in the units of a component
code word in the column direction among the product code,
performs the error correction on all the component code
words in the column direction, performs the error correction

US 2017/0187395 Al

in the units of a component code word in the row direction,
and performs the error correction on all the component code
words in the row direction. The error correction unit 323 of
this embodiment alternately iterates the error correction of
the plural component code words in the column direction
and the error correction of the plural component code words
in the row direction.

[0068] The component code determining unit 322 deter-
mines whether the result of the error correction performed
by the error correction unit 323 satisfies a rollback control
condition for each component code word on which the error
correction is performed.

[0069] When the rollback control condition is satisfied, the
update unit 321 updates at least some data included in the
code word on which the error correction is performed by the
error correction unit 323 to data included in the code word
on which the error correction is not performed and stored in
the received word storage area 311. In other words, the
update unit 321 performs rollback control.

[0070] A condition (rollback condition) for determining a
code word to be rolled back in the rollback control will be
described below with reference to FIGS. 5, 6, and 7. FIGS.
5 and 6 illustrate two examples of the rollback condition
when the newest error correction of a code word to be
subjected to an error correction process succeeds, and FIG.
7 illustrates a rollback condition when the newest error
correction of a code word to be subjected to an error
correction process fails.

[0071] FIG. 5 is a diagram illustrating a state in which the
rollback control is performed because an inversion number
is equal to or greater than a reference value (threshold value)
i when generation of a component code word by the error
correction succeeds in the first embodiment. The inversion
number means the number of minimum data units (for
example, one bit), which can be corrected by the error
correction, inverted (corrected) by the error correction. It is
assumed that a right-inclined hatched block is data which is
inverted by the error correction of a row component code
and a left-inclined hatched block is data which is inverted by
the error correction of a column component code.

[0072] The component code determining unit 322 of this
embodiment determines that an erroneous correction prob-
ability is high when the inversion number of pieces of data
on which error correction is performed by the error correc-
tion unit 323 among the component code words is equal to
or greater than a predetermined reference value i. In the
example illustrated in FIG. 5, the reference value is assumed
to be i=4. In this embodiment, it is assumed that the number
of pieces of data on which the error correction can be
performed using the component code words forming the
product code is greater than 4.

[0073] The product code acquired by processing a row
component code word 411 in (A) of FIG. 5 as an error
correction target of the error correction unit 323 is illustrated
in (B) of FIG. 5.

[0074] In (B) of FIG. 5, it can be seen that four pieces of
inverted data are included in a component code word 421 in
the row direction on which the error correction is performed,
that is, the inversion number is four. Accordingly, the
component code determining unit 322 determines that the
condition of inversion number=reference value 1 is satisfied.
Accordingly, the rollback control is performed by the update
unit 321. The result of the rollback control is illustrated in
(C) of FIG. 5.

Jun. 29, 2017

[0075] In(C)ofFIG. 5, it can be seen that the data inverted
by the error correction disappears in a row component code
word 431 subjected to the rollback control.

[0076] In this way, in the example illustrated in FIG. 5, the
component code determining unit 322 sets the rollback
control condition to whether the inversion number is equal
to or greater than the predetermined reference value (thresh-
old value) i. When the condition is satisfied, the update unit
321 updates the data on which the error correction is
performed by the error correction unit 323 to the data on
which the error correction is not performed and stored in the
received word storage area 311.

[0077] That is, in the example illustrated in FIG. 5, when
the error correction of a component code word succeeds and
the inversion number in the component code word on which
the error correction is performed is equal to or greater than
the reference value 1, it is considered that there is a high
possibility that the erroneous correction is performed and the
rollback control of the component code word is performed.
Accordingly, it is possible to suppress progress of the
erroneous correction. The reference value i in this embodi-
ment is determined in advance, but may be determined, for
example, based on the number of times of error correction
iterated by the error correction unit 323.

[0078] FIG. 6 is a diagram illustrating a state in which the
rollback control is performed based on the calculation result
of' a code word of a component code in the other direction
which is subjected subsequently when generation of a com-
ponent code word by the error correction succeeds in the first
embodiment.

[0079] In (A)of FIG. 6, data on which the error correction
is performed in column component code words is a plurality
of pieces of data 501 and 502. A row component code word
511 is an error correction target of the error correction unit
323. The result of the error correction is illustrated in (B) of
FIG. 6.

[0080] In (B) of FIG. 6, three pieces of inverted data are
included in a component code word 521 in the row direction.
Two pieces of the inverted data are a plurality of pieces of
data 524 and 525, and the plurality of pieces of data 524 and
525 are included in component code words 522 and 523 in
the column direction. However, in the error correction of the
component code words 522 and 523 in the column direction,
the plurality of pieces of data 501 and 502 are inverted but
the plurality of pieces of data 524 and 525 are not inverted.
That is, the plurality of pieces of data 524 and 525 which are
not inverted when the error correction is performed on the
component code words 522 and 523 in the column direction
are inverted by the current error correction of the row
component code word 521. In this case, it is considered that
the erroneous correction is performed by at least one of the
error correction of the component code words 522 and 523
in the column direction and the error correction of the
component code word 521 in the row direction.

[0081] Therefore, in the example illustrated in FIG. 6, the
component code determining unit 322 sets the rollback
control condition to a case in which at least some data which
forms the code words of the component code in one direc-
tion of the column direction and the row direction and which
are not corrected when the error correction of code words of
the component code in one direction is performed is sub-
jected to the error correction at the time of error correction
of' code words of the component code which include the data
in the other direction.

US 2017/0187395 Al

[0082] In other words, in this embodiment, the rollback
control condition is set to a case in which a bit, on which the
error correction is not yet performed, among plural bits
(plurality of pieces of first data) included in one component
code word of the plural component code words in a first
direction (for example, the column direction or the row
direction) is corrected by the error correction of another
component code word which includes the bit on which the
error correction is not yet performed and which is one of the
plural component code words in a second direction (the
column direction or the row direction which is a direction
other than the first direction).

[0083] Then, the update unit 321 updates the data on
which the error correction is performed by the error correc-
tion unit 323 among the data included in the code words of
the component code in one direction and the component
code in the other direction to the data on which the error
correction is not performed and stored in the received word
storage area 311.

[0084] Inthis way, the rollback control is performed by the
update unit 321. The result of the rollback control is illus-
trated in (C) of FIG. 6.

[0085] In(C)ofFIG. 6, it can be seen that the data inverted
by the error correction disappears in a component code 531
in the row direction and component codes 532 and 533 in the
column direction.

[0086] FIG. 6 illustrates an example in which all the row
component code 531 and the column component codes 532
and 533 are subjected to the rollback control, but the
rollback control may be performed in only one of the row
component code and the column component code. That is,
the update unit 321 can update at least one of data, which is
not corrected by the error correction in the first direction (for
example, the column direction or the row direction) but
corrected by the error correction in the second direction (the
column direction or the row direction which is a direction
other than the first direction) and a bit corrected by the error
correction in the first direction to the data on which the error
correction is not yet performed.

[0087] A memory controller 2 according to a modified
example that performs rollback control on any one of a row
component code and a column component code will be
described below. FIG. 7 is a diagram illustrating a state in
which the rollback control is performed based on the cal-
culation result of a component code word in the other
direction which is subjected subsequently when generation
of' a component code word by the error correction succeeds
in the modified example. In the example illustrated in FIG.
7, the row component code out of the row component code
and the column component code is subjected to the rollback
control. In (A) and (B) of FIG. 7, the same processes as in
(A) and (B) of FIG. 6 are performed.

[0088] In (C) of FIG. 7, the result of the rollback control
in the update unit 321 is illustrated. In (C) of FIG. 7, it can
be seen that the data which is inverted by the error correction
of the component code 531 in the row direction disappears
and the data which is inverted by the error correction of the
column component codes 532 and 533 (for example, a
plurality of pieces of data 501 and 502) is included.
[0089] FIG. 8 is a diagram illustrating a state in which the
rollback control is performed based on the calculation result
of' a code word of a component code in the other direction
which is subjected subsequently when generation of a com-
ponent code word by the error correction succeeds in the

Jun. 29, 2017

modified example. In the example illustrated in FIG. 8, the
column component code out of the row component code and
the column component code is subjected to the rollback
control. In (A) and (B) of FIG. 8, the same processes as in
(A) and (B) of FIG. 6 are performed.

[0090] In (C) of FIG. 8, the result of the rollback control
by the update unit 321 is illustrated. In (C) of FIG. 8, it can
be seen that the data which is inverted by the error correction
of'the component codes 532 and 533 in the column direction
disappears and the data (for example, a plurality of pieces of
data 524 and 525) which is inverted by the error correction
of the row component code 531 (for example, a plurality of
pieces of data 501 and 502) is included.

[0091] In this way, even when the rollback control is
performed on any one of the row component code and the
column component code, the possibility that a data error will
be corrected is improved.

[0092] Another state can be considered as the state in
which the rollback control is performed. FIG. 9 is a diagram
illustrating another state in which the rollback control is
performed in the memory controller 2 according to the
modified example. In (A) of FIG. 9, it is assumed that
column component code words 911 and 912 on which the
error correction is not yet performed. In the example illus-
trated in (B) of FIG. 9, a plurality of pieces of data 901, 902,
and 903 are inverted by the error correction of a row
component code word 923. Since the plurality of pieces of
data 901 and 902 are not corrected by the error correction of
the column component code words 911 and 912 but are
corrected by the error correction of the row component code
word 923, the component code determining unit 322 con-
siders that the probability that the error correction of the row
component code 923 is erroneous correction is high. The
component code determining unit 322 sets the component
code 923 as the rollback control target. The update unit 321
generates a row component code word 933 by performing
the rollback control on the row component code 923.
Accordingly, the possibility that the data error will be
corrected is enhanced.

[0093] In the first embodiment, a case in which the gen-
eration of a component code word by the error correction
fails will be described. FIG. 10 is a diagram illustrating a
case in which the generation of a component code word in
the row direction by the error correction fails.

[0094] In (A) of FIG. 10, data which is inverted by the
error correction of a component code in the column direction
is a plurality of pieces of data 601, 602, 603, and 604. A
component code word 611 in the row direction in (A) of FIG.
10 is an error correction target in the error correction unit
323. The result of the error correction of the component code
word 611 in the row direction is illustrated in (B) of FIG. 10.
[0095] In (B) of FIG. 10, since the error correction of the
component code word 611 in the row direction in (A) of FIG.
10 fails, the component code 621 in the row direction
subjected to the error correction is not inverted but is
maintained in the same state as the component code word
611 due to the failure of error correction. The component
code word 621 in the row direction includes the plurality of
pieces of data 601 and 602 which are inverted by the error
correction of the component code words 622 and 623 in the
column direction. Accordingly, it is predicted that there is a
possibility that the inversion of the plurality of pieces of data
601 and 602 which has been performed by the error correc-
tion of the column component code words 622 and 623 is the

US 2017/0187395 Al

erroneous correction and will cause the current error cor-
rection of the component code 621 in the row direction.
Therefore, the component code determining unit 322 deter-
mines the row component code word 621 and the column
component code words 622 and 623 to be the rollback
control target. Accordingly, the rollback control of the
column component code words 622 and 623 is performed by
the update unit 321. The result of the rollback control is
illustrated in (C) of FIG. 10.

[0096] In (C)of FIG. 10, it can be seen that the data which
is inverted by the error correction disappears in component
code words 632 and 633 in the column direction.

[0097] In this way, the component code determining unit
322 sets the rollback control condition to the case in which
the error correction is performed on the data included in one
component code and then the error correction of another
component code having data corrected by the error correc-
tion of the one component code fails. When the condition is
satisfied, the update unit 321 updates the one component
code word to the component code word on which the error
correction is not yet performed.

[0098] That is, in FIG. 10, the rollback control is per-
formed on the condition that the error correction of another
component code word, which includes a bit on which the
error correction is performed among plural bits (a plurality
of pieces of first data) included in one component code word
of plural component code words in the first direction (the
row direction or the column direction) and which is one of
plural component code words in the second direction (the
column direction or the row direction which is a direction
other than the first direction), fails. The update unit 321
performs the rollback control on the data corrected by the
error correction of the one component code word including
the bit on which the error correction is performed.

[0099] In this embodiment, the flow of returning the state
on which error correction is performed to the state on which
the error correction is not yet performed through the rollback
control of a component code which is considered the com-
ponent code on which the error correction is performed by
the decoder unit 26 is described. When the error correction
is performed on the component code subjected to the roll-
back control after the error correction of another component
code is performed after the rollback control, the condition is
different from the condition before the rollback control and
thus the possibility that appropriate error correction will be
performed is enhanced.

[0100] The process flow up to the rollback control in the
memory controller 2 according to this embodiment will be
described below. FIG. 11 is a flowchart illustrating the
process flow in the memory controller 2 according to this
embodiment. Before the process flow illustrated in FIG. 11,
it is assumed that a product code stored in the nonvolatile
memory 3 is loaded to the received word storage area 311 in
response to a command from the host 4 and the product code
is copied to the updated code word storage area 312.

[0101] First, the error correction unit 323 of the decoder
unit 26 determines whether the product code stored in the
updated code word storage area 312 does not include an
error (S701). In S701 of the first time, for example, the entire
component code words in the row direction are decoded and
it is determined whether the product code does not include
an error based on information on error presence or absence
acquired by the decoding. When the error correction unit

Jun. 29, 2017

323 determines that the product code does not include an
error (YES in S701), the process flow ends.

[0102] On the other hand, when the error correction unit
323 determines that the product code includes an error (NO
in S701), the error correction unit 323 determines whether
calculation of component codes (error correction process) in
the column direction and the row direction is performed on
the product code a predetermined number of times (S702).
The predetermined number of times may be determined for
the number of times of component code calculation with
both component code calculations in the column direction
and the row direction as a set or may be determined for the
total number of times of component code calculation. It is
assumed that the predetermined number of times is deter-
mined depending on the performance of the nonvolatile
memory 3 or the embodiment, and thus description thereof
will not be repeated. When it is determined that the com-
ponent code word calculation is performed the predeter-
mined number of times (YES in S702), the process flow
ends.

[0103] On the other hand, when the error correction unit
323 determines that the component code word calculation on
the product code is not performed the predetermined number
of times (NO in S702), one (the row direction or the column
direction) of the component codes forming the product code
is selected and the error correction process (code word
calculation) on component code words of the selected com-
ponent code is performed (S703). In the selecting of the
component code in S703, for example, when the row direc-
tion is first selected, the row direction is selected until the
calculation is performed on all the component code words
including an error among the component code words in the
row direction, and the column direction is selected after the
calculation is performed on all the component code words
including an error among the component code words in the
row direction. The column direction is selected until the
calculation is performed on all the component code words
including an error among the component code words in the
column direction, and the row direction is selected after the
calculation is performed on all the component code words
including an error among the component code words in the
column direction. In this way, the column direction and the
row direction are selected so as to alternately perform the
calculations in the column direction and the row direction.

[0104] Then, the component code determining unit 322
determines whether the code word calculation (error correc-
tion process) succeeds (S704). When it is determined that
the component code word calculation fails (NO in S704), the
process flow moves to S707.

[0105] On the other hand, when it is determined that the
code word calculation succeeds (YES in S704), the compo-
nent code determining unit 322 determines whether the error
correction calculation accompanies a change of another
component code word having common data (S705). For
example, as illustrated in FIG. 6, when the data on which
error correction is performed (of which a bit value is
inverted) by the code word calculation performed in S703 is
data on which error correction is performed by the code
word calculation of another component code word, it is
determined that a change of another component code word
is accompanied. When it is determined that a change of
another component code word is accompanied (YES in
S705), the process flow moves to S707. The specific control

US 2017/0187395 Al

0f S705 is the same as described with reference to FIG. 6 and
description thereof will not be repeated.

[0106] On the other hand, when it is determined that the
error correction calculation does not accompany a change of
another component code word having common data (NO in
S705), the component code determining unit 322 determines
whether the inversion number in the component code word
is equal to or greater than the reference value i (S706). When
it is determined that the inversion number is not equal to or
greater than the reference value i (NO in S706), the process
flow moves to S708.

[0107] On the other hand, when the component code
determining unit 322 determines that the inversion number
in the component code word is equal to or greater than the
reference value i (YES in S706), the process flow moves to
S707.

[0108] The update unit 721 performs the rollback control
on component code to be currently calculated using the code
word on which the error correction is not yet performed and
stored in the received word storage area 311 (S707). The
rollback control is also performed on another component
code in which the component code to be currently calculated
is changed when the calculation in S703 fails, or the rollback
control is performed on another component code when a
change of another component code word is accompanied in
S705.

[0109] The error correction unit 323 determines whether
all the component code words in the column direction or the
row direction are selected (S709). When it is determined that
all the component code words in the column direction or the
row direction are not selected (NO in S709), the process
flow from S703 is performed. On the other hand, i=4 when
it is determined that all the component code words in the
column direction or the row direction are selected (YES in
S709), the process flow from S701 is performed.

[0110] According to this process flow, when the erroneous
correction is performed or when the calculation for the error
correction fails, the rollback control is performed and it is
thus possible to enhance the probability that correct user
data can be acquired. In this embodiment, the rollback
control is performed in the case in which it is determined
that the component code word calculation fails, in the case
in which it is determined that a change of another component
code word is accompanied, and in the case in which it is
determined that the inversion number in the component code
word is equal to or greater than the reference value i.
However, the rollback control is not limited to all the three
conditions of the case in which it is determined that the
component code word calculation fails, the case in which it
is determined that a change of another component code word
is accompanied, and the case in which it is determined that
the inversion number in the component code word is equal
to or greater than the reference value i, but the rollback
control may be performed in one or two conditions of the
three conditions. In addition, one or more conditions of the
three conditions may be combined with another condition.

Second Embodiment

[0111] In the first embodiment, the example in which the
same rollback control is always performed regardless of the
progress of the iterated correction of the product code when
there is a possibility that the erroneous correction will occur
or when the generation of a code word fails has been
described. However, when a component code word of which

Jun. 29, 2017

the erroneous correction is not sure is subjected to the
rollback control, the erroneous correction probability is
lowered. However, by performing the rollback control on the
component code word in which the erroneous correction
does not occur, there is a possibility that a delay will occur
due to the iterated correction of the product code.

[0112] Therefore, in a second embodiment, the rollback
control is changed depending on the progress of the iterated
correction of a product code.

[0113] FIG. 12 is a block diagram illustrating a configu-
ration of a decoder unit 801, a DRAM 27, and a nonvolatile
memory 3 in the second embodiment. In FIG. 12, a received
word storage area 311 and an updated code word storage
area 312 are installed in the DRAM 27, similarly to the first
embodiment.

[0114] The decoder unit 801 includes a dynamic update
unit 811, a component code dynamic determining unit 812,
a progress managing unit 813, and an error correction unit
323. The decoder unit 801 may be mounted as a processor
and may realize the dynamic update unit 811, the component
code dynamic determining unit 812, the progress managing
unit 813, and the error correction unit 323 by executing a
program (not illustrated). The controller 23 may include the
dynamic update unit 811, the component code dynamic
determining unit 812, the progress managing unit 813, and
the error correction unit 323. In the second embodiment, the
same elements as in the first embodiment will be referenced
by the same reference numerals and description thereof will
not be repeated.

[0115] The progress managing unit 813 manages the prog-
ress of the iterated correction of error correction on a product
code by the error correction unit 323. The progress manag-
ing unit 813 in this embodiment stores the number of times
of iterated error correction of a component code as the
progress of the iterated correction.

[0116] The component code dynamic determining unit
812 determines whether the result of the error correction
performed by the error correction unit 323 satisfies the
rollback control condition for each component code word on
which the error correction is performed in consideration of
the progress.

[0117] For example, the reference value i is determined in
advance in the first embodiment, but the reference value i
varies depending on the progress in the second embodiment.

[0118] In this embodiment, the error correction unit 323
alternately iterates the error correction of the plural compo-
nent code words in the column direction and the error
correction of the plural component code words in the row
direction. The reference value i is set depending on the
number of times of iterated error correction.

[0119] In this embodiment, when the number of times of
iterated error correction of a component code is less than
Threshold value A, the component code dynamic determin-
ing unit 812 sets the reference value to i=2. When the
number of times of iterated error correction of a component
code is equal to or greater than Threshold value A and less
than Threshold value B, the component code dynamic
determining unit 812 sets the reference value to i=3. When
the number of times of iterated error correction of a com-
ponent code is equal to or greater than Threshold value B,
the component code dynamic determining unit 812 sets the
reference value to i=4.

US 2017/0187395 Al

[0120] FIG. 13 is a diagram illustrating determination of a
rollback control target in the component code dynamic
determining unit 812 of this embodiment.

[0121] In (A) of FIG. 13, data inverted by the error
correction of component code words in the column direction
are a plurality of pieces of data 1401 and 1402. A row
component code word 1411 in (A) of FIG. 13 is set as an
error correction target of the error correction unit 323. A
product code as the process result of the error correction
target is illustrated in (B) of FIG. 13.

[0122] In (B) of FIG. 13, it can be seen that two pieces of
inverted data are included in a component code word 1421
in the row direction subjected to the error correction, that is,
the inversion number is i=2. The component code dynamic
determining unit 812 determines whether the condition of
inversion number=reference value i is satisfied. The refer-
ence value 1is determined depending on the number of times
of'iterated error correction of a component code as described
above.

[0123] As illustrated in (C) of FIG. 13, the control of the
component code dynamic determining unit 812 varies
depending on whether the condition of reference value i<2
is satisfied. That is, when the condition of reference value
i=2 is satisfied, the component code word 1421 is deter-
mined to be a rollback control target. On the other hand,
when the condition of reference value i>2 is satisfied, the
component code word 1421 is determined not to be a
rollback control target.

[0124] In this way, in the component code dynamic deter-
mining unit 812 and the dynamic update unit 811 of this
embodiment, the reference value i varies depending on the
number of times of iterated error correction which is per-
formed by the error correction unit 323. In this way, the
dynamic update unit 811 determines the reference value
(threshold value) i based on the number of times of iterated
error correction in the error correction unit 323.

[0125] That is, when the iterated correction of error cor-
rection is performed, it is thought that the error correction
has to be surely performed at the first time. Accordingly, the
dynamic update unit 811 of this embodiment performs
control of setting the first reference value i to be small,
carefully performing the error correction, and slowly
increasing the reference value i, whereby the error correction
capability of a product code can be satisfactorily used.
[0126] The component code dynamic determining unit
812 determines the rollback control target based on only the
inversion number, but the rollback control (example illus-
trated in FIG. 6) based on the calculation result of compo-
nent code words in the other direction which is subsequently
performed may vary depending on the progress. Even when
the generation of a component code word by the error
correction fails, the rollback control target varies depending
on the progress.

[0127] In this way, in the component code dynamic deter-
mining unit 812 and the dynamic update unit 811 of this
embodiment, the target to be updated to data on which the
error correction is not yet performed varies depending on the
number of times of iterated error correction which is per-
formed by the error correction unit 323.

[0128] That is, the dynamic update unit 811 performs the
rollback control on at least one of data which is not corrected
by the error correction in the first direction (for example, the
column direction or the row direction) but is corrected by the
error correction in the second direction (the column direc-

Jun. 29, 2017

tion or the row direction which is a direction other than the
first direction) and data which is corrected by the error
correction in the first direction based on the number of times
of iterated error correction. The dynamic update unit 811
determines data to be subjected to the rollback control based
on the number of times of iterated error correction which is
performed by the error correction unit 323. For example, it
is thought that both data is set as the rollback control target
when the number of times of iteration is small, and any one
data is set as the rollback control target when the number of
times of iteration is large.

[0129] The dynamic update unit 811 updates at least some
data forming a component code word on which the error
correction is performed by the error correction unit 323 to
data on which the error correction is not yet performed and
stored in the received word storage area 311. The dynamic
update unit 811 of this embodiment performs different
rollback control depending on the progress.

[0130] In this embodiment, partial rollback control and
entire rollback control are performed as the rollback control.
[0131] The partial rollback control is control of returning
only data common to one component code word to be
subjected to the rollback control and another component
code word to be subjected to the rollback control to the state
on which the error correction is not yet performed.

[0132] The entire rollback control is control of returning
all data included in one component code word to be sub-
jected to the rollback control and another component code
word to be subjected to the rollback control to the state on
which the error correction is not yet performed. The rollback
control of the first embodiment corresponds to the entire
rollback control.

[0133] The dynamic update unit 811 performs one of the
partial rollback control and the entire rollback control
depending on the progress.

[0134] FIG. 14 is a diagram illustrating the rollback con-
trol in the dynamic update unit 811 when the generation of
a code word by the error correction fails in this embodiment.
As illustrated in (A) of FIG. 14, it is assumed that a plurality
of pieces of data 1001, 1002, 1003, and 1004 are inverted by
the error correction of column component code words 1012
and 1013. It is assumed that a column component code 1011
is processed as the error correction target of the error
correction unit 323, the error correction fails, and a code
word is not generated. The component code dynamic deter-
mining unit 812 determines component code words 1011,
1012, and 1013 to be the rollback control target.

[0135] The component code dynamic determining unit
812 performs any one of the partial rollback control and the
entire rollback control depending on the progress.

[0136] (B) of FIG. 14 illustrates a case in which the entire
rollback control is performed. As illustrated in (B) of FIG.
14, it can be seen that all inverted data of at least some data
forming the component code words 1011, 1012, and 1013
are returned to data forming the code words on which the
error correction is not performed.

[0137] That is, the dynamic update unit 811 performs the
rollback control on data, on which the error correction is
performed, of an arbitrary component code word which is
one or more of plural component code words in the first
direction (the row direction or the column direction) and
which includes bits on which the error correction is per-
formed.

US 2017/0187395 Al

[0138] (C) of FIG. 14 illustrates a case in which the partial
rollback control is performed. As illustrated in (C) of FIG.
14, it can be seen that a part, which duplicates between the
component code word 1011 and other component code
words 1012 and 1013, among the inverted data included in
the component code words 1011, 1012, and 1013 is returned
to the data forming the code words on which the error
correction is not performed yet.

[0139] The dynamic update unit 811 performs the rollback
control on a predetermined bit, on which the error correction
is performed, of an arbitrary component code word which is
one of plural first component code words in the column
direction (or the row direction) and does not update data
other than the predetermined bit, on which the error correc-
tion is performed in the arbitrary component code word.
[0140] In this embodiment, a condition for switching the
condition for performing the entire rollback control and the
condition for performing the partial rollback control is not
particularly limited. For example, the conditions may be
switched depending on the number of times of iteration. The
condition for performing the rollback control including the
entire rollback control or the partial rollback control is, for
example, a condition that the error correction of another
component code word, which includes a bit on which the
error correction is performed among plural bits included in
one component code word which is one of the plural
component code words in the first direction (the column
direction or the row direction) and which is one of the plural
component code words in the second direction (the column
direction or the row direction which is a direction other than
the first direction), fails but may be another condition.
[0141] In this way, the component code dynamic deter-
mining unit 812 performs different rollback control depend-
ing on the progress. In this embodiment, the entire rollback
control is performed when the number of times of iterated
error correction of a component code is less than Threshold
value K, and the partial rollback control is performed when
the number of times of iterated error correction of a com-
ponent code is equal to or greater than Threshold value K.
Threshold value K is set depending on the embodiments.
[0142] In the first embodiment, an example in which the
entire rollback control is performed without depending on
the progress is described, but the partial rollback control is
performed every time when the rollback control is necessary
without depending on the progress in a modified example.
[0143] In the first embodiment, an example in which one
component code word on which the error correction is
performed and another component code word having data
common to the one component code word are set as the
rollback control target. However, the rollback control target
is not limited to the component codes, but component codes
may be recursively determined.

[0144] The component code dynamic determining unit
812 of the second embodiment recursively determines a
component code word as a rollback control target based on
the order of error correction.

[0145] FIG. 15 is a diagram illustrating a flow of recur-
sively determining a component code word to be subjected
to the rollback control in the component code dynamic
determining unit 812 of the second embodiment. In (A) of
FIG. 15, it is assumed that the error correction is performed
on a component code word 1111. In this error correction, bit
values of pieces of data 1121, 1122, and 1123 included in the
component code word 1111 are inverted (corrected). The

Jun. 29, 2017

component code dynamic determining unit 812 recursively
determines the rollback control target from the component
code word 1111 on which the error correction is performed.
In the example illustrated in FIG. 15, it is assumed that the
bit values are inverted (corrected) by performing the error
correction in the row direction on a plurality of pieces of
data 1101, 1102, and 1106, and the bit values are inverted
(corrected) by performing the error correction in the column
direction on a plurality of pieces of data 1103, 1104, and
1105.

[0146] (B) of FIG. 15 illustrates a case in which the
number of recursion stages is equal to 0. That is, since the
recursion is not performed, the component code dynamic
determining unit 812 determines only the component code
word 1111 in the row direction as the rollback control target.
Accordingly, the number of component codes to be sub-
jected to the rollback control is 1.

[0147] (C) of FIG. 15 illustrates a case in which the
number of recursion stages is equal to 1. Therefore, the
component code dynamic determining unit 812 determines
the component code word 1111 in the row direction and the
component code words 1112 and 1113 in the column direc-
tion which share data having an inverted (corrected) bit
value with the component code word 1111 and which
includes other data having an inverted (corrected) bit value
as the rollback control target. Accordingly, the number of
component codes to be subjected to the rollback control is 3.

[0148] In this embodiment, when the number of recursion
stages is two or more, the received word storage area 311 of
the DRAM 27 stores a change history of the component code
words forming a product code depending on the number of
recursion stages. Since the data 1106 of FIG. 15 is not
associated with the recursive rollback control from the
plurality of pieces of data 1121, 1122, and 1123 included in
the component code word 1111 without depending on the
number of recursion stages, the inversion (correction) of bit
values is not performed.

[0149] (D) of FIG. 15 illustrates a case in which the
number of recursion stages is equal to 2. The component
code dynamic determining unit 812 determines the compo-
nent code words 1111, 1112, and 1113 illustrated in (C) of
FIG. 15 and the component code words 1114 and 1115 in the
row direction which share data having an inverted (cor-
rected) bit value with the component code words 1112 and
1113 in the column direction and which includes other data
having an inverted (corrected) bit value as the rollback
control target. Accordingly, the number of component code
words to be subjected to the rollback control is 5.

[0150] Inthe example illustrated in FIG. 15, the number of
recursion stages ranges from 0 to 2, but the number of
recursion stages may be 3 or greater.

[0151] In this way, the dynamic update unit 811 of this
embodiment performs the rollback control on data, on which
the error correction is performed, of one component code
word when the rollback control condition is satisfied by the
error correction of the one component code word which is
one of the plural component code words in the first direction
(the column direction or the row direction). Then, the
dynamic update unit 811 recursively performs the rollback
control of data, on which the error correction is performed,
of the plural component code words in the second direction
(the column direction or the row direction which is a
direction other than the first direction) and the rollback

US 2017/0187395 Al

control on data, on which the error correction is performed,
of the plural component code words in the first direction.
[0152] The component code dynamic determining unit
812 of this embodiment determines the number of recursion
stages depending on the progress of the iterated correction.
In a more specific example, the number of recursion stages
is determined depending on whether the number of times of
iterated error correction of a component code word is equal
to or greater than a threshold value set for each recursion
stage.

[0153] The component code dynamic determining unit
812 does not limit the number of recursion stages when the
number of times of iterated error correction of a component
code word is less than Threshold value A'. The component
code dynamic determining unit 812 sets the number of
recursion stages to 2 when the number of times of iterated
error correction of a component code word is equal to or
greater than Threshold value A' and less than Threshold
value B'. The component code dynamic determining unit
812 sets the number of recursion stages to 1 when the
number of times of iterated error correction of a component
code word is equal to or greater than Threshold value B' and
less Threshold value C'. The component code dynamic
determining unit 812 sets the number of recursion stages to
0, that is, does not recursively perform the rollback control
when the number of times of iterated error correction of a
component code word is equal to or greater than Threshold
value C'.

[0154] In this way, the dynamic update unit 811 of this
embodiment recursively iterates a process of updating first
data included in a first code word which is a component code
word in one direction among component code words in the
row direction and the column direction forming a product
code to second data on which the error correction is not yet
performed, and then updating arbitrary data included in a
second code word on which the error correction is per-
formed before the first code word on which the error
correction is performed to data on which the error correction
is not yet performed based on a predetermined number of
recursion stages.

[0155] In this embodiment, the number of times of recur-
sion is first set to be great so as to improve the certainty of
the error correction. Thereafter, by slowly decreasing the
number of times of recursion, a processing load caused in
the recursion is reduced. Accordingly, in this embodiment, it
is possible to make improvement in certainty of error
correction and reduction in processing load compatible with
each other.

[0156] Whether the partial rollback control should be
performed or the entire rollback control should be performed
after the component code to be subjected to the rollback
control is recursively determined is not particularly limited,
but may be determined depending on the progress of the
iterated correction.

[0157] The process flow up to the rollback control in the
memory controller 2 according to this embodiment will be
described below. FIG. 16 is a flowchart illustrating the
process flow in the memory controller 2 according to this
embodiment. Before the process flow illustrated in FIG. 16,
it is assumed that a product code stored in the nonvolatile
memory 3 is loaded to the received word storage area 311
and then the product code is copied to the updated code word
storage area 312 in accordance with a command from the
host 4.

Jun. 29, 2017

[0158] First, the error correction unit 323 of the decoder
unit 26 determines whether the product code stored in the
updated code word storage area 312 does not include an
error (S1201). In S1201 of the first time, for example, all the
component code words in the row direction are decoded and
it is determined whether the product code does not include
an error based on information on error presence or absence
acquired by the decoding. When the error correction unit
323 determines that the product code does not include an
error (YES in S1201), the process flow ends.

[0159] On the other hand, when the error correction unit
323 of the decoder unit 26 determines that the product code
includes an error (NO in S1201), the error correction unit
323 determines whether calculation (error correction pro-
cess) of the component codes in the column direction and the
row direction on the product code is performed a predeter-
mined number of times (S1202). The predetermined number
of times may be determined for the number of times of
calculation of the component codes with calculation both
component codes in the column direction and the row
direction as a set, or may be determined for the total number
of times of calculation of the component codes. The prede-
termined number of times is determined depending on the
performance of the nonvolatile memory 3 or the embodi-
ments, and thus description thereof will not be made. When
it is determined that the calculation of component code
words is performed the predetermined number of times
(YES in S1202), the process flow ends.

[0160] On the other hand, when the error correction unit
323 determines that the calculation of code words on the
product code is not performed the predetermined number of
times (NO in S1202), one (the row direction or the column
direction) of the component codes forming the product code
is selected and the error correction process (code word
calculation) of the component code words of the selected
component code is performed (S1203).

[0161] The decoder unit 801 performs the rollback control
based on the result of performing the code word calculation
(error correction process) (S1204). The detailed process
flow will be described later.

[0162] The error correction unit 323 determines whether
all the component code words in the column direction or the
row direction are selected (S1205). When it is determined
that all the component code words in the column direction
or the row direction are not selected (NO in S1205), the
process flow from S1203 is performed. On the other hand,
when it is determined that all the component code words in
the column direction or the row direction are selected (YES
in S1205), the process flow from S1201 is performed.
[0163] Based on the above-mentioned process flow, since
the rollback control is performed after the code word cal-
culation (error correction process), it is possible to enhance
the probability that correct user data can be acquired.
[0164] The rollback control illustrated in S1204 in the
decoder unit 801 of this embodiment will be described
below. FIG. 17 is a flowchart illustrating the process flow in
the decoder unit 801 of this embodiment.

[0165] First, the component code dynamic determining
unit 812 acquires the number of times of iterated error
correction from the progress managing unit 813 (S1301).
[0166] Then, the component code dynamic determining
unit 812 determines a component code word to be subjected
to the rollback control based on the number of times of
iterated error correction (S1302). For example, the compo-

US 2017/0187395 Al

nent code word to be subjected to the rollback control is
determined in consideration of the inversion number besides
the number of times of iterated error correction, or the
component code word to be subjected to the rollback control
is determined based on the number of recursion stages based
on the number of times of iterated error correction.

[0167] Then, the dynamic update unit 811 determines
whether a component code word to be subjected to the
rollback control is present (S1303). When it is determined
that the component code word is not present (NO in S1303),
the process flow ends.

[0168] On the other hand, when it is determined that the
component code word to be subjected to the rollback control
is present (YES in S1303), the dynamic update unit 811
acquires the number of times of iterated error correction
from the progress managing unit 813 and selects one of the
entire rollback control and the partial rollback control based
on the number of times of iterated error correction (S1304).

[0169] Then, the dynamic update unit 811 performs the
selected one of the entire rollback control and the partial
rollback control on the component code word to be sub-
jected to the rollback control and updates the updated code
word storage area 312 (S1305). Accordingly, the rollback
control on the component code words of the component
codes of the product code stored in the updated code word
storage area 312 is performed.

[0170] Then, the dynamic update unit 811 updates the
number of times of iterated error correction of the progress
managing unit 813 (S1306) and restarts the process flow
from S1301.

[0171] Based on the above-mentioned process flow, the
rollback control can be performed depending on the progress
of the number of times of iteration.

[0172] The second embodiment is not limited to the
above-mentioned control, but the method of determining a
component code may be changed depending on the progress
of the number of times of iteration.

[0173] For example, the rollback control when calculation
for the error correction of a component code word succeeds
and a code word is generated and the rollback control when
the code word calculation (error correction process) of a
component code word fails and a code word is not generated
may be selected depending on the progress of the iterated
correction.

[0174] Specifically, 1) a component code word to be
subjected to the rollback control is determined in both cases
of a case in which the code word calculation (error correc-
tion process) of a component code word succeeds and a code
word is generated and a case in which the code word
calculation (error correction process) of a component code
word fails and a code word is not generated.

[0175] 2) The rollback control is not performed and a
component code word to be subjected to the rollback control
is not determined in both cases of the case in which the code
word calculation (error correction process) succeeds and a
code word is generated and a case in which the code word
calculation (error correction process) fails and a code word
is not generated.

[0176] 3) A component code word to be subjected to the
rollback control is determined in only the case in which the
code word calculation (error correction process) succeeds
and a code word is generated.

Jun. 29, 2017

[0177] 4) A component code word to be subjected to the
rollback control is determined in only the case in which the
code word calculation (error correction process) fails and a
code word is not generated.

[0178] For example, the component code dynamic deter-
mining unit 812 may dynamically select one of 1) to 4)
depending on the progress of the iterated correction.
[0179] The rollback control in the case in which the code
word calculation (error correction process) succeeds and a
code word is generated may be performed in various aspects
in which a change of another component code word is
accompanied or the inversion number exceeds the reference
number. Therefore, in this embodiment, determination of a
component code word to be subjected to the rollback control
may be switched in the aspects depending on the progress of
the number of times of iteration.

[0180] Specifically, 5) a component code word to be
subjected to the rollback control is determined in both cases
of'a case in which a change of another component code word
is accompanied and a case in which the inversion number
exceeds the reference number.

[0181] 6) The rollback control is not performed and a
component code word to be subjected to the rollback control
is not determined in both cases of the case in which a change
of another component code word is accompanied and the
case in which the inversion number exceeds the reference
number.

[0182] 7) A component code word to be subjected to the
rollback control is determined in only the case in which a
change of another component code word is accompanied.
[0183] 8) A component code word to be subjected to the
rollback control is determined in only the case in which the
inversion number exceeds the reference number.

[0184] In the second embodiment, the component code
dynamic determining unit 812 may dynamically select any
one of 1) to 8) depending on the progress of the iterated
correction when the rollback control is performed in the case
in which the code word calculation (error correction pro-
cess) succeeds and a code word is generated.

[0185] In the above embodiment, it is possible to enhance
a success rate of error correction of an entire product code
by performing rollback control on a component code having
a high possibility that erroneous correction occurs.

[0186] However, when the rollback control is performed
on a component code word in which erroneous correction
does not occur, there is a possibility that the iterated cor-
rection will not proceed.

[0187] Therefore, in this embodiment, one or more of the
method of determining a component code word to be
subjected to the rollback control and the rollback control
method is dynamically changed depending on the progress
of' the iterated correction. Accordingly, it is possible to make
enhancement in the success rate of error correction and
suppression of the possibility that the iterated correction will
not proceed compatible with each other.

[0188] In the above embodiment, the control of discarding
data having a high possibility that it is erroneous among the
error correction results and updating the data to data on
which the error correction is not yet performed by perform-
ing the above-mentioned control. Accordingly, it is possible
to reduce the erroneous correction.

[0189] Accordingly, in the above embodiment, it is pos-
sible to enhance a success probability of the error correction
of a product code by reducing the erroneous correction.

US 2017/0187395 Al

Third Embodiment

[0190] In the above embodiments, a case in which the data
stored in the received word storage area 311 is a code word
read from the nonvolatile memory 3, that is, a code word
before being subjected to the error correction has been
exemplified. However, the present invention is not limited to
the embodiments. For example, such a configuration is
possible that a part or all of the component codes forming
the code word stored in the received word storage area 311
are replaced by a component code word while being
decoded, which is generated in a course of the iterated
decoding process in which the error correction is iterated.
[0191] Therefore, in the third embodiment, a case in which
the code word stored in the received word storage area 311
is not limited to the code word before being subjected to the
error correction will be described in detail with reference to
the drawings. Description below is based on the first
embodiment among the above embodiments, but is not
limited to the first embodiment and can be similarly applied
to the second embodiment. In the description below, the
same elements as in the above embodiments will be refer-
enced by the same reference numerals and description
thereof will not be repeated.

[0192] FIG. 18 is a block diagram illustrating configura-
tions of the decoder unit 26 and the DRAM 27 according to
the third embodiment. As illustrated in FIG. 18, the decoder
unit 26 has the same configuration, for example, as the
decoder unit 26 described with reference to FIG. 4. Mean-
while, in the DRAM 27, a pre-update code word storage area
311A and an after-update code word storage area 312A are
provided.

[0193] The after-update code word storage area 312A
stores therein a code word acquired by performing the
component code word calculation on the code word stored
in the pre-update code word storage area 311A, as in the
updated code word storage area 312 in the above embodi-
ments. That is, the cord word stored in the after-update code
word storage area 312A is sequentially updated by the
component code word having been subjected to error cor-
rection in the course of the iterated decoding process. In the
description below, the data sequentially updated in the
course of the iterated decoding process, in other words, the
data while being decoded is referred to as “intermediate
decoded word”. Therefore, the intermediate decoded word
in this embodiment is a code word sequentially updated by
the component code word having been subjected to error
correction in the course of the iterated decoding process.
[0194] The pre-update code word storage area 311A is a
memory that holds information required for the rollback
process. In this embodiment, as in the received word storage
area 311 in the above embodiments, the pre-update code
word storage area 311A temporarily stores therein a code
word (received word) on which error correction is not yet
performed, which is read from the nonvolatile memory 3 in
response to the reading command via the memory I/F 22.
However, the code word stored in the pre-update code word
storage area 311A is updated by the component code word
having been subjected to error correction appropriately in
the course of the iterated decoding process. That is, in the
course of the iterated decoding process, a code word while
being decoded, before completion of error correction, is
stored in the pre-update code word storage area 311A. In the
description below, the information required for the rollback
process is referred to as “recurrence information”. There-

Jun. 29, 2017

fore, the recurrence information in this embodiment is a
code word (product code) while being decoded, before
completion of error correction.

[0195] However, it is preferred that the data to be used for
update of the recurrence information (code word) stored in
the pre-update code word storage area 311A is not added
with an unnecessary error by error correction. That is, it is
preferred that the recurrence information stored in the pre-
update code word storage area 311A is composed of a
component code word that is not required to be rolled back
to the earlier state. Therefore, in this embodiment, the
recurrence information stored in the pre-update code word
storage area 311A is updated by a component code word
having a high possibility of not including an error bit.

[0196] Subsequently, a process up to the rollback control
in the memory controller 2 according to this embodiment
will be described. FIG. 19 is a flowchart illustrating a
process flow up to the rollback control in the memory
controller 2 according to this embodiment. Before the pro-
cess flow illustrated in FIG. 19, it is assumed that a product
code stored in the nonvolatile memory 3 is loaded to the
pre-update code word storage arca 311A in response to a
command from the host 4 and then the product code is
copied to the after-update code word storage area 312A.

[0197] As illustrated in FIG. 19, in the process flow, the
error correction unit 323 determines whether decoding of the
product code (intermediate decoded word) stored in the
after-update code word storage area 312A has succeeded by
the same operation as that illustrated in Steps S701 to S703
illustrated in FIG. 11 (S701). When it is determined that the
decoding has not succeeded yet (NO in S701), the error
correction unit 323 determines whether calculation of com-
ponent code words (error correction process) in the column
direction and the row direction has been performed on the
product code a predetermined number of times (S702).
When the error correction unit 323 determines that the
component code word calculation on the product code has
not been performed the predetermined number of times (NO
in S702), one (the row direction or the column direction) of
the component codes forming the product code is selected
and the error correction process (code word calculation) on
component code words of the selected component code is
performed (S703). In Step S701, when the error correction
unit 323 determines that the product code does not include
an error (YES in S701), or that the component code word
calculation on the product code has been performed the
predetermined number of times (YES in S702), the process
flow ends.

[0198] When the error correction process on the compo-
nent code words of the component code selected in Step
S703 (code word calculation) is complete, the error correc-
tion unit 323 confirms an update condition for determining
whether to update the relevant component code words in the
recurrence information (product code) stored in the pre-
update code word storage area 311 A by the component code
words subjected to error correction by the error correction
process, and decides whether the update condition is satis-
fied (S1401). As the update condition, it is possible to use a
condition that “a Hamming distance between the data before
update and the data after update is equal to or less than a
preset threshold” or the like. However, the update condition
is not limited to such a condition, and various conditions can
be applied so long as the condition can sufficiently ensure

US 2017/0187395 Al

the reliability on that the component code word having been
subjected to error correction does not include an error.
[0199] When it is determined that the update condition is
satisfied in Step S1401 (YES in Step S1401), the error
correction unit 323 updates the relevant component code
word in the recurrence information stored in the pre-update
code word storage area 311A by the component code word
subjected to error correction by the error correction process
(81402), and the process flow proceeds to Step S704. On the
other hand, when it is determined that the update condition
is not satisfied (NO in Step S1401), the error correction unit
323 does not update the recurrence information stored in the
pre-update code word storage area 311A, and the process
flow proceeds to Step S704.

[0200] Hereinafter, for example, by performing the same
operation as the operation illustrated in Steps S704 to S708
in FIG. 11, the error correction process including the roll-
back control according to this embodiment is performed.
[0201] As described above, according to this embodiment,
as in the above embodiments, when the error correction is
performed or when calculation for performing the error
correction fails, the rollback control for returning the com-
ponent code word to the state before rewriting is performed.
Therefore, the probability of acquiring correct user data can
be improved. Further, in this embodiment, because the
recurrence information (product code) stored in the pre-
update code word storage area 311A is updated by compo-
nent code words having high reliability, that is, having less
possibility of including an error bit in the course of the
iterated decoding process in which error correction is iter-
ated, the decoding process can be completed with less
calculation amount within a short period of time. Because
other configurations, operations, and effects are identical to
those of the above embodiments, detailed descriptions
thereof will not be repeated.

[0202] In the respective embodiments described above,
the product code that doubly protects the user data by
two-dimensional component codes of the component codes
in the column direction and the component codes in the row
direction has been illustrated. However, the present disclo-
sure is not limited to such a product code. That is, in the
respective embodiments described above and the respective
embodiments described below, the code to be used is not
limited to the product code, and a code that protects at least
a part of the user data more than doubly by the component
codes in the form of two-dimensional or more can be used.
In the description below, codes that protect the user data at
least a part of doubly or more by the component codes in the
form of two-dimensional or more, including the above-
described product code, Graph codes being a concept of
generalizing the product code, and generalized LDPC codes
(Generalized Low-Density Parity Check codes) being a
concept of generalizing the Graph codes, are referred to as
“multi-dimensional error correction code”. In generalized
LDPC codes, it is considered that each component code has
its own dimension. Thus, different component codes belong
to different dimensions in a generalized LDPC code. The
multi-dimensional error correction code may include a plu-
rality of component code words as in the product code
described above.

[0203] In the above embodiments, it is configured such
that the received word storage area 311 or the pre-update
code word storage area 311A holds cord words (recurrence
information) having the same code length as the code words

Jun. 29, 2017

read from the nonvolatile memory 3. However, the configu-
ration is not limited thereto. For example, the received word
storage area 311 or the pre-update code word storage area
311A can be configured to store therein difference data
between the cord words (intermediate decoded word) stored
in the updated code word storage area 312 or the after-
update code word storage area 312A and the code words
(recurrence information) stored in the received word storage
area 311 or the pre-update code word storage area 311A in
the description above. Alternatively, it is possible to config-
ure the received word storage area 311 or the pre-update
code word storage area 311 A to hold necessary and sufficient
information for uniquely calculating the difference data (for
example, a syndrome value). By having such a configura-
tion, the memory area required for the received word storage
area 311 or the pre-update code word storage area 311A can
be reduced.

Fourth Embodiment

[0204] Subsequently, a memory controller, a memory sys-
tem and a control method according to a fourth embodiment
will be described below in detail with reference to the
drawings. In the description below, the same elements as in
the above embodiments will be referenced by the same
reference numerals and description thereof will not be
repeated.

[0205] The above embodiments and the embodiments
described below relate to a decoding method of an error
correction code that protects at least one symbol by a
plurality of component codes, and are applicable not only to
the product code but also to various error correction codes
having characteristics of performing multiplex coding on a
certain symbol by a plurality of component codes.

[0206] The symbol used in the description is described.
The symbol is a unit of information. In the simplest example,
one symbol corresponds to one bit. The code word of the
error correction code is generally a vector in which the
symbols are aligned. For example, a symbol of binary BCH
codes is a bit (binary information of “0” or “1”), and a
symbol of RS codes is an element of a finite field.

[0207] A multi-dimensional error correction code to be
used as an example in this embodiment will be described
next. FIG. 20 is a diagram illustrating a schematic configu-
ration example of the multi-dimensional error correction
code to be used as an example in this embodiment. As
illustrated in FIG. 20, as the multi-dimensional error cor-
rection code to be used as an example in this embodiment,
a product code 1500 having a code length of 25 symbols and
an information length (a data length of user data) of 4
symbols can be exemplified. The product code 1500
includes, for example, data symbols d,, d,, d, and d,, and
parity symbols p, to p,o. Hereinafter, for simplifying the
description, a case in which the product code 1500 is
adopted as the multi-dimensional error correction code, in
which the BCH code is used for the component code
including binary bit information of “0” and ““1” is illustrated.
However, when the RS code having the number of corrected
symbols of 1 is adopted as the component code, the symbol
in this description is an element of a Galois field.

[0208] In the product code 1500 having the code structure
as illustrated in FIG. 20, the data symbols d, to d; and the
parity symbols p,, to p,, are doubly protected respectively by
ten component codes 1511 to 1515 and 1521 to 1525. For
example, the component code 1511 encodes the data sym-

US 2017/0187395 Al

bols d, and d, and the parity symbols p, to p,. Therefore,
when focusing on the data symbol d,, the data symbol d,, is
doubly protected by the component code 1511 and the
component code 1521 simultaneously. Similarly, the respec-
tive symbols d, to d; and p,, to p,, other than the data symbol
d, are doubly encoded by the component codes 1511 to 1515
in the row direction and the component codes 1521 to 1525
in the column direction, thereby being doubly protected
simultaneously. In the description below, the row direction
and the column direction may be called one “dimension”
respectively.

[0209] As a representative decoding method framework
with respect to the multi-dimensional error correction code
having a code structure similar to that of the product code
1500 described above, there is an iterated decoding process
that iterates error correction as described in the above
embodiments. FIG. 21 illustrates a schematic configuration
example of a decoder that performs the iterated decoding
process again. As illustrated in FIG. 21, an illustrative
decoder 1600 includes, for example, a data receiving unit
1610, a decoded data memory 1620, a control unit 1630 and
a component code decoder 1640. The decoder 1600 can be
a decoder functionally realized in respective units of the
memory controller 2, for example, illustrated in FIG. 1.
Hereinafter, for clarifying the description, a case in which
the product code 1500 illustrated in FIG. 20 is used as the
multi-dimensional error correction code will be described as
an example.

[0210] The data receiving unit 1610 may be a memory
area secured in, for example, the DRAM 27 (see FIG. 1), or
a memory area provided in the encoder/decoder unit 24. The
decoded data memory 1620 receives the product code 1500
read from the nonvolatile memory 3 by the memory I/F 22
and records the product code 1500 therein. The data receiv-
ing unit 1610 also records information required for decod-
ing, which is calculated based on the product code 1500, in
the decoded data memory 1620, in addition to the received
product code 1500. The information required for decoding
can be, for example, a syndrome value of the respective
component codes calculated based on the product code
1500. In the description below, the product code 1500 and
the information required for decoding (the syndrome value
and the like) may be collectively and simply referred to as
“data”.

[0211] The control unit 1630 corresponds to, for example,
the processor 23 (see FIG. 1), and performs the iterated
decoding process of rewriting the data in the decoded data
memory 1620 by using the component code decoder 1640.
The component code decoder 1640 corresponds to, for
example, the decoder unit 26 of the encoder/decoder unit 24,
and outputs information relating to an error symbol present
in the component code word based on the component code
word read from the decoded data memory 1620 for each
component code. The control unit 1630 rewrites the product
code 1500 in the decoded data memory 1620 based on the
information relating to the error symbol to be output by the
component code decoder 1640.

[0212] The iterated decoding process performed by the
illustrative decoder 1600 illustrated in FIG. 21 will be
described next in detail with reference to FIG. 22. FIG. 22
is a flowchart illustrating an example of the iterated decod-
ing process performed by the illustrative decoder. It is
assumed that before the process flow illustrated in FIG. 22,
the product code 1500 (see FIG. 20) read from the nonvola-

Jun. 29, 2017

tile memory 3 has been stored in the decoded data memory
1620 in response to a command from the host 4. In FIG. 22,
the process flow is described, focusing on the operation of
the control unit 1630.

[0213] As illustrated in FIG. 22, the control unit 1630 first
selects a component code to be decoded from the component
codes 1511 to 1515 and 1521 to 1525 forming the product
code 1500 (Step S1701). At this time, the control unit 1630
can repeatedly perform selecting the component codes 1511
to 1515 from the component code 1511 being a top in the
row direction sequentially along the column direction, for
example, among the component codes 1511 to 1515 and
1521 to 1525 forming the product code 1500, and thereafter,
selecting the component codes 1521 to 1525 from the
component code 1521 being a top in the column direction
sequentially along the row direction. However, the selection
order of the component code to be decoded is not limited to
this order. The selection order can be variously modified to
be, for example, a selection order in which a component
code in the row direction and a component code in the
column direction are alternately selected one by one, or a
selection order in which a component code is selected at
random by using a pseudo random number or the like.
[0214] Next, the control unit 1630 reads the information
required for decoding of the component code from the
decoded data memory 1620, regarding the component code
selected as a decoding target (Step S1702). The information
required for decoding of the component code may be, for
example, a syndrome value in the data recorded in the
decoded data memory 1620, of the respective component
codes calculated based on the product code 1500.

[0215] Next, the control unit 1630 then inputs the infor-
mation required for decoding, which is read in Step S1702,
to the component code decoder 1640, and instructs the
component code decoder 1640 to perform the decoding
process on the component code selected in Step S1701 (Step
S1703). The decoding process performed by the component
code decoder 1640 can be bounded distance decoding based
on, for example, the syndrome value of the component code.
In this case, the information required for decoding input to
the component code decoder 1640 is a syndrome value, and
the information to be output as a result of the decoding
process by the component code decoder 1640 is information
of the position and the value of an error symbol (corre-
sponding to the information relating to the error symbol
described above).

[0216] The bounded distance decoding is a decoding
method having such a characteristic that a certain number of
error symbols (also referred to as “correctable number”) can
be always corrected. For example, the BCH code and the RS
code have an advantage such that the decoding method
having a characteristic that a certain number of error sym-
bols can be always corrected, such as the bounded distance
decoding can be performed with a relatively small amount of
calculation. Therefore, it is considered that it is effective to
adopt the bounded distance decoding as the decoding
method when using the BCH code and the RS code. How-
ever, the bounded distance decoding is only an example, and
the decoding method is not limited to the bounded distance
method, and various decoding methods can be adopted.
[0217] Next, the control unit 1630 determines whether the
information relating to the error symbol has been detected
from the component code, as a result of the decoding process
performed by the component code decoder 1640 (Step

US 2017/0187395 Al

S1704). When the information relating to the error symbol
has been detected (YES in Step S1704), the control unit
1630 rewrites the relevant symbol value in the product code
1500 in the decoded data memory 1620 based on the
detected information relating to the error symbol (Step
S1705), and the control unit 1630 proceeds to Step S1706.
On the other hand, when the information relating to the error
symbol has not been detected (NO in Step S1704), the
control unit 1630 directly proceeds to Step S1706.

[0218] In Step S1706, the control unit 1630 determines
whether the end condition of the iterated decoding process
is satisfied. When the end condition is not satisfied (NO in
Step S1706), the control unit 1630 returns to Step 31701 to
select the next component code as a new decoding target,
and performs the operation in Step S1702 and thereafter. On
the other hand, when the end condition is satisfied (YES in
Step S1706), the control unit 1630 finishes the operation. As
the end condition of the iterated decoding process, for
example, it can be used that the syndrome check of all the
component codes has succeeded, that is, it is determined that
all the component codes do not include an error.

[0219] In the above description, the decoding method
described by using FIG. 21 and FIG. 22 can achieve gen-
erally excellent error correction capability, because the
decoding process proceeds while the component codes hav-
ing a relatively short code length cooperate with each other.
However, if relatively lots of errors are included in the
received data, the decoding process on the component codes
having a relatively short code length tends to cause a
phenomenon referred to as so-called “erroneous correction”
in which the code word is decoded to an erroneous code
word. If erroneous correction occurs during the iterated
decoding and a result thereof is reflected in the decoded data
memory 1620, the progress of the iterated decoding stops,
and as a result, there is a possibility of decoding failure.
[0220] As a method of decreasing the occurrence of
decoding failure due to erroneous correction, the rollback
control of rolling back (turning) the erroneously corrected
component code and the component code failed in calcula-
tion to the component codes in the state before the erroneous
correction or failed calculation is performed, as described in
the above embodiments, is effective. However, in the above
embodiments, a memory area (the received word storage
area 311 and the pre-update code word storage area 311A)
that stores the recurrence information (product code) cited at
the time of rollback control is required, in addition to the
memory area (the updated code word storage area 312 and
the after-update code word storage area 312A) that stores the
component codes to be decoded (product code and the like).
Therefore, a relatively large memory area is required in total.
Therefore, in this embodiment, examples of the memory
controller, the memory system and the control method that
can decrease the required memory area will be described,
while using the concept of rolling back (returning) the
erroneously corrected component code and the component
code failed in calculation to the component codes in the state
before the erroneous correction or failed calculation is
performed.

[0221] FIG. 23 is a block diagram illustrating a schematic
configuration example of a decoder according to this
embodiment. A decoder 1800 illustrated in FIG. 23 can be,
for example, a decoder functionally realized in the respec-
tive units of the memory controller 2 illustrated in FIG. 1, as
in the decoder 1600 illustrated in FIG. 21.

Jun. 29, 2017

[0222] Asillustrated in FIG. 23, the decoder 1800 includes
the same configuration, for example, as the decoder 1600
illustrated in FIG. 21. However, in the decoder 1800, a
correction symbol list (recurrence information holding unit)
1821 and a symbol data memory (intermediate decoded
word memory) 1822 are arranged in the decoded data
memory 1620, and a component code data buffer 1841 and
a bounded distance decoder 1842 are provided in the com-
ponent code decoder 1640.

[0223] The symbol data memory 1822 in the decoded data
memory 1620 is a memory that holds the data while being
decoded, that is, the intermediate decoded word, and corre-
sponds to the updated code word storage area 312 or the
after-update code word storage area 312A in the above
embodiments. Therefore, the symbol data memory 1822
holds the product code 1500 read from the nonvolatile
memory 3. It is assumed that the symbol data memory 1822
holds the product code 1500 in a unit of bit.

[0224] The product code 1500 (intermediate decoded
word) in the symbol data memory 1822 is updated (partially
rewritten) by a component code word while being decoded
in which the error correction process has not yet been
completed, during the iterated decoding process performed
by the control unit 1630 by using the component code
decoder 1640. In other words, the product code 1500 in the
symbol data memory 1822 is successively updated (partially
rewritten) by the component code word sequentially
acquired as a result of calculation (bounded distance decod-
ing) performed on an individual component code word by
the component code decoder 1640.

[0225] The correction symbol list 1821 is a memory that
holds the recurrence information required for the counter
process described later (corresponding to the rollback pro-
cess in the above embodiments). In this embodiment, the
correction symbol list 1821 is a memory that records rewrit-
ing log (corresponding to rewriting log information
described later), when the control unit 1630 partially
rewrites the product code 1500 in the symbol data memory
1822 in response to the result of the decoding process
performed on the individual component code word by the
component code decoder 1640. That is, the recurrence
information in this embodiment is the rewriting log (rewrit-
ing log information) when the control unit 1630 partially
rewrites the product code 1500 (intermediate decoded word)
in the symbol data memory 1822 in response to the result of
the decoding process. The rewriting log information is
information necessary and sufficient for reproducing the
information relating to the error symbol detected by the
decoding process (bounded distance decoding) on the
respective component codes. Therefore, the correction sym-
bol list 1821 in this embodiment can be said to be a memory
that holds recurrence information necessary and sufficient
for reproducing the information relating to the error symbol
detected by the decoding process (bounded distance decod-
ing) on the respective component codes.

[0226] Specifically, when a symbol error has been found in
a component code word by the bounded distance decoding
performed by using, for example, the component code
decoder 1640, the control unit 1630 rewrites a value of the
symbol (symbol value) present at a position corresponding
to the symbol determined as the symbol error in the product
code 1500 in the symbol data memory 1822, to a value
estimated to be a correct value. In this description, the
rewriting process is also referred to as “error correction

US 2017/0187395 Al

process”. When the control unit 1630 partially rewrites the
product code 1500 in the symbol data memory 1822 by the
rewriting process, the control unit 1630 registers the infor-
mation indicating how and which symbol in the product
code 1500 in the symbol data memory 1822 has been
rewritten (rewriting log information) in the correction sym-
bol list 1821. The rewriting log information (recurrence
information) includes information for specifying the posi-
tion of the symbol determined as an error in the product code
1500 in the symbol data memory 1822 (hereinafter, also
“in-product-code error symbol position information™), and
information indicating from which value to which value the
value of the symbol has been rewritten (hereinafter, also
“before-and-after update value information”).

[0227] As the in-product-code error symbol position infor-
mation, various pieces of information, for example, infor-
mation indicating the position in the product code of the
component code where the symbol is present and the posi-
tion of the symbol in the component code word of the
component code (for example, the order in a symbol array)
can be used. The before-and-after update value information
includes information specifying, for example, at least one of
a symbol value before rewriting and a symbol value after
rewriting.

[0228] The component code data buffer 1841 arranged in
the component code decoder 1640 is a memory that reads
component code data (that is, the component code word) to
be decoded individually from the symbol data memory 1822
in the decoded data memory 1620, and buffers the compo-
nent code data.

[0229] The bounded distance decoder 1842 is connected to
the component code data buffer 1841, for example, in the
component code decoder 1640, and performs bounded dis-
tance decoding on the component code word read by the
component code data buffer 1841, to detect information
relating to the position of the error symbol present in the
component code word (hereinafter, also “in-component-
code error symbol position information”). As the in-com-
ponent-code error symbol position information, various
pieces of information such as information indicating, for
example, the position of the symbol in the component code
word (for example, the order in a symbol array) can be used.
[0230] The in-component-code error symbol position
information detected by the bounded distance decoder 1842
is transmitted to the control unit 1630. The control unit 1630
generates the in-product-code error symbol position infor-
mation based on the information specifying the component
code to be decoded, which is held in the DRAM 27 or a
register (not illustrated), and the received in-component-
code error symbol position information. Further, the control
unit 1630 rewrites the value of the symbol in the symbol data
memory 1822 specified by the generated in-product-code
error symbol position information, to a value estimated to be
a correct value (rewriting process).

[0231] As a method of obtaining the in-product-code error
symbol position information from the in-component-code
error symbol position information, various methods can be
used such as a method of using a mapping table that
manages the correspondence relation thereof and a method
of calculating the position information from the position of
the symbol based on a specific symbol. When the symbol
value is either “0” or “1” as in this description, the value
estimated to be a correct value can be a value other than the
current value. Therefore, when the current value determined

Jun. 29, 2017

to be an error is “0”, the value of the symbol is rewritten to
“1”, and when the current value determined to be an error is
“17, the value of the symbol is rewritten to “0”.

[0232] Further, the control unit 1630 registers in the
correction symbol list 1821 the rewriting log information
(recurrence information) including the in-product-code error
symbol position information and the before-and-after update
value information indicating from which value to which
value the value of the symbol specified by the in-product-
code error symbol position information has been rewritten.

[0233] The iterated decoding process according to this
embodiment will be described next in detail with reference
to FIG. 24. FIG. 24 is a flowchart illustrating an example of
the iterated decoding process according to this embodiment.
It is assumed that before the process flow illustrated in FIG.
24, the product code 1500 (see FIG. 20) read from the
nonvolatile memory 3 has been stored in the symbol data
memory 1822 of the decoded data memory 1620. In FIG. 24,
the process flow is described, focusing on the operation of
the control unit 1630.

[0234] As illustrated in FIG. 24, the control unit 1630
deletes the data in the symbol data memory 1822 and reads
the product code 1500 from the nonvolatile memory 3, and
stores the read product code 1500 in the symbol data
memory 1822 (initialization of the symbol data memory)
(Step S1901).

[0235] The control unit 1630 selects a component code to
be decoded from the component codes 1511 to 1515 and
1521 to 1525 forming the product code 1500 (Step S1902).
At this time, the control unit 1630 can repeatedly perform
selecting the component codes 1511 to 1515 in the order
from the component code 1511 being a top in the row
direction sequentially along the column direction, for
example, among the component codes 1511 to 1515 and
1521 to 1525 forming the product code 1500, and thereafter,
selecting the component codes 1521 to 1525 in the order
from the component code 1521 being a top in the column
direction sequentially along the row direction, as described
in Step S1701 in FIG. 22. However, the selection order of
the component code to be decoded is not limited thereto. The
selection order can be variously modified to be, such as a
selection order in which a component code in the row
direction and a component code in the column direction are
alternately selected one by one, or a selection order in which
a component code is selected at random by using a pseudo
random number or the like.

[0236] The control unit 1630 decides whether to perform
the counter process on the component code selected as a
decoding target in Step S1902 (Step S1903). The operation
to decide whether to perform the counter process will be
described later in detail with reference to FIG. 25.

[0237] In the decision in Step S1903, when it is decided
not to perform the counter process (NO in Step S1904), the
control unit 1630 reads the data of the component code
(component code word) selected in Step S1902 from the
symbol data memory 1822, and transfers the read compo-
nent code word to the component code data buffer 1841
(Step S1905).

[0238] The control unit 1630 performs the bounded dis-
tance decoding on the component code word transferred to
the component code data buffer 1841 by using the bounded
distance decoder 1842, to detect the position information of

US 2017/0187395 Al

an error symbol present in the component code word (in-
component-code error symbol position information) (Step
$1906).

[0239] The control unit 1630 determines whether the
position information of the error symbol (the in-component-
code error symbol position information) has been detected in
the bounded distance decoding in Step S1906 (Step S1907).
When the in-component-code error symbol position infor-
mation has not been detected (NO in Step S1907), the
control unit 1630 proceeds to Step S1910. On the other hand,
when the in-component-code error symbol position infor-
mation has been detected (YES in Step S1907), the control
unit 1630 proceeds to Step S1908 to perform a rewriting
process of rewriting the value of the symbol in the symbol
data memory 1822 based on the detected in-component-code
error symbol position information.

[0240] In the rewriting process in Step S1908, first, the
control unit 1630 obtains the in-product-code error symbol
position information based on the detected in-component-
code error symbol position information. As the method of
obtaining the in-product-code error symbol position infor-
mation from the in-component-code error symbol position
information, as described above, various methods can be
used such as the method of using a mapping table that
manages the correspondence relation thereof and the method
of calculating the position information from the position of
the symbol based on a specific symbol. The control unit
1630 then performs the rewriting process (error correction
process) of rewriting the value of the symbol in the symbol
data memory 1822 specified by the in-product-code error
symbol position information to a value estimated to be a
correct value based on the obtained in-product-code error
symbol position information. For example, when “0” is
recorded in the top symbol (data symbol d,) in the compo-
nent code word of the component code 1511 in the top row
in the product code 1500 in the symbol data memory 1822,
and when it is determined that the top symbol (data symbol
d,) is an error symbol, the control unit 1630 rewrites the top
symbol (data symbol d,) from “0” to “1”.

[0241] When the rewriting process is performed in this
manner, the control unit 1630 registers the information
(rewriting log information) indicating how and which sym-
bol in the product code 1500 in the symbol data memory
1822 has been rewritten by the rewriting process in Step
S1908, in the correction symbol list 1821 (Step S1909), and
proceeds to Step S1910. For example, as in the above-
described example, when the top symbol (data symbol d,) in
the component code word of the component code 1511 in the
top row in the product code 1500 in the symbol data memory
1822 is rewritten from “0” to “1”, the control unit 1630
registers the in-product-code error symbol position informa-
tion for specifying the top symbol (data symbol d,) in the
component code word of the component code 1511 in the top
row in the product code 1500 in the symbol data memory
1822, and the before-and-after update value information
indicating that the top symbol (data symbol d,) has been
rewritten from “0” to “1”, in the correction symbol list 1821
as the rewriting log information (recurrence information).
[0242] In Step S1910, the control unit 1630 determines
whether the end condition of the iterated decoding process
on the product code 1500 loaded to the symbol data memory
1822 is satisfied. When the end condition is satisfied (YES
in Step S1910), the control unit 1630 finishes the operation.
On the other hand, when the end condition is not satisfied

Jun. 29, 2017

(NO in Step S1910), the control unit 1630 returns to Step
S1902, to select the next component code and perform the
operation thereafter. The end condition (terminating condi-
tion) can be such that a sufficiently appropriate decoded
word can be acquired and the number of repetition of the
iterated decoding has reached a predetermined number of
times.

[0243] When it is decided to perform the counter process
in the decision in Step S1903 (YES in Step S1904), the
control unit 1630 reads the rewriting log information regis-
tered in the correction symbol list 1821 regarding the
component code to be decoded in Step S1902 (Step S1911),
and confirms the read rewriting log information, to deter-
mine whether the past rewriting process on the component
code to be decoded has been already undone (Step S1912).
When the past rewriting process has been already undone
(YES in Step S1912), the control unit 1630 proceeds to Step
S1910 without performing the counter process on the com-
ponent code. On the other hand, when the past rewriting
process has not been undone (NO in Step S1912), the control
unit 1630 performs the counter process (also referred to as
“re-rewriting process”) to undo the writing process per-
formed in the past on the component code in the symbol data
memory 1822 based on the read rewriting log information
(Step S1913), and the control unit 1630 proceeds to Step
S1910.

[0244] The counter process (re-rewriting process) in Step
S1913 will be described in more detail. For example, in the
example described above, the control unit 1630 first reads
from the correction symbol list 1821 the rewriting log
information indicating that the top symbol (data symbol do)
in the component code word of the component code 1511 in
the top row in the product code 1500 in the symbol data
memory 1822 has been rewritten from “0” to “1” Subse-
quently, by rewriting the top symbol (data symbol d,) from
“1” to “0” again, the control unit 1630 performs the counter
process (re-rewriting process) of undoing the rewriting
process performed in the past. Thus, in the counter process
(re-rewriting process) according to this embodiment, an
inverse process to the rewriting process performed in the
past on the component code to be decoded is performed.

[0245] Subsequently, decision whether to perform the
counter process performed in Step S1903 in FIG. 24 will be
described in detail with reference to FIG. 25. FIG. 25 is a
flowchart illustrating an example of an operation to decide
whether to perform the counter process according to this
embodiment.

[0246] As illustrated in FIG. 25, the control unit 1630 first
determines whether the position information of the error
symbol (in-component-code error symbol position informa-
tion) has been detected in the past regarding the component
code to be decoded (Step S2001). The determination
whether the position information of the error symbol has
been detected in the past can be performed, for example, by
confirming whether the rewriting log information has been
registered in the correction symbol list 1821 regarding the
component code to be decoded. When the position infor-
mation of the error symbol has not been detected in the past
regarding the component code to be detected (NO in Step
S2001), there is no target to be returned. Therefore, the
control unit 1630 decides that the counter process can be
performed (Step S2005), and returns to the operation illus-
trated in FIG. 24.

US 2017/0187395 Al

[0247] On the other hand, when the position information
of the error symbol (in-component-code error symbol posi-
tion information) has been detected in the past regarding the
component code to be decoded (YES in Step S2001), the
control unit 1630 checks a counter (not illustrated) that
counts the number of iterations of the iterated decoding
process by the bounded distance decoder 1842, to determine
whether the counter value is equal to or greater than the
predetermined number of times set beforehand (Step
S2002). The counter process in this embodiment is for
increasing the probability of decoding success by undoing
the error correction that may be erroneous correction. How-
ever, in the counter process, there is a possibility that error
correction in which the error symbol has been corrected to
a correct value may be undone. Therefore, in this embodi-
ment, it is configured such that after the iterated decoding
process has been performed a certain number of times, the
counter process is not performed (NO in Step S2002 to Step
S2005). Accordingly, both the decoding success probability
and the throughput can be improved. A threshold of the
number of iterations of the iterated decoding process to be
used at the time of deciding whether to perform the counter
process can be appropriately set in accordance with the code
to be used, the decoding algorithm, or the like.

[0248] When the counter value is equal to or greater than
the predetermined number of times (threshold), that is, when
the number of iterations of the iterated decoding process is
equal to or greater than the predetermined number of times
(YES in Step S2002), the control unit 1630 proceeds to Step
S2005 to decide that the counter process can be performed,
and returns to the operation illustrated in FIG. 24. On the
other hand, when the counter value is less than the prede-
termined number of times, that is, when the number of
iterations of the iterated decoding process is less than the
predetermined number of times (NO in Step S2002), the
control unit 1630 proceeds to Step S2003.

[0249] In Step S2003, the control unit 1630 determines
whether the possibility that the rewriting process performed
in the past on the component code to be decoded has been
erroneous correction is high. When it is determined that the
possibility that the rewriting process performed in the past
on the component code to be decoded has been erroneous
correction is not high (NO in Step S2003), the control unit
1630 decides that the counter process cannot be performed
(Step S2005), and returns to the operation illustrated in FIG.
24. On the other hand, when it is determined that the
possibility that the rewriting process performed in the past
on the component code to be decoded has been erroneous
correction is high (YES in Step S2003), the control unit
1630 decides that the counter process can be performed
(Step S2004), and returns to the operation illustrated in FIG.
24.

[0250] For the decision whether the possibility that the
rewriting process performed in the past in Step S2003 has
been erroneous correction is high, some decision criteria as
described below can be used.

[0251] As one of the decision criteria, “the number of
symbols rewritten in the past rewriting process” included in
the component code to be decoded, in other words, “the
number of symbols determined to be an error in the bounded
distance decoding performed in the past” included in the
component code to be decoded can be exemplified. This is
set as a first decision criterion in the description. The reason
why such a first decision criterion can be used is that in

Jun. 29, 2017

general, when there is a large number of symbols rewritten
in the rewriting process, there is such a tendency that there
is a high probability of the rewriting process on these
symbols being erroneous correction. Therefore, when the
number of symbols rewritten in the past rewriting process is
greater than the predetermined number (for example, two)
set beforehand, Step S2003 can be configured such that the
control unit 1630 decides that “there is a high possibility that
the rewriting process performed in the past on the compo-
nent code to be decoded has been erroneous correction”.
When the symbol forming the component code to be
decoded is the element of the Galois field, the element of the
Galois field can be also handled as the element in which a
plurality of elements (for example, bits) of a prime field
gather together. Therefore, when the symbol is the element
of the Galois field, “the number of rewritten elements of the
prime field in the symbol rewritten in the past rewriting
process” can be used instead of “the number of symbols
rewritten in the past rewriting process”.

[0252] As another one of decision criteria, “the number of
symbols that has been determined as an error in a certain
dimension, with the syndrome value of the component code
in the other dimension including the symbol being not “0””
can be exemplified. This is set as a second decision criterion
in the description. The other dimension means that the
dimension is different from the dimension of the component
code selected in Step S1902. The reason why such a second
decision criterion can be used is that, even if it is determined
that the syndrome value of the component code is “0”, that
is, there is no error as a result of performing error correction
(rewriting) on the component code in one dimension, if it is
determined that the syndrome value of the component code
in the other dimension including the symbol rewritten by the
error correction (rewriting) is not “0”, that is, there is an
error, there is a high possibility that the error correction
(rewriting) has been erroneous correction.

[0253] The second decision criterion will be described by
citing the specific example described above. In the specific
example described above, it is assumed a case in which the
component code 1511 in the top row in the product code
1500 is a decoding target, and because an error has been
found in the top symbol (data symbol d,) “0” of the
component code 1511, a symbol corresponding to the top
symbol (data symbol d,) has been rewritten from “0” to “1”
in the symbol data memory 1822, and the rewriting log
(rewriting log information) is registered in the correction
symbol list 1821. When taking the code structure of the
product code 1500 into consideration, the top symbol (data
symbol d,,) in the component code 1511 in the top row is also
a top symbol (data symbol d,) in the component code 1521
in the top column. That is, the top symbol (data symbol d,)
in the component code 1511 in the top row is also encoded
by the component code 1521 in the top column. Therefore,
when the component code selected as a decoding target in
Step S1902 in FIG. 24 is the component code 1511 in the top
row, and the rewriting log information read in Step S2001 in
FIG. 25 includes information indicating that the top symbol
(data symbol d,,) in the component code 1511 in the top row
has been rewritten, in Step S2003 in FIG. 25, the control unit
1630 reads the component code 1521 in the top column from
the symbol data memory 1822 and calculates the syndrome
value thereof, to determine whether the calculated syndrome
value is “0”. That the calculated syndrome value is not “0”
means that one or more error symbols need to be included

US 2017/0187395 Al

in the component code 1521 in the top column. Therefore,
in Step S2003, the control unit 1630 can decide that “there
is relatively a high possibility that the rewriting process to
rewrite the top symbol in the component code 1511 in the
top row of the product code 1500 stored in the symbol data
memory 1822 from “0” to “1” performed on the component
code 1511 in the top row in the past has been erroneous
correction”.

[0254] As for the first and second decision criteria
described above, either one can be used or both can be used
in the decision in Step S2003 in FIG. 25. Further, the
decision criteria are not limited to those two, and the
respective criteria can be used singly or in combination,
including other decision criteria. For example, when both
the first and second decision criteria are adopted, Step S2003
can be configured such that the control unit 1630 decides
that the counter process can be performed, when “the
number of symbols determined as an error in the bounded
distance decoding performed in the past” included in the
component code to be decoded is greater than the predeter-
mined number (for example, two) set beforehand, and “the
number of symbols that has been determined as an error in
a certain dimension, with the syndrome value of the com-
ponent code in the other dimension including the symbol
being not “0”” included in the same component code is equal
to or greater than the predetermined number (for example,
one) set beforehand.

[0255] As described above, according to this embodiment,
an erroneously corrected component code or a component
code failed in calculation is rolled back (returned) to a
component code in a state before erroneous correction or
failed calculation is performed, to continue the decoding
process thereafter. Therefore, the probability of decoding
success can be further increased.

[0256] According to this embodiment, the memory area
that stores therein the multi-dimensional error correction
code in the state before the erroneous correction or the failed
calculation is performed (corresponding to the received
word storage area 311 or the pre-update code word storage
area 311A) is not required other than the memory area that
stores therein the multi-dimensional error correction code
while being decoded (corresponding to the updated code
word storage area 312 or the after-update code word storage
area 312A). Therefore, the decoding success probability by
the rollback control (counter process) can be improved while
decreasing the required memory area.

[0257] Because other configurations, operations and
effects are identical to those of the above embodiments,
detailed descriptions thereof will not be repeated.

Fifth Embodiment

[0258] Another embodiment that can decrease the
required memory area while using the concept of rolling
back (returning) an erroneously corrected component code
and a component code failed in calculation to a component
code before the calculation is performed will be described
below as a fifth embodiment as an example. In the descrip-
tion below, the same elements as those in the above embodi-
ments will be referenced by the same reference numerals
and description thereof will not be repeated.

[0259] FIG. 26 is a block diagram illustrating a schematic
configuration example of a decoder according to this
embodiment. A decoder 2100 illustrated in FIG. 26 can be a
decoder functionally realized in the respective units of the

Jun. 29, 2017

memory controller 2, for example, illustrated in FIG. 1, as in
the decoder 1600 illustrated in FIG. 21. In the description
below, for simplifying the description, a case in which the
product code 1500 is adopted as the multi-dimensional error
correction code, in which the BCH code is used for the
component code including binary bit information of “0” and
“1” is illustrated.

[0260] As illustrated in FIG. 26, the decoder 2100 has the
same configuration as, for example, the decoder 1600 illus-
trated in FIG. 21. However, in the decoder 2100, an error
symbol list (intermediate decoded word memory) 2121 and
a syndrome information recording unit (recurrence informa-
tion holding unit) 2122 are arranged in the decoded data
memory 1620, and a syndrome data buffer 2141 and the
bounded distance decoder 1842 are provided in the compo-
nent code decoder 1640.

[0261] The error symbol list 2121 in the decoded data
memory 1620 is a memory that holds the data while being
decoded, that is, the intermediate decoded word. The error
symbol list 2121 lists and records the positions of the error
symbols detected by the component code decoder 1640.
That is, the intermediate decoded word in this embodiment
is information relating to the listed positions of the error
symbols. The position of the error symbol is a position of the
error symbol in the multi-dimensional error correction code
(the product code 1500). Therefore, the in-product-code
error symbol position information described above can be
listed and held in the error symbol list 2121, so that the
position of the error symbol in the multi-dimensional error
correction code (in the case of the product code, the position
in the product code) can be specified. At this time, the error
symbol list 2121 can hold the list of the error symbol
positions (for example, a list of the in-product-code error
symbol position information) in a linked list format.

[0262] The syndrome information recoding unit 2122 is a
memory that records information required for decoding. The
information required for decoding in this embodiment may
be information relating to a syndrome calculated based on
the component code word of the respective component
codes, and information relating to the syndrome calculated
based on data acquired by reflecting correction of the error
symbol position recorded in the error symbol list 2121 on the
code word read from the nonvolatile memory 3. The infor-
mation relating to the syndrome can include, for example,
syndrome values of respective component codes and cor-
rected flags indicating whether the respective component
codes have been subjected to error correction. Therefore, the
syndrome information recoding unit 2122 includes a syn-
drome memory 2123 and a flag memory 2124.

[0263] The syndrome memory 2123 is one of memories
(recurrence information holding unit) that holds the recur-
rence information required for the counter process, in other
words, necessary and sufficient for reproducing the infor-
mation relating to the error symbol detected by the decoding
process (bounded distance decoding) on the respective com-
ponent codes (however, in this embodiment, the syndrome
values of the respective component codes), and records
syndrome values of the respective component codes. That is,
the recurrence information in this embodiment includes the
syndrome value of the respective component codes. For
example, when the product code 1500 to be decoded has a
code structure including ten component codes 1511 to 1515

US 2017/0187395 Al

and 1521 to 1525, the syndrome memory 2123 individually
records the syndrome value for each of the ten component
codes.

[0264] The flag memory 2124 is one of the memories
(recurrence information holding unit) that holds the recur-
rence information required for the counter process, in other
words, necessary and sufficient for reproducing the infor-
mation relating to the error symbol detected by the decoding
process (bounded distance decoding) on the respective com-
ponent codes (syndrome values of the respective component
codes), and records the corrected flags indicating whether
the respective component codes have been subjected to error
correction. That is, the recurrence information in this
embodiment includes the corrected flags indicating whether
the respective component codes have been subjected to error
correction. The flag memory 2124 holds the corrected flag
corresponding one-to-one with the individual component
code. The corrected flag may be a binary flag indicating that,
for example, error correction has been performed (herein-
after, “corrected”) by “1”, and error correction has not been
performed (hereinafter, “uncorrected”) by “0”. The cor-
rected flag is for deciding whether the respective component
codes have been subjected to error correction, and can be
replaced by various configurations that can exert the same
functions as those of the corrected flag. That is, the corrected
flag can be replaced by various configurations, so long as the
configuration enables decision whether the respective com-
ponent codes have been subjected to error correction.

[0265] The syndrome data buffer 2141 in the component
code decoder 1640 is a memory that reads the syndrome
value of the component code to be decoded from the
syndrome information recording unit 2122 and buffers the
syndrome value.

[0266] The bounded distance decoder 1842 is connected to
the syndrome data buffer 2141, for example, in the compo-
nent code decoder 1640, and detects the position informa-
tion of the error symbol corresponding to the syndrome
value read by the syndrome data buffer 2141 (in-component-
code error symbol position information) by performing the
bounded distance decoding by inputting the syndrome value.

[0267] The iterated decoding process according to this
embodiment will be described next in detail with reference
to FIG. 27. FIG. 27 is a flowchart illustrating an example of
the iterated decoding process according to this embodiment.
In FIG. 27, the process flow is described, focusing on the
operation of the control unit 1630.

[0268] As illustrated in FIG. 27, the control unit 1630 first
deletes the data in the syndrome memory 2123, reads the
product code 1500 from the nonvolatile memory 3, and
calculates the syndrome values of the respective component
codes forming the read product code 1500, to store the
calculated syndrome values of the respective component
codes in the syndrome memory 2123 (initialization of the
syndrome memory) (Step S2201). The control unit 1630
then resets the flag memory 2124 so that the corrected flags
on all the component codes indicate “uncorrected” (reset of
the flag memory) (Step S2202).

[0269] Subsequently, the control unit 1630 selects the
component code to be decoded from the component codes
forming the product code 1500 as in Steps S1902 to S1903
in FIG. 24 (Step S2203), to decide whether the counter
process on the selected component code can be performed
(Step S2204). However, the operation to decide whether the

Jun. 29, 2017

counter process can be performed in this embodiment is an
operation illustrated in FIG. 28 described later.

[0270] When it is decided not to perform the counter
process in the decision in Step S2204 (NO in Step S2205),
the control unit 1630 reads the syndrome value of the
component code selected in Step S2203 from the syndrome
memory 2123, and transfers the read syndrome value to the
syndrome data buffer 2141 (Step S2206).

[0271] The control unit 1630 performs the bounded dis-
tance decoding based on the syndrome value on the syn-
drome value transferred to the syndrome data buffer 2141 by
using the bounded distance decoder 1842, to detect the
position information of the error symbol present in the
selected component code (the in-component-code error
symbol position information) (Step S2207).

[0272] The control unit 1630 then determines whether the
appropriate in-component-code error symbol position infor-
mation has been detected by the bounded distance decoding
in Step S2207 (Step S2208). The determination whether the
detected in-component-code error symbol position informa-
tion is appropriate can be performed, for example, in the
following manner.

[0273] That is, in the determination whether the detected
in-component-code error symbol position information is
appropriate, it is decided first whether the in-component-
code error symbol position information has been detected by
the bounded distance decoding. When it is decided that the
in-component-code error symbol position information has
not been detected, in Step S2208, the control unit 1630
determines that the appropriate in-component-code error
symbol position information has not been detected (NO in
Step S2208), and the control unit 1630 proceeds to Step
S2212. On the other hand, when it is decided that the
in-component-code error symbol position information has
been detected, the control unit 1630 confirms the corrected
flag regarding the component codes in the other dimension
including the symbol specified by the detected in-compo-
nent-code error symbol position information referring to the
flag memory 2124. The other dimension means a dimension
other than the dimension of the component code selected in
Step S2203.

[0274] When the component code in the other dimension
including a symbol determined as an error in the bounded
distance decoding on the component code in one dimension
has been corrected in the past, there is a high possibility that
the in-component-code error symbol position information
detected by the bounded distance decoding this time is not
appropriate. Therefore, in Step S2208, when the corrected
flag with regard to the component code in the other dimen-
sion including the symbol specified by the detected in-
component-code error symbol position information indi-
cates “corrected”, the control unit 1630 determines that the
appropriate in-component-code error symbol position infor-
mation has not been detected (NO in Step 32208), and
proceeds to Step S2212. On the other hand, when the
relevant corrected flag indicates “uncorrected”, the control
unit 1630 determines that the appropriate in-component-
code error symbol position information has been detected
(YES in Step S2208), and proceeds to Step S2209.

[0275] In Step S2209, the control unit 1630 generates the
in-product-code error symbol position information based on
the information specifying the component code to be
decoded, which is held in, for example, the DRAM 27 or a
register (not illustrated), and the in-component-code error

US 2017/0187395 Al

symbol position information detected in Step S2207, and
additionally registers the generated in-product-code error
symbol position information in the error symbol list 2121
(Step S2209). In this embodiment, the process of addition-
ally registering the in-product-code error symbol position
information in the error symbol list 2121 corresponds to the
rewriting process of rewriting a value corresponding to the
error symbol in the intermediate decoded word.

[0276] The control unit 1630 also updates the syndrome
value stored in the syndrome memory 2123 regarding the
component code in the other dimension including the sym-
bol specified by the in-component-code error symbol posi-
tion information detected by the bounded distance decoding
in Step S2207 (Step S2210). In the update of the syndrome
value, an exclusive OR (EXOR) of a difference between the
syndrome value stored in the syndrome memory 2123
regarding the component code in the other dimension and
the syndrome value corresponding to the symbol determined
as an error in the bounded distance decoding is calculated,
and the syndrome value stored in the syndrome memory
2123 regarding the component code in the other dimension
is updated by a new syndrome value acquired by the
calculation of the EXOR.

[0277] A specific example thereof will be described. For
example, when the component code to be decoded is the
component code 1511 in the top row in the product code
1500, and the symbol determined as an error by the bounded
distance decoding is the top symbol (data symbol d,) of the
component code 1511, an exclusive OR (EXOR) of a
difference between the syndrome value stored in the syn-
drome memory 2123 regarding the component code 1521 in
the other dimension (that is, in the column direction) includ-
ing the top symbol (data symbol d,,) and the syndrome value
corresponding to the top symbol (data symbol d,) of the
component code 1511 is calculated, and the syndrome value
stored in the syndrome memory 2123 regarding the com-
ponent code 1521 in the top column is updated by the new
syndrome value acquired by the calculation.

[0278] Thereafter, the control unit 1630 updates the cor-
rected flag regarding the component code to be decoded in
the flag memory 2124 to “corrected” (Step S2211), and
proceeds to Step S2212.

[0279] In Step S2210 in FIG. 27, the syndrome value
stored in the syndrome memory 2123 regarding the com-
ponent code in the other dimension including the symbol
specified by the in-component-code error symbol position
information detected by the bounded distance decoding
(Step S2207) is updated. However, the syndrome value of
the component code, which is an actual bounded distance
decoding target in Step S2207, is not updated and remains in
the syndrome memory 2123. Thus, the reason for leaving the
syndrome value of the component code, which is an actual
bounded distance decoding target, without being updated is
to enable an inverse operation based on the syndrome value
regarding which symbol has been rewritten at the time of the
counter process. By enabling the inverse operation, in this
embodiment, the memory area that records the contents of
the past rewriting process on the product code 1500, such as
the corrected symbol list 1821 in the fourth embodiment, is
not required. Therefore, the required memory area can be
further decreased.

[0280] The syndrome value remaining in the syndrome
memory 2123 without being updated with regard to the
component code with the corrected flag indicating “cor-

Jun. 29, 2017

rected” is not rewritten by the decoding process on the
component code in the other dimension. This is because
further correction is not performed on the corrected com-
ponent code, as a result of the detection process of appro-
priate in-component-code error symbol position information
described above (Step S2208, see FIG. 27) and an operation
to decide whether to perform the counter process (S2204,
see FIG. 28), which will be described below in detail.
[0281] In Step S2212, the control unit 1630 determines
whether the end condition of the iterated decoding process
on the product code 1500 is satisfied. When the end condi-
tion is satisfied (YES in Step S2212), the control unit 1630
finishes the operation. On the other hand, when the end
condition is not satisfied (NO in Step S2212), the control
unit 1630 returns to Step S2203 to select the next component
code and perform the operation thereafter. The end condition
(terminating condition) can be such that a sufficiently appro-
priate decoded word can be acquired or the number of
iterations of the iterated decoding has reached a predeter-
mined number of times.

[0282] When it is decided to perform the counter process
in the decision in Step S2205 (YES in Step S2205), the
control unit 1630 performs the counter process (re-rewriting
process) to undo the rewriting process performed by per-
forming the operation in Steps S2209 to S2211 on the
relevant component code in the past (Steps S2213 to S2215),
and proceeds to Step S2212. For the sake of convenience of
explanation, details of the counter process (re-rewriting
process) performed in Steps S2213 to S2215 will be
described after description of the operation to decide
whether to perform the counter process illustrated in FIG.
28.

[0283] The operation to decide whether to perform the
counter process, performed in Step S2204 in FIG. 27 will be
described in detail with reference to FIG. 28. FIG. 28 is a
flowchart illustrating an example of the operation to decide
whether to perform the counter process according to this
embodiment.

[0284] As illustrated in FIG. 28, the control unit 1630 first
determines whether the syndrome value recorded regarding
the component code to be decoded set in Step S2203 in FIG.
27 is “0” by referring to the syndrome memory 2123 (Step
S2301). When the recorded syndrome value is “0” (YES in
Step S2301), after the relevant corrected flag in the flag
memory 2124 is updated to “corrected” (Step S2303), the
control unit 1630 decides that the counter process cannot be
performed (Step S2309), and returns to the operation illus-
trated in FIG. 27. On the other hand, when the recorded
syndrome value of the component code to be decoded is not
“0” (NO in Step S2301), the control unit 1630 proceeds to
Step S2302.

[0285] In Step S2302, the control unit 1630 determines
whether the corrected flag regarding the component code to
be decoded indicates “corrected” by referring to the flag
memory 2124, and when the corrected flag indicates “cor-
rected” (YES in Step S2302), the control unit 1630 proceeds
to Step S2304. On the other hand, when the corrected flag
regarding the component code to be decoded indicates
“uncorrected” (NO in Step S2302), the control unit 1630
decides that the counter process cannot be performed (Step
S2309), and returns to the operation illustrated in FIG. 27.
[0286] In Step S2304, the control unit 1630 checks a
counter (not illustrated) that counts the number of iterations
of the iterated decoding process by the bounded distance

US 2017/0187395 Al

decoder 1842, for example, as in Step S2002 in FIG. 25, to
determine whether the counter value is equal to or greater
than a predetermined number of times set beforehand (Step
S2304). When the counter value is equal to or greater than
the predetermined number of times (threshold), that is, the
number of iterations of the iterated decoding process is equal
to or greater than the predetermined number of times (YES
in Step S2304), the control unit 1630 proceeds to Step S2309
to decide the counter process cannot be performed, and
returns to the operation illustrated in FIG. 27. On the other
hand, when the counter value is less than the predetermined
number of times, that is, the number of iterations of the
iterated decoding process is less than the predetermined
number of times (NO in Step S2304), the control unit 1630
proceeds to Steps S2305 to S2306.

[0287] The operations in Steps S2305 to S2306 may be
substantially the same as the operations in Steps S2206 to
S2207 in FIG. 27. Therefore, the control unit 1630 first reads
the syndrome value of the component code selected in Step
S2203 in FIG. 27 from the syndrome memory 2123, and
transfers the read syndrome value to the syndrome data
buffer 2141 (Step S2305). Subsequently, the control unit
1630 performs the bounded distance decoding based on the
syndrome value on the syndrome value transferred to the
syndrome data buffer 2141 by using the bounded distance
decoder 1842, to restore the position information of the error
symbol present in the selected component code (the in-
component-code error symbol position information) (Step
S2306).

[0288] The position information of the error symbol
restored by the operation in Step S2306 (the in-component-
code error symbol position information) is the same as the
position information (the in-component-code error symbol
position information) of the error symbol detected by per-
forming the bounded distance decoding on the same com-
ponent code in the past. This is because when there is no
change in the syndrome value recorded in the syndrome
memory 2123 regarding the relevant component code, the
position information of the error symbol (the in-component-
code error symbol position information) detected from the
same syndrome value is the same, and when it is decided the
counter process can be performed, the syndrome value
recorded in the syndrome memory 2123 regarding the
relevant component code is not changed at all times.

[0289] As described above, when the position information
of the error symbol present in the component code to be
decoded (the in-component-code error symbol position
information) is restored, the control unit 1630 determines
whether the possibility that the restored position information
of the error symbol (the in-component-code error symbol
position information) has been erroneous correction is high
(Step S2307).

[0290] For the decision of whether the possibility that the
rewriting process performed in the past is erroneous correc-
tion in Step S2307 is high, the same decision criteria as those
exemplified in the fourth embodiment can be used. That is,
it can be configured such that when “the number of symbols
rewritten in the past rewriting process” included in the
component code to be decoded is greater than the predeter-
mined number set beforehand (the first decision criterion),
and “the number of symbols that has been determined as an
error in a certain dimension, with the syndrome value of the
component code in the other dimension including the sym-

Jun. 29, 2017

bol being not “0”” is greater than the predetermined number
set beforehand, the control unit 1630 decides that the counter
process can be performed.

[0291] However, in this embodiment, the configuration
corresponding to the symbol data memory 1822 in the fourth
embodiment is not provided. Therefore, in this embodiment,
it is configured such that the control unit 1630 decides the
second decision criterion, that is, “the number of symbols
that has been determined as an error in a certain dimension,
with the syndrome value of the component code in the other
dimension including the symbol being not “0”” by using the
corrected flag recorded in the flag memory 2124. When the
product code 1500 illustrated in FIG. 20 is described as an
example, for example, it is assumed that the component code
to be decoded is the component code 1511 in the top row,
and the restored position information of the error symbol
(the in-component-code error symbol position information)
indicates the top symbol (the data symbol d,) in the com-
ponent code 1511. Then, the component code in the other
dimension that protects the top symbol (the data symbol d,)
is the component code 1521 in the top column. Therefore,
the control unit 1630 confirms whether the corrected flag for
the component code 1521 in the flag memory 2124 indicates
“corrected” or “uncorrected”. When the corrected flag indi-
cates “corrected”, the control unit 1630 decides that the
component code 1511 in the top row has been subjected to
error correction, that is, the syndrome value is “0”. When the
corrected flag indicates “uncorrected”, the control unit 1630
decides that the syndrome value of the component code 1511
in the top row is not “0”.

[0292] When it is determined that the possibility of the
rewriting process performed in the past being erroneous
correction is not high (NO in Step S2307), the control unit
1630 proceeds to Step S2309 to decide that the counter
process cannot be performed, and returns to the operation
illustrated in FIG. 27. On the other hand, when it is deter-
mined that the possibility of the rewriting process performed
in the past being erroneous correction is high (YES in Step
S2307), the control unit 1630 proceeds to Step S2308 to
decide that the counter process can be performed, and
returns to the operation illustrated in FIG. 27.

[0293] Subsequently, details of the counter process (re-
rewriting process) performed in Steps S2213 to S2215) will
be described. In the counter process according to this
embodiment, first, the in-product-code error symbol position
information indicating a symbol in the component code to be
decoded, among the information relating to the position of
the error symbol recorded in the error symbol list 2121 (the
in-product-code error symbol position information), which
is a symbol corresponding to the symbol specified by the
in-component-code error symbol position information
restored in Step S2306 in FIG. 28, is deleted (Step S2213).
[0294] The control unit 1630 then updates the syndrome
value stored in the syndrome memory 2123 regarding the
component code in the other dimension including the sym-
bol specified by the in-component-code error symbol posi-
tion information restored in Step S2306 in FIG. 28 (Step
S2214). In the update of the syndrome value, as in Step
S2210, an exclusive OR (EXOR) of a difference between the
syndrome value stored in the syndrome memory 2123
regarding the component code in the other dimension and
the syndrome value corresponding to the symbol determined
as an error in the bounded distance decoding is calculated,
and the syndrome value stored in the syndrome memory

US 2017/0187395 Al

2123 regarding the component code in the other dimension
is updated by a new syndrome value acquired by the
calculation of the EXOR.

[0295] Thereafter, the control unit 1630 rewrites the cor-
rected flag regarding the component code to be decoded in
the flag memory 2124 to “uncorrected” (Step S2215), and
proceeds to Step S2212.

[0296] As described above, according to this embodiment,
as in the above embodiments, an erroneously corrected
component code and a component code failed in calculation
are rolled back (returned) to a component code in a state
before erroneous correction and failed calculation are per-
formed, to continue the decoding process thereafter. There-
fore, the probability of decoding success can be further
increased.

[0297] Further, according to this embodiment, not only the
memory area that stores the multi-dimensional error correc-
tion code in the state before erroneous correction and failed
calculation are performed (corresponding to the received
word storage area 311 or the pre-update code word storage
area 311A), but also the memory area that records the
contents of the past rewriting process on the product code
1500 (corresponding to the corrected symbol list 1821) are
not required. Therefore, the required memory area can be
further decreased.

[0298] Other configurations, operations, and effects of the
present embodiment are identical to those of the embodi-
ments described above, and thus detailed descriptions
thereof will not be repeated.

[0299] While certain embodiments have been described,
these embodiments have been presented by way of example
only, and are not intended to limit the scope of the inven-
tions. Indeed, the novel embodiments described herein may
be embodied in a variety of other forms; furthermore,
various omissions, substitutions and changes in the form of
the embodiments described herein may be made without
departing from the spirit of the inventions. The accompa-
nying claims and their equivalents are intended to cover
such forms or modifications as would fall within the scope
and spirit of the inventions.

What is claimed is:

1. A memory controller that controls a nonvolatile
memory in which multi-dimensional error correction code
having two or more component codes is stored, the memory
controller comprising:

a memory interface that reads out the multi-dimensional

error correction code;
a receiving unit configured to acquire a received word of
the multi-dimensional error correction code;
an intermediate decoded word memory that holds an
intermediate decoded word of the multi-dimensional
error correction code;
a decoder configured to perform a decoding process and
detect information relating to an error symbol;
a recurrence information holding unit configured to hold
recurrence information for reproducing the information
relating to the error symbol detected by the decoding
process; and
a control unit configured to
instruct the decoder to perform a first decoding process
of a first component code included in the interme-
diate decoded word,

when a first error symbol included in the first compo-
nent code is detected by the first decoding process,

Jun. 29, 2017

perform a first rewriting process which is rewriting a
value corresponding to the first error symbol in the
intermediate decoded word, and

record first recurrence information for reproducing a
value of the first error symbol before rewriting in
the recurrence information holding unit,

instruct the decoder to perform a second decoding
process of a second component code included in the
intermediate decoded word, of which dimension is
different from that of the first component code,

determine whether the first rewriting process is erro-
neous correction based on a result of the second
decoding process, and

when it is determined that the first rewriting process is
erroneous correction, perform a counter process
which is undoing the first rewriting process based on
the first recurrence information recorded in the recur-
rence information holding unit.

2. The memory controller according to claim 1, wherein

the error correction code includes a plurality of first

component codes and a plurality of second component
codes,
each of the first component codes is generated based on
first data including a plurality of pieces of second data,

each of the second component codes is generated based
on third data including a plurality of pieces of the
second data each of which is singly selected from each
of the plurality of pieces of the first data included in
fourth data which includes a plurality of pieces of the
first data, and

second data included in one third data does not overlap

with second data included in another third data.
3. The memory controller according to claim 1, wherein
the second decoding process is performed after the first
decoding process.
4. The memory controller according to claim 1, wherein
the decoding process is a bounded distance decoding pro-
cess.
5. The memory controller according to claim 1, wherein
the recurrence information is input data to the decoder.
6. The memory controller according to claim 5, wherein
the input data to the decoder is a syndrome value of a
component code to be decoded by the decoder.
7. The memory controller according to claim 1, wherein
the recurrence information is information relating to the
error symbol detected by the decoding process.
8. The memory controller according to claim 1, wherein
there are one or more of the error symbols detected as being
present in the first component code by the first decoding
process,
there are one or more of the second component codes that
protect respectively the one or more error symbols, and

the control unit decides not to perform the counter pro-
cess, when at least one of decision criteria is satisfied,
of a first decision criterion such that number of the first
error symbols detected for the first component code is
equal to or greater than a first predetermined number,
and a second decision criterion such that number of
second component codes that have not succeeded in the
decoding process, of the one or more second compo-
nent codes that protect respectively the one or more
error symbols, is equal to or greater than a second
predetermined number.

US 2017/0187395 Al

9. The memory controller according to claim 1, wherein
the controller decides not to perform the counter process,
when number of iterations of the decoding process by the
decoder is equal to or greater than a predetermined number.

10. The memory controller according to claim 1, wherein
at least one of the component codes forming the multi-
dimensional error correction code is either a BCH code or an
RS (Reed-Solomon) code.

11. The memory controller according to claim 1, wherein
the intermediate decoded word memory holds a symbol
value of the respective component codes forming the multi-
dimensional error correction code, as the intermediate
decoded word.

12. The memory controller according to claim 1, wherein
the intermediate decoded word memory holds a difference
between the received word of the multi-dimensional error
correction code and the intermediate decoded word, as the
intermediate decoded word.

13. A memory system comprising:

the memory controller according to claim 1; and

a nonvolatile memory that stores the multi-dimensional

error correction code.

14. A method of controlling a nonvolatile memory in
which multi-dimensional error correction code having two
or more component codes is stored, the method comprising:

reading out the multi-dimensional error correction code;

acquiring a received word of the multi-dimensional error
correction code;

holding an intermediate decoded word of the multi-

dimensional error correction code;

performing a first decoding process which is decoding a

first component code included in the intermediate
decoded word;

when one or more first error symbols included in the first

component code are detected by the first decoding

process,

performing a first rewriting process which is rewriting
one or more values corresponding to the one or more
first error symbols in the intermediate decoded word,
and

recording first recurrence information for reproducing
one or more values of the one or more first error
symbols before rewriting;

performing a second decoding process which is decoding

a second component code included in the intermediate
decoded word, of which dimension is different from
that of the first component code;

Jun. 29, 2017

determining whether the first rewriting process is errone-
ous correction based on a result of the second decoding
process; and

when it is determined that the first rewriting process is

erroneous correction, performing a counter process
which is undoing the first rewriting process based on
the recorded first recurrence information.

15. The method according to claim 14, wherein

the error correction code includes a plurality of first

component codes and a plurality of second component
codes,
each of the first component codes is generated based on
first data including a plurality of pieces of second data,

each of the second component codes is generated based
on third data including a plurality of pieces of the
second data each of which is singly selected from each
of the plurality of pieces of the first data included in
fourth data which includes a plurality of pieces of the
first data, and

second data included in one third data does not overlap

with second data included in another third data.

16. The method according to claim 14, wherein at least
one of the first and second decoding processes includes a
bounded distance decoding process.

17. The method according to claim 14, wherein the first
recurrence information is a syndrome value of the first
component code.

18. The method according to claim 14, wherein the first
recurrence information is information relating to the
detected error symbol.

19. The method according to claim 14, further comprising
deciding not to be performed the counter process when the
number of the one or more first error symbols is equal to or
greater than a first predetermined number or when the
number of the second component codes each of which
includes at least one of the one or more first error symbols
and of which decoding processes are failed is equal to or
greater than a second predetermined number.

20. The method according to claim 14, further comprising
iteratively repeating executions of the first and second
decoding processes, wherein

the second decoding process is executed after each execu-

tion of the first decoding process, and

the counter process is decided not to be performed when

number of iterations of the first and second decoding
processes is equal to or greater than a predetermined
number.

