wo 2018/057235 A1 | 0000 OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
29 March 2018 (29.03.2018)

(10) International Publication Number

WO 2018/057235 Al

WIPO I PCT

(51) International Patent Classification:
GO6F 12/1009 (2016.01)

(21) International Application Number:
PCT/US2017/048663

(22) International Filing Date:
25 August 2017 (25.08.2017)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
15/273,433 22 September 2016 (22.09.2016) US

(71) Applicant: GOOGLE LLC [US/US]; 1600 Amphitheatre
Parkway, Mountain View, California 94043 (US).

(72) Imventors: COBURN, Joel Dylan; 1600 Amphithe-
atre Parkway, Mountain View, California 94043 (US).
BORCHERS, Albert; 1600 Amphitheatre Parkway,

Mountain View, California 94043 (US). JOHNSON,
Christopher Lyle; 1600 Amphitheatre Parkway, Moun-
tain Vlew, California 94043 (US). SPRINKLE, Robert S.;
1600 Amphitheatre Parkway, Mountain View, California
94043 (US).

Agent: MA, Christopher et al.; Fish & Richardson P.C.,
P.O. Box 1022, Minneapolis, Minnesota 55440-1022 (US).

74

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA,CH,CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,

(54) Title: MEMORY MANAGEMENT SUPPORTING HUGE PAGES

1002

130 2

Remote
Memory

1102

CPU

Logical
Address

1

Memory Management Unit

Physical
Address

Page Table
Walker

160

Lookaside Buffer P

Translation

165

FIG. 1

(57) Abstract: Methods, systems, and apparatus for receiving a request to access, from a main memory, data contained in a first portion
of a first page of data, the first page of data having a first page size; initiating a page fault based on determining that the first page of
data is not stored in the main memory; allocating a portion of the main memory equivalent to the first page size; transterring the first
portion of the first page of data from the secondary memory to the allocated portion of the main memory without transferring the entire
first page of data; and updating a first page table entry associated with the first portion of the first page of data to point to a location of
the allocated portion of the main memory to which the first portion of the first page of data is transterred.

[Continued on next page]

WO 2018/057235 A1 || /0000

SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

— as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
— with international search report (Art. 21(3))

WO 2018/057235 PCT/US2017/048663

MEMORY MANAGEMENT SUPPORTING HUGE PAGES

FIELD

[0001] The present specification generally relates to memory systems.

BACKGROUND

[0002] A wide variety of memory devices can be used to maintain and store data
and instructions for various computers and similar systems. In conventional
computing systems, Dynamic Random Access Memory (DRAM) technology has
typically been employed to operate the dynamic memory of the computer in order for
an application to operate at high speeds. However, DRAM used as main memory in
computer systems is no longer scaling as rapidly as in the past. As a result, DRAM

storage has become a limited resource in computing environments.

SUMMARY

[0003] A second tier of memory may be used, such as disk-based memory, NAND
flash memory, spin torque transfer magnetic memory (STT-MRAM), resistive random
access memory (ReRAM), or the like. The second tier of memory may be accessed
locally over a memory or |O bus, or remotely over a high-speed network. However,
applications need to explicitly manage data placement or the system must provide
automatic management that transparently moves data between memory tiers. In
addition, huge pages or large pages or super pages, those terms used
interchangeably, have been shown to provide a significant performance increase for
most workloads and particularly for cloud-based serving applications, where huge
pages are blocks of memory that are larger in size, e.g., 8KB, 64KB, 256KB, 1MB,
2MB, 4MB, 16MB, 256MB, 512MB, or 1GB, than a typical page, which may be 4KB,
depending on processor architecture. Thus, new techniques are needed for
automatic management with minimal performance impact to overcome the

inadequacies of existing techniques.

[0004] One innovative aspect of the subject matter described in this specification is

embodied in systems and methods that include receiving a request to access, from a

WO 2018/057235 PCT/US2017/048663

main memory, data contained in a first portion of a first page of data, the first page of
data having a first page size and the first portion comprising a second page size that
is less than the first page size; initiating a page fault based on determining that the
first page of data is not stored in the main memory and is stored in a secondary
memory; in response to initiating the page fault, allocating a portion of the main
memory equivalent to the first page size; transferring the first portion of the first page
of data from the secondary memory to the allocated portion of the main memory
without transferring the entire first page of data, wherein a remaining amount of the
first page of data remains stored in the secondary memory; and updating a first page
table entry associated with the first portion of the first page of data to pointto a
location of the allocated portion of the main memory to which the first portion of the

first page of data is transferred.

[0005] In certain implementations, the remaining amount of the first page of data is
transferred from the secondary memory to the main memory. Transferring the
remaining amount of the first page of data may include repeatedly transferring
respective portions, corresponding to the second page size, of the first page of data
from the secondary memory to the allocated portion of the main memory until the
entire first page of data is stored in the main memory; and updating a respective
page table entry for each of the respective portions of the first page of data to point
to respective locations of the respective portions of the first page of data in the main

memory.

[0006] In certain implementations, once the entire first page of data is stored in the
main memory, the first page of data is reassembled from the respective portions of
the first page of data transferred from the secondary memory to the allocated portion
of the main memory; and a page table entry associated with the first page of data is
updated to point to a location of the reassembled first page of data in the main

memory.

[0007] Another aspect of the subject matter described in this specification is
embodied in systems and methods that include, before transferring the remaining

portion of the first page of data from the secondary memory to the main memory,

WO 2018/057235 PCT/US2017/048663

indicating that the first portion of the first page of data that was requested to be

accessed has been transferred to the main memory.

[0008] Another innovative aspect of the subject matter described in this
specification is embodied in systems and methods that include determining whether
an access bit is set for each page table entry of a page table based on a scan of the
page table with a page table scanner, the access bit indicating whether a page
associated with the page table entry was accessed in a last scan period, wherein at
least one of the pages having the first page size is divided into pages of the second
page size with a page table entry for each of the pages of the second page size in
the page table being scanned; incrementing a count for each page in response to
determining that the access bit is not set for the page table entry associated with the
page; and after determining whether the access bit is set for each page table entry,

resetting the access bit.

[0009] In certain implementations, if the portion of the main memory equivalent to
the first page size cannot be allocated, one of a least used pages having the first
page size is determined based on the count for each page and releasing the one of
the least used pages into the secondary memory, and a portion of the main memory
equivalent to the first page size is allocated at the location of the released one of the
least used pages; and if the portion of the main memory equivalent to the first page
size can be allocated, the first portion of the first page of data is transferred from the

secondary memory to the allocated portion of the main memory.

[0010] Other embodiments of these aspects include corresponding systems,
apparatus, and computer programs, configured to perform the actions of the

methods, encoded on computer storage devices.

[0011] Particular embodiments of the subject matter described in this specification
can be implemented so as to realize one or more of the following advantages. For
example, the usage or access statistics for pages in memory may be more precise
and accurate than current methods involving software and sampling techniques
because access statistics may be determined at the sub-page level rather than just

at the page level. Further, by transferring a particular portion of a page for which

3

WO 2018/057235 PCT/US2017/048663

access is requested first, rather than the full page of data, the delay caused by
transferring a page in response to a request to access the page may be reduced,
which may result in faster execution of the application or process being executed.
Another advantage is that the system can take advantage of the benefits of huge
pages, such as better memory access performance due to fewer levels of page
tables and better translation lookaside buffer (TLB) coverage, and still perform
paging at a small page granularity, which provides better page fault performance due
to the reduced latency of servicing a page fault that only needs to transfer a small
page. Therefore, both the memory access benefits of huge pages and the demand
paging benefits of small pages can both be achieved. Moreover, only the data that is
needed may be transferred according to the small page size, and as a result, the
main memory is not occupied with unnecessary data, due to better maintaining hot
data in main memory and cold data in secondary memory as compared to paging

huge pages directly.

[0012] The details of one or more embodiments of the invention are set forth in the
accompanying drawings and the description below. Other features and advantages
of the invention will become apparent from the description, the drawings, and the

claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1 depicts an example of a system including a memory device

according to implementations of the present disclosure.

[0014] FIG. 2 depicts an example of a system including a memory device

according to implementations of the present disclosure.

[0015] FIG. 3A depicts an example of a page table for mapping virtual memory to

physical memory according to implementations of the present disclosure.

[0016] FIG. 3B depicts an example of a portion of memory allocated according to

implementations of the present disclosure.

WO 2018/057235 PCT/US2017/048663

[0017] FIG. 4 depicts a flowchart of an example of a process for memory

management, according to implementations of the present disclosure.

[0018] Like reference numbers and designations in the various drawings indicate

like elements.

DETAILED DESCRIPTION

[0019] Huge pages have been shown to provide a significant performance increase
for most workloads and particularly for cloud-based serving applications. While the
term “huge pages” may be used herein, the term applies to any size of page that is
larger than the smallest sized page, i.e., small page, a particular architecture can
handle or its standard page size. For example, a smallest page size or standard
page size for a particular architecture may be 4KB and a huge page may be 2MB. In
other implementations, for example, a huge page may be 8KB, 64KB, 256KB, 1MB,
2MB, 4MB, 16MB, 256MB, 512MB, or 1GB, or larger, or any size in between. For
example, a huge page may be any integer multiple, n, of 4KB, i.e., n*4KB, and in
certain embodiments may be any power of two multiple of the standard page size.
Embodiments of the present disclosure introduce a new scheme that can use huge
pages for accessing a main memory (e.g. a DRAM cache) while using traditional
small pages to page to a second tier of slower memory (sometimes referred to as a
secondary memory). Certain embodiments may be modified based on the type of
interconnect used to access slower memory. For example, a software-based
solution based on a customized kernel driver may be implemented for an 1O
interconnect. Further, for example, a hardware solution for managing huge pages

may be implemented for a cache coherent interconnect.

[0020] Accordingly, embodiments of the present disclosure provide a system for
high-performance automatic management of a secondary memory available either
locally over a memory or IO bus, or remotely over a network. The secondary
memory may be disk-based and may be computer memory that is non-volatile and
persistent in nature. The secondary memory may not be directly accessed by the
processor and may be slower than the primary or main memory. The main memory,

also referred to as primary memory, primary storage, internal memory or first-tier

WO 2018/057235 PCT/US2017/048663

memory, may be directly accessible to the CPU. As described in more detail below,
an optimized kernel driver, for example, may provide a fast path to the second tier of
memory and handle all communication with the memory management hardware.
That process is advantageous compared to existing paths through the kernel for
paging, which incur large costs for things like synchronization, memory

management, and block |O transfers.

[0021] These features and additional features are described in more detail below.

[0022] FIG. 1 depicts an example of a system 100 including a memory device
according to implementations of the present disclosure. A central processing unit
(CPU) 110 may be in communication with main memory in the form of a DRAM 120
and a memory management unit (MMU) 150. The system 100 may further include a
secondary memory in the form of a remote memory 130, which may be accessed
over a network. The MMU 150 may operate in the management of memory. In
addition, a page table walker 160 and a translation lookaside buffer (TLB) 165 may
be part of, or implemented with, MMU 150. The system 100 may additionally include
DRAM 170 as physical memory.

[0023] The MMU 150 is a hardware unit that may have memory references passed
through it, performing the translation of virtual memory addresses to physical
addresses and handling cache control. For example, the MMU 150 may use a page
table as an in-memory table containing one page table entry (PTE) per page, to map
virtual page numbers to physical page numbers in main memory. The translation
lookaside buffer 165, as an associative cache of PTEs, may be used to avoid the
necessity of accessing the main memory every time a virtual address is mapped.
When a PTE prohibits access to a virtual page, for example because no physical
random access memory has been allocated to that virtual page, the MMU 150 may

signal a page fault to the CPU 110.

[0024] The CPU 110 may have a cache, which may be a small amount of fast
memory built into a processor that may be configured to contain temporary copies of
data to reduce processing latency. The TLB 165 may be a fixed-size array of

recently used pages, which the CPU 110 may check at each memory access. The

6

WO 2018/057235 PCT/US2017/048663

TLB 165 may list virtual address ranges to which physical pages in DRAM 170 are
currently assigned. Thus, for example, the TLB 165 may serve as a cache for the
MMU 150. In this manner, accesses to virtual addresses listed in the TLB 165 may
go directly to the associated physical memory, e.q., DRAM 170. In addition,
accesses to virtual addresses not listed in the TLB 165, i.e., a TLB miss, may trigger
a page table lookup, which may be performed by hardware, or by a page fault
handler.

[0025] FIG. 2 depicts an example of a system 200 including a memory device
according to implementations of the present disclosure. The system 200 may
include a CPU 220 and a Physical Address Space 240. The MMU 230 may interpret
virtual addresses to identify corresponding physical addresses. For example,
attempts to read, write, or execute memory at virtual addresses may be either
translated to corresponding physical addresses, or an interrupt, i.e., a page fault,
may be generated to allow software to respond to the attempted access. The
physical memory addresses may identify a specific memory cell or portion within a
piece of the storage hardware making up the physical memory associated with a
given read or write operation. The virtual memory may provide a software-controlled
set of memory addresses, e.g., Virtual Address Space, and may allow each process,
e.g., Process A 205 and Process B 210 to have its own virtual memory address
range, which may include kernel space and user space. The virtual addresses may
be interpreted by the MMU 230 using page tables, which may map virtual address
ranges to associated stored content. Although the smallest addressable unit to a

processor may be a byte or a word, the MMU 230 may manage memory in pages.

[0026] FIG. 3A depicts an example of a page table 320 for mapping virtual memory
310 to physical memory 330 according to implementations of the present disclosure.
The page tables 320 may be data structures that contain a list of memory mappings
for a process and may be used to track associated resources. For example, each
process may have its own set of page tables. The virtual address space, e.g., virtual
memory 310, may be divided into pages, which may be a contiguous span of
addresses of a particular size. The pages may be structured such that the starting
address of a page is a multiple of the page size. As described above, the MMU 230

may use the page table 320 to interpret virtual addresses of pages from virtual

7

WO 2018/057235 PCT/US2017/048663

memory 310 and identify corresponding physical addresses of page frames in
physical memory 330. In addition, page tables may be hierarchical or multi-level,
hash-based, or the like, which provides an advantage for huge pages, higher up the

hierarchy with a faster page table walk.

[0027] As referenced above, a secondary memory or second tier of memory, such
as disk-based memory or other second tier memory, may be slower than main
memory or primary memory, such as DRAM. According to certain implementations,
a customized kernel driver may manage the second tier of memory with huge pages.
The kernel driver may reserve physical memory in contiguous regions that are
multiples of huge pages for the cache in DRAM. When an application needs
additional memory, the kernel driver may allocate space in huge page multiples, i.e.,
in multiples of the size of a huge page. The kernel driver may implement a page
replacement policy, and when data for replacement is selected, a huge page may be
paged out to the second tier of memory. That process may occur asynchronously to

the running application that requested access to data in memory.

[0028] When the application faults on an access to data that resides in the second
tier of memory, a page fault handler may transfer only a single small page containing
the requested cache line from the second tier of memory to main memory, e.g.
DRAM. However, according to certain implementations, the state of each small
page that makes up the huge page may be tracked. Thus, for example, when the
kernel driver faults in all or a predetermined amount of the small pages within the
huge page, a determination may be made to page-in any remaining small pages and
coalesce or reassemble the small pages back into a huge page in DRAM by
replacing the existing PTEs with a single PTE for the huge page and flushing any
relevant TLB entries from the TLB 165.

[0029] Accordingly, the benefits of huge pages for data that resides in DRAM may
be maintained while the cost of page faults may also be reduced by completing the
fault handler process after transferring the small page. For example, using huge
pages may provide the advantage of reducing resource overhead because tracking
data at a larger granularity enables a smaller page table having fewer entries. Using

huge pages, however, may cause the overall write bandwidth to increase if the

8

WO 2018/057235 PCT/US2017/048663

system always writes out huge pages to the second tier of memory. Also, there is a
possibility that small pages within a huge page that are “hot,” e.g., frequently used or
recently used, may get paged out to the secondary, slower memory, resulting in
additional faults on that “hot” data. According to certain implementations, those
issues may be mitigated by the kernel driver dynamically determining when to break
up or coalesce huge pages based on huge page and small page statistics. For
example, huge pages may be periodically broken up to gather statistics, through
PTE access bits, about the small pages within a huge page, as described in more
detail below. Further, the driver may maintain both huge pages and small pages,
such that when a predetermined number of small pages within a huge page are “hot”
or frequently or recently accessed, the small pages may be migrated to a huge page
and merged. Conversely, if too many sub-pages, i.e., small pages, within a huge

page are “cold”, the huge page may be broken up and processed as small pages.

[0030] According to certain implementations, when an attempt is made to access
data that is not stored in main memory and a page fault occurs, the entire huge page
may not be transferred into main memory, but rather a smaller chunk of data, e.g. a
small page, that includes the data for which access is requested may be transferred
from secondary memory to main memory. Thus, the application may access the
data requested and continue running. Subsequently, the remainder of the huge
page may be transferred into main memory in the background, and the page table
entry may be updated accordingly. In this way, the requested data may be accessed
more quickly and the system may still reap the benefits of managing huge pages. In
other words, the time required for reading huge pages from secondary memory and
writing huge pages to main memory is greater than the time required for reading and
writing small pages; and thus, reading only the small page containing the data that is
requested to be accessed reduces the time the application or processing thread is
suspended or waiting for the data to be transferred from secondary memory to main
memory. Thus, reducing the latency time for transferring data into main memory is
more important, as performance critical, than the time for transferring data back to
secondary memory because the data transferred out of main memory is typically a
page of “cold” data that is transferred in the background with little or no effect on
operating performance, whereas the data being transferred into main memory may

be delaying the execution of the application or processing thread.

9

WO 2018/057235 PCT/US2017/048663

[0031] As described above, a page fault may occur when a thread or running
program accesses a memory page that is mapped into the virtual address space, but
not actually loaded into main memory. The MMU 150 or a page fault handler may
detect the page fault, and when the page fault is detected, a determination may be
made as to whether there is a free page in memory. If there is a free page, page
data may be copied from the secondary storage to the free page location in memory.
If there is not a free page, a page may be pulled, for example, from a FIFO queue,
which may track all the pages in memory in a queue, with the most recent arrival at
the back, and the oldest arrival in front. If that page is dirty, i.e., has been modified,
the system may write the page to the secondary memory. In transferring the page
from the main memory to the secondary memory, the page table entry associated
with the page may be invalidated, and a TLB shootdown for any entries associated
with the page may be executed, e.g., causing the TLB entries to be flushed for other
processors. With that page now free, page data may be copied from the secondary
storage to the free page location. The page tables may be updated to create a valid
PTE by updating the PTE associated with the page to point to the location in the
main memory of the page. Once the page fault is handled, the thread or running

program may resume with the data it requested to access now in main memory.

[0032] FIG. 3B depicts an example of a portion of memory 305 allocated according
to implementations of the present disclosure. With demand paging, a page of “cold”
data, e.g., data that is accessed at a rate that is less than some threshold access
rate or that has not been accessed for a particular period of time, may need to be
written out to secondary storage, and a page of data may need to be transferred
back to main memory when an application tries to access data and a page fault
occurs. According to certain implementations, the process of paging in and out of
main memory occurs from the processor’s perspective as if the system is only
working with huge pages. In other words, a huge page may be transferred out of
main memory when cold, i.e., not being used frequently or recently, and when a
page needs to be transferred into main memory, a whole huge page of memory may
be allocated, even though only a portion of the huge page, e.g., a small page, may

be initially transferred. Thus, memory allocated 305 may correspond to a huge

10

WO 2018/057235 PCT/US2017/048663

page, and contiguous memory corresponding to the huge page may be allocated in

physical memory 325 as well as virtual memory 315.

[0033] For example, when a page fault occurs and a page of data needs to be
transferred into main memory, a huge page of memory may first be allocated. Then,
rather than transferring the whole huge page containing the data requested to be
accessed, only the sub-page or small page of data that contains the data requested
to be accessed by the application may be transferred into main memory initially. For
example, an application may only need to access a byte or a word, such that the
whole huge page is not required for the application to continue, and the system may
only transfer into main memory a smaller portion of data, e.g., a small page, that
includes the data the application needs to continue running. Upon the transferring of
that small page, an indication may be made to the application that the requested
data has been transferred into main memory or is now available to be accessed from

main memory.

[0034] Subsequently, because the whole huge page was not transferred into main
memory, the remaining portion of the huge page may be transferred into main
memory in the background. Alternatively, it may be determined that breaking up the
huge page into small pages is advantageous, for example based on access
statistics, and thereby change paging data structures from a single huge page to
constituent small pages. If an application subsequently accesses any of the
remaining small pages that had not been transferred into main memory, those small
pages may be transferred at that time, i.e., when requested to be accessed, with a

page fault occurring.

[0035] To make the determination regarding whether to transfer the remaining
portion of the huge page and coalesce or to break up the huge page into small
pages, access statistics may be gathered to identify the “temperature” of pages, e.g.,
“hot” pages and “cold” pages among the pages within the huge page. Thus,
according to certain implementations, memory is allocated and reserved in huge
page chunks, but a huge page may be broken into small pages to work with smaller
page chunks. When a huge page is broken into small pages, the page table may be

updated with a respective PTE for each small page; and when a huge page is

11

WO 2018/057235 PCT/US2017/048663

reassembled, the page table may be updated by replacing the respective PTEs for

each small page with one entry for the full huge page.

[0036] Gathering access statistics for pages may be accomplished through any
process or means of determining access of pages, e.g., determining “cold” pages
and “hot” pages. For example, a process may include periodically breaking up a
huge page into small pages, scanning the set of pages and reading an access bit to
determine when a small page was last accessed or the frequency or how recently a
small page was accessed, and then reassembling the small pages back into the
huge page once access statistics have been gathered. In this manner, for example,
a sample of accesses to sub-pages or small pages within the huge page may be

used to obtain statistical data about access to the small pages.

[0037] In more detail, in certain implementations, page table scanning, i.e., a scan
through the page table, may be performed via hardware, rather than software
requiring CPU overhead, which often results in slower memory access and
processing and discarding some otherwise useful cache information. In general, the
frequency of access of page data, e.g., which page data is frequently accessed
relative to other pages of data and which page data is infrequently accessed relative
to other pages of data may be determined by scanning the page table. Each page
mapped in the page table, e.g., each PTE, may have a flag or access bit that may be
set whenever the page is accessed, and then cleared by the CPU after scanning the

page table.

[0038] This hardware may be implemented by augmenting the page table walker
160 or MMU 150, which may include one or more page table walkers, e.g., built-in
hardware to read the page table and automatically load virtual-to-physical
translations into the TLB 165. Thus, the hardware may be part of the processor
architecture, using the page table scanning mechanism in the processor. For
example, the hardware may implement a routine to scan through a page table,
scanning the PTEs, to determine if an access bit has been set at each PTE since the
last scan. The access bit may be cleared after determining that the access bit has
been set, and then operations may proceed until the next scan of the page table.

The scanning may occur periodically, e.g., with a predetermined time period between

12

WO 2018/057235 PCT/US2017/048663

scans, or the scanning may be triggered by some external event. Eachtimeitis
determined that an access bit or flag is set, a count may be incremented for each
page, respectively. Alternatively, each time it is determined that an access bit or flag

is not set, a count may be incremented for each page, respectively.

[0039] Over time, a profile may be created from the scanning, and the profile may
indicate how often and/or how recently each page is accessed. For example, the
hardware may include one or more counters for each page or bloom filters to
maintain the usage statistics, e.g., the count of set access bit or flag, or the results
may be stored in memory, e.g., a two-level memory, to allow sorting and filtering,
e.g., most and least used pages or more frequently and less frequently accessed
pages. In more detail, the hardware may maintain a per-page counter to determine
how recently a page was accessed, and each counter may be updated when the
respective PTE is scanned. The per-page counters may be provided in on-chip
SRAM for fast access. Alternatively, because the size of the secondary memory
may be large, making the area cost of the counters higher, counting bloom filters
may be used to maintain the access statistics about sets of pages, thereby saving
area. Alternatively, the hardware may use a small amount of private DRAM or may

store the counters in system DRAM.

[0040] Accordingly, for example, based on the access statistics, the pages may be
ordered from most used to least used or vice versa. When the page fault is serviced,
if there are no free pages in main memory DRAM 170, a paging process may
release or write back one of the least used pages into the secondary memory and
may use the location of that least used page to transfer the new page into main

memory.

[0041] FIG. 4 depicts a flowchart of an example of a process 400 for memory
management, according to implementations of the present disclosure. The process
400 may include, at 410, receiving a request to access, from a main memory, data
contained in a first portion of a first page of data. The first page of data may have a
first page size, e.g., a huge page, and the first portion may have a second page size,
e.g., a small page, that is less than the first page size. At 420, a page fault may be

initiated based on determining that the first page of data is not stored in the main

13

WO 2018/057235 PCT/US2017/048663

memory and is stored in a secondary memory. Further, in response to initiating the
page fault, a portion of the main memory equivalent to the first page size, e.g., a
huge page, may be allocated at 430. The first portion of the first page of data may
be transferred, at 440, from the secondary memory to the allocated portion of the
main memory without transferring the entire first page of data. Thus, a remaining
amount of the first page of data may remain stored in the secondary memory. At
450, a first page table entry associated with the first portion of the first page of data
may be updated to point to a location of the allocated portion of the main memory to
which the first portion of the first page of data is transferred. Subsequently, the
remaining amount of the first page of data may be transferred from the secondary
memory to the main memory, for example, in the background while the application

continues running.

[0042] To transfer the remaining amount of the first page of data, respective
portions, corresponding to the second page size, of the first page of data may be
transferred from the secondary memory to the allocated portion of the main memory
until the entire first page of data is stored in the main memory. Further, a respective
page table entry for each of the respective portions of the first page of data may be
updated to point to respective locations of the respective portions of the first page of
data in the main memory. Moreover, once the entire first page of data is stored in
the main memory, the first page of data may be coalesced or reassembled from the
respective portions of the first page of data transferred from the secondary memory
to the allocated portion of the main memory. In accordance with the reassembling, a
page table entry associated with the first page of data may be updated to point to a

location of the reassembled first page of data in the main memory.

[0043] In certain implementations, before transferring the remaining portion of the
first page of data from the secondary memory to the main memory, the system may
indicate that the first portion of the first page of data that was requested to be
accessed has been transferred to the main memory, so that the application or thread
that requested access may continue running by accessing the requested data in

main memory.

14

WO 2018/057235 PCT/US2017/048663

[0044] An example of a process for memory management may also include
determining whether an access bit is set for each page table entry of a page table
based on a scan of the page table with a page table scanner. In such a process, the
access bit may indicate whether a page associated with the page table entry was
accessed in a last scan period. As described above, at least one of the pages
having the first page size, e.g., a huge page, may be divided into pages of the
second page size, e.g., small pages, with a page table entry for each of the pages of
the second page size in the page table being scanned. In certain implementations, a
count for each page may be incremented in response to determining that the access
bit is not set for the page table entry associated with the page. Subsequently, the
access bit may be reset, after determining whether the access bit is set for each

page table entry.

[0045] In certain implementations, if the portion of the main memory equivalent to
the first page size cannot be allocated, one of a least used pages having the first
page size may be determined based on the count for each page and the determined
least used page may be released into the secondary memory. Accordingly, a portion
of the main memory equivalent to the first page size may be allocated at the location
of the released one of the least used pages. Conversely, if the portion of the main
memory equivalent to the first page size can be allocated, the first portion of the first
page of data may be transferred from the secondary memory to the allocated portion

of the main memory.

[0046] In more detail, for example, if the main memory does not have a free page
and cannot receive the page transfer, one of the least used pages in main memory
may be determined based on the count for each page. A page fault handler or
controller may manage the page transfer and the determined one of the least used
pages may be released or written back into the secondary memory. Further, the
page of data for which access is requested may be transferred from the secondary
memory to the main memory at the location of the released one of the least used
pages. Alternatively, if the main memory does have a free page and can receive the
page transfer, the page fault handler or controller may manage transferring of the

page data from the secondary memory to the main memory.

15

WO 2018/057235 PCT/US2017/048663

[0047] In certain embodiments, when the page fault is initiated, execution of the
thread or running program may be stalled while the data transfer is managed to
service the page fault, as described above. Subsequently, the thread may be

released to access the page in the main memory after the page fault is serviced.

[0048] In certain implementations, it may be advantageous to determine not only
which pages in the secondary memory are getting “hot”, i.e., an increase in
frequency of access, but also to determine which pages in main memory DRAM are
getting “cold”, i.e., a decrease in frequently of access. In other words, determining
which pages are accessed more frequently in the secondary memory, which may be
slower than the main memory, and which pages are accessed less frequently in the
main memory. One process to determine which pages are accessed less frequently
in the main memory is described above with reference to usage or access statistics
for the main memory, e.g., DRAM, based on, for example, a count of the access bit
being set. The system may determine when to move data from main memory to
secondary memory and when to move data from secondary memory to main

memory based on the access statistics described above for the main memory.

[0049] In addition, as described in more detail above, pages that are cooling off or
being accessed less frequently may be determined by monitoring the PTEs. For
example, when the inter-access time for a page satisfies an inter-access time
threshold, the system may initiate transfer of the page from main memory to the
secondary memory by invalidating the PTE associated with the page, executing a
TLB shootdown for any entries associated with the page, and transferring the page

from main memory into the secondary memory.

[0060] According to certain implementations, with a cache coherent interconnect,
the DRAM cache and the second tier of memory may be managed by hardware,
which may act both as an owner of coherent memory and a user of coherent
memory. In other words DRAM acts as a cache, managed by the hardware, for
paging at a configurable granularity for optimal performance. The configurable
granularity for optimal performance may depend on application locality and the

performance of the second tier of memory.

16

WO 2018/057235 PCT/US2017/048663

[0051] The customized kernel driver, as described above, may map the address
space owned by the hardware with huge pages only. In this manner, the system
may achieve the benefits of huge pages, such as improved performance due to
larger TLB reach, whenever the system accesses this region of memory. The
hardware may maintain a cache lookup structure to check if a page is presentin
main memory. When a memory access is received from the host, this lookup
structure may be queried. If the page is present, the read or write may be performed
directly in main memory. If the page is absent, the data may be fetched from the
secondary memory into main memory, e.g., DRAM. In certain implementations, for
performance considerations, the cache may perform evictions asynchronously—e.g.,
“cold” data may be written back to secondary storage in the background to keep a
minimum number of pages free to service incoming pages. In general, this process
may provide a caching mechanism at the page level, such that a cache for paging

may be provided with a cache coherent interconnect.

[0052] In certain implementations cache optimizations may be applied. For
example, when a page fault occurs and a page is transferred from secondary
storage to main memory, the system may determine whether to keep the page in
main memory, or if the page is non-temporal, to stream the page and read it once for
the given access, or perform pre-fetching by determining to fetch the next page in
response to the currently fetched page being accessed. In certain implementations,
flags may be set regarding how an application is using memory, and the

determination for pre-fetching may be made based on those flags.

[0063] A number of implementations have been described. Nevertheless, it will be
understood that various modifications may be made without departing from the spirit
and scope of the disclosure. For example, various forms of the flows shown above

may be used, with steps re-ordered, added, or removed.

[0054] Implementations of the invention and all of the functional operations
described in this specification can be implemented in digital electronic circuitry,
firmware, or hardware, including the structures disclosed in this specification and
their structural equivalents, or in combinations of one or more of them.

Implementations of the invention can be implemented as one or more computer

17

WO 2018/057235 PCT/US2017/048663

program products, i.e., one or more modules of computer program instructions
encoded on a computer readable medium for execution by, or to control the
operation of, data processing apparatus. The computer readable medium can be a
machine-readable storage device, a machine-readable storage substrate, a memory
device, or a combination of one or more of them. The term “data processing
apparatus” encompasses all apparatus, devices, and machines for processing data,
including by way of example a programmable processor, a computer, or multiple
processors or computers. The apparatus can include, in addition to hardware, code
that creates an execution environment for the computer program in question, e.g.,
code that constitutes processor firmware, a protocol stack, a database management

system, an operating system, or a combination of one or more of them.

[0055] While this disclosure contains many specifics, these should not be
construed as limitations on the scope of the invention or of what may be claimed, but
rather as descriptions of features specific to particular implementations of the
invention. Certain features that are described in this specification in the context of
separate implementations can also be implemented in combination in a single
implementation. Conversely, various features that are described in the context of a
single implementation can also be implemented in multiple implementations
separately or in any suitable subcombination. Moreover, although features may be
described above as acting in certain combinations and even initially claimed as such,
one or more features from a claimed combination can in some cases be excised
from the combination, and the claimed combination may be directed to a

subcombination or variation of a subcombination.

[0056] Similarly, while operations are depicted in the drawings in a particular order,
this should not be understood as requiring that such operations be performed in the
particular order shown or in sequential order, or that all illustrated operations be
performed, to achieve desirable results. In certain circumstances, multitasking and
parallel processing may be advantageous. Moreover, the separation of various
system components in the implementations described above should not be
understood as requiring such separation in all implementations, and it should be

understood that the described program components and systems can generally be

18

WO 2018/057235 PCT/US2017/048663

integrated together in a single software product or packaged into multiple software

products.

[0057] Thus, particular implementations of the present disclosure have been
described. Other implementations are within the scope of the following claims. For
example, the actions recited in the claims can be performed in a different order and
still achieve desirable results. A number of implementations have been described.
Nevertheless, it will be understood that various modifications may be made without
departing from the spirit and scope of the disclosure. For example, various forms of
the flows shown above may be used, with steps re-ordered, added, or removed.

Accordingly, other implementations are within the scope of the following claims.

19

WO 2018/057235 PCT/US2017/048663

CLAIMS

1. A computer-implemented method comprising:

receiving a request to access, from a main memory, data contained in a first
portion of a first page of data, the first page of data having a first page size and the
first portion comprising a second page size that is less than the first page size;

initiating a page fault based on determining that the first page of data is not
stored in the main memory and is stored in a secondary memory;

in response to initiating the page fault, allocating a portion of the main
memory equivalent to the first page size;

transferring the first portion of the first page of data from the secondary
memory to the allocated portion of the main memory without transferring the entire
first page of data, wherein a remaining amount of the first page of data remains
stored in the secondary memory; and

updating a first page table entry associated with the first portion of the first
page of data to point to a location of the allocated portion of the main memory to

which the first portion of the first page of data is transferred.

2. The method of claim 1, further comprising:
transferring the remaining amount of the first page of data from the secondary

memory to the main memory.

3. The method of claim 2, wherein transferring the remaining amount of the first
page of data comprises:
repeatedly transferring respective portions, corresponding to the second page
size, of the first page of data from the secondary memory to the allocated portion of
the main memory until the entire first page of data is stored in the main memory; and
updating a respective page table entry for each of the respective portions of
the first page of data to point to respective locations of the respective portions of the

first page of data in the main memory.

20

WO 2018/057235 PCT/US2017/048663

4, The method of claim 3, further comprising:
once the entire first page of data is stored in the main memory, reassembling
the first page of data from the respective portions of the first page of data transferred
from the secondary memory to the allocated portion of the main memory; and
updating a page table entry associated with the first page of data to pointto a

location of the reassembled first page of data in the main memory.

5. The method of claim 2 or claim 3, further comprising:

before transferring the remaining portion of the first page of data from the
secondary memory to the main memory, indicating that the first portion of the first
page of data that was requested to be accessed has been transferred to the main

memory.

6. The method of any preceding claim, further comprising:

determining whether an access bit is set for each page table entry of a page
table based on a scan of the page table with a page table scanner, the access bit
indicating whether a page associated with the page table entry was accessed in a
last scan period, wherein at least one page having the first page size is divided into
pages of the second page size with a page table entry for each of the pages of the
second page size in the page table being scanned,;

incrementing a count for each page in response to determining that the
access bit is not set for the page table entry associated with the page;

after determining whether the access bit is set for each page table entry,
resetting the access bit; and

reassembling the pages of the second page size into the page having the first

page size that was divided.

7. The method of claim 6, further comprising:

if the portion of the main memory equivalent to the first page size cannot be
allocated, determining a least used page having the first page size based on the
count for each page and releasing the least used page into the secondary memory,
and allocating a portion of the main memory equivalent to the first page size at the

location of the released least used page; and

21

WO 2018/057235 PCT/US2017/048663

if the portion of the main memory equivalent to the first page size can be
allocated, transferring the first portion of the first page of data from the secondary

memory to the allocated portion of the main memory.

8. The method of any preceding claim, further comprising:
changing a memory structure of the first page of data having the first page
size into a plurality of pages of data having the second page size that is less than the

first page size.

9. A system comprising:
one or more processors; and
a memory comprising a main memory and a secondary memory, the memory
storing instructions that are operable, when executed, to cause the one or more
processors to perform operations comprising:
receiving a request to access, from the main memory, data contained
in a first portion of a first page of data, the first page of data having a first page size
and the first portion comprising a second page size that is less than the first page
size;
initiating a page fault based on determining that the first page of data is
not stored in the main memory and is stored in the secondary memory;
in response to initiating the page fault, allocating a portion of the main
memory equivalent to the first page size;
transferring the first portion of the first page of data from the secondary
memory to the allocated portion of the main memory without transferring the entire
first page of data, wherein a remaining amount of the first page of data remains
stored in the secondary memory; and
updating a first page table entry associated with the first portion of the
first page of data to point to a location of the allocated portion of the main memory to

which the first portion of the first page of data is transferred.
10. The system of claim 9, the operations further comprising:

transferring the remaining amount of the first page of data from the secondary

memory to the main memory.

22

WO 2018/057235 PCT/US2017/048663

11. The system of claim 10, wherein transferring the remaining amount of the first
page of data comprises:
repeatedly transferring respective portions, corresponding to the second page
size, of the first page of data from the secondary memory to the allocated portion of
the main memory until the entire first page of data is stored in the main memory; and
updating a respective page table entry for each of the respective portions of
the first page of data to point to respective locations of the respective portions of the

first page of data in the main memory.

12. The system of claim 11, the operations further comprising:
once the entire first page of data is stored in the main memory, reassembling
the first page of data from the respective portions of the first page of data transferred
from the secondary memory to the allocated portion of the main memory; and
updating a page table entry associated with the first page of data to pointto a

location of the reassembled first page of data in the main memory.

13. The system of claim 10 or claim 11, the operations further comprising:
before transferring the remaining portion of the first page of data from the

secondary memory to the main memory, indicating that the first portion of the first

page of data that was requested to be accessed has been transferred to the main

memory.

14. The system of any of claims 9 to 13, the operations further comprising:

determining whether an access bit is set for each page table entry of a page
table based on a scan of the page table with a page table scanner, the access bit
indicating whether a page associated with the page table entry was accessed in a
last scan period, wherein at least one page having the first page size is divided into
pages of the second page size with a page table entry for each of the pages of the
second page size in the page table being scanned,;

incrementing a count for each page in response to determining that the
access bit is not set for the page table entry associated with the page;

after determining whether the access bit is set for each page table entry,

resetting the access bit; and

23

WO 2018/057235 PCT/US2017/048663

reassembling the pages of the second page size into the page having the first

page size that was divided.

15. The system of claim 14, the operations further comprising:

if the portion of the main memory equivalent to the first page size cannot be
allocated, determining a least used page having the first page size based on the
count for each page and releasing the least used page into the secondary memory,
and allocating a portion of the main memory equivalent to the first page size at the
location of the released least used page; and

if the portion of the main memory equivalent to the first page size can be
allocated, transferring the first portion of the first page of data from the secondary

memory to the allocated portion of the main memory.

16. The system of any of claims 9 to 15, the operations further comprising:
changing a memory structure of the first page of data having the first page
size into a plurality of pages of data having the second page size that is less than the

first page size.

17. A computer-readable storage device storing instructions executable by one or
more processors which, upon such execution, cause the one or more processors to
perform operations comprising:

receiving a request to access, from a main memory, data contained in a first
portion of a first page of data, the first page of data having a first page size and the
first portion comprising a second page size that is less than the first page size;

initiating a page fault based on determining that the first page of data is not
stored in the main memory and is stored in a secondary memory;

in response to initiating the page fault, allocating a portion of the main
memory equivalent to the first page size;

transferring the first portion of the first page of data from the secondary
memory to the allocated portion of the main memory without transferring the entire
first page of data, wherein a remaining amount of the first page of data remains

stored in the secondary memory; and

24

WO 2018/057235 PCT/US2017/048663

updating a first page table entry associated with the first portion of the first
page of data to point to a location of the allocated portion of the main memory to

which the first portion of the first page of data is transferred.

18. The storage device of claim 17, the operations further comprising:
transferring the remaining amount of the first page of data from the secondary

memory to the main memory.

19. The storage device of claim 18, wherein transferring the remaining amount of
the first page of data comprises:

repeatedly transferring respective portions, corresponding to the second page
size, of the first page of data from the secondary memory to the allocated portion of
the main memory until the entire first page of data is stored in the main memory;

updating a respective page table entry for each of the respective portions of
the first page of data to point to respective locations of the respective portions of the
first page of data in the main memory;

once the entire first page of data is stored in the main memory, reassembling
the first page of data from the respective portions of the first page of data transferred
from the secondary memory to the allocated portion of the main memory; and

updating a page table entry associated with the first page of data to pointto a

location of the reassembled first page of data in the main memory.

20. The storage device of any preceding claim, the operations further comprising:

determining whether an access bit is set for each page table entry of a page
table based on a scan of the page table with a page table scanner, the access bit
indicating whether a page associated with the page table entry was accessed in a
last scan period, wherein at least one page having the first page size is divided into
pages of the second page size with a page table entry for each of the pages of the
second page size in the page table being scanned,;

incrementing a count for each page in response to determining that the
access bit is not set for the page table entry associated with the page;

after determining whether the access bit is set for each page table entry,

resetting the access bit;

25

WO 2018/057235 PCT/US2017/048663

reassembling the pages of the second page size into the page having the first
page size that was divided;

if the portion of the main memory equivalent to the first page size cannot be
allocated, determining a least used page having the first page size based on the
count for each page and releasing the least used page into the secondary memory,
and allocating a portion of the main memory equivalent to the first page size at the
location of the released least used page; and

if the portion of the main memory equivalent to the first page size can be
allocated, transferring the first portion of the first page of data from the secondary

memory to the allocated portion of the main memory.

26

PCT/US2017/048663

WO 2018/057235

1/4

I "Old

7 ebed

¢ obed

Z ebed

9l 9l

Jayng apisex 00T ENEITY
uone[suel| a|ge] ebed

| ebed

Nvdd

Cou

ssalppy
|eoisAyd

gl

HuN uswabeuey Alowsy

Alows|y
ajoway

o€l

ssalppy
221607

Ndo

0L

Nc&

PCT/US2017/048663

WO 2018/057235

2/4

¢ Old

aoedg

ssalppy
|eoisAyd

(N
Hun
s wabeuey
Alows|y

aoedg
EIE)Y

Ndd

aoedg
Jasn

1 74

Lo

1144

aoedg
EIE)Y

A

aoedg
Jasn

30eds

SS3IPPY [ENFIA

0iC

g sse00.d

§0¢

V/ SS8001d

oz

PCT/US2017/048663

WO 2018/057235

3/4

a¢ Old

T4

12

NIOIWVE] T

[B3TSAUd

ATOWS
[ENMIA

§0¢

po)E0|Y

RIOWS

0¢e

V¢ OId

0ce

(u)4d

(1-u)4d

vdd

€dd

¢dd

ldd

04d

AIOUWSN
TB3TSAUd

Sle=AN
abegq

0i¢

r

u ebed

L-u abed

7 ebed

¢ obed

Z obed

| ebed

0 ebed

RIOWS
[EenyIA

WO 2018/057235

4002

4/4

PCT/US2017/048663

Receive request to access data contained in a
first portion of a first page of data

10

{

Initiate a page fault based on determining that
the first page of data is not stored in the main
memory 420

v

Allocate a portion of the main memory
equivalent to the first page size

430

|

Transfer the first portion of the first page of
data from the secondary memory to the
allocated portion of the main memory

A 440

Update a first page table entry associated with
the first portion of the first page of data

450

FIG. 4

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/048663

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F12/1009
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2009/172344 A1l (GROCHOWSKI ED [US] ET 1-17
AL) 2 July 2009 (2009-07-02)
paragraphs [0012] - [0023], [0031] -
[0042]; claims 9-14; figures 1,2, 3, 4, 5
Y WO 2011/002900 Al (ADVANCED MICRO DEVICES 1-17
INC [US]; HOHMUTH MICHAEL P [DE];
DANNOWSKI UWE) 6 January 2011 (2011-01-06)
paragraphs [0025], [0035] - [0049];
claims 1-10; figures 2, 6-9
A US 6 112 285 A (GANAPATHY NARAYANAN [US] 1-17
ET AL) 29 August 2000 (2000-08-29)
column 16, line 1 - column 19, Tline 51;
claims 1-3; figures 8A-8C, 9A-9B
- / -

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

19 October 2017

Date of mailing of the international search report

30/10/2017

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Jardon, Stéphan

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/048663
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2015/363326 Al (BASKAKOV YURY [US] ET 1-17
AL) 17 December 2015 (2015-12-17)
paragraphs [0025] - [0034]; figure 1
A US 2015/127767 Al (GHEITH AHMED [US] ET 1-17

AL) 7 May 2015 (2015-05-07)
paragraphs [0059] - [0099]; figures 3-7

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2017/048663
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2009172344 Al 02-07-2009 US 2009172344 Al 02-07-2009
US 2013117531 Al 09-05-2013
US 2017192904 Al 06-07-2017
US 2017199825 Al 13-07-2017
WO 2011002900 Al 06-01-2011 CN 102473091 A 23-05-2012
GB 2485082 A 02-05-2012
JP 2012532381 A 13-12-2012
KR 20120106696 A 26-09-2012
US 2011004739 Al 06-01-2011
WO 2011002900 Al 06-01-2011
US 6112285 A 29-08-2000 NONE
US 2015363326 Al 17-12-2015 NONE
US 2015127767 Al 07-05-2015 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - wo-search-report
	Page 34 - wo-search-report
	Page 35 - wo-search-report

