
US007908267B2

(12) United States Patent (10) Patent No.: US 7,908,267 B2
Jenkins, Jr. et al. (45) Date of Patent: Mar. 15, 2011

(54) AUTOMATIC USE OF A FUNCTIONAL s: A : 22, A. dhuri et al... 7 0.9 audhuri et al.
INDEXASA PRIMARY FILTER 6,223,171 B1 * 4/2001 Chaudhuri et al. ... 707/2

6,339,769 B1* 1/2002 Cochrane et al. 707/2
(75) Inventors: Robert J. Jenkins, Jr., Foster City, CA 6,341,281 B1* 1/2002 MacNicol et al. 707/3

(US); Adiel Yoaz, Foster City, CA (US) (Continued)

(73) Assignee: Oracle International Corporation, FOREIGN PATENT DOCUMENTS
Redwood Shores, CA (US) CA 2124094 * 11, 1995

(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 628 days. OTHER PUBLICATIONS

Kai-Uwe Sattler et al. “autonomous query-driven index tuning'.
(21) Appl. No.: 10/929,065 proceedings of the international databae engineering and applica

tions symposium, 2004.*
22) Filed: Aug. 26, 2004 (22) File lug. A0, (Continued)

(65) Prior Publication Data Primary Examiner — Tim T. Vo
US 2005/O256835A1 Nov. 17, 2005 Assistant Examiner — Garrett Smith

(74) Attorney, Agent, or Firm — Hickman Palermo Truong
Related U.S. Application Data & Becker LLP

(60) Eyal application No. 60/.571,071, filed on May (57) ABSTRACT

An approach for using functional indexes as a primary filter is
(51) Int. Cl. provided. A database query that contains a reference to a

G06F 7700 (2006.01) column of a table, but does not contain any reference to a
G06F 7/30 (2006.01) functional index based on that column, is received by a data

(52) U.S. Cl. 707/715. 707/705: 707/713; 707/718; base server. The database server adds to the database query a
707/719 reference to the functional index on the column. The database

(58) Field of Classification Search 707/1, 35, server determines if the database query should be executed
707/10, 100, 102, 104.1, 200; 709/203, 210 215 using the functional index. If the database server determines

See application file for complete search history. that the database query should be executed using the func
tional index, then the database query is executed with the

(56) References Cited functional index. If the database server determines that the

U.S. PATENT DOCUMENTS

5,404,510 A * 4, 1995 Smith et al. 707/2
5,604,901 A * 2/1997 Kelley et al. 707,999.003
5,659.730 A * 8/1997 Kelley et al. TO7/999.003

210

220

EXECUTE THE
DATABASE
CUERY WITH

THE FUNCTIONAL
INDEX

RECEIVE, ATA DATABASE SERVER,
ADATABASEQUERY

ADDAREFERENCE TO A FUNCTIONAL
INEXTO THE DABASE GUERY

DETERMINE
WHETHER QUERY SHOUD
USEFUNCTIONAL INDEX

database query should not be executed using the functional
index, then data that indicates that the functional index is not
to be evaluated when the database query is executed is stored.

18 Claims, 3 Drawing Sheets

STOREOAA
THAT INDICATES

THAT THE
FUNCTIONAL
INDEXIS NOT

TO BE
EVALUATED

US 7,908.267 B2
Page 2

U.S. PATENT DOCUMENTS OTHER PUBLICATIONS

6,345,266 B1* 2/2002 Ganguly et al. 707/1 & 8 --- - - - - - - ?? 6,385,603 B1* 5/2002 Chen et al. .. 707/3 Paulley.G.N et al. 'exploiting uniqueness in query optimization'.
6.421,662
6,615,206
6,629,132
6,728,747
6,823,329
7,103,590
7,213,011

2001/OO32199
2005, 0131880
2005/O154715

CA

B1 7, 2002 Karten
B1 9, 2003 Jakobsson et al. .
B1* 9/2003 Ganguly et al. ...
B1 4, 2004 Jenkins et al. .
B2 11/2004 Kirk et al. ...
B1* 9/2006 Murthy et al.
B1* 5, 2007 Das
A1* 10, 2001 Delo
A1* 6, 2005 YoaZetal.
A1* 7, 2005 YoaZ. et al.

2416368 * 10/2003

707/3 proceedings, 10th internatinal conference on data engineering, 1994,
... 7073 pp. 68-79.
709,213 Ming-Syan Chen et al. "applying segmented right-deep trees to
7 18.9 pipelining multiple hash joins’. IEEE transactions on knowledge and

707/3 data engineering, vol. 7, No. 4, 1995vol. 7, issue: 4, 1995, pp. 656
707,999.004 668.

. 707/3 "Oracle Function Based Indexes'; from http://web.archive.org/web/

707/3 20040624041828/http://www.akadia.com/services/ora function
. 707/3 based index 2.html.

FOREIGN PATENT DOCUMENTS

* cited by examiner

US 7,908,267 B2 Sheet 1 of 3

-

- |

|0||
J

U.S. Patent

U.S. Patent Mar. 15, 2011 Sheet 2 of 3 US 7,908,267 B2

"N RECEIVE, ATA DATABASE SERVER,
A DATABASE QUERY

INDEX TO THE DATBASE QUERY

220
ADD AREFERENCE TO A FUNCTIONAL

230

DETERMINE
WHETHER QUERY SHOULD
USE FUNCTIONAL INDEX

YES NO

240 250

STORE DATA
EXECUTE THE THAT INDICATES
DATABASE THAT THE
QUERY WITH FUNCTIONAL

THE FUNCTIONAL INDEXIS NOT
INDEX TO BE

EVALUATED

(Fig. 2

US 7,908,267 B2
1.

AUTOMATIC USE OF A FUNCTIONAL
INDEXASA PRIMARY FILTER

RELATED APPLICATIONS

The application claims priority from U.S. Provisional
Application No. 60/571,071, entitled “Automatic use of
Functional Indexes as Primary Filters, filed on May 14, 2004
by Robert Jenkins, et al., the contents of which are incorpo
rated by reference.

FIELD OF THE INVENTION

The present invention relates to the automatic use of a
functional index in executing a database query that does not
specify the functional index.

BACKGROUND

An index is a list of keys, each of which identifies a unique
database record. An index is based on one or more columns of
a database table. Indexes are useful because using an index on
a database table to find specific records in the table, and to sort
records of the table by columns of the table on which index is
based, is faster than performing the same actions without
using the index.

Often, an index cannot be created on a table. For example,
the size of the data stored in the table may be too large, or the
data stored in the table may be of an abstract type. In Such a
case, a functional index may still be used. A functional index
is an index that is defined on the result of a function applied to
one or more columns of a database table.
The functional index may be used as a primary filter for the

evaluation of certain comparative operators contained within
a database query. For example, if there exists a functional
index “f(col1) on a column named col 1 of a table, then the
functional index may be used to evaluate the predicate
“col1=<valued.” The functional index may be used in pro
cessing a database query containing the predicate to obtain a
set of rows that satisfy the predicate by evaluating the func
tional index using the predicate (i.e., f(col1)=f(<valued)).
While the rows returned by the functional index (“the
returned rows') may contain additional rows that do not sat
isfy the predicate “col1=<valued the returned rows are guar
anteed to contain all the rows of the table that do satisfy the
predicate. Each of the returned rows may then be examined to
determine if, for a particular row, the predicate
“col1=<values” is true. Examining only the returned rows is
more efficient than examining each row of a table identified in
the database query. Thus, the query may be processed faster
and more efficiently using the functional index.

Currently, a functional index may only be used by a data
base server if the left hand side or right hand side of the
condition referenced in the query is the same as the expres
sion used for the functional index. This limitation reduces the
utility of functional indexes. For example, an index cannot be
created on columns storing string data larger than the maxi
mum index key size, but a functional index may be created on
a prefix of the string data stored in the columns. However, the
database server will not consider the functional index in cre
ating the execution plan of a database query that only refer
ences the String column name without the prefix function.
Consequently, an approach to use functional indexes without
incurring the problems associated with prior approaches is
desirable.
The approaches described in this section are approaches

that could be pursued, but not necessarily approaches that
have been previously conceived or pursued. Therefore, unless

10

15

25

30

35

40

45

50

55

60

65

2
otherwise indicated, it should not be assumed that any of the
approaches described in this section qualify as prior art
merely by virtue of their inclusion in this section.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments described herein are illustrated by way of
example, and not by way of limitation, in the figures of the
accompanying drawings and in which like reference numer
als refer to similar elements and in which:

FIG. 1 is a block diagram of a system according to an
embodiment;

FIG. 2 is a flowchart illustrating the steps of using a func
tional index as a primary filter according to an embodiment;
and

FIG.3 is a block diagram that illustrates a computer system
upon which an embodiment of the invention may be imple
mented.

DETAILED DESCRIPTION

In the following description, for the purposes of explana
tion, numerous specific details are set forth in order to provide
a thorough understanding of the present invention. It will be
apparent, however, that the present invention may be prac
ticed without these specific details. In other instances, well
known structures and devices are shown in block diagram
form in order to avoid unnecessarily obscuring the present
invention.

Architecture Overview

FIG. 1 is a block diagram of a system 100 according to an
embodiment. The system 100 may use a functional index as a
primary filter when executing a database query, thereby
executing the database query with improved efficiency and
speed. The system 100 includes a client 110, a database
management system 120, and a communications link 130.
The database management system 120 comprises a database
server 122 and a database 124.

Client 110 may be implemented by any medium or mecha
nism that provides for transmitting a database query to a
database management system. Non-limiting, illustrative
examples of a client include a PC, a wireless device, a soft
ware application, and a computer system. While only one
client 110 is shown in FIG. 1, system 100 may include any
number of clients 110.

Database management system (hereinafter abbreviated as
“DBMS) 120 may be implemented by any medium or
mechanism that provides for persistently storing and retriev
ing data. DBMS 120 includes a database server 122 and a
database 124.

Database server 122 may be implemented by any medium
or mechanism that provides for receiving database queries
and retrieving data from a database. In an embodiment, data
base server 122 may contain a query optimizer, which is a
functional component that determines the optimal execution
plan for a database query. While only one database server 122
is shown in FIG. 1, DBMS 120 may include two or more
database servers 122.

Database 124 may be implemented by any medium or
mechanism that provides for persistently storing data in an
organized fashion. Non-limiting, illustrative examples of
database 124 include a relational database, an object-oriented
database, and a multi-dimensional database. While only one
database 124 is shown in FIG.1, DBMS 120 may include two
or more databases 124.

US 7,908,267 B2
3

Communications link 130 may be implemented by any
medium or mechanism that provides for the exchange of data
between client 110 and DBMS 120. Examples of communi
cations link 130 include, without limitation, a network such as
a Local Area Network (LAN), Wide Area Network (WAN),
Ethernet or the Internet, or one or more terrestrial, satellite or
wireless links.

Functional Overview

Embodiments allow a database query to be executed using
a functional index, even if the database query, as it was
received by the database server, does not contain a reference
to the functional index. According to an embodiment, a data
base query. Such as:

select * from t1 where c1="a:
is amended by the database server to include reference to a
functional index, e.g.:

select * from tl where c1 = a and substr(c1, 1,5)=substr
(“a, 1, 5);

if a functional index exists on the expression “substr(c1, 1,
5). Note that this illustrative index is described below in
example 1.
The database server may use the functional index in the

execution of the amended database query. The functional
index acts as a primary filter in that the rows returned by the
evaluation of the functional index (the “returned rows') are
guaranteed to contain all the rows that satisfy the original
condition (in the above example, where c1=a), but the
returned rows may also contain rows that do not satisfy the
original condition. The database server may then evaluate the
returned rows to see which of the returned rows satisfy the
original condition. As the returned rows may be but a small
portion of the data stored by the original table(s) referenced
by the database query, the efficiency and speed of processing
the database query are enhanced.
More specifically, in an embodiment, a database query that

contains a reference to a column of a table, but does not
contain any reference to a functional index based on that
column, is received by a database server. The database server
adds to the database query a reference to the functional index
on the column.

In order to achieve the most optimal query execution plan,
the database server determines, using a rule and/or cost based
model, if the database query should be executed using the
functional index. If the database server determines that the
database query should be executed using the functional index,
then the database query is executed with the functional index.
On the other hand, if the database server determines that the
database query should not be executed using the functional
index, then the database server stores data that indicates that
the functional index is not to be evaluated when the database
query is executed. The stored data prevents the functional
index from being used when the use of the functional index
would not add to the efficiency of executing the database
query.

In this way, a client of the database management system
may take advantage of the functional index, even though the
client did not reference the functional index in the database
query. Thus, the client is sparred the burden of including a
reference, in the database query, to any index that will be used
when evaluating the database query, as existing database que
ries do not need to be modified to use a functional index.
Consequently, a database query may be easier to create as

10

15

25

30

35

40

45

50

55

60

65

4
there is no requirement that the database query includes a
reference to the functional index to gain benefit of the func
tional index.

Using a Functional Index as a Primary Filter

FIG. 2 is a flowchart illustrating the steps of using a func
tional index as a primary filter according to an embodiment.
By performing the steps of FIG. 2, embodiments may execute
a database query using a functional index, even if the database
query, as it was received by the database management system,
does not contain a reference to the functional index. Advan
tageously, when a user cannot create an index on a column,
e.g., because the index would violate key size constraints,
embodiments of the invention allow database queries to be
evaluated using the functional index without reference to the
functional index in the database query.

Prior to performing the steps of FIG. 2, a functional index
is created on a table of database 124. The created functional
index is based on one or more columns. For example, a
functional index named “idx1' may be created on a table
named “t1 in database 124 by executing the SQL command
shown below in example 1.

EXAMPLE 1.

create index idx1 on ti (substr(c1, 1, 5));
The index of example 1 shall be referenced below in discus
sion of further examples.
The steps of FIG. 2 shall now be explained below with

reference to the block diagram of FIG. 1. In step 210, a
database query is received that contains a reference to a col
umn, but does not contain any reference to a functional index
on the column. Client 110 may transmit the database query of
step 210 over communications link 130 to be received by
database server 122. The column referenced by the database
query of step 210 is a column that a functional index is based
upon.

Step 210 may be performed by database server 122 receiv
ing the database query shown in example 2.

EXAMPLE 2

select c1 from tl where c1 = abc;
In Example 2, the database query references column c1 in the
condition “where c1 = abc. but does not reference any func
tional index on column c1. After the database query of step
210 is received, processing proceeds to step 220.

In step 220, database server 122 adds to the database query
received in step 210 a reference to the functional index on the
column referenced by the database query. In an embodiment,
step 220 is performed before a query optimizer component of
database server 122 analyzes the database query, but after a
type check procedure is performed on the database query by
the database server 122.

Step 220 may be performed by database server 122 iden
tifying a “where' clause in the database query that contains a
reference to a particular column, and modifying the “where'
clause to contain a reference to the functional index based on
that column. The reference to the functional index that is
added reflects the original condition of the received database
query of step 210 (hereafter, the “original condition'). For
example, the original condition of Example 2 is “c1 = abc.”
The database server 122 adds the reference to the functional
index in the “where' clause using an “AND” operator.

US 7,908,267 B2
5

Step 220 may be performed by database server 122 rewrit
ting the query of example 2 to include the condition “substr
(c1, 1,5)=substr(abc. 1, 5)” in the where clause as shown
below in example 3.

EXAMPLE 3

select c1 from tl where where c1 = abc AND substr(c1, 1,
5)=substrabc. 1, 5);
As example 3 shows, the “where' clause of the database
query has been amended to recite the addition of an “AND”
operator, and a reference to the functional index of example 1
that reflects the original condition. The new predicate is
derived by applying the top function of the functional index
expression (Substr in this example), to both sides of the origi
nal condition. Note that the right hand side of the new predi
cate"substr(abc. 1, 5) is a static expression (as it relies only
on constant values), which may be simplified to abc.
The functional index to which reference is made in step 220

is the functional index that is based on a column referenced by
the database query. As the database query of Example 2
referenced column c1, and the functional index of example 1
is based on that column c1, reference to the functional index
of example 1 is added in step 220.
The particular comparative operator included in the refer

ence to the functional index added in step 220 may vary, as the
evaluation of the functional index of which reference is added
to in step 220 must be true for all rows where the original
condition is true. As explained below, the particular compara
tive operator included in the reference to the functional index
is based on the particular type of comparative operation per
formed in the original condition of the database query.

In equality comparisons (i.e., those comparisons wherein
the comparative operator is a "=" sign), the comparative
operator remains the same. In other words, if the original
condition involved an equality comparative operator, then the
reference to the functional index also contains an equality
comparative operator, e.g., an equality comparative operator
“=) is used in the original condition of example 2 and in the
reference to the functional index added to the database query
of example 3.

In the case of non-equality comparisons, a different com
parative operator than the original is added. Consider
example 4 and example 5.

EXAMPLE 4

select c1 from t where c1<1 abcdef;
may be amended in step 220 as:
select c1 from tl where c1<'abcdef AND substr (c1,

1,5)<=substr? abcdef, 1,5);

EXAMPLE 5

select c1 from tl where a1 Da2
may be amended in step 220 as:
select c1 from tl where a1 >a2 AND substr(a1, 1,5)>=Sub

str(a2, 1,5)
The comparative operator included in the reference to the

functional index in both example 4 and example 5 differs than
the comparative operation in the original condition because
the Substring values as evaluated by the functional index may
be equal, but the original values are not equal. Thus, in
example 4, while the original condition contains a less than
comparative operation (<), the comparative operator in the
reference to the functional index is a less than or equals sign
(<). Also, in example 5, while the original condition con

10

15

25

30

35

40

45

50

55

60

65

6
tains a greater than comparative operation (>), the compara
tive operator in the reference to the functional index is a
greater than or equals sign (>). Note that the rules presented
above regarding determining the comparative operator corre
spond to a functional index which uses the “substr(<arg>, 1,
n) expression, i.e., a string prefix expression. Other rules for
determining the comparative operator may differ depending
upon the particular functional index employed by the embodi
ment.

Embodiments may make use of numerous types of func
tional indexes, and are not limited to any particular type of
functional index. For example, step 220 is explained above
with reference to an example involving a Substring function.
Other embodiments may employ a functional index based on
a hash function, which is a function that assigns a data item
distinguished by some “key' into one of a number of possible
“hash buckets' in a hash table. The hash function may be
combined with another more precise function. A hash func
tional index may be used by embodiments to evaluate equality
operators for collection type columns. For example, as shown
below in example 6, if there exists a functional index "hash
(col1), the predicate “col1=<values' will be amended in
step 220 as “col1=<valued AND hash(col1)=hash(<valued).”

EXAMPLE 6

select c1 from t2 where col1=xyz;
may be amended in step 220 as:
select c1 from t2 where col1=xyz AND hash(col1)=hash

(xyz');
After the database server 220 adds to the database query a
reference to the functional index in step 220, processing pro
ceeds to step 230.

In step 230, a determination is made as to whether the
database query should be executed using the functional index.
Database server 122 performs step 230, e.g., step 230 may be
performed by a query optimizer component of database
server 122. The determination of step 230 may be positive if
the database server 122 determines that the functional index is
usable by the database server 122. The determination of step
230 may be negative if the database server 122 determines
that the functional index is in an unstable state. In Such a case,
the functional index cannot be used, so it is not necessary to
go through the overhead of attempting to use the functional
index when it cannot be used. The primary consideration as to
whether or not to use the functional index during query execu
tion is a question of optimization. In other words, if using the
functional index would result in the most optimal query
execution plan, compared to other available alternatives, then
the functional index is used during query execution.

If the determination of step 230 is positive (the database
query should be executed using the functional index), then
processing proceeds to step 240. If the determination of step
230 is negative (the database query should not be executed
using the functional index), then processing proceeds to step
2SO.

In step 240, as the determination of step 230 is positive (the
database query should be executed using the functional
index), the database query is executed with the functional
index. The database server 122 uses the execution plan in
executing the database query against the database 124.
The database server 122 may initially identify a set of rows

that satisfy a condition specified by the functional index.
After the database server 122 identifies the set of rows that
satisfy the condition specified by the functional index, the
database server 122 determines which rows in the identified
set of rows satisfies all the conditions specified in the database

US 7,908,267 B2
7

query. For example, consider the database query of example
3. The database server 122 may initially a first set of rows that
satisfy the condition of “substr(c1, 1,5)= abc.” Thereafter,
the database server 122 may identify a second set of rows in
the first set of rows that satisfies the condition of the original
condition, namely “c1 = abc.”

In step 250, as the determination of step 230 is negative (the
database query should not be executed using the functional
index), data that indicates that the functional index is not to be
evaluated when the database query is executed is stored.
Thus, in step 250, database server 122 stores the data that
indicates that the functional index is not to be evaluated when
the database query is executed. Thereafter, when database
server 122, or another entity, executes the database query, the
functional index will not be used in evaluating the database
query.

In an embodiment, the data stored in step 250 causes the
functional index to be evaluated as true for all rows. In another
embodiment, the data stored in step 250 causes the “where'
clause of the database query to be modified such that refer
ence to the functional index is removed.

After either the performance of step 240 or step 250, the
database server 122 has determined which records stored in
database 124 satisfy the database query received in step 210.
It is more efficient for the database server 122 to perform step
240, rather than step 250, because the functional index may be
used as a primary filter to reduce the number of records that
the database server 122 needs to search to determine which
records stored in database 124 satisfy the conditions specified
in the database query received in step 210. The efficiency in
performing step 240 is realized by the execution of the data
base query with a functional index, even if the database query,
as it was received by database server 122., does not contain a
reference to the functional index.

Implementing Mechanisms

In an embodiment, client 110, database server 122, and
database 124 may each be implemented using a computer
system. FIG. 3 is a block diagram that illustrates a computer
system 300 upon which an embodiment may be implemented.
Computer system 300 includes a bus 302 or other communi
cation mechanism for communicating information, and a pro
cessor 304 coupled with bus 302 for processing information.
Computer system 300 also includes a main memory 306, such
as a random access memory (RAM) or other dynamic storage
device, coupled to bus 302 for storing information and
instructions to be executed by processor 304. Main memory
306 also may be used for storing temporary variables or other
intermediate information during execution of instructions to
be executed by processor 304. Computer system 300 further
includes a read only memory (ROM) 308 or other static
storage device coupled to bus 302 for storing static informa
tion and instructions for processor 304. A storage device 310,
Such as a magnetic disk or optical disk, is provided and
coupled to bus 302 for storing information and instructions.

Computer system 300 may be coupled via bus 302 to a
display 312, such as a cathode ray tube (CRT), for displaying
information to a computer user. An input device 314, includ
ing alphanumeric and other keys, is coupled to bus 302 for
communicating information and command selections to pro
cessor 304. Another type of user input device is cursor control
316. Such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selec
tions to processor 304 and for controlling cursor movement
on display 312. This input device typically has two degrees of

5

10

15

25

30

35

40

45

50

55

60

65

8
freedom in two axes, a first axis (e.g., X) and a second axis
(e.g., y), that allows the device to specify positions in a plane.
The invention is related to the use of computer system 300

for implementing the techniques described herein. According
to one embodiment of the invention, those techniques are
performed by computer system 300 in response to processor
304 executing one or more sequences of one or more instruc
tions contained in main memory 306. Such instructions may
be read into main memory 306 from another machine-read
able medium, such as storage device 310. Execution of the
sequences of instructions contained in main memory 306
causes processor 304 to perform the process steps described
herein. In alternative embodiments, hard-wired circuitry may
be used in place of or in combination with software instruc
tions to implement the invention. Thus, embodiments of the
invention are not limited to any specific combination of hard
ware circuitry and software.
The term “machine-readable medium' as used herein

refers to any medium that participates in providing data that
causes a machine to operation in a specific fashion. In an
embodiment implemented using computer system 300, vari
ous machine-readable media are involved, for example, in
providing instructions to processor 304 for execution. Such a
medium may take many forms, including but not limited to,
non-volatile media, Volatile media, and transmission media.
Non-volatile media includes, for example, optical or mag
netic disks, such as storage device 310. Volatile media
includes dynamic memory, Such as main memory 306. Trans
mission media includes coaxial cables, copper wire and fiber
optics, including the wires that comprise bus 302. Transmis
sion media can also take the form of acoustic or light waves,
such as those generated during radio-wave and infra-red data
communications.
Common forms of machine-readable media include, for

example, a floppy disk, a flexible disk, hard disk, magnetic
tape, or any other magnetic medium, a CD-ROM, any other
optical medium, punchcards, papertape, any other physical
medium with patterns of holes, a RAM, a PROM, and
EPROM, a FLASH-EPROM, any other memory chip or car
tridge, a carrier wave as described hereinafter, or any other
medium from which a computer can read.

Various forms of machine-readable media may be involved
in carrying one or more sequences of one or more instructions
to processor 304 for execution. For example, the instructions
may initially be carried on a magnetic disk of a remote com
puter. The remote computer can load the instructions into its
dynamic memory and send the instructions over a telephone
line using a modem. A modem local to computer system 300
can receive the data on the telephone line and use an infra-red
transmitter to convert the data to an infra-red signal. An
infra-red detector can receive the data carried in the infra-red
signal and appropriate circuitry can place the data on bus 302.
Bus 302 carries the data to main memory 306, from which
processor 304 retrieves and executes the instructions. The
instructions received by main memory 306 may optionally be
stored on storage device 310 either before or after execution
by processor 304.
Computer system 300 also includes a communication

interface 318 coupled to bus 302. Communication interface
318 provides a two-way data communication coupling to a
network link320 that is connected to a local network322. For
example, communication interface 318 may be an integrated
services digital network (ISDN) card or a modem to provide
a data communication connection to a corresponding type of
telephone line. As another example, communication interface
318 may be a local area network (LAN) card to provide a data
communication connection to a compatible LAN. Wireless

US 7,908,267 B2

links may also be implemented. In any Such implementation,
communication interface 318 sends and receives electrical,
electromagnetic or optical signals that carry digital data
streams representing various types of information.
Network link 320 typically provides data communication

through one or more networks to other data devices. For
example, network link320 may provide a connection through
local network 322 to a host computer 324 or to data equip
ment operated by an Internet Service Provider (ISP)326. ISP
326 in turn provides data communication services through the
worldwide packet data communication network now com
monly referred to as the “Internet 328. Local network 322
and Internet 328 both use electrical, electromagnetic or opti
cal signals that carry digital data streams. The signals through
the various networks and the signals on network link320 and
through communication interface 318, which carry the digital
data to and from computer system 300, are exemplary forms
of carrier waves transporting the information.

Computer system 300 can send messages and receive data,
including program code, through the network(s), network
link 320 and communication interface 318. In the Internet
example, a server 330 might transmit a requested code for an
application program through Internet 328, ISP 326, local
network 322 and communication interface 318.
The received code may be executed by processor 304 as it

is received, and/or stored in storage device 310, or other
non-volatile storage for later execution. In this manner, com
puter system 300 may obtain application code in the form of
a carrier wave.

In the foregoing specification, embodiments of the inven
tion have been described with reference to numerous specific
details that may vary from implementation to implementa
tion. Thus, the sole and exclusive indicator of what is the
invention, and is intended by the applicants to be the inven
tion, is the set of claims that issue from this application, in the
specific form in which Such claims issue, including any Sub
sequent correction. Any definitions expressly set forth herein
for terms contained in Such claims shall govern the meaning
of Such terms as used in the claims. Hence, no limitation,
element, property, feature, advantage or attribute that is not
expressly recited in a claim should limit the scope of Such
claim in any way. The specification and drawings are, accord
ingly, to be regarded in an illustrative rather than a restrictive
SSC.

What is claimed is:
1. A machine-implemented method, comprising:
receiving, at a database server, a database query that has a
WHERE clause containing a reference to a column,
wherein the WHERE clause does not contain any refer
ence to a function on which a functional index on the
column is based;

wherein the reference to the column occurs in a first con
dition in the WHERE clause of the database query;

the database server creating an amended database query
that includes at least one WHERE clause, wherein theat
least one WHERE clause includes at least: (a) the first
condition, and (b) an added second condition that con
tains a function call to the function;

executing the amended database query;
based on the function call to the function in the at least one
WHERE clause of the amended database query, using
the functional index as an index during execution of the
amended database query; and

outputting a result set based, at least in part, on the execu
tion of the amended database query;

wherein the column is a column of a table in a database that
is managed by the database server;

10

15

25

30

35

40

45

50

55

60

65

10
wherein the method is performed by one or more comput

ing devices.
2. The method of claim 1, further comprising:
determining whether the amended database query should

be executed using the functional index;
wherein the step of using the functional index is performed

in response to a determination that the amended data
base query should be executed using the functional
index.

3. The method of claim 1, wherein the reference to said
column is a first reference to said column, wherein the
WHERE clause is a first WHERE clause, and wherein the
method further comprises:

receiving, at the database server, a second database query
that has a second WHERE clause containing a second
reference to said column, wherein the second WHERE
clause does not contain any reference to said function on
which said functional index on the column is based;

determining whether the amended second database query
should be executed using the functional index;

if the amended second database query should not be
executed using the functional index, storing data that
indicates that the functional index is not to be evaluated
when the amended second database query is executed;
and

outputting a second result set based, at least in part, on the
execution of the amended second database query.

4. The method of claim 2, wherein the step of using the
functional index further comprises:

using the functional index to identify a set of rows that
satisfy said second condition.

5. The method of claim 1, wherein the function is a hash
function.

6. The method of claim 1, wherein the function is a sub
string function.

7. The method of claim 1, wherein the first condition
includes a particular type of comparative operation involving
data from the column, and wherein the second condition
includes a comparative operator based on the particular type
of comparative operation.

8. The method of claim 7, wherein the comparative opera
toris a less than or equal to comparative operator, and wherein
the comparative operation is a less than comparative opera
tion.

9. The method of claim 7, wherein the comparative opera
tor is a greater than or equal to comparative operator, and
wherein the comparative operation is a greater than compara
tive operation.

10. A machine-readable storage medium storing one or
more sequences of instructions, wherein execution of the one
or more sequences of instructions by one or more processors
causes the one or more processors to perform the steps of

receiving, at a database server, a database query that has a
WHERE clause containing a reference to a column,
wherein the WHERE clause does not contain any refer
ence to a function on which a functional index on the
column is based;

wherein the reference to the column occurs in a first con
dition in the WHERE clause of the database query:

the database server creating an amended database query
that includes at least one WHERE clause, wherein theat
least one WHERE clause includes at least: (a) the first
condition, and (b) an added second condition that con
tains a function call to the function;

executing the amended database query;
based on the function call to the function in the at least one
WHERE clause of the amended database query, using

US 7,908,267 B2
11

the functional index as an index during execution of the
amended database query; and

outputting a result set based, at least in part, on the execu
tion of the amended database query;

wherein the column is a column of a table in a database that
is managed by the database server.

11. The machine-readable storage medium of claim 10,
wherein execution of the one or more sequences of instruc
tions by the one or more processors causes the one or more
processors to further perform the steps of:

determining whether the amended database query should
be executed using the functional index;

wherein the step of using the functional index is performed
in response to a determination that the amended data
base query should be executed using the functional
index.

12. The machine-readable storage medium of claim 10,
wherein the reference to said columnis a first reference to said
column, wherein the WHERE clause is a first WHERE
clause, and wherein execution of the one or more sequences
of instructions by the one or more processors causes the one
or more processors to further perform the steps of:

receiving, at the database server, a second database query
that has a second WHERE clause containing a second
reference to said column, wherein the second WHERE
clause does not contain any reference to said function
that was used to create said functional index on the
column;

determining whether the amended second database query
should be executed using the functional index;

5

10

15

25

12
if the amended second database query should not be

executed using the functional index, storing data that
indicates that the functional index is not to be evaluated
when the amended second database query is executed;
and

outputting a second result set based, at least in part, on the
execution of the amended second database query.

13. The machine-readable storage medium of claim 11,
wherein the step of using the functional index further com
prises:

using the functional index to identify a set of rows that
satisfy said second condition.

14. The machine-readable storage medium of claim 10,
wherein the function is a hash function.

15. The machine-readable storage medium of claim 10,
wherein the function is a Substring function.

16. The machine-readable storage medium of claim 10,
wherein the first condition includes a particular type of com
parative operation involving data from the column, and
wherein the second condition includes a comparative opera
tor based on the particular type of comparative operation.

17. The machine-readable storage medium of claim 16,
wherein the comparative operator is a less than or equal to
comparative operator, and wherein the comparative operation
is a less than comparative operation.

18. The machine-readable storage medium of claim 16,
wherein the comparative operator is a greater than or equal to
comparative operator, and wherein the comparative operation
is a greater than comparative operation.

k k k k k

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 7,908.267 B2 Page 1 of 1
APPLICATIONNO. : 10/929.065
DATED : March 15, 2011
INVENTOR(S) : Jenkins, Jr. et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On cover page, in column 2, under “Other Publications, line 2, delete “databae and insert
-- database --, therefor.

On page 2, in column 2, under “Other Publications, line 2, delete “internatinal and insert
-- international --, therefor.

999 In column 5, line 8, before “c1 = abc delete “where'.

Signed and Sealed this
Fourth Day of October, 2011

David J. Kappos
Director of the United States Patent and Trademark Office

