A scaffold platform support is provided with a scaffold platform support framework, which provides a support surface and a clamp or other attachment mechanism to provide the attachment of a scaffold platform support to a scaffold support structure. One embodiment is provided wherein there is more of a clamping or vise mechanism, and another embodiment is illustrated wherein the scaffold platform support is rotatingly mounted onto the scaffold support structure.
SCAFFOLDING SYSTEM INCLUDING A SCAFFOLDING SUPPORT

TECHNICAL FIELD

This invention pertains to a temporary or removable scaffolding system for primary use in applications in which there is a vertical support member which may support the scaffolding. More particularly, this invention provides such a scaffolding system which includes a scaffolding support member which may be a brace or clamp, which may be removably attached to a suitable structural support or support member.

BACKGROUND OF THE INVENTION

Scaffolding of different types have been used for many years for creating an elevated work platform in many different applications. Scaffolds provide a more stable and secure structure and provide a broader platform to allow the user a broader range of movement that say a ladder in the same application.

Many of the traditional types of scaffolding have been free standing structures which require a significant number of platform and framework components and take a substantial time to construct and then later remove. It is believed that in many applications that scaffolding is not used when it should be for safety or other reasons due to the structure and time requirements to build the scaffolding.

In yet other cases a worker needing scaffolding for shorter term use may use an unsuitable or more dangerous non-scaffold as a faster alternative, thereby increasing the safety risks.

It is therefore an object of some embodiments of this invention to provide a scaffolding system platform support and clamp or brace system which provides a secure mechanism to provide a temporary scaffold, as well as a relatively easy way to remove the scaffolding.

Other objects, features, and advantages of this invention will appear from the specification, claims, and accompanying drawings which form a part hereof. In carrying out the objects of this invention, it is to be understood that its essential features are susceptible to change in design and structural arrangement, with only one practical, and preferred embodiment being illustrated in the accompanying drawings, as required.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the invention are described below with reference to the following accompanying drawings.

FIG. 1 is a perspective view of one embodiment of a scaffold platform support as contemplated by this invention;

FIG. 2 is a first side view of the embodiment of the scaffold platform support shown in FIG. 1;

FIG. 3 is a second side view of the embodiment of the scaffold platform support shown in FIG. 1;

FIG. 4 is a top view of the embodiment of the scaffold platform support shown in FIG. 1;

FIG. 5 is a top view of the embodiment of the scaffold platform support shown in FIG. 1 only wherein the clamp jaws are in the expanded position;

FIG. 6 is a top view of the embodiment of the scaffold platform support shown in FIG. 1, shown clamped around a vertical support member;

FIG. 7 is a perspective exploded view of the scaffold support shown in FIG. 1;

FIG. 8 is a section view 8-8 from FIG. 5;

FIG. 9 is an alternative section view showing the same section view from FIG. 8, only with the clamp jaws in the expanded position;

FIG. 10 is an elevation view showing the use of the scaffold platform support system utilized to provide a scaffold platform for workers attached to a typical framed wall configuration;

FIG. 11 is a top view of another embodiment of a scaffold platform support, only wherein the vice support interfaces are reconfigured to allow temporary attachment to a vertical I-beam shaped vertical support member;

FIG. 12 is a perspective view of one aspect of another embodiment of a scaffold platform support contemplated by this invention;

FIG. 13 is a perspective view of the embodiment of the invention illustrated in FIG. 12 as it is being installed on or attached to a vertical support member;

FIG. 14 is a perspective view of the aspect of the embodiment illustrated in FIG. 12 installed on or attached to a vertical support member or scaffold support structure;

FIG. 15 is a perspective view of an embodiment of the invention which includes a handrail slot; and

FIG. 16 is an elevation view showing the use of the scaffold platform support system utilized to provide a scaffold platform for workers, similar to that shown in FIG. 10, only further illustrating the handrail.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Fasteners, materials, drive mechanisms, control circuitry, manufacturing and other means and components utilized to make and implement this invention are known and used in the field of the invention described, and their exact nature or type is not necessary for an understanding and use of the invention by a person skilled in the art or science; therefore, they will not be discussed in significant detail. Furthermore, the various components shown or described herein for any specific application of this invention can be varied or altered as anticipated by this invention and the practice of a specific application or embodiment of any element may already be widely known or used in the art or by persons skilled in the art or science; therefore, each will not be discussed in significant detail.

The terms “a”, “an”, and “the” as used in the claims herein are used in conformance with long-standing claim drafting practice and not in a limiting way. Unless specifically set forth herein, the terms “a”, “an”, and “the” are not limited to one of such elements, but instead mean “at least one”.

A platform support surface need not be any particular type or configuration such as a flat surface, but instead may be any edge, narrow or shaped area on which the scaffolding platform is placed, or which provides the support surface to support the platform, or even grate configuration. So for instance without limitation it may be a narrow edge or a wider broader flat surface, all within the contemplation of this invention, with no one in particular being required to practice the invention.

The term clamp as used herein is used in a very broad sense, and includes not only a clamp, but a brace, or any type grip or attachment means, and other configurations for attaching to a target support beam. It will also be appreciated by those of ordinary skill in the art that, depending on the specific beam, vertical support member, or scaffold support structure to which the scaffolding is to be engaged, attached, secured or mounted, the clamp may or may not need to have a tightening mechanism or means, but instead the weight of the clamp, and/or the clamp plus the scaffold support platform, may sufficiently secure the clamp to the base support beam.

The terms “scaffold support structure” as used herein is a reference to, without limitation, a beam, pole, l-beam, framing stud, framing member or other base support member to which the scaffold platform support, brace or support will be secured.

FIG. 1 is a perspective view of one embodiment of a scaffold platform support as contemplated by this invention, illustrating scaffold platform support 100, platform support surface 102, platform support framework 101, with vertical portion 101b, horizontal portion 101a, and transverse portion 101c. The platform support surface has a first end 104a, the inner end, and a second end 104b, the outer end. A platform retention apparatus 105 is attached to platform support framework 101 on the outer end, and preferably includes a first portion 105a, which runs substantially vertically, and a second portion 105b which, combined, provide a structure to retain the scaffold platform. A scaffold board for instance, would be placed on platform support surface 102 between scaffold support structure 103, a framing stud in this example, and platform retention apparatus 105, with second portion 105b of the platform retention apparatus 105 holding the platform down. A fastener aperture 107 is also provided to allow a nail or screw to be inserted through fastener aperture 107, and into a wooden or other scaffold platform.

FIG. 1 also illustrates a clamping mechanism operably attached to scaffold platform support framework 101. Framework bulkhead 191 contains an internally threaded aperture which receives a threaded member attached to first handle member 109, which is turned by first handle 110. The threaded member extends through upper bulkhead 133 on the first vice member 130.

The embodiment of the invention in FIG. 1 further illustrates first vice member 130, which includes upper bulkhead 133 and first vice support interface 131, and lower bulkhead 134 on first vice member 130. It will be appreciated by those of ordinary skill in the art that any one of a number of vice support interfaces may be in different embodiments of this invention, depending upon the nature of the vertical scaffold support structures to which the scaffold platform support 100 is to be attached. In this case, a first vice support interface 131 provides one side of the vice grip, and second vice support interface 104 is provided on second vice member 111, to provide the second vice portion to allow the attachment of the scaffold platform support 100 to the scaffold support structure 103. In this case, the first and the second vice support interfaces include a first end 104a, and a second end 104b, with the first end preferably having one or more protrusions or teeth (shown in later figures) to provide a more secure attachment to the scaffold support structure 103, which in this embodiment is a typical framing stud.
vice support interface 104 to provide additional attachment means. The extra length and protrusion of end teeth 141 and 143, will provide an additional safety mechanism to prevent the scaffold platform support 100 from separating from a scaffold support structure to which it may be attached. FIG. 4 illustrates the vice portion of the scaffold platform support 100 in the tightened or closed position, whereas FIG. 5, described below, will illustrate it in an open position and illustrate how first vice member 130 (not shown in this figure) moves with respect to second vice member 111 (not shown in this figure).

[0037] FIG. 5 is a top view of the embodiment of the scaffold platform support shown in FIG. 1, only wherein the clamp jaws are in the expanded position. Like numbered items are the same as illustrated and described in figures hereinabove, and will not therefore be repeated herein. FIG. 5 illustrates movement arrows 152 to show the relative movement of first vice member 130 (not shown in this figure) and second vice member 111 (not shown in this figure), thereby exposing first threaded member 148, an upper threaded member, which has threads which correspond to and interact with internal threads within framework bulkhead 191 (not shown in this figure) and bulkhead 133 (not shown in this figure) to provide the relative movement illustrated by movement arrows 152.

[0038] FIG. 6 is a top view of the embodiment of the scaffold platform support shown in FIG. 1, shown clamped around a vertical support member. Like numbered items are the same as illustrated and described in figures hereinabove, and will not therefore be repeated herein. FIG. 6 further illustrates how the first handle 110 and second handle 122, illustrated by rotation arrows 158 and 157, respectively, provides the clamping or vice means on an exemplary wooden scaffold support structure 103. The protrusions 140 in first vice support interface 131, and protrusions 142 in second vice support interface 104, enter the wood and provide gripping power and support as the rotation of the handle provides movement illustrated by arrow 150 around the scaffold support structure 103.

[0039] FIG. 7 is a perspective exploded view of the scaffold claim shown in FIG. 1, and like numbered items are the same as illustrated and described in FIG. 1 above, and will not therefore be repeated herein. FIG. 7 more clearly shows various components which may be utilized in the embodiment of the invention shown in FIG. 1 and other figures. FIG. 7 illustrates the relative simplicity of the components and the design of this embodiment such that it may be more economical to make and easier to use. FIG. 7 illustrates the nature of the handle 109 with male threaded portion 148 and smooth portion 172. The smooth portion 172 allows relatively easy rotation within bulkhead 133, such that internal threads need not be placed within the aperture within bulkhead 133, but may instead be placed in aperture 179 of bulkhead 191. Similarly, second handle 121 has smooth portion 170 and a male threaded portion 171, with the smooth portion corresponding to bulkhead 190 and the aperture in bulkhead 190, whereas the threaded portion 171 inserts into bulkhead 190, which includes internal threads which corresponds to the male threaded portion 171. Male threaded portion 171 of handle 121 inserts into aperture 175 of bulkhead 190, and then end screw 176 may be inserted into threaded aperture 174 within the male threaded portion 171 of second handle 121. Similarly, screw 178 would screw into an aperture similar to threaded aperture 174 and handle 121, only it would be within handle 109 to be an end cap 178 for handle 109.

[0040] The smooth portion 172 of handle 109 would be inserted in and rotate relative to bulkhead 133 (which need not be internally threaded in this embodiment) and then the male threaded portion 148 of handle 149 would screw into aperture 179 within bulkhead 191 to provide the rotation and the relative movement between the first vice member 130 and the second vice member 111 to provide the gripping and attachment to a scaffold support structure 103 (not shown in this figure).

[0041] FIG. 8 is section view 8-8 from FIG. 5, and like numbered items are the same as illustrated and described in figures hereinabove, and will not therefore be repeated herein. FIG. 8 illustrates a relative movement from movement arrow 152 of first vice member 130 relative to second vice member 111, and how the end caps 178 and 176 fit within handles 109 and 121, respectively. FIG. 8 further illustrates the scaffold platform support 100 in the expanded position, as contrasted from the illustration in FIG. 9, in which the scaffold platform support 100 is in the fully contracted position. FIG. 8 shows washer or end stops 173 and 180, which are between end caps 178 and 176 and slide within apertures in bulkhead 191 and bulkhead 134, respectively.

[0042] FIG. 9 is an alternative section view showing the same section view from FIG. 8, only with the clamp jaws in the fully contracted position. The like numbered items are the same as illustrated and described in figures hereinabove, and will not therefore be repeated herein. FIG. 9 illustrates how washers 173 and 180 move within bulkheads 191 and 134, respectively, when the vice is in the full clamp or contracted position.

[0043] FIG. 10 is an elevation view showing the use of the scaffold platform support system utilized to provide a scaffold platform for workers attached to a typical framed wall configuration. FIG. 10 shows one of many possible examples of the use of a scaffold platform support system as provided by this invention. In this one example, workers 207 and 211 are provided with the task of installing and attaching truss structure 212 to the framed wall 208. The available possible scaffold support structures are vertical wall studs 205, which are possible points of attachment for the scaffold platform support system. The first worker 207 is standing on platform 201, or scaffold, which is supported by a first scaffold platform support 204 and a second scaffold platform support 202. The second worker 211 is instead working from a ladder, which is not nearly as stable, but it provides greater mobility in a direction away from the studded wall 208, with the ladder resting on ground 209.

[0044] It will be appreciated by those of ordinary skill in the art that the platform can be any one of a number of different surfaces or combination of surfaces for support, such as without limitation, a wood plank, a grate, multiple wood framing studs, or the like, with no one in particular being required to practice this invention.

[0045] While this provides one good example or illustration of the use of the invention, there are numerous others and different applications, all within the contemplation of embodiments of this invention.
[0046] FIG. 11 is a top view of another embodiment of a scaffold platform support, only wherein the first vice support interface 131 and second vice support interface 104 have been reconfigured or placed in a different configuration in order to better allow attachment to a steel I-beam 258. In FIG. 11, two protrusions 260 and 262 (which may also be referred to as teeth) are provided on first vice support interface 131 and correspond to the aperture 145 on a first side of steel I-beam 258. Similarly, protrusions 261 and 263 are provided on second vice support interface 104 (which may also be referred to as an adapter) to provide a more desired interface within second aperture 250 in a steel I-beam 258. End tooth 264 is also provided on first vice support interface 131, and end tooth 265 is similarly provided on second vice support interface 104, for the reasons stated above, with respect to other embodiments or applications. Movement arrows 256 and 255 illustrate the relative movement of the first vice member relative to the second vice member in response to the rotation of handles 110 and 122, as reflected by rotation arrows 253 and 254, respectively. Figure 11 shows one of many more applications for embodiments of the invention to different scaffold support structures, which again, will be appreciated by those of ordinary skill in the art to be many.

[0047] FIG. 12 is a perspective view of another aspect or embodiment of a scaffold platform support 220, which provides an alternative means for supporting a platform within a scaffold support structure. FIGS. 13 and 14 better illustrate the steps or way in which scaffold platform support 220 is attached to or interacts with a scaffold support structure 230 (shown in FIG. 13). The benefit of the embodiment shown in FIG. 12 is that it does not require the extra step of clamping or tightening, but instead defines a scaffold support structure aperture 224 by first side interface 223 and second side interface 222, with support peg 225 or rod attached to first side interface 223. The interface providing the scaffold support structure aperture 224 is attached to the platform support framework 227, preferably in a fixed way, although it may be provided with some ability to rotate platform support framework 227 relative to the interface defined by first side interface 223 and second side interface 222.

[0050] The support peg 225 includes a support peg aperture 226, through which a pin, cotter, key or other mechanism may be inserted to assure that the support peg 225 does not slide out of an aperture in a scaffold support structure in which it is inserted.

[0051] FIG. 13 is a perspective view of the embodiment of the invention illustrated in FIG. 12, as it is being installed on or attached to a vertical support member or scaffold support structure 230. All like numbered items in FIG. 13 are similarly numbered, labeled, identified and discussed with respect to FIG. 12, and will not therefore be repeated or discussed again with respect to FIG. 13.

[0052] FIG. 13 illustrates how the scaffold platform support 220 may be placed in a substantially horizontal position and support peg 225 inserted into a corresponding aperture in scaffold support structure 230. Once the support peg is inserted therein, the scaffold platform support 220 is rotated downward such that the scaffold support structure aperture 224 (not shown in FIG. 13) surrounds the scaffold support structure 230. Rotation arrow 233 shows the direction of the rotation about support peg 225.

[0053] This embodiment illustrates a minimum of two points of support, interface or abutment, the first being support peg 225 inserted into scaffold support structure 230, and the second being preferably an abutment point 231 as shown at the bottom of platform support framework 227. The abutment point would touch and interact with scaffold support structure 230 to assure no movement, especially once weight is placed upon the scaffold platform support 220. Thus, the weight of the platform and workers working on the platform would provide the additional securement of the scaffold platform support 220, relative to the scaffold support structure 230.

[0054] FIG. 14 is a perspective view of the embodiment of the invention illustrated in FIG. 13, after it has been installed on or attached to a vertical support member or scaffold support structure 230. The like numbered items are the same as illustrated and described in FIG. 13 above, and will not therefore be repeated herein.

[0055] FIG. 14 illustrates the scaffold platform support 220 in a position ready to receive a platform or scaffold for a worker to stand on, with the scaffold support structure 230 inserted into scaffold support structure aperture 224 (shown in FIG. 12).

[0056] Those of ordinary skill in the art will appreciate the simplicity and ease of installation of the embodiment of the invention shown in FIGS. 12 through 14, in applications where an aperture is provided or can be drilled into a perspective scaffold support structure.

[0057] It will be appreciated by those of ordinary skill in the art that the method of installation illustrated in FIGS. 13 and 14 in particular, has value from its simplicity and ease of installation. The method for securing the platform support would generally comprise of providing a scaffold platform support framework, which includes a platform support surface, the support framework including a support peg configured for placement through a peg aperture in a scaffold support structure. The support framework would also include an abutment point (which may or may not be defined beforehand) configured to abut against the scaffold support structure and, the support peg would then be inserted into a peg aperture in the scaffold support structure. The scaffold platform support would then be rotated downward where the scaffold support structure would thereby be inserted into the scaffold support structure aperture provided and the abutment point then reached by the rotation. At that point, gravity or weight placed on the scaffold platform support would hold it in place and provide the necessary points of abutment and support to support a temporary platform or scaffold.

[0058] FIG. 15 illustrates another aspect of the embodiment of the invention shown in FIGS. 13 and 14, only including a vertical support slot 251 for use as handrails or
other vertical support members. The vertical support slot 251 is defined by walls 250 and may be configured to fit any size of vertical support, but preferably a two by four piece of lumber, which can then be utilized as the base for a handrail.

[0059] FIG. 16 is an elevation view showing the use of the handrail on the scaffold platform system, as shown in FIG. 10, with outer walls 250, vertical support 252 and horizontal handrail 253.

[0060] It will also be appreciated by those of ordinary skill in the art that while the scaffolding brace is generally shown in the drawings attached to a substantially vertical wooden beam, the support can be made of any other material such as metal, composite or other.

[0061] It will also be appreciated by those of ordinary skill in the art that the scaffolding brace contemplated by this invention may be configured at a different angle such that the platform attachment mechanism such as a clamp may be attached to a support beam that is not substantially vertical, while still providing a suitable platform support surface. The different angle may be any one of a number of different angles from zero to ninety degrees. It is also contemplated by some embodiments of this invention that the angle may be variable such that one variable-angle scaffold support brace may be attached to a support or base at any one of a number of different angles from and including vertical, and still provide a suitable platform support surface.

[0062] As will be appreciated by those of reasonable skill in the art, there are numerous embodiments to this invention, and variations of elements and components which may be used, all within the scope of this invention.

[0063] In one embodiment for example, a scaffold platform support is provided which is comprised of: a scaffold platform support framework which includes a platform support surface and a clamp which is configured for attachment and detachment to a scaffold support structure. Further embodiments from the foregoing may be: further wherein the clamp is a vice type of clamp; further wherein vice type of clamp has two areas of clamp engagement; further wherein the platform support surface is a flat surface configured to receive a scaffold platform. Aspects of the invention may additionally include: a platform retention apparatus, or where the use of the scaffold support structure is a framing stud.

[0064] In yet another embodiment, a scaffold support system is provided which is comprised of: a first scaffold clamp and second scaffold clamp each comprising: a platform support surface for providing a surface on which a scaffold platform is supported; and a clamp portion for attaching and detaching to a base support member; wherein the first scaffold clamp is mounted on a first base support member spaced apart from the second scaffold clamp mounted on a second base support member spaced apart from the first scaffold clamp; and further wherein a scaffold support platform is supported at a first end by the platform support surface of the first scaffold clamp and supported at a second end by the platform support surface of the second scaffold clamp. Further aspects of this embodiment may be: further wherein the clamp portion of at least one of the first scaffold clamp and the second scaffold clamp is a vice type of clamp; and may additionally be wherein the clamp portion of at least one of the first scaffold clamp and the second scaffold clamp further includes one or more teeth configured to engage a base support further wherein at least one of the first base support member and the second base support member is a framing stud.

[0065] In yet another embodiment of the invention, a scaffold platform support is provided which is comprised of: a scaffold platform support framework which includes a platform support surface; a support peg configured for placement through a peg aperture in a scaffold support structure; and wherein the support framework includes an abutment point configured to abut against the scaffold support structure. Further aspects of this invention may be: further wherein the platform support surface is a flat surface configured to receive a scaffold platform; and/or further comprising a platform retention apparatus.

[0066] In still another embodiment of the invention, a method for securing a scaffold platform support is provided, and which is comprised of the following: providing a scaffold platform support framework which includes a platform support surface, the support framework including a support peg configured for placement through a peg aperture in a scaffold support structure; further providing the support framework includes an abutment point configured to abut against the scaffold support structure; and inserting the support peg into the peg aperture in the scaffold support structure such that the abutment point abuts the scaffold support structure.

[0067] In compliance with the statute, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.

We claim:
1. A scaffold platform support comprised of:
 a scaffold platform support framework which includes a platform support surface and a clamp which is configured for attachment and detachment to a scaffold support structure.
2. A scaffold platform support as recited in claim 1, and further wherein the clamp is a vice type of clamp.
3. A scaffold platform support as recited in claim 2, and further wherein vice type of clamp has two areas of clamp engagement.
4. A scaffold platform support as recited in claim 1, and further wherein the platform support surface is a flat surface configured to receive a scaffold platform.
5. A scaffold platform support as recited in claim 4, and further comprising a platform retention apparatus.
6. A scaffold platform support as recited in claim 5, and further wherein the scaffold support structure is a framing stud.
7. A scaffold platform support as recited in claim 6, and further wherein the framing stud is comprised of wood.
8. A scaffold platform support as recited in claim 6, and further wherein the framing stud is substantially vertically oriented.
9. A scaffold support system, comprising:
 a first scaffold clamp and second scaffold clamp each comprising:
 a platform support surface for providing a surface on which a scaffold platform is supported; and
 a clamp portion for attaching and detaching to a base support member;

 wherein the first scaffold clamp is mounted on a first base support member spaced apart from the second scaffold clamp mounted on a second base support member spaced apart from the first scaffold clamp; and further wherein a scaffold support platform is supported at a first end by the platform support surface of the first scaffold clamp and supported at a second end by the platform support surface of the second scaffold clamp.

10. A scaffold support system as recited in claim 9, and further wherein the clamp portion of at least one of the first scaffold clamp and the second scaffold clamp is a vice type of clamp.

11. A scaffold support system as recited in claim 10, and wherein the clamp portion of at least one of the first scaffold clamp and the second scaffold clamp further includes one or more teeth configured to engage a base support member to which the clamp is to be attached.

12. A scaffold support system as recited in claim 11, and further wherein the clamp type of clamp of at least one of the first scaffold clamp and the second scaffold clamp has two areas of clamp engagement.

13. A scaffold support system as recited in claim 9, and further wherein the platform support surface is a flat surface configured to receive a scaffold platform.

14. A scaffold support system as recited in claim 13, and further comprising a platform retention apparatus.

15. A scaffold support system as recited in claim 14, and further wherein at least one of the first base support member and the second base support member is a framing stud.

16. A scaffold support system as recited in claim 15, and further wherein at least one framing stud is comprised of wood.

17. A scaffold support system as recited in claim 15, and further wherein the framing stud is substantially vertically oriented.

18. A scaffold platform support comprised of:
 a scaffold platform support framework which includes a platform support surface;
 a support peg configured for placement through a peg aperture in a scaffold support structure; and wherein the support framework includes an abutment point configured to abut against the scaffold support structure.

19. A scaffold platform support as recited in claim 18, and further wherein the platform support surface is a flat surface configured to receive a scaffold platform.

20. A scaffold platform support as recited in claim 19, and further comprising a platform retention apparatus.

21. A scaffold platform support as recited in claim 20, and further wherein the scaffold support structure is a framing member.

22. A scaffold platform support as recited in claim 21, and further wherein the framing member is comprised of wood.

23. A scaffold platform support as recited in claim 21, and further wherein the framing member is substantially vertically oriented.

24. A method for securing a scaffold platform support, comprised of the following:

 providing a scaffold platform support framework which includes a platform support surface, the support framework including a support peg configured for placement through a peg aperture in a scaffold support structure;

 further providing the support framework includes an abutment point configured to abut against the scaffold support structure; and

 inserting the support peg into the peg aperture in the scaffold support structure such that the abutment point abuts the scaffold support structure.