Automatic Control Channel Planning in Adaptive Channel Allocation Systems

Methods and systems for allocating control channels in a radio communication system are disclosed. Control channels are each linked to a dedicated traffic channel such that when the dedicated traffic channel is allocated to a particular cell, so is its respective control channel. Implementation according to the present invention is independent of the particular ACA scheme used to determine traffic channel allocation.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>GE</td>
<td>Georgia</td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GN</td>
<td>Guinea</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GR</td>
<td>Greece</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>HU</td>
<td>Hungary</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>IE</td>
<td>Ireland</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>IT</td>
<td>Italy</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>BI</td>
<td>Benin</td>
<td>JP</td>
<td>Japan</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>KE</td>
<td>Kenya</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KP</td>
<td>Democratic People’s Republic</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>CZ</td>
<td>Czechoslovakia</td>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>DE</td>
<td>Germany</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>DK</td>
<td>Denmark</td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>ES</td>
<td>Spain</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>CZ</td>
<td>Czech Republic</td>
<td>SZ</td>
<td>Swaziland</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>DE</td>
<td>Germany</td>
<td>TG</td>
<td>Chad</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>DK</td>
<td>Denmark</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>ES</td>
<td>Spain</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td>FI</td>
<td>Finland</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td>FR</td>
<td>France</td>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>FR</td>
<td>France</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>GA</td>
<td>Gabon</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td>GB</td>
<td>United Kingdom</td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
<tr>
<td>GB</td>
<td>United Kingdom</td>
<td>GE</td>
<td>Georgia</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>GE</td>
<td>Georgia</td>
<td>GN</td>
<td>Guinea</td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>GN</td>
<td>Guinea</td>
<td>GR</td>
<td>Greece</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>GR</td>
<td>Greece</td>
<td>HU</td>
<td>Hungary</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>HU</td>
<td>Hungary</td>
<td>IE</td>
<td>Ireland</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>IE</td>
<td>Ireland</td>
<td>IT</td>
<td>Italy</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>IT</td>
<td>Italy</td>
<td>JP</td>
<td>Japan</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>JP</td>
<td>Japan</td>
<td>KE</td>
<td>Kenya</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>KE</td>
<td>Kenya</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>KP</td>
<td>Democratic People’s Republic</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>KP</td>
<td>Democratic People’s Republic</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>KR</td>
<td>Republic of Korea</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>KZ</td>
<td>Kazakhstan</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td>LI</td>
<td>Liechtenstein</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>LK</td>
<td>Sri Lanka</td>
<td>LR</td>
<td>Liberia</td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>LR</td>
<td>Liberia</td>
<td>LT</td>
<td>Lithuania</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>LT</td>
<td>Lithuania</td>
<td>LU</td>
<td>Luxembourg</td>
<td>SZ</td>
<td>Swaziland</td>
</tr>
<tr>
<td>LU</td>
<td>Luxembourg</td>
<td>LV</td>
<td>Latvia</td>
<td>TG</td>
<td>Chad</td>
</tr>
<tr>
<td>LV</td>
<td>Latvia</td>
<td>MC</td>
<td>Monaco</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>MC</td>
<td>Monaco</td>
<td>MD</td>
<td>Republic of Moldova</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>MD</td>
<td>Republic of Moldova</td>
<td>MG</td>
<td>Madagascar</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>MG</td>
<td>Madagascar</td>
<td>ML</td>
<td>Mali</td>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td>ML</td>
<td>Mali</td>
<td>MN</td>
<td>Mongolia</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>MN</td>
<td>Mongolia</td>
<td>MR</td>
<td>Mauritania</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>MR</td>
<td>Mauritania</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AUTOMATIC CONTROL CHANNEL PLANNING IN
ADAPTIVE CHANNEL ALLOCATION SYSTEMS

RELATED APPLICATION

This application is related to U.S. Patent Application Serial No. 08/418,682, entitled "Stabilized Control Channel Planning Using Loosely Coupled Dedicated Traffic Channels" and filed on an even date herewith.

BACKGROUND

The present invention relates generally to adaptive channel allocation in radiocommunication systems and more particularly to automatic control channel planning in systems which utilize adaptive channel allocation.

Various methods have been introduced to efficiently utilize the limited range of frequencies available for radio communications. One well-known example is frequency reuse, a technique whereby groups of frequencies are allocated for use in regions of limited geographic coverage known as cells. Cells containing the same groups of frequencies are geographically separated to allow callers in different cells to simultaneously use the same frequency without interfering with each other. By so doing many thousands of subscribers may be served by a system of only several hundred frequencies.

The design and operation of such a system is described in an article entitled Advanced Mobile Phone Service by Blecher, IEEE Transactions on Vehicular Technology, Vol. VT29, No. 2, May, 1980, pp. 238-244. Commonly known as the AMPS system, this system had allocated to it by the FCC a block of the UHF frequency spectrum further subdivided into pairs of narrow frequency bands called channels. At present there are 832, 30 kHz wide channels allocated to cellular mobile communications in the United States. A table of the frequencies dedicated to mobile communications in the U.S. is shown in Figure 1. Of the 832 available channels, there are 21 control channels dedicated each to the A-carrier and the B-carrier. These 42 control channels provide system information and cannot be used for
voice traffic. The remaining 790 channels, known as voice or traffic channels, carry the burden of voice or data communication.

Frequency planning is a process by which individual channels are assigned to cells within the network. Currently, most frequency planning is done a priori; that is a fixed frequency plan is "hard-wired" in place by each cellular system operator. This is known as fixed channel allocation, or FCA. However, as interference and traffic load are time varying, FCA has disadvantages with regard to system adaptability. For example, in microcells, picocells, and indoor cellular or PCS systems, the base stations are located so densely and the environment is so unpredictable and time-varying (e.g. opening a door changes the interference conditions), that channel planning becomes nearly impossible. Because of the time varying nature of the interference, therefore, an adaptive scheme can offer significant advantages in this regard.

Adaptive channel allocation, or ACA, is a method of dynamically allocating frequencies throughout a cellular system to increase system capacity and adaptability. Under an ACA scheme, more frequencies would be allocated to busy cells from more lightly loaded cells. In addition, the channels can be allocated such that all links have satisfactory quality. A common feature of ACA systems is that they allocate a channel out of a set of channels which fulfills some predetermined quality criteria. However, different ACA schemes select channels from the set based upon different criteria.

The concept of ACA is well-known to those skilled in the art, and its potential has been described in various publications. For example, "Capacity Improvement by Adaptive Channel Allocation", by Håkan Eriksson, IEEE Global Telecomm. Conf., Nov. 28-Dec. 1, 1988, pp. 1355-1359, illustrates the capacity gains associated with a cellular radio system where all of the channels are a common resource shared by all base stations. In the above-referenced report, the mobile measures the signal quality of the downlink, and channels are assigned on the basis of selecting the channel with the highest signal to interference ratio (C/I level).

Another approach is described by G. Riva, "Performance Analysis of an Improved Dynamic Channel Allocation Scheme for Cellular Mobile Radio Systems",.
42nd IEEE Veh. Tech. Conf., Denver, 1992, pp. 794-797 where the channel is selected based on achieving a quality close to or slightly better than a required C/I threshold. Furuya Y. et al., "Channel Segregation, A Distributed Adaptive Channel Allocation Scheme for Mobile Communications Systems", Second Nordic Seminar on Digital Land Mobile Radio Communication, Stockholm, October 14-16, 1986, pp. 311-315 describe an ACA system wherein the recent history of link quality is considered as a factor in allocation decisions. In addition several hybrid systems have been presented where ACA is applied to a small block of frequencies on top of an FCA scheme. Such an example is presented in Sallberg, K., et al., "Hybrid Channel Assignment and Reuse Partitioning in a Cellular Mobile Telephone System", Proc. IEEE VTC '87, 1987, pp. 405-411.

Apart from increases in system capacity, adaptive channel allocation obviates the need for system planning. Planning is instead performed by the system itself. This feature of ACA is particularly attractive when system changes are implemented, when new base stations are added, or when the environment changes, for example by the construction or demolition of large buildings.

The above described adaptive channel allocation schemes, however, have generally been utilized only in conjunction with the allocation of traffic channels, and not control channels. Thus, although each base station has access to all the traffic channels, the allocation of control channels has typically remained a fixed allocation in which each base station uses a certain predetermined control channel or channels. Since the control channels are not adaptively allocated, the operator has to plan these channels geographically, i.e., which base gets what control channel so as to minimize the amount of co-channel interference experienced on the control channels. Thus, the advantages of increased capacity and adaptability realized in ACA traffic channel allocation have generally not been achieved with respect to control channel allocation. Because control channels have been fixed to each base station, changes in control channel allocation have required costly system reconfiguration. However, only if both the traffic channels and the control channels are automatically allocated is the operator effectively relieved from planning the system.
A partial solution to the problems of fixed control channel allocation could be provided by a system which directly incorporated the allocation of control channels into a conventional ACA scheme. However, allocation of traffic channels in ACA routines is based on certain criteria such as interference, channel success rate, previous performance of the channel, etc., whereas criteria for measuring quality are quite different for control channels. For example, there is no success rate of previous performance for control channels since (1) a control channel cannot be allowed to be unsuccessful, and (2) the performance of different control channels cannot be compared because this would require alternatively using each of the control channels to get an average performance measure. The latter is not desirable, since control channel allocation should remain reasonably stable.

Another problem with incorporating control channels directly into a conventional ACA routine is that the transmission on control channels is bursty and irregular, particularly on the uplink from mobile to base, because the many mobile stations transmit control signals over a range of different distances and power levels. Consequently, measurements of these bursty control signals do not provide a reliable indication on which to base ACA decisions. Thus, the incorporation of control channels directly into a conventional ACA routine is not a desirable solution to the problem presented by the lack of a mechanism for adaptively allocating control channels.

There is a need in the industry, therefore, for a system and method of automatic control channel planning in ACA systems which provide reliability and system adaptability in the allocation of control channels.

SUMMARY

Accordingly, it is an object of the invention to provide a method and apparatus which enable a system using adaptive channel allocation (ACA) for allocating traffic or voice channels, to automatically plan the control channels as well. The method can allocate control channels using any existing ACA scheme, for example in the AMPS or ADC systems, currently used by an operator for traffic channel allocation.
According to exemplary embodiments of the invention, a radiocommunication system utilizes a block of control channels in the frequency spectrum to transmit control information between base and mobile stations. The system also utilizes a set of traffic channels to transmit information such as voice information between bases and mobiles. Each base in the cellular system has access to all the traffic channels and all the control channels. Included in the set of traffic channels is a block of dedicated traffic channels, each one of which is associated or coupled with a particular control channel in the block of control channels. The particular frequency pairing of each dedicated traffic channel and its associated control channel is the same wherever these frequencies are reused.

When one of the dedicated traffic channels is reallocated to another base station according to an ACA decision, the associated control channel is reallocated to the same base station. Because the frequency pairing is the same wherever the frequencies are reused, there is a high correlation between the quality in the coupled channels. Thus, by adaptively allocating the dedicated traffic channels to base stations using an ACA routine, the coupled control channels are adaptively allocated as well, without directly incorporating the control channels into an ACA routine.

The invention thus provides several advantages over prior radiocommunications systems. For example, both the traffic channels and the control channels are adaptively allocated to fully relieve an operator from system planning. The benefit of not having to fixedly associate control channels with base stations, and the resultant ability to adapt to slow changes in the environment, such as new buildings and large constructions, or changes in the infrastructure, for example the addition of more base stations in "hot spots", is of prime importance. This represents a significant advantage over systems which employ ACA on traffic channels only.

Another advantage of the invention is that it operates through the allocation of the traffic channels based on measurements of the traffic channels. These measurements are significantly more reliable and easy to determine than measurements of the control channels.

The invention also provides the ACA benefit that the system adapts to the traffic conditions. Peak traffic conditions can be accommodated by temporarily
allocating more traffic channels in a restricted area. For control channels, this adaptation to non-uniform traffic is generally less of a concern. However, the present invention allows the usage of more than one control channel in a base when required by traffic conditions.

**BRIEF DESCRIPTION OF THE DRAWINGS**

The foregoing and other objects, features and advantages of the present invention will be more readily understood upon reading the following detailed description in conjunction with the drawings in which:

- Figure 1 is an illustration of the allocated frequency spectrum as per the U.S. standard IS-54B;
- Figure 2 is a diagram of an exemplary radiocommunication network;
- Figure 3 is a schematic diagram of an exemplary base and mobile station;
- Figure 4 is a diagram of traffic and control channels in a frequency spectrum according to an exemplary embodiment of the invention;
- Figure 5 is a diagram of traffic channel allocation when no dedicated traffic channels are in use; and
- Figure 6 is a diagram of traffic channel allocation when one dedicated traffic channel is in use.

**DETAILED DESCRIPTION**

Before describing the details of the present invention, an example of the construction of a cellular mobile radio system in which the present invention can be utilized will be described. While the construction shown depicts a digital system, those skilled in the art will appreciate that it is also possible to implement the present invention on other types of systems such as analog or dual-mode systems.

Fig. 2 is a schematic diagram illustrating ten cells, C1 to C10, in a cellular mobile radio telephone system. Normally methods according to the present invention would be implemented in a cellular mobile radio system comprising many more cells than ten. For purposes of this discussion, the system depicted herein is considered to be an isolated portion of a larger system which has been fragmented.
For each cell C1 to C10, there is a respective base station B1 to B10. Fig. 2 illustrates base stations situated in the vicinity of cell centers and having omni-directional antennas. The base stations of adjacent cells may however be co-located in the vicinity of cell borders and have directional antennas.

Also illustrated in Figure 2 are ten mobile stations M1 to M10, which are movable within a cell and from one cell to another cell. The method according to the present invention may be implemented in a cellular mobile radio system comprising many more mobile stations than ten. Normally, there are many more mobile stations than there are base stations.

A mobile switching center MSC as illustrated in Fig. 2 is connected to all ten illustrated base stations, for example by cables or other media such as fixed radio links. The mobile switching center is also connected by cables or other media to, for example, a public switching telephone network or similar fixed network with ISDN facilities. Not all connections from the mobile switching center to base stations and connections to the fixed network are illustrated in Figure 2 to simplify the illustration.

An exemplary base station 110 and mobile 120 are illustrated in Figure 3. The base station includes a control and processing unit 130 which is connected to the MSC 140 which in turn is connected to the public switched telephone network (not shown).

The base station 110 for a cell includes a plurality of traffic or voice channels handled by traffic channel transceiver 150 which is controlled by the control and processing unit 130. Also, each base station includes a control channel transceiver 160 which may be capable of handling more than one control channel. The control channel transceiver 160 is controlled by the control and processing unit 130. The control channel transceiver 160 broadcasts control information over the control channel of the base station or cell to mobiles locked to that control channel. The traffic channel transceiver broadcasts the traffic or voice channels which can also include digital control channel location information.

When the mobile 120 first enters idle mode, it periodically scans the control channels of base stations such as base station 110 to determine which cell to lock on to. The mobile 120 receives the absolute and relative information broadcast on a control channel at its traffic and control channel transceiver 170. Then, the
processing unit 180 evaluates the received control channel information which includes
the characteristics of the candidate cells and determines which cell the mobile should
lock to. The received control channel information not only includes absolute
information concerning the cell with which it is associated, but can also contain
relative information concerning other cells proximate to the cell with which the
control channel is associated. These adjacent cells are periodically scanned while
monitoring the primary control channel to determine if there is a more suitable
candidate.

In the above described radiocommunication system, the frequency spectrum
according to an exemplary embodiment of the invention is divided into two parts, one
part for the control channels and one part for the traffic channels. Figure 4 shows a
set 50 of N control channels F_cl to F_cN. Under the AMPS and IS-54 systems, for
example, a block of 21 frequencies located in a dedicated part of the frequency
spectrum can be set aside for control channels so that the mobiles know where in the
frequency spectrum to scan for the control channels. According to other schemes, the
control channels may be disposed on channels which are not adjacent to one another
and may be located by mobile stations using a variety of mechanisms, e.g., by
location information transmitted on traffic channels. Those skilled in the art will
appreciate that the present invention is applicable to any system in which control
channels are employed.

Figure 4 also shows sets 60 and 70 of N+M channels used for traffic,
including a set 60 of N dedicated traffic channels F_dt1 to F_dtN. For example, a
21-channel, dedicated traffic channel block 60 can be specified somewhere in the
channel space, such as adjacent to block 50, although this particular arrangement is
not required. Finally, Figure 4 shows a set 70 of M ordinary traffic channels F_t1 to
F_tM.

Unlike conventional systems, the control channels according to exemplary
embodiments of the invention can be used by any base station, and no fixed allocation
of control channels to base stations is performed a priori. Instead, each control
channel is coupled to or associated with one of the dedicated-traffic channels, shown
in Figure 4, resulting in N pairs of control/dedicated-traffic channels, F_cl/F_dt1,
where i ranges from 1 to N. The method of frequency allocation as well as the division of frequencies used for control channels, dedicated traffic channels, and ordinary traffic channels can be the same in every base station in the cellular system. In addition, the particular frequency pairing of each dedicated traffic channel and its associated control channel can be the same in every base station in the system.

The traffic channels, including the dedicated traffic channels, can be incorporated directly into an ACA scheme, whereby they are allocated to base stations according to changing interference conditions, for example. The ACA scheme used for the traffic channels is preferably a distributed scheme, i.e., the ACA method uses local information and is carried out in the base stations or in the MSC. When a dedicated traffic channel, for example F_dt1, is re-allocated within block 60 because of an ACA optimization decision, the coupled control channel, in this example F_c1, will also be re-allocated to the same base station. The invention thus provides for automatic planning of control channels through a method of coupling each control channel to an associated, dedicated traffic channel.

Such a reallocation of a dedicated traffic channel might occur, for example, because of an unacceptably high co-channel interference level from a nearby base station transmitting on the same dedicated traffic channel frequency. Because the interfering neighboring base station uses the same pairing of dedicated traffic channel and associated control channel, it is also likely that there will be an unacceptably high interference on the control channel frequency. In other words, because all control channels in all bases are coupled in the same way to the dedicated traffic channels in the traffic block 60, there is a large correlation between the quality and interference level in the coupled channels. It will also be desirable, therefore, to use the control channel coupled to a newly allocated dedicated traffic channel, because the dedicated traffic channel has been chosen, for example, for its low interference level. Thus, optimizing the dedicated traffic channels in block 60 through the ACA scheme will automatically optimize the control channels in block 50 as well.

Moreover, by basing the channel allocation decisions on measurements of the traffic channels rather than measurements of the control channels, system reliability is enhanced. Because transmission on control channels is bursty and irregular,
particularly on the uplink from mobile to base, measurements of the traffic channels provide a more reliable indication on which to base ACA decisions.

According to an exemplary embodiment, the invention can reduce the occurrence of changes in control channel allocation by controlling the selection of dedicated traffic channels by the base station. For example, the use of the dedicated traffic channels in block 60 can be restricted such that a base uses only as many dedicated traffic channels from block 60 as it needs control channels. For most of the time, only one control channel per base is required, and therefore a base uses only one of the dedicated traffic channels in block 60. Thus, if none of the dedicated traffic channels is in use at a particular base station, the ACA scheme 80 can select from only the N dedicated traffic channels as a pool, as shown in Figure 5. On the other hand, if a dedicated traffic channel is already in use at a particular base station, the ACA scheme can select from only the block 70 of M ordinary traffic channels, rather than the dedicated traffic channels, as shown in Figure 6. However, during peak traffic conditions, additional control channels can be allocated to the base station based on which dedicated traffic channels exhibit a low interference level, and the base can then use the additional coupled dedicated traffic channels. The base also normally uses additional traffic channels from the frequency spectrum which are not in the dedicated traffic block 60.

Due to the restriction discussed above regarding the number of dedicated traffic channels which can be used by a particular base station, the invention can provide a high reuse factor for the dedicated traffic channels of approximately N, the number of control channels. N is 21, for example, in the IS-54 system and 12 in the GSM system, and can be chosen to be sufficiently large to ensure an acceptable level of co-channel interference.

Because the effective reuse factor of the dedicated traffic channels in block 60 is relatively large, there will be few intracell handovers of the dedicated traffic channels. The occasion that a link on the dedicated traffic channel will be reallocated outside of block 60 will also be very infrequent because the dedicated traffic channels generally have a lower co-channel interference than ordinary traffic channels. The high reuse factor can thus provide a stable selection of the dedicated traffic channels,
i.e., most of the time, the same dedicated traffic channel is chosen. Therefore, the allocations of the control channels, which are coupled to the dedicated traffic channels, are relatively fixed, and are generally re-allocated, for example, only when the system is reconfigured, or in the event that an additional control channel is needed locally. In such cases, the traffic channel can inform all users of the current control channel where to find the new control channel.

In general, it is desirable for the number of control channels N to be relatively large so that low co-channel interference is assured. Ordinary traffic channels, on the other hand, can have a much lower effective reuse under heavy traffic conditions in an ACA scheme. For example, in the worst case, all bases allocate all traffic channels, in which case the reuse factor is only 1. Thus, since N for the control channels is usually larger than the minimum reuse factor required of the system for all channels including the ordinary traffic channels, an added advantage of the invention is that the dedicated-traffic channels are easy to allocate because of their inherently low co-channel interference, i.e., since the number of dedicated traffic channels allocated to each cell is limited.

In the case of an intercell handover where the user on the dedicated traffic channel moves into another cell, or in the case that the user of the dedicated traffic channel hangs up, another user currently using an ordinary traffic channel served by the base can take the place of the user that left the dedicated traffic block, since at least one control channel should be available per base. This dedicated traffic channel will with high probability have a higher performance than the ordinary traffic channel since it has a high reuse factor.

If there are no other users in the cell to which the dedicated traffic channel can be handed over, a dummy user can be introduced. At any time a control channel should be present in a cell, e.g., for broadcasting cell information, even if temporarily no users are served by this base. When no traffic channels are in use, even no dedicated traffic channels, it is unclear which control channel to allocate for this purpose. Therefore, a dummy user can be introduced. This allows the system to have a channel ready in case a request is made. The channel allocated to the dummy user does not have to be active, but it is preferably treated by the ACA routine as a
channel that would be allocated when a new, real user becomes active. As soon as a
call is made, the dummy user changes into a real user. During the time when there
are no users, the environment may change. The ACA scheme can still anticipate this
by continuously monitoring the channels. Each time it can select the best dedicated
traffic channel which will be used if a call were to be requested. However, as long as
no call comes in, this process can also be regarded as serving a dummy user.

The foregoing description focuses on characteristics of the present invention.
Those skilled in the art will readily appreciate that the present invention is applicable
to any ACA scheme, that is adaptive channel allocation based upon any quality
criteria selection scheme. Although these exemplary embodiments assume a fixed set
of frequencies allocated for control channel usage (e.g., the 21 control channels
allocated for AMPS and IS-54), those skilled in the art will recognize that the present
invention is also applicable to systems in which the control channel frequencies are
not fixed. For example, the digital control channel (DCC) scheme in IS-136 allows a
digital control channel to be allocated anywhere in the spectrum. However, since
each carrier that supports a DCC also supports two traffic channels in the three slot
IS-136 TDMA scheme, one of these traffic channels can be coupled to the DCC on
the shared carrier.

Moreover, while the illustrative embodiments have been described in terms of
mobile stations and cellular systems generally, it will be understood that the present
invention is applicable to any type of wireless remote device (e.g., PCS, PDA,
modems, data terminals, portable units) and any type of system (e.g., satellite
transmission system, hybrid satellite and land-based transmission system, indoor
system, etc.).

The above-described exemplary embodiments are intended to be illustrative in
all respects, rather than restrictive, of the present invention. Thus the present
invention is capable of many variations in detailed implementation that can be derived
from the description contained herein by a person skilled in the art. All such
variations and modifications are considered to be within the scope and spirit of the
present invention as defined by the following claims.
CLAIMS:

1. A method for allocating control channels in a radiocommunication system comprising the steps of:

   providing a plurality of traffic channels in said radiocommunication system;
   providing a plurality of control channels in said radiocommunication systems;
   associating a dedicated one of said plurality of traffic channels with one of said plurality of control channels; and
   allocating said dedicated one of said plurality of traffic channels and said one of said control channel to a base station in said radiocommunication system.

2. The method of claim 1 further comprising the steps of:

   handing over a connection on said dedicated one of said plurality of traffic channels to another dedicated traffic channel; and
   allocating a control channel associated with said traffic channel to said base station.

3. The method of claim 1, further comprising the step of:

   allocating another dedicated one of said plurality of traffic channels and another one of said plurality of control channels associated with said another dedicated one of said plurality of traffic channels to said base station.

4. A method for allocating channels in a radiocommunication system which includes a plurality of traffic channels and a plurality of control channels comprising the steps of:

   designating said plurality of traffic channels as one of dedicated traffic channels and undedicated traffic channels;
   associating each of said control channels with one of said dedicated traffic channels;
allocating a dedicated traffic channel to a cell; and
allocating a respective associated control channel to said cell.

5. The method of claim 4, wherein said first step of allocating further
comprises the step of:
allocating said dedicated traffic channel to said cell based upon at least
one predetermined quality criteria.

6. In a radiocommunication system having base stations which transmit
information on traffic channels and control channels, a method for allocating control
channels to the base stations comprising the steps of:
coupling at least one of the traffic channels with one of the control channels;
allocating the traffic channels to the base stations; and
allocating the control channels to the base stations based on the allocation of
the coupled traffic channels to the base stations.

7. The method of claim 6, wherein the traffic channels are allocated to the
base stations using Adaptive Channel Allocation.

8. The method of claim 6, further comprising the step of restricting the
number of coupled traffic channels allocated to one of the base stations based on the
number of coupled control channels allocated to said one of the base stations.

9. A method for allocating control channels in a radiocommunication
system comprising the steps of:
providing a plurality of traffic channels and control channels in said
radiocommunication system;
associating at least one of the traffic channels with one of the control channels;
allocating the associated traffic channel to a base station; and
allocating the associated control channel to the base station.
10. The method of claim 9, further comprising the steps of:
handing over a connection on said associated traffic channel to a second
associated traffic channel; and
allocating a second control channel associated with said second associated
traffic channel to the base station.

11. The method of claim 9, further comprising the steps of:
allocating a second control channel and a second traffic channel associated with
said second control channel to said base station.

12. The method of claim 9, further comprising the steps of:
providing a connection to a user on the associated traffic channel; and
handing over a connection on said associated traffic channel to a dummy user
if the user hangs up or leaves a cell of the base station.

13. The method of claim 9, further comprising the steps of:
providing a connection to a first user on the associated traffic channel; and
handing over a connection on said associated traffic channel to a second user if
the first user hangs up or leaves a cell of the base station.

14. A base station in a radiocommunication system comprising:
means for associating each of a plurality of control channels with a traffic
channel;
means for selecting one of the associated traffic channels for communication
using Adaptive Channel Allocation; and
means for selecting one of the control channels for communication based on
the selection of the associated traffic channel.
### FIG. 1

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>BANDWIDTH (MHz)</th>
<th>NUMBER OF CHANNELS</th>
<th>BOUNDARY CHANNEL NUMBER</th>
<th>TRANSMITTER CENTER FREQUENCY (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOT USED</td>
<td></td>
<td>1</td>
<td></td>
<td>MOBILE</td>
</tr>
<tr>
<td>A&quot;</td>
<td>1</td>
<td>33</td>
<td>991 1023</td>
<td>824.040</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td>1 333</td>
<td>825.000</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>333</td>
<td>334 666</td>
<td>835.020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>333</td>
<td>334 666</td>
<td>834.990</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>333</td>
<td>667 716</td>
<td>845.010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>333</td>
<td>667 716</td>
<td>844.980</td>
</tr>
<tr>
<td>A'</td>
<td>1.5</td>
<td>50</td>
<td>667 716</td>
<td>846.510</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>667 716</td>
<td>846.480</td>
</tr>
<tr>
<td>B'</td>
<td>1.5</td>
<td>83</td>
<td>717 799</td>
<td>848.970</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRANSMITTER</th>
<th>CHANNEL NUMBER</th>
<th>CENTER FREQUENCY (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOBILE</td>
<td>(1 \leq N \leq 799) (990 \leq N \leq 1023)</td>
<td>0.030 (N + 825.000) 0.030 ((N-1023) + 825.000)</td>
</tr>
<tr>
<td>BASE</td>
<td>(1 \leq N \leq 799) (990 \leq N \leq 1023)</td>
<td>0.030 (N + 870.000) 0.030 ((N-1023) + 870.000)</td>
</tr>
</tbody>
</table>
FIG. 6

ORDINARY TRAFFIC CHANNELS

\[ \begin{align*}
70 & \quad F_{t1} \\
70 & \quad F_{t2} \\
70 & \quad F_{tM}
\end{align*} \]

\[ \begin{align*}
80 & \quad ACA ROUTINE
\end{align*} \]

\[ F_{ti} \]
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 H04Q7/36 H04Q7/38

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 H04Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A EP,A,0 529 859 (NORTHERN TELECOM LTD) 3 March 1993
see column 5, line 56 - column 6, line 27
see column 8, line 41 - column 9, line 14 ---

A PATENT ABSTRACTS OF JAPAN
vol. 94, no. 010
& JP,A,06 284075 (MATSUHITA ELECTRIC IND CO LTD), 7 October 1994,
see abstract -----

1,4,6,9, 14

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents:
A' document defining the general state of the art which is not considered to be of particular relevance
E' earlier document but published on or after the international filing date
L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
O' document referred to in an oral disclosure, use, exhibition or other means
P' document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
"&" document member of the same patent family

Date of the actual completion of the international search

22 August 1996

Date of mailing of the international search report

13.09.96

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Authorized officer
Behringer, L.V.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CA-A-2075860</td>
<td>23-02-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A-5259970</td>
<td>08-10-93</td>
</tr>
</tbody>
</table>