B. S. SUMMERS

METHOD AND APPARATUS FOR TREATING PLAX

UNITED STATES PATENT OFFICE.

BERTRAND S. SUMMERS, OF PORT HURON, MICHIGAN.

METHOD AND APPARATUS FOR TREATING FLAX.

Application filed April 23, 1920. Serial No. 375,978.

To all whom it may concern:

Be it known that I, BERTRAND S. SUMMERS, a citizen of the United States, residing at 2557 Military Street, Port Huron, county 5 of St. Clair, and State of Michigan, have invented certain new and useful Improvements in Methods and Apparatus for Treating Flax, of which the following is a specification.

My invention relates to an improved method and apparatus for the treatment of flax straw to produce therefrom fiber suitable for commercial use in the manufacture of yarns and linens, and has for its object 15 to provide a method and apparatus for carrying out the method by means of which such treatment may be conducted con-tinuously and expeditiously and resulting in the production of a fiber having high spinning quality and superior strength. With 20 ning quality and superior strength. this object in view, my invention is fully described in the accompanying specification and more particularly pointed out in the

In the drawings, Figure 1 is a plan view of the apparatus, Figure 2 is an elevation.

In the treatment of the flax straw as commonly carried out, it is retted after being cured in the field, or immediately 30 after it is gathered while in the green state. The retting process, generally speaking, softens the straw and renders the fiber more easily separable from the woody tissue and at the same time gives the required spinning qualities to the fiber. After retting, the retted straw is spread out in the field for drying and to complete the process. The straw as thus treated in the field is dried only to a partial extent, and is left in, what 40 I term, a natured state, that is to say, the valuable fiber together with the woody market of the straw are both in a tough, pliable retting of flax straw. For present purposes, condition. This condition of the fiber is these vats may generally be described as condition. The condition and for containing retting liquor, which is continuing therefrom and subjected able fiber together with the woody matter the subsequent spinning operation. The ously withdrawn therefrom and subjected woody matter is, however, difficult to separate to treatment to increase the beneficial bacfrom the fiber by the scutching, so that the teria, which cause the retting operation, the proper separation of the fiber from the wood material of the straw has always been a problem of some difficulty. This is illustrated in scutching mills working with natu-rally retted straw natured as above described. proper time, the straw contained therein. On the conveyor the retted straw is carried to a In these mills it is necessary to stop the system of squeeze rolls through which it is operation when the atmosphere is sur- passed. When the fiber reaches the squeeze 110 charged with moisture owing to the in- rolls, it is in soft plastic condition and imcreased toughness of the woody matters in pregnated with a gummy, sticky substance

the straw due to the presence of such moisture. This is because the straw natured as above described is so moist that the addition of a small amount of moisture is suffi- 60 cient to render the material incapable of commercial operation. Field drying is, of course, subject to interruption by rain, dews, or other local disturbances, and can only be practiced at certain favorable seasons of 65 the year in flax producing countries. After being thus prepared, the flax straw is bundled and shipped to the scutching mills, where it is subjected to the scutching operation to separate the fiber from the straw. 70 The fiber so separated by the scutching operation is then ready for spinning. In the treatment of flax straw so carried out the favorable outcome is dependent to a large extent upon weather conditions, and is sub- 75 ject to interruption thereby and to a nonuniformity of product, resulting in considerable hazard to the product. It is also necessary that a sufficient supply of flax straw be treated during the favorable season to 80 care for the demand until the next retting season occurs. The losses due to this method of treating flax straw amount to very large sums of money.

I have discovered that it is possible to 85 so treat flax straw as to make the production of fiber independent of weather conditions so that flax may be retted and treated continuously throughout the year as the demand therefor requires and to produce in po this way a more uniform quality of fiber having superior spinning qualities and of

a high strength.

In carrying out my invention, I use field cured straw, which, of course, has not been 95 retted or natured, and I provide a retting treated liquor being returned to the vats. The retting vats are provided with a con- 105 veyor adapted to withdraw therefrom, at the

deleterious to spinning qualities. It is necessary that this substance be removed, and, as the fiber at this point is in a delicate condition, it must be removed gently so as not to 5 tear and disintegrate the ribbon of fiber. For this purpose I bring a stream of warm water to the feed roll, which flows upon the surface of the feed rolls, and is, in turn, conveyed by the feed rolls in such a manner that 10 it flows gently upon the fiber just in advance of the entry of the fiber between the squeeze rolls. This water thus applied to the fiber softens and dissolves the gummy matter so that it is readily squeezed out from the 15 fiber by the squeeze rolls. In commercial operation large quantities of flax fiber are thus conveyed from the retting vat to the squeeze rolls. The proportion of fiber to the gummy matter and woody matter is about 20 one to five, so that a very large proportion of these waste matters must be removed, amounting I should say to approximately five to ten per cent of the total weight of the straw. By my method of washing as above 25 described, I am able to remove these deleterious matters with the least amount of water and with the least expenditure of time and labor, at the same time doing this without disturbing the ribbons of fiber and yet 30 more thoroughly cleansing them than is otherwise possible, and without interruption to the continuity of the process. The gummy and sticky matters are present in the straw retted in vats to a greater degree than 35 when the straw is subjected to the natural retting and subsequent field drying, as above described, so that the washing out of these matters is an important step. From the squeeze rolls the cleaned straw is deposited 40 upon conveyors which carry it to a dryer in which the straw is completely dried. After drying, the straw is carried by suitable conveyors to a naturing room where it is allowed to remain under proper conditions of temperature and moisture to effectuate the na-

turing of the straw. It will be here noted that in carrying out my present process, I first completely dry the straw before subjecting it to this natur-50 ing, whereas in all the prior processes with which I am acquainted the straw is in an incomplete state of dryness when taken from the field and is, therefore, natured, whereas in my process the flax straw is practically completely dried and is subsequently natured. In the straw retted by the natural process, containing as it does considerable amounts of moisture, while the fiber is tough and strong the wood is also more or less 60 affected by the moisture contained, which makes it more or less pliable and, therefore, difficult to remove from the fiber with which it is associated, in the scutching operation, while by my process both the wood and the

so that the straw is brittle. By the subsequent naturing the fiber becomes soft and pliable before the woody matters assume such a condition, so that the straw treated by my process is carried to the scutching 70 machines with the fiber in the soft and pliable condition and the wood in a brittle state so that the former is more easily separated from the wood and in better condition than is possible in any other way known 75

Having thus generally described my proc-

ess, I have shown in the drawings an apparatus suitable for carrying out this process, although it will be understood that 80 my process is not dependent upon the particular apparatus shown. The apparatus shown comprises the retting vats "A" provided with a suitable conveyor "B" which carries the retted straw to a chute "C" whence it falls upon a platform "D", from which platform it passes to the feed rolls "J", which carry it to the squeeze rolls "I". "G" is a pipe conducting warm water from a suitable source of supply "E" shown in 90 the present instance as a received a suitable source of supply "E" shown in 90 the present instance as a reservoir heated by coil "F". The pipe "G" is provided, at a point adjacent the squeeze rolls, with a spray nozzle "H", which sprays the warm water against the surface of one of the 95 squeeze rolls "I", from which the water flows gently upon the retted flax just in advance of the entry of the flax between the squeeze rolls. These squeeze rolls remove from the flax the gummy, sticky matters as 100 well as the excess of water. From the squeeze rolls the straw passes to oscillating apron "K" upon which the straw is agitated and spread out while passing there-from to the dryer conveyor "N". The dryer 105 apron carries the straw through a suitable dryer or dryers, O, in which the moisture is substantially completely removed from the straw at a temperature preferably of from 160 degrees to 190 degrees F. I have 110 shown in the drawing two dryers by means of which the drying temperatures may be varied in order to dry first with a higher temperature and later with a lower temperature, or vice versa, if desired. In some in- 115 stances, however, a single dryer may be sufficient. From the dryers the straw is conveyed by a suitable conveyor "P" to the naturing room "Q". In this room the straw is allowed to remain under suitable conditions of temperature and moisture to bring the straw into suitable condition for the scutching operation. This condition, as above described, is that the fiber portion of the straw should be in a soft and pliable 185 condition while the wood is yet brittle. These temperature and humidity conditions have a somewhat wide variation. Preferably, the temperature should be above 40 65 fiber are first practically completely dried degrees and the humidity above 50% satu-

It will, of course, be understood which comprises the steps of retting the that the naturing takes place more rapidly straw, removing the gummy matters there- 50 conditions are 70 degrees temperature and straw to a naturing process.

4. The process of treating flax straw stood, of course, that the apparatus for which comprises the steps of substantially 55 carrying out my process is arranged in a suitable building. By treating flax straw 10 in the manner described in this specification I am able to work upon field cured straw throughout the entire year, the various operations being conducted continuously and without interruntion. By the various of treating flax straw which comprises the steps of retting the straw, eliminating substantially all the straw. and without interruption. By my method 15 of vat retting, I secure a uniform product, and by my method of washing I remove the gummy and sticky matters from the retted straw without injury to the fiber and by
the step of completely drying the retted
and cleaned straw and subsequently naturstraw, artificially drying the retted straw, artificially drying the retted straw, artificially naturing the dried to separate the fiber from the woody matters more efficiently than has hitherto been possible in this art. While vat retting, washing and drying have been hitherto suggested, I believe that I am the first to discover that an atmosphere carrying sufficient moisture completely dry retted straw can be subsequently natured as herein described to render the straw suitable for further treatment, an arrangement of apparatus whereby the straw can be treated continuously and without interruption throughout the year.

Having now described my invention,

what I claim and desire to secure by Let-

ters Patent, is:

1. The process of treating flax straw which comprises the steps of retting straw, substantially completely drying the retted the retting vat through the dryer, and means straw, and then subjecting the dried straw to a naturing process.

2. The process of treating flax straw which comprises the steps of retting the comprising a dryer and a naturing room, washed straw, and then subjecting the dried straw from the dryer to the naturing room. straw to a naturing process.

3. The process of treating flax straw

with a sufficient amount of moisture in the from, and substantially completely drying than in a dry atmosphere. The ideal the straw, and then subjecting the dried

completely drying the straw, and then subjecting the dried straw to a naturing proc-

straw, eliminating substantially all the moisture therefrom, and then gradually re-introducing moisture to a degree sufficient to render the fiber portion of the straw pliable, while leaving the woody portion brittle.

straw, artificially drying the retted straw, and then artificially naturing the dried straw.

7. The process of treating flax straw which comprises the steps of subjecting the retted dried straw to the naturing action of whereby the fiber of the straw is softened 75 without softening the woody content of the

8. Apparatus for treating flax straw comprising a retting vat, squeeze rolls, a dryer, means for conveying the straw from the so retting vat to the squeeze rolls, and further means for conveying the straw from the squeeze rolls through the dryer.

9. Apparatus for treating flax straw comprising a retting vat, a dryer, a naturing 85 room, means for conveying the straw from for conveying the straw from the dryer to

10. Apparatus for treating flax straw 90 from, substantially completely drying the dryer, and further means for conveying the means for conveying the straw through the

April 13th, 1920 BERTRAND S. SUMMERS.