
(12) United States Patent
Becker et al.

US00811731 OB2

US 8,117,310 B2
Feb. 14, 2012

(10) Patent No.:
(45) Date of Patent:

(54) METHOD FOR THE CENTRAL CONTROL OF
RESOURCES IN EXPANDABLE MEDICAL
PLATFORMS

(75) Inventors: Detlef Becker, Möhrendorf (DE):
Karlheinz Dorn, Kalchreuth (DE); Sten
Löcher, Erlangen (DE); Artur Pusztai,
Erlangen (DE)

(73) Siemens Aktiengesellschaft, Munich
(DE)

Assignee:

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 204 days.

Notice: (*)

(21) 12/318,807

(22)

Appl. No.:

Filed: Jan. 8, 2009

(65) Prior Publication Data

US 2009/O182879 A1 Jul. 16, 2009

(30) Foreign Application Priority Data

Jan. 16, 2008

(51)

(52)

(DE) 10 2008 OO4 658

Int. C.
G06F 5/73 (2006.01)
U.S. C. 709/226; 709/229; 709/200; 700/99;

718/102; 718/103; 718/104; 717/103; 705/7.12
Field of Classification Search 709/200,

709/226, 229; 718/103, 104, 102; 717/103;
705/7. 12

See application file for complete search history.

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

5,517,644 A * 5/1996 Murdock 705/7.26
5,621,886 A * 4/1997 Alpert et al. 714,38.13
6,289,115 B1* 9/2001 Takeo 382,130

6,470.406 B1 * 10/2002 Dillenberger et al. T10/200
6,505,229 B1* 1/2003 Turner et al. T18, 107
6,721,948 B1 * 4/2004 Morgan 718, 102
6,988,139 B1* 1/2006 Jervis et al. ... TO9,226
7,281,049 B2 * 10/2007 Verma et al. ... TO9,229
7.340,742 B2* 3/2008 Tabuchi 718,103
7,509,671 B1* 3/2009 Bedell et al. 726.6
7,548,335 B2 * 6/2009 Lawrence et al. .. 358,115
7.747.406 B2 * 6/2010 Boing et al. 702/108
7,752,622 B1* 7/2010 Markov 718,103
7,835,931 B2 * 1 1/2010 Bayne ... 705/7.38
7,844,968 B1 * 1 1/2010 Markov 718, 102

2002/0135794 A1* 9/2002 Rodriguez et al. 358,115
2003/0069756 A1* 4/2003 Higginbotham et al. 705/2
2003/0120776 A1* 6/2003 AV varietal. 709,225
2004/0001 215 A1 1/2004 KurotSu 358/1.13
2004/0148534 A1* 7/2004 Orenstien et al. T13,320
2004/0167465 A1 8/2004 Mihai et al. 604f67
2004/0205048 A1* 10, 2004 Pizzo et al. 707/3

(Continued)

OTHER PUBLICATIONS

Klara Nahrstedt, Hao-hua Chu and Srinivas narayan: QoS-aware
resource management for distributed multimedia applications; Jour
nal of High Speed Networks 7 (1998) p. 229-257; 1998; US, IOS
Press.

Primary Examiner — John Follansbee
Assistant Examiner — Anthony Mejia
(74) Attorney, Agent, or Firm — Harness, Dickey & Pierce,
P.L.C.

(57) ABSTRACT
A method of at least one embodiment uses a central instance
for receiving all orders within the platform. A meta interface
regulates the assignment of resources to orders. In addition, in
at least one embodiment, each order is performed by at least
one process handler. This assures the deadlock-free use of
resources within the platform. Furthermore, at least one
embodiment of the invention allows controlled stopping of
active process handlers and hence interruption of running
processes.

15 Claims, 2 Drawing Sheets

US 8,117,310 B2
Page 2

U.S. PATENT DOCUMENTS 2007/0150329 A1* 6/2007 Brook et al. 705/8
ck

2004/0215780 A1* 10, 2004 Kawato TO9,226 298.99949. A 2998 Weatherhead et al. T18, 104 2008. O1894.17 A1 8/2008 Dea et al. TO9,226
2004/0243444 A1* 12/2004 SteuSloff et al. 705/2 ck 2008/0250418 A1* 10, 2008 Karamchedu................. T18, 104
2004/0263904 A1* 12, 2004 Sobko 358,115 ck 2008/0312967 A1* 12/2008 Piper et al. 705/3 2005, 016.5881 A1* 7, 2005 Brooks et al. 709/200 ck 2009, O164474 A1 6/2009 Noumeir .. 707/10
2006/0037021 A1 2/2006 Anand et al. ... 718, 102 ck 2010 OO64043 A1 3/2010 Iino et al. . TO9,226
2006/0193006 A1* 8, 2006 Lawrence et al. 358,116 2011, 0071667 A1* 3, 2011 Spano et all TOO,231
2006/0224432 A1* 10, 2006 Li 70.5/9 p

2007/0044102 A1 2/2007 Casotto T18, 103 * cited by examiner

US 8,117,310 B2 Sheet 1 of 2 Feb. 14, 2012 U.S. Patent

FIG 1

<1 ald

US 8,117,310 B2 Sheet 2 of 2 Feb. 14, 2012 U.S. Patent

US 8,117,310 B2
1.

METHOD FOR THE CENTRAL CONTROL OF
RESOURCES IN EXPANDABLE MEDICAL

PLATFORMS

PRIORITY STATEMENT

The present application hereby claims priority under 35
U.S.C. S 119 on German patent application number DE 10
2008 004 658.2 filed Jan. 16, 2008, the entire contents of
which is hereby incorporated herein by reference.

FIELD

Embodiments of the invention generally relate to a method
for the central control of resources in expandable medical
platforms.

BACKGROUND

Medical expandable platforms usually comprise complex
hardware for examining patients, central and distributed hard
disks for storing large Volumes of data. Expandable medical
platforms can be used both for managing medical patient data
and for organizing clinic procedures, therapy planning, clinic
management and the like, as are known to a person skilled in
the art. Medical expandable platforms also comprise a mul
tiplicity of nodes or clients which can access stored data, can
initiate processes and possibly have access to complex hard
ware of a medical modality.
Modern medical modalities, such as magnetic resonance

tomography (MR tomography), are characterized by the use
of complex hardware appliances e.g. an MR scanner, and
numerous complex processes, for example ranging from cap
ture of the raw data through reconstruction of images of the
inside of a patient’s body to methods for diagnosis making
and diagnosis Support.

In a modern medical modality, the scanner has a real-time
operating system. Such a real-time operating system ensures
that the state of the scanner is determinate at any time. This
means that the behavior of the processes in a real-time oper
ating system, what are known as real-time processes, is
known at any time. Besides real-time processes, such as the
capture of raw data when examining a patient, there are a
multiplicity of processes in connection with a medical modal
ity which are not controlled by a real-time operating system
and to a certain extent run in the background. This means that
ideally they are not noticed by the user. These processes
include the reconstruction of images from a 3D data record or,
by way of example, the calculation of microcalcifications in
the female breast for diagnosis Support and therapy planning.

In contrast to the real-time processes which are executed on
a scanner, for example, processes have to date been charac
terized in that the behavior of the processes is not determin
istic. This means that in an expandable medical platform a
multiplicity of processes are executed simultaneously. It may
therefore arise that, by way of example, the writing of raw
data to the hard disk of a scanner is slowed down considerably
or, in the worst case, no longer possible at all if too many
processes are running in parallel which simultaneously
access the hard disk of the scanner. That is to say that a large
number of I/O operations on the hard disk of a scanner can
restrict the performance of the scanner, e.g. when scanning a
patient.
A slower response by the Scanner loses valuable time, e.g.

when examining a heart attack patient. The Small time win
dow which remains for Successful therapy on Such a patient
means that it is necessary to have a deterministic behavior for

10

15

25

30

35

40

45

50

55

60

65

2
processes within the medical platform in order to provide for
anassured quality of the services available within the expand
able medical platform even in the event of a medical emer
gency.

Possible solutions to this problem are separate emergency
systems, for example for making diagnoses, which are used
exclusively for emergencies. Such a practice is expensive,
since separate emergency systems normally need to be kept
available unused. The high costs of an additional, separate
emergency system are therefore not justified.

It would also be possible to allow none of the processes on
clients which are required in the event of an emergency. Such
a practice is likewise expensive, since further clients are nec
essary which exclusively perform the processes arising
within the expandable medical platform. Furthermore, the
increasing networking of all clients or nodes within an
expandable medical platform (platform, for short) requires
data to be able to be received and sent from all clients. For a
platform client on which no processes are permitted, particu
larly no network access to this client or from this client to
others would be possible.
To solve the problem described above, it would also be

conceivable to use special operating systems for clients on
which processes run. In this case, the special operating sys
tems would need to assure a constant quality of service.
Special operating systems of this kind are known to a person
skilled in the art. However, the programming complexity for
Such quality of service systems is high, which means addi
tional maintenance complexity, training times for the pro
grammers, and also additional program translation operations
for target systems, that is to say clients, running under the
special operating system. In addition, there is an increase in
the test complexity for the clients on which processes run
under the special operating system.

It would also be conceivable to tie processes to selected
dedicated CPUs. Although this would allow the availability of
the CPU resource to be controlled, it still does not result in any
influence on I/O activities taking place which have been ini
tiated by processes. That is to say that the desired determin
istic behavior for an emergency system would still not be
assured.

It would also be possible to lower the priorities for pro
cesses. Such methods are normally provided by operating
systems and are known to a person skilled in the art. Lowering
the priorities for processes possibly has an adverse effect on
the scheduling behavior of the entire client controlled by the
operating system or the entire platform. However, an
approach of this kind presupposes that every single process is
implemented as a process at operating system level. With the
large number of processes running within a platform, this
approach is not very effective. Furthermore, changing the
operating system priorities for processes in this way still does
not mean a deterministic behavior in emergency situations.

SUMMARY

At least one embodiment of the invention ensures that
resources of the platform are reliably available in emergency
situations. Furthermore, at least one embodiment of the
invention assures deterministic behavior by the processes
during normal operation of the platform too while observing
the requisite quality of service.

Embodiments of the method are described below. Features,
alternative implements and/or advantages mentioned in this
context can likewise be transferred to the other claimed sub
ject matter, and vice versa. In other words, it is possible for the
article-based claims to be developed with the features which

US 8,117,310 B2
3

are described or claimed in connection with embodiments of
the method. The relevant functional features of the method
are in this case formed by corresponding article-based mod
ules, particularly by hardware modules and/or software mod
ules of the system.

In at least one embodiment, a computer-implemented
method is disclosed for controlling allocations of resources to
processes in expandable medical platforms with a central
instance and a meta interface for resources.
An order type within the context of at least one embodi

ment of the invention is a conceptual entity, in other words a
“form template', which describes what information a client
sending an order must indicate in order to specify an order
adequately. By way of example, a print order type indicates
that the client needs to indicate a printer name, a document
name and a print mode.
An order within the context of at least one embodiment of

the present invention is an actual (tangible) instance of an
order type. That is to say an actual instruction regarding
precisely what needs to be done. In the case of a print order,
for example: printer name="MyPrinter, document
name="Fischer.dcm and print mode="600dpi.
A process handler oran order handler within the context of

the present invention is the implementation of a service which
can perform an order. The terms order handler and process
handler are used synonymously in this description.

The process handler is executed in a process. That is to say
that the process is an execution container for the process
handler. The process handler can only ever perform precisely
one order at a time. The process handler can be converted Such
that it can also perform orders of different order types, but
only ever in strict sequence, one order type after the other.
Furthermore, the process handler has a multiplicity of inter
faces which the central instance requires in order to stop,
continue or terminate execution of the orders by process
handlers. The process handler knows at least one order type
but may also understand a plurality of order types.
One or more process handlers may be executed in the

process. In this case, the number of process handlers within a
process is configurable. In other words, a process within the
context of at least one embodiment of the invention is an
instantiation of one or more process handlers.

Process or background processes within the context of this
invention are computer-based activities which normally take
place without the user noticing. Furthermore, the processes
are processes which are not controlled by a real-time operat
ing system, such as processes on a scanner, as already men
tioned at the outset.

The processes can run at operating system level and can
control the way in which a computer system works. A client
within the context of the present invention is a computer
system of this kind, for example.

Preferably, a process within the context of at least one
embodiment of this invention means an instance of an execut
able unit, an executable, that is to say of executable program
code. The process handler is an executable program code
which is executed in a process as an instantiation of a process
handler.

The processes run within the medical platform and control
the way in which the medical platform works.
A process may be the display of MR images, for example.

Other examples of processes within the context of the inven
tion may be the printing of image data, and also the loading of
image data from the disk store of the platform.

10

15

25

30

35

40

45

50

55

60

65

4
Processes are initiated by orders for processes, which are

normally triggered by a user of a client. Processes are also an
instantiation of a process handler for an order type, as already
mentioned.
An example of an order is “Show the MR data for the

patient Fischer'. Orders may be of quite different type and are
respectively characterized by an order type. For example,
"calculate the microcalcification for the patient Müller' is
another order, the order type of which differs from the pre
ceding example.
An order for a process is received by the central instance

and is also characterized by an order type.
That is to say that the central instance need know nothing

other than the order type of an incoming order. Dependent on
the order type of the order, the central instance assigns the
order to a queue allocator.
The queue allocator analyzes the order and ascertains a

multiplicity of process resources for the order from all
resources available in the system which are required for per
forming the order. In addition the queue allocator ascertains
the queue in which the order needs to be deposited.

Next, the central instance requests the process resources as
ascertained by the queue allocator. This request by the central
instance is made to a multiplicity of meta interfaces which
respectively manage resources of one type.

If the central instance Succeeds in engaging all process
resources for the process, the process is executed. Following
the conclusion of the process, the process resources are
released and the meta interfaces are informed about the
release of the process resources. In this case, deterministic
behavior by the processes is assured within the platform.

Within the context of this description, resources are to be
understood to mean: appliances, appliance components and
equipment. By way of example, resources may be a printer, a
dedicated piece of graphics hardware for reconstructing
image data from a modern medical modality, access to the
network or access to disk stores. Other resources within the
platform are obvious to a person skilled in the art.
The central instance within the context of at least one

embodiment of the invention coordinates the execution of the
incoming orders for processes and ensures that the orders are
performed deadlock-free by using the resources available
within the platform. In this case, the orders are performed by
processes. The processes are the instantiation of the respec
tive process handler, as already mentioned.
As part of at least one embodiment of the invention, an

explicit protocol for managing processes is proposed. The
central instance influences the execution of orders using con
trol messages to the process handlers, i.e. it stops the process
handlers or has them continue execution. That is to say that
the central instance does not necessarily stop an entire pro
cess, in which several different process handlers may be run
ning, of course. In particular, processes are managed in line
with at least one embodiment of the present invention via the
central instance. Hence, the total number of all processes
running within the platform is known.

Both features of embodiments of the invention, that is to
say the protocol for stopping processes and also the central
instance for controlling the processes, allow a multiplicity of
processes in the platform to be stopped, to a certain extent
“when called, provided that an emergency situation is aris
ing.
The control of processes in expandable medical platforms

is thus undertaken by the central instance. The central
instance registers all orders for processes, a multiplicity of

US 8,117,310 B2
5

queues and queue allocators which are managed by the cen
tral instance. In this case, the queues may be different—
depending on the order type.
The method according to at least one embodiment of the

invention also comprises a meta interface for managing all
resources available in the platform. The method according to
at least one embodiment of the invention assures determinis
tic behavior for all processes within the platform. The inven
tion allows one or all process(es) within the system to be
stopped, and thus Sufficient resources to be assured for imme
diate reaction to an emergency situation. Such an emergency
situation may result in the examination of a heart attack or
trauma patient, for example.

The method according to at least one embodiment of the
invention allows a plurality of orders for processes to be
received on the central instance simultaneously. Similarly, the
central instance can execute a plurality of process handlers in
parallel, so long as the process resources for the plurality of
process handlers have been able to be allocated to the plural
ity of process handlers successfully.
The system may comprise a plurality of queues for orders

of different type. Preferably, each order type is assigned an
individual queue. Queues within the context of at least one
embodiment of the invention may be in the form a hardware
module and/or software module.

It is advantageous to use different queues for different
order types. With separate queues for different order type,
individual queues can be implemented according to need and
in a resource-saving fashion.

It goes without saying that it is possible, on the basis of
another embodiment of the invention, to use a single queue
for all order types. However, the management of a single
queue of this kind would be significantly more complicated.
Furthermore, the modularity of the method would then be
reduced.
The orders of one order type are performed by at least one

process handler. The at least one process handler is started by
the central instance. Which process handler is used is stipu
lated by the order type of the order.
The method of at least one embodiment allows a running

process handler to be stopped, which assures deterministic
interruption of the processes.

Thus, each of the processes within the platform can be
stopped, and restarted, so that the further handling by the
respective process handler is possible after an interruption.

Furthermore, the central instance can receive a warning
indicating that a critical state will be reached shortly. The
central instance then does not start another process handler
but allows the active process handlers to continue operating.

Provision is also made for each of the process handlers
which are active within the platform to be able to be stopped
and to be able to be enabled again for further handling. This
frees resources in a controlled and reliable manner, for
example for an emergency. In line with at least one embodi
ment of the invention, the stopping and freeing are performed
by the central instance.

In addition, the interruption of at least one order can be
initiated by the reception of a notification on the central
instance (e.g. upon a medical emergency event). At least one
process is then automatically stopped until Sufficient
resources (for handling the emergency) are available.

Furthermore, the invention allows new order types initiat
ing new process types, to be added to the system. In particular,
the invention allows the new process types to be added at
runtime. This is extremely convenient for the user, since
service engineers or third-party providers can add further

10

15

25

30

35

40

45

50

55

60

65

6
order types or new functionalities in connection with new
order types to a certain extent at the touch of a button.

In addition, the provision of new functionalities for the
platform in the form of new process types is simplified, since
a third-party provider need no longer bother about managing
queues for its new process.
The task of the metainterface in this case is to distribute the

resources which are required for a process.
When resources are available for a process, they are

engaged by the meta interface as what are known as process
resources. Preferably, each of the meta interfaces engages
process resources for one order type and, following Success
ful completion of the order, releases the process resources
again. If the process resources are unavailable, the order
remains in the queue and the order is not performed immedi
ately. In this case, the central instance takes care of perform
ing the order at a later time.
The individual components of at least one embodiment of

the invention are in modular form, so that the queues and/or
the queue allocators, the process handler and the meta inter
face for an order type can each be changed independently of
one another. This simplifies the expansion and programming
of individual process types.
An order is characterized by its order type and may fur

thermore comprise a multiplicity of parameters. By way of
example, Such parameters may be resolution in which the
image data of a print order are printed. Other orderparameters
are obvious to a person skilled in the art.
The central instance, the queues, the queue allocators, the

metainterfaces and the process handlers within the context of
at least one embodiment of the invention can each be imple
mented as hardware modules and/or as Software modules.
At least one embodiment of the invention may also be

implemented by an apparatus which undertakes the control of
allocations of resources to processes in expandable medical
platforms. The apparatus comprises a central instance for
receiving an order for a process. The order is characterized by
its order type and may also comprise other order parameters.
The entries received in a reception module are, depending

on the order type, analyzed by a queue allocator and allocated
to a queue. In addition, the queue allocator ascertains the
process resources from all resources available in the platform
and notifies the central instance of the process resources. The
central instance then requests the process resources from the
meta interfaces for the process resources. The process
resources are allocated to the order, provided that they are
available. The order is performed, provided that all process
resources are available. Following the conclusion of the pro
cess, the process resources are released and the respective
meta interfaces are informed about the release of the
resources. This assures deterministic behavior by the process
within the platform.

Another example embodiment is directed to a computer
program product which can be loaded into the memory of a
computer. The method according to at least one embodiment
of the invention is implemented by computer program code
which maps the individual steps of the method.

Another example embodiment is directed to a storage
medium which is intended for storing at least one embodi
ment of the computer-implemented method described above
and can be read by a computer.

Furthermore, it is possible for individual components of at
least one embodiment of the method described above to be
able to be performed in one saleable unit and for the remain

US 8,117,310 B2
7

ing components to be performed in another saleable unit—as
a distributed system, so to speak.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description of the figures which follows dis
cusses example embodiments, which are to be understood as
non-limiting, with the features and further advantages thereof
with reference to the drawings, in which:

FIG. 1 shows an illustration in overview form, and
FIG. 2 shows a flow of databased on an example embodi

ment of the invention.

10

DETAILED DESCRIPTION OF THE EXAMPLE
EMBODIMENTS 15

Various example embodiments will now be described more
fully with reference to the accompanying drawings in which
only some example embodiments are shown. Specific struc
tural and functional details disclosed herein are merely rep
resentative for purposes of describing example embodiments.
The present invention, however, may be embodied in many
alternate forms and should not be construed as limited to only
the example embodiments set forth herein.

Accordingly, while example embodiments of the invention
are capable of various modifications and alternative forms,
embodiments thereof are shown by way of example in the
drawings and will herein be described in detail. It should be
understood, however, that there is no intent to limit example
embodiments of the present invention to the particular forms
disclosed. On the contrary, example embodiments are to
cover all modifications, equivalents, and alternatives falling
within the scope of the invention. Like numbers refer to like
elements throughout the description of the figures.

It will be understood that, although the terms first, second,
etc. may be used herein to describe various elements, these
elements should not be limited by these terms. These terms
are only used to distinguish one element from another. For
example, a first element could be termed a second element,
and, similarly, a second element could be termed a first ele
ment, without departing from the scope of example embodi
ments of the present invention. As used herein, the term
“and/or” includes any and all combinations of one or more of
the associated listed items.

It will be understood that when an element is referred to as
being “connected,” or “coupled to another element, it can be
directly connected or coupled to the other element or inter
vening elements may be present. In contrast, when an element
is referred to as being “directly connected,” or “directly 50
coupled to another element, there are no intervening ele
ments present. Other words used to describe the relationship
between elements should be interpreted in a like fashion (e.g.,
“between versus “directly between.” “adjacent.” versus
“directly adjacent, etc.). 55
The terminology used herein is for the purpose of describ

ing particular embodiments only and is not intended to be
limiting of example embodiments of the invention. As used
herein, the singular forms “a” “an and “the are intended to
include the plural forms as well, unless the context clearly 60
indicates otherwise. As used herein, the terms “and/or” and
“at least one of include any and all combinations of one or
more of the associated listed items. It will be further under
stood that the terms “comprises.” “comprising.” “includes.”
and/or “including,” when used herein, specify the presence of 65
stated features, integers, steps, operations, elements, and/or
components, but do not preclude the presence or addition of

25

30

35

40

45

8
one or more other features, integers, steps, operations, ele
ments, components, and/or groups thereof.

It should also be noted that in some alternative implemen
tations, the functions/acts noted may occur out of the order
noted in the figures. For example, two figures shown in Suc
cession may in fact be executed Substantially concurrently or
may sometimes be executed in the reverse order, depending
upon the functionality/acts involved.

Spatially relative terms, such as “beneath”, “below.
“lower”, “above”, “upper, and the like, may be used herein
for ease of description to describe one element or feature's
relationship to another element(s) or feature(s) as illustrated
in the figures. It will be understood that the spatially relative
terms are intended to encompass different orientations of the
device in use or operation in addition to the orientation
depicted in the figures. For example, if the device in the
figures is turned over, elements described as “below' or
“beneath other elements or features would then be oriented
"above' the other elements or features. Thus, term such as
“below’ can encompass both an orientation of above and
below. The device may be otherwise oriented (rotated 90
degrees or at other orientations) and the spatially relative
descriptors used herein are interpreted accordingly.

Although the terms first, second, etc. may be used hereinto
describe various elements, components, regions, layers and/
or sections, it should be understood that these elements, com
ponents, regions, layers and/or sections should not be limited
by these terms. These terms are used only to distinguish one
element, component, region, layer, or section from another
region, layer, or section. Thus, a first element, component,
region, layer, or section discussed below could be termed a
second element, component, region, layer, or section without
departing from the teachings of the present invention.

FIG. 1 shows the individual components of an embodiment
of the invention. An embodiment of the invention comprises
a central instance 5, a queue allocator 10, an order 1 of an
order type la for a process 4 (not shown) which is initiated on
a client 3 (not shown), a meta interface 30 and a process
handler 40 for performing the order 1. In this case, the client
3 is an arbitrary node within the platform.

Processes 4 within the context of an embodiment of the
invention may be computer-based, operating-system-internal
activities of the kind which are normally executed unnoticed
by the user. Furthermore, the processes 4 are processes of the
kind which are not controlled by a real-time operating system,
Such as processes on a scanner.

Preferably, a process within the context of embodiments of
the invention means an instance of an executable unit, an
executable, that is to say of executable code. By way of
example, the process handler comprises executable program
code which becomes a process as instantiation of a process
handler. An example embodiment of a process is therefore not
necessarily an operating system process, as mentioned fur
ther above.

It goes without saying that an embodiment of the invention
can also be used on medical platforms which do not neces
sarily comprise a scanner, even though an embodiment of the
invention is described below with reference to a modern
medical modality of this kind.
The user of a client 3 can initiate processes 4 within the

context of the invention by orders 1. There is a multiplicity of
the processes 4 within the platform. Different processes 4 are
characterized by an order type 1a. Examples of order types
are: a print order type, a DICOM transfer order type, an order
type for computer aided diagnosis and the like.
The printing of the image data from a series of images for

the patient “Fischer on the printer MyPrinter is an example

US 8,117,310 B2

of a process 4 within the context of the invention. The client
3 would thus initiate the order “Print the series of images for
the patient Fischer in 600 dpi on MyPrinter using paper for
mat A3 with 4x4 images per page in 32 grayscales', for
example. In this case, the print order denotes the order type
1a, while all other parameters, for example the number of dpi
or the specific printer or the resolution of the images, are what
are known as order parameters 2.
An example will be used below to illustrate the method for

managing a multiplicity of processes 4 within the expandable
medical platform. The expansion of an embodiment of the
invention to further order types la is clear to a person skilled
in the art and is not a restriction for an embodiment of the
present invention.

FIG. 2 shows the activities for a process 4 and the interplay
of individual components of the apparatus according to the
invention for performing the method according to an embodi
ment of the invention.
The order 1 initiated by a client 3 is received by a central

instance 5. The order 1 is characterized by the order type 1a.
In line with an embodiment of the invention a task of the
central instance 5 is to receive a multiplicity of orders 1 of
different order type 1a from different clients 3 within the
platform.

For each of the order types 1a there is a queue allocator 10.
The queue allocator 10 ascertains a queue name 17 for an
actual order 1 of the order type 1a and returns it to the central
instance 5. That is to say, in other words, that the central
instance 5 has all information for an incoming order 1, as a
result of knowledge of the order type 1a, in order to use the
association 7 to ascertain the queue allocator 10 which fits the
given order type 1a.
The multiplicity of queue allocators 10 are in the form of a

standalone module, preferably in the form of a software mod
ule.

The order 1 is now deposited in a queue 15 by the central
instance 5 until the order 1 can be handled. The queues 15 are
created and dismantled dynamically the central instance 5.

Besides the queue name 17, the queue allocator 10 also
ascertains the resources 20 required for performing an order
1. The resources required for an order are subsequently called
process resources 25. The process resources 25 are charac
terized in that the process resources 25 need to be available for
the order 1, since if the process resources 25 are unavailable
then the order 1 cannot be performed by a process handler 40.
The queue allocator 10 communicates the queue name 17, the
process resources 25 and the process handler 40 for an order
1 to the central instance 5.

Provided that the queue 15 with the queue name 17 does
not yet exist, the queue 15 is created by the central instance
and the order 1 is deposited in the queue 15 by the central
instance 5. The creation and the management of the queues 15
by means of the central instance 5 frees the process handler 40
for performing orders 1 of the order type 1a from the obliga
tion to manage incoming orders 1 of the type 1a itself in
queues 15.
The allocation of the process resources 25 to the order 1 of

the order type 1a is coordinated by means of a multiplicity of
meta interfaces 30. Single cases of the meta interfaces 30
manage process resources of one type. Such process
resources of one type may be, by way of example: the access
to a printer, the provision of main memory and CPU compu
tation power on dedicated graphics hardware for reconstruct
ing image data. Other types of process resources are clear to
a person skilled in the art.
The central instance 5 now attempts to reserve the process

resources 25 for the order 1 in one of the queues 15 on the

5

10

15

25

30

35

40

45

50

55

60

65

10
meta interfaces 30 appropriate to the process resources 35.
Whenever the central instance 5 succeeds in requesting all of
the process resources 25 for an order 1 from the meta inter
faces 30, the central instance 5 starts the process handler 40.

Each order type 1a has an associated process handler 40.
The process handler 40 provides a technical service in
response to an order 1. Preferably, the process handler 40 is in
the form of a software module which performs the order 1. By
way of example, a process handler 40 could prepare the
resolution of patient data (MR tomography data for the
patient Fischer) for printing. That is to say, by way of
example, distribute the grayscales as appropriate, stipulate
how many individual pictures are printed per DIN-A4 page,
and in what resolution and size.
A fundamental feature of the process handler 40 based on

the present invention is that it can be interrupted by the central
instance 5. The process handlers 40 have the interfaces which
are required for this. The stopping or interruption of process
handlers 40 frees resources 25 within the platform which are
needed for an emergency situation, for example. Further
more, process handlers 40 which have been stopped by the
central instance 5 can be instructed thereby to resume perfor
mance of the order 1. That is to say that process handlers 40
previously stopped by the central instance 5 can be instructed
by the central instance 5 to continue performing the order 1.
It goes without saying that the process resources 25 need to be
available before continuation.

Furthermore, it is possible for the central instance 5 to
instruct a plurality of process handlers 40 simultaneously to
perform a plurality of orders 1, provided that the process
resources 25 are reserved for each of the active process han
dlers 40 and hence for the plurality of orders 1.
The metainterfaces 30 appropriate to the process resources

25 of an order 1 (e.g. a print order) manage resources in a
system. The metainterfaces 30 can provide process resources
25, which the central instance 5 requests from the meta inter
faces 30, for the central instance 5.

In particular, the meta interface 30 engages the resource 20
as the process resource 25 for the order 1. Following perfor
mance of the order 1 by the process handler 40 which has been
instructed to perform the process 4 by the central instance 5,
the process handler 40 returns the process resources 25 used
to the central instance 5.
The central instance 5 then decides whether the process

resources 25 are returned to the meta interface as free
resources 20 or are immediately used for another order 1.
Meta interfaces 30 manage the parallel use of a class of

resources 20 present in the system by a plurality of orders 1.
Thus, by way of example, all printers available in the system
could be managed by way of a meta interface 30. The meta
interface 30 knows particularly constraints for the simulta
neous use of resources 30 of the same type.
By way of example, the meta interface for managing net

work interfaces 31 could have a stipulation that only three
outgoing network connections can ever leave a client 3. For a
client 3 on which processes 1 are run, this means that a
maximum of three network connections can leave this client
3 simultaneously.

Provided that the user of the client 3 initiates a further
process 1 which wishes to set up an outgoing network con
nection, this is allocated to the process 1 by the meta interface
for managing network interfaces 31 only if a maximum of two
outgoing network connections are already open. If three net
work connections are already open, on the other hand, the
fourth request for opening an outgoing network connection is

US 8,117,310 B2
11

prevented by the meta interface for managing network inter
faces 31. This limits the amount of network traffic which
leaves a client 3.

Another resource 20 could be computation time on a com
puter system for calculating complex reconstructions of raw
data on said computer system.

It is thus conceivable, by way of example, for the user of a
client 3 to initiate an order 1 for reconstructing a 3D data
record for the patient Fischer, e.g. from MR tomography data.
That is to say that the central instance 5 would request the
process resources 25 from the relevant meta interfaces for
reconstruction or graphics workstations 33. The meta inter
face for allocating graphics workstation resources 33 could
stipulate, by way of example, that a maximum of one process
1 for reconstruction can run on such a graphics CPU with
associated main memory.

If a second request for the same workstation comes from
the central instance 5, the allocation of the process resources
25 for reconstruction or graphics workstations is rejected by
the relevant meta interfaces for reconstruction or graphics
workstations 33. That is to say that the second incoming order
1 for reconstructing a data record is denied. By way of
example, this ensures that an order 1 for reconstructing image
data can be performed within a prescribed time frame.
The meta interface 30 therefore acts as a semaphore, a

model for modeling the simultaneous use of resources which
is sufficiently well known to a person skilled in the art in this
field. Freedom from deadlock is achieved in an embodiment
of the invention through appropriate scheduling and alloca
tion algorithms in the central instance 5 when process
resources 25 are requested.
The method according to an embodiment of the invention

allows the platform to be expanded by new order types 1b for
processes 1 in the course of operation, that is to say at the
runtime of the platform. This results particularly from the
distributed “intelligence of the method over a single central
instance5, a queue allocator 10 for coordinating a plurality of
queues 15 which are known to the central instance 5, and the
meta interfaces 30 for the multiplicity of resources 20 present
in the platform.

To add a new order type 1b for a new process type 4a to the
platform, it is Sufficient to lodge a new queue allocator 10a
and a new process handler 40a for the platform in the system,
and also possibly new meta interfaces 30a. It is sufficient for
the central instance 5 to know the new queue allocator 10a for
the new order type 1b.

This can be achieved, by way of example, by means of the
association 7 of order type 1a and queue allocator 10, said
association having a further entry added to it for a new order
type 1b. The new queue allocator 10a in turn knows not only
the name of the new queue 15a but also the name of the new
process handler 40a. It thus suffices to expand the platform by
a new order type 1b, to expand the association 7 by a new
entry, the new queue allocator 10a and the new process han
dler 40a, and possibly to lodge a new meta interface 30a at a
suitable location within the platform. When this has been
lodged, the update of the association 7 e.g. as a configuration
file, suffices to notify the central instance 5 of this new order
type 1b. This would allow particularly the expansion of the
system at runtime. In addition, individual modules can be
exchanged or expanded independently of one another.

Furthermore, the distributed execution of the process steps
associated with an initiated order 1 by means of the central
instance 5 allows deadlock-free execution of the orders 1
arising in the platform for processes 40. Third-party providers
providing expansions for the platform therefore have their
work simplified considerably. The third-party provider does

10

15

25

30

35

40

45

50

55

60

65

12
not need to implement the new queues 10a or concern itself
with deadlock-free resource requesting and prioritized execu
tion of the orders 1.
The text below shows the dynamic flow of the method

according to an embodiment of the invention. A client 3
creates an order 1 and sends it to the central instance 5. The
central instance finds the associated queue allocator 10 on the
basis of the order type. The queue allocator 10 then analyzes
the order received in the central instance5 and then returns the
queue name 17 and also possibly a multiplicity of process
resources 25 and then optionally a list of process parameters,
to the central instance 5. This information means that the
central instance 5 knows the queue 15 in which the order 1
needs to be deposited.

Furthermore the process resources 25 performing the order
1 are now known. The queue allocator 10 also returns the
name of the process handler 40 which is suitable for the order
to the central instance 5. This information allows the central
instance 5 to deposit the order 1 in a particular queue 15,
possibly taking account of order priorities. If a queue 15 with
this name does not yet exist, the central instance 5 creates this
new queue 15a.

In addition the central instance 5 can now take the process
resources 25 required for performing the order 1 as a basis for
reserving them for an order 1 stored in the multiplicity of
queues 15. To reserve the process resources 25, the central
instance 5 turns to the relevant cases of the meta interface 30
which manage the resources 20, present within the platform,
of suitable type for the order 1.
As already mentioned, resources 20 and hence also process

resources 25 may cover the use of appliances or include CPU
computation time or main memory. It goes without saying
that other resources 20 are also conceivable in a platform of
this kind without restricting an embodiment of the invention.
If all process resources 25 for an order 1 are available, the
central instance 5 can instruct the process handler 40 for an
order 1 to handle the order 1 and can start the process handler
40.
One or else a plurality of process handler(s) 40 can be

executed in a process. For Such an embodiment, the queue
allocator 10 would need to report the process resources 25 of
the first process handler and also the process resources of the
other process handlers back to the central instance 5. When all
process handlers have accomplished their order, the process
resources 25 of the first process handler 40 and the process
resources 25 of the other process handlers are returned to the
respective meta interfaces. This means that they are available
to the platform as resources 20 again.
The Solution according to an embodiment of the invention

is flexible and expandable. New order types can be added at
any time. The actual implementation of the queue allocator
10, the meta interface 30 and the process handler 40 for a
given order 1 can always be varied independently at that time.
The number of queues is controlled by the queue allocators
10. It is a task of the central instance 5 to manage and know all
queues 15. However, the central instance 5 does not create the
queues 15 in advance, but rather creates them only on the
basis of information provided by the queue allocator 10.
The implementation of the simultaneous requesting of

resources 20, that is to say of communication for engaging
resources 20, is fully encapsulated by the meta interfaces 30,
which likewise simplifies the expansion of the platform.
The logic for the execution of an order 1 is implemented in

a process handler 40. This means that the execution of an
order 1 is independent of queue management and of resource
request protocols. The module of the process handler 40 can
thus concentrate solely on the problem to be solved by the

US 8,117,310 B2
13

order. This significantly simplifies the implementation of the
process handler 40. The central instance together with the
meta interfaces 30 accomplish the allocation of resources 25
without deadlock, and the orders can be executed via the
process handlers 40. In this case, orders 1 can be prioritized
when deposited in the queues. In addition, constraints for the
use of resources 20 are a further component of the method
according to an embodiment of the invention. Such con
straints have already been explained above.

It goes without saying that process resources 25 which
have been reserved for an order 1 are returned to the central
instance 5 when the process handler 40 has ended.
The central instance 5 then decides whether the process

resources 25 are returned to the meta interface 30 as free
resources 20 or are immediately used for another order 1. In
particular, the central instance 5 for distributing resources 25
and for distributing the orders 1 over queues 15 allows all
running processes 4 to be controlled. The central instance can
stop individual processes 4.
A client 3 within the platform can send warnings, notifica

tions and/or messages to the central instance 5.
A warning can prompt the central instance 5 to send no

further orders 1 to process handlers 40, so that fewer running
processes actually need to be stopped when a critical State
occurs. However, this warning allows all process handlers 40
which are already running to continue. The warning is sent
optionally and typically before a critical state occurs.

In contrast to this is a notification to the central instance 5
which comprises notification of the occurrence of a critical
state (e.g. data recording has begun). The notification will
prompt the central instance 5 to immediately notify the run
ning process handlers 40 so that they stop executing the
running processes 4.
The warning is an optional preliminary step in the notifi

cation. Clearly, the warning supports the behavior of the
platform in critical situations: the warning can result in fewer
processes 4 needing to be stopped when the notification about
a critical state is received.

It is likewise possible to use a message to provide notifi
cation that raw data for a patient (e.g. MR tomography exami
nation of the patient Fischer) are currently being recorded in
the scanner and therefore the network traffic to the disk store
of the scanner should be limited for further processes 1. Large
volumes of write access operations on the disk store by other
processes 1 would reduce the speed of the disk for storing the
raw data which arise. This can be implemented indirectly by
limiting the possible network connections which are simul
taneously possible from the disk drive of the scanner.
New order types 1a, new meta interfaces 30a, new queue

allocators 10a and new process handlers 40a can be registered
by way of various mechanisms within the platform. A pos
sible implementation involves the use of configuration files, a
central configuration repository, file system directories into
which files are placed, etc. The actual implementation of the
disclosure of the individual components of an embodiment of
the invention to the central instance 5 does not restrict the
spirit of the invention in any way, but rather these are different
embodiments which are all clear to a person skilled in the art
within the context of this description.

Finally, it should be pointed out that the description of the
invention and the exemplary embodiments should be under
stood, in principle, to be non-limiting in respect of one par
ticular physical implementation of the invention. For a person
skilled in the relevant art, it is particularly clear that the
invention can be implemented with a partial or complete

5

10

15

25

30

35

40

45

50

55

60

65

14
distribution in software and/or hardware and/or over a plural
ity of physical products—in this case particularly also com
puter program products.

Further, elements and/or features of different example
embodiments may be combined with each other and/or sub
stituted for each other within the scope of this disclosure and
appended claims.

Still further, any one of the above-described and other
example features of the present invention may be embodied in
the form of an apparatus, method, system, computer program
and computer program product. For example, of the afore
mentioned methods may be embodied in the form of a system
or device, including, but not limited to, any of the structure for
performing the methodology illustrated in the drawings.

Even further, any of the aforementioned methods may be
embodied in the form of a program. The program may be
stored on a computer readable media and is adapted to per
form any one of the aforementioned methods when run on a
computer device (a device including a processor). Thus, the
storage medium or computer readable medium, is adapted to
store information and is adapted to interact with a data pro
cessing facility or computer device to perform the method of
any of the above mentioned embodiments.
The storage medium may be a built-in medium installed

inside a computer device main body or a removable medium
arranged so that it can be separated from the computer device
main body. Examples of the built-in medium include, but are
not limited to, rewriteable non-volatile memories. Such as
ROMs and flash memories, and hard disks. Examples of the
removable medium include, but are not limited to, optical
storage media such as CD-ROMs and DVDS; magneto-opti
cal storage media, such as MOS: magnetism storage media,
including but not limited to floppy disks (trademark), cassette
tapes, and removable hard disks; media with a built-in
rewriteable non-volatile memory, including but not limited to
memory cards; and media with a built-in ROM, including but
not limited to ROM cassettes; etc. Furthermore, various infor
mation regarding Stored images, for example, property infor
mation, may be stored in any otherform, or it may be provided
in other ways.
Example embodiments being thus described, it will be

obvious that the same may be varied in many ways. Such
variations are not to be regarded as a departure from the spirit
and Scope of the present invention, and all such modifications
as would be obvious to one skilled in the art are intended to be
included within the scope of the following claims.
What is claimed is:
1. A method for controlling allocations of resources to

processes in expandable medical platforms with a central
instance and a meta interface for resources, the method com
prising:

receiving an order for a process by a central instance within
a medical platform, the order including an order type,
wherein at least one order type is a medical emergency
process;

assigning the order to a queue allocator on the basis of the
order type, wherein each order type is assigned an indi
vidual queue within a plurality of queues;

ascertaining a multiplicity of process resources, required
for performing the order, from resources available
within the platform, and ascertaining a queue name by
the queue allocator,

requesting the process resources, by the central instance,
from the meta interface;

allocating the process resources to the order, so that the
process resources are available for performing the pro
cess; and

US 8,117,310 B2
15

dead-lock freely performing the order for the process, by at
least one process handler, provided that all of the process
resources are available, the process resources being
released following conclusion of the process and the
meta interface being informed, wherein each of the at
least one process handler is configured to be stopped and
enabled again for further handling based on a notifica
tion from the central instance.

2. The method as claimed in claim 1, wherein a plurality of
orders are simultaneously receivable and wherein a plurality
of processes are simultaneously performable, provided that it
is possible for the respective process resources to be allocated
to the plurality of orders.

3. The method as claimed in claim 1, wherein the central
instance instructs the at least one process handler to perform
the order, and the at least one process handler is determined
by the order type of the order.

4. The method as claimed in claim 1, wherein the at least
one process handler is started by the central instance.

5. The method as claimed in claim 1, further comprising:
stopping a running process handler in order to ensure deter

ministic interruption of the process.
6. The method as claimed in claim 1, further comprising:
receiving a warning at the central instance, the central

instance not starting another process handler upon
receipt of the warning.

7. The method as claimed in claim 1, wherein the central
instance stops at least one of the process handlers following
receipt of a notification.

8. The method as claimed in claimed in claim 1, further
comprising:

expanding the medical platform by a new order type for
performing a new process.

9. The method as claimed in claim 7, wherein the medical
platform is dynamically expandable at runtime.

10. The method as claimed in claim 1, wherein the queue
allocator, the at least one process handler and the meta inter
face are implementable and alterable independently of one
another.

11. The method as claimed in claim 1, wherein the order
includes a multiplicity of order parameters in addition to the
order type.

5

10

15

25

30

35

40

16
12. An apparatus for controlling allocations of resources to

processes in expandable medical platforms, the apparatus
comprising:

one or more processors executing:
a central instance within a medical platform, configured to

receive an order for a process, the order including an
order type, wherein at least one order type is a medical
emergency process;

a queue allocator, configured to allocate the order received
in a reception module to a queue on the basis of the order
type;

an ascertainment unit, configured to ascertain a multiplic
ity of process resources, required for performing the
order, from resources available within the platform and
to ascertain a queue name by the queue allocator,

a requesting module in the central instance to request the
process resources from a meta interface;

an allocation module in the meta interface configured to
allocate the process resources to the order, so that the
process resources are available to perform the process;
and

a process handler configured to deadlock-freely perform
the process provided that all process resources are avail
able, the process resources being released following
conclusion of the process and the meta interface being
informed, wherein the one process handler is configured
to be stopped and enabled again for further handling
based on a notification from the central instance.

13. A non-transitory computer readable medium including
program segments for, when executed on a computer device,
causing the computer device to implement the method of
claim 1.

14. The method as claimed in claim 2, wherein the central
instance instructs at least one process handler to perform the
order, and the at least one process handler is determined by
the order type of the order.

15. The apparatus as claimed in claim 12, wherein the order
includes a multiplicity of order parameters in addition to the
order type.

