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(57) Abstract: A reversible watermarking method embeds (115)
auxiliary data (114) into a data set (110), such as an image, audio,
video or other data, in a manner that enables full recovery of the
original, un-modified data set. This method may be used to de-
termine whether the data set has been tampered with. To improve
embedding capacity without the need for compression of the aux-
iliary data, the method uses an expansion technique. One particu-
lar approach exploits the correlation or redundancy within the data
set to convert the data to a set of small, expandable values, such
as difference values. These small values are then expanded by in-
serting auxiliary data as one or more additional bits, increasing the
number of bits without causing an underflow or overflow. This
approach also uses a property of the data set that is invariant to
the embedding operation (112A) to identify embedding locations
(113), obviating the need for separate data to identify where data
is embedded in a data set.



w0 03/055130 A1 NIV 000 .0 O

(84) Designated States (regional): ARIPO patent (GH, GM, Published:
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), — with international search report
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SI, SK,  For two-letter codes and other abbreviations, refer to the "Guid-
TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, ance Notes on Codes and Abbreviations" appearing at the begin-
GW, ML, MR, NE, SN, TD, TG). ning of each regular issue of the PCT Gazette.



© 00 N O O b O N -~

W W W N NN DN DN DN NN DN2QO @ A QO A @ a a a a«a
N = O © 00 N O O b W N 2 O © 0 ~N O O W N =~ O

WO 03/055130 PCT/US02/40162

Reversible Watermarking

Related Applications:

This application claims the benefit of provisional application 60/404,181, filed
August 16, 2002, 60/340,651, filed December 13, 2001, and 60/ __, |, filed
December 2, 2002, entitled Reversible Watermarking by Jun Tian and Steve

Decker.

This application is also related to application 10/035,830 filed October 18,
2001, which claims the benefit of provisional applications:

a) 60/247,389, filed November 8, 2000;

b) 60/260,907, filed January 10, 2001; and

c) 60/284,594 filed April 17, 2001.
The entire content of the above listed applications is hereby incorporated

herein by reference.

Field of the Invention:

The invention relates to steganography, auxiliary data embedding in data sets,

and digital watermarks.

Background and Summary

The technology for digital watermarking media content, such as images, video
and audio is well known. A variety of different types of digital watermarks have
been developed. Some types of digital watermarks can be read from
watermarked data despite changes in the data. For example, some types of
image watermarks can survive when the watermarked image is rotated,
spatially scaled, lossily compressed, and/or printed. Some video and audio
watermarks survive when the watermarked content is lossily compressed,

converted to analog form, and re-sampled into digital form.

Some digital watermarks are designed to be fragile so that if the watermarked

data is changed the watermark is rendered unreadable or is degraded in a
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predictable fashion. Such watermarks can be used to determine if a
watermarked document has been changed based on detection of the digital
watermark. If certain data is watermarked with a fragile watermark, and the
data is later changed the watermark is degraded or rendered unreadable.
Thus, the absence or degradation of a watermark will indicate that the data has

been changed.

Some digital watermarks are designed to be reversible. A watermark is
reversible if a data set can be watermarked, thereby changing the data
somewhat, and at a later time the watermark can be removed in order to return

to the original un-watermarked data set.

The technique used to watermark an image (or data set) determines such
factors as: the extent to which a watermark can survive changes in an image,
the amount of change in an image needed to destroy a fragile watermark, and
how accurately an image can be recreated after a reversible watermark is

removed.

One challenge that occurs with some reversible watermarks is that they can
cause overflow or underflow conditions. For example, consider a digital image
or audio signal that is represented by values from 0 to 255. If during the digital
watermarking operation, a digital sample with the value of 254 is increased by
2, there will be an overflow condition. Likewise, if a sample with a value of 1 is
decreased by 2, an underflow condition will occur. When an overflow or
underflow occurs during a watermarking operation, it poses limitations on the

ability to recover the original, un-watermarked signal.

The invention provides a number of methods and related software and systems
for embedding auxiliary data in data sets, and for decoding this auxiliary data
from the data sets. One aspect of the invention is a method of reversibly
embedding auxiliary data in a data set. This method transforms the data set

from an original domain into transformed data values with an invertible
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transform. It expands selected data values to embed auxiliary data. The
method then inverts the transformed data values, including the data values
selected for expansion, to return the transformed data values to the original

domain.

Another aspect of the invention is a compatible decoder for extracting the
embedded data and restoring the values of the data set to the same values as
before embedding of the auxiliary data. This decoder transforms the data set
from an original domain into transformed data values with an invertible
transform. It extracts auxiliary data from data values previously selected for
embedding of auxiliary data by expansion, and restores the selected data
values to the same values as before the embedding of the auxiliary data. It
then inverts the transformed data values, including the data values selected for

expansion, to return the transformed data values to the original domain.

Another aspect of the invention is a method of reversibly embedding auxiliary
data in a data set. This embedding method selects embedding locations in the
data set that have a property that is invariant to changes due to embedding of
the auxiliary data. The invariant property enables a decoder to identify
embedding locations. The embedding method then reversibly embeds auxiliary

data into data values at the embedding locations.

Another aspect of the invention is a method of decoding reversibly embedded
auxiliary data in a data set. This method identifies a subset of locations in the
data set that have a property that is invariant to changes due to embedding of
the auxiliary data. It extracts auxiliary data from data values at the identified
locations. It then restores values of the data set to the same values as before
the embedding of the auxiliary data into the data set.

Another aspect of the invention is a method of embedding auxiliary data in a
data set. This method identifies values derived from the data set that are
expandable. It expands the identified values by inserting an auxiliary data state
corresponding to auxiliary data to be embedded in the identified values. This



WO 03/055130 PCT/US02/40162

method has a corresponding decoding method, and can be used for reversible
data embedding applications.

Further features will become apparent from the following detailed description

and accompanying drawings.

Brief Description of the Drawings:

Figure 1A is a diagram illustrating an expansion method for auxiliary data
embedding into a data set.

Figure 1B is a diagram illustrating an auxiliary data decoder compatible with the
data embedding method of Fig. 1A

Figure 1C is a diagram illustrating an embedding operation for authentication
applications.

Figure 1D is a diagram illustrating authentication by extracting the embedded
data, re-creating the original data, and using the embedded data to
authenticate the data.

Figure 1E is a diagram illustrating a reversible watermarking method used to
select elements for embedding based on whether the element has a property
that is invariant to the embedding operation.

Figure 1F is a diagram illustrating the decoding of a reversible watermark that
takes advantage of the invariant property to identify embedded data locations.
Figure 2A is a diagram of an image showing a pattern of bit pairs.

Figure 2B is a diagram illustrating changeable and unchangeable bits in
difference values.

Figure 3 is an overall block flow diagram of the watermark embedding process.

Figure 4 is a block flow diagram of the watermark reading process.

Detailed Description:

Various preferred embodiments of the invention will be described. The
embodiments provide a method or technique for embedding a digital watermark

into a data set, such as an image. Embodiments illustrate a reversible
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watermarking method that enables decoding of the digital watermark, and exact

re-creation of the original, un-watermarked data.

While certain embodiments described below relate to digital watermarking of
image signals, the invention can be used to watermark other types of data such

as audio data.

Figure 1A illustrates a flow diagram of an expansion method for auxiliary data
embedding into a data set. This particular method is designed to be invertible
in cases where there are no changes to the data set (e.g., “fragile” data
embedding). Variations of the method may be designed to make the data
method more robust to certain types of changes fo the data set and partially
reversible. For example, the method may be employed hierarchically to
transformations of the data set into layers of values that have varying

robustness.

As illustrated in Fig. 1A, the embedder starts with a data set 20. For
applications that we are targeting, this data set comprises a set of integers
(e.g., 8 bit values ranging from 0-255). The embedder performs an integer to
integer transform of the data into values for expansion (22). This transform
maps sets of data elements in the data set into values for expansion. The
embedder applies this transform across the entire data set to be embedded
with auxiliary data (e.g., it is repeated on groups of elements throughout the
data set). Note that in some applications, the data may undergo one or more
pre-processing steps to place the data into a better format for the data
embedding method.

The specific type of transform may vary, and the implementer may select the
transform for the needs of the application. One of our applications of the
method is reversible digital watermark embedding for images. Our criteria
include making the embedding operation perfectly reversible, maintaining (or at
least controlling to a desired degree) the perceptual quality of the image signal,
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and embedding capacity of the digital watermark. In other applications, other
objectives may be important, such as retaining some level of lossless
compressibility of the embedded data, enhancing the security of the embedding
process (e.g., making the nature of the transform statistically undetectable),

etc.

In our specific embodiments, the embedder transforms sets of integer data to
corresponding sets of values for expansion, including fixed and variable values.
The fixed values remain unchanged in the subsequent expansion embedding
operation. The variable values are selected for expansion to serve as carriers
of the embedded data. We selected a transform that generates fixed values
that enables reversibility and perceptual quality control. We also selected this
transform because it generates small integer variable values that are likely to
be more expandable to provide for higher information carrying capacity. The
specific transform is a transform of sets of the data into correspénnding sets of
averages and difference values. Other transforms that satisfy the criteria may

be selected as well.

Next, the embedder performs an invertible expansion of values in the sets of
values transformed for expansion (24). This expansion is referred to as
invertible because it enables the auxiliary data decoder to extract the
embedded data values for each set, and compute the original data values
computed for expansion in the embedder.

The sets of data include two or more data elements. The embedder transforms
these data elements into a corresponding set of values for expansion. The
embedder embeds auxiliary data by expanding selected values for expansion
in this set into expanded values that represent auxiliary data. The auxiliary
data may be binary or higher state (e.g., two or more possible states for the
embedded data value).
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In the case of the transform to sets of fixed and variable values, the embedder
expands the variable values into expanded values that carry the binary or
higher embedded state. The expansion operation multiplies a value for
expansion by an integer corresponding to the number of states and adds the
desired state.

Here are examples of expanding an integer, |, using a two or more state
expansion operation:

Two states:

21+0

21+1

Three States:
31+0
31+1
3l+2

N States:
NI+0
NI+1
Ni+2

NI+(N-1)

Next, the embedder performs the inverse of the transform in block 22 on the
sets of values, including expanded values (26). This inverse transform returns
the embedded data set 28 back to its original domain at the input of the

process.

Figure 1B illustrates the corresponding auxiliary data decoder. First, the

decoder performs the same transform as in block 22 to place the data into the
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1 domain where it was expanded (30). Next, the decoder extracts the auxiliary
2 data values by performing the inverse of the invertible expansion operation
3 (32). Inthe case where the expansion multiplies by the number of states and
4  adds the desired state, the decoder extracts the embedded data value directly
5 by reading the state that has been added to the expanded value. This inverse
6 of the expansion provides the original un-expanded value as well as the
7 embedded data value.
8
9, Having recovered the un-expanded value in the set, the decoder now performs
10  the inverse transform (34) as in block 26 to get the original data set 36.
11
12 To help illustrate, we show examples of this method in mathematical form.
13  First, we illustrate an example of a transform of data elements, p;, p2, and ps,
14  into values for expansion g, d;, and d,.
15
16 Generally, the transformation involves two or more elements of the data set into
17  the values for potential expansion. In this case, we illustrate a transform
18  involving three elements of the data set:
a D
19 d, |= 1| P
d, Ps
20
21
22 A specific example of the function fis:
azlpl + P, +p3J
3
23 d =p,—p
d, = ps—p,
24 where | |, is the least integer function.
25

26  For embedding data in digital images, the data elements correspond to discrete

27  image samples, such as pixels in the spatial domain of the image. In this
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example, one can see that the value, a, comprises an average of the elements,
while d; and d; comprise difference values of selected pairs of the elements.
The average may be weighted differently. For images, the data samples may
correspond to grayscale values, or for color images, the samples may
correspond to luminance, chrominance, or a selected combination of samples
from some other color channel or color mapping. As an example, the color
components R, G, B or CMY, may be uncorrelated before embedding and then
independently embedded. Alternatively, the transform A may compute the
fixed value as a function of the RGB values: (R+2G+B)/4, for example.

Though not a requirement, this transformation shows an example of a case
where the transform produces fixed and variable values: a remains fixed in the

expansion operation, while d; and 4; are potentially expanded.

This example illustrates that the data elements in the set, and their
arrangement in the original data set may vary. In the case where the
implementer is seeking better embedding capacity, the data elements are
preferably selected to provide highly expandable values. In an invertible
expansion method, smaller values are preferable because they can be
expanded further before causing a non-invertible exception, namely, an
underflow or overflow of the data elements, which are constrained to a

predetermined range of integers.

In the case of digital data, such as 8 bit values, the values are constrained to a
range of integers such as 0 to 255. In the case of digital image pixels that are
transformed into fixed average values and expandable differences, highly
correlated pixel values provide the smallest difference values, and as such, are
more expandable. Thus, selecting a pattern of neighboring data elements
tends to provide groups of correlated elements, whose difference values are

more expandable.
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The 2™ and 3" equations representing the transformation are merely functions
that give small numbers that are expandable. The difference between two
correlated values is just one example. Anther example is the difference
between a data element and some fixed value such as 0 or 255. By varying
the transform function adaptively throughout the data set, the embedder can
optimize the capacity, perceptibility, or some other combination of criteria. To
inform the decoder of the proper function selected at embedding, the embedder
may base the selection of the function based on data element features that are
invariant to the embedding operation, or it may make the identification of the

function part of the key used to decode the embedded data.

Next, to illustrate data embedding through expansion in this example, consider
the following expression:
p; a 0
P, |=f7 E| d; |+| s, ||, where /! is the inverse function of Jas shown in the
Dy d,| |s, '

following example:

d, +d,
P =a—[ 3 J
py=d,—p,
Py =d, —p,

E is the expansion matrix as shown in the following example:

i 1 0 0l al o
p =710 N1 0 |d, |+]s5
Ds 0 0 N2|d,| |s,

In this example, the first row of the expansion matrix illustrates that a is the
fixed value, while the next two rows represent functions that expand values d;
and 4, as a function of the number of states, V, and the desired state of the
symbol to be embedded, s. The number of states per expandable value is
variable. The total number, M (3 in the example above), of data elements, p, is

also variable in function f.

10
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The total embedding capacity per grouping of elements, p, in the function fcan
be represented as:

(M -1))Log.N bits; and the capacity per data element, p can be
represented as:

((M-1)/M) Log>N bits

As shown in this example, the transformation of the expanded data by the
inverse of £, produces the embedded data set, p;’, p,” and p;’.

For reversibility, the embedder preferably uses invertible integer to integer
transforms. In our implementation, we use the floor function to ensure that the

functions, fand E, are integer to integer and invertible.

The methods outlined above may be repeated on the data set to embed
additional layers of auxiliary data, each possibly with a different decoding key
used fo enable decoding of the layer. Specifically, the input of one embedding
operation may produce an embedded data set that is input to another
embedding operation. This embedding may be performed repeatedly and
hierarchically to embed additional data. A hierarchical approach applied to
expandable values in different transform domains of varying robustness can
provide an embedding scheme that is robust and reversible in part. One
example would be to apply the method hierarchically to different spatial
resolutions of an image. For example, the implementer may seek to embed
data by expanding the difference of average values, which are more robust to
distortion.

As the implementer seeks to improve the performance of the data embedding
to optimize capacity, perceptual quality, robustness, detectability, etc., the
domain of the data set and the transform of the data set to values for expansion

may be selected to optimize the desired performance criteria.

11
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As the implementer seeks to make the data embedding more robust, there are
tradeoffs with embedding capacity and being able to achieve perfect
reversibility. If the embedded data must survive certain types of distortion, the
distortion may preclude reversibility of all or a portion of the data that is
embedded in attributes that are altered by the distortion. Conversely, unaltered
robust attributes that carry the embedded data can remain reversible.

In general, to increase robustness, the implementer can select a pre-
processing operation on the data set that transforms it into a domain that is
more robust to the expected forms of distortion. For example, if some loss of
the original data were tolerated, the original data set may be pre-quantized with
more coarse quantization before applying the data embedding method. Also,
while our examples focus on spatial domain pixels, the data embedding method

applies to other domains such as wavelet, DCT, Fourier, etc.

One observation of the example transform of data to fixed averages and
expandable differences is that a lower resolution thumbnail image may be
computed using the average function. In this case, the thumbnail of the
watermarked and un-watermarked image computed by this average function

are the same.

For images, the method may be repeated on contiguous tiles of pixels, each

embedded with its own reference code that enables the data to be robust to

cropping.

Figures 1C and 1D shows compatible embedder and decoder processes that
ensure there is no difference between the original data set and the re-created
data set. The process begins with an original data set 101. As indicated by
block 102, the embedder calculates authentication data, such as a hash of the
original data, error detection data, a fixed message, or an error correction
encoded message that can be analyzed to detect the presence of errors in the
embedded data. As indicated by block 103, the embedder embeds auxiliary

12
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data in the data set 101, including the authentication data along with other
auxiliary data. The embedded data set is designated 104.

When one wants to recreate the original data set, the embedded data set 104
is processed as indicated by block 105 to read the embedded auxiliary data.
Processes used to read the auxiliary data are explained further below. The
authentication data and various other auxiliary data are extracted from the
embedded data set 104. The extracted data is used to re-create the original
data set from the embedded data set as indicated by block 106. Finally, the
reader uses the authentication data to check whether the re-created data set is
unmodified (e.g., the same as the original data set). For example, a new hash
number X2 is calculated from the re-created data set. If the hash number X2
equals the embedded hash X, it means that the original data set and the re-

created data set are identical.

Alternatively, an error detection message can be used to detect whether the
extracted auxiliary data is error free, which is expected if the embedded data
set has not been modified. Other fixed data messages in the auxiliary data can
be checked for errors by comparison with a known, expected message.

Finally, an error corrected version of embedded data may be used to
regenerate a new error correction encoded message, which is then compared

with the extracted, error correction encoded message to check for errors.

In some applications, it is useful to be able to identify where auxiliary data is
embedded in an embedded data set using only the embedded data (e.g.,
without a map separate from the embedded data). One approach to
accomplish this is to identify and embed at least some of the auxiliary data in
embedding locations that are identifiable before and after the embedding
operation. In particular, certain features can be selected that are invariant to
the embedding operation and serve to identify an embedding location. These
features enable the auxiliary data decoder to identify variable embedding
locations by finding the location of features with the invariant property.

13
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Figure 1E illustrates an embedding method that identifies data elements in an
image that are invariant to auxiliary data embedding to enable the decoder to
locate the embedded data. A similar approach may be used for embedding
auxiliary data in other data types. First, as indicated by block 111, an optional
transform is applied to an original image 110 to produce a transformed image
112. One example of this transform 111 calculates difference and average
values for pairs of pixels in an image. Next as indicated by blocks 113, certain
elements in the transformed image 112 are identified. The identified elements
have a property that remains identifiable after they are changed by auxiliary
data embedding. The identified elements are illustrated as blocks 112A. It
should be understood that in a practical application, an image has many
thousand of such elements. For convenience of illustration, only a few such

elements 112A are illustrated in Figure 1E.

An auxiliary data stream 114 is embedded in the image. The auxiliary data
stream can include authentication data, payload data, and various other data
elements. As indicated by block 115, the data stream 114 is embedded in the
elements 112A of image 112 creating a new image 116, which has identifiable
elements 116A. The elements 112A and the elements 116A have different
values; however, they can be identified or picked out of all of the other
elements in images 112 and 116, because the selection criteria uses a property
which is invariant between the original elements and the elements that have
been changed by the embedding process.

The embedding locations having the invariant property may be used to embed
auxiliary data, such as a location map, that identifies further embedding

locations.
Some embodiments of reversible watermarking embed values of the original

image that are changed by bit substitution during the embedding operation as
part of the auxiliary data stream. This is not required in all cases because

14
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some embedding operations, like the expansion embedding method, are
invertible without storing original data values and can be made at some

locations in a manner that retains the invariant property.

An inverse transform 117 (i. e. a transform that is the inverse of the transform
111) can be applied to image 116 to generate an embedded image 118 (i.e. an
image with the auxiliary data embedded in it). The image 118 is shown with a

shaded corner to indicate that image 118 includes embedded auxiliary data.

The auxiliary data reading and image re-creation process is illustrated in block
diagram form in Figure 1F. First as illustrated by block 121, a transform is
applied to the image with embedded data 118. The transform 121 is identical
to the transform 111. Application of transform 121 produces a transformed
image 116, which has identifiable elements 116A. These elements are
identified using the same invariant criteria 123. As indicated by block 125, the
data stream 114 is extracted from elements 116A. As indicated by block 126,
the data from stream 114 is used to restore the transformed values of the
image to their original values prior to auxiliary data embedding. In certain
cases, this process of restoring the original values of the transformed data
occurs as part of the auxiliary data extraction process of block 125. In other
cases, certain changed bit values of elements 116A are replaced with original
bit values carried in the auxiliary data stream. It is not necessary to carry
original values of the image data in the auxiliary data stream when using
embedding techniques, like expansion, that are invertible without requiring the
auxiliary data to include the changed bits of the original image. As indicated by
block 127, an inverse of transform 121 is applied to re-generate the original
image now which is designated 110A in Figure 1F. Not specifically shown in
Figure 1F, is the fact that data stream 114 can include a hash of the original
image 110. One can generate a hash of the recreated original image 110A and
compare it to the hash in data stream 114, to insure or guarantee that the

image has been re-created precisely.
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In certain embodiments of our reversible watermarking method, an invertible
transform divides the pixels in an image into pairs or groups of pairs according
to a particular pattern. Factors to be considered in choosing these patterns
include, for example, retaining perceptual quality of the image after embedding,
increasing data capacity, etc. Figure 2A illustrates (in greatly exaggerated
form) the individual pixels in an image. Only a small portion of an image is
shown. As is well known, any practical image would include many thousand
such pixels. For convenience of illustration only a relatively few pixels are
shown in Figure 2A. Itis also noted that in certain embodiments only the
luminance values of the pixels are embedded with data. That is, the image is
viewed as a gray scale image. Naturally, in color images there would also be
color values. It should be understood that the digital watermark could
alternatively be placed in other aspects of the image such as in the various
color components and other transform domain sample value, like frequency

domain values.

The purpose of Figure 2A is to illustrate that the pixels are grouped into pairs in
this example embodiment. For example, as shown in Figure 2A, pixel C and D
belong to the same pair. Any pattern of grouping can be used; however, the
same pattern must be used in both the embedding and in the reading
operations. While any pattern of paired pixels can be used, it is advantageous
to use pairs that probably have similar values, that is, pairs that probably will
have small difference numbers. Thus, in the preferred embodiment, adjacent
pixels were chosen for members of each pair. In Figure 2A, an alternating
horizontal and vertical pattern was chosen to illustrate that the pattern can have

a wide variety of arrangements.

In certain embodiments using difference expansion, two numbers are
calculated for each pair of values in the image:
a) The average value of the two pixels, and

b) The difference between the values of the two pixels.
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Transforming the image representation from a representation with an array of
pixel values to a representation with an array of difference and average
numbers is just one example of a transform or filter as indicated by block 111 in
Figure 1E. Other transformations may be made before this transform to place
the original data in a format for embedding in other domains (e.g., a transform
to a frequency domain, a transform a feature set, such as autocorrelation

values or other statistical values).

In order to facilitate a discussion of additional embodiments, the following terms
are defined as follows:
Average value: the average value of a group of two or more values.
Difference value: the difference between selected values in the group
Expandable value: a value that can be expanded without causing an
overflow or underflow.
Expanded value: a value that has been expanded.
Changeable value: all expandable values and values that can be
changed by bit substitution without causing an overflow or

underflow.

These definitions are used only for the sake of explaining certain embodiments,

and are not intended to be limiting.

Figure 2B illustrates difference values A to Z to show examples of the various
types of difference values that can exist in an image. Difference values A and
C are difference values that are not changeable. Difference values B and Z are
changeable, but not expandable. They have certain bits designated Bc and Zc
that may be changed by bit substitution. Difference values D and E are

expandable.

As a simple example consider the following. If a pair of pixels has grayscale
values (61,76), the average value of the pair is 68.5 and the difference is 15.
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Only the integer part of the average, namely 68, need be considered. This
integer part is computed using the floor function, for example. The difference
value 15 can be expressed as a binary number with a minimum length. In such
a representation, all leading “0”s in the binary representation are discarded.
That is, the difference number 15 can be expressed as the binary number
1111.

With this example, a bit can be inserted in the difference number 1111 without
causing an overflow. That is, where the difference number is 1111 and a 0 is
inserted after the first 1, the number becomes 10111 or 23.

Given an average of 68.5 and a difference of 23, the pair of pixels must have
the value 57 and 80. The average of 57 and 80 is 68.5 and the difference is

23. The above numbers may be easier to follow with the following table.

Pixel Average | Difference | Difference value
values in binary
61,76 68.5 15 1111
57, 80 68.5 23 10111

It is noted other pairs of pixels values could have an average of 68; however,
only the values 57 and 80 have an average of 68 (ignoring the fractional
portion) and a difference of 23.

The following is another simple example to illustrate difference expansion.
Assume that one has two grayscale values x = 205 and y = 200. We will
illustrate below how one can embed one bit b = 1, in a reversible way. First the
integer average value / and the difference value “h” of x and y are computed

as follows:

e 205+200J= [4_05_= 00
2 2 2
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h=x-y = 205200 = 5 .
It is noted that the symbol | | is the floor function meaning “the greatest
integer less than or equal to”. For example |2.7] =2,and |-52]=-6 .

Next we represent the difference number h in its binary representation:
h=5= 101
Then we append b which equals 1 into the binary representation of h after the
least signifiCant bit (LSB), the new difference number h’ will be:
h’=101b, = 1011, = 11
The above is equivalent to:
h=2xh+b=2x5+1= 11
Finally we can compute the new grayscale values, based on the new difference

number h’ and the original average number /,

x'= I+ {EJ= 202+F£—EJ =208
2 2

y'=l—[fl—J :202_Flj =197
2 2

From the embedded pair X',y’, we can extract the embedded bit b and restore
the original pair x, y. To do this we again compute the integer average and
difference as follows:

l,=[x+y _ 208+197J 0
2 2

h =x -y =208-197 =11

We now look at the binary representation of i’
=11 = 1011

From the above we extract the LSB, which in this case is 1, as the embedded

bit b which leaves the original value of the difference number as:
h=101, =5
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the above is equivalent to:

b=LSB(h)=1, h= F’z-J = 5.

With the original average value ! and the restored difference number h, we can

restore exactly the original grayscale valued pair, X,y.

In the above example, although the embedded pair (208, 197) is still 8 bits per
pixel (bpp), one bit b has been embedded by increasing the valid bit length of
the difference number h from 3 bits (for h = 5) to 4 bits (for h’ = 11). This
reversible data embedding operation ' = 2 x h + b is called difference

expansion.

The reason that the valid bit length of the difference numbers h can be
increased in images is because of the redundancy that exists in the pixel
values of natural images. In most cases h will be very small and have a short
valid bit length in its binary representation. However, in an edge area or an
area containing lots of activity, the difference number h from a pair of grayscale
values could be large. For example, if x = 105, and y = 22, then h = x-y = 83.
In such a situation if one wanted to embed a bit 0 into h by difference
expansion, then b’ =2 x h +b = 166. With / = 63 being unchanged, the
embedded pair will be X = 146 y’ = -20. This will cause an underflow problem
since grayscale values can only be in the range of [0, 255]. In the specific
embodiments discussed below, the grayscale values selected for expansion
are those grayscale values that can be expanded without causing an overflow

or underflow condition.

The overall process used to watermark an image is illustrated in block diagram
form in Figures 3 and the overall process used to read a watermark and re-
create an image is illustrated in Figure 4. Each block in Figures 3 and 4 can be
a subroutine in a program or digital circuit, or alternatively, a number of blocks

can be performed by a single program subroutine or digital circuit.
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As indicated by block 300, the process begins with an image which one wants
to embed auxiliary data (e.g., a digital watermark). Itis noted that in other
embodiments, one could start with other types of data. For example, instead of
starting with an image, one might start with a digitized file of audio data, video
data, software, graphical model (e.g., polygonal mesh), etc.

As a first step (block 301) a hash number or other authentication data is
generated for the image. This can be calculated by known techniques for
calculating a hash number. It is noted that the size of a hash is much smaller
than the size of the image. It is not necessarily a unique identification.
However, a hash can authenticate an image with a very high confidence level.

Block 302 indicates that a pattern of pixel pairs is selected. It is desirable (but
not absolutely necessary) that the values in each pair tend to be similar. The
selection pattern illustrated in Figure 2A is one example of selected pairs.
Adjacent pairs have been selected since they more likely have relatively similar
values. However, the particular pattern selected is arbitrary and a wide variety

of different patterns could be used.

Next, as indicated by block 303, for each pair of pixels, two values are
calculated. The average of the two pixel values of the pair is calculated and the

difference between the pixel values in the pair is calculated.

The values of the pixel in each pair are then examined and the following is
determined:

a) Those pairs that can be expanded without causing an overflow or underflow.
b) Those pairs that cannot be expanded, but which have bits that can be
changed by bit substitution without causing an overflow or underflow.

[{ g}

¢) Those pairs that do not fall into groups “a” or “b.”
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Various embodiments are described in detail below for selecting the

({1

expandable pairs. Note that the difference values of the pairs in sets “a and
“b” are both changeable in some fashion (by expansion or by bit substitution).
The set of “changeable” difference values can be limited to those that have an
invariant property to the embedding operation so that the decoder can identify

embedding locations without use of data separate from the watermarked data.

As indicated by blocks 305 and 3086, the particular pairs that will be expanded is
determined and a location map is made which indicates which pairs will be
expanded. For example, one simple way of making a location map is to have
one bit for each pair that indicates whether the pair is expandable. Another
way to make a location map is to store the index values of either the pairs that

can be expanded or the indexes of the pairs that can not be expanded.

Next as indicated by block 307, a data stream (called the embedded data
stream) is created. The embedded data stream may include:

a) The desired payload data (i.e. data which one desires to store in the
watermark).

b) The location map (in some embodiments, the location map is compressed).
c) The original bits changed by bit substitution, and

d) A hash number of the original image.

As indicated by block 308, the embedder embeds the auxiliary data stream
using expansion (and in some cases, bit substitution). For certain expandable
difference values, the embedder expands the difference value by multiplying
the difference value by the desired number of states and adding the desired
state. For example, in the case of two states, the embedder multiplies the
expandable difference value by 2, shifting the bit positions toward the MSB,
and the embedded bit value (0 or 1) is added in the bit position vacated by the
shift. As indicated by block 309, the new difference values along with the
original average values are used to calculate new values for each pair. In

certain cases, the embedder replaces bits in certain difference values (e.g.,
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those in set “b”) by certain bits from the embedded data stream using bit

substitution. The result is a watermarked image 310.

Figure 4 shows auxiliary data decoder operations in the process of reading the
auxiliary data and recreating the original, un-watermarked image. Firstas
indicated by block 401, the values in the watermarked image are grouped into
pairs using the same pattern as was used during the watermarking process.

Next (block 402) the average and difference value of the pairs are calculated.

The changeable difference values are determined (block 403). The decoder
can identify these values using a property invariant to the embedding operation,

or using separate data (e.g., a separate location map).

As indicated by block 404, the changeable difference values are selected, and
an auxiliary data stream is extracted. In this case, the auxiliary data embedded
by expansion and by bit substitution is carried in the LSBs of the difference
values, and as such, is easily separated from the changeable difference values.
This extracted data is the embedded data stream previously discussed. The
embedded data stream includes:

1) The payload

2) The location map that tells which pairs have been expanded (if not

provided separately).

3) The original value of any bits, if any, changed by bit substitution

4) a hash of the original image (or other authentication data).
The length and position of each component in the embedded data stream is
known (or it can be determined), hence, the embedded data stream can be

separated into its component parts.

Block 406 indicates that the bits changed by bit substitution are replaced with
the original bits in the embedded data stream. The location map is used to tell
which pairs have been expanded. As indicated by block 406, the difference

numbers for the pairs are processed in sequence. For each pair, any bits
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changed by bit substitution are replaced by corresponding original bits from the
embedded data stream. If the location map indicates that a particular pair was
expanded, the difference values are restored to their original values by
inverting the expansion operation. For the case of binary embedding states,

this operation shifts the bit positions back to their original position.

Finally, new values for each pair are calculated from the average values and
the restored difference values for each pair (block 407). These new values are

the newly re-created image as indicated by block 408.

As a final step, a hash number for the re-created image is calculated and
compared to the hash number that was in the embedded data stream. If the

two numbers match, the original image has been re-created perfectly.

Several specific embodiments of the invention will now be described in
considerable mathematical detail. It is noted that in the following discussion,
some equations are referred to by the number in parentheses that is to the right

of the equation.

Details of First Specific Preferred Embodiment: The following is a more

detailed description of a first specific preferred embodiment of the invention.
This embodiment provides a high capacity and high quality reversible
watermarking method based on difference expansion. A feature of the method

is that it does not involve compressing original values of the embedding area.

The method described here can be applied to digital audio and video as well.
This embodiment performs steps similar to those in Figure 3. That is, the
difference between neighboring pixel values are calculated (block 303). Some
difference numbers are selected for difference expansion (block 305). The
original values of difference numbers, the location of expanded difference
numbers, and a payload are all embedded into the difference numbers (308).

Extra storage space is obtained by difference expansion.
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The described embodiment pertains to grayscale images. There are several
options by which the technique can be applied to color images. One can de-
correlate the dependence among different color components, and then
reversibly watermark the de-correlated components. Or one can reversibly

watermark each color component individually.

In this embodiment, a watermark is embedded in a digital image /, to create a
watermarked image /. The reversible watermark can be removed from /" to re-
create the original image. The recreated image is called /. One can determine
if the image /' was tampered with by some intentional or unintentional attack.
This is done by comparing a hash of the original image / to a hash of the re-
created image /”. If there was no tampering, the retrieved image /" is exactly
the same as the original image /, pixel by pixel, bit by bit.

The basic approach is to select an area of an image for embedding, and embed
the payload. Difference expansion is used to embed the values in the image,
and this eliminates the need for loss-less compression. The difference
expansion technique discovers extra storage space by exploring the high

redundancy in the image content.

This embodiment embeds the payload in the difference of neighboring pixel
values. For a pair of pixels (x, y) in a grayscale image,

x,y € Z, 0 < x,y <255, we define their average and difference as

=[x;y}h=x—y (1)

where the symbol |__| is the floor function meaning “the greatest integer less

than or equal to”. The inverse transform of (equation 1 above) is:
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x=l+[12—;—lJ,y=l—[§J )

As grayscale values are bounded in [0,255], we have:

OSZ-!—[h—;l-JSZSS,OSZ—LgJSZSS

which is equivalent to:
|1 < min(2(255-1),21 +1) (3)

Thus to prevent overflow and underflow problems, the difference number h

(after embedding) satisfies Condition (3).

The least significant bit (LSB) of the difference number h will be the selected

embedding area. As

" o= EJ-2+ LSB(h)

with LSB(h) = 0 or 1, to prevent any overflow and underflow problems, we

embed only in changeable difference nhumbers.

Definition of Changeable values: For a grayscale-valued pair (x, y), we say h is

o

Using bit substitution for changeable h does not provide additional storage

changeable if:

< min(2(255 —1),21 +1)

for both b=0 and 1.

space. We gain exira storage space from expandable difference numbers.

Definition of Expandable values: For a grayscale-valued pair (x, y), we say h is

expandable if

|12 h+ B < min(2(255-1),2] + 1)
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for both b=0 and 1.

In the binary representation of integers, an expandable h could add one extra
bit b after its LSB, with b=0 or 1. More precisely, h could be replaced by a new
difference number h’=2h+b, without causing an overflow or underflow. Thus,
for each expandable difference number, one could gain one extra bit. The
reversible operation from h to h’is called difference expansion. An expandable
his also changeable. After difference expansion, the expanded h’is still

changeable.

With this embodiment, more difference numbers will be changeable and/or
expandable than in the fourth embodiment. Also note that if h=0 or —1, the

conditions on changeable and expandable are exactly the same.

When this embodiment is applied to a digital image, the image is partitioned
into pairs of pixel values. A pair comprises two pixel values or two pixels with a
relatively small difference number. The pairing can be done horizontally,
vertically, or by a key-based specific pattern. The pairing can be through all
pixels of the image or just a portion of it. The integer transform (1) is applied to
each pair. (it is noted that one can embed a payload with one pairing, then on
the embedded image, we can embed another payload with another pairing, and

so on.)

After applying transform 1, five disjoint sets of difference numbers, EZ, NZ, EN,
CNE, and NC are created:

1. EZ: expandable zeros. For all expandable e {o,-1}
2. NZ: not expandable zeros. For all not expandable /e {0,-1}
3. EN: expandable nonzeros. For all expandable 7 ¢ {0,-1}

4. CNE: changeable, but not expandable. For all changeable, but not
expandable 7 ¢ {0,-1}
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5. NC: not changeable. For all not changeable /¢ {0,~1}

Each difference number will fall into one and only one of the above sets.

The next step is to create a location map of all expanded (after embedding)
difference numbers as indicated by block 306 in Figure 3. We partition the set
EN into two disjoint subset EN1 and EN2. Every hin EN1, will be expanded;
and every h in EN2, will not be expanded (though it is expandable). A

discussion on how to select expandable % ¢ {0,—1} for difference expansion is

given below. We create a one-bit bitmap, with its size equal to the numbers of
pairs of pixel values. For the difference number in either EZ or EN1, we assign
a value “1” in the bitmap; for the difference number in either NZ, EN2, CNE, or
NC, we assign a value “0”. Thus a value “1” will indicate an expanded
difference number. The location map will be lossless compressed by a JBIG2
compression or run-length coding. The compressed bit stream will be denoted

as L. An end of message symbol is appended at the end of L.

We collect original LSB values of difference numbers in EN2 and CNE. For
each h in EN2 or CNE, LSB(h) will be collected into a bit stream C. An

exception is when h=1 or —2, nothing will be collected.

With the location map L, the original LSB values C, and a payload P (which
includes an authentication hash, for example, an SHA-256 hash), we combine

them together into one binary bit stream B
B=LuCuUP

Assuming b is the next bit in B, depending on which set h belongs to, the
embedding (by replacement) will be

e EZorEN1: h=2-h+b

« EN2 or CNE: h=EJ-2+b
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e NZ or NC: no change on the value of h, b is passed to the next h

After all bits in B are embedded, we apply the inverse integer transform (2)

to obtain the embedded image.

The bit stream B has a bit length of (|L|+|C|+|P]). Assume the total number
of 1 and =2 in EN2 and CNE is N, as each expanded pair will give one extra
bit. The total hiding capacity will be (|C|+N+|EZ|+|EN1]). Accordingly, to

have B successfully embedded, we must have:
|L|+|C|+|PI<|C|+N+|EZ|+| EN1| (4)

| L|+|P|< N+| EZ|+| EN1| (5)
Note that if the bit stream C is loss-lessly compressed before embedding, then
Condition (4) becomes
|L[+aIC‘[+|P|S|C[+N+|EZ[+|EN1{
where « is the achieved compression rate, 0 <a <1.

The partition of expandable % ¢ {0,-1} into EN1 and EN2 will be subject to

Condition (5). We will give two designs, one for mean square error (MSE)

consideration, and the other for visual quality consideration.

Assume after difference expansion, an expanded pair (x, y) becomes (x’, y),

with the average number unchanged,

(x-xf +(y-y) ~2y-») =

LaHED ) -5
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Thus to minimize the mean square error, one should select h with small
magnitudes for difference expansion. For example, one can pick a threshold T,
and partition EN into EN1 and EN2 by checking whether the magnitude of h is

less than or greater than T.

For the visual quality consideration, one can define a hiding ability of an

expandable difference number, as follows.

Definition For an expandable difference number h, if k is the largest number
such that:

k- +b| < min(2(255-1),21+1)

for all 0<b<k—1, then we say the hiding ability of h is loga k.

The hiding ability tells us how many bits could be embedded into the difference
number h without causing overflow and underflow. Thus for an expandable
difference number A, it will be at least logz 2 = 1, since k = 2. The hiding ability
could be used as a guide on selecting expandable difference numbers. In
general, selecting an expandable difference number with large hiding ability will
degrade less on the visual quality than an expandable difference number with
small hiding ability. A large hiding ability implies that the average of two pixel

values is close to mid tone, while their difference is close to zero.

For decoding, we do the pairing using the same pattern as in the embedding,
and apply the integer transform (1) to each pair. Next we create two disjoint
sets of difference numbers, C, and NC:

1. C: changeable. For all changeable h

2. NC: not changeable. For all not changeable h

Then we collect all LSBs of difference numbers in C and form a binary bit

stream B. From B, we first decode the location map. With the location
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map, we restore the original values of difference numbers as follows

(assuming b is the next bit from B):

if h e C, the location map value is 1, then A =EJ, b is passed to the

next h

e if heC,the location map value is 0, and 0<% <1, then h=1, b is passed
to the next h

e if heC, the location map value is 0, and —2<h<-1, then h=-2,bis
passed to the next h

e if #eC,the location map valueis 0, and A>2 or h<-3, then

h=[ﬁJ-2+b
2

e if heC, the location map value should be 0 (otherwise a decoding error

on a tampered image), no change on h, b is passed to the next h

After all difference numbers have been restored, we apply the inverse integer
transform (2) to reconstruct a restored image. If the embedded image has not
been tampered, then the restored image will be identical to the original image.
To authenticate the content of the embedded image, we extract the embedded
payload P from B, and compare the authentication hash in P with the hash of
the restored image. If they match exactly, then the image content is authentic,
and the restored image will be exactly the same as the original image. Most
likely, a tampered image will not go through to this step because some
decoding error could happen in restoring difference numbers. This decoding

error indicates that the image has been tampered.

The above described embodiment provides a high capacity, high quality,
reversible watermarking method. The method partitions an image into pairs of
pixel values (block 302 in Figure 3), selects expandable difference numbers for
difference expansion (block 305 in Figure 3) and embeds a payload that

includes authentication data (e.g., block 308 in Figure 3). By exploring the
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redundancy in the image, reversibility is achieved. As difference expansion
brings extra storage space, compression is not necessary. Of course,
employing compression can either increase the hiding capacity or reduce the

visual quality degradation of watermarked image.

Detail of Second Embodiment: The following is a detailed explanation of a

second embodiment of the invention. This embodiment involves a reversible
data embedding method for digital images. However, the method can be
applied to digital audio and video as well. This embodiment is an example of
expansion using N states for auxiliary data values to be embedded, where the

state N corresponds to the level number L.

In this embodiment, two mathematical techniques are utilized, namely,

difference expansion and Generalized Least Significant Bit (G-LSB)

embedding. This embodiment achieves a very high embedding capacity, while

keeping the distortion low.

In this embodiment, as in the first embodiment, the differences of neighboring
pixel values are calculated, and some difference numbers are selected for
difference expansion. The original G-LSBs values of the difference numbers,
the location of expanded difference numbers, and a payload (which includes an
authentication hash of the original image) may all be embedded into the
difference numbers as indicated by bloc 308 in Figure 3. The needed extra
storage space is obtained by difference expansion. With this embodiment, no

compression is used.

This embodiment relates to watermarking a grayscale image. For color
images, one can embed the data into each color component individually.
Alternatively one can de-correlate the dependence among different color

components, and then embed the data into the de-correlated components.
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The overall operation is as follows: a payload is embedded in a digital image |,
to create an embedded image I'. An image I” is retrieved from the embedded
image I. The retrieved image I” is identical to the original image |, pixel by
pixel, bit by bit. One can determine if the image I' was tampered with by some
intentional or unintentional attack using a content authenticator. The
authenticator compares a hash of the original image | to a hash of the retrieved

image I".

This embodiment uses a reversible integer transform.
The image being watermarked comprises grayscale-valued pairs (X, y).

Each x andy has a value from 0 to 255.
thatisx,y € Z, 0<x,y<255.

The average value “/ " and difference value “h” of the pairs is defined
xX+y

where the symbol | | is the floor function meaning “the greatest integer less

than or equal to”. The inverse transform of equation 1 is:

14 h+1 —l—h
A R S @)

In some of the literature, the reversible transform given in equations 21 and 22

above is called the Haar wavelet transform or the S transform.

The magnitude of the difference number h is used for embedding. Since

grayscale values are in the range of 0 to 255,

0sl+[h;1jszss,osl—B’-Jszss
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which is equivalent to:

7| < min( 2(255 —1),21 +1) (23)

Thus to prevent overflow and underflow problems, the difference number h
(after embedding) satisfies Condition (23).

Given an integer L, L €, L >2. the (L-level) G-LSB, g, of a difference number

h, is the remainder of its magnitude after dividing by L,

g = |h| — [j‘%i‘J L

The G-LSB g is the selected embedding area for this embodiment. In order to
prevent any overflow and underflow problems during embedding, embedding

only takes place in the changeable difference numbers defined as follows:

For a grayscale-valued pair (x,y), the difference number h is L-changeable if:

li%‘.} L+ 1< min(2(255 - 1),20 + 1)

During data embedding, the G-LSB g might be replaced by a value from the
remainder set {0,1,...... L-1}. In view of constraint set out in equation 23 above,
some large remainders might cause an overflow or an underflow. Thus we
replace g with a value from the partial remainder set {0,1,..... M}, with

h
g <M < L-1, where M is determined by: / and ['—LIJ

It is noted that modifying G-LSBs of L-changeable h (without compression)
does not provide extra storage space. With this embodiment, extra storage

space is gained from the expandable difference numbers.
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In this embodiment, for a particular grayscale pair (x,y), a difference number _h

is called L-expandable if:

|h| + L +1 < min(2(255 — 1), 20 + 1}

In a base L representation , an L -expandable h can add one extra number b
after its G-LSB. More precisely, h could be replaced by a new difference

number A, without causing an overflow or underflow where h’is defined by:

k' = sign(h) - (|b] - L +b)

Again, due to the constraint in equation 23 above, b could be a value from a
partial remainder set {0,1,.....M) with 1< M <L -1 and M is determined by /

|n
and [lTI} Thus, for each L-expandable difference number, one could gain

logo(M+1) extra bits. The reversible operation hto h’ is termed “difference
expansion”. An L -expandable h is also L -changeable. After difference

expansion, the expanded h' is still L -changeable.

For h < 0, we can alternatively define L -changeable (and L -expandable) as:

P%L j L +1< min(2(255 ~1),20 + 1)

The Embedding Algorithm: A watermark is embedded in an image using the
above described technique using the following procedure. First, The image is
partitioned into pairs of pixel values as indicated by block 302 in Figure 3. A
pair of pixels comprises two neighboring pixel values or two pixels with a small
difference number as indicated in Figure 2A. The pairing could be through all
pixels of the image or just a portion of it. The integer transform (equation 21) is

applied to each pair.
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In order to achieve maximum embedding capacity, one can embed a payload
with one pairing, then embed another payload with another pairing on the
embedded image. For example, we could embed column wise first, then

embed row wise.

After applying the integer transform (equation 21) to each pair, five sets of
difference numbers designated EZ, NZ, EN, CNE, and NC are created using

the above definitions of changeable and L-expandable as follows:

1. EZ: expandable zeros. For all L -expandable where h =0 .

2. NZ: not expandable zeros. For all not L -expandable where h=0.

3. EN: expandable non zeros. For all L -expandable h = 0.

4. CNE: changeable, but not expandable. For all L - changeable, but not L -
expandable h = 0.

5. NC: not changeable. For all not L -changeable h = 0.
Each difference number will fall into one and only one of the above sets.

The next step (block 306 in Figure 3) is to create a location map of all
expanded (after embedding) difference numbers. The set EN is partitioned into
two disjoint subset EN1 and EN2. Every hin EN1, will be expanded; every h in
EN2, will not be expanded. (It is noted that to achieve maximum embedding

capacity, EN1 would include the whole set EN, and EN2 will be empty).

A one-bit bitmap is created. Its size is equal to the numbers of pairs of pixel
values (block 302 in Figure 3). For an h in either EN1 or EZ, a value 1 is
assigned in the bitmap; otherwise a 0 is assigned. Thus, a value 1 indicates an
expanded difference number. The location map is then loss less compressed
by a JBIG2 compression or by run length coding. The compressed bit stream is

denoted as L’. An end of message symbol is appended at the end of L.

36



© 0O N O 0o b~ WO N -

-
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29

WO 03/055130 PCT/US02/40162

Next, we collect the original values of G-LSBs of the difference numbers in EN2
and CNE. For each hin EN2 or CNE, its G-LSB g is collected into a bit stream
C. We employ a conventional L-ary to Binary conversion method to convert g

to a binary bit stream.

The L-ary to Binary conversion is a division scheme of unit interval, similar to
arithmetic coding. Since h is L -changeable, we determine M, where g could
be replaced by a value from {0, 1, ... M } without causing an overflow or

underflow. We convert g to the interval:

i)
M+1 M+1

The interval is further refined by the next G-LSBs, and so on, until we reach

the last G-LSB. Then we decode the final interval to a binary bit stream. By
using L-ary to Binary conversion, instead of simply using a fixed length binary
representation of g, the representation of G-LSBs is more compact, which

results in a smaller bit stream size of C.

It is noted that when L = 2, as M will always be 1, there will be no need for the
L-ary to Binary conversion. ltis also noted that if Ihl<L -1, afterits g is

collected, we also store its sign, sign(h ), in the bit stream C.

Finally, (as indicated by block 308 in Figure 3) we embed the location map L,
the original values of G-LSBs C, and a payload P (which includes an
authentication hash, for example, an SHA-256 hash). We combine them
together into one binary bit stream S,

S=LuCuP

We use the inverse L-ary to Binary conversion to convert the binary bit stream
S to M-ary, with M determined for each expandable difference number in EZ
and EN1, and each changeable difference number in EN2 and CNE. The

embedding (by replacement) is:
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e EZ: Ihl = b, where b is the M -ary symbol from the inverse L-ary to Binary
conversion, and the sign of h is assigned pseudo randomly.

eEN1: h=sign(h)e(lhlsL+b).

|1

oEN20rCNE:h=sign(h)°({TJ-L+b).

e NZ or NC: no change on the value of h .
After all embedding is done, we apply the inverse integer transform (equation
22) to obtain the embedded image.

The Decoding Algorithm: The decoding process uses the same principles as
the embedding process. First, we do pairing of pixels using the same pattern
as in the embedding as indicated by block 401 in Figure 4. The integer

transform (equation 21) is applied to each pair.

Next two disjoint sets of difference numbers, C, and NC‘are created as follows:
1. C: changeable. For all L -changeable h .
2. NC: not changeable. For all not L -changeable h .

Next we collect all G-LSBs of difference numbers in C. We employ the L-ary to
Binary conversion to convert it into a binary bit stream B. From the binary bit
stream, we first decode the location map. With the location map, we restore
the original values of difference numbers as follows:

a) if h € C, and the location map value is 1, then

h = sign (h) « {@J

b)ifh € C, and the location map value is 0, and h = 0, decode an M -ary

symbol b from B, and decode a sign value s from B, thenh=s+b.
c) if h € C, the location map value is 0, and 1 <lhl <L - 1,

then h = sign(h) - b, and the next sign value from B should correctly

match sign(h ).
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d) if h € C, the location map value is 0, and lhl > L,

h=sign(h) - (| ] -2 + b)

e) if h € NC, the location map value should be 0, no change on the value
of h.

After all difference numbers have been restored, we apply the inverse integer
transform (equation 22) to reconstruct a restored image. If the embedded
image has not been tampered, then the restored image will be identical to the
original image. To authenticate the content of the embedded image, we extract
the embedded payload P from B. The authentication hash in P is compared
with the hash of the restored image. If they match exactly, then the image
content is authentic, and the restored image will be exactly the same as the
original image. (Most likely a tampered image would not go through to this step
because some decoding error could happen before this step indicating a

tampered image.)

For the maximum embedding capacity all expandable difference numbers (EN1
= EN) are expanded and the location map is loss less compressed by JBIG2.
For more capacity and for other reasons, one can first embed with the column
wise pairing, then embed with the row wise pairing on the column wisely

embedded image.

To embed a payload with a smaller size than the maximum embedding
capacity, one can reduce the size of EN1, until the targeted embedding
capacity is met. For example, to embed a payload of 138856 bits in a particular
image in which there are 116029 expandable non-zeros at L = 2 with column

wise pairing. One can assign 106635 of them in EN1, and the rest in EN2.
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The PSNR of the embedded image is then higher than some other methods

with a payload of the same size.

The above described embodiment provides a high capacity reversible data
embedding algorithm. The difference expansion provides extra storage space,
and compression on original values of the embedding area is not needed. With
compression (such as a linear prediction and entropy coding), the maximum

embedding capacity will be even higher, at the expanse of complexity.

Third Embodiment: The third embodiment uses the same reversible integer

transform as used in the first and second embodiment and which is given by
equations 1, 21, 2 and 22 above. Furthermore to prevent overflow and

underflow conditions:

Osl+[h—;J5255, and OSl_VéJS%S

since / and h are integers, the above is equivalent to:
|| <2(255-1), and |h|<21+1 (33)

Condition (33) sets a limit on the magnitude (absolute value) of the difference
number h. As long as h is in such range, it is guaranteed that (x, y) computed
from Equation 2 or 22 will be a grayscale value. Condition given by equations

33 above are equivalent to:
|| <2(255 1), if 128 <I< 255
\hls21+l, if 0 <I< 127

For this embodiment Expandable and Changeable difference numbers are
defined as follows: When a bit b is embedded into a difference number h by

difference expansion, the new difference number h'is:
h=2xh+b

In accordance with equation 33 above, in order to prevent overflow and

underflow, h’ must satisfy the following conditions.
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|H| < min(2(255 - 1),21 _+1)

Definition of Expandable Difference number: for a grayscale-valued pair (x,y),

which are members of a set Z and where 0<x,y <255, we define the average

and difference:

I= [x ; 24 J,h =x-—y as previously explained

The difference number h is expandable under / for both b= 0 and 1 if :
12 % b+ B| < Min(2(255~1),21 + 1)

It is noted that since an expansion does not change the average number 7, so
for simplicity and brevity, we say h is expandable, as an abbreviation of saying

h is expandable under /.

For an expandable difference number h , if we embed a bit by difference
expansion, the new difference number b’ still satisfied conditions 33. sothe
new pair computed from equation 2 above is guaranteed to be a grayscale
value. Thus expandable difference numbers are candidates for difference

expansion.

As each integer can be represented by the sum of a multiple of 2, and its LSB
(least significant bit), for new, expanded difference number h’:

H=2x [%J + LSB(W')  with LSB(F) = 0 or 1.
If we modify its LSB:
3
—ox| s p
g x[2 J N

with b’ = 0 or 1, then

2><Fl— +b|=x 2Xk+bJ+b'
2 2

lg|=
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=|2x h + b| <min(2(255 - 1),2 +1)

Thus after difference expansion, the new difference number h’ could have its
LSB modified, without causing an overflow or underflow. We call such a

difference number changeable.

Definition of Changeable difference number: for a grayscale-valued pair (X,y),

which are members of a set Z and where 0<x,y <255,we define the average

[ and difference h as:

l =|fc ; yJ,h =x-y as previously explained

In this embodiment, the difference number h id defined as changeable if:

2XLﬁJ+b
2

From the above it follows that :

<min(2(255—1),21+1) forboth b=0and 1/

1) If a difference number h is a positive odd number or a negative even
number, it is always changeable.

2) For a changeable difference number, after its LSB is modified, it is still
changeable.

3) An expandable difference number h is always changeable.

4) After difference expansion, the new difference number h’is changeable.

5) If h = 0 or —1, the conditions on expandable and changeable are equivalent.

The Location Map: One can select some expandable difference numbers, and

embed one bit into each of them. However to extract the embedded data and
restore the original grayscale values, the decoder needs to know which
difference numbers has been selected for difference expansion. To facilitate
identification of expanded values, we can embed such location information,
such that the decoder could access and employ it for decoding. For this
purpose, we create and embed a location map, which includes the location

information of all selected expandable difference numbers.
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The data embedding Algorithm: The location map allows the encoder and the

decoder to share the same information concerning which difference numbers
have been selected for difference expansion. While it is straightforward for the
encoder, the decoder needs to know where (from which difference numbers) to

collect and decode the location map.

After difference expansion, the new difference number h” might not be
expandable. On the decoder side, to check whether h’ is expandable does not
tell whether the original h has been selected for difference expansion during
embedding. As we know, the new difference number h’ is changeable, so the
decoder could examine each changeable difference number. With the
technique described here, the encoder selects changeable difference numbers
as the embedding area. The decoder uses the same data to decode. During
data embedding, all changeable difference numbers are changed, by either
adding a new LSB (via difference expansion) or modifying its LSB. To
guarantee an exact recovery of the original image, we will embed the original

values of those modified LSBs.

In brief, data embedding algorithm used by this embodiment includes six steps:
calculating the difference numbers, partitioning difference numbers into four
sets, creating a location map, collecting original LSB values, data embedding
by expansion, and finally an inverse integer transform. Each of these steps is

discussed below.

The original image is grouped into pairs of pixel values. A pair comprises two
neighboring pixel values or two with a small difference number. The pairing
could be done horizontally by pairing the pixels on the same row and
consecutive columns; or vertically on the same column and consecutive rows;
or by a key-based specific pattern. For example, Fig. 2A show a pairing pattern
that could be utilized. The pairing could be through all pixels of the image or
just a portion of it.
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The integer transform (equation 1 above) is applied to each pair. Then we
design a scanning order for all the difference numbers h, and order them as a

one dimensional list {h, ha, ...... hu }.

Next, four disjoint sets of difference numbers are created, namely
EZ, EN, CNE, and NC:

1) EZ: expandable zeros (and minus ones). For all expandable h = 0 and
expandable h = -1.

2) EN: expandable non-zeros. For all expandable h that are not a member of
the set {0,-1}

3) CNE: changeable, but not expandable. For all changeable, but non-
expandable h.

4) NC: not changeable. For all non-changeable h .

Each difference number will fall into one and only one of the above four sets.
Since an expandable difference number is always changeable, the whole set of
expandable difference numbers is EZ U EN, and the whole set of changeable
difference numbers is EZ u EN u CNE.

The third step is to create a location map of selected expandable difference
numbers. For a difference number h in EZ, it will always be selected for
difference expansion. For EN, we partition it into two disjoint subset EN1 and
EN2. For every h in EN1, it will be selected for difference expansion; for every
hin EN2, it will not (though it is expandable). A discussion on how to partition
EN is given below. A one-bit bitmap is created vas the location map, with its
size equal to the numbers of pairs of pixel values (in Step 1). For example, if
we use horizontal pairing through all pixels, the location map will have the
same height as the image, and half the width. For an h in either EZ or EN1, we
assign a value 1 in the location map; for an h in EN2, CNE, or NC, we assign a
value 0. Thus a value 1 will indicate a selected expandable difference number.

The location map will be lossless compressed by a JBIG2 compression or run-
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length coding. The compressed bit stream is denoted as L . An end of

message symbol is at the end of L .

In the fourth step, the original LSB values of difference numbers are collected
in EN2 and CNE. For each h in EN2 or CNE, LSB(h ) will be collected into a bit
stream C . An exception is when h =1 or -2, nothing will be collected, as its
original LSB value (1 and 0, respectively) could be determined by the location

map information. (see the decoding section below for an explanation).

Fifth, we embed the location map L , the original LSB values C, and a payload
. The payload P includes an authentication hash (for example, a 256 bits SHA-
256 hash). The payload size (bit length) is limited by the embedding capacity
limit discussed below. We combine L, C, and P together into one binary bit
stream B,

B=LUCUP=bybs...by
where: b, e{0l},1<i<m,m is the bit length of B. We append C to the end of L

and append P to the end of C. The bit stream B is embedded into the
difference numbers as follows.

1) Seti=1landj=0.
2) While (i £m)

Cj=itl
- ¥ h; € EZorhk; € EN1
hj w2 X hj - b,

=141
. Elseif h; € EN2 or by € CNE
hj =2 X [_%LJ + bi«
. di=i+l
3) End

Only changeable difference numbers (set EZ u EN v CNE) are modified, non-
changeable difference numbers and all average numbers are unchanged. For
a changeable difference number, either a new LSB is embedded by difference

expansion (if it is in EZ or EN1) or its original LSB is replaced (if it is in EN2 or
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CNE). Thus after embedding, all the embedded information are in the LSBs of
changeable difference numbers. By collecting the LSBs of changeable
difference numbers, the decoder will be able to recover the embedded bit

stream B

Finally after all the bits in B are embedded, the inverse integer transform

(equation 2 above) is applied to obtain the embedded (watermarked) image.

Capacity Limit: The bit stream B has a bit length of (L] +|C| +|P| where || is the

cardinality (bit length or numbers of elements) of a set. The total embedding

capacity is (EZ|+|EN1+|EN2|+|CNE)|.

For successful embedding we must have:
|L|+|C}| +|P| <|EZ| + |EN1 +|EN2| +|CNE|

Assume the total number of 1 and =2 in EN2 and CNE is N, then
|P|<|EZ| + |EN1|+ N - |L| (35)

The payload size is upper bounded by the sum of the number of selected

expandable difference numbers and the number of not selected or not

expandable h e {1,-2}, minus the bit length of the location map.

Difference Number Selection: Due to the redundancy in pixel values of natural
images, the difference numbers of neighboring pixel values are usually small.
For a pair of two pixel values, if their integer average is in the range of [30,
225], and their difference number is in the range of [ -29, 29], then:

2xh+b < 2x[h|+]p|<2x20+1
50 < 60 < min(2(255 —1),21 + 1),

fl

for both b =0 and 1, and the difference number h is expandable.
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Since most integer averages and difference numbers will be in such ranges,
most difference numbers will be expandable. We have found that, in general,
many natural grayscale images usually have over 99% expandable difference
numbers. If all expandable difference numbers are selected for difference
expansion, the location map is very compressible (as over 99% values are 1),
the embedding capacity limit will be close to 0.5 bpp. When the payload has a
bit length less than the capacity limit, we only need to select some expandable

difference numbers for difference expansion.

With a given payload P, the selection of expandable difference numbers in EN
for difference expansion is constrained by condition (35) above. We present
two simple selection methods here, one for mean square error (MSE)

consideration, and the other for visual quality consideration.

For a grayscale-valued pair ( x, y) , assume the new grayscale valued pair after
difference expansion is (X ,y’) . Since the average number /is unchanged,

and we have:

R
- o (f5]-[5))
o ([3]- 252 =%

Thus the Euclidean distance between the original pair ( %, y ) and the new,

i

I

expanded pair ( X, y’) is proportional to the difference number h (before
difference expansion). To minimize the MSE between the original image and
the embedded image, we should select h with small magnitudes for difference
expansion. We choose a threshold T, and partition EN into EN1 and EN2 by
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ENI={heEN:[h| < T}, EN2={h € EN:|h| > T}.

For a payload P, we start with a small threshold T, then increasé T gradually
until Condition (35) above is met. One could preprocess an image and create a
threshold vs. capacity limit table, by calculating (IEZI + IEN1I + N -IL1). When
proceeding to embed a payload, one could check this table and pick an

appropriate threshold.

For the visual quality consideration, we can define a hiding ability of an

expandable difference number, as follows. If kis the largest integer such that:
k3¢ b+ U] < win(2(255 - 1), 20 + 1),

forall 0<b<k—1, we can say the hiding ability of his logz k.

For a difference number h with hiding ability log 2 k , we can replace h with a
new difference number k x h + b, where b € {0.....k —1}, without causing an
overflow or underflow. This means we could reversibly embed log 2 k bits. For
an expandable difference number, as k will be at least 2, its hiding ability will be
at least log 2 2 = 1. Although with this embodiment we do not embed more than
one bit into a difference number, the hiding ability could be used as a guide on

selecting expandable difference numbers for difference expansion.

In general, selecting an expandable difference number with large hiding ability
will degrade less on the visual quality than an expandable difference number
with small hiding ability. A large hiding ability implies that the average of two
pixel values is close to mid tone, while their difference is close to zero. Again
we can choose a threshold T, and partition EN into EN1 and EN2 by :
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EN1 = {h € EN : HidingAbility(h) > T},
EN2 = {h € EN : HidingAbility(h) < T}.

It should be noted that with a different threshold T in the above two selection
methods, the location map L also changes, so does its bit length C. Thus a
third method to partition EN could be based on the compressibility of the
location map. We could select expandable difference nhumbers such that the

location map is more compressible by lossless compression.

JBIG2 Compression: The location map (before loseless compression) is a one-

bit bitmap. It can be efficiently compressed by JBIG2, the new international
standard for lossless compression of bi-level images. JBIG2 supports model-
based coding to permit compression ratios up to three times those of previous
standards for lossless compression. For more details on JBIG2, we refer to an
article by P.G. Howard, F. Kossentini, B. Martins, S. Forchammer, and W.J.
Rucklidge, “The emerging JBIG2 standard” IEEE Transactions on Circuits and
systems for Video Technology, vol. 8, no. 7 pp 838-848, 1998. For our
reversible data embedding method, we can employ a slightly modified and
more compact JBIG2 encoder and decoder, as we can discard most of the

header information in the standard JBIG2 bit stream.

It should be noted that the last two bytes of the JBIG2 bit stream are the end of
message symbol. The second to last byte will always be 255, and the last byte
will be greater than 143 (it is 173 in a JBIG2 bit stream from Power JBIG-2
encoder developed by the University of British Columbia). With the end of
message symbol, our decoder can separate the location map C from the next

bit stream C easily.

Multiple Embedding: It is possible to employ the technique described here to

an image more than once for multiple embedding. For an already embedded

image, we can embed it again with another payload. Even for one payload, we
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can divide the payload into several pieces and use multiple embedding to
embed them. As we have a choice of pairing of pixel values in Step 1 during
embedding, we can use a different pairing for each embedding. One approach
is to use a complement pairing. For example, if the image is embedded with a
horizontal pairing, then we can use a vertical pairing for the next embedding.
Other approaches are also possible. As each embedding has an embedding
capacity limit less than 0.5 bpp, a multiple embedding will have an embedding

capacity limit less than M/ 2 bpp, where M is the number of embedding.

In order to assist the decoder to determine whether or not there has been
multiple embedding, one can embed header information before the location

map G. The bit stream B now becomes:

B=HULUCUP,

where H is a 16 bit header. For the original image (first embedding), H is set
to 0. The pairing pattern of the original image will be the H at the second
embedding. The pairing pattern of the second embedding will be the H at the
third embedding, and so on. Fora 16 bit H we have 2'°- 1 = 65535 different

pairing patterns to choose from.

Security: For security, the bit stream B can be encrypted by the Advanced
Encryption Standard (AES) algorithm prior to embedding.

Decoding and authentication: The LSBs of changeable difference numbers

are collected from the bit stream B . By collecting LSBs of all changeable
difference numbers, we can retrieve the bit stream B. From B, we can decode
the location map L and the original LSBs values C. The location map gives the
location information of all expanded difference numbers. For expanded
difference numbers, an (integer) division by 2 will give back its original value;

for other changeable difference numbers, we restore their original LSB values
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from the bit stream C . After all changeable difference numbers have restored
their original values, we can restore the original image exactly, as non-
changeable difference numbers and all average numbers are unchanged

during embedding.

The decoding and authentication process consists of five steps. First we
calculate the difference numbers. For a (possibly) embedded (and possibly
tampered) image, we do the pairing using the same pattern as in the
embedding, and apply the integer transform (1) to each pair. We use the same

scanning order to order all difference humbers as a one dimensional list {h, ho,

Next we create two disjoint sets of difference numbers, C, and NC:
1) C: changeable. For all changeable h .
2) NC: not changeable. For all non-changeable h .

Note that we do not need to examine expandability at the decoder.

Third we collect all LSB values of difference numbers in C, and form a binary
bitstreamB=b1b,._ . bn.

Fourth, we decode the location map from B by JBIG2 decoder. Since the
JBIG2 bit stream has an end of message symbol at its end, the decoder knows
exactly the location in B, where it is the last bit from the embedded location

map bit stream L.

In this embodiment, we assume the first s bits in B are the location map bit
stream L (including the end of message symbol). Thus the embedded original
LSB values C starts from the (s +1)-th bit in B. We restore the original values

of difference numbers as follows.
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1) Seti=g+l,
2) Forj=1:n
If h«j eC
If the location map value at h; is 1

ri=|%].
Else
HO<h; <D
hj =L
Elseif (-2 < h; £ 1)
hj = —2.
Else
hy=2x %]+
' i=1+1.
3) End
If the location map value is 1, the difference number has been expanded during
embedding. Conversely, for a non-changeable difference number, its location

map value must be 0, otherwise the image has been tampered.

For a changeable difference number h, if its location map value is 0, then its
original value will be differed from h by LSB. If 0 < h < 1, the original value of h
must be 1. The reason is that the original value could be only either 0 or 1, as it
is differed from h by LSB. If the original value of h was 0, then it would be an
expandable zero (as changeable zero is expandable), and its location map
value would be 1, which contradicts the fact that the location map value is 0.
Similarly if -2 <h < --1, the original value of h must be -2. For other
changeable difference numbers, we restore their original LSB values from the
embedded bit stream C. |

The fifth and last step is content authentication and original content restoration.
After all difference numbers have been restored to their original values, we
apply the inverse integer transform (2) to reconstruct a restored image. To
authenticate the content of the embedded image, we extract the embedded
payload P from B (which will be the remaining after restoring difference
numbers). We compare the authentication hash in P with the hash of the

restored image. If they match exactly, then the image content is authentic, and
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the restored image will be exactly the same as the original image. (Most likely a
tampered image will not go through to this step because some decoding error
could happen in Step 4, as a non-changeable difference number might have a

location map value 1 or a syntax error in JBIG2 bit stream.)

The decoding and authentication process for this embodiment operates as
follows: It reconstructs a restored image I” from the embedded image I, then
authenticates the content of I' by comparing the hash of the restored image I”
and the decoded hash in P. If I’ is authentic, then the restored image I” will be
exactly the same as the original image 1.

For multiple embedding, the first 16 bits in B is the pairing pattern H . After the
first 16 bits are extracted, we decode the location map, reconstruct a restored
image, and authenticate the content. If the content is authentic, we use H as
the pairing pattern to decode the restored image again. The decoding process
continues until H = 0 or until tampering has been discovered (either a hash
mismatch, JBIG2 decoding error, or wrong location map value). If H =0, and
no tampering has been discovered during the whole decoding process, then
the final restored image will be exactly the same as the original image, pixel by
pixel, bit by bit.

Fourth Embodiment: This embodiment provides a reversible watermarking

method of digital images. While the embodiment specifically applies the
method to a digital image, the method can be applied to digital audio and
video as well. This embodiment employs an integer wavelet transform to
losslessly remove redundancy in a digital image to allocate space for
watermark embedding. The embedding algorithm starts with a reversible
color conversion transform. Then, it applies the integer wavelet transform to
one (or more) de-correlated component(s). The purpose of both the reversible
color conversion transform and the integer wavelet transform is to remove
irregular redundancy in the digital image, such that we can embed regular

redundancy into the digital image, for the purpose of content authentication
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and original content recovery. The regular redundancy could be a hash of the
image, a compressed bit stream of the image, or some other image content
dependent watermark. In the integer wavelet domain, we look into the
binary representation of each wavelet coefficient and embed an extra bit
into an "expandable" wavelet coefficient. Besides original content retrieval
bit streams, an SHA-256 hash of the original image will also be embedded
for authentication purposes. The method used in this embodiment is based

on an integer wavelet transform, JBIG2 compression, and arithmetic coding.

The following is a simple example that illustrates the process. Assume that

we have two grayscale values (x,y), where x,y € Z, 0< x,y < 255, and that

we would like to embed one bit b with b € {0,1} into (x.y) in a reversible way.

More specifically let us assume:
x =205, y=200,and b=0

First we compute the average / and difference # of and y:

z=lx;yJ=[205;200J=202, h=x-y=205-200=5

It is noted that the symbol | | demotes the integer part of a number. For

Example: )
|2.7]=2, [-12]=-2
Next we expand the difference number h into its binary representation:
h=5=101,
Then we add b into the binary representation of h at the location right after the
most significant bit (MSB). It is noted that the MSB is always 1.
h’=1b012 =1001, =9
Finally we computer the new grayscale values, based on the new difference
number h’ and the original average value number [ :

X'=l+[~@;J=202+[%J=207 , y'=x'—h'=207—9=198
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From the embedded pair (x',y’), the watermark detector can extract the
embedded bit b and get back the original pair (x,y) by a process similar to the

embedding process. Again, we compute the average and difference:

l'=[x ;y J=202, h'=x-y’' =207-198 = 9

The binary representation of h’is:

h’=9=1001,
Extracting the second most significant bit, which is “0”, as the embedded bit b
which leaves: h"=101, =5

Now with the average /' and difference h”, we can retrieve exactly the original

grayscale value pair (x,y).

In the above example, although the embedded pair (207,198) is still 8 bpp, we
have embedded an extra bit by increasing the bit length of the difference
number h from 3 bits (which is the number 5) to 4 bits (which is the number 9).
Such an embedding process is totally reversible.

Stated in a general manner: If we have a sequence of pairs of grayscale values
(¥1:01):(%5,¥3)e(x,,¥,) Where x,,y,€Z,0 <x,,y,5255,I<i<n
one can embed the payload: b={b,,b,....b,} where b, €{0,1},1<i<n by

repeating the above process,

I, =[2xi +y’J,h,. =x, -y, 1<i<n.
For each difference number h; expand it to a binary representation:
[ Y SR TR

where rip = 1is the MSB, rn e {0,1}, for 1< m < j(i). with j(i) +1 as the bit
length of h, in its binary representation. Then we could embed b; into h; by

'
h,'= rz’,Obiri,l b i),
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Alternatively, we can combine all the bits 7, €{0.1}, with1<m <j(i),1 < <

n and b = {b;.} into a single bit stream. Note, that we do not select the MSBs.

B = 1 b g Py a0 e Pa, 2y oo T g ¥ g oeees r

and use a reversible mapping f which could be encryption, loss-less

compression, or other invertible operations or a combination of such operations

to form a new bit stream C:

where ¢; € {0,1}, for 1 < i <k, with k as the bit length of C. Then we could

embed C into the difference numbers h;1 < i < nby

'
h,'= T 0Cs(i-1)+1Cs(i=1)42 =+ Cs(i)
where:

¢ s(i=1)+1 C, (i-1)+2 = c s(i) Is atruncated subsequence of C
with:
s(0) = 0, and s(i) = s(i-1) +j(i) + 1
The length of by is still one than that of h.. For detection 7 is reversible, we

can get back Bby 77'(C),

and consequently, we can get back the original pairs (x,,,),(x,, ;) (x,,7,)

The reason we could increase the bit length of the difference number of an
image is because of the high redundancy in pixels values of natural images.
Thus, in most cases h will be very small and have a short bit length in its binary
representation. In an edge area containing lots of activity, the difference
number h from a pair of grayscale values could be large. For example if x =
105,y =22, the h=x~-y =83 =10100112 . If we embed a bit “0” into h,
h'=10010011, = 147. with [ = 63 unchanged, the embedded pair will be X’ =
137,y =-10. This will cause an underflow problem as grayscale values are
restricted to the range [0,255]. Below we provide definition of “expandable

pairs”, which will prevent overflow and underflow problems.
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Reversible color conversion: The reversible color conversion transform

discussed below de-correlates the dependence among different color
components to a large extent. It is a loss-less color transform and the
transform output is still integer-valued. For a RGB color image, the

reversible color conversion transform is:

Yr = [R +2G + BJ
Ur = G‘,
Vr = -G.
Its inverse transform will be:
6 = yr- |0,
R = Ur+G,
B = Vr+@G.

The reversible color conversion transform maps a grayscale valued triplet to an
integer triplet. It can be thought of as an integer approximation of the CCIR
601 standard which provides a conversion to YcrCb space defined by the

Y 0.299 0587 0.114 R
Cr | = 0.500 -0.419 -0.081 G ].
Ch -0.169 -0.331 0.500 B

The RGB to YCrCb transform matrix is not integer-valued. It requires floating

following matrix.

point computing. Such a transform will introduce small round off errors, and will
not be a reversible transform. Since reversible watermarking requires original
retrieval with 100% accuracy, we use the reversible color conversion transform
instead of the RGB to YcrCb transform.
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For a grayscale image there will be no reversible color conversion transform

since we apply the integer wavelet transform directly.

Integer Wavelet Transform: The integer wavelet transform maps integers to

integers and allows for perfect invertibility with finite precision arithmetic (i.e.
reversible). The wavelet filters for integer wavelet transforms are dyadic
rational, i.e., integers or rational numbers whose denominators are powers of 2,
like 13/4, -837/32. Thus the integer wavelet transform can be implemented
with only three operations, addition, subtraction, and shift, on a digital
computer. The fast multiplication-free implementation is another advantage of

the integer wavelet transform over standard discrete wavelet transform.

For example, for the Haar wavelet filter, the integer wavelet transform will be

the average and difference calculation.

L = lmzi + L2341

5 J , T = Z9i — Toiyy -

And for a biorthogonal filter pair with four vanishing moments for all four filters,

the integer wavelet transform will be:
he = O (o Taiaz) — e (ot + 2urt) + 2| o by = mi o | i + 1) = g (o + hega) + 3
i = Tpppy — i_é(mz' piv2) = g{Tri-2 ¥ o) F 5| B= e+ ol (-2 Hhina) + 3

In this embodiment, we use will the Haar integer wavelet transform. The
generalization to other integer wavelet transforms is understandable from this

example.
After the reversible color conversion transform, we apply the integer wavelet

transform to one (or more) de-correlated component. In this embodiment, we

choose the Yr component, which is the luminance component. For a grayscale
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image, one can apply the integer wavelet transform directly to the whole image.

Expandable Wavelet Coefficient: For the grayscale-valued pair (105, 22) and a
payload bit "0" (or "1"), a brute-force embedding will cause an underflow
problem. Now we will show how to prevent the overflow and underflow

problems.

For a grayscale-valued pair (X, y), where x, y € Z, 0 < x, y < 255, define the

average and difference as:

li= r;yj shi=z—9.

Then the inverse transform to get back (x, y) from the average number / and

difference number h js:

xmi%iﬁw}zj yy=1l- [%j .
y (41)

Thus to prevent the overflow and underflow problems, i.e., to restrict x, y in the

range of [0, 255] is equivalent to have:

Since both 7 and h are integers, one can derive that the above inequalities are

equivalent to:

bl <2(285 1), snd A <241
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Condition (42) above sets a limit on the absolute value of the difference number
h. As long as h is in such range, it is guaranteed that (x, y) computed from Eqn.

(41) will be grayscale values. Furthermore, Condition (42) is equivalent to

|h] € 2(255 1), if 12B<1<255
\ Rl 2t+1, if 0<1<127

With the above condition, we now define an expandable grayscale-valued pair.
Definition:  For a grayscale-valued pair (x, y), where x,y € Z,0 < X,y <
255, define

. |2ty R
iwi};z J,&-—-:z: Y.

Then (x, y) is an expandable pair if and only if

h#0, and 2082142 1 < min (2(265—1),20 + 1) .

Note that if h = 0, the bit length of the binary representation of h is Llog2|h|J+ 1..

2|_10g2|h|_|+2 _1

Thus

is the largest number whose bit length is one more than that of lh‘ . Thus for an

expandable pair (x, y), if we embed an extra bit ("0" or "1") into the binary
representation of the difference number h at the location right after the MSB,
the new difference number h' still satisfies Condition (42), that is, the new pair
computed from Eqn. (41) is guaranteed to be grayscale values. For simplicity,

we will also call h expandable if (x, y) is an expandable pair.
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Thus from the average number /, one can tell whether or not a difference
number h is expandable, i.e., whether or not the bit length of h could be
increased by 1 without causing any overflow or underflow problem. Further we
define the changeable bits of h as:

Definition: For a grayscale-valued pair (x, y), assume h % 0, and the binary

representation of || is:

{h] =rory .15,
where: r, =1,r, €{0,1}, for 1<m<j, wih j>0 and j+1 is the bit length. If g<;

is the largest number:

i~g
(Z m2f*‘> +29 1 < min(2(255 — 1), 20 +1),
\ {0}

then we say (x.y), or equivalently h, has g changeable bits, and they are:

Timgtls Timg42:" " The

Since:

bl =rory -1y = irizf”‘,
i={)

by definition, h has g changeable bits if the last g bits in the binary
representation are all changed to "1", it still satisfies Condition (42), or the new
pair computed from Eqgn. (41) is still grayscale values. Let's look at two
extreme cases:

If g = 0, then h has no changeable bits.

If g =], then all bits (excluding the MSB) in its binary representation are

changeable. It is clear that if h is expandable, then g = j. However the

inverse is not true, i.e., g =j does not imply h is expandable.
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The number "0" does not have a proper binary representation. We can
increase it (along with all positive numbers) by 1 to fit it into the definition of
expandable and changeable. With such preparation, we extract bits from
wavelet coefficients as follows:
1. For the Yr component of a color image or a grayscale image, apply
the integer wavelet transform.

2.1fh; > 0and [, <255, we increase h; by 1, h; = h; +1.

3. Construct a bit stream R, which consists of changeable bits from all h; .

The scanning order of h; is determined by a fixed pattern (for example,

zigzag).

JBIG2 Compression: For a grayscale-valued pair (x, y), by the above
definition we can tell whether or not it is expandable. When (x, y) has been
modified by the embedder, it will not be clear to the watermark detector
whether or not the original pair has been expanded, i.e., whether the bit length
of the binary representation of the difference number has been increased by 1
(thus larger than the original one), or it is the same as the original one. In
order to remove the watermark and retrieve the original, un-watermarked
image, the detector needs to know the location of expanded difference

numbers h in the original image.

We can define a location map of expanded difference numbers by setting its
value to "1" at each location when it is expanded or "0" otherwise. The
location map can be viewed as a bi-level image. To store the location map, we
can losslessly compress the bi-level image and store the compressed bit
stream instead. We will employ JBIG2, the new international standard for
lossless compression of bi-level images, to compress the location map of
expanded difference numbers h. For convenience, we will denote the JBIG2
compressed bit stream of the location map of expanded h as J. Alternatively,

the location map could be compressed by run-length coding.
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Arithmetic Coding: To make more room for embedding the payload, we can
further losslessly compress the collected bit stream R, which are all the
changeable bits from difference numbers h. Either arithmetic coding or
Huffman coding could be used for this purpose. In this embodiment., we use
arithmetic coding

C = ArithmeticCoding( R )

where C is the compressed bit stream from the arithmetic coding.

SHA-256 Hash: To authenticate a watermarked image and detect tampering,
we embed a hash of the image into itself. The new hash algorithm SHA-256 is
a 256-bit hash function that is intended to provide 128 bits of security against
collision attacks. SHA-256 is more consistent with the new encryption
standard, the Advanced Encryption Standard (AES) algorithm, than SHA-1,
which provides no more than 80 bits of security against collision attacks. We
calculate the SHA-256 hash of the digital image (before the reversible color

conversion transform) and denote the hash as H.

Embedding: With the compressed bit stream J of the location map, the
compressed bit stream C of changeable bits, and the SHA-256 hash H (a 256
bit stream), we are ready to embed all three of sets into changeable bits of
difference numbers h in the integer wavelet domain. First we combine the sets

into one big bit stream:

S=JUCUH =318+ 3,
where

8 €{0,1}, 1 <i <&
and k is the bit length of S.
As indicated above, we append C to the end of J, and append H to the end of
C. The order of J, C, and H could be changed, as long as the embedder and
the detector use the same order. Next we design a pseudo random scanning
order for all the difference numbers h. This pseudo random order will be

different from the scanning order used to construct the changeable bit stream
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R. With the pseudo random order of h, we embed the bit stream S into h by
replacing (part of) changeable bits. For expandable h, we increase the bit
length of h by 1, thus increase the number of changeable bits by 1. The
following is a description of the embedding:

1. Assume all difference numbers k are ordered by the pseudo random order as hy, g, <+, fin.

2. Seti=1.

3 fi<nand k>0, .
If h; is expandable, |h;] = rory -+ -1;, and g = j,
Set |hs| = ro0ry + -5, now |h;| has j + 1 changeable bits.
Replace changeable bits in h; with Sk.g41, Skmg+2,*** > k-

Form=1:g
Tjugtm = Skwgim:
Ifh >0,
Set hy = h; — 1.

Seti=i+1l k=k~g.
4. Go to Step 3.

We modify only the absolute value of h, and keep the sign (and its MSB)
unchanged. [f h is non-negative, since it has been increased by 1, after bit

replacement, positive h will have its value decreased by 1.

The bit stream S is embedded by replacing changeable bits in difference
numbers h. The capacity of all changeable bits will be much larger than the bit
length of S. For example, the capacity of all changeable bits (including
expanded bits) of a particular image could be 330,000 bits, while S is about
210,000 bits. In such a case there could be about a 120,000 bits surplus,
which is 0.45 bpp for an image size 512 x 512. This is a huge extra space
which could embed additional information (such as a compressed bit stream of
the image for locating tampering and recovery). So after embedding all bits in
S, a large portion of changeable bits will not be changed. We can select

changeable bits based on how much difference it will introduce (how much it
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degrades the image quality) if it is changed during the embedding. We will
discuss two difference cases here, non-expandable h and expandable h.

Modifying changeable bits in non-expandable h brings imperceptible changes
to images. For example, in a sample image, if we restrict ourselves by not
increasing the bit length of expandable h, and modify changeable bits only,
then the worst possible distorted image is when we set changeable bits in h to
be all equal to 1 or all equal to 0, depending on each h's value. In such a
sample image, although the pixel value difference between the original and the
distorted one is as large as 32, the visual difference between them is almost

imperceptible.

For expandable h, if we increase its bit length by 1 and embed one more bit

into it, the visual quality degradation could be very noticeable when |#| is large,

like in an edge area or an area containing lots of activity. To achieve best

image quality, the extra changeable bits which are not used for embedding

should be allocated to those expandable h with large absolute values. If [h] is

large, even if h is expandable, we can treat it as non-expandable by turning it

off to "0" in the location map.

For security reasons, the compressed bit streams , T and C from JBIG2 and
arithmetic coding can be encrypted by the AES algorithm, before they are
embedded into changeable bits of difference numbers h.

Authentication: with respect to changeable bits, if we assume h has g

changeable bits, and its binary representation is:
%h! =TTy Ty
and if we arbitrarily change its changeable bits:

j [t * b x & j ! * %%
W] =rory e Tjgr =g+17 jmg42 "'; !

(45)

65



BHON -

0 N O O

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

WO 03/055130 PCT/US02/40162

where vj_,,; € {0,1}, 1 £ i< g
then the new pair defined by Eqn. (41) is still grayscale-valued, and the

changeable bits of /' is exactly g.

Since the embedder does not change the average numbers [, the
authenticator will derive exactly the same number of changeable bits in the
difference number as the embedder. For expanded h whose bit length of its
binary representation has been increased by 1 during the embedding, the
authenticator will know such information from the location map. Thus, the
authenticator knows exactly which bits have been replaced and which
difference numbers are expanded (by one bit) during the embedding process.
All these are crucial to retrieve back the original, un-watermarked image with

100% accuracy.

The authentication algorithm is similar to the embedding algorithm. The
authentication algorithm goes through a reversible color conversion transform
and the integer wavelet transform. From wavelet coefficients, it extracts all
changeable bits, ordered by the same pseudo random order of the
embedding. From the first segment of extracted bits, it decompress the
location map of expanded difference numbers h. From the second segment, it
decompresses the original changeable bits values. The third segment will
give the embedded hash. From equation (45) above, one knows which bits
are modified and which bits are extra expanded bits during the embedding.
Thus one can reconstruct an image by replacing changeable bits with
decompressed changeable bits. The extracted hash and the SHA-256 hash of
the reconstructed image can be compared. If they match bit by bit, then the
watermarked image is authentic, and the reconstructed image is exactly the

original, un-watermarked image.

In summary, this fourth embodiment provides a reversible watermarking

method based upon the integer wavelet transform. The location map of
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expanded wavelet coefficients, changeable bits of all coefficients, and an SHA-
256 hash are embedded. An authenticator can remove the reversible
watermark and retrieve an image, which is exactly the same as the original

image, pixel by pixel.

While several specific embodiments have been described, those skilled in the
art will realize that many alternative embodiments are possible using the
principles described above. Furthermore the invention has a wide array of

uses in additions to those discussed above.

For example, the present invention could be used to encode auxiliary data in
software programs, manuals and other documentation. The technique could be
used for the dual function of protecting the software (e.g., the software would
not run until the embedded data was extracted with a secret key) and carrying
auxiliary data related to the software, such as the manual or other program
data. Alternatively, the software documentation may be embedded with
executable software as the auxiliary data using the reversible embedding

method.

A reversible watermarking scheme with two or more layers of embedded
auxiliary data may be used to control the quality of distributed audio, video and
still image content and control access to higher quality versions of that content.
For example, a lower quality preview edition of the content can be embedded
with one or more layers of reversible watermarks. As the user obtains rights to
higher quality versions, the user can be provided with a key to reverse one or
more layers of the reversible watermark, improving the quality of the content as
each layer is removed. This approach has the advantage that the reversible
watermark enables control of the quality, access to higher quality versions
through reversal of the watermark, and additional metadata carrying capacity

for information and executable instructions related to the content.
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A reversible watermarking scheme can also be used to distribute a key inside
of content. For example, a preview sample version of the content could include

decryption keys to decrypt other related content.

The technique can be applied to encrypted content, where the reversible
watermark carries decryption keys that are extracted and then used to decrypt

content once the watermark has been reversed.

As explained above, one has freedom to pick pairs as one desires. One could
choose a location map that provides the redundancy in the values of each pair
that provides for better embedding capacity. This might make the location map

more complex, but it would be possible.

It is noted that watermarking software with the present invention would in effect
“introduce reversible errors” into the software. Thus, the watermark prevents
execution of the software by anyone, except those who have the key to reverse
the watermark. As such, the technique provides the benefit of encryption with
the added benefit of being able to carry extra data in the watermark.

Encryption combined with compression might achieve some of the same effect
as the use of the reversible watermark; however, reversible watermarking can
provide security (you need the watermark key to reverse the watermark and run
the software), extra data capacity (the watermark can carry program related
data), and compressibility (the resulting file after watermarking is
compressible). It is noted that a watermarked file may not be as compressible

as prior to embedding.

There are a variety of ways to increase the size of the payload carried by a

watermark applied in accordance with the present invention.

1. One can use a triplet of pixels to embed two bits instead of a pair of

pixels to embed one bit. The following reversible transform can be used for
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this purpose:

forward VO = |_1/3(U0+U1+U2)_|
V1 = U2-U1
V2 = U0-U1

reverse U1 =VO0-|_1/3(V1+V2)_|]
U0 =V2+U1
U2 = Vv1+U1

2. One can apply the technique to cross spectral components. If R, G and B
are the three color component, the following reversible transform can be

used.

forward Y = |_1/4(R+2G+B)_|
U=B-G
V=R-G

reverse G = Y- |_1/4(U+V)_|
R=V+G

B=U+G

3. One can combine (1) and (2) by applying (1) to each color component (row

~ then column) then apply (2) to the resuit.

4. One can overlap pairs of pixels or triplets as discussed above to increase the
payload.

The four specific embodiments of the invention described above use a 2x2

pixel region to maximize local other embodiments could use other size regions

such as a 3x3 region etc.
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While the invention has been explained with respect to various embodiments
and alternatives, those skilled in the art will readily realized that a wide array of
alternative embodiments are possible without departing from the spirit, scope
and contribution of this invention. The scope of applicant’s invention is limited

only by the appended claims.
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1. A method of reversibly embedding auxiliary data in a data set

comprising:

transforming the data set from an original domain into transformed data
values with an invertible transform;

expanding selected data values to embed auxiliary data;

inverting the transformed data values, including the data values selected

for expansion, to return the transformed data values to the original domain.

2. The method of claim 1 including:
identifying data values that can be expanded to embed auxiliary data

values without causing an underflow or overflow.

3. The method of claim 1 wherein the transformation includes
transforming the data set into fixed and variable values, the variable values
forming a set from which certain transformed data values are selected for

expansion.

4. The method of claim 3 wherein the fixed values remain unchanged

during the auxiliary date embedding operation.

5. The method of claim 3 wherein the fixed values are averages of
selected groups of elements in the data set, and the variable values are

difference values of elements in the selected groups.

6. The method of claim 1 wherein the invertible transform comprises an

integer to integer invertible transform.

7. The method of claim 1 wherein expanding comprises multiplying a
first selected data value by a desired number of states and adding a number
corresponding to a selected state of an auxiliary data value to be embedded in
the first selected data value, and repeating the multiplying and adding for other

data values selected for expansion to embed additional auxiliary data values.
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8. The method of claim 7 including:
identifying data values that can be expanded to embed auxiliary data

values without causing an underflow or overflow.

9. The method of claim 7 wherein the number of states is two, and the
multiplying is performed by shifting bit positions in data values selected for

expansion.

10. The method of claim 1 wherein data values selected for embedding
expansion correspond to embedding locations that have a property that is
invariant to changes due to embedding of the auxiliary data, and wherein the

invariant property enables a decoder to identify embedding locations.

11. The method of claim 10 wherein the invariant property is identified
based on whether a data value at an embedding location can be changed to

embed data without causing an underflow or overflow condition.

12. A storage medium on which is stored instructions for performing the

method of claim 1.

13. The method of claim 1 wherein the invertible transform comprises a
transform to average and difference values, the difference values forming a set

from which values are selected for auxiliary data embedding by expansion.

14. The method of claim 1 wherein the data set comprises an image

signal.
15. The method of claim 1 wherein the transforming, expanding and

inverting is performed repeatedly to data elements at embedding locations

within the data set to embed two or more layers of auxiliary data.
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16. The method of claim 15 wherein each layer has a different decoding
key used to decode the layer.

17. The method of claim 1 wherein expanding includes inserting one or
more extra bits into a selected data value to increase the number of bits after a
most significant, non-zero bit, wherein the auxiliary data is carried in the one or

more extra bits.

18. A method of reading auxiliary data reversibly embedded in a data
set and restoring the data set to the same values as before the reversible
embedding, the method comprising:

transforming the data set from an original domain into transformed data
values with an invertible transform;

extracting auxiliary data from data values previously selected for
embedding of auxiliary data by expansion, including restoring the selected data
values to the same values as before the embedding of the auxiliary data; and

inverting the transformed data values, including the data values selected

for expansion, to return the transformed data values to the original domain.

19. A storage medium on which is stored instructions for performing the

method of claim 18.

20. The method of claim 18 wherein one or more bits of the data values
carry auxiliary data, and extracting includes reading the one or more bits of the

data values.

21. The method of claim 18 including:
identifying data values that have an invariant property to embedding of
auxiliary data to determine which data values are carrying auxiliary embedded

data.
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22. A method of reversibly embedding auxiliary data in a data set
comprising:

selecting embedding locations in the data set that have a property that is
invariant to changes due to embedding of the auxiliary data, and wherein the
invariant property enables a decoder to identify embedding locations; and

reversibly embedding auxiliary data into data values at the embedding

locations.

23. The method of claim 22 including:

expanding selected data values to embed auxiliary data.

24. The method of claim 23 wherein the expanding includes inserting
one or more extra bits into a data value to increase the number of bits after a
most significant, non-zero bit, wherein the auxiliary data is carried in the one or

more extra bits.

25. The method of claim 23 wherein expanding includes multiplying a
data value by a number of states and adding a state corresponding to an

auxiliary data value to be embedded.

26. The method of claim 22 wherein the invariant property is identified
based on whether a data value at an embedding location can be changed

without causing an underflow or overflow.

27. A storage medium on which is stored instructions for performing the

method of claim 22.

28. A method of decoding reversibly embedded auxiliary data in a data
set comprising:

identifying a subset of locations in the data set that have a property that
is invariant to changes due to embedding of the auxiliary data;
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extracting auxiliary data from data values at the identified locations; and
restoring values of the data set to the same values as before the

embedding of the auxiliary data into the data set.

29. A storage medium on which is stored instructions for performing the
method of claim 28.

30. The method of claim 28 wherein the auxiliary data is embedded by
expansion of data values.

31. The method of claim 28 wherein the auxiliary data includes a
location map indicating which of the subset of locations has been embedded

with auxiliary data by expansion.

32. A method of embedding auxiliary data in a data set comprising:

identifying values derived from the data set that are expandable; and

expanding the identified values by inserting an auxiliary data state
corresponding to auxiliary data to be embedded in the identified values.

33. The method of claim 32 wherein the expanding is invertible by
limiting embedding to values that can be expanded without causing an

underflow or overflow.

34. The method of claim 32 wherein the identified values are derived by
exploiting correlation within the data set to compute values that are a function
of the values in the original data set and that are more expandable than the

values in the original data set.
35. The method of claim 32 wherein identified values are chosen for

expansion based on a property that enables the decoder to identify locations of

embedded auxiliary data without using data separate from the data set.
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36. A storage medium on which is stored instructions for performing the

method of claim 32.

37. A method of decoding auxiliary data from an embedded data set
comprising:

identifying values derived from the embedded data set that have been
embedded with auxiliary data; and

extracting auxiliary data from selected values in the embedded data set
that have been embedded with auxiliary data, including extracting inserted

auxiliary data state values from the selected values.

38. A storage medium on which is stored instructions for performing the

method of claim 37.
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