(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

—
A
ﬁggA o

¥

LWIPO>

(43) International Publication Date (10) International Publication Number
19 May 2005 (19.05.2005) PCT WO 2005/046102 A2
(51) International Patent Classification”: HO4L. (74) Agent: CONKLIN, John, B.; Leydig, Voit & Mayer,
. L LTD., Two Prudential Plaza, Suite 4900, 180 N Stetson
(21) International Application Number: Av, Chicago, IL. 60601-6780 (US).
PCT/US2004/024012

(22) International Filing Date: 26 July 2004 (26.07.2004) (81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

(25) Filing Language: English AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
(26) Publication Language: English CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,

(30) Priority Data: KG, KP, KR, KZ, 1.C, LK, LR, LS, LT, LU, LV, MA, MD,
10/692,371 23 October 2003 (23.10.2003) US MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,

PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,

(71) Applicant (for all designated States except US): MI- TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU. ZA. ZM.

CROSOFT CORPORATION [US/US]; One Microsoft

Way, Redmond, WA 98052 (US). ZW.

(72) Inventors; and (84) Designated States (unless otherwise indicated, for every

(75) Inventors/Applicants (for US only): DAVID, Paul, C. kind of regional protection available): ARIPO (BW, GH,
[US/US]; 11516 NE 103 Place, Kirkland, WA 98033 (US). GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
UNGUREANTU, Oreste, Dorin [RO/US]; 15122 279th Ln ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
NE, Duvall, WA 98019 (US). SWEDBERG, Gregory, D. European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
[US/US]; 4952 160th Court SE, Bellevue, WA 98006 (US). FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
CURTIS, Donald, B. [US/US]; 13533 SE 52nd Street, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
Bellevue, WA 98006 (US). GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: PROTOCOL FOR REMOTE VISUAL COMPOSITION

USER NETWORK
INPUT
L. METRORE

MOUSE
[ON | OTHERPROGRAM | PROGRAM =
OFFRIENC | "ROGRRY | CTRREIE™ | DA T s —
144 145 148 147 w7 R e 12 !
KEYBOARD REMOTE
100 A 18 APPLICATION
PROGRAMS

05/046102 A 2 IR OO0 O O O

& (57) Abstract: A method and protocol to create and control compositions on a remote device is disclosed. The protocol allows
servers and other devices to take advantage of processing capabilities of remote devices to render compositions on the remote devices,
thereby increasing server scalability and leveraging the remote device processing capabilities. The protocol provides high-level
command packets to communicate resource command packets and control packets to the remote device with the payload having the
information needed to process the commands.

WO 2

WO 2005/046102 A2 [N} A0VOH) AT O 00 OO 0 R

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished — ance Notes on Codes and Abbreviations” appearing at the begin-
upon receipt of that report ning of each regular issue of the PCT Gagzette.

WO 2005/046102 PCT/US2004/024012

PROTOCOL FOR REMOTE VISUAL COMPOSITION

FIELD OF THE INVENTION
[0001] This invention relates generally to electronic data processing and, more
particularly, relates to managing the flow of graphics and control information in a computer

system.

BACKGROUND OF THE INVENTION
[0002] Digitally based multimedia, the combination of video and audio in a digital
format for viewing on a digital device, and digital media such as images and animation is
rapidly increasing in capacity and proliferation. Nearly every new personal computer
manufactured today includes some form of multimedia. Sales of digital products such as
cameras, video recorders, phones and televisions are steadily increasing. Multimedia is also
becoming increasingly prevalent in the Internet realm as the growth of the Internet steadily
and rapidly continues. Continued advances in these computer-based technologies have lead
to not only increased performance, but also increased performance expectations by the users
of such computer equipment. The industry has responded with increased speed for CD
ROM drives, communication modems, and faster video and audio cards. These increased
user expectations extend not only to hardware capability, but also to the processing
capability of data.
[0003] For example, in areas such as multimedia and audio compression, data is
processed so that it can be processed as a steady and continuous stream. This data is used in
areas such as video confe'rencing, gaming, digital video discs (DVD), professional audio,
telephony, and other areas where audio, video, or audio and video is digitally processed.
[0004] Rendering data almost always requires some form of processing among various
modules in a system. For example, a video clip might require decoding in a dedicated
hardware module, rasterizing the video fields in another hardware module, digital filtering
of the audio in a software module, insertion of subtitles by another software module, parsing
audio data to skip silent periods by a software module, etc. For streaming to work, the data
must be processed as a steady stream and then rendered to audio and/or video. If the data
isn't processed quickly enough, however, the presentation of the data will not be smooth.
[0005] In conventional client-server rendering, the data is processed at the server and
sent in discrete virtual frames to the client where the frames are rendered. Each frame
contains the entire data and information needed to render the frame, even if there is no
change in the item being rendered. For example, every animation frame has the full amount
of data and information to render the frame even if the frame is identical to an adjacent

WO 2005/046102 PCT/US2004/024012

frame. As aresult, the transmission of the data consumes a large amount of available
bandwidth. This bandwidth consumption reduces the number of clients a server can
support. Additionally, hardware on a client machine cannot be taken advantage of to
process the data. For example, the server in processing the data does not have the ability to
use the hardware features of client hardware such as 3D graphic accelerators.

BRIEF SUMMARY OF THE INVENTION
[0006] The invention provides a method and protocol to create and control compositions
on a remote device. The protocol allows servers and other devices to take advantage of
processing capabilities of remote devices to compose visual content on the remote display
devices. This allows servers to handle more clients because the server does not need to
process the functions (e.g., paint, draw, animate, etc.) used to actually render the
composition. This results in the ability to leverage more of the client side hardware
capabilities such as a client’s 3D hardware acceleration pipe, and the client CPU. For
example, the client can process animation functions, which allows the server to send
information that describes the animation function instead of sending the individual static
frames comprising the overall animate effect to the client.
[0007] The protocol provides basic high-level command packets that allow applications
to communicate commands across a medium to create a composition on a client device.
The payload of the packets may contain the actual commands for the components on the
device to create the composition. The requesting application sends packets of commands to
create a composition service, create a render target and render context, create a composition
node, create resources for the composition node, and render the composition.
[0008] The packets from the requesting application are resource command packets and
control packets. The resource command packets are routed to the relevant resources on the
client. The control packets are used to control the composition state and to maintain a text
glyph cache on the client machine. Notification packets are sentback to the requesting
application.
[0009] Additional features and advantages of the invention will be made apparent from
the following detailed description of illustrative embodiments which proceeds with

reference to the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS
[0010] While the appended claims set forth the features of the present invention with
particularity, the invention, together with its objects and advantages, may be best
understood from the following detailed description taken in conjunction with the

WO 2005/046102 PCT/US2004/024012

accompanying drawings of which:

[0011] FIG 1 is a block diagram generally illustrating an exemplary computer system on
which the present invention resides;

[0012] FIG 2a is a simplified block diagram illustrating a programming interface
between two code segments;

[0013] FIG 2b is a simplified block diagram illustrating an alternate embodiment of a
programming interface between two code segments;

[0014] FIG 3ais a simplified block diagram illustrating a programming interface
between two code segments having communications that are broken into multiple discrete
communications, illustrating the concept of factoring;

[0015] FIG 3b is a simplified block diagram illustrating an alternate embodiment of a
programming interface between two code segments having communications that are broken
into multiple discrete communications, illustrating the concept of factoring;

[0016] FIG 4ais a simplified block diagram illustrating a programming interface
between two code segments having certain aspects ignored, added, or redefined, illustrating
the concept of redefinition;

[0017] FIG 4b is a simplified block diagram illustrating an alternate embodiment of a
programming interface between two code segments having certain aspects ignored, added,
or redefined, illustrating the concept of redefinition;

[0018] FIG 5ais a simplified block diagram illustrating a programming interface
between two code segments having some of the functionality of the two code modules
merged such that the interface between them changes form, illustrating the concept of inline
coding;

[0019] FIG 5b is a simplified block diagram illustrating an alternate embodiment of a
programming interface between two code segments having some of the functionality of the
two code modules merged such that the interface between them changes form, illustrating
the concept of inline coding;

[0020] FIG 6a is a simplified block diagram illustrating a programming interface
between two code modules wherein the communication is accomplished indirectly by
breaking the communication into multiple discrete communications, illustrating the concept
of divorcing;

[0021] FIG 6b is a simplified block diagram illustrating an alternate embodiment of a
programming interface between two code modules wherein the communication is
accomplished indirectly by breaking the communication into multiple discrete
communications, illustratiqg the concept of divorcing;

[0022] FIG 7ais a simplified block diagram illustrating dynamically rewritten code to

WO 2005/046102 PCT/US2004/024012

e s S e e i, B

replace a programming interface with something else that achieves the same result,
illustrating the concept of rewriting;

[0023] FIG 7b is a simplified block diagram illustrating an alternate embodiment of
dynamically rewritten code to replace a programming interface with something else that
achieves the same result, illustrating the concept of rewriting;

[0024] FIG 8 is block diagram generally illustrating an exemplary environment in which
the present invention operates;

[0025] FIG 9 is a block diagram generally illustrating an alternate exemplary
environment in which the present invention operates; and

[0026] FIG 10 is a flow chart illustrating the steps to create a composition in accordance

with the teachings of the present invention.

DETAILED DESCRIP\TION OF THE INVENTION
[0027] The present invention provides the ability for a server to offload aspects of
composition processing to client machines. This results in an increase in server side
scalability. The high-level descriptive nature of the communication protocol results in a
significantly smaller amount of data and information being sent to a client for rendering
data than would be the case when sending data with an immediate-mode model.
[0028] Prior to describing the details of the invention, an overview of the exemplary
device in which the invention may be implemented and the environment in which the
invention may operate will be described. Tumning to the drawings, wherein like reference -
numerals refer to like elements, the invention is illustrated as being implemented in a
suitable computing environment. Although not required, the invention will be described in
the general context of computer-executable instructions, such as program modules, being
executed by a personal computer. Generally, program modules include routines, programs,
objects, components, data structures, etc. that perform particular tasks or implement
particular abstract data types. Moreover, those skilled in the art will appreciate that the
invention may be practiced with other computer system configurations, including hand-held
devices, multi-processor systems, microprocessor based or programmable consumer
electronics, network PCs, minicomputers, mainframe computers, and the like. The
invention may also be practiced in distributed computing environments where tasks are
performed by remote processing devices that are linked through a communications network.
In a distributed computing environment, program modules may be located in both local and
remote memory storage devices.
[0029] FIG. 1 illustrates an example of a suitable computing system environment 100
on which the invention may be implemented. The computing system environment 100 is

WO 2005/046102 PCT/US2004/024012

only one example of a suitable computing environment and is not intended to suggest any
limitation as to the scope of use or functionality of the invention. Neither should the
computing environment 100 be interpreted as having any dependency or requirement
relating to any one or combination of components illustrated in the exemplary operating
environment 100.

[0030] The invention is operational with numerous other general purpose or special
purpose computing system environments or configurations. Examples of well known
computing systems, environments, and/or configurations that may be suitable for use with
the invention include, but are not limited to: personal computers, server computers, hand-
held or laptop devices, tablet devices, multiprocessor systems, microprocessor-based
systems, set top boxes, programmable consumer electronics, network PCs, minicomputers,
mainframe computers, distributed computing environments that include any of the above
systems or devices, and the like.

[0031] The invention may be described in the general context of computer-executable
instructions, such as program modules, being executed by a computer. Generally, program
modules include routines, programs, objects, components, data structures, etc. that perform
particular tasks or implement particular abstract data types. The invention may also be
practiced in distributed computing environments where tasks are performed by remote
processing devices that are linked through a communications network. In a distributed
computing environment, program modules may be located in local and/or remote computer
storage media including memory storage devices.

[0032] With reference to FIG. 1, an exemplary system for implementing the invention
includes a general purpose computing device in the form of a computer 110. Components
of computer 110 may include, but are not limited to, a processing unit 120, a system
memory 130, and a system bus 121 that couples various system components including the
system memory to the processing unit 120. The system bus 121 may be any of several
types of bus structures including a memory bus or memory controller, a peripheral bus, and
a local bus using any of a variety of bus architectures. By way of example, and not
limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro
Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards
Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus also
known as Mezzanine bus.

[0033] Computer 110 typically includes a variety of computer readable media.
Computer readable media can be any available media that can be accessed by computer 110
and includes both volatile and nonvolatile media, and removable and non-removable media.
By way of example, and not limitation, computer readable media may comprise computer

WO 2005/046102 PCT/US2004/024012

storage media and communication media. Computer storage media includes volatile and
nonvolatile, removable and non-removable media implemented in any method or
technology for stdrage of information such as computer readable instructions, data
structures, program modules or other data. Computer storage media includes, but is not
limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM,
digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices, or any other medium which
can be used to store the desired information and which can be accessed by computer 110.
Communication media typically embodies computer readable instructions, data structures,
program modules or other data in a modulated data signal such as a carrier wave or other
transport mechanism and includes any information delivery media. The term "modulated
data signal" means a signal that has one or more of its characteristics set or changed in such
a manner as to encode information in the signal. By way of example, and not limitation,
communication media includes wired media such as a wired network or direct-wired
connection, and wireless media such as acoustic, RF, infrared and other wireless media.
Combinations of the any of the above should also be included within the scope of computer
readable media.

[0034] The system memory 130 includes computer storage media in the form of volatile
and/or nonvolatile memory such as read only memory (ROM) 131 and random access
memory (RAM) 132. A basic input/output system 133 (BIOS), containing the basic
routines that help to transfer information between elements within computer 110, such as
during start-up, is typically stored in ROM 131. RAM 132 typically contains data and/or
program modules that are immediately accessible to and/or presently being operated on by
processing unit 120. By way of example, and not limitation, FIG. 1 illustrates operating
system 134, application programs 135, other program modules 136, and program data 137.
[0035] The computer 110 may also include other removable/non-removable,
volatile/nonvolatile computer storage media. By way of example only, FIG. 1 illustrates a
hard disk drive 141 that reads from or writes to non-removable, nonvolatile magnetic media,
amagnetic disk drive 151 that reads from or writes to a removable, nonvolatile magnetic
disk 152, and an optical disk drive 155 that reads from or writes to a removable, nonvolatile
optical disk 156 such as a CD ROM or other optical media. Other removable/non-
removable, volatile/nonvolatile computer storage media that can be used in the exemplary
operating environment include, but are not limited to, magnetic tape cassettes, flash memory
cards, digital versatile disks, digital video tape, solid state RAM, solid state ROM, and the
like. The hard disk drive 141 is typically connected to the system bus 121 through a non-
removable memory interface such as interface 140, and magnetic disk drive 151 and optical

WO 2005/046102 PCT/US2004/024012

disk drive 155 are typically connected to the system bus 121 by a removable memory
interface, such as interface 150.

[0036] The drives and their associated computer storage media, discussed above and
illustrated in FIG. 1, provide storage of computer readable instructions, data structures,
program modules and other data for the computer 110. In FIG. 1, for example, hard disk
drive 141 is illustrated as storing operating system 144, application programs 145, other
program modules 146, and program data 147. Note that these components can either be the
same as or different from operating system 134, application programs 135, other program
modules 136, and program data 137. Operating system 144, application programs 145,
other program modules 146, and program data 147 are given different numbers hereto
illustrate that, at a minimum, they are different copies. A user may enter commands and
information into the computer 110 through input devices such as a keyboard 162, a pointing
device 161, commonly referred to as a mouse, trackball or touch pad, a microphone 163,
and a tablet or electronic digitizer 164. Other input devices (not shown) may include a
joystick, game pad, satellite dish, scanner, or the like. These and other input devices are
often connected to the processing unit 120 through a user input interface 160 that is coupled
to the system bus, but may be connected by other interface and bus structures, such as a
parallel port, game port or a universal serial bus (USB). A monitor 191 or other type of
display device is also connected to the system bus 121 via an interface, such as a video
interface 190. The monitor 191 may also be integrated with a touch-screen panel or the
like. Note that the monitor and/or touch screen panel can be physically coupled to a
housing in which the computing device 110 is incorporated, such as in a tablet-type personal
computer. In addition, computers such as the computing device 110 may also include other
peripheral output devices such as speakers 197 and printer 196, which may be connected
through an output peripheral interface 194 or the like.

[0037] The computer 110 may operate in a networked environment using logical
connections to one or more remote computers, such as a remote computer 180. The remote
computer 180 may be a personal computer, a server, a router, a network PC, a peer device
or other common network node, and typically includes many or all of the elements
described above relative to the computer 110, although only a memory storage device 181

~ has been illustrated in FIG. 1. The logical connections depicted in FIG. 1 include a local
area network (LAN) 171 and a wide area network (WAN) 173, but may also include other
networks. Such networking environments are commonplace in offices, enterprise-wide
computer networks, intranets and the Internet. For example, the computer system 110 may
comprise the source machine from which data is being migrated, and the remote computer

180 may comprise the destination machine.

WO 2005/046102 PCT/US2004/024012

[0038] When used in a LAN networking environment, the computer 110 is connected to
the LAN 171 through a network interface or adapter 170. When used in a WAN networking
environment, the computer 110 typically includes a modem 172 or other means for
establishing communications over the WAN 173, such as the Internet. The modem 172,
which may be internal or external, may be connected to the system bus 121 via the user
input interface 160, or other appropriate mechanism. In a networked environment, program
modules depicted relative to the computer 110, or portions thereof, may be stored in the
remote memory storage device. By way of example, and not limitation, FIG. 1 illustrates
remote application programs 185 as residing on memory device 181. It will be appreciated
that the network connections shown are exemplary and other means of establishing a
communications link between the computers may be used.

[0039] It should be noted that a programming interface (or more simply, interface) may
be viewed as any mechanism, process, protocol for enabling one or more segment(s) of
code to communicate with or access the functionality provided by one or more other
segment(s) of code. Alternatively, a programming interface may be viewed as one or more
mechanism(s), method(s), function call(s), module(s), object(s), etc. of a component of a
system capable of communicative coupling to one or more mechanism(s), method(s),
function call(s), module(s), etc. of other component(s). The term “segment of code” in the
preceding sentence is intended to include one or more instructions or lines of code, and
includes, e.g., code modules, objects, subroutines, functions, and so on, regardless of the
terminology applied or whether the code segments are separately compiled, or whether the
code segments are provided as source, intermediate, or object code, whether the code
segments are utilized in a runtime system or process, or whether they are located on the
same or different machines or distributed across multiple machines, or whether the
functionality represented by the segments of code are implemented wholly in software,
wholly in hardware, or a combination of hardware and software.

[0040] Notionally, a programming interface may be viewed generically, as shown in
FIG. 2a or 2b. FIG. 2a illustrates an interface Interfacel as a conduit through which first
and second code segments communicate. FIG. 2b illustrates an interface as comprising
interface objects I1 and 12 (which may or may not be part of the first and second code
segments), which enable first and second code segments of a system to communicate via

- medium M. In the view of FIG. 2b, one may consider interface objects I1 and I2 as separate
interfaces of the same system and one may also consider that objects I1 and 12 plus medium
M comprise the interface. Although FIGS. 2a and 2b show bi-directional flow and
interfaces on each side of the flow, certain implementations may only have information
flow in one direction (or no information flow as described below) or may only have an

WO 2005/046102 PCT/US2004/024012

interface object on one side. By way of example, and not limitation, terms such as
application programming interface (API), entry point, method, function, subroutine, remote
procedure call, and component object model (COM) interface, are encompassed within the
definition of programming interface.

[0041] Aspects of such a programming interface may include the method whereby the
first code segment transmits information (where “information” is used in its broadest sense
and includes data, commands, requests, etc.) to the second code segment; the method
whereby the second code segment receives the information; and the structure, sequence,
syntax, organization, schema, timing and content of the information. In this regard, the
underlying transport medium itself may be unimportant to the operation of the interface,
whether the medium be wired or wireless, or a combination of both, as long as the
information is transported in the manner defined by the interface. In certain situations,
information may not be passed in one or both directions in the conventional sense, as the
information transfer may be either via another mechanism (e.g. information placed in a
buffer, file, etc. separate from information flow between the code segments) or non-existent,
as when one code segment simply accesses functionality performed by a second code
segment. Any or all of these aspects may be important in a given situation, e.g., depending
on whether the code segments are part of a system in a loosely coupled or tightly coupled
configuration, and so this list should be considered illustrative and non-limiting.

[0042] This notion of a programming interface is known to those skilled in the art and is
clear from the foregoing detailed description of the invention. There are, however, other
ways to implement a programming interface, and, unless expressly excluded, these too are
intended to be encompassed by the claims set forth at the end of this specification. Such
other ways may appear to be more sophisticated or complex than the simplistic view of
FIGS. 2a and 2b, but they nonetheless perform a similar function to accomplish the same
overall result. We will now briefly describe some illustrative alternative implementations of

a programming interface.

A.FACTORING
[0043] A communication from one code segment to another may be accomplished
indirectly by breaking the communication into multiple discrete communications. This is
depicted schematically in FIGS. 3a and 3b. As shown, some interfaces can be described in
terms of divisible sets of functionality. Thus, the interface functionality of FIGS. 2a and 2b
may be factored to achieve the same result, just as one may mathematically provide 24, or 2
times 2 times 3 times 2. Accordingly, as illustrated in FIG. 3a, the function provided by
interface Interfacel may be subdivided to convert the communications of the interface into

WO 2005/046102 PCT/US2004/024012

10

multiple interfaces InterfacelA, Interféce 1B, Interface 1C, etc. while achieving the same
result. As illustrated in FIG. 3b, the function provided by interface I1 may be subdivided
into multiple interfaces I1a, I1b, Ilc, etc. while achieving the same result. Similarly,
interface I2 of the second code segment which receives information from the first code
segment may be factored into multiple interfaces 12a, I12b, 12¢, etc. When factoring, the
number of interfaces included with the 1% code segment need not match the number of
interfaces included with the 2™ code segment. In either of the cases of FIGS. 3a and 3b, the
functional spirit of interfaces Interfacel and I1 remain the same as with FIGS. 2a and 2b,
respectively. The factoring of interfaces may also follow associative, commutative, and
other mathematical properties such that the factoring may be difficult to recognize. For
instance, ordering of operations may be unimportant in some applications, and
consequently, a function carried out by an interface may be carried out well in advance of
reaching the interface, by another piece of code or interface, or performed by a separate
component of the system. Moreover, one of ordinary skill in the programming arts can
appreciate that there are a variety of ways of making different function calls that achieve the

same result.

B. REDEFINITION
[0044] In some cases, it may be possible to ignore, add or redefine certain aspects (e.g.,
parameters) of a programming interface while still accomplishing the intended result. This
is illustrated in FIGS. 4a and 4b. For example, assume interface Interfacel of FIG. 2a
includes a function call Square(input, precision, output), a call that includes three
parameters, input, precision and output, and which is issued from the 1** Code Segment to
the 2™ Code Segment. If the middle parameter precision is of no concern in a given
scenario, as shown in FIG. 4a, it could just as well be ignored or even replaced with a
meaningless (in this situation) parameter. One may also add an additional parameter of no
concern. In either event, the functionality of square can be achieved, so long as output is
returned after input is squared by the second code segment. Precision may very well be a
meaningful parameter to some downstream or other portion of the computing system;
however, once it is recognized that precision is not necessary for the narrow purpose of
calculating the square, it may be replaced or ignored. For example, instead of passing a
valid precision value, a meaningless value such as a birth date could be passed without
adversely affecting the result. Similarly, as shown in FIG. 4b, interface I1 is replaced by
interface I11°, redefined to ignore or add parameters to the interface. Interface 12 may
similarly be redefined as interface I12°, redefined to ignore unnecessary parameters, or
parameters that may be processed elsewhere. The point here is that in some cases a

WO 2005/046102 PCT/US2004/024012

11

programming interface may include aspects, such as parameters, that are not needed for
some purpose, and so they may be ignored or redefined, or processed elsewhere for other

purposes.

C. INLINE CODING
[0045] It may also be feasible to merge some or all of the functionality of two separate
code modules such that the “interface” between them changes form. For example, the
functionality of FIGS. 2a and 2b maiy be converted to the functionality of FIGS. 5a and 5b,
respectively. In FIG. 5a, the previous 1* and 2" Code Ségments of FIG. 2a are merged into
a module containing both of them. In this case, the code segments may still be
communicating with each other but the interface may be adapted to a form which is more
suitable to the single module. Thus, for example, formal Call and Return statements may no
longer be necessary, but similar processing or response(s) pursuant to interface Interfacel
may still be in effect. Similarly, shown in FIG. 5b, part (or all) of interface I2 from FIG. 2b
may be written inline into interface I1 to form interface I1”. As illustrated, interface I2 is
divided into I2a and I2b, and interface portion 12a has been coded in-line with interface I1
to form interface I11”. For a concrete example, consider that the interface I1 from FIG. 2b
performs a function call square (input, output), which is received by interface 12, which
after processing the value passed with input (to square it) by the second code segment,
passes back the squared result with output. In such a case, the processing performed by the
second code segment (squaring inpuf) can be performed by the first code segment without a

call to the interface.

D. DIVORCE
[0046] A communication from one code segment to another may be accomplished
indirectly by breaking the communication into multiple discrete communications. This is
depicted schematically in FIGS. 6a and 6b. As shown in FIG. 6a, one or more piece(s) of
middleware (Divorce Interface(s), since they divorce functionality and / or interface
functions from the original interface) are provided to convert the communications on the
first interface, Interfacel, to conform them to a different interface, in this case interfaces
Interface2 A, Interface2B and Interface2C. This might be done, e.g., where there is an
installed base of applications designed to communicate with, say, an operating system in
accordance with an Interfacel protocol, but then the operating system is changed to use a
different interface, in this case interfaces Interface2 A, Interface2B and Interface2C. The
point is that the original interface used by the 2" Code Segment is changed such that it is no
longer compatible with the interface used by the 1* Code Segment, and so an intermediary

WO 2005/046102 PCT/US2004/024012

12

is used to make the old and new interfaces compatible. Similarly, as shown in FIG. 6b, a
third code segment can be introduced with divorce interface DI1 to receive the
communications from interface I1 and with divorce interface DI2 to transmit the interface
functionality to, for example, interfaces I2a and 12b, redesigned to work with DI2, but to
provide the same functional result. Similarly, DI1 and DI2 may work together to translate
the functionality of interfaces I1 and 12 of FIG. 2b to a new operating system, while

providing the same or similar functional result.

E. REWRITING
[0047] Yet another possible variant is to dynamically rewrite the code to replace the
interface functionality with something else but which achieves the same overall result. For
example, there may be a system in which a code segment presented in an intermediate
language (e.g. Microsoft IL, Java ByteCode, etc.) is provided to a Just-in-Time (JIT)
compiler or interpreter in an execution environment (such as that provided by the .Net
framework, the Java runtime environment, or other similar runtime type environments).
The JIT compiler may be written so as to dynamically convert the communications from the
1" Code Segment to the 2" Code Segment, i.e., to conform them to a different interface as
may be required by the 2™ Code Segment (either the original or a different 2™ Code
Segment). This is depicted in FIGS. 7a and 7b. As can be seen in FIG. 7a, this approach is
similar to the Divorce scenario described above. It might be done, e.g., where an installed
base of applications are designed to communicate with an operating system in accordance
with an Interface 1 protocol, but then the operating system is changed to use a different
interface. The JIT Compiler could be used to conform the communications on the fly from
the installed-base applications to the new interface of the operating system. As depicted in
FIG. 7b, this approach of dynamically rewriting the interface(s) may be applied to
dynamically factor, or otherwise alter the interface(s) as well.
[0048] It is also noted that the above-described scenarios for achieving the same or
similar result as an interface via alternative embodiments may also be combined in various
ways, serially and/or in parallel, or with other intervening code. Thus, the alternative
embodiments presented above are not mutually exclusive and may be mixed, matched and
combined to produce the same or equivalent scenarios to the generic scenarios presented in
FIGS. 2a and 2b. It is also noted that, as with most programming constructs, there are other
similar ways of achieving the same or similar functionality of an interface which may not be
described herein, but nonetheless are represented by the spirit and scope of the invention,
1.e., it is noted that it is at least partly the functionality represented by, and the advantageous
results enabled by, an interface that underlie the value of an interface.

WO 2005/046102 PCT/US2004/024012

13

[0049] In the description that follows, the invention will be described with reference to
acts and symbolic representations of operations that are performed by one or more
computers, unless indicated otherwise. As such, it will be understood that such acts and
operations, which are at times referred to as being computer-executed, include the
manipulation by the processing unit of the computer of electrical signals representing data
in a structured form. This manipulation transforms the data or maintains it at locations in
the memory system of the computer, which reconfigures or otherwise alters the operation of
the computer in a manner well understood by those skilled in the art. The data structures
where data is maintained are physical locations of the memory that have particular
properties defined by the format of the data. However, while the invention is being
described in the foregoing context, it is not meant to be limiting as those of skill in the art
will appreciate that various of the acts and operation described hereinafter may also be
implemented in hardware.

[0050] Turning now to FIG. 8, an exemplary environment 200 in which the invention
operates. Applications 202, 204 reside on server 206. Window manager 208 allows one to
work with and organize windows and performs operations such as moving windows,
resizing windows, destroying windows, decorating windows with titlebars and other items
which make the above operations easier, and the like. Applications 202, 204 create visual
trees 210, 212 to indicate how an item (e.g., text document, graphic, animation. etc.) is
being displayed by the application. A visual tree represents a data structure that is rendered
by a graphics system to a medium (e.g., display monitor, printer, surface, etc.). When a
visual tree is rendered, the data in the visual tree is the "scene" the user sees in the
application area of'the display when the application is being used. The applications 202,
204 retain control of their respective visual tree to control what is happening on the
application display area on the display device (e.g., monitor 191). The applications 202,
204 submit their visual tree output to an in process composition loop via interface 228. This
output is used to build a sub tree of the application's visual tree. The sub tree is composed
to a surface, which in turn is submitted to the window manager 208 for desktop
composition. The window manager 208 then assesses what will and will not be displayed
based on the visibility of the application in the display and a composition tree 214, 216 is
created based on the assessment. The composition tree is rendered independently of a
visual tree. The composition tree includes all elements compiled from a visual tree that a
user would see on the display device. For example, if the visual tree were created for a
document, the composition tree would be that portion of the document that is being
displayed.

[0051] The present invention allows the composition trees to be remotely created and

WO 2005/046102 PCT/US2004/024012

14

operated without having to create the composition tree at the server. While the invention
will be described in terms or remotely creating and operating a composition tree, it is
recognized that the invention may be used to create and render compositions on the server
of FIG. 8. Turning now to FIG. 9, the applications 202, 204 on server 206 are being
displayed on client device 220. While only one client device is shown, it is recognized that
any number of client devices may be used. The applications 202, 204 and window manager
208 use interface 228 to communicate with respective composition modules 222 -226 226
over the network 230 via communication channel 232 using packets. The number of
composition modules that may be used in conjunction with a single application domain may
be any number as desired. Note that the server 206 and client 220 need not be connected by
anetwork or any other means, but instead, data may be migrated via any media capable of
being written by the server platform and read by the client platform or platforms. In one
embodiment, the packets are encapsulated with a remote data protocol to send the
information to create the composition trees 214, 216 to the client 220. An identifier is
placed in each packet to identify which composition module 222-226 is the destination of
the packet. Component 234 demultiplexes packets and sends the packets to the appropriate
change queue 240, 242, 244 of modules 222 - 226.

[0052] The device independent protocol of the instant invention provides the
applications and clients to interface with the server via the communication channel 232 to
compose content. The types of content include resource command packets and control
packets. Resource types include pens, brushes, bitmaps, glyphs, video clips, geometries
(ellipses, rectangles, boxes, circles, etc.), animations, memory, etc. Composition nodes are
the fundamental unit of spatial containment available to client applications. Clients create
composition nodes on their composition service. A composition node may contain one or
more resources. There is always one root composition node, representing the screen
content or desktop. There may be one or more composition nodes representing offscreen
composition.

[0053] In the description that follows, the device independent protocol will be described
through typical call sequences. The communication is asynchronous. Specific connect,
reconnect, and disconnect semantics are used. The applications 202, 204, 208 communicate
with the respective composition module 222, 224 resident in the client 220. A single
connection is usually initiated and maintained for the lifetime of the application because
connecting and disconnecting a connection are expensive operations and communication to
the composition module on the client is likely to be frequent. The cost of maintaining the
connection will be much lower than the cost of repeatedly disconnecting and connecting.
The communication between the server applications 202, 204, 208 and the composition

WO 2005/046102 PCT/US2004/024012

15

modules 222-226 is in the form of packets

[0054] The server applications 202, 204, 208 connect to the client 220 and start sending
packets. Packets can be resource packets, control packets, and batch packets. Resource
packets are used to create resources and to update resources. Control packets are used to
control the composition state and to maintain a text glyph bitmap cache on the client
machine 220. Batch packets are used to apply multiple changes atomically. A create batch
command is sent to the client 220 to indicate the beginning of a batch. The composition
modules accrue the requests until the batch is “ended.” The batch is ended by sending a
batch close/commit packet. At that point, the composition service begins processing the
commands. The change queue inside of the composition service retains the batching
construct so as to ensure that the changes occur atomically.

[0055] Turning now to FIG. 10, the steps to create and control a composition are shown.
Server application 202 will be used to describe the steps. Those skilled in the art recognize
that any segment(s) of code may be used. A composition module is created (step 300). The
composmon module is responsible for rendering the composition for the connection that has
been created. A render target is created that generates a resource command to create a
rendertarget resource (step 302) and render context that is associated with the rendertarget
resource is created (step 304). The render target is the destination target for rendering
resources. A composition node is created (step 306). Resources are then created (step 308)
and the composition is rendered (step 310).

[0056] Composition utilizes the combination of simple and compound resources in
order to render the content to the target. A simple resource is self-contained, and has no
direct dependency on any other resource. A compound resource references other dependent
resources. One example of a compound resource is the “rendering data” resource. The
“rendering data” resource is comprised of retained list of rendering instructions which may
in turn reference other resources, such as brushes, pens, or descriptions of geometry. The
rendering data resource is used to encode rendering operations performed with the help of
other resources. Render data resources are associated with composition nodes, which have
the role of spatially localizing these rendering operations.

[0057] When a composition needs to be updated, an update command is sent (step 312).
The update could be adding resources or updating resources. A particular composition may
need to be deleted and a new composition created. For example, if the composition is a text
document, the composition is deleted if the text document is closed. If the composition is to
be deleted, a destruction command is sent to the composition service (step 314).

[0058] Animation may be pervasive throughout a platform. The invention delivers
scalable animation in one embodiment by allowing clients to assume complete

WO 2005/046102 PCT/US2004/024012

16

responsibility for evaluating and presenting the animation. This is sufficient in many cases,
especially when the animation is complex or when the animation target réquires that a non-
accelerated set of operations (such as tessellation) occur. For certain low-cost, high
visibility user interface effects such as motion animation, it makes sense to allow these
operations to occur during a chain’s composition pass. In such a case, the application 202
would sample the high-level animation function and provide a series of timestamped values
associated with a resource as a request to the composition service. These represent the
intervals over which the resource is to be animated, and the endpoints of the timeline during
which the interval remains active. The application 202 sends an update resource packet to
update a resource value. Note that the sequence belies the underlying complexity. The
composition module normalizes the timestamped values to the composition service’s global
timeline, and a composition manager (not shown) will plug the update block into the
appropriate resources during composition to the render target. For each composited frame,
the composition module will evaluate the resource’s interval to derive the instantaneous
value.

[0059] Now that the overall structure of the programming interface has been described,
the resource and control command packets will be described. The control packets are used
to control the composition state and to maintain a text glyph cache used by the composition
module on the client 220.

[0060] The control packets are Resource_Command Null,
Resource_Command_Release, Resource Command_Shutdown, Resource_Command_Sync
hronize, Resource Command_Status, Resource Command Add Glyph_Bitmaps,
Resource_ Command Free Glyph Bitmaps, and Resource_Command_Flush_Queue. The
Resource_ Command_Release releases a resource. The Resource_Command_Shutdown
shutdowns the composition module and deletes everything associated with the composition
module. The Resource Command Synchronize command deletes everything associated
with the composition node to start fresh. The Resource_Command_Status sends a status
message to the composition module. The Resource_Command Add Glyph_Bitmaps adds
bitmaps to the glyph cache. The Resource Command Free Glyph_Bitmaps removes
bitmaps from the glyph cache. The Resource Command Flush_Queue flushes the change
queue.

[0061] A notification queue that transports notification packets from the client 220 back
to the server 206 is maintained. These can be of the following type:

Notification Resource Deleted, Notification Shutdown, Notification_Synchronize,
Notification Status, and Notification Error.

[0062] The resource command packets are used to render resources. A resource may be

WO 2005/046102 PCT/US2004/024012

17

defined as "any object needed for rendering a scene that requires different realizations for
different resolutions and/or physical devices; that is used multiple times within a
composition tree; or that may change independently of its users such as via animation."
Resources are able to serialize themselves, apply updates, and provide a realization for a
particular resolution and device. The resource types include Null, Memory, Renderdata,
Bitmap, Glyphrun, Vertices, Timeline, Doubleanimation, Coloranimation, Pointanimation,
Rectanimation, Sizeanimation, Doubleanimationcollection, Coloranimationcollection,
Pointanimationcollection, Rectanimationcollection, Sizeanimationcollection, Transform,
Double, Color, Point, Rect, Size, Gradient, Brush, Figure, Geometry, Pen, Video,
Composition_Node, Composition_Context, Image, Hwnd_Composition_Target, and
Intermediate_Composition Target. The Hwnd_Composition_Target is used to render to a
window. The intermediate composition target may be used for off screen rendering.
[0063] Resources sent to a composition module are generally directly realizable by the
composition module without callback. If not directly realizable, the required

realization is sent. Resources like "Text" and "Images" are expensive (in terms of
processing overhead) to realize and are therefore converted to the appropriate "ready-to -
render" form for use in the composition tree. Converting the resources to a form that may
be readily rendered conserves overhead for composition in the composition module.
Resources are also converted to the appropriate "ready-to-render" form if they require any
callbacks to user code. Other resources like "Geometry" that may be tessellated efficiently
by the composition module to the correct resolution when needed are realized by the
composition module itself.

[0064] Resources are generally separated into a few types, such as drawing resources,
value resources, and structural resources. Drawing resources are objects defined by the
rendering layer and may be consumed directly by that layer. Examples of drawing
resources include RenderData, Bitmap, Image, Glyphrun, Geometry, and Brush.

[0065] Drawing resources with very low and constant rendering cost can be realized
during composition directly from the device and resolution independent source data.
Geometry is a simple drawing resource because it can be tessellated to the final required
resolution efficiently in the composition loop of the composition module. In contrast,
complex drawing resources require complex computations, call backs to user code, or
input/output to generate realizations. In one embodiment, complex drawing resources are
not realized by the composition module. Instead, the appropriate realizations are provided
by the applications 2022, 204 and/or server 206 in advance to composition. "Image" is an
example of a complex resource. Images are read from disk, decoded, sampled at the
appropriate resolution and filtered.

WO 2005/046102 PCT/US2004/024012

18

[0066] Value resources represent a simple changeable or animate value used by another
resource. Examples of value resources are Double, Point, Color, and Transform. For
example, a RenderData resource may refer to a Point resource to draw a line where one of
the points is expected to change via animation or imperative direction by the application.
Value resources may be static or animate. If the value resource is animate, the value
resource contains animation interval data defining how the value changes with time.
[0067] Structure resources are objects that play a role in the composition process but are
' not directly part of rendering. These objects are implemented as resources so that they may
participate in updates via the change queue and use Value Resources to update internal
values. Identified structure resources include Composition Node.
[0068] In general, resources must be realized before they can be used. A realization
may be referred to as "a representation of a resource that is appropriate for a given
resolution and is ready for use by a specific device." An example of a realization is a
geometry tessellated into triangles for a particular resolution and transformation and
potentially already loaded into a vertex buffer on the video card. Realizations are either
created on demand in the composition module or are created at the server 206 and sent to
the composition moduie. If a resource realization that is required cannot be found or
created a notification is queued via the notification queue to the server 206. The
notification indicates the resource handle, the transform, and the device needed, along with
any transform of the realization used.
[0069] Packets have a structure as shown below

MIL_PACKET TYPE packetType;
HMIL RESOURCE resHandle;
MIL_RESOURCE_TYPE type;
DWORD size;

int marshalType;

where the Mil_Packet Type is one of a batch packet, a control packet, or a resource packet.
The HMIL_Resource handle must be of the proper type for the resource. These handles
must be for a resource, context, or a composition node (e.g., a compnode). The
MIL_Resource Type is the type of resource as indicate above (e.g., bitmap, transform,
geometry, etc.)

[0070] Appended to the packet are commands that are used to instruct the composition

WO 2005/046102 PCT/US2004/024012

19

service to perform tasks. This allows third party vendors to supply their own code to
operate their composition sérvices. One such implementation is below.

//HRESULT CMilResourceBrushSolidColorData: :MarshalDataCore
struct BrushSolidColorPacket
{

MIL COLORF colr;

HMIL RESOURCE hColor;

}

/*

HRESULT
CMilResourceBrushSolidColorData: :MarshalDataCore (IMilTransportEncoder®
pEncoder)

{

HRESULT hr = 5_OK;
Assert (NULL != pEncoder) ;

// Call base method before our own
CMilResourceBrushData: :MarshalDataCore (pEncoder) ;

pEncoder->AddColor (& (m_brushSolidData.color)) ;
pEncoder->AddResource (m_brushSolidData.hColor) ;

Cleanup:
RRETURN (hr) ;
}

*/

//HRESULT CMilResourceBrushLinearGradient::Marshal
struct BrushLinearGradientPacket : Packet
{
int brushtype = MilUceBrushTypelLinearGradient;
float Alpha;
HMIL RESOURCE halpha;
HMIL RESOURCE hTransform;
float beginPointx;
float beginPointy;
HMIL_ RESOURCE hBeginPoint;
float endPointx;
float endPointy;
HMIL RESOURCE hEndPoint;
int wrapMode;
HMIL RESOURCE hGradient;
int bGammaCorrect;
int bAdjustToObject;

}

//CMilResourceBrushData: :MarshalData
struct BrushDataPacket : Packet
{

int brushtype;

double dblOpacity;

HMIL_ RESOURCE hOpacity;

HMIL_ RESOURCE hTransform;

WO 2005/046102

20

}

//CMilResourceBrushRadialGradient: :Marshal
struct BrushRadialGradientMarshalPacket : Packet

{

UINT brushtype = MilUceBrushTypeRadialGradient;
float alpha;

HMIL RESOURCE hAlpha;
HMIL RESOURCE hTransform;
float centerPointX;

float centerPointY;
HMIL_RESOURCE hCenter;
float radPointX;

float radPointY;

HMIL RESOURCE hRadius;
float focPointX;

float focPointY;
HMIL_RESOURCE hFocus;

int wrapMode;
HMIL_RESOURCE hGradient;
int bGammaCorrect;

int bAdjustToObject;

)

//CMilResourceGradient: :Marshal
struct GradientMarshalPacket : Packet
{
UINT stopCount;
//stops bytes here:
//hr = pEncoder->AddMemory (m_data.m_rgGradientStops,

}

//CMilResourceBrushNineGrid: :Marshal
struct BrushNineGridMarshalPacket : Packet

{

int brushType = MilUceBrushTypeNineGrid;

double rOpacity;
HMIL RESOURCE hOpacity;
HMIL_ RESOURCE hTransform;

HMIL_RESOURCE hImageData;
HMIL RESOURCE hGlyphImageData;
UINT iLeftBorder;

UINT iTopBorder;

UINT iRightBoxrder;

UINT iBottomBorder;

}

//TMilMasterAnimatedValue<TValue, ResType, AnimResType,
CollResType>: :Marshal (
struct MasterAnimatedvValuePacket : Packet

{

int animtype = MilAnimatedValueMarshal;

PCT/US2004/024012

nDataByteCount) ;

WO 2005/046102 PCT/US2004/024012

21

int marshalType = MilAnimatedValueMarshalAux;
HMIL RESOURCE hAnimationCollection;

int offsetToValue;

int sizeOfValue = sizeof (TValue);

int offsetToBaseValue;

int sizeOfBasevValue = sizeof (TValue);

}

struct MasterAnimationCollectionPacket : Packet

{

int cAnimations;
HMIL_ RESOURCE handleArray;
//for (nAnimation = 0; nAnimation < m_cAnimations;

nAnimation++)
/74
// pEncoder-
>AddResource (m_rghAnimations [nAnimation]) ;
/1}

}

struct MasterAnimationPacket : Packet
int animtype = MilAnimationCopy;
HMIL_RESOURCE hTimeline;
//m_animationData.WriteData (pEncoder) ;

}

//TMilMastervValue<TValue, ResTypes>::SendUpdatePacket (
struct MasterValueUpdatePacket | Packet
{

int valueType = MilValueMarshal;

int auxType = MilValueMarshalAux;

int size; // sizeof (TValue)

// resrve memory for value copy.

}

{struct TMilAnimationDataPacket : Packet
{

int animationType;
int interpolationMethod;
BYTE fIsAdditive;
BYTE fIsAccumulating;
UINT cValues;
// next space values and key times.
// pEncoder-s>AddMemory (m_rgValues, sizeof (TValue) * m_cValues);
// pEncoder->AddMemory (m_rgKeyTimes, sizeof (double) * m_cValues);
BYTE fHasKeySplinePoints;

// Next: space for spline points.
//1if (m_rgKeySplinePoints)

/14

// pEncoder->AddByte ((BYTE) TRUE) ;

// pEncoder->AddMemory (

// m_rgKeySplinePoints,

// sizeof (MIL, 2DPOINTD) * 2 * (m_cValues - 1));
//}

//else

/74

// pEncoder->AddByte ((BYTE) FALSE) ;

WO 2005/046102 PCT/US2004/024012

22

/7}
}

struct BitmapUpdatePixelsPacket : Packet
{
int bitmaptype = MilBitmapUpdatePixels;
int prectX;
int precty;
int prectwWidth;
int prectHeight;
UINT stride;
UINT cbSize;
// pixels after this

}

struct BitmapAddDirtyRectPacket : Packet
{
UINT bitmaptype = MilBitmapAddDirtyRect));
UINT prectX;
UINT prectY;
UINT prectWidth;)
UINT prectHeight;

}

struct BitmapMarshalPixelsPacket : Packet
{ -

UINT bitmaptype = MilBitmapCopy;

int prectX;

int precty;

int prectWidth;

int prectHeight;

UINT stride;

UINT format;

UINT cbSize;

// pixels after this

}

struct RenderDataMarshalPacket : Packet

{
int renderdatatype = MilRenderDataCopy;
UINT nHandleCount; ' '
UINT nByteCount;
// handles and data follow.

}

//CMasterCompositionContext: :SetRoot

struct CompositionContextSetRootPacket : Packet
UINT commandType = CONTEXT SETROOT;
HMIL_ COMPNODE hRoot;

}

//CMasterCompositionNode: : SetProperty

struct CompositionNodeSetPropertyPacket : Packet

{
UINT commandType = CCompositionCommand::NODE_SETPROPERTY ;
HMIL_ RESOURCE hResource;
// command memmory here.

WO 2005/046102 PCT/US2004/024012

23

} :

//CMasterCompositionNode: : InsertChildat

struct CompositionNodeInsertChildAtPacket : Packet
UINT commandType = CCompositionCommand::NODE_INSERTCHILD;
HMIL_COMPNODE hchild;
UINT iPosition;

}

//CMasterCompositionNode: :RemoveChild

struct CompositionNodeRemoveChildPacket : Packet

{
UINT commandType = CCompositionCommand::NODE REMOVECHILD;
HMIL COMPNODE hchild;

}

//CMasterCompositionNode: :Marshal
struct CompositionNodeMarshalPacket : Packet
{
UINT commandType = CCompositionCommand::NODE_CREATE;
HMIL RESOURCE hTransform;
HMIL_RESOURCE hClip));
HMIL RESOURCE hRenderData;
HMIL RESOURCE hAlpha;
UINT childCount;
// handles here

}

//CMilResourceGeometry: :MarshalEmpty
struct GeometryMarshalEmptyPacket : Packet

{
}

//CMilResourceGeometry: :MarshallLine
struct GeometryMarshallLinePacket : Packet

{

UINT geomType;

int pGeomType;

HMIL_ RESOURCE hTransformRes;
double PointilX;

double PointlY;

HMIL RESOURCE hPointlRes;
double Point2X;

double Point2Y;

HMIL_ RESOURCE hPoint2Res;

}

//CMilResourceGeometry: :MarshalRectangle
struct GeometryMarshalRectangle : Packet
{

int pGeomType;

HMIL RESOURCE hTransformRes;

double RectX;

double RectY;

double RectWidth;

double RectHeight;

WO 2005/046102 PCT/US2004/024012

24

HMIL RESOURCE hRectRes;
double RadiusX;

HMIL RESOURCE hRadiusXRes;
double Radiusy;

double RadiusYRes;

}

//CMilResourceGeometry: :MarshalEllipse
struct GeometryMarshalEllipse : Packet
{

int pGeomType;

HMIL_ RESOURCE hTransformRes;

double CenterX;

double CenterY;

HMIL RESOURCE hCenterRes;

double RadiusX;

HMIL_ RESOURCE hRadiusXRes;

double RadiusY;

HMIL_RESOURCE hRadiusYRes;

}

//CMilResourceGeometry: :MarshalPath
struct GeometryMarshalPath : Packet
{ [
int pGeomType;
HMIL RESOURCE hTransformRes;
int FillMode;
int Count;
int Size;
// path data appended here.
// pEncoder->AddMemory (pGeom->FigureData, pGeom->Size);

}

//HRESULT CMilResourceGeometry::MarshalCollection
struct GeometryMarshalCollectionPacket : Packet
{ ,

int pGeomType;

HMIL_RESOURCE hTransformRes;

int CombineMode;

int count;

// handles here:

//for (UINT i=0; i<pGeom->Count; i++)

/74

// pEncoder->AddResource (pGeom->Resources [i]) ;

/17}
}

//HRESULT CGlyphCacheMasterManager: :UpdateResource (bool fAddBitmaps)
struct UpdateGlyphCachePacket : Packet

{

MIL_UPDATE_GLYPHCACHE us;

ARRAY RECORD glyphIndeces; // UINT array of indeces. Allocated with
AddArray

ARRAY RECORD glyphBitmaps[]; // number of entries is nr of

glyphIndeces
ARRAY RECORD normAdvancedWidth; // number of entries is nr of

glyphIndeces

WO 2005/046102 PCT/US2004/024012

25

ARRAY RECORD fontFileName;

}

//HRESULT CMilMasterGlyphRun: :DoMarshal
struct GlyphRunMarshalPacket : Packet
{
GLYPHRUN MARSHAL_ TYPE glyphRunType;
MIL CREATE GLYPHRUN createStruct;
USHORT GlyphIndeces]|];
DOUBLE AdvanceWidths|[];
WCHAR UnicodeStringl];
MIL 2DPOINTF GlyphOffsets|];
USHORT CharacterToGlyphMap[];
WCHAR FontFileName!] ;

}

//HRESULT CMilMasterGlyphRun: :MarshalRealization
struct GlyphRunRealizationPacket | Packet
{

GLYPHRUN_ MARSHAL TYPE glyphRunType;

DOUBLE scaleX;

DOUBLE scaleY;

}

//HRESULT CMilMasterGlyphRun: :MarshalGeometryHandle
struct GlyphRunMarshalGeometryHandlePacket : Packet
{

GLYPHRUN MARSHAL TYPE glyphRunType;

HMIL RESOURCE hGeometry;

}

//CMilResourcePen: :SetWidth

struct PenSetWidthPacket : Packet

{
int penCommand = CMilPenData::MilPenSetWidth;
double width; !

}

//CMilResourcePen: :Marshal \
struct PenMarshalPacket : Packet
{
int penCommand = CMilPenData::MilPenCopy;
HMIL_ RESOURCE hBrushRes;
HMIL_RESOURCE hWwidthRes;
double width;
double miterLimit;
BYTE startCap;
BYTE endCap;
BYTE dashCap;
BYTE joinCap;

}

//CMasterHWndRenderTarget: :Marshal

struct HWndRenderTargetMarshalPacket : Packet

{
int targetCommand = CCompositionCommand::HWNDRT CREATE;
HWND m_hWnd;
HMIL CONTEXT m_hCompositionContext;

WO 2005/046102 PCT/US2004/024012

26

UINT uiWidth;
UINT uiHeight;
UINT dwRTInitializationFlags;

}

//CMasterHWndRenderTarget : : SetCompositionContext

struct HWndRenderTargetSetCompositionContextPacket : Packet

{
int targetCommand = CCompositionCommand::HWNDRT SETCONTEXT;
HMIL_ CONTEXT hCompositionContext;

}

//CMasterHWndRenderTarget: :Resize

struct HWndRenderTargetResizePacket : Packet

{
int targetCommand = CCompositionCommand::HWNDRT_ RESIZE;
UINT uiwWidth;
UINT uiHeight;

}

//CMasterHWndRenderTarget: : Invalidate

struct HWndRenderTargetInvalidatePacket : Packet

{
int targetCommand = CCompositionCommand::HWNDRT INVALIDATE;
RECT rect;

}

//CMasterHWndRenderTarget : : SetRenderingMode
struct HWndRenderTargetSetRenderingModePacket

{

int targetCommand = CCompositionCommand: :HWNDRT SETRENDERINGMODE;
UINT dwRTInitializationFlags;

}
I i

//CMasterGenericRenderTarget: :Marshal
struct GenericRenderTargetMarshalPacket : Packet
{
int targetCommand = CCompositionCommand::HWNDRT CREATE;
UINT uiWidth;
UINT uiHeight;
UINT dwRTInitilalizationFlags;
// memory copied info here
// pEncoder->AddMemory (& m_Info, sizeof (m_Info));

}

//CMasterGenericRenderTarget : : SetCompositionContext (
struct GenericRenderTargetSetCompositionContextPacket : Packet
{
int targetCommand = CCompositionCommand::HWNDRT SETCONTEXT;
HMIL CONTEXT hCompositionContext;

}

//CMilMasterTimeline: :Marshal
struct TimelineMarshalPacket : Packet
{
int type = MilTimelineMarshal;
BYTE fIsEnabled;
HMIL_ RESOURCE hParentTimeline;

WO 2005/046102

27

UINT intervalCount}
// copy memory here.

PCT/US2004/024012

/ /pEncoder->AddMemory (&ct, sizeof (MIL_CREATE TIMELINE)) ;

}

//CMilMasterTimeline: : SendAddIntervalPacket
struct TimelineAddIntervalPacket : Packet
{

int type = MilTimelineAddInterval;

// copy interval memory here

//pEncoder->AddMemory (pti, sizeof (MIL TIME INTERVAL)) ;

//CMilMasterTimeline: :SendClearPacket
struct TimelineSendClearPacket : Packet

{

int type = MilTimelineClear;

//CMilMasterTimeline: :SendEnablePacket
struct TimelineSendEnablePacket : Packet

{

int type = MilTimelineEnable;
HMIL RESOURCE hParentTimeLine;

}

//CMilMasterTimeline: :SendDisablePacket
struct TimelineSendDisablePacket : Packet

{
}

//HRESULT CMilResourceTransform::MarshalIdentity
struct TransformMarshalldentityPacket : Packet

{
}

//HRESULT CMilResourceTransform::MarshalMatrix3x2
struct TransformMarshalMatrix3x2Packet : Packet

{

int type = MilTimelineDisable;

int transType = MilTransformIdentity;

int transType = MilTransformMatrix3x2;
double S_11;

double S_12;

double S_21;

double S_22;

double DX;

double DY;

}

//HRESULT CMilResourceTransform::MarshalMatrix4x4
struct TransformMarshalMatrix4x4Packet : Packet

{

int transType = MilTransformMatrix4x4;
float coef[l16];

}

//HRESULT CMilResourceTransform::MarshalTranslate

WO 2005/046102

28

struct TransformMarshalTranslatePacket : Packet
{
int transType = MilTransformTranslate;
double OffsetX;
HMIL RESOURCE OffsetXRes;
double OffsetY;
HMIL RESOURCE OffsetYRes;

}

//HRESULT CMilResocurceTransform::MarshalScale
struct TransformMarshalScalePacket : Packet
{

int transType = MilTransformScale;

double ScaleX;

HMIL RESOURCE hScaleXRes;

double ScaleY;

HMIL_RESOURCE hScaleYRes) ;

double CenterX;

double CenterY;

HMIL_RESOURCE hCenterRes;

}

//HRESULT CMilResourceTransform::MarshalRotate
struct TransformMarshalRotatePacket : Packet
{

int transType = MilTransformRotate;

double Angle;

HMIL_ RESOURCE hAngleRes;

double CenterX;

double CenterY;

HMIL RESOURCE hCenterRes;

}

//HRESULT CMilResourceTransform::MarshalSkew
struct TransformMarshalSkewPacket : Packet
{

int transType = MilTransformSkew;

double AngleX;

HMIL_ RESOURCE hAngleXRes;

doble AngleY;

HMIL_RESOURCE hAngleYRes;

double CenterX;

double CenterY;

HMIL_ RESOURCE hCenterRes;

}

struct TransformMarshalCollection : Packet

{
int transType = MilTransformCollection;
int Count;
// reserve memory for collection handles
//for (UINT i=0; i<pTrans->Count; i++)

/14

// pEncoder->AddResource (pTrans->Resources [1]) ;

/1}

PCT/US2004/024012

WO 2005/046102 PCT/US2004/024012

29

[0071] An example of the instructions to perform steps 300 to 314 is below. In the
example, the composition module and render targets are created. A batch open control
packet is then sent. The commands to create a composition node, a render data resource,
and composition context are sent. The root node is set on the composition context, and the
composition context is set on the hwnd target. At this point, the composition node,
composition context, render data resource, root node, and hwnd target are associated.
Resources are then created. The resources are a geometry resource, a solid brush resource,
and a pen resource. Update packets are then sent to update the pen, add an ellipse to the
geometry resource, and draw the geometry. A filled rectangle is then drawn and the render
data is set on the composition node and the composition node is updated. To delete the
composition, resource release commands are sent to release the resources and the

composition device is destroyed.

main ()
{

MilCompositionDevice Create (&g_hCompositionDevice) ;

// Creates the device -> generates a connect packet.

// handled by composition proxy that creates a client composition
device for this connection.

MilResource HWndRenderTarget Create (&g hRenderTarget) ;

// create a render target -> generates a resource command to create
the rendertarget resource.

MilCompositionDevice CreateBatch (&hBatch) ;
// Opens a batch -> generates a batch open control packet
// handled by client composition device.

MilResource_CompositionNode Create (&g_hRootNode) ;
// create a composition node -> generates a resource command packet to
create a composition node.

MilResource RenderData_Create (&g_hRenderData) ; ‘
// create a render data resource -> generates a resource command
packet to create a render data.

MilResource CompositionContext Create (&g_hCompositionContext) ;
// create a composition context command -> generates a resource
command packet to create a composition context.

MilCompositionContext SetRootNode (g_hCompositionContext,
g_hRootNode,
hBatch) ;
// set the root node on the composition context -> generates a
resource command to set the root node on the context
// packet is handled by composition context resource

MilResource_HWndRenderTarget SetCompositionContext (g_hRenderTarget,

g_hCompositionContext,
hBatch));

WO 2005/046102 PCT/US2004/024012

30

// set the composition context on the hwnd target -> generates a
resource command packet to set the comp context on hwnd target
// packet is handled by the hwnd target resource.

MilResource_Geometry Create (&hGeometry) ;

// create a geometry resource -> generates a resource command packet
that creates a geometry resource.

MilResource_SolidBrush Create (§hSolidBrush) ;
// create a solid brush resource -> generates no packet.

MilResource_SolidBrush Update (hSolidBrush,
1.0,
NULL,
&color,
g_hColor,
hBatch) ;
// set the color on the solid -> generates a resource command packet
that creates a brush resource with the given color.

MilResource_Pen Create (&g _hPen) ;
// create a pen resource -> generates a resource command packet that
creates the pen resource.

MilResource_Pen Update (g_hPen,

hSolidBrush,

5,

g_hPenWidth,

MilPenCapFlat,

MilPenCapFlat,

MilPenCapFlat,

MilPenJoinMiter,

10,

0,

NULL,

0.0,

NULL,

hBatch

)i
// update the pen -> generates a pen update packet
// handled by the pen resource

MilGeometry UpdateEllipse (hGeometry,
NULL,
100.0,
NULL,
50.0,
' NULL,
100.0,
100.0,
NULL,
hBatch) ;
// update the geometry to contain an ellipse -> generates a geometry
update packet
// handled by the
geometry resource

WO 2005/046102 PCT/US2004/024012

31

Mi1RenderData_DrawGeometry(g_hRenderData,
hSolidBrush,
g_hPen,
hGeometry
) ;i
// draw the geometry to the render data -> generates a render data
update packet to draw the geometry
// handled by the render data
resource

MilRenderData FillRectangle_ InlineSolidBrush(g_hRenderData,
200,
200,
300,
300,
colory
)i
// draw a filled rectangle using a specified brush to the render data
-> generates a render data update packet
/7

handled by the render data resource

MilCompositionNode SetRenderData(g_hRootNode, g_hRenderData, hBatch);

// sets the render data on a composition node -> generates a
composition node update packet

// handled by the comp
node resource

MilBatch Commit (hBatch) ;
// generates a bath close/commit packet.
// handled by client composition device.

// this is the notification processing loop
do
{
WaitOnEvents () ;
Mi1CompositionDevice_ProcessNotifications(g_hCompositionDevice);
// here we internally process notification packets coming from the
client composition device.
} while(composition still running: controlled by layer using the
compositor) ;

// all the resource release calls generate resource destroy packets
and queue flush control packets.

// handled by client composition device.

MilResource Release (g_hCompositionContext) ;

MilResource_ Release (g_hRootNode) ;

MilResource Release (g _hHandleTable, g_hRenderData);

MilResource_ Release (g_hPen);
MilResource_ Release (g_hColor) ;
MilResource Release (g_hPenWidth) ;
MilResource Release (g_hITarget);

MilCompositionDevice Destroy (g_hCompositionDevice) ;
// on exiting the loop we shut down

WO 2005/046102 PCT/US2004/024012

32

}

LONG_PTR 1MainWindowProc (
HWND hwnd,
UINT message,
WPARAM wParam,
LPARAM lParam
)

HRESULT hr = S_OK;
HMIL BATCH hBatch = NULL;

switch (message)
case WM_ERASEBKGND:
return O0;

case WM_SIZE:
if (g_hHandleTable &&
g _hRenderTarget &&
g_hCompositionDevice)

MilCompositionDevice_CreateBatch (
g_hCompositionDevice,
&hBatch) ;
// sends an open batch packet.
// handled by client composition device.
MilResource HWndRenderTarget_ Resize (g_hRenderTarget,
LOWORD (1Param) ,
HIWORD (lParam),
hBatch) ;
// resize render target -> sends a render target resize
resource command
// handled by render target resource
MilBatch Commit (hBatch) ;
// send close/commit batch control packet
// ‘ handled by client composition device.

}

break;

case WM_PAINT:

{

PAINTSTRUCT ps;
BeginPaint (hwnd, &ps);

if ((ps.rcPaint.left < ps.rcPaint.right) &&
(ps.rcPaint.top < ps.rcPaint.bottom) &&
g_hCompositionDevice)

MilCompositionDevice CreateBatch (
g_hCompositionDevice,

&hBatch)) ;
// sends an open batch packet.
// handled by client composition device.

MilBatch Commit (hBatch) ;
// send close/commit batch control packet
// handled by client composition device.

WO 2005/046102 PCT/US2004/024012

33

}

EndPaint (hwnd, &ps);

}

break;

case WM_DESTROY:
if (g _hCompositionDevice)

{

MilCompositionDevice CreateBatch (
g_hCompositionDevice,
&hBatch;
// sends an open batch packet.
MilResource_Release (
g_hHandleTable,
g_hRenderTarget) ;
// send a resource delete control packet
// handled by client composition device.

MilCompositionDevice FlushChangeQueue (
g _hCompositionDevice) ;
// send a queue flush control packet.
‘ // handled by client composition device.

MilBatch Commit (hBatch) ;
// send close/commit batch control packet
// handled by client composition device.

}

PostQuitMessage (0) ;
break;

}

return (DefWindowProc (hwnd, message, wParam, lParam));

[0072] As can be seen from the foregoing description, a method and protocol to create
and control compositions on a remote device has been disclosed. The protocol allows
servers and other devices to take advantage of processing capabilities of remote devices to
render compositions on the remote devices. This allows servers to handle more clients
because the server does not need to process the functions (e.g., paint, draw, animate, etc.)
used to actually render the composition. This results in the ability to leverage more of the
client side hardware capabilities such as a client’s 3D hardware acceleration pipe, and the
client CPU. For example, the client can process animation functions, which allows the
server to send information that describes the animation function instead of sending
animation frames to the client.

[0073] In view of the many possible embodiments to which the principles of this
invention may be applied, it should be recognized that the embodiment described herein
with respect to the drawing figures is meant to be illustrative only and should not be taken
as limiting the scope of invention. For example, those of skill in the art will recognize that
the elements of the illustrated embodiment shown in software may be implemented in

WO 2005/046102 PCT/US2004/024012

34

hardware and vice versa or that the illustrated embodiment can be modified in arrangement
and detail without departing from the spirit of the invention. Therefore, the invention as
described herein contemplates all such embodiments as may come within the scope of the
following claims and equivalents thereof.

WO 2005/046102 PCT/US2004/024012

35

WHAT IS CLAIMED 1I8S:

1. A method to render a composition on a device comprising the steps of:
sending a create composition node packet for creating a composition;
sending at least one create resources packet to create resources for rendering

the composition; and

sending at least one render update packet to create the composition.

2. The method of claim 1 further comprising the step of sending a create render
data resource packet to create a render data resource.

3. The method of claim 1 further comprising the step of sending a batch open
packet to open a batch process.

4. The method of claim 3 further comprising the steps of:
sending a plurality of create resource packets;
sending at least one resource update packets; and
sending a close/commit batch packet.

5. The method of claim 1 further comprising the step of sending a release
command to release a resource.

6. A data structure comprising:
a first field having a packet type;
a second field having a handle, the handle matching the packet type; and
a third field having one of a resource type and a command type that matches
the packet type; and
a fourth field having a command.

7. The data structure of claim 6 wherein the packet type is one of a control
packet and a resource command packet.

8. The data structure of claim 7 wherein the one of the control packet and the
resource command packet comprises one of the control packet, the resource command
packet, and a batch packet.

WO 2005/046102 PCT/US2004/024012

36

9. The data structure of claim 6 wherein the handle comprises one of a resource
handle, a context handle, and a compnode handle.

10. The data structure of claim 6 wherein the one of a resource type and a
command type comprises a resource type, the resource type including one of a memory, a
bitmap, a transform, a geometry, and a pen.

-11. The data structure of claim 10 wherein the resource type further includes an

animation type.

12. The data structure of claim 11 wherein the animation type includes one of a
doubleanimation, a coloranimation, a pointanimation, a rectanimation, and a sizeanimation.

13. The data structure of claim 6 wherein the resource type includes one of a

composition node, and a composition context.

14, The data structure of claim 6 wherein the control type includes one of a
release resource type to release a resource, a shutdown type to shutdown a device, and a
synchronize type to delete everything on the device.

15. The data structure of claim 6 wherein the control type includes one of a add
glyph bitmaps type to add bitmaps to a glyph cache, a free glyph bitmaps to remove bitmaps
from the glyph cache, and a flush queue type to flush a change queue.

16. A method to render a composition on a device comprising the steps of:
creating a composition node in response to receiving a create componsiton
node packet;
creating at least one resource for rendering the composition in response to
receiving at least one create resources packet; and
creating the composition in response to receiving at least one render update

packet.

17. The method of claim 16 further comprising the step of creating a render data

resource in response to receiving a create render data resource packet.

WO 2005/046102 PCT/US2004/024012

37

18. The method of claim 16 further comprising the step of opening a batch
process in response to receiving a batch open packet.

19. The method of claim 18 further comprising the step of processing one of at
least one create resource packet and at least one resource update packet in response to
receiving a close/commit batch packet.

20. The method of claim 16 further comprising the step of releasing a resource in
response to receiving a release command.

21. The method of claim 16 further comprising the step of sending a notification

in response to receiving a command packet.

PCT/US2004/024012

WO 2005/046102

1/9

O
LL

00}
QYYOEA ¥
i 9l [t ovT 577 v
B Y1Vd ST1N00M SWYHO0Md | IWALSAS
i] WYSO0Nd | WYH90d §3H10 | NOILVOMddY | ONILY¥3do
£9} 3SNOW
N - -
p9) AT -
(g ——— _ _ N -
MN.—\/ l NN.F f@j/ E /// \\\\
EWO N -
1) .-
MHOMEN VIV 3AM ¥ 2 - - oo - IO T LAY ol 4 SO .
S = e \:
bLin ‘ mr Y1y w !
JOVAUIINI J0V43LINI NYY90ud !
RO “TOANON AJOWIIA “TOA-NON !
_ T1VAONY JTaVAOWU-NON !
MYOMLIN Y4y Y001 | !
_ OGN
\ SNd WILSAS v r J |
1 p N |
_ GEl SWVYD0Yd !
mm«/\ﬂU “ L NOILYOI'lddY “
SUIVAAS J— EANEREIL !
EWVANEIL LINA ’ :
! TWHIHdIYAd YEL _NILSAS !
Bk vanmd 1ndIno o3ail ONISSFI08d | e | | oNiweEdo | |1
| 61 ozt N 7r_(wy)_ |
|
[T |
\ // q “ WP solg w _
| |
N e 7 oy | !
C AGOWTWIWAISAS J
~

16

WO 2005/046102

1ST CODE
SEGMENT

INTER-
FACE1

2ND CODE
SEGMENT

FIG. 2a

1ST CODE
SEGMENT

FACE1C

2ND CODE
SEGMENT

FIG. 3a

2/9

PCT/US2004/024012

1ST CODE
SEGMENT

Interface 1

Interface 12

2ND CODE
SEGMENT

FIG. 2b

1ST CODE
SEGMENT

Ma

I1b

Mc

=

/

12a

12b

12¢c

2ND CODE
SEGMENT

FIG. 3b

WO 2005/046102

1ST CODE
SEGMENT

Square(input,

meaningless, output,

additional)

2ND CODE

SEGMENT

FIG. 4a

3/9

}

Square(input, ---,
output, ---)

1ST CODE
SEGMENT

2ND CODE
SEGMENT

p—

FIG. 5a

PCT/US2004/024012

1ST CODE
SEGMENT

Interface I1'

Interface 12"

2ND CODE
SEGMENT

FIG. 4b

1ST CODE
SEGMENT

Interface 1

Interface I12A

I

Interface 12B

2ND CODE
SEGMENT

FIG. 5b

Interface 11"

WO 2005/046102 PCT/US2004/024012

4/9
15T GODE
1ST CODE SEGMENT
SEGMENT
I
o 5 -
F: 2
DI
DIVORCE 3RD CODE
INTERFACE SEGMENT
DI2
I 1 1 O
14 [Y]
el 2
22 B2 52
12a | 12b
2ND CODE
SEGMENT IND CODE
SEGMENT

FIG. 6a FIG. 6b

PCT/US2004/024012

WO 2005/046102

5/9

AN3INO3IS
34009 AdNe

JOV4H3LNI
JOUOAIQ

INTER-
FACE1

1LNINO3S
34092 1Sl

el Old

INJWO3S
3402 dNe

dI1LFHdYUILNI
[d3TIdINOD 1ir

INTER-
FACE

LININOIFS
3402 1SI

PCT/US2004/024012

WO 2005/046102

6/9

jusuodwon gNEZ

¢l | 921 | ezl

J\

=

~.

4. 9Old

OLL (ALl | Bl

LNINOJINOD 1SI

dITIdINOD LIr

ININOdINOD aNe

21 eoepa3U]

L1 @oepiayu|

LININOdWOD 1Si

WO 2005/046102 - PCT/US2004/024012

7/9
206

% 202 204
App1) 214 App2) 18
210 212 }
N A2 - r:|7°§ |
AR (] N | AN \ |

228 228

208

228
Window Manager > |

v

o
200 210 212

FIG. 8

WO 2005/046102 PCT/US2004/024012

8/9
206
X 202 204
appt) 2% appa) 219
210 i 212 i
i o N
o (Y P (Y
AN (~ N (- N
T T
228 228
208 I
228
Window Manager > |

» &

/ 7
210 212
234 —] CLIENT |
demux 2<32 Window Manager
230 cQ)/-226
DESKTOP
/g '
244
222
App 1 214 '
ca1)/ RT F————
H1XOJED
)]
242 2924
App2 216 A
cQ2 / RT |
I
RT2 ———
\/>\: /) _220
240

FIG. 9

WO 2005/046102 9/9 PCT/US2004/024012

(Start)

A 4

Create Composition
Device

'

Create a Render Target 302

'

Create Render Context —304

'

Create Composition
Node

'

Create Resources —~308

:

——300

——306

312

> » Render Composition {—310
Update

Resources
T Yes

314

Delete Delete

Composition omposition?

FIG. 10

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

