a2 United States Patent

Celi et al.

US009471302B1

US 9,471,302 B1
Oct. 18, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(1)

(52)

(58)

MANAGING UPDATES TO DIFFERENT
COMPUTER PROGRAMS

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Joseph Celi, Boca Raton, FL. (US);
Bharat B Purohit, Pune (IN)

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Assignee:

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Notice:

Appl. No.: 14/838,243

Filed: Aug. 27, 2015

Int. CL.

GO6F 9/44 (2006.01)
GO6F 9/445 (2006.01)
U.S. CL

CPC .. GOG6F 8/65 (2013.01); GOGF 8/70 (2013.01)
Field of Classification Search

CPC GOGF 8/65; GOGF 8/67, GOGF 8/68;
GOGF 8/70
USPC oo 717/168, 169

See application file for complete search history.

430

UPDATE TO
TKTWITH
DOI TO RELATED

RETRIEVE DOI

(56) References Cited

U.S. PATENT DOCUMENTS
8,805,783 B2* 82014 Muhunthan GO6F 17/30575
707/626

5/2007 Anderson HO4L 41/5074
709/223

2011/0295796 Al1* 12/2011 Muhunthan GO6F 17/30575
707/610

9/2014 Buerk ... GO06Q 10/06316
707/611

2007/0112947 Al1*

2014/0279878 Al*

* cited by examiner

Primary Examiner — Anna Deng
(74) Attorney, Agent, or Firm — Kevin Jordan

(57) ABSTRACT

Data updates to a record created under a computer program
that involve data values of interest to a different record
created under a different computer program can be managed
by computing an initial value based on the application of a
function (such as a hash or checksum function) to identified
data values of interest. A poll can be periodically performed
to identify data updates. If an updated record is identified, a
current value is computed based on the application of the
function to the data values of interest associated with the
updated record. The initial value is compared to the current
value. If the values are determined to be different, the
changes to the updated record are determined to involve
changes to the data values of interest and the data values of
interest are then transmitted to the different record.

18 Claims, 5 Drawing Sheets

TKT

440

| GEN DOI CURRENT VAL |— 450

480

RELATED

SENDDOITO | I'UpDATE DOI VALUE |— 470

TKT

U.S. Patent Oct. 18, 2016 Sheet 1 of 5 US 9,471,302 B1

/ 199

\ Servers 110nx
1101x | 1101S...110nS
/‘
|| Tkt Apps.
| 1101..110n | || 1
Ticket Ticket
11011 N\ 110n1 ||
— APIs !
110117V |
= F 1201..120n |~
Tt NS

yJ*—L Drivers
Data of 1051 ... 105n
Interest I
1 21011 |H
- U TIS 100S
\‘/////“ 101

Tkt Synch 102
A EN

21011TV

FIGURE 1

U.S. Patent Oct. 18, 2016 Sheet 2 of 5 US 9,471,302 B1

TICKET 11011
PrblD = OSS983 — 110009

TktOwner = J DOE — 110110

TktD = 11011 (— 110171
TktAppName = 1101 — 110112
TktSysName = 1101S — 110113
TktSev = 3 — 110114
TktStat= OPEN ~ — 110115
RmTkt = YES |~ 110116

RmTKtD = 110m1 |~ 110117

110118

RmTktAppName= 110n

RmTktSysName = 110nS 110119

DOlLastVal = 132CBA459D — 1M01MTV

FIGURE 2A

U.S. Patent Oct. 18, 2016 Sheet 3 of 5 US 9,471,302 B1

110114
TktSev =3 |
DATA
OF 110110 EN [N
INTEREST RO \
tOwner =
21011 —
JDOE |=
TktStat = | =)
OPEN
— |
110115 U4
DOlLastVal =
132CBA459D
11011TV

FIGURE 2B

U.S. Patent Oct. 18, 2016 Sheet 4 of 5 US 9,471,302 B1

110114
TktSev =3 | =
DATA
OF 110110 EN 0N
INTEREST
TktOwner =
21011 — JDOE |&
TktStat = |—
CLOSED
- 110115 N
DOlcurrenttval =
289DFE45B7
21011TV

FIGURE 3

U.S. Patent

Oct. 18, 2016

Sheet 5 of 5 US 9,471,302 B1

POLL — 410

A

430
UPDATE TO — 420
TKT WITH
WA DOI TO RELATED
4 TKT
RETRIEVE DOI |— 440
A4
GEN DOI CURRENT VAL — 490
— 460
480
SEND DOI TO
RELATED _—1 UPDATE DOI VALUE —— 470
TKT

FIGURE 4

US 9,471,302 Bl

1
MANAGING UPDATES TO DIFFERENT
COMPUTER PROGRAMS

BACKGROUND

The invention relates to the management of data updates
to different computer programs and, more specifically, to a
computer-implemented method, computer program product
and computer system for determining whether a data update
to a record created under one computer program involves
data of interest to a record created under a different computer
program.

Help-desk systems often apply multiple—typically
increasing—Ilevels of expertise to resolve problems encoun-
tered by users of computer systems. For example, a “level-
1” ticket may be created under one problem ticketing
application, whereas another “level-2” ticket, which is
related to some aspect of the same problem, may be created
under a different problem ticketing application.

In many cases, one system or a subsystem thereof may be
configured to manage and coordinate multiple problem
ticketing applications and underlying problem tickets across
an enterprise. It is not unusual for a single ticket integration
system to manage twenty or thirty problem ticketing appli-
cations (many of which can be different applications) at any
given time.

SUMMARY

A computer-implemented method embodying the present
invention for managing one or more data updates to different
computer programs computes an initial value based on the
application of a function to data values contained in an
identified subset of data fields associated with a record
created under a first computer program, where such data
values are of interest to another record created under a
different computer program. The initial value generated is
representative of the data values of interest and is stored in
a memory associated with the record. In some embodiments,
the function is a checksum function and the value generated
by the application thereof is a checksum. The computer
programs are monitored for data updates and a record is
identified as an updated record containing said data updates.
In some embodiments, the monitoring is performed at pre-
defined time intervals. A current value, which is represen-
tative of the data values associated with an identified
updated record, is computed based on the application of the
aforementioned function to the data values of interest asso-
ciated with the updated record. The current value is com-
pared to the initial value. If it is determined that the current
value and the initial value are not equal, the initial value
stored in the memory associated with the record is over-
written with the current value and stored in the memory
associated with the record and the data values of interest
associated with the updated record are communicated to said
another record created under the different computer pro-
gram.

In some embodiments, the data values of interest associ-
ated with the updated record are communicated over a
network to another record. In some embodiments, a central-
ized computer program manager coordinates the computer-
implemented method. In some embodiments, the centralized
computer program manager is a problem ticketing applica-
tion manager, the computer program is a problem ticketing
application, the different computer program is a different
problem ticketing application, the record is a problem ticket
created under the problem ticketing application and said

20

25

30

35

40

45

50

55

60

65

2

another record is different problem ticket created under the
different problem ticketing application.

Other embodiments of the present invention are disclosed
herein, including system and computer program product
embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example of a computer system in
accordance with the present invention.

FIG. 2A illustrates a further example of a problem ticket
depicted in FIG. 1

FIG. 2B illustrates an example of the generation of the
initial value 11011TV depicted in FIG. 1.

FIG. 3 illustrates an example of the generation of the
current value 21011TV depicted in FIG. 1.

FIG. 4 illustrates an example of a computer-implemented
process in accordance with the present invention.

DETAILED DESCRIPTION

By way of introduction, the following description will
show various aspects, examples and embodiments of the
present invention for managing data updates to related
records created under different computer applications. Con-
ventional devices, components, techniques and other opera-
tional and individual components thereof, understood by one
of ordinary skill in the art, may not be described in detail
herein. Specifics are in many cases provided merely for ease
of explanation and/or understanding the various aspects,
examples and embodiments and possible variations thereof.
Unless explicitly stated otherwise, references to terms herein
are provided as descriptive expedients and should not be
construed as a requirement for any particular implementa-
tion or physical embodiment. Moreover, aspects of the
present invention are applicable to a variety of computer
hardware and software configurations.

The term “network™ as used herein, includes without
limitation, any collection of nodes (terminal and any inter-
mediate nodes) connected by transmission links so as to
enable communications between nodes. By way of example
only, such networks include but are not limited to telecom-
munications networks, computer networks (linking comput-
ers and other devices), the Internet (a network of networks
linking computers worldwide) and telephone networks.
Unless explicitly stated otherwise herein, all networks/nodes
use conventional, publicly available protocols or messaging
services to communicate with each other.

As is known, a network architecture can be considered a
framework for the specification of the organization, con-
figuration, and operational principles/procedures of its net-
work components. The architecture of the Internet, however,
is sometimes (somewhat differently or loosely) character-
ized by its network components’ use of the Internet Protocol
(IP) suite. By way of example only, embodiments of the
present invention on the Internet can use conventional
TCP/IP protocols to provide message control and routing
across the network. A few specific examples of network
architectures in accordance with the present invention
include, without limitation, client-server architectures and
peer-to-peer (P2P) architectures and combinations/varia-
tions thereof. By way of further example only, and without
limitation: in a client-server architecture, a computer may
operate as a server and/or a client device, or as a peer device
in a peer-to-peer architecture; and an enterprise service bus
(“ESB”) architecture (a variant of a client-server architec-
ture), employs a publish/subscribe model to which one or

US 9,471,302 Bl

3

more client applications can subscribe. In an ESB architec-
ture, if an application subscribes to the ESB, content gen-
erated or updated by a subscribing application will be
published to the ESB and accessible to subscribing appli-
cations.

As is known, a computer and/or computer program/
application may, and often does, comprise a plurality of
computer units, including, without limitation, combinations
of subsystems, nodes, devices, subroutines, modules, opera-
tions, methods and procedures. In some embodiments, one
or more aspects of the present invention may be distributed
among a plurality of computers, nodes, processors and/or
computer programs/applications. Examples of distributed
computing (sometimes referred to as parallel computing)
configurations include, but are not limited to a network,
cluster, farm, group, grid or cloud of computers that perform
collectively through one or more local, remote, wired and/or
wireless connections, configurations and combinations
thereof. However, merely for ease of understanding, some
embodiments of the present invention are more easily under-
stood as part of a client-server architecture on the Internet.
By way of example only, a computer server in accordance
with the present invention can include a centralized com-
puter program manager, which is configured/adapted to
implement various aspects of the present invention.

The terms “computer hardware” or “hardware,” as used
herein, refers to any machine, device or apparatus that is
capable of accepting, performing logic operations on, stor-
ing or displaying data, including, without limitation, pro-
cessors, logic and memory. The terms “computer,”
“machine,” “device,” “system,” “server, “client,” “node”
and combinations and/or variations thereof as used herein,
include without limitation, any combination of one or more
of hardware, software and firmware useful to perform an
operation. The term “processor(s)” as used herein include,
without limitation, one or a combination of general or
special purpose processors, micCroprocessors, Co-processors,
graphics processors, and digital signal processors, which
along with other hardware, memory and software/firmware,
e.g., as part of a system, perform the operations described
herein. The terms “computer software,” “software,” “firm-
ware,” “computer program,” “program,” “computer appli-
” “application” and the like, as used herein, refer to

2 <

cation,
any set of computer readable instructions (and any related
data) operable to cause a computer to perform an operation,
including without limitation, create, access, perform logic
operations on, store, or display data. The term “logic” as
used herein includes but is not limited to hardware, elec-
tronic circuitry, software/firmware embedded within proces-
sor(s) or other devices configurable to perform certain
operations.

The term “memory,” as used herein, includes without
limitation any centralized, shared or distributed computer-
readable (volatile or persistent) storage medium/media in
which a computer can store data or software for any dura-
tion. A few specific examples of memory include, without
limitation: a magnetic disk; an optical disk; an electrical
circuit; a random-access memory (RAM); a read-only
memory (ROM); an erasable programmable read-only
memory (EPROM); a memory stick; a buffer, flash or cache
memory; a centralized or distributed data store; server
storage; or any suitable combination of the foregoing. The
term “computer program product” as used herein, includes,
without limitation, any combination of memory with stored
software for causing a processor to perform certain opera-
tions.

20

25

30

35

40

45

50

55

60

65

4

The term “different” as used herein with regard to com-
puter programs, includes without limitation, a record created
under a computer program, where one or more of the
interfaces to, formats, data fields and/or internal operations
thereof, are not the same as those of another record created
under another computer program. By way of example only,
a non-exhaustive list of different problem ticketing applica-
tions includes, without limitation: the Parature CRM (Cus-
tomer Relationship Management) software application,
available from Microsoft Corporation; and the Bugzilla
software application, available from the Mozilla Founda-
tion. Problem ticket applications are sometimes referred to
as or can be a part of customer relationship management
(CRM), problem reporting, help-desk, service-desk, issue
tracking or bug tracking applications.

The term “related,” as used herein with regard to records
created under computer programs includes, without limita-
tion, records that involve some common data such that
certain changes/updates to information associated with a
record are data of interest to another record.

In some embodiments of the present invention, a com-
puter system/server is referred to as a ticket integration
server and a centralized computer program manager is
referred to as a problem ticket application manager or ticket
synch manager. The centralized computer program manager
can be configured/adapted, in accordance with some
embodiments of the present invention, to manage updates to
records created under managed computer programs, such as
by facilitating coordination and communication of data
updates to problem tickets created under different problem
ticket applications.

The term “function” as used herein with regard to func-
tion FN (FIG. 1), refers to a function that when applied to
data (sometimes referred to as a message), generates a
computed value representative of the data. In some embodi-
ments (discussed in more detail below), function FN refers
to a checksum function. A non-exhaustive list of such
checksum functions includes, without limitation: a modular
sum function, a position-dependent checksum or one of the
n-bit CRC family of cyclic redundancy check (“CRC”)
functions. In some embodiments, the data to which the
function FN is applied refers to data contained in a subset of
the data fields of a record created under one computer
program, where such data is identified as data of interest
(sometimes referred to as DOI) to a related record created
under a different computer program. Although a checksum
function is described with reference to some examples
herein, any function suitable to compute values representa-
tive of data of interest can be adapted and used. A non-
exhaustive list of such functions include, without limitation:
hash functions, such as hash tables and trivial hash func-
tions; message digest (“MD”) algorithms such as “MD5”;
cryptographic hash functions such as the well-known secure
hash algorithm (“SHA”) family of cryptographic hash func-
tions; and cryptographic authentication mechanisms, which
employ message authentic codes (MACs) or digital signa-
tures, if authentication is desired.

The term “computed value” as used herein refers to the
results of the application of function FN (FIG. 1) to DOIL. By
way of overview and without limitation, a computed value
that is generated after updates to a problem ticket have been
generally identified is sometimes referred to as a current
value or a DOlcurrentVal (see e.g., FIG. 3, 21011TV),
whereas a computed value that is generated prior to such
general identification of updates, it may be referred to as an
initial value, a recently computed value or a DOILastVal
(see e.g., FIG. 2A, 11011TV). Similarly, problem ticket

US 9,471,302 Bl

5

11071 can include a data field (not depicted) for storing a
computed value that represents DOI to a related problem
ticket (not depicted).

Although some embodiments of the present invention are
described in the context of different problem ticketing
applications, the present invention should not be construed
as so limited. Rather, the present invention is to be under-
stood as generally applicable to the management of data
updates to a record created using a first computer program
that involve data of interest to related record created using
a different computer program.

With reference now to FIG. 1, a computer system embodi-
ment of the present invention in a client-server architecture
is depicted. In this example, network 199 is the Internet, the
components of which are communicatively coupled through
network 199 and (individually or collectively) may be
configured/adapted to perform one or more features, opera-
tions or methods of the present invention. As depicted,
computer servers 1101S . . . 110xS are executing problem
ticketing applications 1101 . . . 110%. As is known, each
problem ticketing application manages the lifecycle of prob-
lem tickets created under the application. For example,
problem ticketing application 1101 manages problem tickets
11011 . . . 1101x and problem ticketing application 110r
manages problem tickets 110721 . . . 1101zx. Also as is
known, problem tickets can be retained in a conventional
persistent, read-write capable data store (not depicted) and
are accessible through clients (not depicted) by assigned
help-desk support personnel.

Referring again to FIG. 1, Ticket integration system/
server (“TIS”) 100S includes memory 101 in which com-
puter executable program code and data can be stored for
execution on TIS 100S. TIS 100S is communicatively
coupled through respective TIS Drivers 1051 . . . 105z and

APIs 1201 . . . 120» to servers 1101S . . . 110%S. The
ticketing applications 1101 . . . 110» are executing on the
respective servers 1101S . . . 110#S. As is known, drivers

(1051 . . . 105n) are generally responsible for managing
communications between TIS 1008 and the respective prob-
lem ticketing applications 1101 . . . 110 via respective APls
1201 . . . 120%. A few examples, without limitation, of such
APIs are a REST API and a client-server Java API.

As depicted, ticket synch 102 computer program/problem
ticket application manager and function FN reside in
memory 101. Function FN is communicatively coupled to
ticket synch 102 manager. Ticket synch 102 manager pro-
vides a conventional centralized management of problem
tickets 11011 . . . 1101x and 11071 . . . 110xx, including
management of data updates to the problem tickets created
under problem ticketing applications 1101 . . . 110#. As is
known, problem tickets 11011 . . . 1101x and 11071 . . .
1107x can contain many data fields. In this example, two of
the problem ticketing applications 1101 and 110z are dif-
ferent problem ticketing applications and problem ticket
11011 (created under problem ticketing application 1101) is
related to problem ticket 11071 (created under problem
ticketing application 1107). Also in this example, data
contained in data of interest data fields 21011 (also referred
to as “DOI”) refers to data contained in a subset of the data
fields associated with problem ticket 11011 that is DOI to
related problem ticket 11071.

Also as depicted, problem ticket 11011 includes data field
11011TV, and memory 101 includes data field 21011TV. As
will be discussed in more detail in the examples below, each
of data fields 11011TV and 21011TV can be adapted for
storing a computed value generated by the application of
function FN to DOI 21011 to related problem ticket 11071.

20

25

30

35

40

45

50

55

60

65

6

By way of example only, with reference again to FIG. 1,
and without limitation, we will assume that: a lowest sever-
ity (“severity 3”) problem ticket 11011 is initially opened
(status="OPEN") by “level-1" help desk support personnel
(not depicted) using problem ticket application 1101; the
severity of the underlying problem is subsequently increased
to “severity 27; and another, related problem ticket 11071 is
opened (status=“OPEN”) under different problem ticket
application 110z for handling by “level-2” help desk support
personnel. In this example, we will assume that an update to
problem ticket 11011 is subsequently detected and ticket
synch 102 manager retrieves the DOI from updated ticket
11011 and applies function FN to the retrieved DOI to
generate a current value, which is representative of the
retrieved DOI. The current value can be stored in data field
21011TV and subsequently compared to the initial value
stored in data field 11011TV. We will also assume that the
change (such as a status change) is DOI to the related
problem ticket, in which case: the computed values (the
current value and the initial value) will not be equal; the
updated problem ticket 11011 can be considered as involv-
ing DOI to the related problem ticket 110#1; and the DOI
can be communicated for incorporation or reference in the
related problem ticket 1107 1.

Thus, some aspects of the present invention can increase
overall system throughput by identifying updates to data of
interest—without having to store persistent copies of and
run a full comparison of data created under a computer
program with a prior version of data created under the same
computer program. Some aspects of the present invention
can also reduce unnecessary network/system traffic by first
identifying whether data updates involve data that is of
interest to related material created under a different com-
puter program, before initiating such traffic.

FIG. 2A illustrates an example of problem ticket 11011
depicted in FIG. 1. By way of overview: exemplary problem
ticket data fields 110009 . . . 110115 contain data applicable
to problem ticket 11011; exemplary problem ticket data
fields 110116 . . . 110119 contain data applicable to a related
problem ticket created under a different problem ticketing
application; and data field 11011TV contains a computed
value, which is generated by the application of function FN
(FIGS. 1, 2B) to a subset of the problem ticket data fields
110116 . . . 110119 identified as containing data of interest
21011 (FIGS. 1, 2B). The computed value is representative
of data that is data of interest 21011 to a related problem
ticket. As depicted in FIG. 2A, exemplary problem ticket
data fields 110009 . . . 110115 applicable to problem ticket
11011 include: a problem identifier data field 110009 for
storing data (. . .) identifying the problem (PrbID=. . .) that
is the subject of this support request; a problem ticket owner
identifier data field 110110 for storing data (. . .) identifying
the creator (TktOwner= . . .) of this problem ticket; ticket
identifier field 110111, for storing data (. . .) identifying this
problem ticket (TktID= . . .); ticket application identifier
110112 for storing data (. . .) identifying the ticketing
application (TktAppName= . . .) associated with this
problem ticket; problem ticket system name data field
110113 for storing data (. . .) identifying a server (TktSys-
Name= . . .) associated with the ticketing application
identified in ticket application identifier 110112; a problem
ticket severity data field 110114 for storing data (. . .)
identifying a severity level (TktSev=. . .) associated with
this problem ticket; and a problem ticket status data field
110115 for storing data (. . .) identifying the status
(TktStat= . . .) of this problem ticket. The problem ticket
data fields depicted as applicable in this example to a related

US 9,471,302 Bl

7
ticket include: a related ticket indicator data field 110116 for
storing data (. . .) indicative of whether or not there are

related problem ticket(s) (RmTkt=. . .) associated with this
problem ticket; a related ticket identifier data filed 110117
for storing data (. . .) identifying a related problem ticket
(RmTktID=. . .); a related ticket application name data field
110118 for storing data (. . .) identifying a related problem
ticketing application (RmtTktAppName= . . .); a remote
ticket system name data field 110119 for storing data
(. . .) identifying a server (RmTktSysName= . . .)
associated with an identified related problem ticket applica-
tion 110118. The exemplary data fields also include data
field 11011 TV, for storing data (. . .) representative of data
of interest 21011 (DOILastVal=. . .) to a related problem
ticket. Such representative data is sometimes referred to
herein as a computed value, an initial value or a recently
computed value. As will be discussed in more detail with
reference to FIG. 2B, the computed value can be generated
by the application of function FN to data of interest 21011
to a related problem ticket identified in related ticket iden-
tifier data field 110117.

FIG. 2B illustrates an example of the generation of a
computed value associated with a problem ticket and is
representative of data of interest to a related problem ticket.
As depicted, data of interest data fields 21011 include
problem ticket severity data field 110114 (depicted as con-
taining a value of “3”), problem ticket owner identifier data
field 110110 (depicted as containing a value of “J DOE”) and
problem ticket status data field 110115 (depicted as contain-
ing a value of “OPEN”). In this example, such data of
interest data fields 21011 collectively correspond to a subset
of'the data fields 110116 . . . 110119 in problem ticket 11011
(FIG. 2A) that have been identified as containing DOI to a
related problem ticket, such as is depicted as contained in
data field 110117 (FIG. 2A,). With reference again to the
example depicted in FIG. 2B, function FN (here, a checksum
function) can be applied to the aforementioned data con-
tained in the data of interest data fields 110114, 110110 and
110115. The checksum function generates a checksum value
(referred to in this example as an initial value), depicted as
contained in data field 11011TV (DOILastVal=. . .) that is
representative of the collective data of interest depicted as
contained in the data of interest data fields 110114, 110110
and 110115.

FIG. 3 illustrates another example of the generation of a
computed value associated with data contained in a subset of
data fields in a problem ticket. In this example, the computed
value is representative of such data in an updated problem
ticket and will be referred to as a current value. With
reference to FIG. 3, data of interest data fields 21011
include: problem ticket severity data field 110114, depicted
as containing a data value of “3”; problem ticket owner
identifier data field 110110, depicted as containing a data
value of “J DOE”); and problem ticket status data field
110115, depicted as containing a data value of “CLOSED”).
Note that (in contrast to the example described with refer-
ence to FIG. 2A), the data value depicted as contained in
ticket status data field 110115 of FIG. 3, indicates that
problem ticket 11011 is now “CLOSED.” With reference
again to FIG. 3, function FN (the same checksum function
described with reference to the example of FIG. 2B) is
applied to the (now changed) data contained in the afore-
mentioned DOI data fields 110114, 110110, and 110115. The
application of the checksum function to the data contained
in DOI data fields results in the generation of a current value

20

25

30

35

40

45

50

55

60

65

8

(in this case a checksum) that is representative of the data.
The current value is then stored in data field 21011TV as
DOlcurrentVal=

FIG. 4 depicts an example of a computer-implemented
process in accordance with the present invention. By way of
introduction (with reference to FIG. 2A), we will assume
that for purposes of this example: a problem ticket 11011 is
initially opened on problem ticket application 1101 with
severity of “3” as indicated in problem ticket severity data
field 110114. We will also assume (with reference to FIG.
2A) that: the support group (not depicted) assigned to
resolve such “severity 3” tickets has exhausted its available
solutions and has determined that resolution of the under-
lying problem (indicated by the data value “OSS983”
depicted as contained in problem identifier data field 110009
should be escalated to a higher “severity 2” status, which is
handled by another support group. We will further assume
for purposes of this example that that the “severity 2”
support group uses a different problem ticket application
“110%” (as depicted data field 11018) and that related
problem ticket “11071” (as depicted in data field 11018) has
been opened with a severity status of “2” (not depicted). We
will assume for purposes of this example that: data associ-
ated with related problem ticket 11071 has been entered in
data fields 110116 . . . 110119 (FIG. 2A) of problem ticket
11011; a subset of data field(s) in problem ticket 11011 (FIG.
2A) have been identified as containing data of interest 21011
(FIG. 1) to related problem ticket 110%1 have been popu-
lated (as depicted in data fields 110114, 110110 and 10115
(FIG. 2B); and function FN (a checksum function) has been
applied to such data of interest to generate an initial value (as
depicted in data field 11011TV).

Referring now to FIG. 4, the process begins at step 400
and proceeds to step 410. In step 410, ticket synch 102
problem ticket application manager initiates a conventional
periodic poll/query of the problem ticketing applications
1101 ... 110x (FIG. 1) under its management to identify e.g.,
via time stamps (not depicted) whether any record(s) asso-
ciated with the corresponding underlying problem tickets
(e.g., problem tickets 11011 . . . 1101x, created under
problem ticketing application 1101) has changed since the
previous poll. Upon completion of the poll, the process
proceeds to step 420.

In step 420, if the query results indicate that no updates
have been made since the previous poll/query was per-
formed, the process proceeds to step 430. In some embodi-
ments, the poll/query results can indicate more specifically
that no updates to data of interest have been made since the
previous poll/query was performed. By way of example
only, with reference to FIG. 2A, related ticket indicator data
field 110116 containing a value other than “YES” can be
used to indicate that there is no related problem ticket and
thus there can be no data values of interest, in which case the
process proceeds to step 430.

In step 430, the poll/query enters a wait state, until the
expiration of a predefined time interval, at which time the
process returns to step 410. We will assume that prior to the
expiration of the aforementioned time interval, the ticket
status data field 110115 of problem ticket 11011 (depicted in
data field 110115, FIG. 2B as “OPEN”) has been changed to
a “CLOSED” status (as depicted in data field 110115, FIG.
3). The predefined wait time interval subsequently expires
and the process returns to step 410.

In step 410 (as noted above), problem ticketing applica-
tions 1101 . . . 110% are again polled/queried to determine
e.g., whether any data updates have occurred since the
previous poll and the process again proceeds to step 420.

US 9,471,302 Bl

9

In step 420, because of the aforementioned change in the
status of problem ticket 11011 during the wait state dis-
cussed above with reference to step 430, the poll/query
results now indicate that problem ticket 11011 has changed
since the previous query was performed. In this example,
updated problem ticket 11011 can be retrieved and informa-
tion contained in data fields 110116 . . . 110119 (FIG. 2A) are
examined to determine whether or not there is another
problem ticket that is related to updated problem ticket
11011. For example, data fields (with reference to FIG. 2A)
can be examined to identify: the existence of a related
problem ticket, as indicated by the data value “YES”
depicted as contained in the related ticket indicator data field
110116; the identifier of a related problem ticket, as indi-
cated by the data value “110721” depicted as contained in
related ticket identifier data field 110117; the name of a
related ticket application, as indicated by the value “1107”
depicted as contained in data field 110118; and the name of
a related ticket system, as indicated by the value “1107S”
depicted as contained in data field 110119.

It should be understood that many variations of the
foregoing example could be implemented within the spirit
and scope of the invention. By way of example only, the
related ticket indicator data field 110116 could be eliminated
and replaced by an examination of the contents of the related
ticket identifier data field 110117; and/or both fields retained
and a different, predefined value used in data field 110117 to
trigger alternative processing (not depicted) in addition to or
in parallel with the inventive process. A non-exhaustive list
of triggers for such alternative processing are that the other
problem ticketing application is related (as indicated by the
data value “Yes” depicted in data field 110116), but it is
otherwise determined that (a) the related problem ticketing
application is not different; or (b) the related problem
ticketing application is different but is not updateable under
the inventive process. With reference again to FIG. 4, the
process proceeds from step 430 to step 440.

In step 440, ticket synch application 102 (FIG. 1) retrieves
additional data associated with updated problem ticket
11011. Recall that in step 420, problem ticket 11011 was
identified as an updated problem ticket (without specifics)
via the poll/query performed in step 410. With reference
now to step 440, the retrieved data includes the data values
contained in DOI data fields 21011 (FIG. 3) of the updated
problem ticket. As noted above, the retrieved data is also
data of interest to related problem ticket 110%1. The process
then proceeds to step 450.

In step 450, ticket synch application 102 (FIG. 1) applies
the checksum function FN to the retrieved (in step 440) data
of interest contained in DOI data fields 21011 (FIG. 3) of the
updated problem ticket. The application in this step 450 of
checksum function FN results in the generation of a current
value, which is representative of the data of interest con-
tained in DOI data fields 21011 (FIG. 3) of the updated
problem ticket. The current value is depicted as contained in
data field 21011TV (FIG. 3). The checksum function FN
applied in this step 450, is the same checksum function
previously described as applied to generate the initial value-
depicted in data field 11011TV (FIG. 2B). The process then
proceeds to step 460.

In step 460, ticket synch 102 problem ticket application
manager (FIG. 1) compares the initial value contained data
field 11011TV of problem ticket 11011 (FIG. 2A) with the
current value of the data of interest (computed in step 450)
contained in data field 21011TV (FIG. 3) associated with
updated problem ticket 11011.

20

25

30

35

40

45

50

55

60

65

10

If the results of the comparison indicate that the computed
values are equal (i.e., not changed), the updates identified in
step 420 to problem ticket 11011 are determined as not
involving data of interest to related problem ticket 11071
and process returns to step 430. If however, as in this
example, the results of the comparison indicate that the
computed values are not equal (i.e., have changed), the
updates identified in step 420 to problem ticket 11011 are
determined as involving data of interest to related problem
ticket 11071 and the process then proceeds to step 470.

In step 470, the current value (computed in step 450),
depicted as contained in data field 21011TV (FIG. 3) of
updated problem ticket 11011, overwrites (replaces) the
initial value depicted as contained in data field 11011TV of
problem ticket 11011 (FIG. 2A). As a result of the overwrite
by the current value, the data contained in data field
11011TV of problem ticket 11011 again represents a most
recently computed value of the data of interest 21011 to
related problem ticket 11071. The process then proceeds to
step 480.

In step 480, ticket synch 102 problem ticket application
manager confirms that the problem ticket updates identified
in step 420 can be transmitted to remote ticket application
1107 via corresponding remote server 110%S (identified in
respective data fields 110118 and 110119 of FIG. 2A) for
mapping to the corresponding fields of related problem
ticket 11071 (identified in RmTktID data field 110117, FIG.
2A). In some embodiments, only the retrieved (in step 440)
data of interest is transmitted. In either case, the mapping
can be performed after transmission, by conventional field
mapping components (driven by XML files)—not depicted,
to facilitate the corresponding ticketing system drivers’
(1051 . . . 1057) ability to work with the problem data/fields
in the applicable native driver format.

Thus, some embodiments of the present invention can
improve system throughput by coordinating data updates to
records created under different applications without having
to do a full comparison of all data fields in a problem ticket
to identify what data has changed. Some embodiments of the
present invention can also reduce unnecessary network
traffic by determining—before communicating the data
updates—that a particular data update contains DOI to a
record created under one or more such different applications.

Embodiments of the present invention may be a system,
a method, and/or a computer program product. The com-
puter program product may include a computer readable
storage medium (or media) having computer readable pro-
gram instructions thereon for causing a processor to carry
out aspects of the present invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-

US 9,471,302 Bl

11

going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

Some aspects, examples and/or embodiments of the pres-
ent invention are described herein with reference to flow-
chart illustrations and/or block diagrams of methods, appa-
ratus (systems), and computer program products. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the operations/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a

20

25

30

35

40

45

50

55

60

65

12

computer, a programmable data processing apparatus, and/
or other devices to operate in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the operation/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer-imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the operations/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal operation(s). In some alternative implementations, the
operations noted in the block may occur out of the order
noted in the figures. For example, two blocks shown in
succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified operations or acts or carry out
combinations of special purpose hardware and computer
instructions.

The descriptions of the various embodiments of the
present invention have illustrated examples of architecture,
functionality, and the operation of various embodiments of
devices, methods, and computer program products. In this
regard, each block in the flowchart or block diagrams may
represent a module, segment, or portion of computer execut-
able instructions for implementing the corresponding logical
operation(s). It is understood that the operations noted in a
given block (or step) may occur in a different order from the
examples described in the Detailed Description and Draw-
ings. For example, two blocks shown in succession may, in
fact, be executed substantially concurrently (and vice versa),
or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It is also
understood that a block (and/or combination of blocks) of
the block diagrams and/or flowcharts can be implemented by
special purpose hardware-based systems and/or combina-
tions of such hardware with computer instructions that
perform the specified operations or process steps.

The descriptions of the various aspects, examples and
embodiments of the present invention are not intended to be
exhaustive or limited to that disclosed. Many modifications
and variations will be apparent to those of ordinary skill in
the art without departing from the scope and spirit of such
descriptions. The terminology used herein was chosen to
best explain the principles of the aspects, examples and
embodiments, the practical application or technical
improvement over technologies found in the marketplace, or
to enable others of ordinary skill in the art to understand the
aspects, examples and embodiments disclosed.

US 9,471,302 Bl

13

What is claimed is:
1. A computer-implemented method for managing one or
more data updates to computer programs, said computer-
implemented method comprising:
identifying a subset of data fields associated with a record
created under a first computer program that contain
data values of interest to another record created under
a different computer program;

computing an initial value based on an application of a
function to said data values of interest, wherein said
initial value is representative of said data values of
interest and storing the initial value in a memory
associated with said record;
monitoring said computer programs for said one or more
data updates and identifying said record as an updated
record containing said one or more data updates;

computing a current value based on the application of the
function to said data values of interest associated with
said updated record, wherein said current value is
representative of said data values of interest associated
with said updated record;

comparing the current value with the initial value and

determining that the current value and the initial value
are not equal;

storing the current value as the initial value in said

memory associated with said record, in response to said
determining that the current value and the initial value
are not equal; and

communicating said data values of interest associated

with said updated record to said another record, in
response to said determining that the current value and
the initial value are not equal.

2. The computer-implemented method of claim 1,
wherein said communicating said data values of interest
associated with said updated record to said another record,
further comprises communicating said data values of interest
associated with said updated record over a network to said
another record, in response to said determining that the
current value and the initial value are not equal.

3. The computer-implemented method of claim 1, further
comprising: providing a centralized computer program man-
ager, wherein said computer-implemented method is per-
formed by the centralized computer program manager.

4. The computer-implemented method of claim 3,
wherein the centralized computer program manager is a
problem ticketing application manager, the computer pro-
gram is a problem ticketing application, the different com-
puter program is a different problem ticketing application,
said record is a problem ticket created under the problem
ticketing application, and said another record is a another
problem ticket created under the different problem ticketing
application.

5. The computer-implemented method of claim 1,
wherein said monitoring said computer programs for said
one or more data updates further comprises monitoring said
computer programs for said one or more data updates at
predefined time intervals.

6. The computer-implemented method of claim 1,
wherein the function is a checksum function.

7. A computer program product for managing one or more
data updates to computer programs, the computer program
product comprising a computer-readable storage medium
having program code embodied therewith, wherein the com-
puter readable storage medium is not a transitory signal per
se, the program code executable by at least one processor to
cause the electronic device to perform a computer-imple-
mented method comprising:

20

25

30

35

40

45

50

55

60

65

14

identifying a subset of data fields associated with a record
created under a first computer program that contain
data values of interest to another record created under
a different computer program;

computing an initial value based on an application of a
function to said data values of interest, wherein said
initial value is representative of said data values of
interest and storing the initial value in a memory
associated with said record;

monitoring said computer programs for said one or more
data updates and identifying said record as an updated
record containing said one or more data updates;

computing a current value based on the application of the
function to said data values of interest associated with
said updated record, wherein said current value is
representative of said data values of interest associated
with said updated record;

comparing the current value with the initial value and
determining that the current value and the initial value
are not equal;

storing the current value as the initial value in said
memory associated with said record, in response to said
determining that the current value and the initial value
are not equal; and

communicating said data values of interest associated
with said updated record to said another record, in
response to said determining that the current value and
the initial value are not equal.

8. The computer program product of claim 7, wherein said
communicating said data values of interest associated with
said updated record to said another record further comprises,
communicating said data values of interest associated with
said updated record over a network to said another record,
in response to sad determining that the current value and the
initial value are not equal.

9. The computer program product of claim 7, further
comprising:

providing a centralized computer program manager,
wherein said computer-implemented method is per-
formed by the centralized computer program manager.

10. The computer program product of claim 9, wherein
the centralized computer program manager is a problem
ticketing application manager; the computer program is a
problem ticketing application, the different computer pro-
gram is a different problem ticketing application, sad record
is a problem ticket created under the problem ticketing
application, and said another record is a another problem
ticket created under the different problem ticketing applica-
tion.

11. The computer program product of claim 7, wherein
said monitoring said computer programs for said one or
more data updates further comprises monitoring said com-
puter programs for said one or more data updates at pre-
defined time intervals.

12. The computer program product of claim 7, wherein
the function is a checksum function.

13. A computer system for managing one or more data
updates to computer programs, wherein a subset of data
fields associated with a record created under a computer
program are identified as containing data values of interest
to another record created under a different computer pro-
gram, said computer system comprising:

at least one processor;

a memory coupled to the processor, said memory storing
computer program code executable on the processor to
cause the computer system to perform a computer-
implemented method comprising:

US 9,471,302 Bl

15

computing an initial value based on an application of a
function to said data values of interest, wherein said
initial value is representative of said data values of
interest and storing said initial value in a data field
associated with said record;

monitoring said computer programs for said one or more
data updates and identifying said record as an updated
record containing said one or more data updates;

computing a current value based on the application of the
function to said data values of interest associated with
said updated record, wherein said current value is
representative of said data values of interest associated
with said updated record;

comparing the current value to the initial value and
determining that the current value and the initial value
are not equal;

storing the current value as the initial value in said
memory associated with said record, in response to said
determining that the current value and the initial value
are not equal; and

communicating said data values of interest associated
with said updated record to said another record, in
response to said determining that the current value and
the initial value are not equal.

14. The computer system of claim 13, wherein said

communicating said data values of interest associated with

20

16

said updated record to said another record further comprises,
communicating said data values of interest associated with
said updated record over a network to said another record,
in response to said determining that the current value and the
initial value are not equal.

15. The computer system of claim 13, further comprising
a centralized computer program manager coupled to the
computer program and the different computer program,
wherein said computer program manager is configured to
perform said computer-implemented method.

16. The computer system of claim 15, wherein the cen-
tralized computer program manager is a problem ticketing
application manager, the computer program is a problem
ticketing application, the different computer program is a
different problem ticketing application, said record is a
problem ticket created under the problem ticketing applica-
tion, and said another record is another problem ticket
created under the different problem ticketing application.

17. The computer system of claim 13, wherein said
monitoring said computer programs for said one or more
data updates further comprises monitoring said computer
programs for said one or more data updates at predefined
time intervals.

18. The computer system of claim 13, wherein the func-
tion is a checksum function.

#* #* #* #* #*

