发明名称
多层印刷线路板

摘要
本发明提供一种多层印刷线路板，在小直径的填充通孔的上方并与其相邻地形成填充通孔而不降低连接可靠性。在热循环时，施加于形成在盖状电镀层(36a、36d)上的填充通孔(60)的应力大于施加于形成在第2层间树脂绝缘层(150)上的填充通孔(160)上的应力。因此，使填充通孔(60)的底部直径(d1)大于形成于该填充通孔(60)上方并与其相邻的填充通孔(160)的底部直径(d2)。
1. 一种多层印刷线路板，是在具有通孔的芯基板上叠层第1层间树脂绝缘层、由无电解电镀膜和电解电镀膜构成的填充通孔、和导体电路，并在该第1层间树脂绝缘层之上叠层第2层间树脂绝缘层、由无电解电镀膜和电解电镀膜组成的填充通孔、和导体电路而成，其特征在于，使形成在第1层间绝缘层的填充通孔上方并与该填充通孔相邻的第2层间绝缘层的填充通孔的底部直径小于该第1层间绝缘层的填充通孔的底部直径。

2. 根据权利要求1所述的多层印刷线路板，其特征在于，在上述通孔端处形成封闭该端的盖状导体层，第1层间绝缘层的填充通孔形成在上述盖状导体层之上。
多层印刷线路板

技术领域

本发明涉及一种多层印刷线路板，特别涉及可适用于IC芯片安装用的封装基板的积层多层印刷线路板。

背景技术

在构成IC芯片用封装的积层式多层印刷线路板中，在通过钻孔形成了通孔的芯基板的两面或单面上形成层间绝缘树脂，并通过激光或光刻技术开设用于进行层间导通的导通孔，从而形成了层间树脂绝缘层。在该导通孔的内壁上，通过电镀等形成导体层，并经过蚀刻等形成图案，从而制作出导体电路。再通过反复进行形成层间绝缘层和导体层的操作，从而得到了积层多层印刷线路板。在最新的积层多层线路板中，为了提高通孔及积层层的布线密度，而设置了覆盖通孔表面的导体层（状电镀层），并在该状电镀层上形成了导通孔。同样，为了减少布线长度而采用这样的所谓叠加通路结构：形成用导体填充导通孔而成的填充通孔，进而在该填充通孔的上方并与相邻地设置填充通孔。

专利文献1，专利文献2等为具有设置了状电镀层的通孔的现有技术的积层多层线路板，具有填充通孔的现有技术的积层多层线路板。

专利文献1：日本特开2001-127435号公报
专利文献2：日本特开平11-251749号公报

在为了缩短上述布线长度而采取了叠加通孔构造时，容易使导通孔的可靠性降低、难以减小导通孔直径。通常，导通孔的底部直径变小，则形成在导通孔上的导体与下层导体（连接
盘（land）之间的连接面积变小，因此导通孔与连接盘之间的接合力降低，在进行热循环试验等时，可看出在两者之间连接电阻增大的倾向。

在此，在积层多层线路板中，通过在形成无电解电镀膜之后形成电解电镀膜来形成导通孔。一般认为，由于先形成的无电解电镀膜含有有机物、氢分子、氢原子等而比较脆，因此在该无电解电镀膜上容易产生裂纹。另外，一般认为，由于无电解电镀膜的延展性较差，因此在安装IC芯片等时、在印刷线路板上产生了翘曲的情况下，无电解电镀膜会因无法追随于该翘曲进行变形而容易从连接盘上剥离。

发明内容

本发明是为了解决上述课题而作出的，其目的在于提供一种在小直径的填充通孔上方并与其相邻地形成填充通孔而不降低连接可靠性的多层印刷线路板。

由发明人进行的锐意研究的结果可明确知道，在多层印刷线路板上存在特定部位上的导通孔可靠性降低的倾向。

在此，通过模拟可知，在热循环时，对形成在第1层间绝缘层的填充通孔（以下称为第1填充通孔）上方并与其相邻的第2层间绝缘层的填充通孔（以下称为第2填充通孔）的底部施加的应力大于对该第1填充通孔底部施加的应力。

在技术方案1中，通过使形成在第1层间绝缘层的填充通孔上方并与其相邻的第2层间绝缘层的填充通孔底部直径小于第1层间绝缘层的填充通孔的底部直径，从而可以实现采用小直径的导通孔来提高集成率，同时不必叠加通孔的连接可靠性降低。在此，在本发明中，将如图19（A）所示那样的凹入量（从上端面起的凹入量）P1为7μm以下的通孔、以及如图19（B）
所示那样的凸起量（从上部平坦面起的突出量）P2为7μm以下
通孔定义为填充通孔。

进而，可以在盖状导体层（盖状电镀层）之上形成第1填
充通孔。在盖状导体层上形成第1填充通孔时，由于通孔与成
为芯部的绝缘性基板处的物性不同，所以盖状导体层变形得较
大且复杂。这种在盖状导体层上做成叠加通孔的情况，由于在
位于更上方位置的部分处变形量变大，所以容易对第2填充通
孔的底部施加较大应力。

附图说明

图1是表示本发明的第1实施例的多层印刷线路板的制造
方法的工序图。

图2是表示第1实施例的多层印刷线路板的制造方法的工
序图。

图3是表示第1实施例的多层印刷线路板的制造方法的工
序图。

图4是表示第1实施例的多层印刷线路板的制造方法的工
序图。

图5是表示第1实施例的多层印刷线路板的制造方法的工
序图。

图6是表示第1实施例的多层印刷线路板的制造方法的工
序图。

图7是第1实施例的多层印刷线路板的剖视图。

图8是表示把IC芯片载置于第1实施例的多层印刷线路板
上的状态的剖视图。

图9是通孔的盖状电镀层的俯视图。

图10是表示实施例的评价结果的图表。
图11是表示实施例的评价结果的图表。
图12是表示实施例的评价结果的图表。
图13是表示实施例和第1比较例的评价结果的图表。
图14是表示实施例的评价结果的图表。
图15是表示实施例的评价结果的图表。
图16是表示实施例的评价结果的图表。
图17是表示实施例的评价结果的图表。
图18是表示第2实施例的评价结果的图表。
图19是表示本发明中的填充通孔的说明图。

附图标记的说明

30：基板；34：导体电路；36：通孔；36a：盖状电镀层（通孔连接盘）；36b：侧壁导体层；36d：盖状电镀层（通孔连接盘）；40：树脂填充层；50：层间树脂绝缘层；58：导体电路；60：填充通孔；70：阻焊剂层；71：开口；78U、78D：焊锡凸块；160：填充通孔。

具体实施方式

第1实施例

首先，参照图1～图8说明本发明的第1实施例的多层印刷线路板10的结构。图7表示该多层印刷线路板10的剖视图，图8表示在图7所示的多层印刷线路板10上安装IC芯片90、并将多层印刷线路板10置在子板94上的状态。如图7所示，在多层印刷线路板10中，在芯基板30的表面上形成有导体电路34。芯基板30的表面和背面通过通孔36相连接。通孔36由构成通孔连接盘的盖状电镀层36a、36d、和侧壁导体层36b构成，并在侧壁导体层36b的内部填充入树脂填充材料37。在盖状电镀层（通孔连接盘）36a、36d上配有设有层间树脂绝缘层50和层间树脂绝
缘层150。在层间树脂绝缘层50上形成有填充通孔60及导体电路58；在层间树脂绝缘层150上形成有填充通孔160及导体电路158。在填充导通孔160及导体电路158的上层形成有阻焊剂层70，穿过该阻焊剂层70的开口部71而在填充通孔160及导体电路158上形成有凸块78U、78D。

如图8所示，多层印刷线路板10的上表面侧的焊锡凸块78U与IC芯片90的连接盘92相连接。另一方面，下表面侧的焊锡凸块78D与子板94的连接盘96相连接。

图9（A）为盖状电镀层（通孔连接盘）36a的俯视图。通过钻孔将通孔用开口形成为0.08mm～0.25mm。盖状电镀层36a形成为圆形，该盖状电镀层36a上的填充通孔60的底部形成在侧壁导体层36b的内侧。在此，填充通孔60的底部形成为直径d1（60μm）。另一方面，在图6中所示的填充通孔60上层的层间绝缘层150上所形成的填充通孔160，形成为底部直径d2（45μm）。

图9（B）是盖状电镀层（通孔连接盘）36d的俯视图。盖状电镀层36d形成为将2个半圆合起来的不倒翁型，该盖状电镀层36d上的填充通孔60的底部形成于不是通孔上侧的部分上。在此，填充通孔60的底部形成为直径d1（60μm）。另一方面，形成在图6中所示的填充通孔60上方并与其相邻的填充通孔160，被形成为底部的直径d2（45μm）。如图9（E）、图9（F）所示那样，盖状电镀层也可以不是圆的一部分。如这些例子所示，若只使盖状电镀层的形形成填充通孔的部分自通孔向平面方向突出，则可以以较窄间距配置通孔。此外，也可以不将填充材料填充在通孔内部，而用与侧壁导体层同样的材质来填充通孔。

在此，对于模拟了在热循环时施加在盖状电镀层36d上的
填充通孔60和形成于该填充通孔上方并与相邻的填充通孔160上的应力的结果进行说明。

在此，进行了有限元法（FEM）的3D热应力模拟。在解析构造体中含有焊锡等这样的塑性、蠕变特性显著的材料时，由于考虑到塑性、蠕变特性而需进行非线性热应力模拟，首先以较粗的网格对包括整个基板在内的模型进行解析，并将由此计算出的变位作为以较细的网格分割成的子模型的分界条件，采用对视为问题的部分进行精密解析的通用换算（子模型化）手法，对热冲击试验时施加在高多层、高密度有机封装的微通路上的热应力进行解析。即，对封装的Coarse模型进行解析，并将其变位设定为子模型的分界条件，考虑到焊锡的塑性而在-5℃～125℃的热冲击试验条件下进行非线性热应力解析。

其结果可知，在盖状电镀层36d的填充通孔60的底部施加的应力为130MPa，在形成于该填充通孔60上层的填充通孔160的底部施加的应力为100MPa。

即，在热循环时，施加在形成于第2层间绝缘层150上的填充通孔160的底部的应力小于施加在形成于盖状导体层（盖状电镀层）36d之上的填充通孔60的底部的应力。

因此，在第1实施例中，使填充通孔160的底部直径d2小于形成在盖状导体层（盖状电镀层）36a、36d上的填充通孔60的底部直径d1。由此，从而可以实现在各部位采用最小直径的填充通孔来提高集成率，而不降低连接可靠性。

图9（C）、图9（D）示出其他例子的盖状电镀层的形状。在图9（C）中，在圆形的盖状电镀层36a中，在侧壁导体层36b上形成填充通孔60。在图9（D）中，在倒卵型的盖状电镀层36d中，在侧壁导体层36b的上侧形成填充通孔60。图9（G）
示出连接盘36e上的填充通孔的形态，由布线12连接填充通孔的连接盘36e与盖状电镀层36a、通孔侧壁导体层36b。在该情况下，从提高连接可靠性方面考虑，最好是填充通孔60的直径大于填充通孔160的直径。

接下来，参照图1～图6对参照图8上述的多层印刷线路板10的制造方法进行说明。

（1）将在由厚度为0.2～0.8mm的玻璃环氧树脂或BT（双马来酰亚胺三嗪）树脂构成的绝缘性基板30的两面上层压了5～250μm的铜箔32而成的覆铜层压板30A作为原始材料（图1（A））。首先，用钻头对该覆铜层压板进行钻孔而贯穿设置通孔16（图1（B）），实施无电解电镀处理及电解电镀处理（后述的电镀液和条件参照工序（13）、（15）），形成了通孔36的侧壁导体层36b（图1（C））。通过选择钻头使通孔16的开口直径形成为Φ0.1～0.25mm，并将这些通孔的间距做为0.15～0.575mm。

（2）对形成了通孔36的基板30进行水洗，并使其干燥之后，进行将含有NaOH（10g/1）、NaClO₂（40g/1）、Na₃PO₄（6g/1）的水溶液作为黑化液（氧化液）的黑化处理、及将含有NaOH（10g/1）、NaBH₄（6g/1）的水溶液作为还原液的还原处理，从而在通孔36的侧壁导体层36b及表面上形成了粗糙面36a（图1（D））。

（3）接着，通过丝网印刷将含有平均粒径为10μm的铜粒子的填充剂37（タツツ（Tatsuta）电线制的非导电性填杆铜膏，商品名称：DD膏）填筑到通孔36中并使其干燥、固化（图2（A））。这就是指在载置有掩模的基板上，通过印刷法进行涂敷，从而填充到通孔中，并在填筑之后使其干燥固化。上述掩模在通孔部分设有开口。
而且，接着，采用#600的带式研磨纸（三共理化学制）进行砂带磨床研磨来除去从通孔36溢出的填充剂37，再进行抛光研磨，用于除去由该砂带磨床研磨造成的伤痕，使基板30的表面变平坦（图2（B））。像这样地操作，得到了通过粗糙层36α将通孔36的侧壁导体层36b与树脂填充剂37牢固地紧贴在一起的基板30。

（4）在上述（3）中变平坦的的基板30的表面上施加钯催化剂（アトテック（AtoTech）制）并实施无电解镀铜，从而形成了厚度为0.6μm的无电解镀铜膜23（参照图2（C））。

（5）接着，以以下条件实施电解镀铜，形成厚度为15μm的电解镀铜膜24，从而形成了成为导体电路34部分的增厚层，及成为覆盖填充在通孔36中的填充剂37的盖状电镀层（通孔连接盘）的部分（图2（D））。

电解电镀水溶液

- 硫酸：180g/l
- 硫酸铜：80g/l
- 添加剂（アトテックジャパン（Atotech Japan）制，商品名称：カバランシッドGL）：1ml/l

电解电镀条件

- 电流密度：1A/dm²
- 时间：70分钟
- 温度：室温

（6）在形成有成为导体电路及盖状电镀层的部分的基板30的两面上粘贴市场上销售的感光性干膜，并在其上裁置具有图案的掩模，以100mJ/cm²进行曝光，以0.8%碳酸钠进行显影处理，从而形成了厚度为15μm的抗蚀层25（参照图2（E））。通过调整掩模上形成的图案可以选择将填充通孔的连接盘形状...
形成为图9（A）～图9（F）中任一形状，或使各通孔通孔的每一填充通孔形成为从上述形状中选择的形状。此外，也可以做成其他形状。在图9（A）时，在具有导电体层36b时，填充通孔60需要形成在导电体层36b的内壁内，在用用样的材质填充通孔内时，填充通孔60需要位于开口16内。在图9（C）、图9（D）中，在用用样的材质（例如铜（也可以是无电解铜和电解铜的组合物）或导电性膏）填充通孔内时，填充通孔60位于开口16上。

（7）而且，由以氯化铜为主要成分的蚀刻液溶解并除去未形成抗蚀层25的部分的电镀层23、24和铜箔32，然后用5%KOH剥离除去抗蚀层25，从而形成了独立的导体电路34、及覆盖填充剂37的盖状电镀层36a、36d（参照图3（A））。这是所谓的隆起法（tenting）。

（8）接着，在导体电路34及覆盖填充剂37的盖状电镀层36a、36d的表面上形成由Cu-Ni-P合金构成的厚度为2.5μm的粗糙层（凹凸层）34β，再在该粗糙层34β的表面上形成了厚度为0.3μm的Sn层（参照图3（B），但Sn层未图示）。

（9）将比基板稍大一些的层间树脂绝缘层用树脂膜（味之素社制，商品名称：ABF-45SH）50γ载置在基板的两面上，并在以压力0.45MPa、温度80℃、压接时间10秒的条件进行临时压接并将其裁断之后，再使用真空层压装置通过以下方法进行粘贴，从而形成了层间树脂绝缘层50（图3（C））。即，以真空度67Pa、压力0.47MPa、温度85℃、压接时间60秒的条件将层间树脂绝缘层用树脂膜正式压接到基板上，之后在170℃的条件下使其热固化40分钟。

（10）接着，用波长为10.4μm的CO_{2}气体激光在光束直径为4.0mm、凹嘴头模式、脉冲宽度为3～30μ秒、掩模的通孔直
径为1.0~5.0mm、1~3次射击的条件下，在层间树脂绝缘层2上形成了导通孔用开口51（图3(D)）。在此，调整上述激光条件，以使得在层间树脂绝缘层50上，导通孔的底部半径成为Φ60μm。结果，形成在盖状电镀层36a、36d上的导通孔的底部直径为Φ60μm。

(11) 将形成了导通孔用开口51的基板浸渍在含有60g/l的高锰酸的80℃溶液中10分钟，溶解除去存在于层间树脂绝缘层2表面上的环氧树脂粒子，从而在包括导通孔用开口51的内壁在内的层间树脂绝缘层50的表面上形成了粗糙面50a（图4(A)）。

(12) 接着，将完成了上述处理的基板浸渍在中和溶液(Shipley Company)中之后，对其进行水洗。然后，通过在进行了表面粗糙化处理（粗糙化深度3μm）的该基板表面上施加钯催化剂，使催化剂核附着在层间树脂绝缘层的表面及填充通孔用开口的内壁面上。即，通过将上述基板浸渍在含有氯化钯(PdCl₂)和氯化亚锡(SnCl₂)的催化剂溶液中，析出钯金属来施加催化剂。

(13) 接着，将施加了催化剂的基板浸渍在上村工业社制的无电解镀铜水溶液（スルカップPEA）中，在整个粗糙面上形成了厚度为0.3~3.0μm的无电解镀铜膜，从而得到了在包括导通孔用开口51的内壁在内的层间树脂绝缘层50的表面上形成了无电解镀铜膜52的基板（图4(B)）。

无电解电镀条件

在34℃的液体温度中进行45分钟

(14) 在形成有无电解镀铜膜52的基板上粘贴市面上销售的感光性干膜，并在其上载置掩模，以110mJ/cm²进行曝光，以0.8%碳酸钠水溶液进行显影处理，从而形成了厚度为25μm
的阻镀层54（参照图4（C））。

（15）接着，在用50℃的水将基板30清洗干净、对其进行脱脂，并用25℃的水对其进行水洗之后，再用硫酸对其进行清洗，然后在以下条件下实施电解电镀，从而形成了电解镀铜膜56（图5（A））。

电解电镀溶液
硫酸 2.24 mol/l
硫酸铜 0.26 mol/l
添加剂 19.5 ml/l
整平剂 50mg/l
光泽剂 50mg/l

电解电镀条件
电流密度 1A/dm²
时间 70分钟
温度 22±2℃

（16）然后，在用5%KOH剥离并除去了阻镀层54之后，用硫酸与过氧化氢的混合液对该阻镀层下面的无电解电镀膜进行侵蚀处理而将其溶解除去，做成了独立的导体电路58及填充通孔60（图5（B））。

（17）接着，进行与上述（4）相同的处理，在导体电路58及填充通孔60的表面上形成了粗糙面58α。上层的导体电路58的厚度为15μm（图5（C））。但是，上层导体电路的厚度也可以形成在5~25μm之间。

（18）通过重复进行上述（9）～（17）的工序，进而形成了具有上层导体电路158、填充通孔160的层间绝缘层150，从而得到了多层线路板（图5（D））。在此，将填充通孔160的底面半径调整为22.5μm。
（19）接着，在多层布线基板的两面上涂敷20μm厚的市场上销售的阻焊剂组成物70，并在以70℃下进行20分钟、70℃下进行30分钟的条件进行干燥处理之后，使涂画出阻焊剂开口部的图案的、厚度为5mm的光掩模紧贴在阻焊剂层70上，并用1000mJ/cm²的紫外线进行曝光，用DMTG溶液进行显影处理，从而形成了直径为200μm的开口71（图6（A））。

而且，进一步在80℃下进行1小时、100℃下进行1小时、120℃下进行1小时、150℃下进行3小时的条件下分别进行加热处理，使阻焊剂层固化并使其具有开口，从而形成了其厚度为15～25μm的阻焊剂图案层。

（20）接着，将形成了阻焊剂层70的基板在含有氯化镍（2.3×10^{-1}mol/l）、次磷酸钠（2.8×10^{-1}mol/l）、柠檬酸钠（1.6×10^{-1}mol/l）的pH = 4.5的无电解镀镍溶液中浸渍20分钟，在开口部71上形成了厚度为5μm的镀镍层72。并且，在80℃的条件下将该基板在含有氯化金钾（7.6×10^{-3}mol/l）、氯化铵（1.9×10^{-1}mol/l）、柠檬酸钠（1.2×10^{-1}mol/l）、次磷酸钠（1.7×10^{-1}mol/l）的无电解镀金溶液中浸渍7.5分钟，在镀镍层72上形成了厚度为0.03μm的镀金层74（图6（B））。除了镍－金层之外，也可以形成单层的锡层、贵金属层（金、银、钯、铂等）。

（21）之后，在基板的载置IC芯片的一面的阻焊剂层70的开口71上印刷了含有锡－铅的焊接膏，并在另一面的阻焊剂层的开口上印刷了含有锡－锑的焊接膏，之后在200℃的条件下进行回流焊而形成了焊锡凸块（焊锡体），从而制造出具有焊锡凸块78U、78D的多层印刷线路板（图7）。

通过焊锡凸块78U安装IC芯片90。而且，通过焊锡凸块78D将多层印刷线路板10安装到子板94上（图8）。
下面，对用于实际验证第1实施例的多层印刷线路板10的效果的实施例进行说明。首先，对改变了第1填充通孔的底部半径、第2填充通孔的底部直径、第1填充通孔的连接盘形状（参照图9），并改变了第1填充通孔的形成位置（i）在盖状电镀层上、且在通孔上方并与其相邻（参照图9（A）），或（ii）连接盘36e上（参照图9（G）），或（iii）在盖状电镀层上、且在除了位于通孔上方并与其相邻的部分以外的盖状电镀层上（参照图9（B）），或（iv）在盖状电镀层上，且在侧壁导体层上（参照图9（C）、（D））的多层印刷线路板反复进行加热、冷却之后的电阻变化率进行说明。在此，以上述第1实施例为基准制作出如图10～13所示的实施例1～120、比较例1～6的多层印刷线路板。具体地说，参照图1（B），在上述工序（1）中，改变用于进行开孔的钻头的直径来改变开口16的直径，其间距随着将开孔位置数据输入到开孔机中而变化。另外，通过调整工序（10）中所示的激光条件来设定第1及第2填充通孔的底部直径，通过根据填充通孔的连接盘形状或连接盘上的形成位置将导通孔开口形成位置数据输入到激光加工机来调整第1及第2填充通孔的形成位置。如参照图2（E）所述的工序（6）中说明的那样，通过调整掩模图案来设定第1填充通孔的连接盘形状。将IC芯片安装在像这样制作成的各实施例、比较例的多层印刷线路板上，之后在IC芯片与多层印刷线路板之间填充密封树脂而做成IC搭载基板。而且，通过IC芯片的特定回路的电阻（从IC搭载基板的与IC芯片搭载面相反侧的面露出，并与IC芯片导通的一对电极之间的电阻）进行测定，并将该值设为初始值。之后，在这些IC搭载基板上，将-55度×5分钟、125度×5分钟作为1个循环地进行将该循环重复2500次的热循环试验。在该热循环试验中，对第500、1000、1250、1500、1750、
2000、2500次循环的电阻进行测定，求得与初始值相比的变化率 \((100 \times (\text{测定值} - \text{初始值}) / \text{初始值} \%)\)。其结果如图10～13中所示。图中将电阻变化率在±5%以内的情况设为“良好”(○)，将电阻变化率在±5～10%的情况设为“一般”(△)，将电阻变化率超过±10%的情况设为“不良”(×)。另外，目标规格为第1000次循环的变化率在±10%以内（即评价为“良好”或“一般”）。另外，将变化率在±10%以内的情况设为合格。

此外，与各实施例1～120对应，制作用与侧壁导体层相同材质完全填充到通孔内而成的多层印刷线路板，作为实施例121～240。同样地安装IC后，进行热循环试验。此时，把开口内的电解镀铜条件设为0.1A/\(\text{dm}^2\)。实施例120～240的结果示于图14～图17中。

进而，在各实施例3、7、11～15、119（实施例1～120内的相当于第1填充通孔的连接盘形状为iii的实施例）中，制作将IC下方并与其相邻的通孔处的第1填充通孔的连接盘形状做成(i)的第2实施例1～30。在第2实施例1～30中也是在安装了IC后实施热循环试验。在其后的评价中，测定同时含有(i)与(iii)的特定回路的连接电阻。第2实施例1～30的填充通孔的底部直径等的形态与评价结果示于图18。

根据该评价结果可知，使第1填充通孔的底部直径大于第2填充通孔底部直径的实施例1～120至少达到目标规格，并且在第1250次循环时也是合格的。相对于此，第1填充通孔的底部直径为第2填充通孔底部直径以下的比较例1～比较例6在目标规格的循环上为“一般”或“不良”，在第1250次循环时全部为“不良”。在比较例1～比较例6中，由于第2填充通孔的底部直径为第2填充通孔底部直径以上，因此第2填充通孔与第1填
充通孔的连接盘之间的接合为牢固。因此，其原因推测为：是否是由于第2填充通孔和其周围的绝缘层等缓和了应力而难以变形，所以加热、冷却时的应力集中在第1填充通孔的连接盘（连接盘形状为 (i)、(iii)、(iv) 时为盖状导体层）与第1填充通孔底部，使第1填充通孔底部与连接盘之间的接合变弱而增加了连接电阻。

此外，根据比较例1～比较例4与比较例5、比较例6的比较可知，即使第1填充通孔的底部直径在第2填充通孔的底部直径以下，在通孔直径与其间距密度较低的情况下，也达到了目标规格，而在通孔半径为100μm以下，如其间距为385μm以下，则在第1000次循环处为不良。其差异推测为是由于后者所产生应力较大。其理由推测为，在比较例5、比较例6中，由于在绝缘性基板30上高密度地设置与绝缘性基板（热膨胀系数：50～60ppm）的热膨胀系数有较大差异的通孔导体（铜：16ppm），而使多层印刷线路板的变形较大。因而可知，将本发明应用在通孔半径为100μm以下、其间距为385μm以下的多层印刷线路板上具有较大的意义。

根据实施例1～120中的第1500、1750、2000次循环的结果可知，即使第1填充通孔的底部直径小于第2填充通孔的底部直径，因第1填充通孔的连接盘形状而耐热循环性也不同。按 (iv) → (ii) → (iii) → (i) 的顺序长期可靠性优良。推测其原因：是否是由于在绝缘性基板30上形成有与绝缘性基板的杨氏模量、横向变形系数、热膨胀系数等物理特性不同的通孔，所以因第1填充通孔的连接盘形状或第1填充通孔的位置、连接盘与通孔间有无布线等，而使施加于第1填充通孔底部与连接盘之间的应力发生变化。由于通孔与绝缘性基板的物性值不同，所以绝缘性基板与通孔进行不同的变形。在(iv)时，
估计因为第1填充通孔的底部覆盖于两侧，所以第1填充通孔的应力大于(i)~(iii)时的应力。与此相对，在(i)~(iii)中，估计由于第1填充通孔位于通孔上或绝缘性基板上，所以耐热循环性优良。相对于(i),(iii)较差的理由是，由于在通孔内壁上形成难变形的钢（相对于绝缘性基板的杨氏模量大，热膨胀系数小）作为通孔侧壁导体，所以通孔内部相对于绝缘性基材部的变动量变小。还认为也有内壁的粗糙层36α（参照图1(D))的影响。因此，估计施加于第1填充通孔底部与连接盘（盖状导体层）之间的应力变小。而且，估计相对于(ii)，因为(iii)中第1填充通孔的连接盘位于通孔附近，所以因通孔侧壁导体的影响使(iii)的第1填充通孔的变动量变少。

进而，由第2500次循环的结果可知，优选是第1填充通孔的底部直径/第2填充通孔的底部直径为1.3~1.7。推测是由于，如果是这种范围，则即使第2填充通孔的底部与第1填充通孔表面之间的接合力低于第1填充通孔的连接盘((i),(iii)、(iv)时为盖状导体层）与第1填充通孔底部之间的接合力（每单位面积的粘合力×接合面积），由于两者间的应力存在差异，所以接合力/应力成为几乎同等（在两者存在差异时，应力集中于较弱的一方上，在该部分易发产生剥离等问题）。

此外，实施例121~240的结果与实施例1~120相同。

若比较实施例1~30的结果与实施例1,5, ... 113, 117（实施例1~120中的第1填充通孔的连接盘为(i)时），则结果相同。因而，可知只要是将至少位于IC下方并与该IC相邻的第1填充通孔形成在通孔上方并与该通孔相邻，使该第1填充通孔的底部直径小于第2填充通孔的底部直径即可。推测这是由于因IC与绝缘性基板的热膨胀系数的差异而在IC下方并与该IC相邻的部位处应力较大。
图 2
图 6
第1/第2	11167	11167	11167	11167	11167	11167	11167	11167	11167	11167	11167	11167
填充方法	35 (I)	35 (II)	35 (III)	40 (I)	40 (II)	40 (III)	45 (I)	45 (II)	45 (III)	45 (IV)	45 (V)	45 (VI)
通孔直径 (μm)	50	50	50	50	50	50	50	50	50	50	50	50
通孔间距	150	150	150	150	150	150	150	150	150	150	150	150
通孔的半径	R (μm)	50	50	50	50	50	50	50	50	50	50	50

图 10
<table>
<thead>
<tr>
<th>第2喷油孔</th>
<th>第1喷油孔</th>
<th>第1喷油孔</th>
<th>第2喷油孔</th>
<th>第1喷油孔</th>
</tr>
</thead>
<tbody>
<tr>
<td>各喷油孔间距离 (m)</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>喷油孔直径 (μm)</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>第1喷油孔孔径 (μm)</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>第2喷油孔孔径 (μm)</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>第1喷油孔孔径 (μm)</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>第2喷油孔孔径 (μm)</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>第1喷油孔孔径 (μm)</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>第2喷油孔孔径 (μm)</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>第1喷油孔孔径 (μm)</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>第2喷油孔孔径 (μm)</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>第1喷油孔孔径 (μm)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>第1组透通孔的距离 (μm)</td>
<td>500</td>
<td>1000</td>
<td>1500</td>
<td>2000</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>通孔直径 (μm)</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>通孔间距离 (μm)</td>
<td>100</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
</tbody>
</table>

图 12
<table>
<thead>
<tr>
<th>#</th>
<th>通孔的半径 : R (μm)</th>
<th>通孔间距</th>
<th>第2填充通孔的直径 (μm)</th>
<th>第1填充通孔的直径 (μm)</th>
<th>第1填充通孔的位置</th>
<th>热循环试验的结果</th>
<th>500</th>
<th>1000</th>
<th>1250</th>
<th>1500</th>
<th>1750</th>
<th>2000</th>
<th>2500</th>
<th>第1/第2</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例100</td>
<td>125</td>
<td>225</td>
<td>30</td>
<td>60</td>
<td>(W)</td>
<td>O</td>
<td>O</td>
<td>Δ</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>实施例101</td>
<td>125</td>
<td>225</td>
<td>30</td>
<td>65</td>
<td>(I)</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>2.167</td>
</tr>
<tr>
<td>实施例102</td>
<td>125</td>
<td>225</td>
<td>30</td>
<td>65</td>
<td>(II)</td>
<td>O</td>
<td>O</td>
<td>Δ</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>2.167</td>
</tr>
<tr>
<td>实施例103</td>
<td>125</td>
<td>225</td>
<td>30</td>
<td>65</td>
<td>(III)</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>Δ</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>2.167</td>
<td></td>
</tr>
<tr>
<td>实施例104</td>
<td>125</td>
<td>225</td>
<td>30</td>
<td>65</td>
<td>(IV)</td>
<td>O</td>
<td>O</td>
<td>Δ</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>2.167</td>
<td></td>
</tr>
<tr>
<td>实施例105</td>
<td>125</td>
<td>225</td>
<td>45</td>
<td>50</td>
<td>(I)</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>1.111</td>
<td></td>
</tr>
<tr>
<td>实施例106</td>
<td>125</td>
<td>225</td>
<td>45</td>
<td>50</td>
<td>(II)</td>
<td>O</td>
<td>O</td>
<td>Δ</td>
<td>Δ</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1.111</td>
<td></td>
</tr>
<tr>
<td>实施例107</td>
<td>125</td>
<td>225</td>
<td>45</td>
<td>50</td>
<td>(III)</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>Δ</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1.111</td>
<td></td>
</tr>
<tr>
<td>实施例108</td>
<td>125</td>
<td>225</td>
<td>45</td>
<td>50</td>
<td>(IV)</td>
<td>O</td>
<td>O</td>
<td>Δ</td>
<td>Δ</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1.111</td>
<td></td>
</tr>
<tr>
<td>实施例109</td>
<td>125</td>
<td>225</td>
<td>45</td>
<td>60</td>
<td>(I)</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>1.333</td>
<td></td>
</tr>
<tr>
<td>实施例110</td>
<td>125</td>
<td>225</td>
<td>45</td>
<td>60</td>
<td>(II)</td>
<td>O</td>
<td>O</td>
<td>Δ</td>
<td>Δ</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1.333</td>
<td></td>
</tr>
<tr>
<td>实施例111</td>
<td>125</td>
<td>225</td>
<td>60</td>
<td>60</td>
<td>(III)</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>Δ</td>
<td>x</td>
<td>x</td>
<td>1.333</td>
<td></td>
</tr>
<tr>
<td>实施例112</td>
<td>125</td>
<td>225</td>
<td>60</td>
<td>60</td>
<td>(IV)</td>
<td>O</td>
<td>O</td>
<td>Δ</td>
<td>Δ</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1.333</td>
<td></td>
</tr>
<tr>
<td>实施例113</td>
<td>125</td>
<td>225</td>
<td>45</td>
<td>65</td>
<td>(I)</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>1.444</td>
<td></td>
</tr>
<tr>
<td>实施例114</td>
<td>125</td>
<td>225</td>
<td>45</td>
<td>65</td>
<td>(II)</td>
<td>O</td>
<td>O</td>
<td>Δ</td>
<td>Δ</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1.444</td>
<td></td>
</tr>
<tr>
<td>实施例115</td>
<td>125</td>
<td>225</td>
<td>45</td>
<td>65</td>
<td>(III)</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>Δ</td>
<td>x</td>
<td>x</td>
<td>1.444</td>
<td></td>
</tr>
<tr>
<td>实施例116</td>
<td>125</td>
<td>225</td>
<td>45</td>
<td>65</td>
<td>(IV)</td>
<td>O</td>
<td>O</td>
<td>Δ</td>
<td>Δ</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1.444</td>
<td></td>
</tr>
<tr>
<td>实施例117</td>
<td>125</td>
<td>225</td>
<td>32.5</td>
<td>70</td>
<td>(I)</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>2.154</td>
<td></td>
</tr>
<tr>
<td>实施例118</td>
<td>125</td>
<td>225</td>
<td>32.5</td>
<td>70</td>
<td>(II)</td>
<td>O</td>
<td>O</td>
<td>Δ</td>
<td>Δ</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>2.154</td>
<td></td>
</tr>
<tr>
<td>实施例119</td>
<td>125</td>
<td>225</td>
<td>32.5</td>
<td>70</td>
<td>(III)</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>Δ</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>2.154</td>
<td></td>
</tr>
<tr>
<td>实施例120</td>
<td>125</td>
<td>225</td>
<td>32.5</td>
<td>70</td>
<td>(IV)</td>
<td>O</td>
<td>O</td>
<td>Δ</td>
<td>Δ</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>2.154</td>
<td></td>
</tr>
<tr>
<td>比较例1</td>
<td>50</td>
<td>150</td>
<td>35</td>
<td>35</td>
<td>(I)</td>
<td>Δ</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1</td>
</tr>
<tr>
<td>比较例2</td>
<td>50</td>
<td>150</td>
<td>35</td>
<td>35</td>
<td>(II)</td>
<td>Δ</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1</td>
</tr>
<tr>
<td>比较例3</td>
<td>100</td>
<td>192.5</td>
<td>35</td>
<td>35</td>
<td>(I)</td>
<td>Δ</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1</td>
</tr>
<tr>
<td>比较例4</td>
<td>100</td>
<td>192.5</td>
<td>70</td>
<td>70</td>
<td>(I)</td>
<td>Δ</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1</td>
</tr>
<tr>
<td>比较例5</td>
<td>100</td>
<td>192.5</td>
<td>35</td>
<td>35</td>
<td>(I)</td>
<td>Δ</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1</td>
</tr>
<tr>
<td>比较例6</td>
<td>125</td>
<td>225</td>
<td>70</td>
<td>70</td>
<td>(I)</td>
<td>Δ</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1</td>
</tr>
</tbody>
</table>

第1填充通孔的位置

(1) 在盖状电镀层上，且在通孔上方并与其相邻（侧壁导体层内）
(2) 连接导体36a上，参照图9(C)
(3) 在盖状电镀层上，且在盖通孔上方并与其相邻的部分以外的盖状电镀层上
(4) 在盖状电镀层上，且在侧壁导体层上
<table>
<thead>
<tr>
<th>通孔的半径 R (μm)</th>
<th>第1环绕通孔的长度 (μm)</th>
<th>第1环绕通孔的位置</th>
<th>第2环绕通孔的长度 (μm)</th>
<th>第2环绕通孔的位置</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>35</td>
<td>(H)</td>
<td>35</td>
<td>(H)</td>
</tr>
<tr>
<td>55</td>
<td>35</td>
<td>(H)</td>
<td>35</td>
<td>(H)</td>
</tr>
<tr>
<td>50</td>
<td>30</td>
<td>(H)</td>
<td>30</td>
<td>(H)</td>
</tr>
<tr>
<td>55</td>
<td>30</td>
<td>(H)</td>
<td>30</td>
<td>(H)</td>
</tr>
<tr>
<td>60</td>
<td>30</td>
<td>(H)</td>
<td>30</td>
<td>(H)</td>
</tr>
<tr>
<td>65</td>
<td>30</td>
<td>(H)</td>
<td>30</td>
<td>(H)</td>
</tr>
<tr>
<td>70</td>
<td>30</td>
<td>(H)</td>
<td>30</td>
<td>(H)</td>
</tr>
<tr>
<td>75</td>
<td>30</td>
<td>(H)</td>
<td>30</td>
<td>(H)</td>
</tr>
<tr>
<td>80</td>
<td>30</td>
<td>(H)</td>
<td>30</td>
<td>(H)</td>
</tr>
<tr>
<td>85</td>
<td>30</td>
<td>(H)</td>
<td>30</td>
<td>(H)</td>
</tr>
<tr>
<td>90</td>
<td>30</td>
<td>(H)</td>
<td>30</td>
<td>(H)</td>
</tr>
<tr>
<td>95</td>
<td>30</td>
<td>(H)</td>
<td>30</td>
<td>(H)</td>
</tr>
<tr>
<td>100</td>
<td>30</td>
<td>(H)</td>
<td>30</td>
<td>(H)</td>
</tr>
</tbody>
</table>

图 1.4
<table>
<thead>
<tr>
<th>孔的半径 (μm)</th>
<th>50</th>
<th>59</th>
<th>68</th>
<th>77</th>
<th>86</th>
<th>95</th>
<th>104</th>
<th>113</th>
<th>122</th>
<th>131</th>
<th>140</th>
<th>149</th>
<th>158</th>
</tr>
</thead>
<tbody>
<tr>
<td>孔的位置</td>
<td>O</td>
</tr>
<tr>
<td>第1组第2孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第3孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第4孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第5孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第6孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第7孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第8孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第9孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第10孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第11孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第12孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第13孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第14孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第15孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第16孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第17孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第18孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第19孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第20孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第21孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第22孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第23孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第24孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第25孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第26孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第27孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第28孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第29孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第30孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第31孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第32孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第33孔</td>
<td>O</td>
</tr>
<tr>
<td>第1组第34孔</td>
<td>O</td>
</tr>
</tbody>
</table>

图 15
<table>
<thead>
<tr>
<th>#</th>
<th>通孔的半径 : R(μm)</th>
<th>通孔间距</th>
<th>第2填充通孔的底部直径 (μm)</th>
<th>第1填充通孔的底部直径 (μm)</th>
<th>第1填充通孔的位置</th>
<th>热循环试验的结果</th>
<th>第1/第2</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例220</td>
<td>125</td>
<td>225</td>
<td>30</td>
<td>60</td>
<td>(ⅳ)</td>
<td>O</td>
<td>x</td>
</tr>
<tr>
<td>实施例221</td>
<td>125</td>
<td>225</td>
<td>30</td>
<td>65</td>
<td>(ⅰ)</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>实施例222</td>
<td>125</td>
<td>225</td>
<td>30</td>
<td>65</td>
<td>(ⅱ)</td>
<td>O</td>
<td>x</td>
</tr>
<tr>
<td>实施例223</td>
<td>125</td>
<td>225</td>
<td>30</td>
<td>65</td>
<td>(ⅲ)</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>实施例224</td>
<td>125</td>
<td>225</td>
<td>30</td>
<td>65</td>
<td>(ⅳ)</td>
<td>O</td>
<td>Δ</td>
</tr>
<tr>
<td>实施例225</td>
<td>125</td>
<td>225</td>
<td>45</td>
<td>50</td>
<td>(ⅰ)</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>实施例226</td>
<td>125</td>
<td>225</td>
<td>45</td>
<td>50</td>
<td>(ⅱ)</td>
<td>O</td>
<td>Δ</td>
</tr>
<tr>
<td>实施例227</td>
<td>125</td>
<td>225</td>
<td>45</td>
<td>50</td>
<td>(ⅲ)</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>实施例228</td>
<td>125</td>
<td>225</td>
<td>45</td>
<td>50</td>
<td>(ⅳ)</td>
<td>O</td>
<td>Δ</td>
</tr>
<tr>
<td>实施例229</td>
<td>125</td>
<td>225</td>
<td>45</td>
<td>60</td>
<td>(ⅰ)</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>实施例230</td>
<td>125</td>
<td>225</td>
<td>45</td>
<td>60</td>
<td>(ⅱ)</td>
<td>O</td>
<td>Δ</td>
</tr>
<tr>
<td>实施例231</td>
<td>125</td>
<td>225</td>
<td>45</td>
<td>60</td>
<td>(ⅲ)</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>实施例232</td>
<td>125</td>
<td>225</td>
<td>45</td>
<td>60</td>
<td>(ⅳ)</td>
<td>O</td>
<td>Δ</td>
</tr>
<tr>
<td>实施例233</td>
<td>125</td>
<td>225</td>
<td>45</td>
<td>65</td>
<td>(ⅰ)</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>实施例234</td>
<td>125</td>
<td>225</td>
<td>45</td>
<td>65</td>
<td>(ⅱ)</td>
<td>O</td>
<td>Δ</td>
</tr>
<tr>
<td>实施例235</td>
<td>125</td>
<td>225</td>
<td>45</td>
<td>65</td>
<td>(ⅲ)</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>实施例236</td>
<td>125</td>
<td>225</td>
<td>45</td>
<td>65</td>
<td>(ⅳ)</td>
<td>O</td>
<td>Δ</td>
</tr>
<tr>
<td>实施例237</td>
<td>125</td>
<td>225</td>
<td>65</td>
<td>70</td>
<td>(ⅰ)</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>实施例238</td>
<td>125</td>
<td>225</td>
<td>65</td>
<td>70</td>
<td>(ⅱ)</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>实施例239</td>
<td>125</td>
<td>225</td>
<td>65</td>
<td>70</td>
<td>(ⅲ)</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>实施例240</td>
<td>125</td>
<td>225</td>
<td>65</td>
<td>70</td>
<td>(ⅳ)</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

第1填充通孔的位置

(i) 在盖状电镀层上，且在通孔上方并与之相邻（侧壁导体层内）
(ii) 连接盘36e上，参照图8（G）
(iii) 在盖状电镀层上，且在除了位于通孔上方并与之相邻的部分以外的盖状电镀层上
(iv) 在盖状电镀层上，且在侧壁导体层上
<table>
<thead>
<tr>
<th>#</th>
<th>通孔的半径: R(μm)</th>
<th>通 孔 半 径 (μm)</th>
<th>第1填充通孔的底部直径 (μm)</th>
<th>第1填充通孔的底部直径 (μm)</th>
<th>第1填充通孔的底部直径 (μm)</th>
<th>第1填充通孔的位置</th>
<th>热循环试验的结果</th>
<th>500</th>
<th>1000</th>
<th>1250</th>
<th>1500</th>
<th>1750</th>
<th>2000</th>
<th>2500</th>
<th>1/第2</th>
</tr>
</thead>
<tbody>
<tr>
<td>第2实施例1</td>
<td>50 150 30</td>
<td>35</td>
<td>〇 〇 〇 〇 〇 〇 〇 〇 〇</td>
<td>1.167</td>
<td></td>
</tr>
<tr>
<td>第2实施例2</td>
<td>50 150 30</td>
<td>40</td>
<td>〇 〇 〇 〇 〇 〇 〇 〇 〇</td>
<td>1.333</td>
<td></td>
</tr>
<tr>
<td>第2实施例3</td>
<td>50 150 30</td>
<td>45</td>
<td>〇 〇 〇 〇 〇 〇 〇 〇 〇</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>第2实施例4</td>
<td>50 150 30</td>
<td>60</td>
<td>〇 〇 〇 〇 〇 〇 〇 〇 〇</td>
<td>1.667</td>
<td></td>
</tr>
<tr>
<td>第2实施例5</td>
<td>50 150 30</td>
<td>65</td>
<td>〇 〇 〇 〇 〇 〇 〇 〇 〇</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>第2实施例6</td>
<td>50 150 45</td>
<td>50</td>
<td>〇 〇 〇 〇 〇 〇 〇 〇 〇</td>
<td>2.167</td>
<td></td>
</tr>
<tr>
<td>第2实施例7</td>
<td>50 150 45</td>
<td>50</td>
<td>〇 〇 〇 〇 〇 〇 〇 〇 〇</td>
<td>1.111</td>
<td></td>
</tr>
<tr>
<td>第2实施例8</td>
<td>50 150 45</td>
<td>60</td>
<td>〇 〇 〇 〇 〇 〇 〇 〇 〇</td>
<td>1.333</td>
<td></td>
</tr>
<tr>
<td>第2实施例9</td>
<td>50 150 45</td>
<td>65</td>
<td>〇 〇 〇 〇 〇 〇 〇 〇 〇</td>
<td>1.444</td>
<td></td>
</tr>
<tr>
<td>第2实施例10</td>
<td>50 150 65</td>
<td>70</td>
<td>〇 〇 〇 〇 〇 〇 〇 〇 〇</td>
<td>1.667</td>
<td></td>
</tr>
<tr>
<td>第2实施例11</td>
<td>100 192.5 30</td>
<td>35</td>
<td>〇 〇 〇 〇 〇 〇 〇 〇 〇</td>
<td>1.167</td>
<td></td>
</tr>
<tr>
<td>第2实施例12</td>
<td>100 192.5 30</td>
<td>40</td>
<td>〇 〇 〇 〇 〇 〇 〇 〇 〇</td>
<td>1.333</td>
<td></td>
</tr>
<tr>
<td>第2实施例13</td>
<td>100 192.5 30</td>
<td>45</td>
<td>〇 〇 〇 〇 〇 〇 〇 〇 〇</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>第2实施例14</td>
<td>100 192.5 30</td>
<td>60</td>
<td>〇 〇 〇 〇 〇 〇 〇 〇 〇</td>
<td>1.667</td>
<td></td>
</tr>
<tr>
<td>第2实施例15</td>
<td>100 192.5 30</td>
<td>65</td>
<td>〇 〇 〇 〇 〇 〇 〇 〇 〇</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>第2实施例16</td>
<td>100 192.5 45</td>
<td>50</td>
<td>〇 〇 〇 〇 〇 〇 〇 〇 〇</td>
<td>2.167</td>
<td></td>
</tr>
<tr>
<td>第2实施例17</td>
<td>100 192.5 45</td>
<td>50</td>
<td>〇 〇 〇 〇 〇 〇 〇 〇 〇</td>
<td>1.111</td>
<td></td>
</tr>
<tr>
<td>第2实施例18</td>
<td>100 192.5 45</td>
<td>60</td>
<td>〇 〇 〇 〇 〇 〇 〇 〇 〇</td>
<td>1.333</td>
<td></td>
</tr>
<tr>
<td>第2实施例19</td>
<td>100 192.5 45</td>
<td>65</td>
<td>〇 〇 〇 〇 〇 〇 〇 〇 〇</td>
<td>1.444</td>
<td></td>
</tr>
<tr>
<td>第2实施例20</td>
<td>100 192.5 65</td>
<td>70</td>
<td>〇 〇 〇 〇 〇 〇 〇 〇 〇</td>
<td>1.667</td>
<td></td>
</tr>
<tr>
<td>第2实施例21</td>
<td>125 225 30</td>
<td>35</td>
<td>〇 〇 〇 〇 〇 〇 〇 〇 〇</td>
<td>1.167</td>
<td></td>
</tr>
<tr>
<td>第2实施例22</td>
<td>125 225 30</td>
<td>40</td>
<td>〇 〇 〇 〇 〇 〇 〇 〇 〇</td>
<td>1.333</td>
<td></td>
</tr>
<tr>
<td>第2实施例23</td>
<td>125 225 30</td>
<td>45</td>
<td>〇 〇 〇 〇 〇 〇 〇 〇 〇</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>第2实施例24</td>
<td>125 225 30</td>
<td>50</td>
<td>〇 〇 〇 〇 〇 〇 〇 〇 〇</td>
<td>1.667</td>
<td></td>
</tr>
<tr>
<td>第2实施例25</td>
<td>125 225 30</td>
<td>50</td>
<td>〇 〇 〇 〇 〇 〇 〇 〇 〇</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>第2实施例26</td>
<td>125 225 30</td>
<td>65</td>
<td>〇 〇 〇 〇 〇 〇 〇 〇 〇</td>
<td>2.167</td>
<td></td>
</tr>
<tr>
<td>第2实施例27</td>
<td>125 225 45</td>
<td>50</td>
<td>〇 〇 〇 〇 〇 〇 〇 〇 〇</td>
<td>1.111</td>
<td></td>
</tr>
<tr>
<td>第2实施例28</td>
<td>125 225 45</td>
<td>60</td>
<td>〇 〇 〇 〇 〇 〇 〇 〇 〇</td>
<td>1.333</td>
<td></td>
</tr>
<tr>
<td>第2实施例29</td>
<td>125 225 45</td>
<td>65</td>
<td>〇 〇 〇 〇 〇 〇 〇 〇 〇</td>
<td>1.444</td>
<td></td>
</tr>
<tr>
<td>第2实施例30</td>
<td>125 225 65</td>
<td>70</td>
<td>〇 〇 〇 〇 〇 〇 〇 〇 〇</td>
<td>2.154</td>
<td></td>
</tr>
</tbody>
</table>

第1填充通孔的位置

1. 在复状电镀层上、且在通孔上方并与其相邻(侧壁导体层内)
2. 在复状电镀层上、且在通孔上方并与其相邻的外部区域
3. 在复状电镀层上、且在通孔上方并与其相邻的外部区域

图 18
图 19