Title: METHOD FOR PHOTOSTABILIZING A DIBENZOYL METHANE DERIVATIVE USING A MEROCYANINE SULPHONE DERIVATIVE, PHOTOPROTECTIVE COSMETIC COMPOSITIONS CONTAINING SAID COMBINATION

Abstract: The present invention concerns a method for photostabilizing at least one dibenzoylmethane derivative against UV radiation using at least one merocyanine sulphone derivative. The present invention also pertains to a composition comprising at least one UV screening system in a physiologically acceptable support, characterized in that it comprises at least: (a) at least one UV screen of the dibenzoylmethane derivative type; and (b) at least one merocyanine sulphone derivative. The present invention also pertains to the use of at least one merocyanine sulphone derivative in a composition comprising at least one UV screen of the dibenzoylmethane derivative type in a physiologically acceptable support, to improve the stability of said dibenzoylmethane derivative to UV radiation.
METHOD FOR PHOTOSTABILIZING A DIBENZOYL METHANE DERIVATIVE USING A MEROCYANINE SULPHONE DERIVATIVE; PHOTOPROTECTIVE COSMETIC COMPOSITIONS CONTAINING SAID COMBINATION

The present invention relates to a method for photostabilizing at least one dibenzoylmethane derivative against UV radiation using at least one merocyanine sulphone derivative with a given formula.

It also relates to novel compositions, in particular cosmetic compositions for topical use.

Light radiation with wavelengths in the range 280 nm to 400 nm is known to brown the human epidermis; more particularly, rays with a wavelength in the range 280 to 320 nm, known as UV-B, are known to cause erythema and cutaneous burns which may be deleterious to the development of a natural tan. For those and for aesthetic reasons, there is a constant demand for means for controlling natural tanning which can thereby control the colour of the skin; that UV-B radiation must therefore be screened.

It is also known that UV-A rays with wavelengths in the range 320 to 400 nm, which cause the skin to brown, tend to induce an impairment in it, in particular with sensitive skin or skin which is continually exposed to solar radiation. In particular, UV-A radiation causes the skin to lose elasticity and the appearance of wrinkles, resulting in premature ageing of the skin. The radiation encourages triggering the erythematous reaction or amplifies that reaction in certain subjects and may even be the cause of phototoxic or photo-allergic reactions. Hence, for aesthetic and cosmetic reasons, such as preserving the natural elasticity of the skin, for example, more and more people would like to control the effect of UV-A radiation on their skin. Thus, screening UV-A radiation is also desirable.

With the aim of ensuring protection of the skin and keratinous material against UV radiation, sunscreen
compositions are generally used which comprise organic screens which are active in the UV-A and active in the UV-B regions. The majority of such screens are liposoluble.

In this respect, a current particularly advantageous family of UV-A screens is constituted by dibenzoylmethane derivatives, in particular 4-tert-butyl-4′-methoxydibenzoyl methane, which have intrinsically good absorbing powers. Such dibenzoylmethane derivatives, which are now well known per se as screens which are active in the UV-A region, have been described in French patent applications FR-A-2 326 405 and FR-A-2 440 933, as well as in European patent application EP-A-0 114 607; 4-tert-butyl-4′-methoxydibenzoyl methane is currently marketed under the trade name "Parsol 1789" by ROCHE VITAMINS.

Unfortunately, it has been discovered that dibenzoylmethane derivatives are relatively sensitive to ultraviolet radiation (in particular UV-A), i.e., more precisely, they have an annoying tendency to degrade at a greater or lesser rate under the action thereof. This substantial lack of photochemical stability of dibenzoylmethane derivatives to the ultraviolet radiation to which they are by their very nature intended to be subjected cannot guarantee constant protection during prolonged exposure to the sun, and repeated applications at regular, close intervals have to be made by the consumer to effectively protect the skin against UV radiation.

The Applicant has now surprisingly discovered that by combining an effective quantity of a merocyanine sulphone derivative with a given formula with the dibenzoylmethane derivatives mentioned above, it is possible to substantially and remarkably improve the photochemical stability (or photostability) of those dibenzoylmethane derivatives.

This essential discovery forms the basis of the present invention.

Thus, in accordance with one aspect of the present
invention, we now propose a method for improving the stability of at least one dibenzoylmethane derivative against UV radiation, consisting in combining at least one merocyanine sulphone derivative with said dibenzoylmethane derivative.

In a further aspect, the invention also concerns a cosmetic or dermatological composition for topical use, characterized in that it comprises at least the following, in a cosmetically acceptable support:

(a) at least one UV screen of the dibenzoylmethane derivative type; and
(b) at least one merocyanine sulphone derivative.

The present invention also pertains to the use of at least one merocyanine sulphone derivative as a photostabilizing agent for UV screens of the dibenzoylmethane derivative type.

Finally, the present invention also pertains to the use of a merocyanine sulphone derivative in a cosmetic or dermatological composition comprising at least one UV screen of the dibenzoylmethane derivative type to improve the stability of said dibenzoylmethane derivative to UV radiation.

Other characteristics, aspects and advantages of the invention will become apparent from the following detailed description.

Throughout the present description, the term "system screening UV radiation" is intended to mean an agent screening UV radiation constituted either by a single UV radiation-screening organic or mineral compound or a mixture of several UV radiation-screening organic or mineral compounds, for example a mixture comprising a UV-A screen and a UV-B screen.

Non-limiting examples of dibenzoylmethane derivatives which may be cited include:

- 2-methyldibenzoylmethane;
- 4-methyldibenzoylmethane;
- 4-isopropylidibenzoylmethane;
- 4-tert-butyldibenzoylmethane;
- 2,4-dimethyldibenzoylmethane;
- 4 -

- 2,5-dimethyldibenzoylmethane;
- 4,4'-diisopropyl dibenzoylmethane;
- 4,4'-dimethoxydibenzoylmethane;
- 4-tert-butyl-4'-methoxydibenzoylmethane;
- 2-methyl-5-isopropyl-4'-methoxydibenzoylmethane;
- 2-methyl-5-tert-butyl-4'-methoxydibenzoylmethane;
- 2,4-dimethyl-4'-methoxydibenzoylmethane;
- 2,6-dimethyl-4-tert-butyl-4'-methoxydibenzoylmethane.

Of the dibenzoylmethane derivatives mentioned above, 4-isopropyl-dibenzoylmethane will in particular be used, sold under the trade name "EUSOLEX 8020" by MERCK, having the following formula:

```
\[ \text{Structure Image} \]
```

More particularly, 4-(tert-butyl)-4'-methoxy dibenzoylmethane or Butyl Methoxy Dibenzoylmethane, sold under the trade name "PARSOL 1789" by Roche Vitamins is preferably used; this screen has the following formula:

```
\[ \text{Structure Image} \]
```

The dibenzoylmethane derivative or derivatives may be present in the compositions in accordance with the invention in amounts which preferably vary from 0.01% to 10% by weight and more preferably from 0.1% to 5% by weight with respect to the total composition weight.

Examples of merocyanine sulphone derivatives of the present invention which may be cited are those
having one or another of the following formulae (1) to (3):

![Chemical structures](image)

in which:

- R_1 and R_2, which may be identical or different, represent H, a C_1-C_{22} alkyl radical, a C_3-C_8 cycloalkyl radical, a C_6-C_{20} aryl radical, it being understood that only one of R_1, R_2 is H and that R_1 and R_2 together with nitrogen may form a cycle containing the $-(CH_2)_n-$ group, which may be uninterrupted or interrupted by $-O-$ or by $-NH-$;

- R_3 represents a carboxyl group, $-COOR_5$, $-CONHR_5$, $-COR_5$, $-CONR_1R_5$, $-CN$ or $-SO_2R_5$;

- R_4 and R_5, which may be identical or different, represent a C_1-C_{22} alkyl radical, a C_3-C_8 cycloalkyl radical or a C_6-C_{20} aryl radical;

- Z_1 and Z_2, which may be identical or different, are $-(CH_2)_1-$ groups which may be uninterrupted or interrupted by $-O-$, $-S-$ or $-NR_5-$ and/or which may be unsubstituted or substituted with a C_1-C_6 alkyl
radical;

- R_6 is a C_1-C_5 alkyl radical;
- 1 is 1-4;
- m is 1-7;
- n is 1-4;

with the proviso that:

(i) when $n=2$, R_1, R_4 or R_5 is an alkyl diradical or R_1 and R_2 together with 2 nitrogen atoms form a divalent $-(CH_2)_m-$ radical;

(ii) when $n=3$, R_1, R_4 or R_5 are a trivalent radical;

(iii) when $n=4$, R_1, R_4 or R_5 are a tetravalent radical;

(iv) R_1 and R_2 are not simultaneously a hydrogen atom.

The compounds with formula (1) may be in their $E,E-$, $E,Z-$ or $Z,Z-$ isomeric forms.

Of these three families of compounds, compounds with formula (1) are preferred.

Particularly preferred compounds with formula (1) are those for which the following conditions are satisfied:

R_1 and R_2, which may be identical or different, designate C_1-C_{12} alkyl;

R_3 designates a COOR$_5$ group;

R_4 designates a phenyl or tolyl group;

R_5 designates C_1-C_{12} alkyl;

n equals 1 or 2.

Examples of particularly preferred compounds with formula (1) which may be cited are products with the following formulae (a) to (d):

Ethyl 5-(dihexylamino)-2-(phenylsulphonyl)-2,4-pentadienoate:
Octyl 5-N,N-diethylamino-2-phenylsulphonyl-2,4-pentadienoate:

Lauryl 5-N,N-diethylamino-2-phenylsulphonyl-2,4-pentadienoate:

Syntheses for derivatives with formulae (1) to (3) have been described in patents US 2 186 608, US 3 723 154, US 4 045 229, US 4 195 999, EP 0 127 819, EP 0 210 409, WO 2004/006878 and IPCOM000022279D.
Merocyanine sulphone derivative compounds in accordance with the present invention which may also be cited are those with one or another of the following formulae (4) to (6):

\[
\begin{align*}
(4) & \quad \begin{array}{c}
\text{R}_1 \text{N} \equiv \text{R}_2 \quad \text{O=S=O} \\
& \quad X \quad \text{A} \quad (\text{Si})-\text{O(=O)R}_1 \\
& \quad \text{R}_4 \\
& \quad \text{(R)}_a \\
& \quad \text{f}
\end{array} \\
(5) & \quad \begin{array}{c}
\text{Y} \\
& \quad \text{R}_2 \text{N} \equiv \text{R}_2 \quad \text{O=S=O} \\
& \quad X \quad \text{A} \quad (\text{Si})-\text{O(=O)R}_1 \\
& \quad \text{R}_4 \\
& \quad \text{(R)}_a \\
& \quad \text{f}
\end{array} \\
(6) & \quad \begin{array}{c}
\text{R}_2 \text{N} \equiv \text{R}_3 \quad \text{A} \quad \text{R}_4 \quad \text{O=S=O} \\
& \quad \text{(Si)} \quad \text{O(=O)R}_1 \\
& \quad \text{(R)}_a \\
& \quad \text{f}
\end{array}
\end{align*}
\]

in which:
- \(X \) represents \(-O-, -NR_2-\);
- \(R_1, R_2, R_3, R_4 \) have the meanings given in formulae (1), (2) and (3) indicated above;
- \(o = 0 \) or \(1 \);
- \(q = 0 \) or \(1 \);
- \(Y \) is a divalent \(C_1-C_5 \) alkyl radical, optionally substituted with \(C_1-C_4 \) alkyl radicals and/or containing \(-O-, -S- \) atoms, or with an \(-NR_1 \) group;
- \(R \), which may be identical or different, represent a linear or branched \(C_1-C_{20} \) alkyl radical which may optionally be halogenated, a \(C_6-C_{12} \) aryl radical or a \(C_1-C_{10} \) alkoxy group;
- \(a = 0 \) to \(3 \);
- \(A \) is a divalent radical selected from methylene, ethylene or a group having one of
the following formulae (7), (8) or (9):

\[\begin{align*}
&\text{CH}_2 = \text{CH} - (\text{Z})_p \quad (7) \\
&\begin{array}{c}
\text{W} \\
\end{array} \\
&\text{CH} = \text{CH} - (\text{Z})_p \quad (8) \\
&\begin{array}{c}
\text{CH}_2 \\
\end{array} \\
&\begin{array}{c}
\text{C} - (\text{Z})_p \\
\end{array} \quad (9)
\end{align*} \]

in which:

- Z is a linear or branched, saturated or unsaturated C\text{\textsubscript{1}}-C\text{\textsubscript{6}} alkylene radical, optionally substituted with a hydroxyl radical or a linear or branched, saturated or unsaturated C\text{\textsubscript{1}}-C\text{\textsubscript{6}} alkyl radical;
- W represents a hydrogen atom; a hydroxyl radical or a linear or branched, saturated or unsaturated C\text{\textsubscript{1}}-C\text{\textsubscript{6}} alkyl radical;
- p is 0 or 1;
- f = 1 or 2.

The compounds with formulae (4), (5) and (6) may be present in the E,E-, E,Z- or Z,Z- isomeric forms.

In addition to units with formula \(-\text{A}-(\text{Si})(\text{R})_a(\text{O})(\text{3-a})/2\), the organosiloxane may comprise units with formula \((\text{R})_b-(\text{Si})(\text{O})_{(4-b)/2}\) in which:

- \(b = 1, 2\) or 3.

Preferably, the \(-\text{Si}(\text{R})_a(\text{O})(\text{3-a})/2\) groups may be represented by the following formulae (10), (11) or (12):

\[\begin{align*}
(10) &\quad \begin{array}{c}
\text{Si-O} \quad \text{Si-O} \quad \text{Si-O} \quad \text{Si-O} \quad \text{Si-O} \quad \text{Si} \\
\text{R}_7 \\
\text{R}_7 \\
\text{R}_7 \\
\text{R}_7 \\
\text{R}_7 \\
\text{R}_7 \\
\text{B} \\
\end{array} \\
(11) &\quad \begin{array}{c}
\vdots \\
\text{R}_7 \\
\text{R}_7 \\
\text{R}_7 \\
\text{R}_7 \\
\text{R}_7 \\
\text{B} \\
\end{array} \\
(12) &\quad \begin{array}{c}
\vdots \\
\text{R}_7 \\
\text{R}_7 \\
\text{R}_7 \\
\text{R}_7 \\
\text{R}_7 \\
\text{B} \\
\end{array}
\end{align*} \]
in which:

- D binds the silicone chain of group A to chromophores with formulae (4) to (6);
- \(R_7 \), which may be identical or different, are selected from linear or branched \(C_1-C_{30} \) alkyl, phenyl, 3,3,3-trifluoropropyl and trimethylsilyloxy radicals, at least 80% by number of radicals \(R_6 \) being methyl;
- (B), which may be identical or different, are selected from radicals \(R_8 \) and radical A;
- \(r \) is a whole number in the range from 0 to 200 inclusive, and \(s \) is a whole number in the range from 0 to 50 inclusive, and if \(s=0 \), at least one of the two symbols (B) designates A;
- \(u \) is a whole number in the range from 1 to 10 inclusive, and \(t \) is a whole number in the range from 0 to 10 inclusive, it being understood that \(t+u \) equals 3 or more.

In formulae (1) to (7) above, the alkyl radicals may be linear or branched, saturated or unsaturated, and in particular selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-amyl, isoamyl, neopentyl, n-hexyl, n-heptyl, n-octyl, 2-ethylhexyl and tert-octyl. The methyl radical is the particularly preferred alkyl radical.

In formulae (1) to (7) above, the aryl radicals are preferably selected from phenyl and tolyl.

More particularly, \(Y \) is a group of atoms which results in the formation of an oxazolidine cycle, a pyrrolidine cycle, a thiazolidine cycle or an indoline bi-cycle.

Linear or cyclic diorganosiloxanes with formula (10) or (11) falling within the context of the present
invention are random oligomers or polymers preferably having at least one and preferably all of the following characteristics:

- R_8 is preferably methyl;
- B is preferably methyl (case of linear compounds with formula (10)).

Particularly preferred examples of compounds with formula (4) which may be cited are products with the following formulae (e) to (i):
Particularly preferred examples of compounds with formula (5) which may be cited are the mixture of
compounds with the following formula (j):

Particularly preferred examples of compounds with formula (6) which may be cited are compounds with the following formulae (k) to (o):
The derivatives with formula (4) may be prepared using a method as described in patents US 4 045 229 and US 4 195 999 in accordance with the following reaction scheme:
in which radicals R, R1, R2, R3, A, X, a and m have the meanings given in the above formulae.

The derivatives with formula (5) may be prepared using a method described in WO 0020388 in accordance with the following reaction scheme:

in which radicals R, R1, R2, A, X, Y, a and m have the meanings given in the above formulae.

The derivatives with formula (6) may be prepared using a method described in patents US 4 045 229 and US 4 195 999 in accordance with the following reaction scheme:

in which radicals R, R1, R2, R4, A, X, a and m have the meanings given in the above formulae.

Compounds with formula (14) may be obtained conventionally employing a hydrosilylation reaction starting from a siloxane or silane derivative of formulae (10) to (12) in which, for example, all of (D) are hydrogen atoms (this derivative is hereinafter denoted the SiH derivative) and an unsaturated derivative, in accordance with the following reaction scheme:
in which radicals R, R₁, A, X, Y, Z, a, m and p have the meanings given in the above formulae.

The SiH groups may be present in the chain and/or at the chain ends. Said SiH derivatives are products which are well known in the silicone industry and are generally commercially available. They have been described, for example, in American patents US 3 220 972, US 3 697 473 and US 4 340 709.

In a similar manner, the derivatives with formula (18) may be obtained in accordance with the following reaction scheme:

in which radicals R, R₂, Y, Z and p have the meanings given in the above formulae.

Merocyanine sulphone derivatives in accordance with the invention are preferably present in the compositions in accordance with the invention in amounts of 0.01% to 20% by weight, more preferably 0.1%
to 10%, more preferably 0.1% to 6% by weight with respect to the total composition weight.

According to the present invention, the merocyanine sulphone derivative or derivatives will be used in a quantity sufficient to obtain a substantial and significant improvement in the photostability of the dibenzoylmethane derivative in a given composition. This minimum quantity of photostabilizing agent to be used may vary depending on the starting quantity of dibenzoylmethane present in the composition and depending on the nature of the cosmetically acceptable support used in the composition. It may be determined without difficulty using a conventional photostability measuring test.

The compositions according to the invention are generally suited for topical application to the skin and thus generally comprise a physiologically acceptable medium, i.e. compatible with the skin and/or integuments (hair, eyelashes, eyebrows, nails).

Preferably, it is a cosmetically acceptable medium, i.e. with an agreeable colour, odour and feel which does not generate unacceptable discomfort (smarting, tightness, redness), which may deter the consumer from using that composition.

The compositions in accordance with the invention will preferably comprise other complementary organic or inorganic photoprotective agents which are active in the UV-A and/or UV-B region, which are hydrophilic or lipophilic or even insoluble in the cosmetic solvents in routine use.

The complementary organic photoprotective agents are selected in particular from anthranilates; cinnamic derivatives; salicylic derivatives; camphor derivatives; benzophenone derivatives; β,β-diphenyl-acrylate derivatives; triazine derivatives; benzotriazole derivatives; benzalmalinate derivatives, in particular those mentioned in patent US 5 624 663; benzimidazole derivatives; imidazolines; bis-benzoazolyl derivatives such as those described in
patents EP 0 669 323 and US 2 463 264; p-aminobenzoic acid (PABA) derivatives; methylene bis-(hydroxyphenyl benzotriazole) derivatives as described in applications US 5 237 071, US 5 166 355, GB 2 303 549, DE 197 26 184 and in EP 0 893 119; benoxazole derivatives as described in patent applications EP 0 832 642, EP 1 027 883, EP 1 300 137 and DE 101 62 844; polymeric screens and silicone screens such as those described in international patent application WO 93/04665; dimeric α-alkylstyrene derivatives such as those described in patent application DE-19855649; 4,4-diarylbutoadienes as described in applications EP0 0967200, DE-19746654, DE-19755649, EP 1 008 586, EP 1 133 980 and EP 0 133 981 and mixtures thereof.

Examples of complementary organic photoprotective agents which may be cited are those designated below under their INCI names:

Para-aminobenzoic acid derivatives:
PABA;
Ethyl PABA;

Ethyl Dihydroxypropyl PABA;
Ethylhexyl Dimethyl PABA, sold in particular under the trade name “ESCALOL 507” by ISP;
Glyceryl PABA;
PEG-25 PABA, sold under the trade name “UVINUL P25” by BASF;

Salicylic derivatives
Homosalate, sold under the trade name “Eusolex HMS” by Rona/EM Industries;
Ethylhexyl Salicylate, sold under the trade name “NEO HELIOPAN OS” by HAARMANN and REIMER;
Dipropylene glycol Salicylate, sold under the trade name “DIPSAL” by SCHER;
TEA Salicylate, sold under the trade name “NEO HELIOPAN TS” by HAARMANN and REIMER;

Cinnamic derivatives:
Ethylhexyl Methoxycinnamate, sold in particular under the trade name “PARSOL MCX” by HOFFMANN LA ROCHE;
Isopropyl Methoxy cinnamate;
Isoamyl Methoxy cinnamate, sold under the trade name “NEO HELIOPAN E 1000” by HAARMANN and REIMER;
Cinoxate;
DEA Methoxycinnamate;
Diisopropyl Methylcinnamate;
Glyceryl Ethylhexanoate dimethoxycinnamate;
\(\beta,\beta\)-diphenylacrylate derivatives:
Octocrylene, sold in particular under the trade name “UVINUL N539” by BASF;
Etocrylene, sold in particular under the trade name “UVINUL N35” by BASF;
Benzophenone derivatives:
Benzophenone-1, sold under the trade name “UVINUL 400” by BASF;
Benzophenone-2, sold under the trade name “UVINUL D50” by BASF;
Benzophenone-3 or Oxybenzone, sold under the trade name “UVINUL M40” by BASF;
Benzophenone-4, sold under the trade name “UVINUL MS40” by BASF;
Benzophenone-5;
Benzophenone-6, sold under the trade name “Helisorb 11” by Norquay;
Benzophenone-8, sold under the trade name “Spectra-Sorb UV-24” by American Cyanamid;
Benzophenone-9, sold under the trade name “UVINUL DS-49” by BASF;
Benzophenone-12;
n-Hexyl 2-(4-diethylamino-2-hydroxybenzoyl) benzoate, sold under the trade name “UVINUL A+” by BASF;
Benzylidene camphor derivatives:
3-benzylidene camphor made under the trade name “MEXORYL SD” by CHIMEX;
4-methyl benzylidene camphor, sold under the trade name “EUSOLEX 6300” by MERCK;
Benzylidene Camphor Sulfonic Acid, made under the trade name “MEXORYL SL” by CHIMEX;
Camphor Benzalkonium Methosulfate, made under the trade name "MEXORYL SO" by CHIMEX;
Terephthalylidene Dicamphor Sulfonic Acid, made under the trade name "MEXORYL SX" by CHIMEX;
Polyacrylamidomethyl Benzylidene Camphor, made under the trade name "MEXORYL SW" by CHIMEX;
Phenyl benzimidazole derivatives:
Phenylbenzimidazole Sulfonic Acid, sold under the trade name "EUSOLEX 232" by MERCK;
Disodium Phenyl Dibenzimidazole Tetra-sulfonate, sold under the trade name "NEO HELIOPAN AP" by HAARMANN and REIMER;
Phenyl benzotriazole derivatives:
Drometrizole Trisiloxane, sold under the trade name "Silatrizole" by RHODIA CHIMIE;
Methylene bis-Benzotriazolyl Tetramethylbutyl-phenol, sold in the solid form under the trade name "MIXXIM BB/100" by FAIRMOUNT CHEMICAL or in the micronized form in aqueous dispersion under the trade name "TINOSORB M" by CIBA SPECIALTY CHEMICALS;
Triazine derivatives:
Bis-Ethylhexyloxyphenol Methoxyphenyl Triazine, sold under the trade name "TINOSORBS" by CIBA GEIGY;
Ethylhexyl triazone, sold under the trade name "UVINUL T150" by BASF;
Diethylhexyl Butamido Triazone, sold under the trade name "UVASORB HEB" by SIGMA 3V;
2,4,6-Tris(dineopentyl 4'-aminobenzalmalonate)-s-triazine;
2,4,6-Tris-(diisobutyl 4'-aminobenzalmalonate)-s-triazine.
Anthranilic derivatives:
Menthyl anthranilate, sold under the trade name "NEO HELIOPAN MA" by HAARMANN and REIMER;
Imidazoline derivatives:
Ethylhexyl Dimethoxybenzylidene Dioxoimidazoline Propionate;
Benzalmalonate derivatives:
Di-neopentyl 4'-methoxybenzalmalonate;
Polyorganosiloxane with benzalmalonate functions, such as Polysilicone-15, sold under the trade name "PARSOL SLX" by HOFFMANN LA ROCHE;
4,4-Diarylbutadiene derivatives:

1,1-Dicarboxy (2,2'-dimethylpropyl)-4,4-diphenylbutadiene;

Benzoxazole derivatives:

2,4-Bis-[5-1(dimethylpropyl)benzoxazol-2-y1-(4-phenyl)-imino]-6-(2-ethylhexyl- imino)-1,3,5-triazine,
sold under the trade name "Uvasorb K2A" by Sigma 3V;
and mixtures thereof.

Preferred complementary organic photoprotective agents are selected from:

Ethylhexyl Methoxycinnamate;
Homosalate;
Ethylhexyl Salicylate;
Octocrylene;
Phenylbenzimidazole Sulfonic Acid;
Benzophenone-3;
Benzophenone-4;
Benzophenone-5;
n-Hexyl 2-(4-diethylamino-2-hydroxybenzoyl)-benzoate;
4-Methylbenzylidene camphor;
Terephthalylidene Dicamphor Sulfonic Acid;
Disodium Phenyl Dibenzimidazole Tetra-sulfonate;
Methylene bis-Benzotriazolyl Tetramethylbutylphenol;
Ethylhexyl triazine;
Bis-Ethylhexyloxyphenol Methoxyphenyl Triazine
Diethylhexyl Butamido Triazine;
2,4,6-Tris(dineopentyl 4'-aminobenzalmalonate)-s-triazine;
2,4,6-Tris-(diisobutyl 4'-aminobenzalmalonate)-s-triazine;
Drometrizole Trisiloxane;
Drometrizole Trisiloxane;
Polysilicone-15;
Di-neopentyl 4'-methoxybenzalmalonate;
1,1-Dicarboxy (2,2'-dimethylpropyl)-4,4-diphenyl-butadiene;
2,4-Bis-[5-1(dimethylpropyl)benzoxazol-2-yl-(4-phenyl)-imino]-6-(2-ethylhexyl)-imino-1,3,5-triazine;
and mixtures thereof.

Inorganic photoprotective agents are selected from pigments or nanopigments (mean primary particle size: generally between 5 nm and 100 nm, preferably between 10 nm and 50 nm) of metallic oxides which may or may not be coated, for example titanium oxide nanopigments (amorphous or crystalline in the rutile and/or anatase form), iron, zinc, zirconium or cerium, and mixtures thereof. Conventional coating agents include alumina and/or aluminium stearate. Such metallic oxide nanopigments, which may or may not be coated, are in particular described in European patent applications EP-A-0 518 772 and EP-A-0 518 773.

The additional photoprotective agents are generally present in the compositions according to the invention in proportions of 0.01% to 20% by weight with respect to the total composition weight, preferably 0.1% to 10% by weight with respect to the total composition weight.

The compositions of the invention may be in any of the forms which are suitable for topical application, in particular in the form of aqueous gels, in the form of emulsions obtained by dispersion of a fat phase (also termed the oily phase) in an aqueous phase (O/W) or the reverse (W/H), or multiple emulsions (for example W/O/W or O/W/O or O/O/W). They may be more or less fluid and have the appearance of a white or coloured cream, a pomade, a milk, a lotion, a serum, a paste, a powder, a solid stick, and may optionally be packaged as an aerosol and in the form of a foam or spray. These compositions are prepared using the usual methods.

In a particular implementation of the invention, the composition of the invention is in the form of an emulsion and then comprises at least one oily phase.
The proportion of the oily phase of the emulsion may be from 1% to 80% by weight, preferably 2% to 50% by weight and more preferably 2% to 40% by weight with respect to the total composition weight. The fats in the oily phase, in particular oils, and the emulsifying and co-emulsifying agents which may be present, used in the composition in the form of an emulsion are selected from those conventionally used in the cosmetics or dermatological field. The emulsifying and co-emulsifying agent, when present, are generally present in a proportion of 0.1% to 30% by weight, preferably 0.3% to 20% by weight and more preferably 0.5% to 15% by weight with respect to the total composition weight. The emulsion may also contain lipid vesicles in addition to or in place of the emulsifying and/or co-emulsifying agents.

The emulsions generally contain at least one emulsifying agent selected from amphoteric, anionic, cationic or nonionic emulsifying agents used alone or as a mixture. The emulsifying agents are suitably selected as a function of the continuous phase of the emulsion to be produced (W/H or O/W). When the emulsion is a multiple emulsion, it generally comprises an emulsifying agent in the primary emulsion and an emulsifying agent in the external phase into which the primary emulsion is introduced.

Emulsifying agents which may be used to prepare W/H emulsions which may be cited, are for example alkyl esters or sorbitan ethers, glycerol or sugars; silicone surfactants such as dimethicone copolyols, such as the mixture of cyclomethicone and dimethicone copolyol, sold under the trade names DC 5225 C and DC 3225 C by Dow Corning and such as alkyl-dimethicone copolyols such as Laurymethicone copolyol sold under the trade name "Dow Corning 5200 Formulation Aid" by Dow Corning, Cetyl dimethicone copolyol sold under the trade name Abil EM 90® by Goldschmidt and the mixture of Polyglyceryl-4 isostearate/Cetyl dimethicone copolyol/Hexyl laurate sold under the trade name Abil
WE 09^R by Goldschmidt. It is also possible to add thereto one or more co-emulsifying agents which, advantageously, may be selected from the group comprising esters of fatty acids with a branched chain and polyol, in particular esters of fatty acid with a branched chain and glycerol and/or sorbitan and, for example, polyglyceryl isostearate, such as the product sold under the trade name Isolan GI 34 by Goldschmidt, sorbitan isostearate, such as the product sold under the trade name Arlacel 987 by ICI, sorbitan isostearate and glycerol, such as the product sold under the trade name Arlacel 986 by ICI, and mixtures thereof.

Examples of emulsifying agents suitable for the preparation of O/W emulsions which may be cited are nonionic emulsifying agents such as esters of fatty acids and oxyalkylenated polyols (more particularly polyoxyethyleneated), for example polyethylene glycol stearates such as PEG-100 stearate, PEG-50 stearate and PEG-40 stearate; esters of fatty acids and oxyalkylenated sorbitan comprising 20 to 100 OE, for example, and for example those sold under the trade name Tween 20 or Tween 60 by Uniqema; ethers of oxyalkylenated (oxyethenylated and/or oxypropylenated) fatty alcohols; esters of sugars, alkoxylated or not, such as sucrose stearate and such as PEG-20 methylglucose sesquistearate; sorbitan esters such as sorbitan palmitate sold under the trade name Span 40 by Uniqema; esters of a dibasic acid and a fatty alcohol, such as dimyristyl tartrate; mixtures of these emulsifying agents such as a mixture of glyceryl stearate and PEG-100 stearate (CTFA name: Glyceryl Stearate/PEG-100 Stearate) sold under the trade name Arlacel 165 by Uniqema and under the trade name SIMULSOL 165 by SEPPIC; or the mixture of dimyristyl tartrate, cetearyl alcohol, Pareth-7 and PEG-25 laureth-25, sold under the trade name Cosmacol PSE by Sasol (CTFA name: Dimyristyl tartrate/cetearyl alcohol/12-15 Pareth-7/PPG 25 laureth 25); mixtures of fatty alcohols and alkylglycoside, such as the cetearyl
alcohol/cetearyl glucoside mixture, for example the commercially available product sold under the trade name MONTANOV 68 by SEPPIC.

Co-emulsifying agents may be added to said emulsifying agents, such as fatty alcohols containing 8 to 26 carbon atoms, such as cetyl alcohol, stearyl alcohol and a mixture thereof (cetearyl alcohol), octyldodecanol, 2-butyloctanol, 2-hexyldecanol, 2-undecylpentadecanol or oleic alcohol, or fatty acids, for example.

It is also possible to prepare emulsions without emulsifying surfactants or containing less than 0.5% of the total composition weight, using suitable compounds which can stabilize said emulsions, for example amphiphilic polymers, electrolytes.

When the composition of the invention is in the form of an emulsion, it comprises at least one oily phase which contains at least one oil, in particular a cosmetic oil. The term "oil" means a fat which is liquid at ambient temperature (25°C).

Examples of oils which can be used in the composition of the invention are hydrocarbon-containing oils of animal origin such as perhydrosqualene (or squalane); hydrocarbon-containing oils of vegetable origin, such as caprylic/capric acid triglycerides such as those sold by Stearineries Dubois or those sold under the trade name Miglyol 810, 812 and 818 by Dynamit Nobel, or oils of vegetable origin, for example sunflower, corn, soya, gourd, grapeseed, sesame, hazelnut, apricot, macadamia nut, arara, coriander, castor, avocado, jojoba oil, shea butter oil; synthesized oils; silicone oils such as volatile or non-volatile polymethylsiloxanes (PDMS) with a linear or cyclic silicone chain, which are liquid or pasty at ambient temperature; fluorinated oils such as partially hydrocarbonated and/or silicone oils, such as those described in Japanese document JP-A-2-295912; ethers such as dicapryl ether (CTFA name: Dicaprylyl ether); and benzoates of C₁₂-C₁₅ fatty alcohols (Finsolv TN from
FINETEX); arylalkyl benzoate derivatives such as 2-phenylethyl benzoate (X-Tend 226 from ISP); amide oils such as isopropyl N-lauroylsarcosinate (ELDEW SL-205 from Ajinomoto) and mixtures thereof.

The oily phase may also comprise one or more fats selected, for example, from fatty alcohols (cetyl alcohol, stearyl alcohol, cetearyl alcohol), fatty acids (stearic acid) and waxes (paraffin, polyethylene waxes, carnauba, beeswax).

The composition of the invention may also contain one or more organic solvents which may be selected from the group constituted by hydrophilic organic solvents, lipophilic organic solvents, amphiphilic solvents or mixtures thereof.

Examples of hydrophilic organic solvents which may be cited, for example, are linear or branched monohydric alcohols containing 1 to 8 carbon atoms, such as ethanol, propanol, butanol, isopropanol or isobutanol; polyethylene glycols containing 6 to 80 ethylene oxides; polyols such as propylene glycol, isopropylene glycol, butylene glycol, glycerol or sorbitol; mono- or di-alkyl isosorbides the alkyl groups of which contain 1 to 5 carbon atoms, such as dimethyl isosorbide; glycol ethers such as diethylene glycol mono-methyl or mono-ethyl ether and propylene glycol ethers such as dipropylene glycol methyl ether.

Amphiphilic organic solvents which may be cited include polypropylene glycol (PPG) derivatives, such as esters of polypropylene glycol and fatty acids, PPG and fatty alcohol such as PPG-23 oleyl ether and PPG-36 oleate.

Examples of lipophilic organic solvents which may be cited are fatty esters such as diisopropyl adipate, dioctyl adipate or alkyl benzoates.

The compositions of the present invention may also comprise conventional cosmetic adjuvants selected from softeners, moisturizers, opacifying agents, stabilizers, emollients, silicones, anti-foaming agents, fragrances, preservatives, anionic, cationic, nonionic,
zwitterionic or amphoteric surfactants, fillers, polymers, propellants, alkalinizing or acidifying agents or any other ingredient which is normally used in the cosmetics and/or dermatological field.

Hydrophilic thickeners which may be cited include carboxyvinyl polymers such as carbopols (carbomers) and Pemulens (Copolymer acrylate/C10-C30-alkylacrylate); cellulose derivatives such as hydroxyethylcellulose; polysaccharides and in particular, gums such as xanthan gum; and mixtures thereof.

Lipophilic thickeners which may be cited include modified clays, such as hectorite and its derivatives, for example products sold under the trade name Bentone.

Preservatives which may be cited include parahydroxybenzoic acid esters also known as Parabens® (in particular methyl paraben, ethyl paraben, propyl paraben), phenoxyethanol, formol liberators such as, for example, imidazolidinyl urea or diazolidinyl urea, chlorhexidine digluconate, sodium benzoate, caprylyl glycol, iodopropynyl butyl carbamate, pentylene glycol, alkyl trimethylammonium bromide such as myristyltrimethylammonium bromide (CTFA name: Myrtrimonium bromide), dodecyl-trimethylammonium bromide, hexadecyltrimethylammonium bromide, and mixtures thereof such as the mixture sold under the trade name Cetrimide® by FEF CHEMICALS. The preservative may be present in the composition of the invention in an amount of 0.001% to 10% by weight with respect to the total composition weight, especially 0.1% to 5% by weight, and in particular 0.2% to 3% by weight.

Examples of fillers which may be used in the composition of the invention which may be cited are, for example, pigments; silica powder; talc; polyamide particles, in particular those sold under the trade name ORGASOL by Atochem; polyethylene powders; powders of natural organic materials such as starch powders, in particular of corn, wheat or rice starch, which may or may not be cross-linked, such as powders of starch cross-linked by octenylsuccinate anhydride, sold under
the trade name DRY-FLO by National Starch; microspheres
based on acrylic copolymers, such as those formed from
an ethylene glycol dimethacrylate/lauryl methacrylate
copolymer sold by Dow Corning under the trade name
POLYTRAP; polymethylmethacrylate powders such as those
sold under the trade name MICROPEARL M 100 by
Matsumoto; expanded powders such as hollow microspheres,
in particular microspheres sold under the trade name
EXPANCEL by Kemanord Plast or under the trade name
MICROPEARL F 80 ED by Matsumoto; silicone resin
microbeads, such as those sold under the trade name
TOSPEARL by Toshiba Silicone; polyurethane powders,
such as hexamethylene diisocyanate/trimethylol
hexyllactone copolymer sold under the trade name
Plastic Powder D-400 by Toshiba Pigment (CTFA name:
HDI/Trimethylol Hexyllactone Crosspolymer); and
mixtures thereof. When they are present, these fillers
may be in quantities of 0.001% to 20% by weight,
preferably 0.1% to 10% by weight and more preferably 1%
to 5% by weight with respect to the total composition
weight.

Clearly, the skilled person will take care to
select any complementary compounds as cited above
and/or their quantities such that the advantageous
properties intrinsically attached to the combination in
accordance with the invention are not impaired or not
substantially impaired by the envisaged adjuncts.

The composition of the invention may constitute a
skin care product, in particular for the face, the neck,
the contours of the eye, the body; or a skin makeup
product such as a tinting product (in particular a
foundation), an eye shadow, a blusher, an eye-liner, a
concealer, a body makeup product, a sun protection
product or a skin cleansing product. Preferably, the
composition of the invention is a sun protection
product.

The composition is generally not washed off, but
may be washed off if it constitutes a cleansing product,
in particular a foaming product.
The invention also provides a method for the cosmetic treatment of a keratinous material such as the skin, eyelashes, eyebrows, nails or mucosal membranes, characterized in that a composition as defined above is applied to the keratinous material.

The compositions of the invention may be in the form of sprayable fluid lotions in accordance with the invention which are applied to the skin or the hair in the form of fine particles using pressurization devices. The devices of the invention are well known to the skilled person and include non-aerosol pumps or atomizers, aerosol receptacles comprising a propellant and aerosol pumps using compressed air as the propellant. These latter have been described in US-A-4 077 441 and US-A-4 850 517 (forming an integral part of the contents of the description).

Compositions packaged in aerosol form in accordance with the invention generally contain conventional propellants such as hydrofluorinated compounds, dichlorodifluoromethane, difluoroethane, dimethylether, isobutane, n-butane, propane or trichlorofluoromethane. They are preferably present in quantities of 15% to 50% by weight with respect to the total composition weight.

The invention will now be described with reference to the following examples, given by way of non-limiting illustration. In the examples, unless otherwise indicated, the quantities are expressed as percentages by weight.

The following solar formulations were produced; the quantities are indicated as percentages by weight.
SYNTHESIS EXAMPLES:

EXAMPLE 1: Preparation of compound (k) with formula (6)

5 First step: Preparation of methyl 5-
[allyl(methyl)amino]-2-[(4-
methylphenyl)sulphonyl]penta-2,4-dienoate:

3-Anilinoacrolein aniline (1.2 g, 5.4 \times 10^{-3} \text{ mol})
and methyl para-toluene sulphonyl acetate (1.48 g,
6.48 \times 10^{-3} \text{ mol}) was heated to 85-90°C in 5 ml of acetic
anhydride for 2 hours 30 minutes. The acetic anhydride
was evaporated to dryness under reduced pressure. The
oil obtained was taken up in 5 ml of ethanol. N-Methyl
allylamine (1.115 ml, 0.0117 mol) was added and the
mixture was heated under reflux for 4 hours 30 minutes.
The ethanol was evaporated to dryness under reduced
pressure. The orangish-brown oil obtained was purified
on a silica chromatographic column (eluent:
EtOAc/heptane 20:80, then gradient to 30:70). 1.48 g
of fractions (yield: 77%) of methyl 5-
[allyl(methyl)amino]-2-[(4-methylphenyl)sulphonyl]penta-
2,4-dienoate were obtained in the form of a pale yellow
oil:

\[
\text{UV (CH}_2\text{Cl}_2): \lambda_{\text{max}} = 370 \text{ nm} \quad E_{1\%} = 1346
\]
\[
\lambda_{\text{max}} = 356 \text{ nm (shoulder)} \quad E_{1\%} = 1031
\]

Second step: Preparation of compound of Example 1:

0.371 g (1.67 \times 10^{-3} \text{ mol}) of heptamethyl-
trisiloxane was added dropwise over 10 minutes to a
solution of the preceding product
(0.508 g, 1.51 \times 10^{-3} \text{ mol}) and catalyst (complex
containing 3-3.5% by weight of Pt in
cyclovinylmethylsiloxane, from Hüls Petrarch PC085:
100 \mu l) in 2 ml of dry toluene heated to 80°C. It was
left at this temperature for 6 hours. The reaction mixture was concentrated. It was taken up in dichloromethane and this solution was passed over a bed of Celite. The pale yellow oil obtained was chromatographed on a silica column (eluent: heptane/EtOAc 65:35). 0.45 g (yield: 53%) of fractions of the derivative of Example 1 was obtained in the form of a pale yellow oil which crystallized slowly:

UV (ethanol):

\[\lambda_{\text{max}} = 372 \text{ nm} \quad E_{1\%} = 1154 \]

\[\lambda_{\text{max}} = 356 \text{ nm} \quad (\text{shoulder}) \quad E_{1\%} = 773 \]

EXAMPLE 2: Preparation of compound (f) with formula (4)

\[
\begin{align*}
&\text{Si-O-Si} \quad \text{Si-O-Si} \quad \text{Si-O-Si} \\
&\text{N} \quad \text{O} \quad \text{O} \\
&\text{SO} \quad \text{O} \\
&(f)
\end{align*}
\]

0.325 g (2 meq SiH) of methylhydro (50-55%) dimethysilosoxane (45-50%) copolymer (PS122.5 from Petrarch) was added dropwise over 10 minutes to a solution of methyl 5-[allyl(methyl)amino]-2-[(4-methylphenyl)sulphonyl]penta-2,4-dienoate (0.7 g, 2.1 x 10^{-3} \text{ mol}) obtained in the first step of Example 1 and catalyst (complex containing 3-3.5% by weight of Pt in cyclovinylmethyilsiloxane, from Hüls Petrarch PC085: 80 \mu l) in 2 ml of dry toluene heated to 80°C. It was left at this temperature for 6 hours. The reaction mixture was concentrated. It was taken up in dichloromethane and this solution was passed over a bed of Celite. The pale yellow oil obtained was chromatographed on a silica column (eluent: CH₂Cl₂). 0.92 g of fractions of the derivative of Example 2 was
thus obtained in the form of a viscous pale yellow oil:

UV (ethanol) $\lambda_{\text{max}} = 371$ nm $E_{1\%} = 728$

EXAMPLE 3: Preparation of a mixture of compounds (m)

with formula (6):

![Chemical structure](image)

(m)

First step: Preparation of ethyl 5-[methyl(prop-2-ynyl)amino]-2-(phenylsulphonyl)penta-2,4-dienoate:

3-Anilinoacroline aniline (1.5 g, 6.75 x 10^{-3} mol) and ethyl phenylsulphonyl acetate (1.848 g, 8.1 x 10^{-3} mol) was heated to 85-90°C in 5 ml of acetic anhydride for 3 hours. The acetic anhydride was evaporated to dryness under reduced pressure. The oil obtained was taken up in 5 ml of ethanol. N-Methyl propargylamine (1.22 ml, 0.0146 mol) was added and the mixture was heated under reflux for 5 hours. The ethanol was evaporated to dryness under reduced pressure. The orangish oil obtained was purified on a silica chromatographic column (eluent: EtOAc/heptane 50:50, then gradient to 30:70). 1.68 g of fractions (yield: 71%) of ethyl 5-[methyl(prop-2-ynyl)amino]-2-(phenylsulphonyl)penta-2,4-dienoate were obtained in the form of a pale yellow oil:

UV (CH$_2$Cl$_2$): $\lambda_{\text{max}} = 366$ nm $E_{1\%} = 1367$

$\lambda_{\text{max}} = 358$ nm (shoulder) $E_{1\%} = 1298$

Second step: Preparation of compound of Example 3:

0.413 g (1.86 x 10^{-3} mol) of heptamethyltrisiloxane was added dropwise over 10 minutes to a solution of the preceding product (0.562 g, 1.69 x 10^{-3} mol) and catalyst (complex containing 3-3.5% by weight of Pt in cyclovinylmethylsiloxane, from Hüls Petrarch PC085: 60 µl) in 2 ml of dry toluene heated to 80°C. It was left at this temperature for 6 hours. The reaction mixture
was concentrated. It was taken up in dichloromethane and this solution was passed over a bed of Celite. The pale yellow oil obtained was chromatographed on a silica column (eluent: CH₂Cl₂). 0.35 g (yield: 37%) of fractions of the derivative of Example 3 was obtained in the form of a pale orangish yellow oil which crystallized slowly in a ratio of 25: 75 as determined by¹H NMR:

UV (ethanol):

λ_max = 366 nm \[E_{1%} = 1058 \]
λ_max = 356 nm (shoulder) \[E_{1%} = 705 \]

EXAMPLE 4: Preparation of compound (n) with formula (6):

1.24 g (2.3 meq SiH) of methylhydro (30-35%) dimethylsiloxane (65-70%) copolymer (PDMS oil with SiH 628V14 from Rhône Poulenc) were added dropwise over 10 minutes to a solution of ethyl 5-[(methyl(prop-2-ynyl)amino)-2-(phenylsulphonyl)penta-2,4-dienoate (0.8 g, 2.41 x 10⁻³ mol) obtained in the first step of Example 3 and catalyst (complex containing 3-3.5% by weight of Pt in cyclovinylmethylsiloxane, from Hüls Petarch PC085: 110 µl) in 2 ml of dry toluene heated to 80°C. It was left at this temperature for 6 hours. The reaction
mixture was concentrated. It was taken up in dichloromethane and this solution was passed over a bed of Celite. The pale yellow oil obtained was chromatographed on a silica column (eluent: CH₂Cl₂).

1.82 g of fractions of the derivative of Example 4 were obtained in the form of a viscous pale yellow oil:

UV (ethanol): λ_{max} = 366 nm E_{1%} = 270

EXAMPLE 5: Preparation of compound (p) with formula (6)

![Chemical structure](image)

First step: Preparation of methyl 5-[allyl-(methyl)amino]-2-(phenylsulphonyl)penta-2,4-dienoate:

3-Anilinoacrolein aniline (9.2 g, 0.0414 mol) and methyl sulphonyl acetate (10.6 g, 0.0497 mol) were heated to 50°C in 50 ml of acetic anhydride for 1 hour. The acetic anhydride was evaporated to dryness under reduced pressure. The oil obtained was taken up in 50 ml of ethanol. N-Methyl allylamine (12 ml, 0.126 mol) was added and the mixture was heated under reflux for 1 hour 15 minutes. The ethanol was evaporated to dryness under reduced pressure. The brown solid obtained was purified by passage over a silica chromatographic column (eluent: EtOAc/heptane 40:60, then gradient to 50:50). 10 g of fractions (yield: 77%) of methyl 5-[allyl(methyl)amino]-2-(phenylsulphonyl)penta-2,4-dienoate were obtained in the form of a yellow solid and used as is in the next step:

Second step: Preparation of compound of Example 1:

7.1 g (0.0305 mol) of heptamethyltrisiloxane were added dropwise over 10 minutes to a solution of the preceding product (9.3 g, 0.029 mol) and catalyst (complex containing 3-3.5\% by weight of Pt in cyclovinylmethylsiloxane, from Hüls Petrarch PC085: 250 µl) in 55 ml of dry toluene heated to 60°C. The
reaction mixture was heated under reflux for 3 hours. The reaction mixture was concentrated. The crude solid obtained was re-crystallized from heptane then chromatographed on a silica column (eluent: heptane/EtOAc 70:30). 8.6 g (yield: 55%) of fractions of the derivative of Example 5 were obtained in the form of a pale yellow powder:
m.p. 110-119°C
UV (ethanol): $\lambda_{\text{max}} = 371$ nm $\epsilon_{1%} = 1370$

PHOTOSTABILITY TESTS OF DIBENZOYL METHANE SCREEN:
The following two emulsions A and B were produced

Formula A (invention):
Cetearyl glucoside/cetearyl alcohol mixture (MONTANOV 68)
Benzoate of C12/C15 alcohols (WITCONOL TN-WITCO)
Compound k)
4-tert-Butyl-4′-methoxy dibenzoyl methane
Glycerin
Preservatives
Demineralized water

Formula B (outside invention):
Cetearyl glucoside/cetearyl alcohol mixture (MONTANOV 68)
Benzoate of C12/C15 alcohols (WITCONOL TN-WITCO)
4-tert-Butyl-4′-methoxy dibenzoyl methane
Glycerin
Preservatives
Demineralized water

About 20 mg of the above emulsion were spread over
10 cm² of the surface of a ground silica disc: the exact quantity of the deposit was determined by weighing.

The films of the solutions were irradiated for one hour using an ORIEL solar simulator (UV-A = 14.4 mW/cm²; UV-B = 0.43 mW/cm²) in a dose of 12 J/cm², then extracted with 10 ml of ethanol with 10% isopropanol and 5 min of ultrasound. The products were quantified by HPLC carried out on the extracts.

The degree of loss was determined by comparing the quantities of product present in the irradiated samples and, in the simultaneously prepared non-irradiated references treated in the same manner (mean of 3 samples).

PHOTOSTABILITY RESULTS

<table>
<thead>
<tr>
<th>Test composition</th>
<th>% disappearance of Parsol 1789 (mean loss)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula A</td>
<td>5 ± 1.7</td>
</tr>
<tr>
<td>(Parsol 1789 + compound k)</td>
<td></td>
</tr>
<tr>
<td>Formula B (Parsol 1789 alone)</td>
<td>45 ± 2.4</td>
</tr>
</tbody>
</table>
CLAIMS
1. Method for photostabilizing at least one dibenzoylmethane derivative against UV radiation, characterized in that it consists in combining at least one merocyanine sulphone derivative with said dibenzoylmethane derivative.
2. Method according to Claim 1, in which the dibenzoylmethane derivative is selected from:
 - 2-methyldibenzoylmethane;
 - 4- methyldibenzoylmethane;
 - 4-isopropyldibenzoylmethane;
 - 4-tert-butylidibenzoylmethane;
 - 2,4-dimethyldibenzoylmethane;
 - 2,5-dimethyldibenzoylmethane;
 - 4,4′-diisopropyldibenzoylmethane;
 - 4,4′-dimethoxydibenzoylmethane;
 - 4-tert-butyl-4′-methoxydibenzoylmethane;
 - 2-methyl-5-isopropyl-4′-methoxydibenzoylmethane;
 - 2-methyl-5-tert-butyl-4′-methoxydibenzoylmethane;
 - 2,4-dimethyl-4′-methoxydibenzoylmethane;
 - 2,6-dimethyl-4-tert-butyl-4′-methoxydibenzoylmethane.
3. Method according to Claim 2, in which the dibenzoylmethane derivative is 4-(tert-butyl)4′-methoxydibenzoylmethane or Butyl Methoxy Dibenzoylmethane.
4. Method according to any one of Claims 1 to 3, in which the merocyanine sulphone derivative corresponds to one or another of the following formulae (1) to (3):
in which:

- R_1 and R_2, which may be identical or different, represent H, a C$_1$-C$_{22}$ alkyl radical, a C$_3$-C$_8$ cycloalkyl radical, a C$_6$-C$_{20}$ aryl radical, it being understood that only one of R_1, R_2 is H and that R_1 and R_2 together with nitrogen may form a cycle containing the $-(\text{CH}_2)_m-$ group, which may be uninterrupted or interrupted by $-\text{O}-$ or by $-\text{NH}-$;

- R_3 represents a carboxyl group, $-\text{COOR}_4$, $-\text{CONHR}_4$, $-\text{COR}_4$, $-\text{CONR}_1\text{R}_4$, $-\text{CN}$ or $-\text{SO}_2\text{R}_4$;

- radicals R_4, which may be identical or different, represent a C$_1$-C$_{22}$ alkyl radical, a C$_3$-C$_8$ cycloalkyl radical or a C$_6$-C$_{20}$ aryl radical;

- Z_1 and Z_2, which may be identical or different, are $-(\text{CH}_2)_m-$ groups which may be uninterrupted or interrupted by $-\text{O}-$, $-\text{S}-$ or $-\text{NR}_5$ and/or which may be unsubstituted or substituted with a C$_1$-C$_6$ alkyl radical;
- 39 -

- R₅ is a C₁-C₅ alkyl radical;
- l is 1-4;
- m is 1-7;
- n is 1-4;

with the proviso that:
(i) when n=2, R₁, R₄ is an alkyl diradical or R₁ and R₂ together with 2 nitrogen atoms form a divalent -(CH₂)ₘ- radical;
(ii) when n=3, R₁ and R₄ are a trivalent radical;
(iii) when n=4, R₁, R₄ are a tetravalent radical;
(iv) R₁ and R₂ are not simultaneously a hydrogen atom.

5. Method according to Claim 4, in which the merocyanine sulphone derivative with formula (I) is selected from those for which the following conditions are satisfied:
R₁ and R₂, which may be identical or different, designate C₁-C₁₂ alkyl;
R₃ designates a COOR₅ group;
R₄ designates a phenyl group;
R₅ designates C₁-C₁₂ alkyl;
n equals 1 or 2.

6. Method according to Claim 5, in which the merocyanine sulphone derivative is selected from the following compounds:
Ethyl 5-(dihexylamino)-2-phenylsulphonyl-2,4-pentadienoate:

Octyl 5-N,N-diethylamino-2-phenylsulphonyl-2,4-pentadienoate:
Lauryl 5-N,N-diethylamino-2-phenylsulphonyl-2,4-pentadienoate:

Method according to any one of Claims 1 to 3, in which the merocyanine sulphone derivative has one or another of the following formulae (4) to (6):
in which:
- X represents \(-O-, \text{ or } -NR_5-\);
- wherein \(R_1, R_2, R_3, R_4\) have the meanings given in formula (1) defined in the preceding claims;
- \(q = 0 \text{ or } 1\);
- \(Y\) is a divalent \(\text{C}_1-\text{C}_5\) alkyl radical, optionally substituted with \(\text{C}_1-\text{C}_4\) alkyl radicals and/or containing \(-O-, -S-\) atoms or with an \(-\text{NR}_1\) group;
- \(R_1\) which may be identical or different, represent a linear or branched \(\text{C}_1-\text{C}_{20}\) alkyl radical which may optionally be halogenated, a \(\text{C}_6-\text{C}_{12}\) aryl radical or a \(\text{C}_1-\text{C}_{10}\) alkoxy group;
- \(a = 0 \text{ to } 3\);
- \(A\) is a divalent radical selected from methylene, ethylene or a group having one of the following formulae (7), (8) or (9):
in which:

5
- Z is a linear or branched, saturated or unsaturated C₁-C₆ alkyylene radical, optionally substituted with a hydroxyl radical or a linear or branched, saturated or unsaturated C₁-C₈ alkyl radical;
- W represents a hydrogen atom; a hydroxyl radical or a linear or branched, saturated or unsaturated C₁-C₆ alkyl radical;
- p is 0 or 1;
- f = 1 or 2.

8. Method according to Claim 7, in which the compound with formula (4), (5) or (6) further comprises units with formula \((R)_{2-b}-(Si)(O)_{(4-b)}/2\) in which:
- R has the meaning given in formulae (1) to (3);
- b = 1, 2 or 3.

9. Method according to Claim 7 or 8, in which the \(-(Si)(R)_{2}(O)_{(3-a)/2}\) groups are represented by the following formulae (10), (11) or (12):

25
in which:

- D binds the silicone chain of group A to chromophores with formulae (4) to (6);
- \(R_7\), which may be identical or different, are selected from linear or branched \(C_1-C_{30}\) alkyl, phenyl, 3,3,3-trifluoropropyl and trimethylsilyloxy radicals, at least 80% by number of radicals \(R_8\) being methyl;
- (B), which may be identical or different, are selected from radicals \(R_8\) and radical A;
- \(r\) is a whole number in the range from 0 to 200 inclusive, and \(s\) is a whole number in the range from 0 to 50 inclusive, and if \(s=0\), at least one of the two symbols (B) designates A;
- \(u\) is a whole number in the range from 1 to 10 inclusive, and \(t\) is a whole number in the range from 0 to 10 inclusive, it being understood that \(t+u\) equals 3 or more.

10. Method according to any one of claims 7 to 9, in which the merocyanine sulphone derivative is a linear or cyclic diorganosiloxane with formula (10) or (11) having at least one, and more preferably all of the following characteristics:

- \(R_7\) is methyl;
- B is methyl.

11. Method according to any one of claims 7 to 9, in which the compounds with formula (4) are selected from the following compounds:
12. Method according to any one of Claims 7 to 9, in which the compounds with formula (5) are selected from the following mixture of compounds with formula (j):

13. Method according to any one of Claims 7 to 9, in which the compounds with formula (5) are selected from the following compounds:
14. Composition comprising at least one screening system in a physiologically acceptable support, characterized in that it comprises:

(a) at least one UV screen of the dibenzoylmethane derivative type as defined in any one of the preceding claims; and

(b) at least one merocyanine sulphone derivative as defined in any one of the preceding claims.

15. Composition according to Claim 14, in which the dibenzoylmethane derivative or derivatives is (are) present in amounts of 0.01% to 20% by weight, more preferably 0.1% to 10% by weight, still more preferably 0.1% to 6% by weight with respect to the total composition weight.

16. Composition according to Claim 14 or 15, in which the merocyanine sulphone derivative(s) is (are) present in amounts of 0.01% to 20% by weight, more preferably 0.1% to 10% by weight and still more preferably 0.1% to 6% by weight with respect to the total composition weight.

17. Composition according to any one of Claims 14 to 16, characterized in that it constitutes a skin care product, a makeup product for the skin, a sun protection product or a skin cleansing product.

18. Composition according to Claim 17, characterized in that it constitutes a sun protection product.

19. Method for the cosmetic treatment of a keratinous material, characterized in that a cosmetic composition according to any one of Claims 14 to 18 is applied to the keratinous material.

20. Use of at least one merocyanine sulphone derivative as defined in the preceding claims, as a photostabilizing agent for a UV screen of the
dibenzoylmethane derivative type as defined in any one of the preceding claims.

21. Use of at least one merocyanine sulphone derivative as defined in the preceding claims in a composition comprising, in a physiologically acceptable support, at least one dibenzoylmethane derivative as defined in any one of the preceding claims, to improve the stability of said dibenzoylmethane derivative to UV radiation.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. A61K8/46 A61K8/49 A61Q17/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2004/006878 A (CIBA SPECIALTY CHEMICALS HOLDING INC; WAGNER, BARBARA; EHLIS, THOMAS;) 22 January 2004 (2004-01-22) page 1 - page 2; claims page 19; example MC172; table MC2e page 25, last paragraph page 29, table 3, compound no 11, RN 70356-09-1 & Butylmethoxydibenzoylmethane (Parso 1789) page 31, line 1 - line 19 page 47 - page 55; examples</td>
<td>14-19</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C.
[X] See patent family annex.

*Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the International filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the International filing date but later than the priority date claimed

"T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search
19 September 2006

Date of mailing of the international search report
28/09/2006

Name and mailing address of the ISA/
European Patent Office, P.B. 5018 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3018

Authorized officer
Pelli Wablat, B
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2004/075871 A (FUJI PHOTO FILM B.V; TODA, YUZO; KLUIJTMANS, SEBASTIANUS, GERARDUS, JO) 10 September 2004 (2004-09-10) page 4, last paragraph - page 5, line 10 page 11, line 19 - page 12, line 2 page 16, line 16 - line 18 claims 1,8,9</td>
<td>1-21</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 709 080 A (GIVAUDAN-ROURE S.A; F. HOFFMANN-LA ROCHE AG) 1 May 1996 (1996-05-01) the whole document</td>
<td>1-21</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 868 905 A (L’OREAL) 7 October 1998 (1998-10-07) claims</td>
<td>1-21</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 2004006878 A</td>
<td>22-01-2004</td>
<td>AU 2003250866 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0312500 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1665475 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005538072 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA05004440 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005255055 A1</td>
</tr>
<tr>
<td>WO 2004075871 A</td>
<td>10-09-2004</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 701064 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 3424595 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69525217 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69525217 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 709080 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2170116 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 115558 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8277213 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2988902 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 10324620 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3027158 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000136120 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5951968 A</td>
</tr>
</tbody>
</table>