ITALIAN PATENT OFFICE

Document No.

102011901973831A1

Publication Date

20130224

Applicant

I.M.A. INDUSTRIA MACCHINE AUTOMATICHE S.P.A.

Title

DISPOSITIVO E METODO PER RIEMPIRE CAPSULE

Descrizione dell'invenzione industriale dal titolo:

DISPOSITIVO E METODO PER RIEMPIRE CAPSULE

a nome: I.M.A. Industria Macchine Automatiche S.p.A., di nazionalità italiana, con sede in Via Emilia 428-442, 40064 Ozzano Emilia (Bologna)

Inventori designati: Massimo RIBANI, Fabrizio Salvatore CONSOLI, Roberto TREBBI Depositata il:

DESCRIZIONE

La presente invenzione si riferisce ad un dispositivo ed ad un metodo di riempimento per riempire capsule od opercoli con prodotti, in particolare forme solide ad uso farmaceutico, alimentare e/o cosmetico.

L'invenzione trova particolare applicazione in una macchina automatica per il confezionamento di capsule od opercoli ad uso farmaceutico, alimentare e/o cosmetico.

Sono note nell'arte macchine per confezionare compresse all'interno di capsule di gelatina dura. Il brevetto europeo EP 0 825 846 mostra, ad esempio, una macchina automatica per confezionare capsule di gelatina del tipo fondello - coperchio contenenti ciascuna una compressa. La macchina automatica mostrata in EP 0 825 846 è del tipo intermittente e comprende gruppi di boccole portati a cooperare con una serie di stazioni in successione: una prima stazione che alimenta i fondelli delle capsule in rispettive boccole; una seconda stazione che alimenta una compressa all'interno di un rispettivo fondello; una terza stazione che alimenta i coperchi delle capsule al di sopra di una rispettiva compressa; una quarta stazione che controlla se nelle boccole sono presenti rispettivi fondello, compressa e coperchio; una quinta stazione che chiude fondello e coperchio con compressa interposta; una sesta stazione di espulsione delle capsule contenenti una compressa con relativo dispositivo di scarto delle compresse rilevate difettose.

La seconda stazione che alimenta la compressa all'interno del fondello della capsula

comprende un magazzino verticale all'interno del quale le compresse sono allineate. Un sistema pneumatico di trattenimento compresse comprende due fori di aspirazione posizionati trasversalmente al magazzino che cooperano con un cassetto trasferitore mobile in orizzontale per trattenere e trasferire una compressa alla volta dal magazzino al fondello dell'opercolo. I fori di aspirazione sono posizionati ad un'altezza rispetto al cassetto trasferitore mobile tale per cui è garantito un corretto funzionamento della stazione di alimentazione anche in presenza di compresse rotte. In altre parole, il sistema pneumatico in cooperazione con il cassetto trasferitore mobile garantisce di non rompere tutte le compresse successive ad una prima compressa rotta durante il trasferimento dal magazzino al fondello della capsula. In ogni caso, nella quarta stazione viene controllato, tramite sensori collegati a puntali mobili, se sono presenti fondello, compressa e coperchio, e se la compressa è integra.

La macchina sopra illustrata ottiene ottimi risultati in termini di sicurezza del controllo nel caso di una compressa per opercolo, ma potrebbe risultare inefficace nel caso si vogliano controllare capsule alimentate con più prodotti (compresse, granuli, o cronoidi, ecc) di dimensioni relativamente piccole rispetto a fondelli relativamente grandi, perché i puntali mobili potrebbero non rilevare tutti i prodotti contenuti nel fondello. Inoltre, la macchina risulta relativamente costosa e complicata a causa del sistema pneumatico di trattenimento compresse, del cassetto trasferitore mobile e dei puntali mobili.

Per superare gli svantaggi precedenti, è noto omettere i puntali mobili con i relativi sensori e pesare tutti le capsule confezionate nella macchina automatica per verificare se sono state correttamente riempite, ma tale soluzione comporta costi aggiuntivi per una stazione di controllo peso e soprattutto un calo di produttività della macchina, in quanto le operazioni di pesatura sono relativamente lente.

Scopo della presente invenzione è quello di confezionare prodotti all'interno di capsule

con elevata produttività, in maniera relativamente semplice e poco costosa, e con garanzia di rilevare capsule non correttamente riempite.

Questo ed altri scopi sono raggiunti da un dispositivo di riempimento secondo la rivendicazione 1 e da un metodo di riempimento secondo la rivendicazione 8.

L'invenzione verrà ora descritta con riferimento alle figure allegate, fornite a scopo illustrativo e non limitativo, in cui

- figure 1 7 illustrano schematicamente un dispositivo di riempimento secondo l'invenzione durante successive fasi di un metodo di riempimento secondo l'invenzione per riempire capsule con prodotti;
- figura 8 illustra schematicamente il dispositivo di riempimento dell'invenzione durante una fase del metodo di riempimento secondo l'invenzione nel caso di mancata alimentazione di prodotti;
- figure 9 11 illustrano schematicamente il dispositivo di riempimento dell'invenzione durante successive fasi del metodo di riempimento secondo l'invenzione nel caso di alimentazione parziale di prodotti
- figure 12 13 illustrano schematicamente il dispositivo di riempimento dell'invenzione durante successive fasi del metodo di riempimento secondo l'invenzione per riempire capsule con prodotti oblunghi;
- figure 14 15 illustrano schematicamente il dispositivo di riempimento dell'invenzione durante successive fasi del metodo di riempimento secondo l'invenzione per riempire capsule con prodotti oblunghi di cui uno rotto ed incompleto.

Con particolare riferimento alle figure da 1 a 7, è mostrato un dispositivo di riempimento 1 atto a riempire un fondello 3 di una capsula od opercolo con uno o più prodotti 2. Nelle figure 1-7 è schematicamente illustrato il caso in cui sono alimentati due prodotti 2 di

forma sostanzialmente circolare all'interno di ogni singolo fondello 3. I prodotti 2 possono essere, per esempio, compresse, granuli, cronoidi o altre forme solide ad uso farmaceutico, alimentare, e/o cosmetico.

Il dispositivo di riempimento 1 può vantaggiosamente fare parte di una macchina automatica di confezionamento di tipo noto, non illustrata, del tipo intermittente comprendente gruppi di boccole 4 posti radialmente su una giostra di movimentazione che porta le boccole 4 a cooperare con una serie di stazioni operative disposte in successione, tra cui: una prima stazione di alimentazione per alimentare i fondelli 3 alle boccole 4; una seconda stazione di riempimento comprendente il dispositivo di riempimento 1 per alimentare i prodotti 2 ai fondelli 3 in misura di uno o più prodotti 2 per fondello 3; una terza stazione di alimentazione per alimentare coperchi di capsule alle boccole 4; una quarta stazione di chiusura per chiudere il fondello 3 con un rispettivo coperchio a formare una capsula riempita con uno o più prodotti 2; infine una quinta stazione di espulsione delle capsule riempite dalle boccole 4. La macchina automatica confezionatrice comprende inoltre dispositivi di scarto di capsule fuori specifica associati ad una qualunque delle stazioni successive alla seconda stazione di riempimento.

Il dispositivo di riempimento 1 comprende un condotto di alimentazione 5 atto a contenere in maniera scorrevole una fila 6 di prodotti 2 ed un sistema di bloccaggio e alimentazione 7 per bloccare la fila 6 di prodotti 2 e alimentare al fondello 3 sottostante della capsula un gruppo 8 di prodotti 2 comprendente un numero predefinito di prodotti 2. Il gruppo 8 di prodotti 2 può comprendere uno o più prodotti, per esempio due, tre o più prodotti 2.

Il condotto di alimentazione 5 definisce una direzione di alimentazione 9 dei prodotti 2 e comprende una porzione di estremità inferiore 15 che alloggia in maniera scorrevole, al di sotto della fila 6 dei prodotti 2, il gruppo 8 di prodotti 2 allineati.

Il sistema di bloccaggio e alimentazione 7 è del tipo a scappamento e comprende un primo elemento di bloccaggio e alimentazione 10 ed un secondo elemento di bloccaggio e alimentazione 11.

Il primo elemento di bloccaggio e alimentazione 10 è posizionato inferiormente al secondo elemento di bloccaggio e alimentazione 11.

Il primo elemento di bloccaggio e alimentazione 10 è mobile, vantaggiosamente su un piano orizzontale, tra una posizione operativa in cui chiude il condotto di alimentazione 5, ed una posizione non operativa, allontanata dal condotto di alimentazione 5, in cui il condotto di alimentazione 5 in corrispondenza della porzione di estremità inferiore 15 risulta inferiormente aperto.

Nella realizzazione illustrata nelle figure 1-7, il primo elemento di bloccaggio e alimentazione 10 comprende una prima lamella 12, vantaggiosamente piatta, posizionata al di sotto della porzione di estremità inferiore 15 del condotto di alimentazione 5. In posizione operativa, il primo elemento di bloccaggio e alimentazione 10, in particolare la prima lamella 12, è atto a supportare e bloccare un primo prodotto 18 del gruppo 8 di prodotti 2 e, di conseguenza, tutti i prodotti 2 posizionati all'interno del condotto di alimentazione 5 sopra al primo prodotto 18.

Il secondo elemento di bloccaggio e alimentazione 11 è mobile tra una posizione operativa, avvicinata al condotto di alimentazione 5, ed una posizione non operativa, allontanata dal condotto di alimentazione 5. Vantaggiosamente, nella realizzazione illustrata nelle figure 1-7, il secondo elemento di bloccaggio e alimentazione 11 comprende una seconda lamella 13, sagomata ad "L", atta a ruotare attorno ad un fulcro 14 tra la posizione operativa e la posizione non operativa. In particolare, la seconda lamella 13 in posizione operativa coopera con una asola 17 longitudinale praticata nel condotto di alimentazione 5 per bloccare un ulteriore prodotto 19 della fila 6 di prodotti 2. Una volta bloccato l'ulteriore

prodotto 19 risulta bloccata la fila 6 di prodotti 2, cioè risultano bloccati i prodotti 2 posizionati sopra all'ulteriore prodotto 19. In altre parole, la seconda lamella 13 non agisce sui prodotti 2 del gruppo 8 da alimentare che sono posizionati inferiormente alla fila 6. Il secondo elemento di bloccaggio e alimentazione 11, in particolare la seconda lamella 13, è inoltre mobile nella direzione di alimentazione 9 per essere opportunamente posizionato lungo il condotto di alimentazione 5, in maniera tale che una distanza tra la prima lamella 12 e la seconda lamella 13 sia regolabile. Tale distanza definisce la porzione di estremità inferiore 15 del condotto di alimentazione 5 che alloggia i prodotti 2 del gruppo 8. In altre parole, posizionando opportunamente il secondo elemento di bloccaggio e alimentazione 11 lungo il condotto di alimentazione 5 si varia la distanza tra la prima lamella 12 e la seconda lamella 13 e, di conseguenza, il predefinito numero di prodotti 2 del gruppo 8 da alimentare al fondello 3 sottostante.

I prodotti 2 del gruppo 8 sono alloggiati all'interno della porzione di estremità inferiore 15 allineati dal primo prodotto 18 posizionato più in basso fino ad un ultimo prodotto 20 posizionato più in alto in corrispondenza di una zona superiore 21 della porzione di estremità inferiore 15 del condotto di alimentazione 5, immediatamente al di sotto e a contatto dell'ulteriore prodotto 19. Nel caso in cui il numero predefinito di prodotti sia uno, il primo prodotto 18 e l'ultimo prodotto 20 coincidono.

Al di sotto del condotto di alimentazione 5, in fase di riempimento, è posizionata la boccola 4, al cui interno è alloggiato il fondello 3 da riempire. Una volta riempito il fondello 3 con il numero predefinito di prodotti 2, la boccola 4 è trasferita ad una stazione successiva ed una boccola 4 successiva con un fondello 3 vuoto da riempire è posizionata al di sotto del condotto di alimentazione 5.

Il dispositivo di riempimento 1 comprende inoltre un dispositivo di rilevamento 16, vantaggiosamente un dispositivo di fotorilevamento comprendente una fotocellula 22 del tipo a sbarramento, posizionato trasversalmente al condotto di alimentazione 5 in corrispondenza della zona superiore 21 della porzione di estremità inferiore 15 destinata ad alloggiare l'ultimo prodotto 20 del gruppo 8.

Il dispositivo di rilevamento 16, in particolare la fotocellula 22, è quindi atto a rilevare se l'ultimo prodotto 20 del gruppo 8 è presente oppure no all'interno della porzione di estremità inferiore 15 del condotto di alimentazione 5, o, in altre parole, se il gruppo 8 è costituito dal numero predefinito di prodotti 2. Poiché i prodotti 2 sono alloggiati scorrevolmente all'interno del condotto di alimentazione 5 e, se non trattenuti, sono destinati a cadere per gravità, da una verifica di presenza o meno di un solo prodotto (l'ultimo prodotto 2 del gruppo 8) nella zona superiore 21 si può immediatamente derivare se il gruppo 8 di prodotti 2 da alimentare al fondello 3 sottostante della capsula è completo o meno.

Il dispositivo di riempimento 1 secondo l'invenzione rileva quindi in maniera estremamente semplice, veloce ed economica, ma allo stesso tempo estremamente sicura, non solo casi di mancato riempimento, ma anche casi di riempimenti parziali ed incompleti (vedi figure 9-11), senza necessità di pesare tutte le capsule 2 a valle della quarta stazione di chiusura (controllo peso 100%).

Il caso di mancato riempimento è schematicamente illustrato in figura 8, in cui sono rappresentati prodotti 2 di forma lenticolare, di cui uno incastrato nel condotto di alimentazione 5 che blocca l'intera fila 6 dei prodotti 2. Casi di mancato riempimento possono avvenire anche per altre ragioni, ad esempio per interruzioni di produzione.

Nel caso in cui l'ultimo prodotto 20 non sia presente nella zona superiore 21 della porzione di estremità 15, il dispositivo di rilevamento 16 emette un opportuno segnale di scarto a dispositivi di scarto per scartare solo il fondello 3 sottostante, oppure l'intera capsula formata dal fondello 3 sottostante. Tali dispositivi di scarto possono vantaggiosamente essere accoppiati, oppure integrati nello stesso dispositivo di riempimento 1, oppure in stazioni operative successive.

Il dispositivo di rilevamento 16, in particolare la fotocellula 22, è vantaggiosamente accoppiato al secondo elemento di bloccaggio e alimentazione 11, in particolare alla seconda lamella 13, ed è mobile con esso in direzione di alimentazione 9 per essere opportunamente posizionato lungo il condotto di alimentazione 5 in maniera tale da rilevare la presenza dell'ultimo prodotto 20 per un qualsiasi predefinito numero di prodotti 2 del gruppo 8. In altre parole, il dispositivo di rilevamento 16, in particolare la fotocellula 22, è atto ad essere posizionato immediatamente al di sotto della seconda lamella 13 per una qualsivoglia distanza tra il primo elemento di bloccaggio e alimentazione 10 ed il secondo elemento di bloccaggio e alimentazione 11, o in maniera equivalente, per qualsivoglia predefinito numero di prodotti 2 del gruppo 8.

In alternativa a dispositivi di fotorilevamento con fotocellule 22, il dispositivo di rilevamento 16 può comprendere sensori a ultrasuoni, di prossimità, oppure di contatto atti a rilevare la presenza di un prodotto 2 nella sola zona superiore 21 della porzione di estremità superiore 15 del condotto di alimentazione 5, o in altre parole la presenza del solo ultimo prodotto 20 del gruppo 8.

In realizzazioni non illustrate, sistemi pneumatici possono essere previsti per favorire la caduta dei prodotti 2 lungo il condotto di alimentazione 5 verso il fondello 3 della capsula.

Più dispositivi di riempimento 1 del tipo appena illustrato possono essere affiancati ed integrati tra loro in una macchina automatica di confezionamento per riempire più capsule contemporaneamente.

Il sistema di bloccaggio e alimentazione 7 descritto in precedenza realizza un sistema a scappamento. In altre parole, il primo elemento di bloccaggio e alimentazione 10 ed il

secondo elemento di bloccaggio e alimentazione 11 cooperano in giusta fase per bloccare e rilasciare la fila 6 di prodotti 2 e definire, bloccare e rilasciare il gruppo 8 di prodotti 2 da alimentare al fondello 3.

Nel dettaglio, il dispositivo di riempimento 1 opera un metodo di riempimento comprendente le seguenti fasi:

- una prima fase (vedi fig. 1), con il primo elemento di bloccaggio e alimentazione 10 in posizione operativa ed il secondo elemento di bloccaggio e alimentazione 11 in posizione non operativa, per alimentare i prodotti 2 dall'alto verso il basso all'interno del condotto di alimentazione 5. I prodotti risulteranno quindi allineati uno sull'altro all'interno del condotto di alimentazione 5, con un primo prodotto 18 in appoggio sul primo elemento di bloccaggio e alimentazione 10;
- una seconda fase (vedi fig. 2), con il primo elemento di bloccaggio e alimentazione 10 in posizione operativa, per portare il secondo elemento di bloccaggio e alimentazione 11 in posizione operativa a bloccare un'ulteriore prodotto 19 e formare una fila 6 di prodotti 2. In tale seconda fase, viene quindi definito un gruppo 8 di prodotti 2, inferiormente alla fila 6, da alimentare ad un fondello 3 sottostante di una capsula alloggiato in una boccola 4. Tale gruppo 8 è costituito da un predefinito numero di prodotti 2 (uno, due o più prodotti 2) alloggiati ed allineati in una porzione di estremità inferiore 15 del condotto di alimentazione 5 definita da una distanza tra il primo elemento di bloccaggio e alimentazione 10 ed il secondo elemento di bloccaggio e alimentazione 11;
- una terza fase (vedi figg. 3 e 4), con il secondo elemento di bloccaggio e alimentazione in posizione operativa a bloccare l'ulteriore prodotto 19 e quindi la fila 6 di prodotti 2, per portare il primo elemento di bloccaggio e alimentazione 10 in posizione non operativa per aprire inferiormente la porzione di estremità inferiore 15 del condotto di alimentazione 5 e consentire al gruppo 6 di prodotti 2 di cadere all'interno del fondello 3 sotto-

stante;

- una quarta fase (vedi figg. 5 e 6), una volta che il fondello 3 è stato riempito con il predefinito numero di prodotti 2 del gruppo 8, per portare il primo elemento di bloccaggio e alimentazione 10 in posizione operativa a chiudere la porzione di estremità inferiore 15 del condotto di alimentazione 5, trasferire la boccola 4 contenente il fondello 3 riempito ad una stazione successiva, e posizionare una successiva boccola 4 con un fondello 3 vuoto al di sotto del condotto di alimentazione 5;

- una quinta fase (vedi fig. 7), con il primo elemento di bloccaggio e alimentazione 10 in posizione operativa, per portare il secondo elemento di bloccaggio e alimentazione 11 in posizione non operativa per sbloccare l'ulteriore prodotto 19 e lasciar cadere i prodotti 2 della fila 6 verso il primo elemento di bloccaggio e alimentazione 10 a formare un successivo gruppo 8 di prodotti 2 da alimentare ad un fondello 3 vuoto di un successivo fondello 4 secondo le fasi precedentemente illustrate.

Il metodo prevede inoltre durante la seconda fase di verificare, tramite un dispositivo di rilevamento 16, vantaggiosamente un dispositivo di fotorilevamento comprendente una fotocellula 22, se il gruppo 6 è completo.

Nel dettaglio, il metodo prevede di verificare tramite il dispositivo di rilevamento 16, disposto lateralmente al condotto di alimentazione 5, in corrispondenza di una zona superiore 21 della porzione di estremità inferiore 15 del condotto di alimentazione 5 destinata ad alloggiare un ultimo prodotto 20 del gruppo 8, se è presente in tale zona superiore 21 tale ultimo prodotto 20. Vantaggiosamente, il metodo prevede di verificare se è presente o meno un solo prodotto 2 nella sola zona superiore 21, e non altre zone della porzione di estremità inferiore 15 del condotto di alimentazione 5.

Il gruppo 8 può essere costituito da uno o più prodotti 2, per esempio due, tre o più prodotti.

Nel caso in cui il gruppo 8 sia costituito da un solo prodotto 2, il primo prodotto 18 e l'ultimo prodotto 20 coincidono ed il dispositivo di rilevamento 16 rileva se l'intero gruppo 8 è alimentato al fondello 3 della capsula.

Nel caso in cui il gruppo 8 sia costituito da due o più prodotti 2, cioè nel caso in cui il primo prodotto 18 sia distinto dall'ultimo prodotto 20, il dispositivo di rilevamento 16 rileva se il gruppo 8 è completo o meno.

Il metodo prevede inoltre, nel caso in cui il dispositivo di rilevamento 16 rilevi che il gruppo 8 è assente oppure incompleto, di inviare un segnale di scarto a dispositivi di scarto per scartare solo il fondello 3 sottostante, oppure l'intera capsula formata dal fondello 3 sottostante, perché risulta contenere un gruppo 8 almeno incompleto, se non del tutto assente, e quindi essere fuori specifica. Vantaggiosamente i dispositivi di scarto possono essere posti a valle del dispositivo di riempimento 1, per esempio integrati in una qualunque stazione operativa successiva.

Si noti come tramite il dispositivo di riempimento 1 si controlla il corretto riempimento dei fondelli 3 durante il riempimento stesso, non a riempimento avvenuto, consentendo un controllo più semplice, affidabile e flessibile rispetto a quanto disponibile nell'arte nota.

Grazie al dispositivo ed al metodo secondo l'invenzione è quindi possibile individuare e scartare immediatamente in macchina le capsule non riempite, oppure riempite in maniera incompleta, senza dover pesare tutte le capsule in uscita da una macchina automatica di confezionamento, anche quindi le capsule riempite correttamente.

Sebbene l'invenzione sia stata illustrata nel caso in cui si voglia riempire le capsule con due prodotti 2, cioè nel caso in cui il gruppo 8 sia costituito da due prodotti 2, è possibile attuare l'invenzione anche nel caso in cui si voglia riempire le capsule con un predefinito numero di prodotti 2 diverso da due, cioè nel caso in cui il gruppo 8 sia costituito da uno,

tre, quattro, cinque o più prodotti 2.

Nel caso di gruppo 8 costituito da un solo prodotto 2, il secondo elemento di bloccaggio e alimentazione 11, in particolare la seconda lamella 13, dovrà essere posizionato più in basso rispetto a quanto illustrato nel caso di gruppo 8 costituito da due prodotti 2, ad una distanza dal primo elemento di bloccaggio e alimentazione 10, in particolare dalla prima lamella 12, tale da definire una porzione di estremità 15 del condotto di alimentazione 5 adatta ad alloggiare un solo prodotto 2.

Al contrario, nel caso si voglia riempire le capsule con tre o più prodotti 2, cioè nel caso in cui il gruppo 8 sia costituito da più di due prodotti 2, il secondo elemento di bloccaggio e alimentazione 11, in particolare la seconda lamella 13, dovrà essere spostato e posizionato più in alto rispetto a quanto illustrato nel caso di gruppo 8 costituito da due prodotti 2, ad una distanza dal primo elemento di bloccaggio e alimentazione 10, in particolare dalla prima lamella 12, tale da definire una porzione di estremità 15 del condotto di alimentazione 5 adatta ad alloggiare rispettivi tre o più prodotti 2.

Sia che il secondo elemento di bloccaggio e alimentazione 11, in particolare la seconda lamella 13, debba essere abbassata oppure alzata per diminuire, oppure aumentare, rispettivamente, la distanza dal primo elemento di bloccaggio e alimentazione 10, in particolare dalla prima lamella 12, per diminuire, oppure aumentare, rispettivamente, il predefinito numero di prodotti 2 costituenti il gruppo 8 rispetto alla realizzazione illustrata nelle figure, il dispositivo di rilevamento 16, in particolare la fotocellula 22, viene spostata verso il basso, oppure verso l'alto, rispettivamente, insieme al secondo elemento di bloccaggio e alimentazione 11 lungo la direzione di alimentazione 9 per controllare la sola zona superiore 21 della porzione di estremità inferiore 15 del condotto di alimentazione 5 e rilevare se è presente o meno l'ultimo prodotto 20 del gruppo 8.

Nelle figure 12 – 15 è illustrato il dispositivo di riempimento 1 dell'invenzione per ali-

mentare capsule con prodotti 2 di forma oblunga in gruppi 8 formati ciascuno da un solo prodotto 2. In altre parole, nella realizzazione delle figure 12 – 15, il primo prodotto 18 e l'ultimo prodotto 20 del gruppo 8 coincidono.

È certamente possibile alimentare gruppi 8 di due o più prodotti 2 di forma oblunga in fondelli 3 di opportuna grandezza regolando opportunamente la distanza tra il primo elemento di bloccaggio e alimentazione 10 ed il secondo elemento di bloccaggio e alimentazione 11 secondo quanto descritto in precedenza con riferimento alle figure 1 – 11.

Vantaggiosamente, nel caso di prodotti 2 di forma oblunga, è possibile con il dispositivo di riempimento 1 dell'invenzione rilevare capsule riempite con prodotti 2 rotti o incompleti.

Come si evince, infatti, dalle figure 14 e 15, nel caso di gruppi 8 contenenti prodotti 2 rotti o incompleti, l'ulteriore prodotto 19 verrà bloccato dal secondo elemento di bloccaggio e alimentazione 11, in particolare dalla seconda lamella 13, in una posizione tale da essere rilevato dal dispositivo di rilevamento 16, in particolare dalla fotocellula 22, durante la terza fase del metodo dell'invenzione, cioè quando il primo elemento di bloccaggio e alimentazione 10 è in posizione non operativa ad aprire inferiormente la porzione di estremità inferiore 15 del condotto di alimentazione 5 ed il secondo elemento di bloccaggio e alimentazione 11 è in posizione operativa a bloccare l'ulteriore prodotto 19. Il dispositivo di rilevamento 16, una volta rilevata una presenza di un prodotto 2 (necessariamente dell'ulteriore prodotto 19) durante la terza fase, invia un segnale di scarto per scartare la capsula appena riempita, perché risulta contenere un prodotto 2 rotto e quindi essere fuori specifica.

Al contrario, se nella terza fase del metodo i prodotti 2 del gruppo 8 fossero tutti integri, l'ulteriore prodotto 19 risulterebbe bloccato in posizione tale per cui il dispositivo di rilevamento 16 non rileverebbe la presenza di alcun prodotto 2 (si veda per esempio la figura

13) e di conseguenza non emetterebbe alcun segnale di scarto.

Si noti che, nel caso di prodotti 2 di forma oblunga in cui un prodotto 2 del gruppo 8 risulti rotto, il dispositivo di rilevamento 16 rileverà durante la seconda fase in corrispondenza della zona superiore 21 la presenza di un prodotto 2, che risulta essere l'ulteriore prodotto 19 che sporge inferiormente e non l'ultimo prodotto 20 del gruppo 8. La capsula appena riempita verrà comunque scartata, senza errori, perché durante la terza fase il dispositivo di riempimento 16 rileverà la presenza di tale ulteriore prodotto 19.

RIVENDICAZIONI

- 1. Dispositivo di riempimento (1) per riempire capsule del tipo fondello (3) coperchio con prodotti (2), vantaggiosamente forme solide ad uso farmaceutico, alimentare, o cosmetico, comprendente:
- un condotto di alimentazione (5) che definisce una direzione di alimentazione (9) e atto a contenere in maniera scorrevole una fila (6) di prodotti (2), detto condotto di alimentazione (5) comprendendo una porzione di estremità inferiore (15) atta ad alloggiare in maniera scorrevole, al di sotto della fila (6), un gruppo (8) comprendente uno o più prodotti (2) allineati;
- un sistema di bloccaggio e alimentazione (7) per bloccare la fila (6) di prodotti (2) e alimentare ciascun fondello (3) sottostante con un gruppo (8) di prodotti (2); detto sistema
 di bloccaggio e alimentazione (7) comprendendo un primo elemento di bloccaggio e alimentazione (10) ed un secondo elemento di bloccaggio e alimentazione (11); detto primo
 elemento di bloccaggio e alimentazione (10) essendo mobile tra una posizione operativa,
 in cui chiude il condotto di alimentazione (5) ed è atto a supportare e bloccare un primo
 prodotto (18) del gruppo (8), ed una posizione non operativa, in cui il condotto di alimentazione (5) in corrispondenza della porzione di estremità inferiore (15) risulta inferiormente aperta; detto secondo elemento di bloccaggio e alimentazione (11) essendo mobile
 tra una posizione operativa, in cui è avvicinato al condotto di alimentazione (5) ed è atto
 a bloccare un ulteriore prodotto (19) della fila (6), ed una posizione non operativa, allontanata dal condotto di alimentazione (5); detto secondo elemento di bloccaggio e alimentazione (11) essendo posizionato lungo la direzione di alimentazione (9) ad una distanza
 dal primo elemento di bloccaggio e alimentazione (10) che definisce detta porzione di estremità inferiore (15);
- un dispositivo di rilevamento (16) atto a rilevare se, in corrispondenza di una zona su-

- periore (21) della porzione di estremità inferiore (15) del condotto di alimentazione (5), quando il primo elemento di bloccaggio e alimentazione (10) ed il secondo elemento di bloccaggio e alimentazione (11) sono in rispettive posizioni operative, è presente o meno un prodotto (2) ed, in caso di assenza di tale prodotto (2), ad emettere un segnale di scarto ad un dispositivo di scarto per scartare il fondello (3) sottostante, oppure la capsula formata dal fondello (3) sottostante.
- 2. Dispositivo di riempimento secondo la rivendicazione 1, in cui detto dispositivo di rilevamento (16) è accoppiato al secondo elemento di bloccaggio e alimentazione (11) ed è
 mobile con esso in direzione di alimentazione (9) per essere opportunamente posizionato
 lungo il condotto di alimentazione (5) in corrispondenza della zona superiore (21) della
 porzione di estremità inferiore (15), in maniera tale da rilevare se è presente un prodotto
 (2) in corrispondenza di detta zona superiore (21) per un qualsiasi predefinito numero di
 prodotti (2) del gruppo (8).
- 3 Dispositivo di riempimento secondo una qualunque delle rivendicazioni da 1 a 2, per riempire capsule con prodotti (2) di forma oblunga, in cui detto dispositivo di rilevamento (16) è atto a rilevare se, in corrispondenza della zona superiore (21) della porzione di estremità inferiore (15) del condotto di alimentazione (5), quando il primo elemento di bloccaggio e alimentazione (10) è in posizione non operativa ed il secondo elemento di bloccaggio e alimentazione (11) è in posizione operativa, è presente o meno un prodotto (2) e, in caso di presenza di tale prodotto (2), ad emettere un segnale di scarto ad un dispositivo di scarto per scartare il fondello (3) sottostante, oppure la capsula formata dal fondello (3) sottostante.
- 4. Dispositivo di riempimento secondo la rivendicazione 1, in cui detto dispositivo di rilevamento (16) è atto a rilevare se è presente o meno un solo prodotto (2) in corrispondenza della sola zona superiore (21) della porzione di estremità inferiore (15) del condot-

to di alimentazione (5).

- 5. Dispositivo di riempimento secondo una qualunque delle rivendicazioni da 1 a 4, in cui detto dispositivo di rilevamento (16) comprende un dispositivo di fotorilevamento con una fotocellula (22) posizionata trasversalmente al condotto di alimentazione (5).
- 6. Dispositivo di riempimento secondo una qualunque delle rivendicazioni da 1 a 5, in cui detto gruppo (8) comprende due o più prodotti (2).
- 7. Macchina automatica di confezionamento per confezionare capsule di tipo fondello (3)
- coperchio, la macchina automatica di confezionamento essendo di tipo intermittente e comprendente gruppi di boccole (4) posti radialmente su una giostra di movimentazione che porta le boccole (4) a cooperare con una serie di stazioni operative disposte in successione, tra cui:
- una prima stazione di alimentazione per alimentare i fondelli (3) alle boccole (4);
- una seconda stazione di riempimento per riempire i fondelli (3) con i prodotti (2) in misura di uno o più prodotti (2) per fondello (3);
- una terza stazione di alimentazione per alimentare coperchi di capsule alle boccole (4);
- una quarta stazione di chiusura per chiudere il fondello (3) con un rispettivo coperchio a formare una capsula riempita con uno o più prodotti (2); ed
- una quinta stazione di espulsione delle capsule riempite dalle boccole (4);

la macchina automatica di confezionamento comprendendo inoltre dispositivi di scarto di capsule fuori specifica ed essendo caratterizzata dal fatto che la seconda stazione di riempimento comprende un dispositivo di riempimento (1) secondo una qualunque delle rivendicazioni precedenti.

8. Metodo di riempimento per riempire fondelli (3) di capsule con un gruppo (8) costituito da un predefinito numero di prodotti (2) tramite un dispositivo di riempimento (1) comprendente un condotto di alimentazione (5) adatto a contenere scorrevolmente i pro-

- dotti (2), un primo elemento di bloccaggio e alimentazione (10) mobile tra una posizione operativa e una posizione non operativa, e un secondo elemento di bloccaggio e alimentazione (11) mobile tra una posizione operativa e una posizione non operativa, comprendente le seguenti fasi:
- una prima fase, con il primo elemento di bloccaggio e alimentazione (10) in posizione operativa a chiudere inferiormente una porzione di estremità inferiore (15) del condotto di alimentazione (5) ed il secondo elemento di bloccaggio e alimentazione (11) in posizione non operativa, per alimentare i prodotti (2) dall'alto verso il basso all'interno del condotto di alimentazione (5), con un primo prodotto (18) in appoggio sul primo elemento di bloccaggio e alimentazione (10);
- una seconda fase, con il primo elemento di bloccaggio e alimentazione (10) in posizione operativa, per portare il secondo elemento di bloccaggio e alimentazione (11) in posizione operativa a bloccare un'ulteriore prodotto (19) per formare una fila (6) di prodotti (2) e definire il gruppo (8) di prodotti (2), posizionato inferiormente alla fila (6), da alimentare ad un fondello (3) sottostante alloggiato in una boccola (4), detto gruppo (8) essendo costituito da un predefinito numero di prodotti (2) alloggiati ed allineati nella porzione di estremità inferiore (15) del condotto di alimentazione (5) definita da una distanza tra il primo elemento di bloccaggio e alimentazione (10) ed il secondo elemento di bloccaggio e alimentazione (11);
- una terza fase, con il secondo elemento di bloccaggio e alimentazione (11) in posizione operativa a bloccare l'ulteriore prodotto (19) e quindi la fila (6) di prodotti (2), per portare il primo elemento di bloccaggio e alimentazione (10) in posizione non operativa per aprire inferiormente la porzione di estremità inferiore (15) del condotto di alimentazione (5) e consentire al gruppo (6) di prodotti (2) di cadere all'interno del fondello (3) sottostante;

- una quarta fase, una volta che il fondello (3) è stato riempito con il predefinito numero di prodotti (2) del gruppo (8), per portare il primo elemento di bloccaggio e alimentazione (10) in posizione operativa a chiudere inferiormente la porzione di estremità inferiore (15) del condotto di alimentazione (5), trasferire la boccola (4) contenente il fondello (3) riempito ad una stazione successiva, e posizionare una successiva boccola (4) con un fondello (3) vuoto al di sotto del condotto di alimentazione (5);
- una quinta fase, con il primo elemento di bloccaggio e alimentazione (10) in posizione operativa, per portare il secondo elemento di bloccaggio e alimentazione (11) in posizione non operativa per sbloccare l'ulteriore prodotto (19) e lasciar cadere i prodotti (2) della fila (6) verso il primo elemento di bloccaggio e alimentazione (10) a formare un successivo gruppo (8) di prodotti (2) da alimentare ad un fondello (3) vuoto di una successiva boccola (4),

il metodo comprende, inoltre, durante la seconda fase, una fase di rilevamento per rilevare, tramite un dispositivo di rilevamento (16), in corrispondenza di una zona superiore (21) della porzione di estremità inferiore (15) del condotto di alimentazione (5) adatta ad alloggiare un ultimo prodotto (20) del gruppo (8), se è presente o meno un prodotto (2) e, se detto prodotto (2) non è presente nella zona superiore (21) della porzione di estremità inferiore (15) del condotto di alimentazione (5), di emettere un segnale di scarto ad un dispositivo di scarto per scartare il fondello (3) sottostante, oppure la capsula formata dal fondello (3) sottostante.

9. Metodo secondo la rivendicazione 8, in cui detta ulteriore fase di rilevamento prevede di rilevare se è presente o meno un solo prodotto (2) in corrispondenza della sola zona superiore (21) della porzione di estremità inferiore (15) del condotto di alimentazione (5). 10. Metodo secondo una qualunque delle rivendicazioni 8 e 9, in cui detti prodotti (2) hanno forma oblunga, il metodo prevedendo inoltre, durante la terza fase, una ulteriore

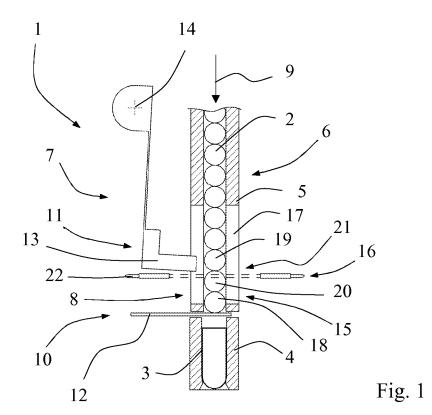
fase di rilevamento per rilevare, tramite il dispositivo di rilevamento (16), se in corrispondenza della zona superiore (21) della porzione di estremità inferiore (15) del condotto di alimentazione (5), è presente o meno un prodotto (2) e, se detto prodotto (2) è presente nella zona superiore (21) della porzione di estremità inferiore (15) del condotto di alimentazione (5), di emettere un segnale di scarto ad un dispositivo di scarto per scartare il fondello (3) sottostante, oppure la capsula formata dal fondello (3) sottostante.

CLAIMS

- 1. Filling device for filling capsules of bottom (3) lid type with products (2), advantageously solid forms for pharmaceutical, food, or cosmetic use, including:
- a feeding conduit (5) that defines a feeding direction (9) and adapted to slidingly housing a row (6) of products (2), said feeding conduit (5) including a bottom end portion (15) adapted to slidingly house, below the row (6) of products (2), a group (8) including one or more products (2) aligned;
- a blocking and feeding system (7) for blocking the row (6) of products (2) and feeding each bottom (3) below with one group (8) of products (2); said blocking and feeding system (7) including a first blocking and feeding element (10) and a second blocking and feeding element (11); said first blocking and feeding element (10) being movable between an operative position, wherein it closes the feeding conduit (5) and is adapted to support and block a first product (18) of the group (8), and an inoperative position, wherein the feeding conduit (5) at the bottom end portion (15) is downwardly open; said second blocking and feeding element (11) being movable between an operative position, wherein it is close to the feeding conduit (5) and is adapted to block a further product (19) of the row (6), and an inoperative position, far away from the feeding conduit (5); said second blocking and feeding element (11) being positioned along the feeding direction (9) at a distance from the first blocking and feeding element (10) that defines said bottom end portion (15);
- a detecting device (16) adapted to detect, at an upper zone (21) of the bottom end portion (15) of the feeding conduit (5), when the first blocking and feeding element (10) and the second blocking and feeding element (11) are in respective operative positions, whether or not a product (2) is present, and, in case such a product (2) is absent, to send a reject signal to a reject device to reject the bottom (3) below, or the capsule formed by the bottom (3) below.

- 2. Filling device according to claim 1, wherein said detecting device (16) is coupled to the second blocking and feeding element (11) and is movable therewith in feeding direction (9) to be suitably positioned along the feeding conduit (5) at the upper zone (21) of the bottom end portion (15), so as to detect whether a product (2) is present at said upper zone (21) for any predefined number of products (2) of the group (8).
- 3. Filling device according to any one of claims 1 and 2, for filling capsules with products (2) with oblong shape, wherein said detecting device (16) is adapted to detect, at the upper zone (21) of the bottom end portion (15) of the feeding conduit (5), when the first blocking and feeding element (10) is in inoperative position and the second blocking and feeding element (11) is in operative position, whether or not a product (2) is present and, in case such a product (2) is present, to send a reject signal to a reject device to reject the bottom (3) below, or the capsule formed by the bottom (3) below.
- 4. Filling device according to claim 1, wherein said detecting device (16) is adapted to detect, at the upper zone (21) of the bottom end portion (15) of the feeding conduit (5) only, whether or not one single product (2) is present.
- 5. Filling device according to any one of claims 1 to 4, wherein said detecting device (16) includes a photodetecting device with a photocell (22) positioned transversely to the feeding conduit (5).
- 6. Filling device according to any one of claims 1 to 5, wherein said group (8) includes two or more products (2).
- 7. Automatic packaging machine for packaging capsule of bottom (3) lid type, the automatic packaging machine being of intermittent type and including groups of housings (4) radially positioned on a moving carousel that brings the housings (4) to cooperate with a plurality of operative stations arranged in succession, among which:
- a first feeding station for feeding the bottoms (3) to the housings (4);
- a second filling station for filling the bottoms (3) with the products (2) in number of one or more products (2) per bottom (3);

- a third feeding station for feeding lids of capsules to the housings (4);
- a forth closing station for closing the bottom (3) with a respective lid to form a capsule filled with one or more products (2); and
- a fifth discharge station for discharging filled capsules from the housings (4); the automatic packaging machine further including rejecting devices for rejecting out-of-spec capsules and being characterized in that the second filling station includes a filling device (1) according to any one of the preceding claims.
- 8. Filling method for filling bottoms (3) of capsules with a group (8) formed by a predefined number of products (2) by means of a filling device (1) including a feeding conduit (5) adapted to slidingly containing the products (2), a first blocking and feeding element (10) movable between an operative position and an inoperative position, and a second blocking and feeding element (11) movable between an operative position and an inoperative position, including the following step:
- a first step, with the first blocking and feeding element (10) in operative position to inferiorly close a bottom end portion (15) of the feeding conduit (5) and the second blocking and feeding element (11) in inoperative position, for feeding the products (2) downwardly within the feeding conduit (5), with a first product (18) resting on the first blocking and feeding element (10);
- a second step, with the first blocking and feeding element (10) in operative position, for bringing the second blocking and feeding element (11) in operative position to block a further product (19) to form a row (6) of products (2) and to define a group (8) of products (2) to be fed to a bottom (3) below housed in a housing (4), said group (8) being positioned below the row (6) and being formed by a predefined number of products (2) housed and aligned in the bottom end portion (15) of the feeding conduit (5) defined by a distance between the first blocking and feeding element (10) and the second blocking and feeding element (11);


- a third step, with the second blocking and feeding element (11) in operative position to block the further product (19) and thus the row (6) of products (2), for bringing the first blocking and feeding element (10) in inoperative position to inferiorly open the bottom end portion (15) of the feeding conduit (5) and to allow the group (6) of products (2) to fall within the bottom (3) below;
- a forth step, once the bottom (3) has been filled with the predefined number of products (2) of the group (8), for bringing the first blocking and feeding element in operative position to inferiorly close the bottom end portion (15) of the feeding conduit (5), transferring the housing (4) containing the bottom (3) filled to a subsequent station, and positioning a subsequent housing (4) with a bottom (3) empty below the feeding conduit (5);
- a fifth step, with the first blocking and feeding element (11) in operative position, for bringing the second blocking and feeding element (11) in inoperative position to unblock the further product (19) and allow the products (2) of the row (6) to fall towards the first blocking and feeding element (10) to form a subsequent group (8) of products (2) to be fed to an empty bottom (3) of a subsequent housing (4); the method further including, during the second step, a detecting step to detect, by means of a detecting device (16), at an upper zone (21) of the bottom end portion (15) of the feeding conduit (5) adapted to house a last product (20) of the group (8), whether or not a product (2) is present and, in case such product (2) is not present in the upper
- 9. Method according to claim 8, wherein said detecting step provides for detecting, at the upper zone (21) of the bottom end portion (15) of the feeding conduit (5) only, whether or not one single product (2) is present.

zone (21) of the bottom end portion (15) of the feeding conduit (5), to send a reject

signal to a reject device to reject the bottom (3) below, or the capsule formed by the

bottom (3) below.

10. Method according to any one of claims 8 to 9, wherein said products (2) have oblong shape, the method further providing for, during the third step, a further detecting step to detect, by means of the detecting device (16), at the upper zone (21) of the bottom end portion (15) of the feeding conduit (5), whether or not a product (2) is present and, in case such product (2) is present in the upper zone (21) of the bottom end portion (15) of the feeding conduit (5), to send a reject signal to a reject device to reject the bottom (3) below, or the capsule formed by the bottom (3) below.

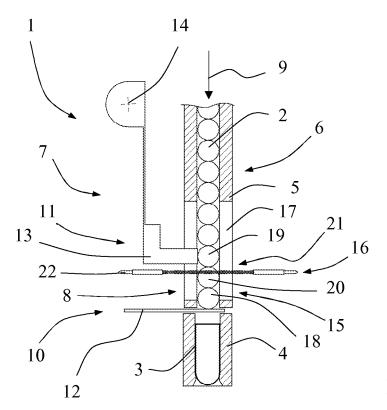
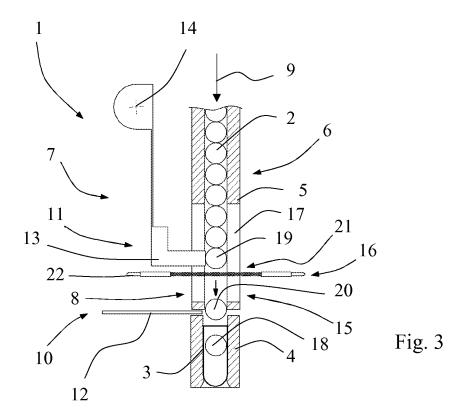



Fig. 2

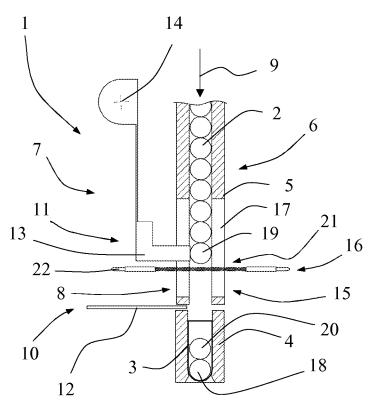
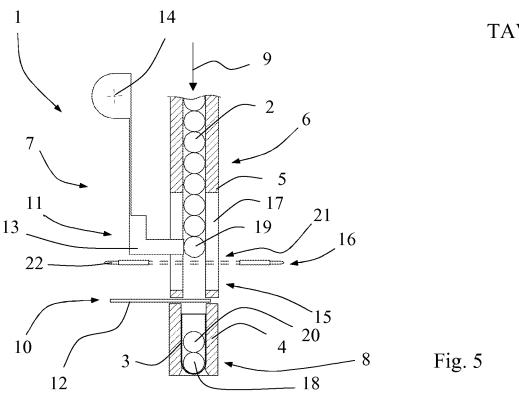
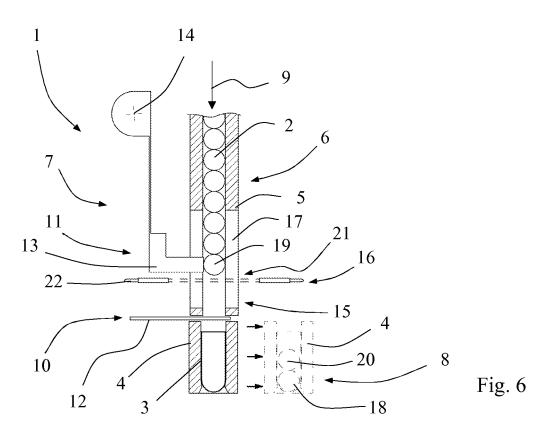




Fig. 4

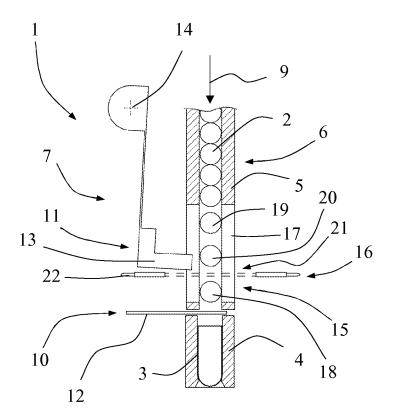
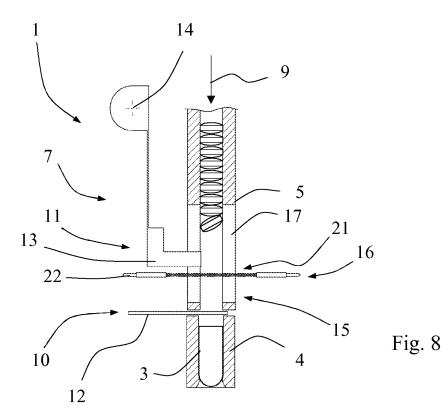
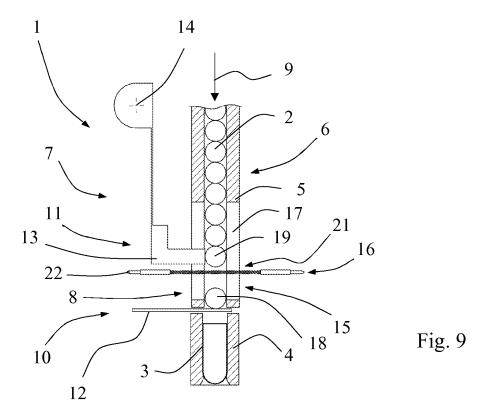




Fig. 7

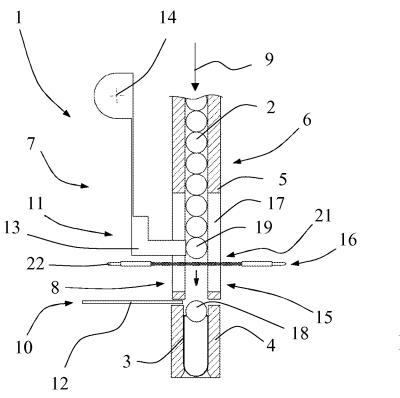


Fig. 10

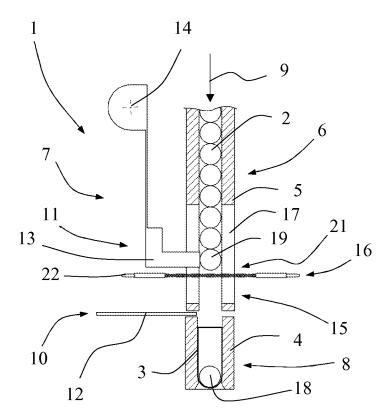


Fig. 11

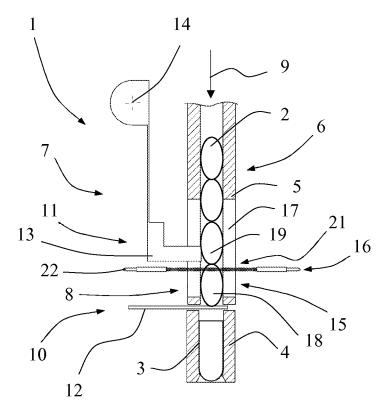


Fig. 12

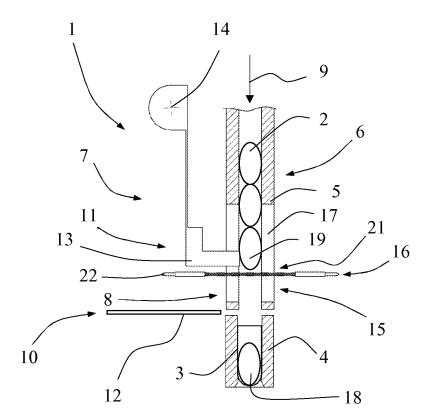


Fig. 13

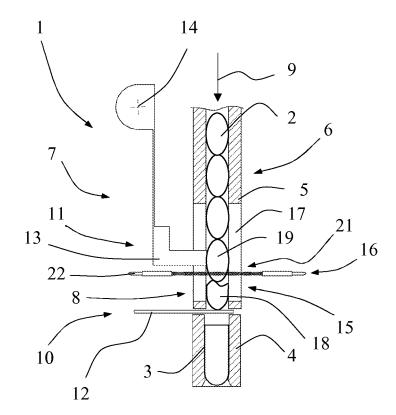


Fig. 14

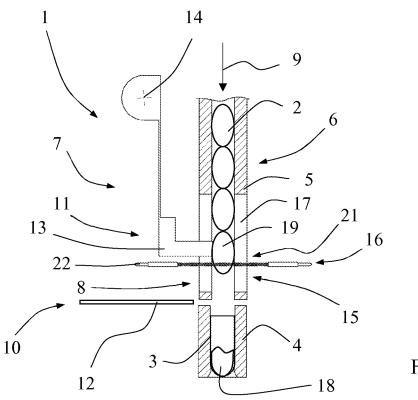


Fig. 15