发明名称：复合干燥器及带有复合干燥器的湿污泥焚烧处理方法和装置

发明人：吕清刚、高明、赵宝军、刘小明

摘要：本发明提供一种复合干燥器和一种用于焚烧湿污泥的复合干燥器的方法。干燥器的反应器室被分成两个腔室，两个腔室分别用于湿污泥和蒸汽的加热。在干燥器内，湿污泥与蒸汽接触后被加热并蒸发，然后湿污泥与热载体（如蒸汽）混合后送入焚烧室，焚烧室内的高温气体与湿污泥接触，进一步提供热量。最终，湿污泥被烘干并送入焚烧室进行焚烧，从而提高了焚烧效率并减少了能耗。
一种复合干燥器及带有复合干燥器的湿污泥焚烧处理方法和装置，其中反应室被分为两个。通过两种热载体加热湿污泥，湿污泥在干燥器中与一种热载体直接换热，与另一种热载体间接换热。湿污泥在干燥过程中处于流化状态，利用两种热载体的热量充分的被加热。水分从湿污泥中蒸发出来，以水蒸气的形式随流化气体排出干燥器。干燥的污泥与直接换热的载体一起排出复合干燥器，然后送入循环流化床焚烧炉中。在循环流化床焚烧炉或循环流化床锅炉中干化焚烧含水率在60－90％之间的湿污泥，将湿污泥的干化和焚烧集中在单一装置中进行，使污泥在复合干燥器中完成干化后与循环灰一起返回焚烧炉焚烧，使湿污泥所含的大量水分不被焚烧高温烟气一起进入尾部烟道，而是随复合干燥器流化气体引出，减少系统的热量损失。复合干燥器中设置有放热盘管，与尾部烟道中的管式换热器相连。从炉膛中出来的烟气与高温循环灰一起作为湿污泥干化的热源，充分利用了焚烧炉中剩余热量。
复合干燥器及带有复合干燥器的湿污泥焚烧处理方法和装置

技术领域

本发明涉及废弃物的处理装置和处理方法，特别是涉及湿污泥的处理装置和处理方法。

技术背景

污泥是污水处理后的固体残留物，污泥量约占污水处理量的3%~5%（以含水率97%计）。我国的工业和生活污水处理量正在迅速增加，随着污水处理厂的不断兴建，必将产生更多的污泥。污泥的成分非常复杂，除含有大量的水分外，还含有普通有机质、难降解的有机物、多种微量元素、病原微生物和寄生虫卵、重金属等成分。

以焚烧为核心的污泥处理方法能够最大限度地满足减量化、稳定化和无害化的要求。但是现有的污泥焚烧方法，大都要求先使用专门的设备对污泥进行干化等预处理后再进行焚烧，干化与焚烧在两套设备中完成，系统复杂；干化设备能耗大，运行成本高，安全性要求高；而且简单焚烧干化污泥，容易产生 NOx，需在焚烧炉后配备脱氮装置；同时，由于污泥中含硫，还需在焚烧炉后配备脱硫装置。这使得污泥焚烧系统复杂、无害化处理成本高昂。

直接向焚烧炉内添加未经干化的湿污泥进行焚烧，可以将污泥的干燥、焚烧甚至烟气的无害化处理等单元工艺集中在单一装置中同时进行，简化污泥焚烧处理工艺，降低处理成本；但湿污泥中所含的水分将随焚烧所产生的高温烟气一起排出炉膛，带走大量热量，因此需要加入大量辅助燃料才能达到能量平衡。

发明内容

本发明的目的是提供一种复合干燥器，该复合干燥器通过两种热载体加热湿污泥，湿污泥在该复合干燥器中与一种热载体进行直接换热，同时与另一种热载体进行间接换热，湿污泥在干燥的过程中处于流化状态，这样可以充分利用两种热载体的热量来高效灵活地加热湿污泥，使湿污泥的水分蒸发出来从而实现干燥，蒸发出来的水分以水蒸气形式随流化气体排出干燥器，干燥的污泥与直接换热的热载体一起排出复合干燥器。
本发明的目的还在于提供一种利用复合干燥器的循环流化床湿污泥干化焚烧处理方法，该方法将污泥的干化和焚烧有机结合起来，集在一体化装置中进行，湿污泥干化所需热量直接来自干污泥及辅助燃料的燃烧放出的热量，以及优选从烟气中回收的焚烧炉剩余热量，干化后的污泥在炉膛内焚烧。

本发明的第三目的是，提供一种利用复合干燥器的循环流化床湿污泥干化焚烧处理装置，该装置将污泥的干化和焚烧有机结合起来，集中一体化装置中进行，湿污泥干化所需热量直接来自干污泥及辅助燃料的燃烧放出的热量，以及优选从烟气中回收的焚烧炉剩余热量，干化后的污泥在炉膛内焚烧。

本发明的技术方案如下：

本发明提供的复合干燥器，其特征在于，包括：

一长方形腔体 600，其内腔下部水平安装一布风板 620，布风板 620 上设有风帽 621；布风板 620 之下的腔室为流化风室 622；

所述腔体 600 内腔下部设有固定在腔体 600 底腔壁及两侧腔壁上的纵向折流隔墙 606；所述折流隔墙 606 将腔体下部在长度方向上分割成鼓泡流化床式直接换热室 602 和鼓泡流化床式间接换热室 603；所述间接换热室 603 内部布置有换热介质的放热盘管 608，所述直接换热室 602 顶盖上设有湿污泥加入口 609，下端壁或外侧壁上设有热灰入口 630；所述间接换热室 603 顶盖和外侧壁上分别设有排气口 610 和干污泥出口 611。

所述的流化风室 622 分为左、右两部分，并分别与直接换热室 602 和间接换热室 603 上下对应，所述的折流隔墙 606 上端略高于放热盘管 608 上端。所述的热灰入口 630 位于直接换热室 602 下端壁或外侧壁，入口形状为圆形、长方形或正方形，数量为 1～3 个，其直径或宽度之和与直接换热室 602 宽度之比为 0.1～1。所述的湿污泥加入口 609 位于直接换热室 602 顶盖偏向上热灰入口 630 的一侧。所述的排气口 610 位于间接换热室 603 顶盖偏向干污泥出口 611 的一侧。所述的干污泥出口 611 位于间接换热室 603 外侧壁的中部，与放热盘管 608 顶部同高，其宽度与间接换热室 603 的宽度之比为 0.5～1。所述的放热盘管 608 沿腔体的长度方向（即热灰流动方向）布置，其内通入的换热介质为导热油或蒸汽。所述的直接换热室 602 和间接换热室 603 流化速度为 0.3～0.8m/s。

本发明提供的带复合干燥器的循环流化床湿污泥干化焚烧处理方法，在循环流化床焚烧炉中干化焚烧含水率在 60～90%之间的湿污泥，其特征在于：

2
在循环流化床高温循环灰回路中设置复合干燥器，从循环流化床焚烧炉的旋风分离器分离下来的高温循环灰经热灰分配阀，一部分经返料器直接返回炉膛，另一部分进入复合干燥器；经打散装置打散的湿污泥送入复合干燥器，在复合干燥器中与高温循环灰直接掺混换热，并与布置在复合干燥器中的放热盘管内的换热介质进行间接换热，被加热、干燥成为含水率为5～20%的干化污泥后，再与循环灰一起返回炉膛焚烧。所述的复合干燥器为鼓泡流化床式，底部通入流化气体，其中设置放热盘管。所述的放热盘管与焚烧炉尾部的管式换热器相连，放热盘管内通入换热介质，换热介质在管式换热器中吸收热烟气的热量，在放热盘管中放热，加热湿污泥。所述的换热介质是导热油或蒸汽。所述的换热介质加热与放热的温度变化控制在100～260℃范围内。通过热灰分配阀调节进入复合干燥器的高温循环灰量，将复合干燥器的排气温度控制在80～150℃。可以通过向循环回路中添加惰性床料（如沙子）以增加总循环灰量的方式，增强热灰分配阀对复合干燥器的排气温度的调节。复合干燥器的排气经除尘和除湿后，送回复合干燥器作为流化气体循环使用，或者送入炉膛焚烧。

本发明在循环流化床焚烧炉的高温循环灰回路中设置复合干燥器，旋风分离器分离下来的高温循环灰经热灰分配阀分配，一部分进入返料器直接返回炉膛，另一部分进入复合干燥器；含水率在60～90%之间的湿污泥经打散装置打散后从设在复合干燥器上的湿污泥加入口加入；复合干燥器为鼓泡流化床式，底部通入流化气体；其中布置放热盘管，换热介质在管式换热器中吸收热烟气的热量，在放热盘管中放热，加热湿污泥；换热介质为导热油或蒸汽。利用放热盘管中换热介质带入的烟气的热量来加热、干燥湿污泥，但这部分热量不足以将湿污泥干化至含水率5～20%，因此再通过高温循环灰补足。

通过热灰分配阀调节进入复合干燥器的高温循环灰量，将复合干燥器排气温度控制在80～150℃，并提供足够的热量将湿污泥干化至含水率5～20%。热灰分配阀可以为机械式或气动控制式。此外还可以通过向循环回路中添加惰性床料（如沙子）以增加总循环灰量的方式，增大热灰分配阀的调节范围，增强其对复合干燥器排气温度的调节能力；湿污泥在复合干燥器中与循环灰直接掺混，与放热盘管间接换热，被加热，所含水分蒸发，干燥至含水率为5～20%的干化污泥，与循环灰一起通过机械输送方式或者气力方式返回炉膛焚烧。

湿污泥所含水分大部分在复合干燥器中被蒸发出来，随复合干燥器流化气体从复合干燥器顶部引出；复合干燥器排气经细粉分离器分离出细粉和灰尘、冷却器冷凝出
冷凝水后，再经风机加压，作为复合干燥机流化气体送回复合干燥机循环使用，或者送入炉膛焚烧，细粉分离器分离出的细粉和灰尘通过机械输送方式或者气力方式送回炉膛焚烧，冷却器冷却出的冷凝水送回污水处理厂处理。

本发明提供的带有复合干燥器的湿污泥焚烧处理装置，包括：循环流化床焚烧炉炉膛 1、高温气固分离器 2 和尾部烟道 3，以及热灰分配返料阀 4、污泥打散装置 5、复合干燥器 6 和由相连通的细粉分离器 71、冷却器 72、汽水分离器 73 和风机 74 组成的干燥器排气处理系统 7，其特征在于：

所述的热灰分配返料阀 4 位于高温气固分离器 2 下方，其入口与高温气固分离器料腿 21 相连通，其出口分别与焚烧炉炉膛 1 和复合干燥器 6 相连通，其具体结构为：

在高温气固分离器料腿 21 正下方设置一竖直分流板 402，该竖直分流板 402 两侧分别设置上部相通，底面处于同一水平高度的热灰分配返料阀第一进料室 403 和第二进料室 405，所述竖直分流板 402 将分离器料腿 21 在所述第一进料室 403 和第二进料室 405 底面上的投影分成两部分；

还设置有第一出料室 404 和第二出料室 406，所述第一出料室 404 和第二出料室 406 上部分别设有第一溢流口 407 和第二溢流口 408，所述第一溢流口 407 和第二溢流口 408 底端处于同一水平高度；

所述第一进料室 403 与第一出料室 404 底部通过第一水平孔 409 相连通，所述第一出料室 404 上部通过第一溢流口 407 与焚烧炉炉膛 1 相连通；所述第二进料室 405 与第二出料室 406 底部通过第二水平孔 410 相通；所述第一水平孔 409 和第二水平孔 410 顶端处于同一水平高度；所述竖直分流板 402 顶端不低于第一水平孔 409 顶端，且不高于第一溢流口 407 底端；所述第一出料室 404、第一进料室 403、第二进料室 405 和第二出料室 406 底面均设有带风帽的布风板，布风板的下部分别设置与所述第一出料室 404、第一进料室 403、第二进料室 405 和第二出料室 406 相对应的风室，风室通入流量可调节的流化风；所述第一出料室 404 与第二出料室 406 之间有平衡风管 401 相连通；

所述复合干燥器 6 通过第二溢流口 408 与所述热灰分配返料阀 4 相连通，其具体结构为：

在复合干燥器 6 内设有相互平行的竖直入口隔墙 605 和折流隔墙 606；所述入口隔墙 605 位于复合干燥器 6 内靠近热灰分配返料阀 4 的第二溢流口 408 处，所述折流隔墙 606 位于复合干燥器 6 中部，二者将复合干燥器 6 内部分为入口室 601、直接换
热室 602，间接换热室 603；所述入口室 601 上部与第二溢流口 408 相连通，所述入口室 601 与直接换热室 602 通过入口隔墙 605 分隔，其二者底部相通；所述直接换热室 602 与间接换热室 603 通过折流隔墙 606 分隔，其二者上部相通；所述入口室 601、直接换热室 602 和间接换热室 603 的底面均设置带风帽的布风板，布风板下方分别设置与所述入口室 601、直接换热室 602 和间接换热室 603 相对应的风室，风室通入流量可调节的流化气体；所述直接换热室 602、间接换热室 603 内的流化气体为惰性气体或者经过冷却的焚烧炉烟气，其流化速度为 0.4～1.5m/s；

所述直接换热室 602 顶部靠近入口室 601 处设有湿泥旋加入口 609，所述间接换热室 603 顶部远离入口室 601 处设有排气口 610；所述间接换热室 603 内布置有放热盘管 608，所述折流隔墙 606 上端略高于放热盘管 608 上端，以免磨损放热盘管 608；所述放热盘管 608 与尾部烟道 3 中的管式换热器 31 相连通，放热盘管 608 和管式换热器 31 内充有热介质，所述污泥打散装置 5 为机械式或气力式污泥打散装置，通过湿污泥加入口 609 与复合干燥器 6 相连通；

所述复合干燥器 6 远离第二溢流口 408 的一侧设有干污泥出口 611 和排气口 610；所述干污泥出口 611 通过干污泥返料器 612 或第一螺旋给料机 613 与焚烧炉炉膛 1 相连通；

所述干燥器排气处理系统 7 通过复合干燥器 6 的排气口 610 与复合干燥器 6 相连通；所述干燥器排气处理系统 7 的细粉分离器 71 的细粉出口通过粉料返料器 711 或第二螺旋给料机 712 与焚烧炉炉膛 1 相连通，将从干燥器排气中分离出来的污泥细粉送回焚烧炉炉膛 1；

所述干污泥出口 611 设置在复合干燥器 6 远离第二溢流口 408 的侧壁上，其底端与第二溢流口 408 底端等高，并通过干污泥返料器 612 与焚烧炉炉膛 1 相连通，将经过干化的污泥和冷却后的循环灰一起送入干污泥返料器 612 送回焚烧炉炉膛 1。

所述干污泥出口 611 设置在复合干燥器 6 远离第二溢流口 408 底部远离入口室 601 的一端，并通过第一螺旋给料机 613 与焚烧炉炉膛 1 相连通，将经过干化的污泥和冷却后的循环灰一起经第一螺旋给料机 613 送回焚烧炉炉膛 1。

在所述复合干燥器 6 的间接换热室 603 内设置与入口隔墙 605 平行的出口隔墙 607，分隔出口室 604，所述出口室 604 的底面设有带风帽的布风板，布风板下方设置与所述出口室 604 相对应的风室，风室内通入流量可调节的流化气体；所述由出口隔墙 607 分隔的间接换热室 603 与出口室 604 底部相通；所述干污泥出口 611 设置在
所述出口室 604 的侧壁上，其底端与第二溢流口 408 底端等高，并与焚烧炉膛 1 相连通。

所述竖直分流板 402 将分离器料腿 21 在第一进料室 403 和第二进料室 405 底面上的投影分成的两个部分的面积之比为 0.25～4.0。

所述干燥器排气处理系统 7 的风机 74 出口通过一体化气体管路 741 与复合干燥器 6 的直接换热室 602 和间接换热室 603 底部风室相连通。

所述干燥器排气处理系统 7 的风机 74 出口通过一分支管路 742 与焚烧炉炉膛 1 相连通。所述细粉返料器 711 入口设有加沙口 713。所述第二螺旋给料机 712 入口设有加沙口 713。

本发明的原理是，本发明的复合干燥器，将经过打散的湿污泥从直接换热室顶部加入，在下落过程中与直接换热室内的处于流化状态的热载体（热灰）直接混合，被干燥并造粒。从其底部进入的高温热灰与直接换热室内的热灰在流化状态下掺混，为直接换热室提供热量。然后热灰与污泥在流化气体的作用下经过隔墙，进入间接换热室，与间接换热室内的放热管束中的换热介质进行间接换热，继续造粒与干化，干化了的污泥与冷却了的热灰一起从干污泥口排出，湿污泥中蒸发出来的水分随流化气体从排气口排放。

湿污泥的干化过程在复合干燥器中进行，利用高温循环灰带入的污泥以及辅助燃料的燃烧产生的热量，同时还从烟气中回收焚烧炉的烟气余热，干化湿污泥，湿污泥被干化为含水率 5～20%的颗粒状干化污泥，再与循环灰一起返回炉膛焚烧，焚烧产生的高温烟气中只含有少量水蒸气，排出炉膛的热量大大减少；湿污泥中的大部分水分以水蒸气的形式随温度较低的复合干燥器排气排出，水蒸气在冷却器中冷凝成水，可送回污水处理厂处理，经过除水除湿的复合干燥器排气可在封闭循环中循环使用，也可送入炉膛焚烧后处理，都能够避免污泥干化时产生的有异味的气体排放到环境中。

在循环流化床焚烧炉旋风分离器分离下来的高温循环灰经热灰分配返料阀分配，一部分直接返回炉膛，另一部分进入复合干燥器；含水率在 60～90%之间的湿污泥经打散装置打散后从设在复合干燥器上的湿污泥加入口加入；复合干燥器为鼓泡流化床式，底部通入流化气体，其中布置放热盘管，换热介质在尾部烟道中的管式换热器中吸收热烟气的热量，再在放热盘管中放热，加热湿污泥；换热介质可以为导热油或蒸汽。利用放热盘管中换热介质带入的烟气的热量来加热、干燥湿污泥，但这部分热量不足以将湿污泥干化至含水率 5～20%，不足部分通过热灰分配返料阀分流至复合干
燥器的高温循环灰补足。

通过调节热灰分配返料阀第一进料室、第二进料室以及第一出料室、第二出料室的流化风速，可以将循环灰在直接返回炉膛与进入复合干燥器之间进行分配，从而控制进入复合干燥器的高温循环灰量，将复合干燥器排气温度控制在 80～150°C，并提供足够的热量将湿污泥干化至含水率 5～20%。可以通过向循环回路中添加惰性床料（如沙子）以增加总循环灰量的方式，增大热灰分配返料阀的调节范围，增强其对复合干燥器排气温度的调节能力；湿污泥在复合干燥器中与循环灰直接掺混、与放热盘管间接换热，被加热，所含水分蒸发，干燥至含水率为 5～20%的干化污泥，与循环灰一起通过返料器送回炉膛焚烧。

当热灰直接返料口与干污泥返料口的高度不等时，第一溢流口与第二溢流口压力不等，可以通过分流板的位置来平衡循环灰直接返回炉膛与流入复合干燥器两路的流动阻力。当热灰直接返料口高于干污泥返料口时，第一溢流口压力较低，分流板将分离器料腿在第一进料室和第二进料室底面上的投影分割成的两部分的面积之比应小于 1；反之则应大于 1。

湿污泥所含水分大部分在复合干燥器中被蒸发出来，随复合干燥器化气体从复合干燥器顶部引出：复合干燥器排气经细粉分离器分离出细粉和灰尘，冷却器冷凝出冷凝水后，再经风机加压，作为复合干燥器化气体送回复合干燥器循环使用，部分送入炉膛焚烧；细粉分离器分离出的细粉和灰尘通过机械输送方式或者气力方式送回炉膛焚烧，冷却器冷凝出的冷凝水送回污水处理厂处理。

湿污泥的干化过程在复合干燥器中进行，利用高温循环灰带入的污泥以及辅助燃料的燃烧产生的热量，同时还从烟气中回收焚烧炉的烟气余热，干化湿污泥，湿污泥被干化为 5～20%的颗粒状干化污泥，再与循环灰一起返回炉膛焚烧，焚烧产生的高温烟气中只含有少量水蒸气；湿污泥中的大部分水分以水蒸气的形式随温度较低的复合干燥器排气排出，水蒸气在冷却器中冷凝成水，可送回污水处理厂处理，经过除尘除湿的复合干燥器排气可在封闭循环中循环使用，也可送入炉膛焚烧处理，能够避免污泥干化时产生的有异味的气体排放到环境中。

本发明的复合干燥器可以用于污泥等高含水率的废弃物的干化，如城市下水污泥、造纸污泥、石化行业污泥等，也可用于垃圾填埋场浓缩渗滤液的干化。

本发明提供的循环流化床湿污泥复合干化焚烧处理方法和处理装置具有如下优点：突破先干化再焚烧、两个过程各自独立进行的模式，将污泥的干化和焚烧有机结
合起来，集中于一体化的装置中进行，节省了因物料冷却和输送造成的热量损失和动力消耗，大大简化了湿污泥的干化焚烧处理工艺，简化了干化焚烧设备；湿污泥干化所需热量来自干污泥以及辅助燃料的燃烧放出的热量及焚烧炉热烟气的余热；粒了与湿污泥在复合干燥器中直接接触，充分掺混，强化了传热，使湿污泥迅速被加热、干燥；同时湿污泥还与放热盘管间接换热，吸收热介质带入的从热烟气中回收的热量，从而充分利用了焚烧炉的烟气余热。

对于湿污泥处理，采用本发明的方法和装置，可以使能够纯烧的湿污泥含水率上限提高 2～3 个百分点，使含水率 73～75%及以下的湿污泥都可以不添加辅助燃料焚烧；对于需要添加辅助燃料的高含水率湿污泥的焚烧，采用本发明的方法和装置，可以减少辅助燃料的添加量，节约运行成本；循环流化床焚烧炉采用循环流化的焚烧方式，具有抑制 NOx 生成和脱硫功能；湿污泥中所含的水分大部分不再随焚烧产生的高温烟气排放，而是集中在复合干燥器排出的低温气体中，减少了系统的热量损失，减少了焚烧炉辅助燃料的消耗量，或者提高了不需添加辅助燃料进行焚烧的湿污泥含水率的上限；污泥干化中产生的气体经处理后循环使用或者送入炉膛焚烧，使处理过程中不排放有异味的气体。

附图说明

附图 1 是本发明实施例 1 复合干燥器的正视图；
附图 2 是本发明实施例 1 复合干燥器的剖视图；
附图 3 是本发明实施例 2 复合干燥器的正视图；
附图 4 是本发明实施例 2 复合干燥器的剖视图；
附图 5 是本发明实施例 3 带复合干燥器的循环流化床湿污泥干化焚烧处理方法的示意图；
附图 6 是本发明实施例 4 带复合干燥器的循环流化床湿污泥干化焚烧处理方法的示意图；
附图 7 是本发明实施例 5 的带复合干燥器的循环流化床湿污泥干化焚烧处理装置示意图。
附图 8 是本发明实施例 5 的热灰分配返料阀和复合干燥器示意图。
附图 9 是本发明实施例 6 的带复合干燥器的循环流化床湿污泥干化焚烧处理装置示意图。
附图 10 是本发明实施例 6 的热灰分配返料阀和复合干燥器示意图。
附图 11 是本发明实施例 7 的带复合干燥器的循环流化床湿污泥干化焚烧处理装置示意图。
附图 12 是本发明实施例 7 的热灰分配返料阀和复合干燥器示意图。

具体实施方式
实施例 1
本实施例的复合干燥器，其结构包括：
长方体腔体 600，其内腔下部横向安装一布风板 620，布风板 620 上设有风帽 621；布风板 620 之下的腔室为流化风室 622，腔体内设置的纵向折流隔板 606 将腔体在长度方向上分隔成直接换热室 602 和间接换热室 603，两室均为鼓泡流化床；直接换热室 602 设有热灰入口 630 和湿污泥加入口 609；间接换热室 603 内部布置放热盘管 608，设有排气口 610 和干污泥出口 611。流化风室 622 分为两部分，分别与直接换热室 602 和间接换热室 603 对应。折流隔板 606 比放热盘管 608 略高。热灰入口 630 位于直接换热室 602 底面远离折流隔板 606 的一端，入口形状为长方形，与直接换热室 602 等宽。湿污泥加入口 609 位于直接换热室 602 顶盖横向热灰入口 630 的一侧（位于直接换热室 602 顶盖中心线至外侧壁之间均可）。排气口 610 位于间接换热室 603 顶盖偏向干污泥出口 611 的一侧。干污泥出口 611 位于间接换热室 603 与折流隔板 606 相对的侧面中部，与放热管束顶部同一高，宽度与间接换热室宽度之比为 0.5。所述的放热盘管 608 沿长度方向布置，其内通入导热油。直接换热室 602 流化速度为 0.5m/s，间接换热室 603 流化速度为 0.4m/s。湿污泥从湿污泥加入口 609 加入，干污泥从干污泥出口 611 随经过冷却的循环灰排出。

实施例 2
本实施例的复合干燥器，其结构包括：
长方体腔体 600，其内腔下部横向安装一布风板 620，布风板 620 上设有风帽 621；布风板 620 之下的腔室为流化风室 622，腔体内设置的纵向折流隔板 606 将腔体在长度方向上分隔成直接换热室 602 和间接换热室 603，两室均为鼓泡流化床；直接换热室 602 设有热灰入口 630 和湿污泥加入口 609；间接换热室 603 内部布置放热盘管 608，设有排气口 610 和干污泥出口 611。流化风室 622 分为两部分，分别与直接换热室 602
和间接换热室 603 对应。折流隔墙 606 比热交换管 608 略高。所述的热交换入口 630 位于直接换热室 602 侧面底部，入口形状为圆形，数量为 2 个，其直径之和与直接换热室 602 宽度之比为 0.4。湿污泥加入口 609 位于直接换热室 602 顶部偏向热交换入口 630 的一侧。排气口 610 位于间接换热室 603 顶部偏向污泥出口 611 的一侧。污泥出口 611 位于间接换热室 603 与折流隔墙 606 相对的侧面中部，与放热管束顶部同高，宽度与间接换热室宽度之比为 1。放热管束 608 沿长度方向排列，其内通入蒸汽。直接换热室 602 流化速度为 0.3m/s，间接换热室 603 流化速度为 0.8m/s。垃圾填埋场渗滤液从湿污泥加入口 609 加入，干燥后的渗滤液残渣从干污泥出口 611 随经过冷却的循环灰排出。

实施例 3

在循环流化床焚烧炉中单独干化焚烧含水率为 60%的湿污泥 A，将湿污泥 A 从设在复合干燥器 6 上的湿污泥加入口 609 加入，加入时被装在湿污泥加入口 609 上的污泥打散装置 5 打散；复合干燥器 6 设置在循环流化床焚烧炉循环灰循环回路中，旋风分离器 2 分离出的高温循环灰经机械式热灰分配阀 41，一部分进入返料器 42 直接返回炉膛 1，另一部分进入复合干燥器 6；复合干燥器 6 为鼓泡流化床式，底部通入流化气体，其中设置有放热管网 608；放热管网 608 与焚烧炉尾部烟道 3 中的管式热交换器 31 相连，换热介质 G（蒸汽）在管式热交换器 31 中吸收烟气中水的燃烧产生的热量，被加热至 150℃，再在放热管网 608 中放热，加热湿污泥，蒸汽冷却到 100℃；从炉膛 1 下部加入沙子，增加总循环量，并通过热灰分配阀 41 调节进入复合干燥器 6 的高温循环灰量，将复合干燥器排气 C 温度控制在 80℃左右；湿污泥 A 在复合干燥器 6 中与循环灰直接掺混，并被加热，所含水分蒸发，湿污泥 A 被干燥至含水率为 20%的干化污泥 B，与循环灰一起通过气力方式返回炉膛 1 燃烧；复合干燥器排气 C 从其顶部引出，经细粉分离器 71 分离出粉尘 D、冷却器 72 冷凝出冷凝水 E 后，经风机 74 加压，作为复合干燥器流化气体送回复合干燥器 6 循环使用；细粉分离器 71 分离出的粉尘 D 送回炉膛焚烧，冷却器 72 冷凝出的冷凝水 E 送回污水处理厂处理。

实施例 4

在循环流化床焚烧炉中添加煤作为辅助燃料干化焚烧含水率为 90%的湿污泥 A，将湿污泥 A 从设在复合干燥器 6 上的湿污泥加入口 609 加入，加入时被装在湿污泥加
入口609上的污泥打散装置5打散；复合干燥器6设置在循环流化床焚烧炉循环灰循环回路中。旋风分离器2分离下来的高温循环灰气动控制式热灰分配阀41，一部分进入返料器42直接返回炉膛1，另一部分进入复合干燥器6。复合干燥器6为鼓泡流化床式，底部通入流化气体，其中设置有放热盘管608；放热盘管608与焚烧炉尾部烟道3中的管式换热器31相连，换热介质G（导热油）在管式换热器31中吸收烟气带出的燃烧产生的热量，被加热至260℃，再在放热盘管608中放热，加热湿污泥，导热油被冷却到220℃；通过热灰分配阀41调节进入复合干燥器6的高温循环灰量，将复合干燥器排气C温度控制在150℃左右；湿污泥A在复合干燥器6中与循环灰直接掺混，并被加热，所含水分蒸发，湿污泥A被干燥至含水率为15%的干化污泥B，与循环灰一起通过机械输送方式返回炉膛1焚烧；复合干燥器排气C从其顶部引出，经细粉分离器71分离出粉尘D。冷却器72冷凝出冷凝水E后，再经风机74加压，送入炉膛1焚烧；细粉分离器71分离出的粉尘D送回炉膛1焚烧，冷却器72冷凝出的冷凝水E送回污水处理厂处理。

实施例5

图7和图8是本实施例的结构示意图，由图可知，该实施例的带有复合干燥器的湿污泥焚烧处理装置，由循环流化床焚烧炉炉膛1、高温气固分离器2、尾部烟道3、热灰分配返料阀4、污泥打散装置5、复合干燥器6、干燥器排气处理系统7（包括细粉分离器71、冷却器72、汽水分离器73及风机74等）组成。

图7中热灰分配返料阀4位于分离器2下方，入口与分离器料腿21相连，出口分别与焚烧炉炉膛1和复合干燥器6相连，其具体结构为：

在分离器料腿21正下方设置一竖直分流板402，其两侧分别设置热灰分配返料阀第一进料室403和第二进料室405，两室上部相通，底面处于同一水平高度，竖直分流板402将分离器料腿21在两室底面上的投影分成两个部分；还包括第一出料室404和第二出料室406，所述第一出料室404和第二出料室406的上分部分别设有第一溢流口407和第二溢流口408。

所述第一进料室403与第一出料室404底部通过第一溢流口409相通，第一出料室404上部通过第一溢流口407与焚烧炉炉膛相通；第二进料室405与第二出料室406底部通过第二溢流口410相通，第二出料室406上部设有第二溢流口408；第一溢流口407和第二溢流口408底端处于同一水平高度；第一溢流口409和第二溢流口410顶端处于
同一水平高度，第一出料室 404、第一进料室 403、第二进料室 405 和第二出料室 406 底面均设置带风幕的布风板，布风板下方设置分别与所述第一出料室 404、第一进料室 403、第二进料室 405 和第二出料室 406 相对应的风室，风室内通入流量可调节的流化风。第一出料室 404 与第二出料室 406 之间有平衡风管 401 相连。

竖直分流板 402 顶端与第一溢流口 407 底端等高；竖直分流板 402 将分离器料腿 21 在第一进料室 403 和第二进料室 405 底面上的投影分成的两个部分的面积之比为 0.25。

热灰分配返料阀 4 的第二溢流口 408 与复合干燥器 6 相通，复合干燥器 6 的具体结构为：

复合干燥器 6 内设有竖直的入口隔墙 605 和折流隔墙 606，二者平行；入口隔墙 605 位于复合干燥器 6 内靠近热灰分配返料阀 4 的第二溢流口 408 处，折流隔墙 606 位于复合干燥器 6 中部，二者将复合干燥器 6 内部分为入口室 601、直接换热室 602、间接换热室 603；第二溢流口 408 与入口室 601 上部相通，入口室 601 与直接换热室 602 通过入口隔墙 605 分隔，二者底部相通；直接换热室 602 与间接换热室 603 通过折流隔墙 606 分隔，二者上部相通；入口室 601、直接换热室 602 和间接换热室 603 的底面均设置带风幕的布风板，布风板下方设置分别与所述入口室 601、直接换热室 602 和间接换热室 603 相对应的风室，风室内通入流量可以调节的流化气体。直接换热室 602、间接换热室 603 的流化气体为惰性气体，流化速度为 0.4m/s。直接换热室 602 顶部靠近入口室 601 处设有溢污泥加入口 609，间接换热室 603 顶部远离入口室 601 处设有排气口 610。间接换热室 603 内部布置放热盘管 608，折流隔墙 606 上端略高于放热盘管 608 上端。放热盘管 608 与尾部烟道 3 中的管式换热器 31 相连通，放热盘管 608 和管式换热器 31 内充满了热介质。

复合干燥器 6 溢污泥加入口 609 上方设有机械式污泥打散装置 5，打散后的污泥直接落入复合干燥器 6。

复合干燥器 6 远离第二溢流口 408 的侧壁上设有干污泥出口 611，干污泥出口 611 底端与第二溢流口 408 底端等高；干污泥出口 611 通过干污泥返料器 612 与焚烧炉炉膛 1 相连，将经过干化的污泥和冷却后的循环灰经干污泥返料器 612 一起送回焚烧炉炉膛 1。

复合干燥器的排气口 610 与干燥器排气处理系统 7 相连，干燥器排气处理系统 7 的风机 74 出口通过流化气体管路 741 与复合干燥器 6 直接换热室 602 和间接换热室
603 底部风室相连，有分支管路 742 与焚烧炉炉膛 1 相连。

细粉分离器 71 的细粉出口通过细粉返料器 711 与焚烧炉炉膛 1 相通，将从干燥器排气中分离出来的污泥细粉送回焚烧炉炉膛 1；细粉返料器 711 入口设有加沙口 713，供运行时加入沙子以改善污泥细粉的输送特性及流化特性。

5 实施例 6

图 9 和图 10 是本实施例的结构示意图，由图可知，该实施例的带有复合干燥器的湿污泥焚烧处理装置，由循环化床焚烧炉炉膛 1、高温气固分离器 2、尾部烟道 3、热灰分配返料阀 4、污泥打散装置 5、复合干燥器 6、干燥器排气处理系统 7（包括细粉分离器 71、冷却器 72、汽水分离器 73 及风机 74 等）组成。

热灰分配返料阀 4 位于分离器 2 下方，入口与分离器料腿 21 相连，出口分别与焚烧炉炉膛 1 和复合干燥器 6 相连，其具体结构为：

在分离器料腿 21 正下方设置一垂直分流板 402，其两侧分别设置热灰分配返料阀第一进料室 403 和第二进料室 405，两室上部相通，底面处于同一水平高度，竖直分流板 402 将分离器料腿 21 在两室底面上的投影分成两个部分；还包括第一出料室 404 和第二出料室 406，所述第一出料室 404 和第二出料室 406 的上部分别设有第一溢流口 407 和第二溢流口 408；

所述第一进料室 403 与第一出料室 404 底部通过第一水平孔 409 相通，第一出料室 404 上部通过第一溢流口 407 与焚烧炉炉膛相通；第二进料室 405 与第二出料室 406 底部通过第二水平孔 410 相通，第二出料室 406 上部设有第二溢流口 408；第一溢流口 407、第二溢流口 408 底端处于同一水平高度；第一水平孔 409 和第二水平孔 410 顶端处于同一水平高度；第一出料室 404、第一进料室 403、第二进料室 405 和第二出料室 406 底面均设置有带风帽的布风板，布风板下方设置分别与所述第一出料室 404、第一进料室 403、第二进料室 405 和第二出料室 406 相对应的风室，风室内通入流量可调节的流化风。第一出料室 404 与第二出料室 406 之间有平衡风管 401 相连。分流板 402 顶端不低于第一水平孔 409 顶端，且不高于第一溢流口 407 底端；分流板 402 将分离器料腿 21 在第一进料室 403 和第二进料室 405 底面上的投影面积等分。

热灰分配返料阀 4 的第二溢流口 408 与复合干燥器 6 相通，复合干燥器 6 的具体结构为：

复合干燥器 6 内设有竖直的入口隔墙 605 和折流隔墙 606，二者平行；入口隔墙
605 位于复合干燥器 6 内靠近热灰分配返料阀 4 的第二溢流口 408 处，折流隔墙 606
位于复合干燥器 6 中部，二者将复合干燥器 6 内部分为入口室 601、直接换热室 602、
间接换热室 603；第二溢流口 408 与入口室 601 上部相通，入口室 601 与直接换热室
602 通过入口隔墙 605 分隔，二者底部相通；直接换热室 602 与间接换热室 603 通过
折流隔墙 606 分隔，二者上部相通；入口室 601、直接换热室 602 和间接换热室 603
的底面均设置带风帽的布风板，布风板下方设置分别与所述入口室 601、直接换热室
602 和间接换热室 603 相对应的出风室，风室内通入流速可以调节的流化气体。直接换
热室 602、间接换热室 603 的流化气体为惰性气体，流化速度为 0.8m/s。直接换热室
602 顶部靠近入口室 601 处设有湿污泥加入口 609，间接换热室 603 顶部远离入口室
601 处设有排气口 610。间接换热室 603 内部设置放热盘管 608，折流隔墙 606 上端略
高于放热盘管 608 上端，放热盘管 608 与尾部烟道 3 中的管式换热器 31 相连通，放
热盘管 608 和管式换热器 31 内充有换热介质。

复合干燥器 6 湿污泥加入口 609 上方设有气力式污泥打散装置 5，打散后的污泥
直接落入复合干燥器 6 内。

复合干燥器 6 间接换热室 603 底面远离入口室 601 的一端设有干污泥出口 611，
通过第一螺旋给料机 613 与焚烧炉炉膛 1 相连，将经过干化的污泥和冷却后的循环灰
经第一螺旋给料机 613 一起送回焚烧炉炉膛 1。

复合干燥器的排气口 610 与干燥器排气处理系统 7 相连，干燥器排气处理系统 7
的风机 74 出口通过流化气体管路 741 与复合干燥器 6 直接换热室 602 和间接换热室
603 底部风室相连。

细粉分离器 71 的细粉出口通过细粉返料器 711 与焚烧炉炉膛 1 相通，将从干燥
器排气中分离出来的污泥细粉送回焚烧炉炉膛 1。

实施例 7

图 11 和图 12 是本实施例的结构示意图，由图可知，本发明提供的一种带有复合
干燥器的湿污泥焚烧处理装置，由循环流化床焚烧炉炉膛 1、高温气固分离器 2、尾
部烟道 3、热灰分配返料阀 4、污泥打散装置 5、复合干燥器 6、干燥器排气处理系统
7（包括细粉分离器 71、冷却器 72、汽水分离器 73 及风机 74 等）组成。

热灰分配返料阀 4 位于分离器 2 下方，入口与分离器料腿 21 相连，出口分别与
焚烧炉炉膛 1 和复合干燥器 6 连接，其具体结构为：
在分离器料腿 21 正下方设置一竖直分流板 402，其两侧分别为热灰分配返料阀第一进料室 403 和第二进料室 405，两室上部相通，底面处于同一水平高度，竖直分流板 402 将分离器料腿 21 在两室底面上的投影分成两个部分；还包括第一出料室 404 和第二出料室 406，所述第一出料室 404 和第二出料室 406 的上部分别设有第一溢流口 407 和第二溢流口 408；第一进料室 403 与第一出料室 404 底部通过第一水平孔 409 相通，第一出料室 404 上部通过第一溢流口 407 与焚烧炉炉膛相通；第二进料室 405 与第二出料室 406 底部通过第二水平孔 410 相通，第二出料室 406 上部设有第二溢流口 408；第一溢流口 407、第二溢流口 408 底端处于同一水平高度；第一水平孔 409 和第二水平孔 410 顶侧处于同一水平高度；第一出料室 404、第一进料室 403、第二进料室 405 和第二出料室 406 底面均设置带风帽的布风板，布风板下方设置分别与所述第一出料室 404、第一进料室 403、第二进料室 405 和第二出料室 406 相对应的风室，风室内通入流量可调节的流化风。第一出料室 404 与第二出料室 406 之间有平衡风管 401 相连。分流板 402 顶端不低于第一水平孔 409 顶端，且不高于第一溢流口 407 底端；分流板 402 将分离器料腿 21 在第一进料室 403 和第二进料室 405 底面上的投影面积等分。

热灰分配返料阀 4 的第二溢流口 408 与复合干燥器 6 相通，复合干燥器 6 的具体结构为：

复合干燥器 6 内设有竖直的入口隔墙 605 和折流隔墙 606，二者平行；入口隔墙 605 位于复合干燥器 6 内靠近热灰分配返料阀 4 的第二溢流口 408 处，折流隔墙 606 位于复合干燥器 6 中部，二者将复合干燥器 6 内部分为入口室 601、直接换热室 602、间接换热室 603；第二溢流口 408 与入口室 601 上部相通，入口室 601 与直接换热室 602 通过入口隔墙 605 分隔，二者上部相通；直接换热室 602 与间接换热室 603 通过折流隔墙 606 分隔，二者上部相通；入口室 601、直接换热室 602 和间接换热室 603 的底面均设置带风帽的布风板，布风板下方设置分别与所述入口室 601、直接换热室 602 和间接换热室 603 相对应的风室，风室内通入流量可以调节的流化气体。直接换热室 602、间接换热室 603 的流化气体为经过冷却的焚烧炉烟气，流化速度为 1.5m/s。直接换热室 602 顶部靠近入口室 601 处设有湿污泥加入口 609，间接换热室 603 顶部远离入口室 601 处设有排气口 610。间接换热室 603 内部布置放热盘管 608，折流隔墙 606 上端略高于放热盘管 608 上端。放热盘管 608 与尾部烟道 3 中的管式换热器 31 相连通，放热盘管 608 和管式换热器 31 内充满换热介质。
复合干燥器 6 湿污泥加入口 609 上方设有机械式污泥打散装置 5，打散后的污泥直接落入复合干燥器 6 内。

复合干燥器 6 内与入口室 601 相对的另一侧，设有与入口隔墙 605 平行的出口隔墙 607，分隔出出口室 604，其底面为带风帽的布风板，下方对应风室，主入流量可以调节的流化气体；间接热室 603 与出口室 604 通过出口隔墙 607 分隔，二者底部相通；出口室 604 侧壁设有干污泥出口 611，干污泥出口 611 底端与第二溢流口 408 底端等高；干污泥出口 611 与焚烧炉炉膛 1 相连。

复合干燥器的排气口 610 与干燥器排气处理系统 7 相连，干燥器排气处理系统 7 的风机 74 出口通过流化气体管路 741 与复合干燥器 6 直接换热室 602 和间接换热室 603 底部风室相连，有分支管路 742 与焚烧炉炉膛 1 相连。

细粉分离器 71 的细粉出口通过第二螺旋给料机 712 与焚烧炉炉膛 1 相通，将从干燥器排气中分离出来的污泥细粉送回焚烧炉炉膛 1；第二螺旋给料机 712 入口设有加沙口 713，供运行时加入沙子以改善污泥细粉的输送特性及流化特性。
权利要求

1. 一种复合干燥器，其特征在于，包括：

 腔体（600）；

 所述腔体（600）内腔下部设有固定在腔体（600）底腔壁和两侧腔壁上的纵向折流隔墙（606）；所述纵向折流隔墙（606）将腔体下部分隔成鼓泡流化床式直接换热室（602）和鼓泡流化床式间接换热室（603）；所述间接换热室（603）内部布置有换热介质的放热盘管（608）；直接换热室（602）侧设有湿污泥加入口（609）和热灰入口（630）；间接换热室（603）侧设有干污泥出口（611）和排气口（610）。

2. 按权利要求1所述的复合干燥器，其特征在于，所述腔体（600）为长方体的，所述纵向折流隔墙（606）将腔体下部分隔成所述腔体（600）的长度方向上隔成所述直接换热室（602）和所述间接换热室（603）。

3. 按权利要求1所述的复合干燥器，其特征在于，所述的折流隔墙（606）上端略高于放热盘管（608）上端。

4. 按权利要求1所述的复合干燥器，其特征在于，所述的热灰入口（630）位于直接换热室（602）底壁或外侧壁的底部。

5. 按权利要求2所述的复合干燥器，其特征在于，所述的热灰入口（630）数量为1～3个，其直径或宽度之和与直接换热室（602）宽度之比为0.1～1。

6. 按权利要求1所述的复合干燥器，其特征在于，所述的湿污泥加入口（609）位于直接换热室（602）顶盖远离所述间接换热室（603）的一侧。

7. 按权利要求1所述的复合干燥器，其特征在于，所述排气口（610）位于间接换热室（603）顶盖远离所述直接换热室（602）的一侧。

8. 按权利要求1所述的复合干燥器，其特征在于，所述的干污泥出口（611）位于间接换热室（603）的外侧壁或底壁上。

9. 按权利要求2所述的复合干燥器，其特征在于，所述的干污泥出口（611）位于间接换热室（603）外侧壁的中部，与放热盘管（608）顶部同高，其宽度与间接换热室（603）的宽度之比为0.5～1。

10. 按权利要求1所述的复合干燥器，其特征在于，所述的放热盘管（608）沿腔体的长度方向，即热灰流动方向，布置，其内通入的换热介质为导热油或蒸汽。
11、按权利要求1所述的复合干燥器，其特征在于，所述的直接换热室（602）和间接换热室（603）流化速度为0.3～0.8m/s或0.4～1.5m/s。

12、按权利要求1所述的复合干燥器，其特征在于，所述直接换热室（602）设有与外侧壁相间隔的入口隔墙（605），在入口隔墙（605）和外侧壁之间形成入口室（601），入口室（601）与所述直接换热室（602）底部相通，且热灰入口（630）设置在入口室（601）处。

13、按权利要求1所述的复合干燥器，其特征在于，所述间接换热室（603）设有与外侧壁相间隔的出口隔墙（607），在出口隔墙（607）和外侧壁之间形成出口室（604），出口室与间接换热室（603）在底部相通，干污泥出口（611）设置在出口室（604）处。

14、一种循环流化床湿污泥干化焚烧处理方法，在循环流化床焚烧炉或循环流化床锅炉中干化焚烧湿污泥。在循环流化床高温循环灰回路中设置包括鼓泡流化床式的直接换热室和鼓泡流化床式的间接换热室的复合干燥器，从循环流化床焚烧炉的旋风分离器分离下来的高温循环灰经热灰分配阀分配，一部分返回炉膛，另一部分进入复合干燥器，湿污泥送入复合干燥器，在复合干燥器中与高温循环灰直接混混，与布置在复合干燥器中的放热盘管内的热交换介质间接换热，被加热、干燥后，再与循环灰一起返回炉膛焚烧。

15、按权利要求14所述的循环流化床湿污泥干化焚烧处理方法，所述湿污泥含水率在60～90%之间，所述湿污泥在复合干燥器中被干燥成为含水率为5～20%的干化污泥后，再与循环灰一起返回炉膛焚烧。

16、按权利要求14所述的循环流化床湿污泥干化焚烧处理方法，其特征在于，所述的放热盘管与焚烧炉尾部烟道中的管式换热器相连，放热盘管和管式换热器内充有换热介质，换热介质在管式换热器中吸收烟气的热量，在放热盘管中放热，加热湿污泥。

17、按权利要求14或16所述的循环流化床湿污泥干化焚烧处理方法，其特征在于，所述的换热介质加热与放热的温度变化控制在100～260℃范围内。

18、按权利要求14所述的循环流化床湿污泥干化焚烧处理方法，其特征在于，通过热灰分配阀调节进入复合干燥器的高温循环灰量，将复合干燥器排气温度控制在80～150℃。

19、按权利要求14所述的循环流化床湿污泥干化焚烧处理方法，其特征在于，
所述的复合干燥器排气经除尘和除湿后，送回复合干燥器作为流化气体循环使用，或者送入炉膛焚烧。

20、一种湿污泥焚烧处理装置，包括：

其上部连通的循环流化床焚烧炉炉膛（1）和高温气固分离器（2）；

根据权利要求1所述的复合干燥器（6）；

热灰分配返料阀（4），所述热灰分配返料阀（4）位于高温气固分离器（2）下方，其入口与高温气固分离器料腿（21）相连通，其出口与复合干燥器（6）的热灰入口（630）相连通；

其中所述复合干燥器（6）的干污泥出口（611）与所述焚烧炉炉膛（1）相连通。

21、按权利要求20所述的湿污泥焚烧处理装置，其特征在于，所述热灰分配返料阀（4）还包括与焚烧炉炉膛（1）相连通的出口。

22、按权利要求20所述的湿污泥焚烧处理装置，其特征在于，所述湿污泥焚烧处理装置还包括其上部与高温气固分离器（2）的上部连通的尾部烟道（3），所述复合干燥器（6）的放热盘管（608）与尾部烟道（3）中的管式换热器（31）相连通。

23、按权利要求20所述的湿污泥焚烧处理装置，其特征在于，所述湿污泥焚烧处理装置还包括干燥器排气处理系统（7），所述复合干燥器（6）的排气口（610）与所述干燥器排气处理系统（7）相连。

24、按权利要求23所述的湿污泥焚烧处理装置，其特征在于，所述干燥器排气处理系统（7）包括：相连通的细粉分离器（71）、冷却器（72）、气水分离器（73）和风机（74），其中所述细粉分离器（71）的细粉出口通过细粉返料器（711）或第二螺旋给料机（712）与焚烧炉炉膛（1）相连通，将从干燥器排气中分离出来的污泥细粉送回焚烧炉炉膛（1）。

25、按权利要求20所述的湿污泥焚烧处理装置，其特征在于，所述湿污泥焚烧处理装置还包括污泥打散装置（5），该污泥打散装置（5）通过湿污泥加入口（609）与复合干燥器（6）相连通。

26、按权利要求21所述的湿污泥焚烧处理装置，其特征在于，在所述热灰分配返料阀（4）中，在高温气固分离器料腿（21）正下方设置竖直分流板（402），该竖直分流板（402）两侧分别设置上部相通的第一进料室（403）和第二进料室（405）；热灰分配返料阀（4）中还设置有第一出料室（404）和第二出料室（406），所述第一出料室（404）和第二出料室（406）上部分别设有第一溢流口（407）和第二溢流口。
（408）；所述第一进料室（403）与第一出料室（404）底部通过第一水平孔（409）相通；所述第二进料室（405）与第二出料室（406）底部通过第二水平孔（410）相通。

27、按权利要求26所述的湿污泥焚烧处理装置，其特征在于，在所述热灰分配返料阀（4）中，所述第一出料室（404）上部通过第一溢流口（407）与焚烧炉炉膛（1）相连通，第二溢流口（408）与复合干燥器（6）的热灰入口（630）相连通。

28、按权利要求26所述的湿污泥焚烧处理装置，其特征在于，在所述热灰分配返料阀（4）中，第一进料室（403）和第二进料室（405）底面处于同一水平高度。

29、按权利要求26所述的湿污泥焚烧处理装置，其特征在于，在所述热灰分配返料阀（4）中，所述第一溢流口（407）和第二溢流口（408）底端处于同一水平高度。

30、按权利要求26所述的湿污泥焚烧处理装置，其特征在于，在所述热灰分配返料阀（4）中，所述第一水平孔（409）和第二水平孔（410）顶端处于同一水平高度。

31、按权利要求26所述的湿污泥焚烧处理装置，其特征在于，在所述热灰分配返料阀（4）中，所述竖直分流板（402）顶端不低于第一水平孔（409）顶端，且不高于第一溢流口（407）底端。

32、按权利要求26所述的湿污泥焚烧处理装置，其特征在于，在所述热灰分配返料阀（4）中，所述第一出料室（404）、第一进料室（403）、第二进料室（405）和第二出料室（406）底面均设有带风帽的布风板，布风板的下方分别设置与所述第一出料室（404）、第一进料室（403）、第二进料室（405）和第二出料室（406）相对应的风室，风室内通入流量可调节的流化风。

33、按权利要求26所述的湿污泥焚烧处理装置，其特征在于，在所述热灰分配返料阀（4）中，所述第一出料室（404）与第二出料室（406）之间有平衡风管（401）相连通。

34、按权利要求26所述的湿污泥焚烧处理装置，其特征在于，在所述热灰分配返料阀（4）中，所述竖直分流板（402）将分离器料腿（21）在所述第一进料室（403）和第二进料室（405）底面上的投影分成两个部分，两个部分的面积之比为0.25～4.0。

35、按权利要求26所述的湿污泥焚烧处理装置，其特征在于，所述的复合干燥器（6）中设有垂直的与折流隔墙（606）平行的入口隔墙（605），位于靠近热灰分配
返料阀（4）的第二溢流口（408）处，将复合干燥器（6）内部分隔出入口室（601）；
所述入口室（601）与直接换热室（602）通过入口隔墙（605）分隔，二者底部相通；
所述入口室（601）底面设置带风帽的布风板，布风板下方设置与入口室（601）对应的风室，风室内通入流量可调节的流化气体。

36、按权利要求26所述的湿污泥焚烧处理装置，其特征在于，所述干污泥出口
（611）设置在复合干燥器（6）远离热灰入口（630）的侧壁上，其底端与第二溢流
口（408）底端等高，并通过干污泥返料器（612）与焚烧炉炉膛（1）相连通，将经过
干化的污泥和冷却后的循环灰一起经干污泥返料器（612）送回焚烧炉炉膛（1）。

37、按权利要求20所述的湿污泥焚烧处理装置，其特征在于，所述干污泥出口
（611）设置在复合干燥器（6）间接换热室（603）底面远离热灰入口（630）的一端，
并通过第一螺旋给料机（613）与焚烧炉炉膛（1）相连通，将经过干化的污泥和冷却
后的循环灰一起经第一螺旋给料机（613）送回焚烧炉炉膛（1）。

38、按权利要求26所述的湿污泥焚烧处理装置，其特征在于，在所述复合干燥
器（6）的间接换热室（603）内设置与折流隔墙（606）平行的出口隔墙（607），分
隔出出口室（604），所述出口室（604）的底面设有风帽的布风板，布风板下方设
置与所述出口室（604）相对应的风室，风室内通入流量可调节的流化气体；所述由
出口隔墙（607）分隔的出口室（604）与间接换热室（603）底部相通；所述干污泥
出口（611）设置在所述出口室（604）的侧壁上，干污泥出口（611）底端与第二溢
流口（408）底端等高，并与焚烧炉炉膛（1）相连通。

39、按权利要求24所述的湿污泥焚烧处理装置，其特征在于，所述干燥器排气
处理系统（7）的风机（74）出口通过流化气体管路（741）与复合干燥器（6）的直
接换热室（602）和间接换热室（603）底部风室相连通。

40、按权利要求24所述的湿污泥焚烧处理装置，其特征在于，所述干燥器排气
处理系统（7）的风机（74）出口通过分支管路（742）与焚烧炉炉膛（1）相连通。

41、按权利要求24所述的带有复合干燥器的湿污泥焚烧处理装置，其特征在于，
所述细粉返料器（711）入口设有加沙口（713）。

42、按权利要求24所述的湿污泥焚烧处理装置，其特征在于，所述第二螺旋给
料机（712）入口设有加沙口（713）。

43、按权利要求20所述的湿污泥焚烧处理装置，其特征在于，所述直接换热室
（602）、间接换热室（603）的流化气体为惰性气体或者经过冷却的焚烧炉烟气。
INTERNATIONAL SEARCH REPORT

INTERNATIONAL APPLICATION No.

PCT/CN2006/001415

A. CLASSIFICATION OF SUBJECT MATTER

See extra sheet
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

F23G(2006.01) C02F(2006.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

CNKI, Chinese Patent Document

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPODOC, WPI, PAJ, CNPAT dry or drying or dried or dryer, fluidi?ed w bed

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

☐ Further documents are listed in the continuation of Box C. ☑ See patent family annex.

* Special categories of cited documents:

A document defining the general state of the art which is not considered to be of particular relevance

E earlier application or patent but published on or after the international filing date

L document which may throw doubts on priority claim (S) or which is cited to establish the publication date of another citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

& document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

19.01.2006 (19.01.2006)

Name and mailing address of the ISA/CN
The State Intellectual Property Office, the P.R.China
6 Xitucheng Rd., Fijian Bridge, Haidian District, Beijing, China 100088
Facsimile No. 86-10-62019451

Authorized officer

[Signature]

Telephone No. 86-10-62080973

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CN1090219 A</td>
<td>03.Aug.1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA2155709 A</td>
<td>01.Mar. 1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR2724008 AB</td>
<td>01.Mar. 1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE69512590D</td>
<td>11.Nov. 1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE464429 B</td>
<td>22.Apr. 1991</td>
</tr>
<tr>
<td>CN 1523266 A</td>
<td>25.Aug.2004</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (April 2005)
INTERNATIONAL SEARCH REPORT

In case the space in any of the preceding boxes is not sufficient.
Continuation of: International Patent Classification (IPC) or both national classification and IPC

F23G 5/30 (2006.01) i
F23G 5/04 (2006.01) i
C02f11/10 (2006.01) i
A. 主题的分类
参见附加页
按照国际专利分类表（IPC）或者按照国家分类和IPC两种分类

B. 检索领域
检索的最低限度文献（标明分类系统和分类号）
F23G (2006.01),C02F(2006.01)

包含在检索领域中的除最低限度文献以外的检索文献
中国学术期刊全文数据库，中国专利文献

在国际检索时查阅的数据库（数据库的名称，和使用的检索词（如使用））
EPDOC,WPI, PAJ, CNPAT
干浸，流化床，dry or drying or dried or dryer，fluidi?ed w bed

C. 相关文件

<table>
<thead>
<tr>
<th>类型*</th>
<th>引用文献，必要时，指明相关段落</th>
<th>相关的权利要求</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5365889 A (John T. Tang) 22.11 月 1994(22.11.1994)，全文及附图1</td>
<td>1–43</td>
</tr>
<tr>
<td>A</td>
<td>US 5630666 A (Marcel Lesoille) 20.5 月 1997(20.05.1997)，全文</td>
<td>1–43</td>
</tr>
<tr>
<td>A</td>
<td>CN 1523266 A（徐宝安）25.8 月 2004(25.08.2004)，全文</td>
<td>1–43</td>
</tr>
</tbody>
</table>

□ 其余文件在 C 栏的续页中列出。 ☒ 见同族专利附件。

* 引用文件的具体类型：
“T”在申请日或优先权日之后公布，与申请不相抵触，但为了理解发明之理论或原理的在后文件
“X”特别相关的文件，单独考虑该文件，认定要求保护的发明不是新颖的或不具有创造性
“Y”特别相关的文件，当该文件与另一篇或者多篇该类文件结合并且这种结合对于本领域技术人员为显而易见时，要求保护的发明不具有创造性
“&”同族专利的文件

国际检索实际完成的日期
28. 08 月 2006 (28.08.2006)

国际检索报告邮寄日期

中华人民共和国国家知识产权局（ISA/CN）
中国北京市海淀区香山镇西土城路 6 号 100088
传真号：(86-10)62019451

授予专员

中华人民共和国国家知识产权局（ISA/CN）
中国北京市海淀区香山镇西土城路 6 号 100088
传真号：(86-10)62088052

PCT/ISA/210 系第 2 页 (2005 年 4 月)
<table>
<thead>
<tr>
<th>检索报告中引用的专利文件</th>
<th>公布日期</th>
<th>同族专利</th>
<th>公布日期</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 5365889 A</td>
<td>22.11 月 1994</td>
<td>CA2102730 A</td>
<td>14.05 月 1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP0597683 A</td>
<td>18.05 月 1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP19930308962</td>
<td>10.11 月 1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX9307081 A</td>
<td>30.06 月 1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN1090219 A</td>
<td>03.08 月 1994</td>
</tr>
<tr>
<td>US 5630366 A</td>
<td>20.05 月 1997</td>
<td>ZA9506933 A</td>
<td>25.02 月 1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA2155709 A</td>
<td>01.03 月 1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR2724008 AB</td>
<td>01.03 月 1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP0699868 AB</td>
<td>06.03 月 1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP19950401878</td>
<td>10.08 月 1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP8075133 A</td>
<td>10.03 月 1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES2083351T</td>
<td>16.04 月 1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE699868T</td>
<td>10.10 月 1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL1002006 A</td>
<td>03.07 月 1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL1002006C</td>
<td>03.07 月 1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE69512590D</td>
<td>11.11 月 1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE69512590T</td>
<td>27.01 月 2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US4628833 A</td>
<td>16.12 月 1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE8600211 A</td>
<td>18.07 月 1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA1271326 A</td>
<td>10.07 月 1990</td>
</tr>
<tr>
<td>JP 2001-240879 A</td>
<td>04.09 月 2001</td>
<td>无</td>
<td>无</td>
</tr>
<tr>
<td>CN 1523266 A</td>
<td>25.08 月 2004</td>
<td>无</td>
<td>无</td>
</tr>
</tbody>
</table>
主题的分类
F23G 5/30 (2006.01) i
F23G 5/04 (2006.01) i
C02F 11/10 (2006.01) i