发明名称：张力支柱平台及其安装方法

摘要

一种海上张力支柱平台（40）包括一个甲板（42）、一个船体（41）以及许多将船体紧固在海底基础上（43）上的长钢筋束（46）。该平台具有自动进行保养和生产的能力，能在任何水深安装和运行，并能适应一切压力和荷载条件。船体支撑着位于水面以下一个高度的井口装置（50）的井式提升器（48），所述高度非常接近于船体上钢筋束接头的高度。此外，提升器和井口装置也可由一个甲板支撑在水面上方，或者将井口装置放置在海底上。由甲板周边轨道（66，166）支撑的维修装置（67），可在定位在任何一个要进行维修的井式提升器上方。船体按照钢筋束载荷最小化进行设计。
权利要求书

1. 一种海上张力支柱平台，它包括：
 （a）一个浮动船体，其上端适合于支承至少一个在水面上方的甲板；
 （b）一个结构支承件，它与所述船体相连并含有钢筋束连结装置；
 （c）至少一个固定在海底上的基础构件；
 （d）许多基本垂直的长钢筋束，每个所述钢筋束的下端与所述至少一个基础构件相连，而其上端与所述钢筋束连结装置相连，以便限制所述船体并且基本上防止所述船体围绕一根水平轴线纵倾和横倾；
 （e）至少一个支承在所述船体上端的甲板；
 （f）多个提升器支承装置，它与所述船体在与所述钢筋束连结装置基本相同的高度相连，以便将基本垂直的提升器上端支承在与所述船体上的钢筋束接头大致本相同的高度上，所述提升器的下端与海底上的井相连；
 （g）至少一个井维修结构，它可移动地安装在邻近所述至少一个甲板的周边处，以便提供到达所支承提升器的垂直通道。

2. 根据权利要求1所述的海上张力支柱平台，其特征为：
 所述船体上端包括多根立柱，所述立柱的上端支承着所述至少一个甲板。

3. 根据权利要求1所述的海上张力支柱平台，其特征为，
 所述结构支承件从所述船体横向向外伸出一个预定的距离，并且所述钢筋束连结装置被固定在所述结构支承件的外端；
 而且所述钢筋束安置并连结到处于多个位置的所述钢筋束连结装置上，所述位置横向隔开并且相对于所述船体的周边向外伸出一个预定距离。

4. 根据权利要求1所述的海上张力支柱平台，其特征为，
 所述提升器支承装置包括弹性支承装置，以便在所述提升器和所述船体之间提供弹性支承。

5. 根据权利要求1所述的海上张力支柱平台，其特征为，
所述提升器支承装置包括刚性支承装置，以便在所述提升器和所述
船体之间提供刚性支承。
6. 根据权利要求1所述的海上张力支柱平台，它进一步包括：
位于所述至少一个甲板上并用于生产作业的生产设备和工具，还包括
来将一艘油轮可释放地连接在所述平台上的系泊装置以及一产品输
出软管，所述软管可用来将流体产品泵入从所述平台输出产品的所述油
轮。
7. 根据权利要求1所述的海上张力支柱平台，其特征为：
所述平台通过多根提升器管连结到多口井上，这些井布置在相对于
所述平台位置留出横向间隔的海底上。
8. 根据权利要求1所述的海上张力支柱平台，它进一步包括：
多个井口装置，它们直接安置在所述提升器支承装置的上方，并且
当定位在上方时，可从所述井维修结构垂直接近，以便进行井维修作
业。
9. 根据权利要求8所述的海上张力支柱平台，它进一步包括：
一个遥控的，可从所述井维修结构移动到所述井口装置上的导向线
装置，它用来引导包括检查工具在内的设备，从而维修和接近提升器，
而不需要潜水员。
10. 根据权利要求1所述的海上张力支柱平台，它进一步包括：
一个支承甲板，它用来支承延伸提升器以及井口装置；
多个井口装置，它被支承在基本位于水面上方的所述支承甲板上；
延伸提升器，它的底端被连接到每个由所述提升器支承装置支承的
所述提升器上，而它的顶端与每个所述井口装置连接；
所述支承甲板对每个所述延伸提升器以及所述进口装置提供垂直和
横向支承。
11. 根据权利要求1所述的海上张力支柱平台，它进一步包括：
多根张紧绳，它们连接在所述浮动船体和每个所述钢索束上端之
间，以使产生围绕所述平台中心的稳定力臂，从而提高所述船体在压
载状态期间的稳定性，所述压载状态是为了将所述船体的吃水深度从一
个第一牵引吃水深度位置增加到最终吃水深度位置，从而防止所述平台
在压载期间倾覆或翻身。

12.根据权利要求1所述的海上张力支柱平台，它进一步包括：
多个张紧绳夹紧和减振装置，它们与每个所述钢筋束连接装置可移动地连接；

以及位于所述平台上并具有张紧绳的绞车提升装置，所述张紧绳穿过多个所述张紧绳夹紧和减振装置以及所述钢筋束连接装置，并与每个所述钢筋束的上部可解脱地连接，所述张紧绳夹紧和减振装置允许所述张紧绳穿过所述钢筋束连接装置向上移动，但阻止所述张紧绳相对于所述钢筋束连接装置向下移动；

在将所述船体的吃水深度从一个第一牵引吃水深度位置增加到一个最终吃水深度位置的压载状态期间，所述绞车提升装置在所述张紧绳内部施加额外的张紧力。

所述张紧绳阻止所述船体向上运动，从而生成一个稳定力矩，如果所述船体的一侧向下倾斜，就产生附加的船体浸没体积，所述的稳定力矩大致与由于倾斜而增加的浸没船体体积的数量成比例，而且还与一个水平距离的平方成比例，所述水平距离位于增加的浸没体积的矩心和在所述拉紧绳夹紧和张紧装置上的转动点之间。

13. 一种海上张力支柱平台，它包括：
(a) 一个浮标船体，它包括一个上部和一个下部，所述上部具有至少一个根大致垂直取向的立柱，并且上端适合于支承至少一个位于水面上方的甲板；而所述下部具有两个水平取向、在接近长度中点处的轴线彼此相交呈直角的长浮筒结构，而且每个所述浮筒具有许多内部压载舱；

(b) 多个结构支承件，它们与所述浮筒结构相连，并且钢筋束连续装置就固定在所述结构支承件上；

(c) 至少一个固定在海底上的基础构件；

(d) 许多基本垂直的长钢筋束，每个所述钢筋束的下端与所述至少一个基础构件相连，而其上端与所述钢筋束连接装置相连；

(e) 至少一个甲板，它支承在所述至少一根立柱的上端。

14. 根据权利要求13所述的海上张力支柱平台，其特征为,
所述船体上部具有多根所述立柱，所述立柱的上端适合于支承所述至少一个甲板。

15. 根据权利要求 13 所述的海上张力支柱平台，其特征为，所述结构支撑件从所述浮简结构横向向外伸出一个预定的距离，并且所述钢筋束连接装置被固定在所述结构支撑件的外端；所述钢筋束被安置并连接到处于多个位置的所述钢筋束连接装置上，所述位置横向隔开，并且相对于所述浮简结构的周边向外伸出一个预定距离；

16. 根据权利要求 13 所述的海上张力支柱平台，它进一步包括：在所述浮简结构之间的斜撑杆构件；以及在所述撑杆构件上的多个提升器支撑装置，它们用来将基本垂直的提升器的上端支撑在与所述钢筋束连接装置上的钢筋束接头大致相同的高度上，所述提升器的下端与海底上的井相连。

17. 根据权利要求 13 所述的海上张力支柱平台，其特征为，所述平台通过多根提升器管连接到多口井上，这些井布置在相对于所述平台位置留出横向间隔的海底上。

18. 根据权利要求 13 所述的海上张力支柱平台，它进一步包括：位于所述至少一个甲板上并用于生产作业的生产设备和工具，还包括用来将一艘油轮可释放地连接在所述平台上的系泊装置以及一产品输出软管，所述软管可用来将流体产品泵入从所述平台输出产品的所述油轮。

19. 一种海上张力支柱平台，它包括：
 (a) 一个浮动船体；
 (b) 一个紧固在海底上的基础构件；
 (c) 多个固定在船体上的呈基本垂直取向的钢筋束连结套筒；
 (d) 许多基本垂直的长钢筋束，每个所述钢筋束的下端与所述基础构件相连，并且在顶端具有一个垂直取向的延伸部分，所述延伸部分被接纳在所述钢筋束连结套筒之中并被灌浆。

20. 一种海上张力支柱平台，它包括：
 (a) 一个浮动船体；
（b）一个紧固在海底上的基础构件；
（c）至少两个固定在所述船体上的钢筋束连结装置，每一个所述钢筋束连结装置具有基本为垂直取向的钢筋束延伸部分；
（d）许多基本垂直的长钢筋束，每个所述钢筋束的一个下端与所述基础构件相连，在所述基础构件的顶端具有一个垂直取向的套筒部分，所述钢筋束延伸部分就被接纳在所述套筒部分之中并被灌浆。

21. 一种海上张力支柱平台，它包括：
（a）一个浮动船体；
（b）多个与所述船体以及钢筋束连结装置相连的结构支承件，所述钢筋束连结装置就紧固在所述结构支承件上；
（c）多个紧固在海底上的基础构件；
（d）许多基本垂直的长钢筋束，每个所述钢筋束的一个顶端与所述钢筋束连结装置相连，并且每个所述钢筋束的底端具有一个延伸装置，所述延伸装置适合于采用灌浆连结法与所述基础构件相连。

22. 根据权利要求21所述的海上张力支柱平台，其特征为，所述基础构件包括多根紧固地海底上的桩；位于每个所述钢筋束底端的所述延伸装置适合于采用灌浆连结法与所述桩相连。

23. 一种海上张力支柱平台，它包括：
（a）一个浮动船体；
（b）多个与所述骨架以及钢筋束连结装置相连的结构支承件，所述钢筋束连结装置就紧固在所述结构支承件上；
（c）多个紧固在海底上的基础构件；
（d）许多基本垂直的长钢筋束，每个所述钢筋束的一个顶端与每个所述钢筋束连结装置相连，并且以一个底端与一个所述基础构件相连，并且每个所述钢筋束具有一个位于至少一个端部的应力接头，以便使所述钢筋束在任何方向均呈活动连接状态。

24. 根据权利要求23所述的海上张力地柱平台，其特征为，所述基础构件包括多个桩；每个所述钢筋束与一根所述桩的一个顶端相连。
25. 根据权利要求 23 所述的海上张力支柱平台，其特征为，
每个所述钢条束包括多个机械连接在一起的分段管状构件，并且每个所述管状构件都是不注水的。
说明书

张力支柱平台及其安装方法

本发明是1993年2月8日提出申请的美国专利申请08/014,690号的部分继续申请。

本发明非专门性地涉及张力支柱平台，尤其是涉及一种海上张力支柱平台（TLP）及其在深水位置的安装方法。

在过去，张力支柱平台（TLP）已被设计成具有实施钻井作业的能力。这些平台支撑着位于甲板上的提升器和井口装置。为了满足这种要求，必须将平台加到足以浮动支撑所使用的钻进设备的程度，而且提升器支承系统必须包括一些机械，由于波浪及环境载荷造成的船身运动会导致提升器长度的变化，所述机械用来保证每个提升器内部的张力保持不变。由于这些TLP的尺寸和复杂性，导致成本高昂，使小储量的海上油气气田的商业开发难以承受。

为了寻求小油气气田用的生产装置，已推荐了多种小型TLP装置，其中包括一些不具有任何钻井能力的TLP。所有安装后钻井作业必须使用一艘位于TLP侧面或上方的钻井船。这些平台仅用于支承提升器以及在水面以上定位井口装置。生产设备和工具由分开的钻机和支持船提供，例如在授予达纳斯柯（Danazcko）等人的美国专利4,913,238号以及惠特（Hue te）等人的美国专利5,190,411号中所披露的平台就是如此。

其它被推荐的小型TLP包括生产工具，例如勃朗特福德（Bland ford）的美国专利5,117,914号就是如此。然而，这种平台不能进行井支承或者各项采油修理工作，总之，在现场进行生产期间，所有被推荐的小型TLP均需要一艘分开的船才能在井上实施多种作业。

本发明能够用于完井、再次完井维修以及流体喷射作业的所有采油修理工作。大型TLP的技术复杂性通过水上有效负荷的最小化来避免。而且平台船体的轮廓减少了这种负载，从而也减少了在锚定的钢筋
来中的负载。此外，将井提升器支撑机构放置在水面以下的一个关键位置使该机构得到简化。在安装基础、钢筋束以及骨架时不再需要专门的深水起重船和设备。

在亨特（Hunter）的美国专利4,784,529以及在亨特（Hunter）等人撰写的海上技术会议论文No.6360（1990）介绍了一种张力支撑平台现有技术。一种钻井海床模板结构一般被提供来定位和支承生产井，而该结构本身又由桩支承，该模板包括一种用来调节自身高度和倾斜度的装置。为了锚定平台，需要一个或多个分开的海底基础结构，采用钢管桩把该基础结构紧固在海底上。这些桩对于用传统钻井船和设备来安装而言是太大了，在过去是用专门的桩锤把它们夯入土中，现在也只能用专门装备的安装船来操作。这些锚桩借助于灌浆或者机械装置与一个或多个基础结构永久连结。钢筋束被连结到一个或多个基础结构永久连结。钢筋束被连结到一个或多个基础结构上而不是锚桩上。为了能承受强加的负载，管状的钢筋束采用高性能材料和组架程序来制造。可以在岸上先组装成整个单元，也可以在现场再把它的各部分用专门的接头和载荷设备连结起来。在这两种情况下，钢筋束的运输和安装都必须使用专门的设备、船只和程序。为了抵抗钢筋束接头处的高疲劳载荷，提供一种专门的复杂挠曲连结装置来消除转动和承受循环载荷的变化。为了支承高的预加张力钢筋束、大型甲板、全部钻井工具以及甲板支撑的井提升器和井口装置，船体要用庞大的多个（通常是四个）垂直的角立柱构成，而且所述立柱与浸没的浮筒（通常是四个）相连结。庞大立柱对于环境负载的阻力导致需用较大的钢筋束张力，以防止平台的纵倾、横倾以及起伏运动。与此类似，立柱在水面的较大面积也导致了较大的起伏和纵倾以及横倾，从而在钢筋束内部生成载荷。

为了实施钻井作业，把钻机直接放置在海底井口上方。对于现有技术张力支撑平台而言，这种要求用两种方法之一来达到。一种方法是：钻机移动并定位在平台甲板的适当之处。大钻井装置以及辅助的大变化负载的移动必须伴随着船身压载水的调节，以便将每个钢筋束内部的张力维持在限定范围之内。调节船体压载水量和位置的这种要求又意味着，船体的浸没部分必需大到足以提供相应的多余容积以及压载位置的
适应性。定位钻机的另一种方法不调节船体压载水，它的做法是：改变船体相对于海底井口的平面位置。现有的船体定位方法为：提供一种平台系泊系统并调节系泊缆的长度从而将平台移到所需位置；或者是给船体安装一台推进器，它使船体偏移到所需的水平位置并在以后在所需井上实施操作的同时将船体保持在该位置。这两种可供选择的方法都需要增添平台的设备和复杂程度，导致其重量的增加，从而也增加了船体，钢筋束以及锚固基础的寸，最终结果是成本上升。

在 TLP 甲板上的钻井结构不仅用来支持钻井作业，还用于其它采油修理操作例如井的维修。风力和平台水平加速度都会使钻机结构遭受外来载荷。当在钻塔內放置大量的钻杆时水平加速度载荷会增大，大风暴条件也被证明会产生大的加速度。因此，钻机结构必须承受得住这些动载荷，这可能需要钻机具有特殊设计。

现有技术张力支柱平台在甲板上承受并提升器，而井口装置也安放在甲板上，因此甲板结构必须加强才能支承提升器并有效负载传给船体立柱，因此而增加的甲板重量又导致船体尺寸的加大。但是，钢筋束被连接在位于或接近于船体龙骨的最佳高度上。当平台受到风、浪和潮的水平环境载荷时，产生的力向侧面对推船体。然而，由于船体由锚固的钢筋束垂直限制住，该水平偏移运动就伴随着一个相应的垂直向下运动。于是，这种船体吃水深度的增加，或者说“平台下坐”，造成井提升器顶部高度相对于甲板高度发生改变，然而在提升器内部的张力必须在规定范围内保持不变。由于钢筋束和提升器连接的底面到顶点之间的距离产生差别，导致提升器长度的改变。为了防止提升器过度的张力变化，将它们悬挂在装有变行程不变张力装置的甲板上，这种装置增加了平台的复杂性；并且由于其重量，船体浸没部分的尺寸必需加大，以便为这个有效负载提供支承。

张力支柱平台构思的基本特点是：在每个钢索中的预张力必须相等而且在规定范围之内。如同在一些美国专利如冈特森（Gunderson）的 4，281，613、亨特（Hunter）等人的 4，848，970、亨特（Hunter）的 4，784，529 以及冈特森（Gunderson）的 4，780，026 中所述，现有技术平台包括一些复杂的装置，在把钢筋束连接到船体
这一安装操作期间这些装置用来调节钢筋束的有效长度和预张力。

有关 TLP 平台安装的现有技术依赖各种专用的安装设备和系统，例如起重船，由于在深水中操作，它是非常昂贵的。另外，在安装木板、基础、钢筋束、船体以及钻机的不同阶段，现有技术 TLP 平台安装要使用各自不同的安装设备布置。各种设备的动员和遣散会费钱又费时间。

因此，本发明的一个基本目的是提供一种海上张力支柱平台及其安装、操作方法，它将使复杂程度降低或者最小化，并能克服传统张力支柱平台的局限性，从而减少平台的成本以及由于海上小油气田开发时的成本。

本发明的第二个目的在于：提供一种张力支柱平台，它不仅适用于海上小型油气田的开采，还能使用安装多具平台的方法，进行中型和大型海上油气田的分阶段开采。

本发明的第三个目的是：提供一种海底结构，它能以所需的排列形式来定位井和锚桩。该结构可用传统的深水钻井平台并使用通常的钻井设备来进行安装。这种海底结构与被安装的平台结构不构成整体；

本发明的第四个目的在于：提供一种张力支柱平台安装方法，其中基础锚桩用传统的钻井技术进行安装，上钢筋束与一个指定的桩相连，并且锚桩可以在钻井生产井以前、期间或者之后进行安装。

本发明的第五个目的是：提供一种张力支柱平台，其中钢筋束可用标准的石油工业钻井材料和构件制成，并可用一艘传统的深水钻井船进行组合和安装。

本发明的第六个目的在于：提供一种张力支柱平台，其中每个钢筋束用一个圆雉形变直径应力接头连接到一个基础柱上，并且钢筋束和柱可组合和安装成一个单独组件，并且在船体结构牵引到现场之前所有的平台钢筋束就被安装和连接到基础锚桩上。

本发明的第七个目的在于：提供一种具有一个船体结构的张力支柱平台，所述船体结构的轮廓能使钢筋束内的载荷量能小化，从而使锚桩、桩和钢筋束之间的接头、钢筋束本体以及钢筋束到平台船体的接头这些构件的尺寸和复杂性减于最小。

本发明的第八个目的在于：提供一种具有一个船体结构的张力支柱
平台，所述船体结构足够小并且足够简单，以致地能用为海上能源工业提供服务的大多数生产工具来制造，并且能用一艘传统的牵引船从制造现场浮动牵引到海上指定的平台位置，并且不需要使用任何辅助浮动构件或者起重船的提升辅助设备，就能与钢筋束结，其中船体与钢筋束的连结与钢束的全部完成同时实施，不再需要原先安装TLP钢筋束时必不可少的复杂的张紧装置和其它机械。

本发明的第九个目的在于：提供一种张力支柱平台，它把井提升器支承在船体龙骨附近的一个与钢筋束上接头接近的高度上，以致于井口装置能被直接定位在水面以下井提升器支承装置上方，或者是在水面以上，其中提升器支承装置无需维护并且没有任何液压或液一气机构，而且井口装置包括传统的水上构件并且没有海底井口装置通常使用的复杂的夹具和调节装置。

本发明的第十个目的是：提供一种张力支柱平台，其中平台上表面的设备和工具能支持生产和井维修作业，所述维修作业是除了实际钻井之外通常会碰到的，并且如果需要的话，可以具有将流体产品传送到一艘浮动油轮（它用来从现场输出产品）的设备和工具，也可以采用传统的管道输出产品，并且如果有用的话可以装备一个系泊油轮的装置。

本发明的第十一个目的在于：提供一种张力支柱平台，其中提供的标准井维修和采油设备维护能用于修井和维护，这种设备无需专门设计。

本发明的第十二个目的为：提供一种张力支柱平台安装方法，其中包括安装系统和钻井在内的所有作业能用钻机来进行，以便形成高效率低成本的安装。

本发明的第十三个目的在于，提供一种张力支柱平台，其中包括甲板、甲板上的所有设备、船体、提升器、井口设备和钢筋束在内的平台组件的主要部分能在不同的现场反复使用。

一个试图达到上述所有目标的本发明最佳实施例具有一个小张力支柱平台，它是由已经用于海上工业的现有材料、组件和技术制成的，并且可用传统的深水钻井船进行安装。还可用一条传统的起重船来进行安装。还可用一条传统的起吊船来安装已经完全装备好的甲板结构，其方法为：在船体已与钢筋束结之后，吊起
甲板结构，并把它放在船体结构上。

一个用钢板和管制成的模板结构被安装在海体上。它用来把所需数量的井和锚桩定位在符合要求的位置上。定位完成后的井和锚桩仅由底土支承，不需要由该模板提供永久支承，该模板结构没有任何高度或水平位置调节机构。还包括两个支承该结构的替代装置。如底土条件适合，该模板由海体表面支承。钢板的面积被用来在海体上分散模板有效负载。而当海体的负载承栽能力不足或者表面不规则时，用桩来支承不依赖于海体表面的模板结构。将一个钢框架放置在海体上，它用来定位于符合要求的多根钢管支承柱。所述框架和桩用一条钻井船以及传统的钻井设备和方式来安装，然后用同一条船牵引模板并将其放置就位在支承桩上。

再给每一个平台钢筋束提供一个管状钢基础桩，这些桩用传统的方式来安装。

用所需数量的钢筋束将船体连结在基础锚桩上。钢筋束主体包括多根井用的标准套管段，它们由一条使用传统设备和实践的钻井船在现场组装起来。钢筋束的下端用截面变化的圆锥形应力接头与锚桩相连。与船体结构连结的钢筋束接头包括一个短管状的钢管段，它用一个与下端所用应力接头类似的应力接头固定在钢筋束主体上。作为替代，挠性接头或者万向节类型的接头也可用作钢筋束接头。然后将钢筋束上管段插入一个直径稍大的相应管状套筒之中，所述套管用多个钢撑杆构件固定在船体底面附近。再把水泥薄浆泵入正在连结的钢筋束管和船体管状套筒之间的环形空间，从而形成将钢筋束连到船体的永久性接头。

用一条钻井船从钻机开始垂直地组装和调整每一个锚桩和钢筋束组件。在将船体牵引到现场之前，先安装好所有已通过基础锚造固的钢筋束。再提供多个已固定在钢束上端附近的临时浮动装置。它们在钢筋束上提供一个向上的力，使钢筋保持张力状态并且在不承受水平环境负载时具有一个垂直姿态。

从钻井船到船体连结多根锚链，再从船体到辅助拖轮拴上多根牵引绳，从而使船体定位，并且直接在已安装的钢筋束上方浮动。将临时的卷扬控制拉绳连到每个钢筋束的上端，然后用水压载船体，使船体连结
套筒与钢筋束顶部上方接合。增加水压载，直至每个钢筋束接头插到相应的船体连结套筒内并且达到所需的吃水深度为止。然后将船体压载减到一个预定值。然后在每个连结套筒上提供一种装置，以便防止在放置和固化永久性水泥薄浆连结材料期间船体和钢筋束之间的相对运动，所述装置是位于上钢筋束接受套筒上的机械夹紧构件，当它被驱动时能与张紧绳接合，以致于只允许船体相对于张紧绳向下运动，向上相对运动则被阻止。

船体上部包括多个垂直立柱，这些立柱穿过水面，上升到常见波浪高度以上的一个高度。各立柱构件之间用撑杆连结，从而形成一个刚性的支承结构。平台的甲板结构就由这些立柱支承着。船体和甲板结构及其设备能在拉到现场之前做成本体。或者若是船体不与甲板做成整体，拉到现场之后，先连结到钢筋束上，然后用同一条传统的起重船把完工并装有设备的甲板从载货驳船上吊起并放置在船体上，最后将船体和甲板的连结处焊成永久性的结构接头。

井可以预先钻出，并且既可临时堵住暂停作业，也可在完工后适当堵住。这两种情况下，均可在安装平台之前在现场用一条活动钻井船实施所有的作业。此外，一些井可用钻井船预先钻出，而添加的井能在安装平台之后再钻，其方法为：用适当的装置将平台偏置在一侧，然后定位一个活动钻井装置直至它处于井位上方。井被钻出之后先临时堵住，然后撤除活动钻机，将平台恢复到它的正确位置。

将管状提升器下并连结到每个井口上，所述井口几乎直接定位在平台下方。由张紧装置将提升器支承在一个高度上，该高度与连结在船体上的钢筋束接头高度大致相同，所述张紧装置提供支承张力，并允许提升器相当于船体动作。然后把井口装置连结在提升器顶部。井管在提升器内部穿过，为生产出的流体提供一个流动通道。

提升器，井管、井口装置以及其它井设备由支承着井维修设备的滑行维修结构调动使用。该维修结构不仅支承维修设备，还支承着在一个立管盒区中垂直放置的井管，因此，井维修设备不承受动载荷，并能按标准提供。

下面结合附图，详细介绍本发明的最佳实施例，使本发明的其它目
的和优点更加明显。

图 1 是根据一个本发明最佳实施例的张力支柱平台的侧立面图，该平台用于海上平台井维护和/或生产运行。

图 2 是该平台船体的水面以下部分的平面图。

图 3 也是该平台的侧立面图，在平台上系泊着一艘油轮或者油驳船，并且从平台到油轮连结着输出产品的装载软管。

图 4 是一个钢筋束接头的侧视剖面图，该接头用来把钢筋束连接在船体上。

图 5 是一个井提升器支承的剖面图，它用来支承提升器和井口装置的重量并且使该提升器的张紧力大致保持不变。

图 6 是提升器张紧装置以及井口装置上部的立体图，图中还画出了一种装置，借助于该装置能使检查、维护设备和井接近设备沿着导线下降，所述导向线能通过遥控车在轨道上定位。

图 7 画出一种替代的提升器安排，提升器由船体支承在原先的高度，而井口装置定位在水面以上的一定距离处，并由一个压力密封的提升器连结到由船体支承的提升器上。

图 8 是一个已安装的锚桩的立面图，图中表示出该锚桩是怎样的由海底模版构件进行定位以及钢筋束是怎样与该基础锚桩结合的。

图 9 是该海底模版构件的平面图，该模版构件用于基础锚桩以及生产井的定位。

图 9A、9B 是沿着图 9 的 9A—9A 线和 9B—9B 线剖出的海底模版构件的剖面图。

图 10 是一个海底框架的平面图，当需要用桩将模版支承在相对于已有的海底井而言符合需要的位置时，它用于定位模版构件的支承桩。

图 11 是完全装毕的平台的立体图，它示出支承着维修设备的可滑行维修平台，在生产操作期间，该维修平台与所需的提升器、井口装置接合，以便在相应井上进行操作。

图 12 是一张描述安装后钻井法的平面图，采用这种方法时，用一个或多个锚将平台临时偏置，并将一台活动海上钻井设备临时定位在预定井位上方，以便进行钻机。
图13表示一种方法，这种方法用于从运输船上吊起海底框架并把该框架悬挂在钻井船的钻机绞车上。

图14A、14B表示另一种方法：用钻井船把海底框架从水面附近降下或安置就位在海床上，然后怎样使海底模板结构支承柱上并由该框架定位，以及怎样用传统的喷射方式使桩穿入到底土之中。

图15A、15B表示将模板结构悬挂在一艘载货驳船下方进行运输的方法。

图16A、16B是一张立面图，它表示这样一种方法：模板结构从载货驳船上卸下之后怎样牵引、下沉并用传统的浮动装置悬挂在平台现场，以及模板结构是怎样定位在钻井船钻具下方并连接、悬挂到钻具绞车上的，还有模板是怎样从钻具下降的，借助于组装提升器管，直至模板结构安装完和定位在海底下或者是放置在支承柱上（在使用支承柱的情况下）。

图17A、17B是立面图，它表示这样一种方法：钻具从水面降到海底，然后通过喷射方式安装一个基础桩套管或者嵌入件，还有在此以后钻具怎样钻出超出套管下端的孔。

图18A、18B和18C是利用钻井船安装基础桩或钢筋束组件时的分阶段立面图，它们包括：组装基础桩段以便形成完整的桩以及钢筋束下端与基础桩顶端的接头，还包括：组装钢筋束段以便形成钢筋束，因此，朝着海底模板放下基础桩，并使该桩穿过所改的模板导向接受器进入基础套管（或者嵌入件）以及钻出的孔；为了完成钢筋束组件，连接钢筋接头管，装上临时浮力组件并进一步下降，然后转动挂着钢筋束的钻具串，使基础桩接合并紧固在已安装的套管上，并且吹胀临时浮力组件，从而支承住钢筋束并允许拆下悬挂的钻具串。

图19是表示一种方法的立面图，利用这种方法，一条钻井船以及辅助拖轮能将平台船体直接定位在已安装并锚固的钢筋束上方。

立面图20A、20B表示一种方法，利用这种方法对平台船体压载，增加其吃水深度，随着吃水深度的增加，将已安装的钢筋束对准并插入船体的连接套筒，以及怎样增加该吃水深度，直到船体处在所需吃水深度处为止，然后取消压载，但船体已被阻止向上运动，以及钢筋束是怎
样通过船体来张紧的，此时，取消压载的船体试图对抗被锚固钢筋束的限制向上运动。

图21是平台的侧立面图，该平台具有一根与其连结的管道，平台产品能通过该管道输出。

参见附图，图1是一个根据本发明最佳实施例的海上张力支柱生产平台40的立面图。图2为该平台船体41的平面图。一般说来，海上平台主体包括一个海底模板43（它可以具有或者不具有支柱44）、多个基础锚桩45、一个有浮力的船体41（它由连结在每个锚桩45上的钢筋束46锚固住）以及一个或多个支承在水面47上方的甲板42。来自海49的井提升器48由位于船体41底面附近的提升器支承79支承着，而井口装置50浸没在水面47以下。

在图1中，最佳实施例的平台40具有一个净高在波浪作用区以上的甲板42，它包括一个上台面115，一个中台面116以及一个下台面117。然而，甲板也可采用其它安排，例如由一个、两个或多个甲板台来替代。甲板42的台面形状可为矩形、圆形或者其它形状，并且在上台面115和下台面117上分别具有周边轨道66和166。一个可移动的并维修装具台架67就支承在控制台轨道66和166上。维修装具67用来支承除了实际钻井之外的采油修理设备。装具67能沿甲板轨道移动到任何位置并直接定位在每个井口装置50的上方，因为这些井口装置就布置在维修装具移动通道相应的位置。垂直提升器68提供在井口装置50和平台的甲板42之间的连结。从图3可见，还可提供一个系泊连结71，它用来把油轮69系泊在平台上，并用一根排出软管70把平台和油轮连结在一起。系泊连结71被支承在甲板周边轨道166上。因此，无论主风向如何，该系泊连结71均能定位在平台的下风侧。

船体41（见图1、2）包括一个下浮筒结构73以及多根支承在甲板结构42上的立柱72。图2画出的立柱72是四根，然而也可为其它数量。

为了减少水动力，将浮筒结构73定位在水面47下方足够深的地方。浮筒结构的尺寸也足以减少水动力以及钢筋束张力。浮筒结构73的横截面形状可为矩形、圆形或者其它形状，根据需要而定。在图2中画
的是两个水平取向的浮简，它们在接近长度中点位置彼此相交呈 90°，然而也可采用其它任何数量的浮筒结构。例如，可采用单浮筒结构，或者以一端彼此相交的三浮筒结构。

撑杆构件 77、78 在浮筒结构 73 之间提供附加的结构支承。水动力以及钢筋束力会使浮筒结构 73 相交处产生较大应力，撑杆 77、78 的作用就是将这些应力减少到可以接受的程度。

船体 41 的浮力主要由浮筒结构 73 以及立柱 72 的水下部分提供，船体 41 留在水下的部分是出于结构需要，对浮力不起支配作用。

浮筒结构 73 被一系列舱壁隔开，这些舱壁类似于传统的表面浮浮油罐或驳船船体分段构件，此处不再画出。分段舱壁的用途是控制逐步注水，从而控制由于船体结构在何部位泄漏产生的有害影响。在平台安装以及平台运行期间，分段舱壁还提供用来盛放压载水的间隔。在安装期间，在平台连结到钢筋束 46 之前，压载水被用来改变平台的吃水深度，而在船体连到钢筋束 46 之后，压载水被用来调节钢筋束的张力。在平台运行期间，将压载水策略性地盛放在不同的间隔中，以便抵消重量的转移或者改变平台的重心位置，从而能将钢筋束额定张力保持在可以接受的范围内。

船体 41 穿透水面的面积越小越好，较小的水面面积能减少船体上的水流载荷，并能少在船体上由短周期波浪产生的波浪力，这对于抗疲劳而言是十分重要的。除了上面所述的好处之外，使船体的水面面积最小化，还能达到本发明的下述目的：在安装船体结构时不需要起重船或者临时的辅助浮力装置。船体 41 的上部尺寸能使船体下部完全浸没时其水面面积足以保证船体的稳定。简而言之，将船体 41 做成一定形状，以致于在从海岸牵引运输到现场期间以及在船体安装并且连结到钢筋束期间其本体都是浮起并且稳定的。其结果是，船体对水动力载荷具有最小的移动响应。

除了船体 41 高处的立柱 72 和低处的浮筒部分 73 以及撑杆 77、78（它部分地有助于浮筒结构 73 的结构连接）之外，固定在浮筒结构 73 端部的构件 75 提供了将船体 41 连结到钢筋束 46 上的装置。如图 4 所示，连结构件 75 包括板和/或管状构件以及套筒 81，所述套筒 81 提供与钢筋
束 46 连结的装置。钢筋束连接套筒 81 相对于船体中心的位置由钢筋束张紧力的量值进行控制。将这些连接套筒 81 放在离中心位置更远的地方能减少钢筋束张紧力的量值，因为这样就形成了一个较长的水平力臂来对抗纵倾和横倾引起的力矩。加大连接套筒 81 的距离的不利之处在于增加了连接件 75 的跨距和/或增加了浮简结构 73 的长度。

如图 5 所示，在浮筒构件 73 上还连结着提升器支承结构 79，所述结构 79 由螺杆 77 紧固，起到支承生产井提升器 48 的作用。由于提升器支承 79 安置在这一高度，井口装置 50 以及提升器 48 的有效负载不再由甲板的典型支承，从而避免了甲板的附加尺寸和重量，达到了使平台上部分重量和尺寸最小化这一发明基本目的。提升器支承 79 的高度接近于钢筋束 46 的顶部接头的高度是较适宜的。由于钢筋束 46 和提升器 48 具有相似的长度，如上所述，当放置后的平台受到水平力时，提升器的有效长度变化减至最小。提升器支承 79 具有一个张紧装置 80，它用来把提升器张力调节到所需的数值，然后不管提升器长度实际变化如何，将该张力保持在规定的范围之中。在安装提升器后，提升器支承 79 在平台工作期间既不需要维护也不需要调节；这对于浸没在水面 47 以下的提升器支承是十分适合的。

提升器张紧装置 80 包括一个带螺纹的提升器长度调节接合面 201 以及一个螺母 119，所述调节接合面 201 安装在管状提升器 48 的上部，而螺母 119 安装在调节接合面 201 上，并且进一步由对抗一个或多个弹簧构件 202 的上法兰盘 203 支承。弹簧 202 与提升器轴线同心，也可以由一系列与提升器轴线偏心的弹簧替代，或者是由同心和偏心弹簧的组合物所替代。弹簧构件 202 可由钢或其它金属制成，并具有螺旋压缩结构或具有其它已知的以短行程承受大负荷的弹簧结构，例如贝尔维勒（Bellville）垫圈。该弹簧构件也可以由非金属（例如用于承受同类型负荷的合成橡胶化合物）制成。此外，弹簧构件 202 的底面还受到支承在套筒 79 上的下法兰盘 204 的反作用力。

提升器 48 的顶部具有管头心轴 223，它用来为内部的产品管道提供垂直支承。现在参见图 6，井口装置 50 借助于机械连接器 401 固定在心轴 223（未画出）上。用于产品的流体导管控制线以及化学品管等的挠
性接合器 408。固定在井口装置 50 上，并且连结到固定于船体 73 上的刚性管路系统和导管 409 上。潜水工作台 410 用于包括井口装置和设备的连结和拆卸在内的各种潜水作业以及日常维护。

井口装置 50 可以直接安装在提升器的张紧接受器 79 的上部，如同图 1 和图 6 所示。此外，井口装置还可安装在水面以上，如同图 7 中的构件 220 所示。现在参见图 7，提升器 48 由提升器张紧装置 80 支承和张紧，如上所述，张紧装置 80 支承在张紧器 79 的内部，位于提升器 48 内部的产品管提供一个用于输出的井流体的通道，并且该产品管被支承在井管头 223 上。在井管头 223 上还安装着一个延伸提升器 222。它与筒头 223 的底部连结并与水面井口装置 220 相连。为了防止延伸提升器弯折，将它以额外的张紧力支承在甲板 221 上。

再参见图 4，钢筋束接头 81 使船体与钢筋束 46 永久地连在一起。为每个钢筋束提供一个垂直的管道钢质套筒接受器 82，（它借助于构件 75 固定在浮筒 73 上）。通过应力接头 84 把连管 83 连结在钢筋束主体 46 的顶部。将连管 83 插入套筒 82 之中，再把混凝土泵入外套筒 82 而内管 83 之间的环状空间变硬固化后的浆 85 粘结在内外管上，于是，施加在钢筋束 46 上的负载传递到内管 83，再通过浆 85 传递到外套筒 82，最后通过浮筒 73 传至船体。灌浆接头 81 不需要内管 83 和外套筒 82 具有精确的相对位置，因而提供了一种能适应钢筋束长度变化的装置，可以省去其它所有的钢筋束长度调节装置。

钢筋束应力接头 84 由钢、钛或其它适用的材料制成，其顶部通过法兰盘或其它适用的接头装置连接在连管 83 上，并借助于钢筋束管接头 210 与钢筋束管 46 相连，所述钢筋束管接头可为螺纹、法兰或其它适用的结构。钢筋束应力接头 84 的本体可以是一根壁厚变化的管，或者是一个外径变化的实心构件。该应力接头允许在钢筋束管 46 的轴线和套筒 82 之间出现相对转动，这种转是由于平台的偏置和移动造成的。此外，钢筋束应力接头 84 可用一种比较传统的弹性支承结构（它用于传统的 TLP 钢筋束）来替代，或者用一个万向节头结构来替代。

这种被加长的管状钢筋束 46 将船体 41 与基础相连，致使船体垂直锚固在海底 49 上。钢筋束数量可变，但必须足以在船体上提供所需的总
锚固预张力。该平台的一个目标是：钢筋束可用传统的用于钻井作业的成段钢管制成。制造钢筋束所用的材料会改变为了给平台提供符合要求的锚固所需的钢筋束数量。从图8看的最为清楚，钢筋束46的下端包括一个钢质的或其它金属的应力接头86，它与上应力接头84类似。应力接头86的大小和制造材质使钢筋束能相对于固定的锚桩45进行活动连接。平台的每个钢筋束46借助于一根穿入土87的钢管状管桩45单独地锚固于海底上，于是也锚住了这根管桩。

这种钢筋束46底部与桩本身的直接连结也可由例如法兰机械连接来替代，此时钢筋束底部可以具有一段插入桩45内部的管，然后往桩和管之间的环状空间中灌浆。

还提供一个如同上文所述的海底模板结构43（见图9、9A和9B），它由钢管90和板制成，该模板结构43包括多个用来定位锚桩的导向接受器88，以及用来定位井口装置50的导向接受器89。如同上文所述，根据海底土壤的承载承受能力的不同，模板构件43既可由海底表面49直接支承，也可由插入土87的支承桩44支承。在采用后一种支承装置的情况下，模板构件43包括与支承桩相应的管支承接受器91。支承桩44由一个放置在海底上的简单的钢质海底框架结构92（见图10）进行定位。海底框架92具有多个用于支承桩44的导向接受器93。

下面介绍图1、7和11中所示的井维修装置。可滑动的维修支承结构67由下台面117的轨道166以及上台面115的轨道66支承着。采用千斤顶顶动、绞车拉动或其它适当方法，可使支承结构67从甲板周边的一个位置滑动到甲板周边的另一个位置。该维修支承结构67支承着维修设备300，该设备用来执行多种井维修作业，例如，完善带有成串管子的井、移去和再安装管子、排水、清理、刮井孔、操纵滑动套筒以及其它所有类型的井维修作业。所述井维修设备还用来安装和回收提升器48。在进行需要移去或安装管子的维修作业期间，管子301基本上不承受由于平台运动引起的动载荷，并可使井维修设备300在大风暴来临之前折叠和紧固住。维修设备300在图1中处于折叠状态。在导油维修作业期间，使用一个临时的提升器68，为产品提升器48的顶部或者井口装置50或220提供一根导管。图6画出提升器68正在向井口装置50下
降的情景。可以使用一种导向装置，例如固定在导向杆 403 上的导向线 402，所述导向线 402 借助于一个导向气缸 406 来引导提升器 68。轨道 405 通过托架 420 固定在船体 73 上；借助于轨道小车装置 407 在轨道 405 上的滑动，能标明导向线 402 和导向杆 403 已接近一个所需的接受器 79。轨道小车装置 407 能遥控操纵，因此不再需要使用好几个装置或遥控操作车（ROV）来执行日常操作。

在安装平台之前，由一台漂浮的活动海上钻井装置实施钻井作业。也可在安装平台之后，在甲板上安置钻井设备进行钻井。然而，考虑到整体重量、甲板负载以及需要准备足够的甲板面积，除非要钻大量的井，否则这样做不合乎需要。在钻井不在平台上进行的情况下，可以使用如同图 12 所示的漂浮的活动海上钻井装置（MODU）单个或多个临时的传统系泊装置 503 可以包括锚、链、绳、浮标以及连结装置，该系泊装置 503 被使用和连结在平台的与所钻井孔相对的一侧。将系泊装置 503 拉动一个足够远，使平台 40 相对模板 43 偏移，以至于有足够的空间将一台 MODU501 布置在位于模板 43 上的应钻模板井 505 上方。MODU501 可与它自身的系泊装置 502 相连，或者由动力定位系统定位。然后用 MODU 的钻井设备和钻井提升系统进行钻井作业。钻完这口井之后，改变 MODU 在其泊位地保持系统上的位置，再钻另外的井。在完成所有钻井之后，撤走 MODU，使平台 40 回到它的正常位置，并撤走临时系泊装置 503。

下面介绍安装方法。专用的安装船以及安装装置（例如水下桩锤）是不需要的。在平台现场通常无需依赖那些安装船是特别有意义的。整个平台可以利用传统的深水钻井船及设备按照惯例在现场进行安装。也可使用其它的方法和设备。一种半潜式钻井船（SSDV）也能用来钻这种平台生产井；因此，如果该船用来实施所有的作业，钻井和安装平台作业就能一体化，并且，基础桩可以在钻生产井作业以前、期间或者之后安装。为了便于介绍，假设井是在安装基础锚栓以前钻出的。进一步假设海底模板结构 43 是由桩 44 支承的。下面将分成步骤 1 至 6，详细介绍在现场顺序安装平台组合物的过程。该作业的顺序如下：

（1）安装柱桩和柱桩框架
分别制造柱桩 44、锚桩 45 以及钢筋束 46。用船把它们运送到位于现场的 SSDV 安装船处，并由用于标准钻井实践和设备的钻机进行组装并垂直放置。将又小又轻的柱桩海底框架结构 92（见图 10）装在供应船上运到现场，钻井船 123 就停泊在该现场的平台位置上方。用平台起重机吊起海底框架 92，平稳地搬运，并悬挂在钻机 132 下方的钻机提升器 96 上（见图 13）。安装并移动提升器 96（见图 14A），使框架 92 下降，落在海底 49 上。如果一口勘探井 94（见图 10）被用于生产，就要做出一个引导件 95，以便指明框架相对于该现存井口的位置。再使用标准钻井程序，组装柱桩 44，使其随钻具组 97 下降并深入到所需的穿透深度（见图 14B）。然后测量桩的标高，组装高度调节添加罐 12（见图 14），以致于在安装之后能使几个桩顶处于同一水平面上。

(2) 安装模板

将模板结构 43 装载并紧固在一条典型的小载货驳船 135 下方（见图 15A、15B）。再用预装在模板 43 上的绳索 99 交悬挂浮子 98 紧固在驳船甲板上。沿着牵引路线有 10 至 12 英尺的水深就足以防止模板搁浅。将驳船拉到具有所需较大水深的地方。将浮子 98 卸入水中，然后从驳船上解开模板 43。驳船卸货之后，将挂在浮子 98 上的模板 43 拖到现场。解开模板 43 的操作也可在现场进行。操作绳 100 连结在 SSDV123 上（见图 16A），此时 SSDV 的船体浮筒 113 上的压载水已被去除。然后使模板浮动到船 123 以及提升器 96 下方，再将提升器 96 与预装在模板上的下降吊具 101 相连。导向绳 102 用来使添加罐 121 下降并与柱桩 44 接合（见图 16B）。在提升器 96 吊起模板有效载荷之后，解除并拉开浮子 98。组装提升器 96，使模板 43 沿着导向绳 102 降下，落在支承柱桩 44 上。于是模板 43 已为开始生产井钻井程序以及为安装基础锚桩作好了准备。

(3) 安装基础桩以及钢筋束

在已完成钻井作业状态，或者如同上文所述在需要时，分两个阶段安装平台锚桩和钢筋束。用于所有桩的套管 103 首先依靠钻具组 97 运行，喷射推进到所需的穿透深度，从而把桩孔 104 钻到所需深度 134（见图 17A、17B）。每个桩 45 以及钢筋束 46 都作为一个组件使用，沿着引导线下降并插入被安装的套管 103 中（见图 18A）。桩具有一个用来
与套管 103 顶部连结的临时“J”型缝隙接头 105（见图 18B）。当该接头被接合后，吹胀钢筋束临时浮力组件 106，使钢筋束 46 呈自由站立状态，于是钻具组 97 能被放开并且收回（见图 18C）。在安装完所有钢筋束之后，采用类似于井套管灌浆所用的适当装置，用浆 107 灌注基础柱。

（4）将船体连接到钢筋束上

先了解各海上构件制造厂的水深限制，如果没有足够的水深用于牵引浮动的船体结构，可将船体结构装在用于内地或沿海牵引路线的载货驳船上。当牵引到水深足够处之后，给驳船配重并配平，直至船体能够以可能的最小船体吃水深度浮起为止。在给船体压载使其达到所需吃水深度之后将船体拖引到现场。然后使用 SSDV 123 的控制缆 100 以及辅助拖轮 109，以便调适船体并将其定位在钢筋束上方（见图 19）。预装配的张紧绳 110 从钢筋束开始穿过连结套筒 82 一直延伸到一个临时的绞车甲板 111。然后开始夹具 112，并使船体压载下降，盖住钢筋束顶部接头（见图 20A、20B）。夹具 112 允许船体向下松开张紧绳，并能防止在船体吃水深度逐渐增加期间船体的任何向上运动。当船体到达规定的吃水深度并且已配平之后，取出压载水，以便预张紧钢筋。为了锁住船体，用薄浆 85 灌注永久性的钢筋束顶接头 81（见图 4）。在完成船体连接之后，使用 SSDV 的平台起重机 131，使临时浮力组件 106 放气并连同张紧绳 110、夹具 112 以及绞车甲板 111 一起移走，最后 SSDV 123 也撤离现场。

（5）安装顶边

顶边可在拖出之前与船体安装成整体，也可分别安装，详见下述。为了安装与所有生产设备和工具做成整体的甲板结构，需用起重船。将该顶边成套部件装在驳船上运出，然后用传统程序吊到船体上，并与甲板结构 42 以及平台船体 41 用焊接法连接在一起。如果可以提供，一条 DP 安装船是较合适的；然而，用一条系在船体结构上的起重机以及辅助拖轮来实施顶边安装在技术上也是可行的。

（6）安装提升器以及完井

使用移动的维修装具 67 操纵和连接产品提升器 48 以及井口装置
50，并将它们安置在船体支承 79 上（见图 11）。对于每个井提升器而言，该方法包括：用甲板起重机 42 把提升器管段从运输船吊到甲板上台面 115 上，然后将这些提升器段垂直堆叠在已位于所需提升器支承 79 上方的维修平台 67 之中。接着，使用该维修平台来连接所述提升器段，并使已组装的成串提升器穿过支承 79 垂直向下运动直至该提升器与提升器张紧调节器 80 （见图 5）以及井口装置 50 完全装好为止，所述张紧调节器安装在提升器上并且上末端与所述井口装置相连。悬挂在维修平台 67 上的组装完成的产品提升器组件借助于一根增加长度的提升器管向下降落，并且使用传统的钻井实践和程序遥控井提升器的下末端与临近海底的井口连接。然后转动螺母 119（见图 5），直至它相对于支承 79 而言定位于所需的高度，并使拉杆螺母 118 向拉杆上端移动，直至提升器张紧装置 80 完全压在螺母 119 上为止；于是整个产品提升器由支承 79 以一个所需的预张紧力支承着，所述预张紧力是由对抗螺母 119 的张紧装置 80 确定的。重复上述所有操作，装毕每一个产品提升器。

至此，平台已完全准备好开始作业，一旦油轮 69 抵达现场，并已经系泊连接在平台上，或者是当管路 114 已与平台连接时（见图 21），井就可投产。

在结合附图阅读和了解关于本发明的上述介绍之后可以意识到本发明平台及其运输、安装方法具有一系列的独特优点，还可进一步看出，本发明吸取并结合了已使用的现有实践和技术的长处，并具有新的做法。

此处不想陈述本发明张力支柱平台的所有合乎需要的特征，本发明的一些主要优点至少包括：具有可滑行维修结构的独特甲板，所述可滑行维修结构可定位于环绕甲板周边的任何位置；船体结构在整个安装阶段浮起并且保持稳定，此同时还对波浪和存在的载荷呈现出最小的阻力，并且钢筋束张紧载荷以及载荷的变化最小。

此外，由于提升器支承位于船体底部而不是在甲板面上，就能减小平台净载重量以及钢筋束锚紧载荷，并进一步允许使用一种新颖的提升器支承装置。由于使用上述装置的甲板以及船体的重量最小化，船体锚紧力的量值也相应地最小化，其结果是，钢筋束和基础锚桩的尺寸、重量以及数量也减少了。
还有，海底模板结构定位而不支承装入的锚桩以及生产井，因此它的结构强度及重量也可最小化。

另有一个优点是：钢筋束可利用传统的钻井工业材料来制造，并且部件由供应船分段运到现场再组成钢筋束整体，而且按装工作是用传统的深水钻井船进行的。还有一个优点是：钢筋束下端以一个不运动部分与锚桩直接相连，而其上端可与一根长钢管直接固定，而该根长钢管再用水泥薄浆连接在船体套筒上，于是不再需要其它的钢盘来长度调节装置。

本发明的又一个优点在于：在钢筋束上还可连结锚桩，而且整个组件由一台深水钻井船进行调和安装。

还有一个优点是：所有钢筋束能与基础连接，而且在此时船体可与钢筋束连接，不再需要调节钢筋束的张紧载荷。由于给每个钢筋束加上相同大小的临时浮力和重量，还由于平台固定作业所用的临时夹具系统，能保证每个钢筋束内的张力相等并处于限制范围之内。

在安装平台船体期间，如上所述使用与每个钢筋束相连的张紧绳也是一个优点。该张紧绳能提高船体在载荷下降期间的稳定性，尤其是从大水域运到小水域时，没有张紧绳就会造成船体不稳定，所述张紧绳只是阻止船体的向上运动，有助于形成一个作用在船体上的稳定力矩，确实提高了船体的稳定性，所述力矩 M 等于：

$$ M = \rho_w g \sum_{i=1}^{N} R_i^2 A_i \sin \phi $$

其中：
- i: 立柱的指数量
- N: 立柱的总数量
- ϕ: 倾斜角
- R_i: 从转动中心到立柱 i 中心的半径
- ρ_w: 海水密度
- g: 重力加速度
- A_i: 立柱 i 的水面面积

还有一个优点是：甲板能作为一个单独组件，用传统的起重船起吊
和安装，并且该起重船不需要用拴着绳的锚系泊，也不需要装备动力定位系统，而是系在船体上并由拖轮进行辅助控制。

本发明的又一个优点在于：来自平台并通过传统管路输出的流体产品能够改由一艘系泊在平台上的油轮输出。

上文已结合专门的最佳实施例，对本发明及其优点作了全面充分的描述，十分明显，本发明可在所附权利要求的范围内作出各种变化。
図 10
图 21