A lubricant composition having at least one base oil composition and a friction-reducing composition comprising at least a first glycerol carboxamate compound are described. Methods for making such compounds and methods of drilling using such lubricant compositions are also described.
TITLE: GLYCEROL CARBAMATE BASED LUBRICANT COMPOSITIONS AND METHODS OF MAKING AND USING SAME

Inventor(s): Tabassumul Haque; Man Kit Ng; Joseph R. Pellettiere; Hong Cheng; Dennis G. Peiffer; Juan David Henao; and Larry Lee Iaccino

PRIORITY

[0001] This invention claims priority to and the benefit of USSN 62/186,503 filed June 30, 2015, and EP Application 15180112.3 filed August 7, 2015.

FIELD OF THE INVENTION

[0003] The present disclosure relates to lubricant compositions and drilling fluid compositions useful in drilling of wellbores. It more particularly relates to drilling fluids including a lubricant additive comprising a glycerol carbamate compound.

BACKGROUND OF THE INVENTION

[0004] The process of drilling a hole in the ground for the extraction of a natural resource requires a fluid for removing the cuttings from the wellbore, lubricating and cooling the drill bit, controlling formation pressures and maintaining hole stability.

[0005] Many formations present difficulties for drilling. For example, the horizontal displacement that occurs in extended reach drilling (ERD) is often limited by torque and drag losses due to friction. Surface interactions, such as rotation of the drill string, is believed to contribute to such frictional losses. In extended reach drilling, frictional losses can be reduced by using a hydrocarbon-based drilling fluid. Additives can be added to the hydrocarbon-based fluid to further reduce the frictional losses.

[0006] Nevertheless, extended reach drilling could be more useful if longer wellbores could be effectively drilled. Thus, there is need in the art for new lubricant compositions, e.g., for use in drilling operations, particularly extended reach drilling.
SUMMARY OF THE INVENTION

[0007] The subject matter of this application relates, in part, to the discovery that certain compositions, when added to a base oil composition, can reduce the coefficient of friction experienced during drilling. It is believed that such reductions in the coefficient of friction can lead to improved drilling, particularly to drill longer wellbores.

[0008] Thus, in one aspect, the subject matter of this application relates to lubricant compositions comprising: at least one base oil composition and a friction-reducing composition comprising at least a first glycerol carbamate compound.

[0009] In another aspect, the subject matter of this application relates to methods of making a lubricant composition comprising mixing a friction-reducing composition comprising at least a first glycerol carbamate compound and at least one base oil composition.

[0010] In still another aspect, the subject matter of this application relates to methods of drilling a wellbore. The methods comprise mixing a friction-reducing composition comprising at least a first glycerol carbamate compound and at least one base oil composition; and introducing the lubricant composition into the wellbore.

[0011] In another aspect, subject matter of this application relates to methods of providing a lubricant composition to a drilling operation, comprising: a) providing to said drilling operation at least one base oil composition, b) operating said drilling operation for a period of time with said base oil composition, and c) adding to the drilling operation a friction-reducing composition comprising at least a first glycerol carbamate compound.

[0012] In another aspect, subject matter of this application relates to methods of preparing a wellbore comprising providing a lubricant composition described herein.

[0013] In another aspect, subject matter of this application relates to methods of producing hydrocarbons comprising providing a lubricant composition described herein.

DETAILED DESCRIPTION OF THE INVENTION

[0014] As used herein, the terms "well" and "wellbore" are used interchangeably and can include, without limitation, an oil, gas or water production well, an injection well, or a geothermal well. As used herein, a "well" includes at least one wellbore. A wellbore can include vertical, inclined, and horizontal portions, and it can be straight, curved, or branched. As used herein, the term "wellbore" includes any cased, and any uncased, open-hole portion of the wellbore. A near-wellbore region is the subterranean material and rock of the subterranean formation surrounding the wellbore. As used herein, a "well" also includes the near-wellbore region. The near-wellbore region is generally considered to be the region
within about 10 feet of the wellbore. As used herein, "into a well" means and includes into
any portion of the well, including into the wellbore or into the near-wellbore region via the
wellbore.

A portion of a wellbore may be an open hole or cased hole. In an open-hole
wellbore portion, a tubing or drill string may be placed into the wellbore. The tubing or drill
string allows fluids to be circulated in the wellbore. In a cased-hole wellbore portion, a
casing is placed and cemented into the wellbore, which can also contain a tubing or drill
string. The space between two cylindrical shapes is called an annulus. Examples of an
annulus include, but are not limited to: the space between the wellbore and the outside of a
tubing or drill string in an open-hole wellbore; the space between the wellbore and the
outside of a casing in a cased-hole wellbore; and the space between the inside of a casing and
the outside of a tubing or drill string in a cased-hole wellbore.

For the purpose of this invention, friction means the mechanical resistance and
rubbing of the drill string with the cased hole and the open hole as the drill string or tubing is
moved, withdrawn, advanced or rotated. Furthermore it also comprises the mechanical
resistance of coiled tubing inside the cased and the open hole; introducing casing; introducing
screens; introducing tools for cleaning, fracturing, and perforating; rotating drill string;
advancing the wellbore; withdrawing a drill string; and/or withdrawing coiled tubing.

For the purposes of this invention and the claims thereto, the new numbering
scheme for the Periodic Table Groups is used as described in Chemical and Engineering

The person of ordinary skill in the art will recognize that the alcohol groups on the
glycerol carbamates described herein are subject to deprotonation. Thus the term "glycerol
carbamate" as used herein includes salts of the glycerol carbamate formed by the reaction
thereof with a suitable counterion. Some suitable counterions include, but are not limited to,
Group 1-2 metals, organic cations, e.g., NR₄⁺ and PR₄⁺ groups, where each R group is
independently selected from H and hydrocarbyl groups.

In any embodiment described herein, Group 1-2 metals includes Li, Na, K, Rb,
Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, preferably Li, Na, K, Cs, Mg and Ca.

The terms "hydrocarbyl radical," "hydrocarbyl," "hydrocarbyl group," "alkyl
radical," and "alkyl" are used interchangeably throughout this document. Likewise the terms
"group", "radical", and "substituent" are also used interchangeably in this document. For
purposes of this disclosure, "hydrocarbyl radical" is defined to be C₁-C₅₀ radicals, that may
be linear, branched, or cyclic, and when cyclic, aromatic or non-aromatic. Examples of such
radicals include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, iso-amyl, hexyl, octyl cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclooctyl, and the like including their substituted analogues. Substituted hydrocarbyl radicals are radicals in which at least one hydrogen atom of the hydrocarbyl radical has been substituted with at least one functional group such as NR* 2, OR*, SeR*, TeR*, PR* 2, AsR* 2, SbR* 2, SR*, BR* 2, SiR* 3, GeR* 3, SnR* 3, PbR* 3, and the like, or where at least one heteroatom has been inserted within a hydrocarbyl ring.

The term "alkenyl" means a straight-chain, branched-chain, or cyclic hydrocarbon radical having one or more double bonds. These alkenyl radicals may be optionally substituted. Examples of suitable alkenyl radicals include, but are not limited to, ethenyl, propenyl, allyl, 1,4-butadienyl cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cyclooctenyl and the like including their substituted analogues.

The term "alkoxy" or "alkoxide" means an alkyl ether or aryl ether radical wherein the term alkyl is as defined above. Examples of suitable alkyl ether radicals include, but are not limited to, methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, iso-butoxy, sec-butoxy, tert-butoxy, phenoxy, and the like.

The term "aryl" or "aryl group" means a six carbon aromatic ring and the substituted variants thereof, including but not limited to, phenyl, 2-methyl-phenyl, xylyl, 4-bromo-xylyl. Likewise heteroaryl means an aryl group where a ring carbon atom (or two or three ring carbon atoms) has been replaced with a heteroatom, preferably N, O, or S. As used herein, the term "aromatic" also refers to pseudoaromatic heterocycles which are heterocyclic substituents that have similar properties and structures (nearly planar) to aromatic heterocyclic ligands, but are not by definition aromatic; likewise the term aromatic also refers to substituted aromatics.

Where isomers of a named alkyl, alkenyl, alkoxide, or aryl group exist (e.g., n-butyl, iso-butyl, sec-butyl, and tert-butyl) reference to one member of the group (e.g., n-butyl) shall expressly disclose the remaining isomers (e.g., iso-butyl, sec-butyl, and tert-butyl) in the family. Likewise, reference to an alkyl, alkenyl, alkoxide, or aryl group without specifying a particular isomer (e.g., butyl) expressly discloses all isomers (e.g., n-butyl, iso-butyl, sec-butyl, and tert-butyl).

As used herein, the term "heterogeneous blend" means a composition having two or more morphological phases in the same state. For example a blend of immiscible components, e.g., oil and water, where one component forms discrete packets dispersed in a matrix of another component is said to be heterogeneous. By continuous phase is meant the
matrix phase in a heterogeneous blend. By discontinuous phase is meant the dispersed phase in a heterogeneous blend.

[0026] Kinematic viscosity (also referred to as viscosity) is determined by ASTM D445, and is typically measured at 40°C (Kv40) or 100°C (Kv100). If temperature is not indicated, the viscosity is Kvl oo.

Lubricant Composition

[0027] Lubricant compositions that are the subject of this disclosure typically comprise a base oil composition and a friction-reducing agent. The base oil composition is typically present in the lubricant composition in an amount of ≥ about 50.0 wt%, ≥ about 55.0 wt%, ≥ about 60.0 wt%, ≥ about 65.0 wt%, ≥ about 70.0 wt%, ≥ about 75.0 wt%, ≥ about 80.0 wt%, ≥ about 85.0 wt%, ≥ about 90.0 wt%, ≥ about 95.0 wt%, or ≥ about 97.0 wt%, of the lubricant composition. Additionally or alternatively, the lubricant composition comprises ≤ about 99.0 wt%, e.g., ≤ about 97.0 wt%, ≤ about 95.0 wt%, ≤ about 90.0 wt%, ≤ about 85.0 wt%, ≤ about 80.0 wt%, ≤ about 75.0 wt%, ≤ about 70.0 wt%, ≤ about 65.0 wt%, ≤ about 60.0 wt%, ≤ or about 55.0 wt% base oil composition. Ranges of the amount of base oil composition in the lubricant composition include ranges formed from any combination of the aboveenumerated values, e.g., about 50.0 to about 99.0 wt%, about 55.0 to about 97.0 wt%, about 60.0 to about 95.0 wt%, about 65.0 to about 90.0 wt%, about 70.0 to about 85.0 wt%, about 75.0 to about 80.0 wt%, about 70.0 to about 95.0 wt%, about 85.0 to about 95.0 wt%, etc.

[0028] In a preferred embodiment of the invention, the base oil composition comprises a base oil that is present in the lubricant composition in ranges from about 50.0 to about 99.0 wt%, about 55.0 to about 97.0 wt%, about 60.0 to about 95.0 wt%, about 65.0 to about 90.0 wt%, about 70.0 to about 85.0 wt%, about 75.0 to about 80.0 wt%, about 70.0 to about 95.0 wt%, and the friction-reducing composition is typically present in the lubricant composition in the amount of about 0.5 to about 10.0 wt%, about 1.0 to about 9.0 wt%, about 1.5 to about 8.0 wt%, about 2.0 to about 7.0 wt%, about 2.5 to about 6.0 wt%, about 3.0 to about 5.0 wt%, about 3.5 to about 4.5 wt%, about 1.0 to about 5.0 wt%, about 2.0 to about 4.0 wt%.

[0029] The friction-reducing composition is typically present in the lubricant composition in an amount of ≥ about 0.5 wt%, e.g., ≥ about 1.0 wt%, ≥ about 1.5 wt%, ≥ about 2.0 wt%, ≥ about 2.5 wt%, ≥ about 3.0 wt%, ≥ about 3.5 wt%, ≥ about 4.0 wt%, ≥ about 4.5 wt%, ≥ about 5.0 wt%, ≥ about 6.0 wt%, ≥ about 7.0 wt%, ≥ about 8.0 wt%, or ≥ about 9.0 wt%. Additionally or alternatively, the lubricant composition comprises ≤ about 10.0 wt% e.g., ≤ about 9.0 wt%, ≤ about 8.0 wt%, ≤ about 7.0 wt%, ≤ about 6.0 wt%, ≤ about 5.0 wt%, ≤ about 4.0 wt%, ≤ about 3.0 wt%, ≤ about 2.5 wt%, ≤ about 2.0 wt%, ≤ about 1.5 wt%, ≤ about 1.0 wt%, ≤ about 0.5 wt% or ≤ about 0.0 wt%.
≤ about 4.5 wt%, ≤ about 4.0 wt%, ≤ about 3.5 wt%, ≤ about 3.0 wt%, ≤ about 2.5 wt%, ≤ about 2.0 wt%, ≤ about 1.5 wt%, or ≤ about 1.0 wt% friction-reducing agent. Ranges of the amount of friction-reducing composition in the lubricant composition include ranges formed from any combination of the above-enumerated values, e.g., about 0.5 to about 10.0 wt%, about 1.0 to about 9.0 wt%, about 1.5 to about 8.0 wt%, about 2.0 to about 7.0 wt%, about 2.5 to about 6.0 wt%, about 3.0 to about 5.0 wt%, about 3.5 to about 4.5 wt%, about 1.0 to about 5.0 wt%, about 2.0 to about 4.0 wt%, about 0.1 wt% to about 5.0 wt%, etc.

[0030] All weight percentages are based on the total weight of the base oil and the friction-reducing compositions.

[0031] Lubricant compositions generally have a coefficient of friction less than that of the base oil composition. Some lubricant compositions have a coefficient of friction of ≤ about 0.12, e.g., ≤ about 0.10, ≤ about 0.08, ≤ about 0.06, ≤ about 0.04, or ≤ about 0.02. Additionally or alternatively, the coefficient of friction may be ≥ about 0.01, e.g., ≥ about 0.03, ≥ about 0.05, ≥ about 0.07, ≥ about 0.09, or ≥ about 0.11. Ranges of the coefficient of friction of the lubricant composition include ranges formed from any combination of the above-enumerated values, e.g., about 0.01 to about 0.12, about 0.3 to about 0.10, about 0.05 to about 0.08, about 0.06 to about 0.07, about 0.08 to about 0.12, about 0.08 to about 0.10, etc.

[0032] Additionally or alternatively, the lubricant composition may be characterized by a change in the coefficient of friction relative to the coefficient of friction of the base oil composition without the friction-reducing agent. In other words, the lubricant composition having the friction reducing agent may have a coefficient of friction that is at least about 20.0% lower than, (alternately, is at least about 25.0% lower than, is at least about 30.0% lower than, is at least about 35.0% lower than, is at least about 40.0% lower than, is at least about 45.0% lower than, is at least about 50.0% lower than, is at least about 55.0% lower than, is at least about 60.0% lower than), the coefficient of friction of the base oil composition in the absence of the additive composition. Ranges of the reduction in the coefficient of friction of the lubricant composition relative to the base oil composition without the friction-reducing composition include ranges formed from any combination of the above-enumerated values, e.g., about 20.0 to about 60.0% lower, about 25.0 to about 55.0% lower, about 30.0 to about 50.0% lower, about 35.0 to about 45.0% lower, about 40.0% lower, about 30.0 to about 60.0% lower, about 35.0 to about 60.0% lower, about 40.0 to about 60.0% lower, about 45.0 to about 60.0% lower, about 40.0 to about 55.0% lower, etc. For clarity, an exemplary lubricant composition may comprise 4.0 g of friction reducing
agent and 96.0 g of a base oil composition comprising 86.0 g of base oil and 10.0 g of other additives. The reduction in the coefficient of friction would be determined by comparing the coefficient of friction of this exemplary composition would be compared to the coefficient of friction of a composition comprising 86.0 g base oil and 10.0 g of the other additives.

5 Base Oil Composition

[0033] Generally, the base oil composition may include a base oil and one or more base oil additives. Numerous base oils are known in the art. Particular base oils that are useful in the present disclosure include both natural oils, and synthetic oils, as well as unconventional oils (or mixtures thereof), which can be used unrefined, refined, or re-refined (the latter is also known as reclaimed or reprocessed oil). Unrefined oils are those obtained directly from a natural or synthetic source and used without added purification. These include shale oil obtained directly from retorting operations, petroleum oil obtained directly from primary distillation, and ester oil obtained directly from an esterification process. Refined oils are similar to the oils discussed for unrefined oils except refined oils are subjected to one or more purification steps to improve at least one base oil property. One skilled in the art is familiar with many purification processes. These processes include solvent extraction, secondary distillation, acid extraction, base extraction, filtration, and percolation. Re-refined oils are obtained by processes analogous to refined oils but using an oil that has been previously used as a feed stock.

[0034] Groups I, II, III, IV, and V are broad lube base oil stock categories developed and defined by the American Petroleum Institute (API Publication 1509; www.API.org) to create guidelines for base oils. Group I base stocks have a viscosity index of 80 to 120 and contain > 0.03% sulfur and/or less than 90% saturates. Group II base stocks have a viscosity index of 80 to 120, and contain ≤ 0.03% sulfur and ≥ 90% saturates. Group III stocks have a viscosity index ≥ 120 and contain ≤ 0.03% sulfur and ≥ 90% saturates. Group IV includes polyalphaolefins (PAO) and Gas-to-Liquid (GTL) materials. Group V base stock includes base stocks not included in Groups I-IV. The table below summarizes properties of each of these five groups.

Exemplary Base Oil Properties

<table>
<thead>
<tr>
<th></th>
<th>Saturates (wt%)</th>
<th>Sulfur (wt%)</th>
<th>Viscosity Index (cSt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>< 90 and/or</td>
<td>> 0.03 and/or</td>
<td>80 to 120</td>
</tr>
<tr>
<td>Group II</td>
<td>≥ 90 and</td>
<td>≤ 0.03 and</td>
<td>80 to 120</td>
</tr>
<tr>
<td>Group III</td>
<td>≥ 90 and</td>
<td>≤ 0.03 and</td>
<td>≥ 120</td>
</tr>
</tbody>
</table>

> Natural oils include animal oils, vegetable oils (castor oil and lard oil, for example), and mineral oils. Animal and vegetable oils possessing favorable thermal oxidative stability can be used. Of the natural oils, mineral oils are preferred. Mineral oils vary widely as to their crude source, for example, as to whether they are paraffinic, naphthenic, or mixed paraffinic-naphthenic. Oils derived from coal or shale are also useful.

> Natural oils vary also as to the method used for their production and purification, for example, their distillation range and whether they are straight run or cracked, hydrotreated, or solvent extracted.

> Group II and/or Group III hydroprocessed or hydrocracked basestocks, including synthetic oils, are also well known basestock oils.

> Synthetic oils include hydrocarbon oil. Hydrocarbon oils include oils such as polymerized and interpolymerized olefins (polybutylenes, polypropylenes, propylene isobutylene copolymers, ethylene-olefin copolymers, and ethylene-alphaolefin copolymers, for example). Polyalphaolefin (PAO) oil base stocks are commonly used synthetic hydrocarbon oil. By way of example, PAOs derived from C₈ to C₁₄ olefins, e.g., C₈, C₁₀, C₁₂, C₁₄ olefins or mixtures thereof may be utilized. Some such PAO’s are described in US 4,956,122; US 4,827,064; and US 4,827,073, each of which is incorporated herein by reference in its entirety.

> The number average molecular weights of the PAOs, which are known materials and generally available on a commercial scale from suppliers such as ExxonMobil Chemical Company, Chevron Phillips Chemical Company, BP, and others, typically vary from 250 to 3,000 g/mol, although PAO’s may be made in Kinematic viscosities up to 3,500 cSt (100°C). The PAOs are typically comprised of relatively low molecular weight hydrogenated polymers or oligomers of alphaolefins which include, but are not limited to, C₂ to C₃₂ alphaolefins with the C₈ to C₁₆ alphaolefins, such as 1-octene, 1-decene, 1-dodecene and the like, being preferred. The preferred polyalphaolefins are poly-1-octene, poly-1-decene and poly-1-dodecene and mixtures thereof and mixed olefin-derived polyolefins. However, the dimers of higher olefins in the range of C₁₄ to C₁₈ may be used to provide low viscosity basestocks of

<table>
<thead>
<tr>
<th>Group IV</th>
<th>Includes PAO's and GTL's</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group V</td>
<td>All other base oil stocks not included in Groups I-IV</td>
</tr>
</tbody>
</table>

acceptably low volatility. Depending on the viscosity grade and the starting oligomer, the PAOs may be predominantly trimers and/or tetramers of the starting olefins, with minor amounts of the higher oligomers, having a Kinematic viscosity range of 1.5 to 3500 cSt (Kv100), such as from 1.5 to 12 cSt.

5 [0040] The PAO fluids may be conveniently made by the polymerization of an alphaolefin in the presence of a polymerization catalyst such as the Friedel-Crafts catalysts including, for example, aluminum trichloride, boron trifluoride or complexes of boron trifluoride with water, alcohols such as ethanol, propanol or butanol, carboxylic acids or esters, such as ethyl acetate or ethyl propionate. For example the methods disclosed by US 4,149,178 or US 3,382,291 may be conveniently used herein. Other descriptions of PAO synthesis are found in the following: US 3,742,082; US 3,769,363; US 3,876,720; US 4,239,930; US 4,367,352; US 4,413,156; US 4,434,408; US 4,910,355; US 4,956,122; and US 5,068,487. The dimers of the C_{14} to C_{18} olefins are described in US 4,218,330. The PAO's may be produced using a metallocene catalyst compound as described in US 8,535,514 and US 8,247,358.

[0041] The hydrocarbyl aromatics can be used as base oil or base oil component and can be any hydrocarbyl molecule that contains at least 5% of its weight derived from an aromatic moiety such as a benzenoid moiety or naphthenoid moiety, or their derivatives. These hydrocarbyl aromatics include alkyl benzenes, alkyl naphthalenes, alkyl diphenyl oxides, alkyl naphthols, alkyl diphenyl sulfides, alkylated bis-phenol A, alkylated thiophenol, and the like. The aromatic can be mono-alkylated, dialkylated, polyalkylated, and the like. The aromatic can be mono- or poly-functionalized. The hydrocarbyl groups can also be comprised of mixtures of alkyl groups, alkenyl groups, alkynyl, cycloalkyl groups, cycloalkenyl groups and other related hydrocarbyl groups. The hydrocarbyl groups can range from C_6 to C_{60} with a range of C_8 to C_{20} often being preferred. A mixture of hydrocarbyl groups is often preferred, and up to three such substituents may be present. The hydrocarbyl group can optionally contain sulfur, oxygen, and/or nitrogen containing substituents. The aromatic group can also be derived from natural (petroleum) sources, provided at least 5% of the molecule is comprised of an above-type aromatic moiety. Viscosities at 100°C of approximately 3 cSt to 50 cSt are preferred, with viscosities of approximately 3.4 cSt to 20 cSt often being more preferred for the hydrocarbyl aromatic component. In one embodiment, an alkyl naphthalene where the alkyl group is primarily comprised of 1-hexadecene is used. Other alkylates of aromatics can be advantageously used. Naphthalene or methyl naphthalene, for example, can be alkylated with olefins such as octene, decene,
dodecene, tetradecene or higher, mixtures of similar olefins, and the like. Useful concentrations of hydrocarbyl aromatic in a base oil composition can be 2% to 25%, preferably 4% to 20%, and more preferably 4% to 15%, depending on the application.

[0042] Other useful fluids for use as base oils include non-conventional or unconventional base stocks that have been processed, preferably catalytically, or synthesized to provide high performance characteristics.

[0043] Non-conventional or unconventional base stocks/base oils include one or more of a mixture of base stock(s) derived from one or more Gas-to-Liquids (GTL) materials, as well as isomerate/isodewaxate base stock(s) derived from natural wax or waxy feeds, mineral and/or non-mineral oil waxy feed stocks such as slack waxes, natural waxes, and waxy stocks such as gas oils, waxy fuels hydrocracker bottoms, waxy raffinate, hydrocrackate, thermal crackates, or other mineral, mineral oil, or even non-petroleum oil derived waxy materials such as waxy materials received from coal liquefaction or shale oil, and mixtures of such base stocks.

[0044] GTL materials are materials that are derived via one or more synthesis, combination, transformation, rearrangement, and/or degradation/deconstructive processes from gaseous carbon-containing compounds, hydrogen-containing compounds and/or elements as feed stocks such as hydrogen, carbon dioxide, carbon monoxide, water, methane, ethane, ethylene, acetylene, propane, propylene, propyne, butane, butylene, and butynes.

GTL base stocks and/or base oils are GTL materials of base oil viscosity that are generally derived from hydrocarbons; for example, waxy synthesized hydrocarbons, that are themselves derived from simpler gaseous carbon-containing compounds, hydrogen-containing compounds and/or elements as feed stocks. GTL base stock(s) and/or base oil(s) include oils boiling in the lube oil boiling range (1) separated/fractionated from synthesized GTL materials such as, for example, by distillation and subsequently subjected to a final wax processing step, which involves either or both of a catalytic dewaxing process, or a solvent dewaxing process, to produce lube oils of reduced/low pour point; (2) synthesized wax isomerates, comprising, for example, hyrodewaxed or hydrosisomerized cat and/or solvent dewaxed synthesized wax or waxy hydrocarbons; (3) hyrodewaxed or hydrosisomerized cat and/or solvent dewaxed Fischer-Tropsch (F-T) material (i.e., hydrocarbons, waxy hydrocarbons, waxes and possible analogous oxygenates); preferably hyrodewaxed or hydrosisomerized/followed by cat and/or solvent dewaxing dewaxed F-T waxy hydrocarbons, or hyrodewaxed or hydrosisomerized/followed by cat (or solvent) dewaxing dewaxed, F-T waxes, or mixtures thereof.
GTL base stock(s) and/or base oil(s) derived from GTL materials, especially, hydrodewaxed or hydroisomerized/followed by catalyst and/or solvent dewaxed wax or waxy feed, preferably F-T material derived base stock(s) and/or base oil(s), are characterized typically as having Kinematic viscosities at 100°C of from 2 cSt to 50 cSt (ASTM D445). They are further characterized typically as having pour points of -5°C to -40°C or lower (ASTM D97). They are also characterized typically as having viscosity indices of 80 to 140 or greater (ASTM D2270).

In addition, the GTL base stock(s) and/or base oil(s) are typically highly paraffinic (>90% saturates), and may contain mixtures of monocycloparraffins and multicycloparaffins in combination with non-cyclic isoparaffins. The ratio of the naphthenic (i.e., cycloparaffin) content in such combinations varies with the catalyst and temperature used. Further, GTL base stock(s) and/or base oil(s) typically have very low sulfur and nitrogen content, generally containing less than 10 ppm, and more typically less than 5 ppm of each of these elements. The sulfur and nitrogen content of GTL base stock(s) and/or base oil(s) obtained from F-T material, especially F-T wax, is essentially nil. In addition, the absence of phosphorous and aromatics make this materially especially suitable for the formulation of low SAP products.

The term GTL base stock and/or base oil and/or wax isomerate base stock and/or base oil is to be understood as embracing individual fractions of such materials of wide viscosity range as recovered in the production process, mixtures of two or more of such fractions, as well as mixtures of one or two or more low viscosity fractions with one, two or more higher viscosity fractions to produce a blend wherein the blend exhibits a target Kinematic viscosity.

The GTL material, from which the GTL base stock(s) and/or base oil(s) is/are derived is preferably an F-T material (i.e., hydrocarbons, waxy hydrocarbons, wax). In addition, the GTL base stock(s) and/or base oil(s) are typically highly paraffinic (>90% saturates), and may contain mixtures of monocycloparraffins and multicycloparaffins in combination with non-cyclic isoparaffins. The ratio of the naphthenic (i.e., cycloparaffin) content in such combinations varies with the catalyst and temperature used. Further, GTL base stock(s) and/or base oil(s) and hydrodewaxed, or hydroisomerized/catalyst (and/or solvent) dewaxed base stock(s) and/or base oil(s) typically have very low sulfur and nitrogen content, generally containing less than 10 ppm, and more typically less than 5 ppm of each of these elements. The sulfur and nitrogen content of GTL base stock(s) and/or base oil(s) obtained from F-T material, especially F-T wax, is essentially nil. In addition, the absence of phosphorous and aromatics make this material especially suitable for the formulation of low
sulfur, sulfated ash, and phosphorus (low SAP) products.

Base oils for use in the formulated base oil compositions useful in the present disclosure are any of the variety of oils corresponding to API Group I, Group II, Group III, Group IV, and Group V oils, and mixtures thereof, preferably API Group II, Group III, Group IV, and Group V oils, and mixtures thereof, more preferably the Group III to Group V base oils due to their exceptional volatility, stability, viscometric and cleanliness features. Minor quantities of Group I stock, such as the amount used to dilute additives for blending into formulated lube oil products, can be tolerated but should be kept to a minimum, i.e., amounts only associated with their use as diluents/carrier oil for additives used on an "as-received" basis. Even in regard to the Group II stocks, it is preferred that the Group II stock be in the higher quality range associated with that stock, i.e., a Group II stock having a viscosity index in the range of 100 to 120.

Some base oils may have an ester content ≤ about 50 wt%, e.g., ≤ about 40 wt%, ≤ about 30 wt%, ≤ about 5.0 wt%, or ≤ about 1.0 wt%. Additionally or alternatively, some base oils may have an ester content ≥ about 40 wt%, e.g., ≥ about 50 wt%, ≥ about 70 wt%, or ≥ about 90 wt%.

Some base oils may have an aromatic contents ≤ about 15.0 wt%, e.g., ≤ about 10.0 wt%, ≤ about 5.0 wt%, ≤ about 1.0 wt%, ≤ about 0.50 wt%, ≤ about 0.10 wt%, ≤ about 0.05 wt%, ≤ about 0.01 wt%, or ≤ about 0.005 wt%. Additionally or alternatively, the aromatics content may be ≥ about 0.005 wt%, e.g., ≥ about 0.01 wt%, ≥ about 0.05 wt%, ≥ about 0.10 wt%, ≥ about 0.5 wt%, ≥ about 1.0 wt%, ≥ about 5.0 wt%, or ≥ about 10.0 wt%. Ranges of the aromatics content expressly disclosed herein include all combinations of the above-enumerated values, e.g., about 0.005 to about 15.0 wt%, about 0.01 to about 10.0 wt%, about 0.05 to about 5.0 wt%, about 0.10 to about 1.0 wt%, etc.

Some exemplary base oils have been characterized by their Kinematic viscosity at 40°C (Kv40). For example, particular base oils may have a viscosity ≥ about 1.0 cSt, e.g., ≥ about 1.3 cSt, ≥ about 1.5 cSt, ≥ about 1.7 cSt, ≥ about 1.9 cSt, ≥ about 2.1 cSt, ≥ about 2.3 cSt, ≥ about 2.5 cSt, ≥ about 2.7 cSt, ≥ about 2.9 cSt, ≥ about 3.1 cSt, ≥ about 3.3 cSt, ≥ about 3.5 cSt, ≥ about 3.7 cSt, ≥ about 4.0 cSt, ≥ about 4.5 cSt, or ≥ about 4.8 cSt, at 40°C. Additionally or alternatively, the viscosity at 40°C, may be ≤ about 5.0 cSt, e.g., ≤ about 4.8 cSt, ≤ about 4.5 cSt, ≤ about 4.0 cSt, ≤ about 3.7 cSt, ≤ about 3.5 cSt, ≤ about 3.3 cSt, ≤ about 3.1 cSt, ≤ about 2.9 cSt, ≤ about 2.7 cSt, ≤ about 2.5 cSt, ≤ about 2.3 cSt, ≤ about 2.1 cSt, ≤ about 1.9 cSt, ≤ about 1.7 cSt, ≤ about 1.5 cSt, ≤ about 1.3 cSt, or ≤ about 1.1 cSt, at 40°C. Some such base oils are available from ExxonMobil Chemical Company under the
tradename Escaid™, e.g., Escaid™ 110 comprises a desulfurized hydrogenated hydrocarbon containing less than 0.50 wt% aromatics and having a viscosity of about 1.7 cSt at 40°C, Escaid™ 115 having a viscosity of about 2.1 cSt at 40°C, Escaid™ 120 having a flash point above 100°C, and Escaid™ 120 ULA having an aromatics content < 0.01 wt%.

5 Base Oil Additives

[0053] Often, the base oil composition includes additional additives. Preferably, one or more of the additional additives form a heterogeneous blend with the base oil. In such aspects, the base oil composition is preferably a heterogeneous blend having base oil as the continuous phase and one or more additional additives as the dispersed or internal phase. Alternatively or additionally, one or more of the additional additives can solubilize in the base oil.

[0054] For example, the base oil composition can include additional additives including, but not limited to, an internal phase, which is typically water or a brine (i.e., the base oil composition is an inverted emulsion), a pH buffer, a viscosifier, an emulsifier, a wetting agent, a weighting agent, a fluid loss additive, and a friction reducer.

[0055] For example, the base oil composition may include a pH buffer selected from the group consisting of magnesium oxide, potassium hydroxide, calcium oxide, and calcium hydroxide. Commercially available examples of a pH buffer include lime. The pH buffer can be in a concentration in the range of about 0.5 to about 10.0 pounds per barrel (ppb) of the base oil composition. Useful base oil compositions can have a pH ranging from a low of about 7, 8, 9, 10, 11, or 12 to a high of about 14, such as from 10 to 14.

[0056] The base oil composition may optionally include a viscosifier. The viscosifier may be selected from the group consisting of inorganic viscosifier, fatty acids, including but not limited to dimer and trimer poly carboxylic fatty acids, diamines, polyamidines, organophilic clays and combinations thereof. Commercially available examples of a suitable viscosifier include, but are not limited to, VG-PLUS™, available from M-I Swaco, a Schlumberger Company; RHEMOD L™, TAU-MOD™, RM-63™, and combinations thereof, marketed by Halliburton Energy Services, Inc. According to an embodiment, the viscosifier is in a concentration of at least 0.5 ppb of the base oil composition. The viscosifier can also be in a concentration in the range of about 0.5 to about 20 ppb, alternatively of about 0.5 to about 10 ppb, of the base oil composition.

[0057] The base oil composition may further include a lubricant in addition to the friction-reducing composition described herein. In particular embodiments, the additional base oil composition comprises a particulated material, e.g., graphite such as Steelseal™,
available from Halliburton.

The base oil composition can further include an emulsifier. The emulsifier can be selected from the group consisting of tall oil-based fatty acid derivatives such as amides, amines, amidoamines, and imidazolines made by reactions of fatty acids and various ethanolamine compounds, vegetable oil-based derivatives, and combinations thereof. Commercially available examples of a suitable emulsifier include, but are not limited to, EZ MUL™ NT, INVERMUL™ NT, LE SUPERMUL™, and combinations thereof, marketed by Halliburton Energy Services, Inc, MEGAMUL™, VersaMul™, VersaCoat™, marketed by MISwaco, a Schlumberger Company. According to an embodiment, the emulsifier is in at least a sufficient concentration such that the base oil composition maintains a stable emulsion or invert emulsion. According to yet another embodiment, the emulsifier is in a concentration of at least 1 ppb of the base oil composition. The emulsifier can also be in a concentration in the range of about 1 to about 20 ppb of the base oil composition.

The base oil composition can further include a weighting agent. The weighting agent can be selected from the group consisting of barite, hematite, manganese tetroxide, calcium carbonate, and combinations thereof. Commercially available examples of a suitable weighting agent include, but are not limited to, BAROID™, BARACARB™, BARODENSE™, and combinations thereof, marketed by Halliburton Energy Services, Inc and MICROMAX™, marketed by Elkem. According to an embodiment, the weighting agent is in a concentration of at least 10 ppb of the base oil composition. The weighting agent can also be in a concentration in the range of about 10 to about 1000 ppb, such as 10 to 800 ppb, of the base oil composition.

The base oil composition can further include a fluid loss additive. The fluid loss additive can be selected from the group consisting of oleophilic polymers, including crosslinked oleophilic polymers, particulates. Commercially available examples of a suitable fluid loss additive include, but are not limited to VERSATROL™, available from M-I Swaco; N-DRIL™ HT PLUS, ADAPTA™, marketed by Halliburton Energy Services, Inc. The fluid loss additive can also be in a concentration in the range of about 0.5 to about 10 ppb of the base oil composition.

The base oil composition can further include an ester additive. The ester additive can be in a concentration in the range of about 1% to 20%.

The base oil composition may also optionally include one or more metal salts, MXy, where M is a Group 1 or Group 2 metal, X is a halogen, and y is 1 to 2. Exemplary such salts include, NaCl, KCl, CaC\(^2\), MgC\(^2\), etc. The total amount of such salts in the base
oil composition is typically about 10 - 35 wt% in the water phase. Organic additives that lower the water activity may also be used.

[0063] Water may also be present in the base oil composition at any convenient concentration, typically in a minor amount, e.g., ≤ about 45.0 wt%, ≤ about 40.0 wt%, ≤ about 35.0 wt%, ≤ about 30.0 wt%, ≤ about 25.0 wt%, ≤ about 20.0 wt%, particularly ≤ about 15.0 wt%, ≤ about 12.5 wt%, ≤ about 10.0 wt%, ≤ about 7.5 wt%, ≤ about 5.0 wt%, ≤ about 2.5 wt%, or ≤ about 1.0 wt%, the wt% being based on the total weight of the base oil and the water. Additionally or alternatively, the concentration of water may be ≥ about 0.5 wt%, e.g., ≥ about 1.0 wt%, ≥ about 2.5 wt%, ≥ about 5.0 wt%, ≥ about 7.5 wt%, ≥ about 10.0 wt%, ≥ about 12.5 wt%, or ≥ about 15.0 wt%. In particular embodiments, the amount of water may be about 1 to about 21 gallons per barrel of base oil composition, such as about 1 to about 10 gallons per barrel of base oil composition. Range of the water content that are expressly disclosed comprise ranges formed from any of the above-enumerated values, e.g., about 0.5 to about 45.0 wt%, about 0.5 to about 40.0 wt%, about 0.5 to about 35.0 wt%, about 0.5 to about 30.0 wt%, about 0.5 to about 25.0 wt%, about 0.5 to about 20.0 wt%, about 0.5 to about 15.0 wt%, about 0.5 to about 12.5 wt%, about 1.0 to about 15.0 wt%, about 1.0 to about 12.5 wt%, about 1.0 to about 10.0 wt%, about 1.0 to about 7.5 wt%, about 1.0 to about 5.0 wt%, about 1.0 to about 2.5 wt%, about 2.5 to about 10.0 wt%, about 2.5 to about 7.5 wt%, about 2.5 to about 5.0 wt%, about 5.0 to about 10.0 wt%, about 5.0 to about 7.5 w.%, etc.

[0064] The base oil composition can further include wetting agents. The wetting agents can be selected from the group consisting of tall oil-based fatty acid derivatives such as amides, amines, amidoamines, and imidazolines made by reactions of fatty acids and various ethanolamine compounds, vegetable oil-based derivatives, and combinations thereof. Commercially available examples of suitable wetting agents include, but are not limited to, DrillTreat™, OMC™, marketed by Halliburton Energy Services, Inc, VersaWet™, marketed by MISwaco, a Schlumberger Company. According to an embodiment, the wetting agent is in at least a sufficient concentration such that the base oil composition maintains a stable emulsion or invert emulsion. According to yet another embodiment, the wetting agent is in a concentration of at least 0.25 ppb of base oil composition. The wetting agent can also be in a concentration in the range of about 0.05 to about 20 ppb, such as about 0.25 to about 20 ppb of the base oil composition.

[0065] In another embodiment, the wetting agent is not present in the base oil composition.
Friction-reducing composition

Lubricant compositions according to the subject matter of the disclosure also include at least one friction-reducing composition comprising a glycerol carbamate compound or reaction product thereof.

Some exemplary glycerol carbamate compounds are represented by Formula I:

![Formula I](image)

Other exemplary compounds are represented by Formula II:

![Formula II](image)

where \(R^1 \) and \(R^2 \) are independently selected from H, substituted or unsubstituted, linear or branched C\(_i\) to C\(_{50}\) hydrocarbyl groups. Exemplary substituted or unsubstituted, linear or branched C\(_i\) to C\(_{50}\) hydrocarbyl groups include, but are not limited to, C\(_2\)-C\(_{25}\), C\(_4\)-C\(_{20}\), C\(_6\) to C\(_8\), and C\(_8\) to C\(_{16}\), and C\(_{10}\) to C\(_{14}\), and C\(_{12}\) groups, e.g., methyl ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, etc., hydrocarbyl groups. The hydrocarbyl groups are not limited to linear hydrocarbyl groups. For example, C\(_8\) hydrocarbyl groups include, but are not limited to, e.g., 2-ethylhexyl and 2-propylpentyl groups. In particular lubricant compositions, the additive may comprise a hydrocarbyl group having an internal double bond. For example, exemplary hydrocarbyl groups having an internal double bond are represented by Formula III:

\[
CR^x(CR^6)^yCR^z=CR^d(CR^5)^e
\]

where \(x \) is \(\geq 0 \), e.g., \(\geq 1, \geq 5, \geq 7, \geq 8, \geq 10, \geq 12, \geq 14, \geq 16, \geq 18, \geq 20, \geq 22, \geq 24, \geq 26, \geq 28, \geq 30, \geq 32, \geq 34, \geq 36, \geq 38, \geq 40, \geq 42, \) or \(\geq 44 \) (alternatively, \(x \) may be \(\leq 46 \), e.g., \(\leq 44, \leq 42, \leq 40, \leq 38, \leq 36, \leq 34, \leq 32, \leq 30, \leq 28, \leq 26, \leq 24, \leq 22, \leq 20, \leq 18, \leq 16, \leq 14, \leq 12, \leq 10, \leq 8, \leq 7, \) or \(\leq 5 \)); and \(y \) may be \(\geq 0 \), e.g., \(\geq 1, \geq 5, \geq 7, \geq 8, \geq 10, \geq 12, \geq 14, \geq 16, \geq 18, \geq 20, \geq 22, \geq 24, \geq 26, \geq 28, \geq 30, \geq 32, \geq 34, \geq 36, \geq 38, \geq 40, \geq 42, \) or \(\geq 44 \) (alternatively, \(y \) may be \(\leq 46 \), e.g., \(\leq 44, \leq 42, \leq 40, \leq 38, \leq 36, \leq 34, \leq 32, \leq 30, \leq 28, \leq 26, \leq 24, \leq 22, \leq 20, \leq 18, \leq 16, \leq 14, \leq 12, \leq 10, \leq 8, \leq 7, \) or \(\leq 5 \)).
Where the friction-reducing composition includes at least one glycerol carbamate (alternatively, y may be ≤ 46, e.g., ≤ 44, ≤ 42, ≤ 40, ≤ 38, ≤ 36, ≤ 34, ≤ 32, ≤ 30, ≤ 28, ≤ 26, ≤ 24, ≤ 22, ≤ 20, ≤ 18, ≤ 16, ≤ 14, ≤ 12, ≤ 10, ≤ 8, ≤ 7, or ≤ 5). Ranges of x and y values that are expressly disclosed herein include ranges formed by any combination of the above-recited individual values. In particular embodiments, x ranges from about 5 to about 10, e.g., 7 and y ranges from about 5 to about 10, e.g., 7, i.e., CH₃(CH₂)₇-C≡C(CH₂)₇CH₂-. The double bond may have cis- or trans- configuration. In particular embodiments, the cis-configuration may be particularly useful.

All combinations of R¹ and R² are expressly disclosed herein, including combinations where R¹ and R² are octyl; R¹ and R² are decyl, R¹ and R² are dodecyl, R¹ and R² are tetradecyl, R¹ and R² are hexadecyl, R¹ and R² are octadecyl, R¹ and R² are 2-ethylhexyl, R¹ and R² are CH₃(CH₂)₇-C≡C(CH₂)₇CH₂-, R¹ is dodecyl and R² is methyl, R¹ is octadecyl and R² is methyl, R¹ is decyl and R² is H, R¹ is dodecyl and R² is H, R¹ is tetradecyl and R² is H, R¹ is hexadecyl and R² is H, R¹ is octadecyl and R² is H, R¹ is 2-ethylhexyl and R² is H, etc.

In Formula I and II, X may independently be H, or other cation, e.g., Group 1-2 metal, ammonium (NR₄⁺), and/or phosphonium (PR₄⁺).

In particular embodiments, the friction-reducing composition includes at least one glycerol carbamate according to Formula I and at least one glycerol carbamate according to Formula II. The amount of the compounds according to Formula I, based on the total amount of compounds according to Formulas I and II may be > 0 mol%, e.g., > about 1.0 mol%, > about 5.0 mol%, > about 10.0 mol%, > about 20.0 mol%, > about 30.0 mol%, > about 40.0 mol%, > about 50.0 mol%, > about 60.0 mol%, > about 70.0 mol%, > about 80.0 mol%, > about 90.0 mol%, > about 95.0 mol%, or > about 99.0 mol%. Additionally or alternatively, the amount of the compounds according to Formula I, based on the total amount of compounds according to Formulas I and II, may be > 100.0 mol%, e.g., ≤ about 99.0 mol%, ≤ about 95.0 mol%, ≤ about 90.0 mol%, ≤ about 80.0 mol%, ≤ about 70.0 mol%, ≤ about 60.0 mol%, ≤ about 50.0 mol%, ≤ about 40.0 mol%, ≤ about 30.0 mol%, ≤ about 20.0 mol%, ≤ about 10.0 mol%, ≤ about 5.0 mol%, ≤ about 1.0 mol%. Ranges of the total amount of glycerol carbamate according to Formula I that are expressly disclosed herein include ranges formed by any combination of the above-recited individual values, e.g., about 0 to about 100 mol%, 1.0 to about 99.0 mol%, 5.0 to about 95.0 mol%, 10.0 to about 90.0 mol%, 20.0 to about 80.0 mol%, 30.0 to about 70.0 mol%, 40.0 to about 60.0 mol%, about 50 mol%, etc.

Where the friction-reducing composition includes at least one glycerol carbamate
according to Formula I and at least one glycerol carbamate according to Formula II, the amount of the compounds according to Formula II, based on the total amount of compounds according to Formulas I and II may be > 0 mol%, e.g., ≥ about 1.0 mol%, ≥ about 5.0 mol%, ≥ about 10.0 mol%, ≥ about 20.0 mol%, ≥ about 30.0 mol%, ≥ about 40.0 mol%, ≥ about 50.0 mol%, ≥ about 60.0 mol%, ≥ about 70.0 mol%, ≥ about 80.0 mol%, ≥ about 90.0 mol%, ≥ about 95.0 mol%, or ≥ about 99.0 mol%. Additionally or alternatively, the amount of the compounds according to Formula II, based on the total amount of compounds according to Formulas I and II, may be > 100.0 mol%, e.g., ≤ about 99.0 mol%, ≤ about 95.0 mol%, ≤ about 90.0 mol%, ≤ about 80.0 mol%, ≤ about 70.0 mol%, ≤ about 60.0 mol%, ≤ about 50.0 mol%, ≤ about 40.0 mol%, ≤ about 30.0 mol%, ≤ about 20.0 mol%, ≤ about 10.0 mol%, ≤ about 5.0 mol%, ≤ about 1.0 mol%. Ranges of the total amount of glycerol carbamate according to Formula II that are expressly disclosed herein include ranges formed by any combination of the above-recited individual values, e.g., about 0 to about 100 mol%, 1.0 to about 100 mol%, 5.0 to about 95.0 mol%, 10.0 to about 90.0 mol%, 20.0 to about

80.0 mol%, 30.0 to about 70.0 mol%, 40.0 to about 60.0 mol%, about 50 mol%, etc.

[0073] Glycerol carbamate compounds may be made by any suitable method. In one such method, an amine having the desired R₁ and R₂ groups described above is reacted with glycerol carbonate according to Scheme I.

\[
\begin{align*}
\text{NH} & \quad + \quad \text{O} \quad \text{O} \\
R^1 & \quad + \quad \text{O} \quad \text{O} \\
\text{OH} & \quad + \quad \text{OH}
\end{align*}
\]

\[\text{Formula I} \quad \text{(1,2-diol)} \quad \text{Formula II} \quad \text{(1,3-diol)}\]

Scheme I

[0074] According to Scheme I, the reaction typically produces a mixture of carbamates according to Formulas I and II. These compounds may be separated according to known techniques, or the combination of products may be used together in the friction-reducing composition. Reaction of amines with carbonates to form alkyl and/or alkenyl glycerol carbamate is described in US 5,863,302, the disclosure of which is incorporated herein by
reference in its entirety. Any amine having R¹ and R² independently selected from H, substituted or unsubstituted, linear or branched, C₁ to C₂₅ hydrocarbyl groups may be used, e.g., dihexylamine, dioctylamine, didecylamine, didecylamine, ditetradecylamine, bis-(2-ethylhexyl)amine, N-methylidodecylamine, N-methyloctadecylamine, branched tertiary alkyl amine isomers, particularly such amines having 12 to 22 carbon atoms.

The friction-reducing composition may, optionally, include one or more secondary friction-reducing components. Secondary friction-reducing components may be selected from nitrogen-containing compounds; substituted imidazolines and amides (described in concurrently filed PCT application ________, corresponding to USSN: 62/186,509 filed June 30, 2015, entitled "Lubricant Compositions and Methods of Making and Using Same", Attorney Docket 2015EM143); hydrocarbyl diols, particularly wherein the hydrocarbyl group is selected from C₁₀ to C₂₅ alkyl groups e.g., octadecane-l-2-diol (described in concurrently filed PCT application ________, corresponding to USSN: 62/186,494 filed June 30, 2015, entitled "Lubricant Compositions and Methods of Making and Using Same", Attorney Docket 2015EM142); hydrocarbyl thioglycerols, e.g., octadecyl thioglycerol; and hydrocarbyl-substituted glycerols, e.g., glycerol monostearate (described in concurrently filed PCT application ________, corresponding to USSN: 62/186,526 filed June 30, 2015, entitled "Lubricant Compositions Comprising Diol Functional Groups and Methods of Making and Using Same", Attorney Docket 2015EM145) and phosphate esters and dihydrocarbyl hydrogen phosphites, e.g., tri-oleyloxy phosphate; and polyethyleneglycol-containing hydrocarbyl ether phosphate esters (described in concurrently filed PCT application ________, corresponding to USSN: 62/186,516 filed June 30, 2015, entitled "Lubricant Compositions Containing Phosphates and/or Phosphites and Methods of Making and Using Same", Attorney Docket 2015EM144), each of which is incorporated by reference in its entirety as a part of this disclosure.

Useful secondary friction-reducing components include, e.g., Vikinol™ 18, ColaLube™ 3410, ColaLube™ 3407, and additives under the tradename ColaMid™.

The secondary friction-reducing component may be present in the friction reducing composition in an amount ≥ about 5.0 wt%, e.g., ≥ about 10.0 wt%, ≥ about 15.0 wt%, ≥ about 20.0 wt%, ≥ about 25.0 wt%, ≥ about 30.0 wt%, ≥ about 35.0 wt%, ≥ about 40.0 wt%, ≥ about 45.0 wt%, ≥ about 50.0 wt%, ≥ about 55.0 wt%, ≥ about 60.0 wt%, ≥ about 65.0 wt%, ≥ about 70.0 wt%, ≥ about 75.0 wt%, ≥ about 80.0 wt%, ≥ about 85.0 wt%, or ≥ about 90 wt%, based on the total weight of the friction-reducing composition. Additionally or alternatively, the secondary friction-reducing component may
be present in an amount ≤ about 95 wt%, e.g., ≤ about 90.0 wt%, ≤ about 85.0 wt%, ≤ about 80.0 wt%, ≤ about 75.0 wt%, ≤ about 70.0 wt%, ≤ about 65.0 wt%, ≤ about 60.0 wt%, ≤ about 55.0 wt%, ≤ about 50.0 wt%, ≤ about 45.0 wt%, ≤ about 40.0 wt%, ≤ about 35.0 wt%, ≤ about 30.0 wt%, ≤ about 25.0 wt%, ≤ about 20.0 wt%, ≤ about 15.0 wt%, or ≤ about 10.0 wt%, based on the total weight of the friction-reducing composition. Ranges of the amount of secondary friction-reducing component that are expressly disclosed herein include ranges formed by any combination of the above-recited individual values, e.g., about 5.0 to about 95.0 wt%, about 10.0 to about 90.0 wt%, about 15.0 to about 85.0 wt%, about 20.0 to about 80.0 wt%, about 25.0 to about 75.0 wt%, about 30.0 to about 70.0 wt%, about 35.0 to about 65.0 wt%, about 40.0 to about 60.0 wt%, about 45.0 to about 55.0 wt%, etc.

Methods of Making the Lubricant Composition

[0078] Lubricant compositions described herein can be made by mixing a friction-reducing composition described above and at least one base oil composition. The method may additionally include mixing the base oil composition prior to blending with the friction-reducing agent. In some embodiments, the mixture of the base oil composition and the friction reducing agent is heated during mixing, (for example, up to about 80°C, alternately for 5-48 hours at a temperature of about 30 to about 70°C, alternately about 24 hours at about 60°C). In some methods, the heating includes providing a nitrogen head pressure to the heating vessel of about 30 to about 50 psi. Mixing at speeds of about 2000 to about 5000 rpm. Typically, mixtures are cooled for 10-24 hours at about 25°C before testing or use.

Methods of Drilling

[0079] Lubricant compositions described herein are useful in any number of drilling methods. One exemplary method comprises mixing a friction-reducing composition and at least one base oil composition; and introducing the lubricant composition into the well.

[0080] The step of introducing can comprise pumping the lubricant composition into the well. The pumping may be done continuously, i.e., providing a constant flow of lubricant composition, periodically, or intermittently, i.e., alternating between periods of flow and no flow of lubricant composition. Particular methods further include continuously, periodically, or intermittently providing a second amount of friction-reducing composition to the lubricant composition already provided to the well. In some methods, the continuous provision of the friction reducing composition provides an overall reduction in the amount of friction-reducing agent used during the drilling process. Alternatively, the continuous provision of the friction-reducing agent may allow smoother drilling operation of the drilling process. The well can be, without limitation, an oil, gas, or water production well, or an injection well.
Methods may further include one or more steps of advancing a downhole tool in the well.

[0081] The introduced lubricant composition may be exposed to temperatures in the well ranging from a low of about 70°C, 80°C, 90°C, 100°C, or 125°C to a high of about 170°C, and pressures ranging from ambient pressure to a high of about 100 bar (10,000 kPa), 200 bar (20,000 kPa), 300 bar (30,000 kPa), 400 bar (40,000 kPa), 500 bar (50,000 kPa), or 600 bar (60,000 kPa). The introduced lubricant composition may be utilized when system components have rotation speed of ≤ about 1000 rpm, e.g., ≤ about 800 rpm, ≤ about 700 rpm, and ≥ about 0 rpm, such as from 1 to 1000 rpm. The introduced lubricant composition may also be utilized with minimal rotation but instead longitudinal motion at a speed of ≤ 10,000 m/hr (meters per hour); ≤ 1,000 m/hr; ≤ 100; and/or ≤ 10 m/hr.

[0082] According to an embodiment, the well penetrates a reservoir or is located adjacent to a reservoir. The methods can further include the step of removing at least a portion of the lubricant composition after the step of introducing. The methods can include any number of additional optional steps. For example, some methods include one or more of the following optional steps: mounting and cementing of well pipes in the first well; mounting of a blowout preventer or lubricator in the top of the well; drilling, at a distance from the well, a second well against a section of the first well to the effect that the second well gets into operational contact with the first well; mounting and cementing of well pipes in the second well; mounting of a blowout preventer or lubricator in the top of the second well; whereafter the drilling from one of the first or second well continues down into the reservoir and the other well which is not drilled to the reservoir is filled wholly or partially with a fluid and a drilling tool is placed in the other well and the other well is subsequently closed so that the other well can be accessed at a later point in time, and that the tool is left in the other well so that this tool can establish a connection to the one of the first or second wells into which the drilling continued.

[0083] Still other optional steps include one or more of the following: calculating a desired path for a well of interest relative to a reference well; measuring a position of the well of interest relative to the reference well at a location along a wellbore of the well; calculating an actual path of the well of interest based at least in part on the measured position of the well of interest relative to the at least one reference well; comparing the actual path of the at least one well of interest to the desired path of the well of interest; and adjusting a drilling system to modify the actual path of the well of interest based at least in part on a deviation between the actual path of the well of interest and the desired path of the well of interest.
Experimental

Viscosity Index is determined from the Kinematic viscosity according to ASTM D2270 -10cL.

Kinematic Viscosity is determined according to ASTM D445.

Coefficient of Friction (CoF) is determined using a block-on-ring tribometer available from CETR, Inc., USA. The block is made of P110 steel and the ring is a nitrided Timken ring having a radius of 17.5 mm (35 m OD) and a width of 6.35 mm. The blocks are machined to a final surface roughness, R_a, of 0.18 μm. The ring has a surface roughness, R_a, of about 0.01 μm. The ring is partially submerged into 100 ml of the fluid to be tested such that about 10 ml of the ring is beneath the surface of the fluid. The block applies a 5.6 kg load on the ring. Testing is performed at 25°C. The ring is turned at 25 rpm, 50 rpm, 100 rpm, 250 rpm, 500 rpm, and 750 rpm for 4 mins at each speed to obtain the Stribeck response of the fluid. It should be noted that initial measurements may be significantly affected by changes in the contacting surfaces, reaction of surface active components, entrainment of fluid in the inlet zone of the instrument etc. Care should be taken to allow steady state operation to be achieved before the coefficient of friction is recorded. Typically, steady state boundary friction response is obtained by continuing the test for an additional 30 mins at 25 rpm. The steady state boundary friction response is reported as the coefficient of friction is the results reported herein.

Operating Torque: Drilling operations may be constrained due to torque limits at the drilling rig. The constraints may be due to maximum torque that a driver can deliver and/or the maximum torque that the drilling string can withstand before metal failure will occur; such constraints are therefore different for different drilling rigs due to either the size of the driver and/or the drill string in use. The Operating Torque can be measured by a dedicated device (e.g., a torque sub) and/or by measured power usage by the driver. Typically drilling operations are conducted with at least a 10% safety margin between the Operating Torque and the torque limit. When the Operating Torque is nearing or exceeding what is considered to be a reasonable value, this will limit the length of the wellbore that is achievable. Operating changes can be performed to reduce the Operating Torque, e.g., reducing the rate of penetration (the forward rate of drilling), removing accumulated cuttings from the wellbore, removing the drill string from the wellbore and replacing/refurbishing worn components, and/or reducing the amount of low gravity solids (ground down cuttings) from the circulating base oil composition. These steps to reduce the operating torque can be expensive and time consuming, and may offer little benefit. Therefore use of a friction reduction additive is beneficial to reduce the operating torque so as to increase rate of
penetration and/or allow for greater length of the wellbore.

Example 1

[0088] In Example 1, a base oil composition comprising about 210 g Escsaid™ 110, about 8.0 g VG Plus™, and about 7 g of lime are added and mixed for about 5 min. About 9.0 g of MegaMul™ is added to the resulting mixture followed by about 5 min. of further mixing. About 18.5 g calcium chloride is mixed with about 50 ml of water and added to the mixture, followed by about 225 g of barite weighting agent. The combination is mixed for about 10 min. before addition of about 6.0 grams of Versitrol M™ followed by an additional 5 min. of mixing. Thereafter, about 45.0 g of Rev Dust™ is added followed by 10 min. of mixing. The base oil composition is hot aged for about 16 hrs. at a temperature of about 120°C. The coefficient of friction (CoF) of the base oil composition is measured as a baseline and reported in Table 1.

Example 2

[0089] In Example 2, Example 1 is substantially repeated, except that the composition comprises about 97 wt% of composition of Example 1 and about 3 wt% of a conventional friction reducing agent available under the tradename Ultralube II, available from Integrity Industries, Inc., Kingsville, TX, USA. The mixture is covered and heated to about 60°C while being mixed for about 60 min. The sample is cooled at about 25°C for 16 hrs. The cooled sample is mixed for about 30 min. at about 4000 rpm. The coefficient of friction (CoF) of the sample is measured and reported in Table 1.

Example 3

[0090] In Example 3, Example 2 is substantially repeated, except that the composition comprises about 97 wt% of composition of Example 1 and about 3 wt% of a mixture of 1,2-diol and 1,3-diol forms of oleyl glycerol carbamate. The coefficient of friction (CoF) of the base oil composition and additive package is reported in Table 1.

<table>
<thead>
<tr>
<th></th>
<th>Ex. 1</th>
<th>Ex. 2</th>
<th>Ex. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoF</td>
<td>0.17</td>
<td>0.14</td>
<td>0.085</td>
</tr>
<tr>
<td>Relative CoF (%)*</td>
<td>1</td>
<td>0.82</td>
<td>0.50</td>
</tr>
</tbody>
</table>

*Relative CoF is as compared to Ex. 1.

Particular Embodiments

This invention relates to:

[0091] Embodiment 1. A lubricant composition comprising: at least one base oil
composition and a friction-reducing composition comprising at least a first glycerol carbamate compound.

[0092] Embodiment 2: The lubricant composition according to Embodiment 1, wherein the first glycerol carbamate compound is selected from the group consisting of compounds represented by Formulas I and II:

![Formula I](image1)

![Formula II](image2)

wherein R¹ and R² are independently selected from H, substituted or unsubstituted, linear or branched C₁ to C₅₀ hydrocarbyl groups.

[0093] Embodiment 3. The lubricant composition of Embodiment 2, wherein R¹ is H and R² is a C₁ to C₅₀ hydrocarbyl group.

[0094] Embodiment 4. The lubricant composition of Embodiment 3, wherein R² is CH₃(CH₂)ₓC=CH(CH₂)ᵧCH₂⁻, wherein x ranges from 5 to 10 and y ranges from 5 to 10.

[0095] Embodiment 5. The lubricant composition according to any of Embodiments 1-4, further comprising a second glycerol carbamate compound, wherein the second glycerol carbamate compound is selected from the group consisting of compounds represented by Formula I and Formula II:

![Formula I](image3)

![Formula II](image4)

wherein R¹ and R² are independently selected from H, substituted or unsubstituted, linear or branched C₁ to C₅₀ hydrocarbyl groups.

[0096] Embodiment 6. The lubricant composition of Embodiment 5, wherein R¹ is H and R² is a C₁ to C₅₀ hydrocarbyl group.

[0097] Embodiment 7. The lubricant composition of Embodiment 6, wherein R² is CH₃(CH₂)ₓC=CH(CH₂)ᵧCH₂⁻, wherein x ranges from 5 to 10 and y ranges from 5 to 10.
[0098] Embodiment 8. The lubricant composition of any of Embodiments 5 to 7, wherein the friction-reducing composition comprises about 1 to about 99 mol%, e.g., about 5.0 to about 95.0 mol%, about 10.0 to about 90.0 mol% of the first glycerol carbamate compound and about 1 to 99 mol%, e.g., about 5.0 to about 95.0 mol%, about 10.0 to about 90.0 mol% of the second glycerol carbamate compound, based on the total number of moles of the first and second glycerol carbamate compounds.

[0099] Embodiment 9. The lubricant composition of any of Embodiments 1 to 8, comprising about 50.0 to <100 wt%, e.g., about 55.0 to about 95.0 wt%, about 60.0 to about 95.0 wt% of the base oil composition and > 0 to about 50 wt%, e.g., about 0.5 to about 5.0 wt%, about 1.0 to about 5.0 wt% of the friction reducing composition.

[0100] Embodiment 10. The lubricant composition of any of Embodiments 1 to 9 having a coefficient of friction of ≤ about 0.12, e.g., about 0.08 to about 0.12, about 0.08 to about 0.11.

[0101] Embodiment 11. The lubricant composition of any of Embodiments 1 to 10, having a coefficient of friction at least about 20% less than, e.g., at least about 25% less than, at least about 30% less than, at least about 35% less than, at least about 40% less than, at least about 45% less than, at least about 50% less than, the coefficient of friction of the lubricant composition in the absence of the friction-reducing composition.

[0103] Embodiment 13. The method of Embodiment 12, wherein the first glycerol carbamate compound is selected from the group consisting of compounds represented by Formulas I and II:

![Formula I](image1)

![Formula II](image2)

wherein R¹ and R² may be independently selected from H, substituted or unsubstituted, linear or branched, C₁ to C₄₀ hydrocarbyl groups.

[0104] Embodiment 14. The method of Embodiment 13, wherein R¹ is H and R² is a C₁ to C₅₀ hydrocarbyl group.
Embodiment 15: The method of Embodiment 13, wherein \(R_2 \) is \(\text{CH}_3(\text{CH}_2)_x\text{C}==\text{C}(\text{CH}_2)_y\text{CH}_2- \), wherein \(x \) ranges from 5 to 10 and \(y \) ranges from 5 to 10.

Embodiment 16. The method of claim 13, further comprising a second glycerol carbamate compound, wherein the second glycerol carbamate compound is selected from the group consisting of compounds represented by Formula I and Formula II:

\[
\begin{align*}
\text{Formula I} & \quad \text{Formula II} \\
\begin{array}{c}
\text{R}^2 \\
\text{R}^1
\end{array} & \quad \begin{array}{c}
\text{R}^2 \\
\text{R}^1
\end{array}
\end{align*}
\]

wherein \(R^1 \) and \(R^2 \) are independently selected from \(H \), substituted or unsubstituted, linear or branched, \(C_i \) to \(C_{50} \) hydrocarbyl groups.

Embodiment 17. The method of Embodiment 16, wherein \(R^1 \) is \(H \) and \(R^2 \) is a \(C_i \) to \(C_{50} \) hydrocarbyl group.

Embodiment 18. The method of Embodiment 17, wherein \(R^2 \) is \(\text{CH}_3(\text{CH}_2)_x\text{C}==\text{C}(\text{CH}_2)_y\text{CH}_2- \), wherein \(x \) ranges from 5 to 10 and \(y \) ranges from 5 to 10.

Embodiment 19. The method of any of Embodiments 16 to 18, wherein the friction-reducing composition comprises about 1 to about 99 mol\%, e.g., about 5.0 to about 95.0 mol\%, about 10.0 to about 90.0 mol\% of the first glycerol carbamate compound and about 1 to 99 mol\%, e.g., about 5.0 to about 95.0 mol\%, about 10.0 to about 90.0 mol\% of the second glycerol carbamate compound, based on the total number of moles of the first and second glycerol carbamate compounds.

Embodiment 20. The method of any of Embodiments 12 to 19, comprising about 50.0 to \(<100 \text{ wt\%}, \) e.g., about 55.0 to about 95.0 wt\%, about 60.0 to about 95.0 wt\%, about 65.0 to about 95.0 wt\% of the base oil composition and \(>0 \) to about 50 wt\%, e.g., about 0.5 to about 5.0 wt\%, about 1.0 to about 5.0 wt\%, about 1.5 to about 5.0 wt\% of the friction reducing composition.

Embodiment 21. The method of any of Embodiments 12 to 20, wherein the lubricant composition has a coefficient of friction of \(\leq \) about 0.12, e.g., about 0.08 to about 0.12, about 0.08 to about 0.11, about 0.08 to about 0.10.

Embodiment 22. The method of any of Embodiments 12 to 21, having a coefficient of friction at least about 20\% less than, e.g., at least about 25\% less than, at least
about 30% less than, at least about 35% less than, at least about 40% less than, at least about 45% less than, at least about 50% less than, the coefficient of friction of the lubricant composition in the absence of the friction-reducing composition.

[00113] Embodiment 23. A method of drilling a wellbore comprising: mixing a friction-reducing composition comprising at least a first glycerol carbamate compound and at least one base oil composition; and introducing the lubricant composition into the wellbore.

[00115] Embodiment 25. The method of Embodiment 24 wherein the first glycerol carbamate has a formula represented by Formula I and the second glycerol carbamate has a formula represented by Formula II:

![Formula I](image)

![Formula II](image)

wherein R¹ and R² are independently selected from H, substituted or unsubstituted, linear or branched, C₁ to C₂₀ hydrocarbyl groups.

[00116] Embodiment 26. A method of providing a lubricant composition to a drilling operation, comprising:

a) providing to said drilling operation at least one base oil composition, the base oil composition,

b) operating said drilling operation for a period of time with said base oil composition, and

c) adding to the drilling operation a friction-reducing composition according to any Embodiment described herein.

[00117] Embodiment 27. Embodiment 26 wherein adding the friction-reducing composition comprises adding the friction-reducing composition at a rate sufficient to provide a concentration of the friction reducing additive in the lubricant composition of about 0.5% to about 10.0 wt% after a time period of about 3 hours to 180 days.

[00118] Embodiment 28. Any of Embodiments 26 to 27, wherein said drilling operation comprises one or more of: introducing a drill string; introducing coiled tubing; introducing casing; introducing screens; introducing tools for cleaning, fracturing, and perforating;
rotating drill string; advancing the wellbore; withdrawing a drill string; and/or withdrawing coiled tubing.

[00119] Embodiment 29. Any of Embodiments 26 to 28, wherein adding the friction reducing composition comprises adding the friction-reducing composition intermittently to maintain a desired Operating Torque.

[00120] Embodiment 30. Any of Embodiments 26 to 29, wherein said drilling operation has an Operating Torque < 95 %, e.g., ≤ about 90.0 %, ≤ about 85.0 %, ≤ about 80.0 %, ≤ about 75.0 %, ≤ about 70.0 %, of the Operating Torque of the same drilling operation performed with the base oil composition, but lacking the friction-reducing composition.

[00121] A method of preparing a wellbore comprising providing a lubricant composition according to any Embodiment described herein.

[00122] A method of producing hydrocarbons comprising providing a lubricant composition according to any Embodiment described herein.

[00123] It is believed that some glycerol carbamates, particularly those wherein at least one of R1 or R2 include a hydrocarbyl chain having a cis-configured double bond, e.g., an oleyl group, surprisingly interact with iron and/or iron-containing particles in the drilling environment. It had been thought that the reduction in boundary lubrication regime coefficient of friction is related to the amount of the friction-reducing composition that can adsorb on to iron surfaces (i.e., the μτιοσ of friction-reduction composition that could be adsorbed per square meter of iron surface). Surprisingly, it has been found that greater reduction in the in boundary lubrication regime coefficient of friction may be achieved by selecting the friction-reducing composition based, not on the adsorption capacity, but rather upon the free energy of adsorption, AG°_ab S. When properly selected so that the friction reducing composition has a free-energy of adsorption (measured at ambient temperature and pressure) on iron ≤ about -18.0 kJ/mol, e.g., ≤ about -20.0 kJ/mol, ≤ about -22.0 kJ/mol, ≤ about -24.0 kJ/mol, ≤ about -26.0 kJ/mol, ≤ about -28.0 kJ/mol, ≤ about -30.0 kJ/mol, ≤ about -35.0 kJ/mol show improved reduction in the boundary lubrication regime coefficient of friction. Particular compositions have a free energy of adsorption of about -18.0 to about -35.0 kJ/mol, about -20.0 to about -30.0 kJ/mol, about -22.0 to about -28.0 kJ/mol, about -24.0 to about -26.0 kJ/mol. In this way, less friction-reducing composition may need to be used than previously believed.

[00124] As demonstrated above, embodiments of the invention provide a new lubricant composition that may be useful in a variety of lubricant operations, e.g., wellbore extension, well completion, etc. The new lubricant compositions may have one or more of the
following advantages. For example, the compositions may have a lower coefficient of friction than currently known compositions, thereby facilitating wellbore lengths not before achievable. In some instances, the compositions may have better durability or persistence in the drilling environment. Some compositions described herein may allow a drilling operation to operate at a lower torque and/or overall friction factor (also referred to as total friction factor). The total friction factor for a given drilling operation is a composite factor that combines the multiple factors specific to each well, drilling operation, and point in time for each well as it is evolving as the wellbore changes. Total friction factor is described in "Friction Factor Model and Interpretation of Real Time Data (Thesis)," Christine Frafjord, Petroleum Geoscience and Engineering, Department of Petroleum Engineering and Applied Geophysics, Norwegian Univ. of Sci. and Tech., May 2013; "Improvement of Torque-and-Drag Modeling in Long-Reach Wells," Seyed Ahmad Mirhaj, Eirik Kaarstad, Bernt S. Aadnoy, Modem Applied Sci., October 2011, Vol. 5, No. 5; 10 ISSN 1913-1844 E-ISSN 1913-1852; "Real Time Torque and Drag Analysis during Directional Drilling (Thesis)."

Mohammad Fazaelizadeh, Univ. of Calgary, Dept. of Chemical and Petroleum Engineering, Calgary, Alberta, CA, March, 2013, each of which is incorporated by reference herein in its entirety. Operating Torque and Total Friction Factor are each a measure of the stress of the operation on the equipment. Reductions in one or more of these values may enable longer improvements in any property adversely affected by higher values, e.g., longer wellbores, longer operating times, between maintenance periods, higher efficiency, etc. Other characteristics and additional advantages are apparent to those skilled in the art.

All documents described herein are incorporated by reference herein for purposes of all jurisdictions where such practice is allowed, including any priority documents and/or testing procedures to the extent they are not inconsistent with this text. As is apparent from the foregoing general description and the specific embodiments, while forms of the invention have been illustrated and described, various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited thereby. For example, the compositions described herein may be free of any component, or composition not expressly recited or disclosed herein. Any method may lack any step not recited or disclosed herein. Likewise, the term "comprising" is considered synonymous with the term "including." And whenever a method, composition, element or group of elements is preceded with the transitional phrase "comprising," it is understood that we also contemplate the same composition or group of elements with transitional phrases "consisting essentially of," "consisting of," "selected from the group of consisting of," or "is"
preceding the recitation of the composition, element, or elements and vice versa.
CLAIMS

What Is Claimed Is:

1. A lubricant composition comprising:
 a) at least one base oil composition, preferably comprising a weighting agent and
 b) a friction-reducing composition comprising at least a first glycerol carbamate compound,
 preferably wherein the weighting agent is present in the base oil composition at a concentration in the range from about 10 to about 1000 ppb,
 and preferably wherein the base oil composition comprises a base oil, wherein the base oil is present in the lubricant composition in the range from about 50.0 to about 99.0 wt% and the friction-reducing composition is present in the lubricant composition in the amount of about 0.1 to about 5.0 wt%.

2. The lubricant composition according to claim 1, wherein the first glycerol carbamate compound is selected from the group consisting of compounds represented by Formula I and Formula II:

 \[
 \begin{align*}
 &\text{Formula I} \\
 &\text{Formula II} \\
 \end{align*}
 \]

 wherein \(R^1 \) and \(R^2 \) are independently selected from H, substituted or unsubstituted, linear or branched C1 to C30 hydrocarbyl groups.

3. The lubricant composition of claim 2, wherein \(R^2 \) is \(\text{CH}_3(\text{CH}_2)_x\text{C}=(\text{CH}_2)_y\text{CH}_2^- \), wherein \(x \) ranges from 5 to 10 and \(y \) ranges from 5 to 10.

4. The lubricant composition according to claim 1, further comprising a second glycerol carbamate compound, wherein the second glycerol carbamate compound is selected from the group consisting of compounds represented by Formula I and Formula II:
wherein \(R_1 \) and \(R_2 \) are independently selected from \(H \), substituted or unsubstituted, linear or branched \(C_i \) to \(C_{30} \) hydrocarbyl groups.

5. The lubricant composition of claim 4, wherein \(R^2 \) is \(\text{CH}_3\text{(CH}_2\text{)}_x\text{C}≡\text{C(}	ext{CH}_2\text{)}_y\text{CH}_3^- \), wherein \(x \) ranges from 5 to 10 and \(y \) ranges from 5 to 10.

6. The lubricant composition of claim 4, wherein the friction-reducing composition comprises about 1 to about 99 mol% of the first glycerol carbamate compound and about 1 to 99 mol% of the second glycerol carbamate compound, based on the total number of moles of the first and second glycerol carbamate compounds.

7. The lubricant composition of claim 1, comprising about 50.0 to \(<100 \) wt% of the base oil composition and \(>0 \) to about 50 wt% of the friction reducing composition.

8. The lubricant composition of claim 1, having a coefficient of friction at least about 20% less than the coefficient of friction of the lubricant composition in the absence of the friction-reducing composition.

9. A method of making a lubricant composition comprising:
 a) mixing a friction-reducing composition comprising at least a first glycerol carbamate compound and at least one base oil composition.

10. The method of claim 9, wherein the first glycerol carbamate compound is selected from the group consisting of compounds represented by Formula I and Formula II:
wherein \(R^1 \) and \(R^2 \) are independently selected from H, substituted or unsubstituted, linear or branched \(C_1 \) to \(C_{50} \) hydrocarbyl groups.

11. The method of claim 9, wherein \(R^2 \) is \(CH_3(CH_2)_xC=C(CH_2)_yCH_2- \), wherein \(x \) ranges from 5 to 10 and \(y \) ranges from 5 to 10.

12. The method of claim 9, further comprising a second glycerol carbamate compound, wherein the second glycerol carbamate compound is selected from the group consisting of compounds represented by Formula I and Formula II:

\[
\text{Formula I}
\]

\[
\text{Formula II}
\]

wherein \(R^1 \) and \(R^2 \) are independently selected from H, substituted or unsubstituted, linear or branched \(C_1 \) to \(C_{50} \) hydrocarbyl groups.

13. The method of claim 12, wherein \(R^2 \) is \(CH_3(CH_2)_xC=C(CH_2)_yCH_2- \), wherein \(x \) ranges from 5 to 10 and \(y \) ranges from 5 to 10.

14. The method of claim 9, comprising about 50.0 to <100 wt% of the base oil composition and >0 to about 50 wt% of the friction reducing composition.

15. The method of claim 9, having a coefficient of friction at least about 20% less than the coefficient of friction of the lubricant composition in the absence of the friction-reducing composition.
16. A method of drilling a wellbore comprising:
 a) mixing a friction-reducing composition comprising at least a first glycerol carbamate compound and at least one base oil composition; and
 b) introducing the lubricant composition into the wellbore.

17. The method of claim 16, wherein the friction-reducing composition comprises a second glycerol carbamate, wherein the first glycerol carbamate has a formula represented by Formula I and the second glycerol carbamate has a formula represented by Formula II:

\[
\begin{align*}
R^2 & \quad \text{Formula I} \\
R^1 & \quad \text{Formula II}
\end{align*}
\]

\[
\begin{align*}
R^1 & \quad \text{Formula I} \\
R^2 & \quad \text{Formula II}
\end{align*}
\]

wherein \(R^1 \) and \(R^2 \) are independently selected from H, substituted or unsubstituted, linear or branched \(C_1 \) to \(C_{50} \) hydrocarbyl groups.

18. The method of claim 17, wherein \(R^2 \) is \(\text{CH}_3(\text{CH}_2)_xC=\text{C}(\text{CH}_2)_y\text{CH}_2- \), wherein \(x \) ranges from 5 to 10 and \(y \) ranges from 5 to 10.

19. A method of providing a lubricant composition to a drilling operation, comprising:
 a) providing to said drilling operation at least one base oil composition,
 b) operating said drilling operation for a period of time with said base oil composition, and
 c) adding to the drilling operation a friction-reducing composition comprising at least a first glycerol carbamate compound.

20. The method of claim 19, wherein adding the friction-reducing composition comprises adding the friction-reducing composition at a rate sufficient to provide a concentration of the friction reducing additive in the lubricant composition of about 0.5% to about 10.0 wt% after a time period of about 3 hours to 180 days.

21. The method of claim 19, wherein said drilling operation comprises one or more of: introducing a drill string; introducing coiled tubing; introducing casing; introducing screens; introducing tools for cleaning, fracturing, and perforating; rotating drill string; advancing the
wellbore; withdrawing a drill string; and/or withdrawing coiled tubing.

22. The method of claim 19, wherein adding the friction reducing composition comprises adding the friction-reducing composition intermittently to maintain a desired Operating Torque.

23. The method of claim 19, wherein said drilling operation has an Operating Torque < 95% of the Operating Torque of the same drilling operation performed with the base oil composition, but lacking the friction-reducing composition.

24. A method of preparing a wellbore comprising providing a lubricant composition according to claim 1 to the wellbore.

25. A method of producing hydrocarbons comprising providing a lubricant composition according to any of claims 1 to 24 to a wellbore.
A. CLASSIFICATION OF SUBJECT MATTER

CIOM 133/08(2006.01)1, CIOM 169/04(2006.01)1, C09K 8/32(2006.01)1, C09K 8/34(2006.01)1, CIOM 30/06(2006.01)N

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
CIOM 133/08; C09K 8/03; CIOL 1/22; CIOM 129/84; CIOM 133/38; CIOM 169/04; C09K 8/32; C09K 8/34; CIOM 30/06

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: lubricant, base oil, glycerol carbamate, friction reducing, weighting agent, alkenyl, wellbore, drilling

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑️</td>
<td>US 2016-0160198 A1 (RUHS, JR., WILLIAM R.) 24 June 2016 See abstract; paragraphs [0005]-[0039]; reaction scheme (1); table 1; and claims 1-14.</td>
<td>1-15</td>
</tr>
<tr>
<td>A</td>
<td>US 2009-0054271 A1 (DIHN, NGUYEN T. et al.) 26 February 2009 See abstract; and paragraphs [0022]-[0037] and [0025].</td>
<td>1-25</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier application or patent but published on or after the international filing date
 * "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search 13 September 2016 (13.09.2016)

Date of mailing of the international search report 19 September 2016 (19.09.2016)

Name and mailing address of the ISA/KR
International Application Division
Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon, 35208, Republic of Korea
Facsimile No. +82-42-481-8578

Authorized officer
MIN, In Gyou
Telephone No. +82-42-481-3326

Form PCT/ISA/210 (second sheet) (January 2015)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2010-0160198 Al</td>
<td>24/06/2010</td>
<td>CN 102282243 A</td>
<td>14/12/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2376611 A2</td>
<td>19/10/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2376611 B1</td>
<td>18/06/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012-512945 A</td>
<td>07/06/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5438773 B2</td>
<td>12/03/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010-080308 A2</td>
<td>15/07/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2014-130456 Al</td>
<td>28/08/2014</td>
</tr>
<tr>
<td>US 2009-0005271 Al</td>
<td>01/01/2009</td>
<td>CN 101511968 B</td>
<td>27/08/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101595197 A</td>
<td>02/12/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101595197 B</td>
<td>22/01/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101765696 A</td>
<td>30/06/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101765696 B</td>
<td>07/05/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102119204 A</td>
<td>06/07/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103725264 A</td>
<td>16/04/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0922078 B1</td>
<td>15/06/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1400357 A1</td>
<td>24/03/2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1558695 A1</td>
<td>03/08/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1558695 B1</td>
<td>08/09/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1600486 A2</td>
<td>30/11/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1600486 B1</td>
<td>24/08/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1600487 A2</td>
<td>30/11/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1600488 A2</td>
<td>30/11/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1600488 B1</td>
<td>29/02/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1600489 A2</td>
<td>30/11/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1600489 B1</td>
<td>31/08/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1626077 A2</td>
<td>15/02/2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1626077 B1</td>
<td>21/03/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1913111 A2</td>
<td>23/04/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1913111 B1</td>
<td>19/12/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1987112 A1</td>
<td>05/11/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2066759 A2</td>
<td>10/06/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2066759 B1</td>
<td>03/08/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2069457 A1</td>
<td>17/06/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2173969 A1</td>
<td>14/04/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2173969 B1</td>
<td>27/01/2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2248867 B1</td>
<td>14/03/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2527417 A2</td>
<td>28/11/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 3037621 A1</td>
<td>29/06/2016</td>
</tr>
</tbody>
</table>

Form PCT/ISA/2 10 (patent family annex) (January 2015)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2005-0277552 Al</td>
<td>15/12/2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2005-0277553 Al</td>
<td>15/12/2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2006-0188651 Al</td>
<td>24/08/2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2007-0105724 Al</td>
<td>10/05/2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2007-0105725 Al</td>
<td>10/05/2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2008-0041589 Al</td>
<td>21/02/2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2008-0064613 Al</td>
<td>13/03/2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2009-0071649 Al</td>
<td>19/03/2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2009-0124521 Al</td>
<td>14/05/2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2009-0275487 Al</td>
<td>05/11/2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2010-0009874 Al</td>
<td>14/01/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 6586372 Bl</td>
<td>01/07/2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 7169738 B2</td>
<td>30/01/2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 7176165 B2</td>
<td>13/02/2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 7220707 B2</td>
<td>22/05/2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 7409994 B2</td>
<td>12/08/2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 7538074 B2</td>
<td>26/05/2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 7651040 B2</td>
<td>26/01/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 7651983 B2</td>
<td>26/01/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 7727939 B2</td>
<td>01/06/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 7745380 B2</td>
<td>29/06/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 7918289 B2</td>
<td>05/04/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 8168569 B2</td>
<td>01/05/2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 2004-037947 Al</td>
<td>06/05/2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 2005-118742 A2</td>
<td>15/12/2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 2008-033591 Al</td>
<td>20/03/2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 2008-033592 Al</td>
<td>20/03/2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 2008-033838 A2</td>
<td>20/03/2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 2009-002615 Al</td>
<td>31/12/2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 2010-018205 Al</td>
<td>18/02/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 98-03609 Al</td>
<td>29/01/1998</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1776406 Bl</td>
<td>11/01/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7928182 B2</td>
<td>19/04/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006-021676 A2</td>
<td>02/03/2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7863227 B2</td>
<td>04/01/2011</td>
</tr>
</tbody>
</table>

Form PCT/ISA/2 10 (patent family annex) (January 2015)