Office de la Propriete Canadian CA 2528826 A1 2006/06/02

Intellectuell Intellectual P
du Canada_ Office T oy 2 528 826
g,rngags?:i‘:g:na " ﬁgﬁg‘?y‘éyaﬁ; " 12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13) A1
(22) Date de depot/Filing Date: 2005/12/02 (51) Cl.Int./Int.Cl. HO5M 7730 (2006.01),

HO4L 12/26 (2006.01), HO4L 12/66 (2006.01),
HO04Q 3/64 (2006.01), HO4M 11/06 (2006.01)

(71) Demandeur/Applicant:
AT&T CORP., US

(72) Inventeurs/Inventors:
CORMODE, GRAHAM, US;
KORN, PHILLIP, US;
MUTHUKRISHNAN, SHANMUGAVELAYUTHAM, US;
SRIVASTAVA, DIVESH, US

(74) Agent. KIRBY EADES GALE BAKER

(41) Mise a la disp. pub./Open to Public Insp.: 2006/06/02
(30) Priorité/Priority: 2004/12/02 (US60/632,656)

(54) Titre : METHODE ET APPAREIL PERMETTANT DE TROUVER DES QUANTILES BIAISES DANS DES FLUX DE
DONNEES
(54) Title: METHOD AND APPARATUS FOR FINDING BIASED QUANTILES IN DATA STREAMS

CLC')%NT ACCESS ACCESS CL(')E{NT
CUSTOMER NE%(;RK NE%gRK "1 CUSTOMER
EQUIPMENT 120a EQUIPMENT

110a 110b
NETWORK OR
DATA

STREAM
MONITORING

DEVICE

140
(57) Abrégée/Abstract:

A method and apparatus for computing biased or targeted quantiles are disclosed. For example, the present invention reads a
plurality of items from a data stream and inserts each of the plurality of items that was read from the data stream Into a data
structure. Periodically, the data structure iIs compressed to reduce the number of stored items in the data structure. |In turn, the
compressed data structure can be used to output a biased or targeted guantile.

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 02528826 2005-12-02

ATT/2004-0176

METHOD AND APPARATUS FOR FINDING BIASED QUANTILES IN DATA
STREAMS

ABSTRACT OF THE DISCLOSURE
A method and apparatus for computing biased or targeted quantiles are
disclosed. For example, the present invention reads a plurality of items from a
data stream and insenrts each of the plurality of tems that was read from the
data stream into a data structure. Periodically, the data structure is
compressed to reduce the number of stored items In the data structure. In turn,
the compressed data structure can be used to output a biased or targeted

quantile.

CA 02528826 2005-12-02

ATT/2004-0176
0.

METHOD AND APPARATUS FOR FINDING BIASED QUANTILES IN DATA
STREAMS

[0001] This application claims the benefit of U. S. Provisional Application No.
60/632,656 filed on December 2, 2004, which is herein incorporated by
reference.

[0002] The present invention relates generally to communication networks
and, more particularly, to a method for monitoring data streams in packet

networks such as Internet Protocol (IP) networks.

BACKGROUND OF THE INVENTION
[0003] The Internet has emerged as a critical communication infrastructure,
carrying traffic for a wide range of important applications. Internet services
such as Voice over Internet Protocol (VolP) are becoming ubiquitous and more
and more businesses and consumers are relying on these IP services 1o meet
their voice and data service needs. In turn, service providers must maintain a
level of services that will meet the expectation of their customers.
[0004] As such, service providers of communication networks may deploy
one or more network monitoring devices to monitor data streams for purposes
such as performance monitoring, anomalies detection, security monitoring and
the like. Unfortunately, the enormous amount of data that traverses through
such networks would require a substantial amount of computational resources
to monitor a never ending (e.g., online) stream of data. Thus, network
monitoring devices must adopt data stream management methods that are
efficient and capable of processing a large amount of data in the least amount
of time while minimizing space usage, e.g., memory or storage space usage.
[0005] Therefore, there is a need for a method and apparatus for performing

data stream monitoring that reduces computational time and space usage.

SUMMARY OF THE INVENTION
[0006]} In one embodiment, the present invention discloses a method and
apparatus for computing quantiles. For example, the present invention reads a
plurality of items from a data stream and inserts each of the plurality of items

that was read from the data stream into a data structure. Periodically, the data

CA 02528826 2005-12-02

ATT/2004-0176
_3-

structure is compressed to reduce the number of stored items in the data

structure. In turn, the compressed data structure can be used to output a

blased or targeted quantile.

BRIEF DESCRIPTION OF THE DRAWINGS
[0007] The teaching of the present invention can be readily understood by
considering the following detailed description in conjunction with the
accompanying drawings, in which:
[0008] FIG. 1 illustrates an exemplary network related to the present
Invention;
[0009] FIG. 2 illustrates a method for computing a biased quantile;
[0010] FIG. 3 illustrates an exemplary pseudocode of the present method for
computing biased quantiles;
[0011] FIG. 4 illustrates a plot of an invariant f in one embodiment of the
present invention; and
[0012] FIG. 5 illustrates a high-level block diagram of a general-purpose
computer suitabie for use in performing the functions described herein.
[0013] To facilitate understanding, identical reference numerals have been
used, where possible, to designate identical elements that are common to the

figures.

DETAILED DESCRIPTION
[0014] The present invention broadly discloses a method and apparatus for
data stream monitoring of IP traffic. More specifically, the present invention
discloses an efficient method for computing biased quantiles over data streams.
[0015] Skew is prevalent in many data sources such as IP traffic streams.
Distributions with skew typically have long tails which are of great interest. For
example, in network management, it is important to understand what
performance users experience. One measure of performance perceived by the
users is the round trip time (RTT) (which in turn affects dynamics of the network
through mechanisms such as Transmission Control Protocol (TCP) flow
control). RTTs display a large amount of skew: the tails of the distribution of

round trip times can become very stretched. Hence, to gauge the performance

CA 02528826 2005-12-02

ATT/2004-0176
4-

of the network in detail and its effect on all users (not just those experiencing
the average performance), it is important to know not only the median RTT but
also the 90%, 95% and 99% quantiles of TCP round trip times to each
destination. In developing data stream management systems that interact with
IP traffic data, there exists the facility for posing such queries. However, the
challenge is to develop approaches to answer such queries efficiently and
accurately given that there may be many destinations to track. In such settings.
the data rate is typically very high and resources are limited in comparison to
the amount of data that is observed. Hence it Is often necessary to adopt the
data stream methodology: analyze IP packet headers in one pass over the data
with storage space and total processing time that is significantly sublinear in the
size of the input.

[0016] FIG. 1 illustrates an exemplary IP network 100 of the present
invention. In this simplified example, client or customer equipment 110a uses
access network 120a to reach the Internet 130. In tumn, the internet is coupled
to another access network 120b that communicates with another client or
customer equipment 110b. In this example, client 110a may communicate with
client 110b via the two access networks and the internet. One measure of the
network performance is the round trip time that is experienced by the two
clients. To monitor such network performance, a network or data stream
monitoring device 140 can be deployed to monitor data streams. In one
embodiment, the present method for computing quantiles can be implemented
in the network or data stream monitoring device 140 for performing data stream
monitoring functions as discussed in greater detalls below.

[0017] In one embodiment, IP traffic streams and other streams are
summarized using quantiles: these are order statistics such as the minimum,

maximum and median values. In a data set of size n, the ¢-quantile is the item

with rank [¢n | . The minimum and maximum are easy to calculate precisely in

one pass but exact computation of certain quantiles can require space linear in

n. So the notion of e-approximate quantiles relaxes the requirement to finding

an item with rank between (¢ - €)nand (¢ + €)n. Much attention has been

given to the case of finding a set of uniform quantiles: given 0< ¢ <1, return the

CA 02528826 2005-12-02

ATT/2004-0176
5-

approximate ¢, 2¢, 3¢, ..., |_1/¢j¢ quantiles of a stream of values. Note that

the error in the rank of each returned value is bounded by the same amount, en;
we call this the uniform error case.

[0018] However, summarizing distributions which have high skew using
uniform quantiles is not always informative because it does not describe the
Interesting tail region. adequately. In contrast, the present invention discloses
the method of high-biased quantiles: to findthe 1- ¢, 1- ¢%, 1-¢°, ..., 1 -p"

quantiles of the distribution. In order to give accurate and meaningful answers
to these queries, the present method also scales the approximation factor € so
the more biased the quantile, the more accurate the approximation should be.

The approximate low-biased quantiles should now be in the range
(1 —(1xe)p’)n : instead of additive error in the rank +en, we now require relative

error of factor (1 x ¢).
[0019] Finding high- (or low-) biased quantiles can be seen as a special
case of a more general problem of finding targeted quantiles. Rather than

requesting the same ¢ for all quantiles (e.g., the uniform case) or € scaled by ¢

(the biased case), one might specify in advance an arbitrary set of quantiles

and the desired errors of € for each in the form (j,gj.). For example, input to

the targeted quantiles problem might be {(0.5, 0.1), (0.2,0.05), (0.9, 0.01)},
meaning that the median should be returned with 10% error, the 20th percentile
with 5% error, and the 90th percentile with 1%.

[0020] Both the biased and targeted quantiles problems could be solved

trivially by running a uniform solution with € = min; €;. But this is wasteful in
resources since there is no need for all of the quantiles with such fine accuracy.

In other words, the present method would like solutions which are more efficient
than this naive approach both in terms of memory used as well as in running
time, thereby adapting to the precise quantile and error requirements of the
problem.

[0021] To better under the present invention, the present method begins by
formally defining the problem of biased quantiles. To simplify the notation, the
present disclosure is presented in terms of low-biased quantiles; high-biased

quantiles can be obtained via symmetry, by reversing the ordering relation.

CA 02528826 2005-12-02

ATT/2004-0176
-6-

[0022] Definition 1: Let a be a sequence of n items, and let A be the sorted

version of a. Let ¢ be a parameter in the range 0 < ¢< 1. The low-biased

quantiles of a are the set of values A[[¢'n]] for j =1, ..., log,,, n.

[0023] Sometimes one may not require the full set of biased-guantiles, and
iInstead only searches for the first k. The present algorithms will take k as a
parameter.

[0024] It is well known that computing quantiles exactly requires space linear
in n. In contrast, the present method seeks solutions that are significantly
sublinear in n, preferably depending on log n or small polynomials in this
quantity. Therefore, the present method will allow approximation of the
quantiles, by giving a small range of tolerance around the answer.

[0025] Definition 2: Let ¢be a parameter in the range 0 < ¢ < 1 supplied in

advance. The approximate low-biased quantiles of a sequence of n items, a, is

a set of kitems q1....,qQx which satisfy
Al{(1 - e)¢’nf] < q; < A[[(1 +€)¢/n]]

[0026] In fact, one can solve a slightly more general problem: after

processing the input, then for any supplied value ¢’ < ¢, one will be able to

return an e-approximate quantile q’that satisfies

Al(1-elpn |l<g<A(1+e)pn]

[0027] Any such solution clearly can be used to compute a set of
approximate low-biased quantiles.

[0028] The present method keeps information about particular items from
the input, and also stores some additional tracking information. The intuition for
this method is as follows: suppose we have kept enough information so that the
median can be estimated with an absolute error of enin rank. Now suppose
that there are so many insertions of items above the median that this item is
now the first quartile (the item which occurs 1/4 through the sorted order). For
this to happen, then the current number of items must be at least 2n. Hence, if

the same absolute uncertainty of en is maintained, then this corresponds to a

CA 02528826 2005-12-02

ATT/2004-0176
_7-

relative error of at most .5 €. This shows that we will be able to support greater
accuracy for the high-biased-quantiles provided we manage the data structure
correctly.

[0029] The term “item” may encompass various types of data. For example,
each item could be related to a tuple, where each tuple could be related to a
round trip time of a packet in an IP data stream. However, this is only an
exemplary illustration and should not be interpreted as a limitation of the
present invention.

[0030] The data structure at time n, S(n), consists of a sequence of s tuples
(t = (vi, gi, &), where each v; is a sampled item from the data stream and two
additional values are kept: (1) g; is the difference between the lowest possible
rank of item i and the lowest possible rank of item /- 1; and (2) A; is the
difference between the greatest possible rank of item j and the lowest possible

rank of item /. The total space used is therefore O(s). For each entry v, let

r, = Z’; g ;. Hence, the true rank of v; is bounded below by r; + gi and above by

i+gi+ A;. ;i can be thought of as an overly conservative bound on the rank of
the item v;: It is overtight to make the accuracy guarantees later.

[0031] Depending on the problem being solved (uniform, biased, or targeted
quantiies), the present method will maintain an appropriate restriction on g; + A..
We will denote this with a function f(r;, n), which for the current values of r;and n
gives an upper bound on the permitted value of g; + A;. For biased quantiles,
this invariant is:

[0032] Definition 3: (Biased Quantiles Invariant) We set f(r;, n) =

max{| 2, |1}. Hence, we ensure that g; + A; < | 2&r, | for all

[0033] As each item Is read, an entry is created in the data structure for it
Periodically, the data structure is "pruned” of unnecessary entries to limit its
size. We ensure that the invariant is maintained at all times, which is necessary
to show that the present method operates correctly. The operations are defined
in FIG. 2 below.

[0034] FIG. 2 illustrates a method 200 for computing a biased quantile.
Method 200 starts in step 205 and proceeds to step 210.

CA 02528826 2005-12-02

ATT/2004-0176
-8-

[0035] In step 210, method 200 reads an item v, e.g., an item from a data
stream, into an entry of a data structure.

[0036] In step 220, method 200 inserts the newly read item into the data
structure. Specifically, to insert a new item, v, we find / such that v; < v = vj,4,
we compute r; and insert the tuple (v, g =1, A =f(r;, n) - 1). This gives the
correct settings to g and A since the rank of v must be at least 1 more than the
rank of v;, and (assuming the invariant holds before the insertion), the
uncertainty in the rank of v is at most one less than the uncertainty of v; (= 4),
which is itself bounded by f(r;, n) (since A; is always an integer). We also
ensure that min and max are kept exactly, so when v < v;, we insert the tuple (v,
g=1, A =0) before vi. Similarly, whenv >vs, we insert(v,g=1,A= 0) after vs.
To simplify presentation of the algorithms, we add sentinel values (vo = - ©, g =
0,A=0)and (vgz1 =+ ©,g=0, A =0).

[0037] Once the item is inserted into the data structure, method 200
proceeds to step 225 to determine whether a compress operation is to be
performed. If the query is negatively answered, then method 200 proceeds to
step 210 and reads the next item. If the query is positively answered, then
method proceeds to step 225. It should be noted that the present method
performs a compress function on the growing data structure periodically In
accordance with a predefined period. This predefined time period is
configurable in accordance with the requirement of a particular implementation.
[0038] In step 225, method 200 compresses the data structure. Specifically,
the present method will periodically scan the data structure and merges
adjacent nodes or entries in the data structure when this compress function
does not violate the invariant. That is; remove nodes (v;, Qi, A)) and (Vic1, Jis1,
A1) and replace with (Vis1, (Qi + Gi+1), + Aiy1) provided that (gi + gi+1 + Aiyq) = £(r;,
n). This also maintains the semantics of g and A being the difference in rank
between v; and v;.;, and the difference between the highest and lowest possible
ranks-of v;, respectively. Once the compress function is finished, method 200
returns to step 210.

[0039) Since the data structure is constantly being updated, one can

compute a quantile from the data structure by inputting a ¢. Namely, given a

CA 02528826 2005-12-02

ATT/2004-0176
-O-

value 0 £ ¢ <1, leti be the smallestindex so that r;+ gi + Ai > ¢n+ 1/2f(¢ n, n).

Output v;.; as the approximated quantile.

[0040] The above routines are the same for the different problems we
consider, being parametrized by the setting of the invariant function f. Figure 3
presents the pseudocode of the present method for computing biased quantiles.
[0041] The method of Figure 3 can be demonstrated that it correctly
maintains e-approximate biased quantiles. First, observe that the “Insert” step
maintains the invariant since, for the inserted tuple, clearly g + A < 2er;. Al
tuples below the inserted tuple are unaffected; for tuples above the inserted
tuple, their g; + A; remains the same, but their r;increases by 1, and so the
invariant still holds. The “Compress” step checks that the invariant is not
violated by its merge operations, and for tuples not merged, their r;is
unaffected, so the invariant must be preserved.

[0042] Next, we demonstrate that any algorithm which maintains the biased
quantiles invariant guarantees that the output function will correctly approximate

biased quantiles. Because iis the smallest index so that ri+ gi+ Ai > ¢ n +
flon, nN)/2=¢n+epn, thenri;+ g+ Ay < (1+€) ¢ n. Using the invariant, then
(1 + 2¢e)ri> (1 +¢)¢ n and consequently r;> (1 —€) ¢n. Hence (1 -€)gpn<ris+
gi.1S I+ i1 + A1 = (1 + €) ¢ n. Recall that the true rank of v;is between r; + g;
and r; + gi + A;: so the derived inequality means that v;.s is within the necessary

error bounds for biased quantiles.

[0043] This gives an error bound of +€¢ n for every value of ¢. In some

cases we have a lower bound on how precisely we need to know the biased
quantiles: this is when we only require the first k biased quantiles. It

corresponds to a lower bound on the allowed error of €¢“n. Clearly we could

use the above algorithm which gives stronger error bounds for some items, but
this may be inefficient in terms of space. Instead, we modify the invariant as
follows to avoid this slackness and so reduce the space needed. The algorithm

is identical to before but we modify the invariant to be f(r;, n) = 2¢ max{r, ¢*n,

1/2€}. This invariant is preserved by the Insert and Compress steps. The

Output function can be proved to correctly compute biased quantiles with this

CA 02528826 2005-12-02

ATT/2004-0176
-10-

lower bound on the approximation error using straightforward modification of
the above proof.

[0044] The worst case space requirement for finding biased quantiles should

(klogl/¢ A . . .
logen |. Consider the space used by the algorithm to maintain the

\ £ /

be O

biased quantiles for the values whose rank is between n/2 and n. Here we
maintain a synopsis where the error is bounded below by en. So the space
required to maintain this region of ranks should be bounded by O(7/ log €n).
Similarly for the range of ranks n/4 to n/2, items are maintained to an error no
less than €/2 but we are maintaining a range of at most half as many ranks.
Thus the space for this should be bounded by the same amount O(1/ log en).

This argument can be repeated until we reach n/2" = ¢“n where the same
amount of space suffices to maintain information about ranks up to ¢ with error

ep¥. The total amount of space is no more than O(x/e log en) =

1 \
klogl/¢ logen |. If ¢is not specified a priori, then this bound can be easily

\ 3 J

O

rewritten in terms of k and €. Also, we never need k log 7/¢ to be greater than

log en, which corresponds to an absolute error of less than 1, so the bound Is
equivalent to O(1/ log” en).

[0045] We also note the following lower bound for any method that finds the
biased quantiles.

[0046] Theorem 2 Any algorithm that guarantees to find biased quantiles

(1
¢ with error at most ¢ en in rank must store € —min{klog%,log(&z)}\ items.
\ € /

[0047] Proof: We show that if we query all possible values of ¢, there must

be at least this many different answers produced. Assume without loss of
generality that every item in the input stream is distinct. Consider each item
stored by the algorithm. Let the true rank of this item be R. This Is a good
approximate answer for items whose rank is between R/(1+¢) and R/(1-€). The
largest stored item must cover the greatest item from the input, which has rank
n, meaning that the lowest rank input item covered by the same stored item has

rank no lower than n(1 - €)/(1 + €). We can iterate this argument, to show that

CA 02528826 2005-12-02

ATT/2004-0176
-11-

the kh largest stored item covers input items no less than n(1-e)/(1 + e). This

continues until we reach an input item of rank at most m = ng“. Below this
point, we need only guarantee an error of €¢“. By the same covering
argument, this requires at least p = (n¢ “)/(en¢”) = 1/e items. Thus we can

bound the space for this algorithm as p + /, when n(7 - €)/(1 + €)' < m. Then,

since 1-e/1+¢€ < (1 - €), we have In(m/n) 2 IIn(1-€). Since In(1-€) = -¢, we find |/
(klogl/ ¢
. &

>1/e Inn/m = 1/e In n/ng¢*. This bounds [=Q

, and gives the stated

space bounds.
[0048] Note that it is not meaningful to set kto be too large, since then the
error in rank becomes less than 1, which corresponds to knowing the exact rank

of the smallest items. That is, we never need to have en¢” < 1; this bounds k

log 1/¢ <;log (en) and so the space lower bounds translates to

(h
ol L min{klog1/6,log(en)}|.
\ € Y,

[0049] The targeted quantiles problem considers the case that we are
concerned with an arbitrary set of quantile values with associated error bounds
that are supplied in advance. Formally, the problem is as follows:

[0050] Definition 4 (Targeted Quantiles Problem) The input is a set of tuples

T ={(¢;, €)}. Following a stream of input values, the goal is to return a set of [T

values v; such that

Al[(¢; — €5)nl] < v; < A[[(¢5 + €5)n]l-

[0051] As in the biased quantiles case, we will maintain a set of items drawn

from the input as a data structure, S(n). We will keep tuples (1, =(v,, g,.4,)) as

before, but will keep a different constraint on the values of g; and A;.
[0052] Definition 5 (Targeted Quantiles Invariant) We define the invariant

function f(r;, n) as:

(i) fi(ri, n) = 2¢jr/ ¢, pin s sn;
(i) fi(ri, N) = 2€;(n-r))/(1-¢)), 0<snr<on;

CA 02528826 2005-12-02

ATT/2004-0176
-19-

and take f(r.,n)=max{min | f,(r.,n) |1]. As before we ensure that for all i, g + A,
< f(r;,n).

[0053] An example invariant fis shown in Figure 4 where we plot f(¢n, n) as
¢ varies from 0 to 1. Dotted lines extrapolate the constraints of type (i) when r;

< ¢in and constraints of type (ii) when r; 2 ¢;n, to illustrate how the function is

formed. The function fitself is illustrated with a solid line seen as the lower
envelope of the fi s. Note that if we allow T to contain a large number of entries

then setting
T ={(% €),(2,€),---, (25, €),(1,6)}

captures the uniform error approximate quantiles problem. Similarly setting

e \ [N (4 — 1))
1 e)(2 2e) (n 1’(n 1)e (L.e)

n n) \n no

\\n’n/)

captures the biased quantiles problem.

[0054] The present invention presents a few alternatives used to gain an
understanding of which factors are important for achieving good performance
over a data stream. The three alternatives presented below exhibit standard
data structure trade-offs, but this list is by no means exhaustive.

[0055] The running time of the algorithm to process each new update v

depends on (i) the data structures used to implement the sorted list of tuples, S,
and (ii) the frequency with which Compress is run. The time for each Insert
operation is that to find the position of the new data item v in the sorted list.
With a sensible implementation (e.g., a balanced tree structure), this is O(log s),
and with augmentation we can efficiently maintain r; of each tuple in the same
time bounds.

[0056)] The periodic reduction in size of the quantile summary done by
Compress is based on the invariant function fwhich determines tuples eligible

for deletion (that is, merging the tuple into its adjacent tuple). Note that this

CA 02528826 2005-12-02

ATT/2004-0176
-13-

invariant function can change dynamically when the ranks change; hence, it is
not possible to efficiently maintain candidates for compression incrementally.
As a consequence, Compress is much simpler to implement since it requires a
linear pass over the sorted elements in time O(s). However, instead of
periodically performing a full scan, it can be prudent to amortize the time cost
and the space used by the algorithm, and thus perform partial scans at higher
frequency. This is governed by the function Compress_Condition (), which can
be implemented in a variety of ways: it could always return true, or return true
every 1/e tuples, or with some other frequency. Note that the frequency of
compressing does not affect the correctness, just the aggressiveness with
which we prune the data structure.

[0057] Three alternatives for maintaining the quantile summary tuples
ordered on v;-values in the presence of insertions and deletions are now
disclosed.

[0058] Batch: This method maintains the tuples of S(n) in a linked list.
Incoming items are buffered into blocks of size 1/2¢, sorted, and then batch-
merged into S(n). Insertions and deletions can be performed in constant time.
However, fhe periodic buffer sort, occurring every 1/2¢ items, costs O((1/€)
log(1/€).

[0059] Cursor: This method also maintains tuples of (n)in a linked list.
Incoming items are buffered in sorted order and are inserted using an insertion
cursor which, like the compress cursor, sequentially scans a fraction of the
tuples and inserts a buffered item whenever the cursor is at the appropriate
position. Maintaining the bufter in sorted order costs O(log(1/€) per item.
[0060] Tree: This method maintains S(n) using a balanced binary tree.
Hence, insertions and deletions cost O(log s). In the worst case, all €s tuples
considered for compression can be deleted, so the cost per item is O(es log s).
[0061] FIG. 5 depicts a high-level block diagram of a general-purpose
computer suitable for use in performing the functions described herein. As
depicted in FIG. 5, the system 500 comprises a processor element 502 (e.q., a
CPU), a memory 504, e.g., random access memory (RAM) and/or read only
memory (ROM), a module 505 for computing quantiles, and various input/output

devices 506 (e.g., storage devices, including but not limited to, a tape drive, a

CA 02528826 2005-12-02

ATT/2004-0176
-14-

floppy drive, a hard disk drive or a compact disk drive, a receiver, a transmitter,
a speaker, a display, a speech synthesizer, an output port, and a user input
device (such as a keyboard, a keypad, a mouse, alarm interfaces, power relays
and the like)).

[0062] It should be noted that the present invention can be implemented in
software and/or in a combination of software and hardware, e.g., using
application specific integrated circuits (ASIC), a general-purpose computer or
any other hardware equivalents. In one embodiment, the present module or
process 505 for computing quantiles can be loaded into memory 504 and
executed by processor 502 to implement the functions as discussed above. As
such, the present method 505 for computing quantiles (including associated
data structures) of the present invention can be stored on a computer readable
medium or carrier, e.g., RAM memory, magnetic or optical drive or diskette and
the like.

[0063] While various embodiments have been described above, it should be
understood that they have been presented by way of example only, and not
limitation. Thus, the breadth and scope of a preterred embodiment should not
be limited by any of the above-described exemplary embodiments, but should

be defined only in accordance with the following claims and their equivalents.

CA 02528826 2005-12-02

ATT/2004-0176
-15-

What is claimed is:

1. A method for monitoring a data stream, comprising:

reading a plurality of items from said data stream;

inserting each of said plurality of items that was read from said data
stream into a data structure;

compressing said data structure periodicaily; and

outputting at least one biased or targeted quantile from said data

structure.

2. The method of claim 1, wherein said plurality of items comprises a

plurality of tuples.

3. The method of claim 2, wherein said plurality tuples is associated with a

plurality of Internet Protocol (IP) packets.

4. The method of claim 3, wherein said plurality tuples Is associated with a

round trip time of said plurality of Internet Protocol (IP) packets.

5. The method of claim 1, wherein said data structure comprises a linked
list.

0. The method of claim 1, wherein said data structure comprises a binary
tree.

7. The method of claim 1, wherein said at least one biased or targeted

quantile is outputted in a single pass.

8. The method of claim 1, wherein said at least one biased or targeted

quantile is outputted in accordance with a desired error, €.

9. A computer-readable medium having stored thereon a plurality of

Instructions, the plurality of instructions including instructions which, when

CA 02528826 2005-12-02

ATT/2004-0176
-16-

executed by a processor, cause the processor to perform the steps of a method
for monitoring a data stream, comprising:

reading a plurality of items from said data stream;

inserting each of said plurality of items that was read from said data
stream into a data structure;

compressing said data structure periodically; and

outputting at least one biased or targeted quantile from said data

structure.

10. The computer-readable medium of claim 9, wherein said plurality of

items comprises a plurality of tuples.

11. The computer-readable medium of claim 10, wherein said plurality tuples

Is assoclated with a plurality of Internet Protocol (IP) packets.

12. The computer-readable medium of claim 11, wherein said plurality tuples
IS associated with a round trip time of said plurality of Internet Protocol (1P)

packets.

13. The computer-readable medium of claim 9, wherein said data structure

comprises a linked list.

14. The computer-readable medium of claim 9, wherein said data structure

comprises a binary tree.

15. The computer-readable medium of claim 9, wherein said at least one

biased or targeted quantile is outputted in a single pass.

16. The computer-readable medium of claim 9, wherein said at least one

biased or targeted quantile is outputted in accordance with a desired error, €.

17. An apparatus for monitoring a data stream, comprising:

means for reading a plurality of items from said data stream;

CA 02528826 2005-12-02

ATT/2004-0176
-17-

means for inserting each of said plurality of items that was read from said

data stream into a data structure;
means for compressing said data structure periodically; and

means for outputting at least one biased or targeted quantile from said

data structure.

18. The apparatus of claim 17, wherein said plurality of items comprises a

plurality of tuples.

19. The apparatus of claim 18, wherein said plurality tuples is associated

with a plurality of Internet Protocol (IP) packets.

20. The apparatus of claim 19, wherein said plurality tuples is associated

with a round trip time of said plurality of Internet Protocol (IP) packets.

CA 02528826 2005-12-02

ATT/20040176

1/4

qo0l 1}

| LNJNJINO3 |

d3INO0LSNO
d0
IN3ITO

L Ol

(074
NHOMLAN
SSH400V

Ovi

30IN3d
ONIHOLINOW
WV3H1S
Vivd
dO MHOMLAN

e0cl

AHOMLAN
SS300V

€0L1
ININdINO
ddNO01SNO
d0
1IN0

00}

ATT/20040176
—

CA 02528826 2005-12-02

2/4

200

START 205

READ AN ITEM FROM

DATA STREAM

i~ 210

l

INSERT ITEM IN
DATA STRUCTURE

I~ 220

PERFORM

NO COMPRESS

OPERATION
?

COMPRESS OR MERGE

ADJACENT NODES

I~ 230

FIG. 2

CA 02528826 2005-12-02

ATT/20040176
-
3/4
/* n = #items, k = asymptote */
/* 5§ = data structure, § = #samples_:;ml
Insert (v): |
01 Tog -— 0;
02 for 1:= 1 to 8 do
03 vy = Ti—1 + Gi-1}
04 if (v <v;) break;
05 add (v,1, f(r;,n)—1) to S before v;;
06 n++;
Compress () : |
01 for i := (s—1) downto 1 do
| 02 if (gi + 9i+1 + Qi1 < f(ri,n)) then
| 03 merge t; and liyi1;
Output (@) :
01 17g:= 0,;
02 for 1 := 1 to 8 do
03 T i= ri—1 + Gi-17
04 if (15 +gi + D > dn+ f(dn,n)/2)
05 print (vi-1),; break;
Main () :
01 for each item v do
02 Insert (v);
03 if (Compress_Condition()) then
04 Compress();

FIG. 3

F\Tl'/200401 76

f(dn,n)/n

CA 02528826 2005-12-02

4/4
0.1 —
1 Q
\
B \
\
\
.. .] *\. \\\ \
1o T XN
NP TN
———t—t—t+—F+—F+—+ —
1
),
FIG. 4
00
I
/O DEVICES, E.G., |
505 i STORAGE DEVICE
506 |
S SE—
I) __l___]
PROCESSOR MEMORY
502 T 504 |

. —rr e

CL(!)%NT ACCESS ACCESS CL(')’Z;{NT
CUSTOMER NE%‘;RK NEI‘Z"(’)%RK "1 CUSTOMER
EQUIPMENT 120a EQUIPMENT

110a 110b

NETWORK OR
DATA
STREAM
MONITORING
DEVICE

140

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - abstract drawing

