钛合金表面抗高温氧化腐蚀涂层制备方法

摘要

钛合金表面抗高温氧化腐蚀涂层制备方法，涉及一种钛合金表面抗氧化涂层制备工艺。它解决了现有钛合金表面抗氧化涂层制备方法中存在的成本高、涂层膜基不匹配、高温耐氧化性能差和不适用于复杂零件形状的缺点。它包括除油步骤、氧化步骤、清洗步骤，氧化步骤的具体过程为：将待处理的钛合金零件的一端固定在与脉冲电源的正极输出端连接的夹具上作为阳极全部浸入到电解槽中的电解液内，将不锈钢电极固定在与脉冲电源的负极输出端连接的夹具上作为阴极浸入到电解槽中的电解液中，使脉冲电源输出电压400～600V，频率400～800Hz，占空比4～20%的脉冲电压，持续一段氧化时间后停止输出。本发明拓展了钛合金在高温氧化等更严酷条件下的使用范围。
1、钛合金表面抗高温氧化腐蚀涂层制备方法，包括除油步骤、氧化步骤、水洗步骤，其特征在于所述氧化步骤的具体过程为：

步骤一、待处理的钛合金零件的一端固定在与脉冲电源的正极输出端连接的夹具上，然后将所述钛合金零件放入到电解槽中，并保证所述钛合金零件全部浸入到电解槽中的电解液内，所述电解液是碱性溶液；

步骤二、将不锈钢电极固定在与脉冲电源的负极输出端连接的夹具上后，将所述不锈钢电极浸入到电解槽中的电解液中，并保证所述不锈钢电极与钛合金零件不相接触；

步骤三、使脉冲电源输出电压 400～600V，频率 400～800Hz，占空比 4～20%的脉冲电压，持续一段氧化时间后停止输出；

取出钛合金，氧化完成。

2、根据权利要求 1 所述的钛合金表面抗高温氧化腐蚀涂层制备方法，其特征在于，在步骤三中始终保持电解液的温度＜50℃。

3、根据权利要求 1 所述的钛合金表面抗高温氧化腐蚀涂层制备方法，其特征在于，所述钛合金零件的材料可以是 TC4 合金、TC16 合金、TB8 与 TA15 合金。

4、根据权利要求 1 所述的钛合金表面抗高温氧化腐蚀涂层制备方法，其特征在于，所述钛合金零件的形状为板状、棒状或管状。

5、根据权利要求 1 所述的钛合金表面抗高温氧化腐蚀涂层制备方法，其特征在于，所述夹具材料为铝合金或钛合金。

6、根据权利要求 1 所述的钛合金表面抗高温氧化腐蚀涂层制备方法，其特征在于，所述电解液为铝酸盐电解液或者硅酸盐电解液。
钛合金表面抗高温氧化腐蚀涂层制备方法

技术领域
本发明涉及一种钛合金表面抗氧化涂层制备工艺，属于金属表面火化增强的电化学涂层工艺方法。

背景技术
钛合金的抗氧化性能主要取决于在服役条件下其表面能否形成保护性氧化膜。钛合金在高温氧化性环境下使用时，其表面不足以形成连续致密的保护性 Al₂O₃ 氧化膜，氧化时形成多孔 TiO₂ 为主的氧化膜，其抗氧化性能也较差。疏松的氧化层和较厚的富氢层将对合金的力学性能尤其是塑性和韧性造成损害，即产生所谓的氧脆。氧脆是高温钛合金在 600℃ 的实际使用中所面临的关键问题。扩散涂层、气相沉积涂层、搪瓷涂层和离子注入法已经用于高温钛合金的表面防护，但这些方法存在成本高、涂层膜基热不匹配（容易热循环时剥落）、高温阻氧腐蚀性能差和不适用于复杂零件形状等缺点。

发明内容
为了解决现有钛合金表面抗氧化涂层制备方法中存在的成本高、涂层膜基热不匹配、高温阻氧腐蚀性能差和不适用于复杂零件形状等缺点，本发明提供了一种钛合金表面抗高温氧化腐蚀涂层制备方法。

本发明的钛合金表面抗高温氧化腐蚀涂层制备方法包括除油步骤、氧化步骤、水洗步骤，其特征在于所述氧化步骤的具体过程为：

步骤一，将待处理的钛合金零件一端固定在与脉冲电源的正极输出端连接的夹具上，然后将所述钛合金零件放入到电解槽中，并保证所述钛合金零件全部浸入到电解槽中的电解液内，所述电解液是碱性溶液；

步骤二，将不锈钢电极固定在与脉冲电源的负极输出端连接的夹具上后，将所述不锈钢电极浸入到电解槽中的电解液中，并保证所述不锈钢电极与钛合金零件不相接触；

步骤三，使脉冲电源输出电压 400～600V，频率 400～800Hz，占空比 4～20%的脉冲电压，持续氧化时间后停止输出；

取出钛合金零件，氧化完成。
本发明的方法采用的是二氧化钛表面火花增强的电化学沉积抗氧化陶瓷涂层的制备方法。该方法采用碱性电解液，待涂镀的二氧化钛零件作为阴极，不锈钢作为阳极。氧化过程中的能量由可调可控高压高频双极脉冲电源提供，当外加电压超过置于电解液中二氧化钛零件表面绝缘膜的临界电压时，所述二氧化钛零件表面产生的火花放电将基体氧化并形成致密的氧化物涂层，该涂层具有高的抗氧化性能，同时满足抗磨、减磨与抗盐雾腐蚀等要求。

本发明的方法的优点有：一、制备抗氧化涂层的微弧氧化工艺方法节能省时，原始形成的氧化物涂层与基体匹配好，膜基结合强度高；二、采用本发明的方法制备的涂层膜基结合强度高，涂层在 700℃循环氧化 80h 后，单位面积增重小于 1.1mg/cm²，远小于基体二氧化钛的增重量（20mg/cm²），膜基界面也未形成氧化扩散层，表现出良好的抗氧化性能；三、本发明的方法能够适用于不同形状与尺寸的零件，所获得的致密陶瓷层可有效阻隔钛基体在高温下的氧化失效。

本发明拓展了二氧化钛在高温氧化等更严酷条件下的使用范围。

附图说明

图 1 是采用具体实施方式二所述的方法制备的 TC4 合金表面涂层截面形貌图，其中 1 是基层，2 是涂层，3 是树脂；图 2 是具体实施方式二所述的方法中，铝酸盐溶液中制备的微弧氧化涂层在 700℃氧化时的增重曲线图；图 3 采用具体实施方式三所述的方法制备的 TC4 合金表面涂层截面形貌图，其中 1 是基层，2 是涂层，3 是树脂；图 4 是具体实施方式三所述的方法中，硅酸盐溶液中制备的微弧氧化涂层在 700℃氧化时的增重曲线图。

具体实施方式

具体实施方式一：二氧化钛表面抗高温氧化腐蚀涂层制备方法包括除油步骤、氧化步骤、水洗步骤，其特征在于所述氧化步骤的具体过程为：

步骤一、将待处理的二氧化钛零件的一端固定在与脉冲电源的正极输出端连接的夹具上，然后将所述二氧化钛零件放入到电解槽中，并保证所述二氧化钛零件全部浸入到电解槽中的电解液内，所述电解液是碱性溶液；

步骤二、将不锈钢电极固定在与脉冲电源的负极输出端连接的夹具上后，将所述不锈钢电极浸入到电解槽中的电解液中，并保证所述不锈钢电极
与钛合金零件不接触；

步骤三，使脉冲电源输出电压 400～600V，频率 400～800Hz，占空比 4～20% 的脉冲电压，持续一段氧化时间后停止输出；

取出钛合金，氧化完成。

在步骤三中，始终保持电解液的温度＜50℃。

所述氧化涂层的厚度可通过调整步骤三中所述的脉冲电压的参数和氧化时间调整，当所述氧化时间为 30 分钟时，涂层的厚度可达到 20～30 微米。

所述钛合金零件的材料可以是 TC4 合金、TC16 合金、TB8 与 TA15 合金等。

所述钛合金基材的基体零件不受形状与尺寸的限制，可以为板状、棒状或管状，特别适用于细管内壁或深孔类零件。

所述夹具材料为铝合金或钛合金。

涂层的物相组成取决于电解液，所述电解液可以为：含有 20g/L 的 NaAlO₂ 和 1g/L 的 Na₃PO₄ 的铝酸盐电解液，含有 20g/L 的 Na₂SiO₃、4g/L 的 KOH 和 10g/L－(NaPO₃)₆ 的硅酸盐电解液，亦可采用其它电解液组成，只要保证能在钛合金表面放电即可。

具体实施方式二：本实施方式与具体实施方式一所述的钛合金表面抗高温氧化腐蚀涂层制备方法的区别在于，基体材料为 TC4 合金，电解液采用铝酸盐电解液（20g/L－NaAlO₂，1g/L－Na₃PO₄），在步骤三中，脉冲电源输出参数为电压 550V，频率 600Hz，占空比 8%，持续时间为 10min。

本实施方式获得的 TC4 合金表面的致密陶瓷层的厚度约 12 微米，如图 1 所示，涂层由 Al₃TiO₅ 和 Al₂Ti₇O₁₅ 组成，该涂层表现出良好的抗氧化防护性能。将采用本实施方式所述的钛合金表面抗高温氧化腐蚀涂层制备方法，置于马弗炉内恒温氧化，恒温温度为 700℃，恒温时间为 80h；然后是让钛合金随炉冷却，参见图 2 所示微弧氧化涂层在 700℃ 氧化时的增重曲线，带涂层的 TC4 合金增重为 0.73mg/cm²，远小于基体 TC4 的增重（20mg/cm²）。

具体实施方式三：本实施方式与具体实施方式一所述的钛合金表面抗高温氧化腐蚀涂层制备方法的区别在于，基体为 TC4 合金，电解液采用硅酸盐电解液（20g/L－Na₂SiO₃、4g/L－KOH、10g/L－(NaPO₃)₆），在步骤三中，脉
冲电源输出参数为电压 500V，频率 600Hz，占空比 8%，持续时间为 10min。

本实施方式获得的 TC4 合金表面的致密陶瓷层的厚度约 10 微米，如图 3 所示，微弧氧化后获得的涂层由锐钛矿与金红石 TiO₂组成，金红石为主相。该涂层表现出良好的抗氧化性能。将采用本实施方式所述的钛合金表面抗高温氧化腐蚀涂层制备方法，置于马弗炉中恒温氧化，恒温温度为 700℃，恒温时间为 80h；然后是让钛合金随炉冷却，参见图 4 所示微弧氧化涂层在 700℃氧化时的增重曲线，带涂层的 TC4 合金增重为 0.98mg/cm²，远小于基体 TC4 的增重（20mg/cm²）。