Abstract: The present invention relates to a biomolecule detection method in which an electrode is formed on a filtering membrane by screen printing to combine filtering characteristics of the membrane and signal measuring ability of the electrode. A membrane electrode according to the present invention provides a novel sensor in which the filtering function of the membrane and the signal measuring ability of the electrode are combined. According to the present invention, a target material is filtered by the membrane and measured, and a metal ion is reduced on the membrane to thereby increase electrical conductivity, with the result that the very small amount of target material may be detected with superior sensitivity using the amplified electrical signals, and quantitative analysis of the target material may be advantageously performed using the amplified electrical signals. In addition, a receptor material may be fixed on the aforementioned electrode, the thus-formed sample passes through the membrane to obtain only the target material that selectively binds to the receptor material, and the thus-obtained target material may be used in detecting electrical signals. The signal measurement of the sensor according to the present invention may use a variety of elements such as electrical conductivity and impedance.

요약:
본 발명은 담성용 면브레인 상에 전극을 소크린 프린팅 방법으로 제조하여, 면브레인의 여과 특성과 상기 전극의 신호 측정을 결합한 생체물질 측정방법에 관한 것이다. 본 발명에 따른 면브레인 전극은 면브레인의 여과 기능과 전극의 신호 측정 능력이 결합된 새로운 센서를 제공한다. 본 발명에 따르면 목적물질을 면브레인 상에서 여과하여 측정할 수 있을 뿐만 아니라, 면브레인 상에서 금속 이온을 환원시킴으로써 전기 전도성을 증가시켜 측정된 전기적 신호를 이용하여 비량의 목적물질을 수수한 감도로 검출할 수 있고, 목적물질의 성량적인 분석에도 유용하게 사용할 수 있다. 또한 상기 전극에 리셉터 물질을 고정화 시킨 후 시료를 면브레인에 동과시켜 리셉터에 선택적으로 결합하는 목적물질만을 걸러낸 후 전기적 신호 검출에 사용할 수 있다. 또한 본 발명에 따른 센서의 신호측정은 전기 전도, 임피던스 등 다양한 방법을 이용할 수 있다.
명세서
발명의 명칭: 프린팅을 이용한 멤브레인 상 전극 및 이를 활용한
생체물질 검출

기술분야
[1] 본 발명은 여과용 멤브레인 상에 전극을 스크린 프린팅 방법으로 제조하여,
멤브레인의 여과 특성과 상기 전극의 신호 측정을 결합한 생체물질 측정방법에
관한 것이다.
배경기술
특히, 미생물의 신속한 측정은 식중독균 진단, 환경 유휴균 측정, 감염균 측정,
병원성 바이러스 진단 등에 매우 중요한 기술이다. 일반적으로 많이 사용되는
병원성 물질(미생물, 단백질 등)의 유무 및 농도를 검사하기 위한 방법으로는
콜로니법, DNA 탐침(probe)법, 면역분석법 등이 많이 이용되고 있다(Jay JM.
York; Tenover FC., DNA Probes for Infectious Diseases, 1989, p 53 CRC Press, Boca
Raton.). 콜로니법은 시료를 재취하여 감축하고자 하는 미생물만이 생존할 수
있게 성분을 조성한 선택배지에서 배양한 후, 미생물이 형성하는 콜로니의 수를
측정하는 방법으로, 이 방법은 매우 정확하지만 측정에 오랜 시간이 소요되며
각각의 미생물을 위한 배지의 선택에 어려움이 있다는 단점이 있다. DNA
probe법은 실시간 PCR(중합효소연쇄반응, polymerase chain reaction) 분석 방법
및 핵산 결합 분석 방법(nucleic acid hybridization)을 포함하는 방법으로서,
미생물을 물리화학적으로 파괴한 후 세포 안의 DNA를 핵산 결합 반응에 의해
검출하는 방법이다. 이 방법은 콜로니법과 비교하여 검사 시간이 짧은 장점을
가지고 있지만 고가의 PCR 장비가 사용되고 적은 양의 미생물 검출 시, 높은
민감도를 달성하기 위해서 별도로 배양을 하는 단계를 병행해야 한다(Ninet, B et
없다면, 죽은 세포들이 검출될 수 있는데, 이로 인해 정확하지 않은 결과가
나타나게 된다. 또한 PCR을 수행한 경우 거짓-양성(false-positive)이 매우
빈번하여 검출의 오차 범위가 증가하고 분석의 신뢰도를 감소시킬 가능성을
가지고 있다. 면역분석법은 항원-항체 결합 반응을 이용한 것으로 예컨대,
검출하고자 하는 미생물의 표면 항원에 특이적으로 반응하는 항체를 이용한
효소 결합 면역 흉착 분석(enzyme-linked immunosorbent assay; ELISA)이 널리
수행되는데, 이 방법은 짧은 시간에 매우 높은 민감도를 나타내므로 상기한 두
방법의 대체 방법으로 인식되고 있다.
[3] 본 발명은 여과용 멤브레인 상에 전극을 형성하여, 전극의 센서 측정능과
멤브레인의 여과 특성을 결합한 센서를 개발하고자 하였다.
발명의 상세한 설명

기술적 과정

본 발명은 여과용 멤브레인 상에 전극을 형성하여 전극의 셰어 측정 능력과 여과용 멤브레인의 분리 능력 특성을 결합하여 생체물질을 측정하는 센서 및 이의 제조방법 및 이를 이용한 목적물질 검출방법을 제공하고자 한다.

과정 해결 수단

상기 과정의 해결을 위해, 본 발명은 여과용 멤브레인 상에 전극을 프린팅하는 단계; 및 상기 여과용 멤브레인에 리간드가 고정된 효소 또는 리간드가 고정된 금속 나노입자와 목적물질을 함유하는 시료가 혼합된 반응액을 통과시킴으로써 전극의 전기적 신호를 발생시키는 것을 규정으로 하는 센서를 제공한다.

또한, 본 발명은 (a) 여과용 멤브레인상에 전극을 프린팅하는 단계; 및 (b) 상기 여과용 멤브레인에 리간드가 고정된 효소 또는 리간드가 고정된 금속 나노입자와 목적물질을 함유하는 시료가 혼합된 반응액을 통과시키는 단계;를 포함하는 센서의 제조 방법인이다.

또한, 본 발명은 (a) 리간드가 고정된 효소 또는 리간드가 고정된 금속 나노입자 및 목적물질을 함유하는 시료를 혼합하여 반응시키는 단계; (b) 상기 반응액을 전극에 형성된 여과용 멤브레인에 통과시켜 목적물질-리간드-효소 복합체 또는 목적물질-리간드-금속 나노입자 복합체만을 겉내는 단계; 및 (c) 상기 여과용 멤브레인 상에 남은 목적물질-리간드-효소 복합체 또는 목적물질-리간드-금속 나노입자 복합체에 의해 전극에 발생하는 전기적 신호를 측정하는 단계;를 포함하는 목적물질의 검출 방법을 제공한다.

또한, 본 발명은 (a) 리간드가 고정된 효소 또는 리간드가 고정된 금속 나노입자와 목적물질을 함유하는 시료를 혼합하여 반응시키는 단계; (b) 상기 반응액을 전극 사이의 여과용 멤브레인 상에 고정된 리셉터를 포함하는 여과용 멤브레인에 통과시켜 리셉터에 특이적으로 결합하는 목적물질-리간드-효소 복합체 또는 목적물질-리간드-금속 나노입자 복합체만을 겉내는 단계; 및 (c) 상기 여과용 멤브레인 상에 남은 목적물질-리간드-효소 복합체 또는 목적물질-리간드-금속 나노입자 복합체에 의해 전극에 발생하는 전기적 신호를 측정하는 단계;를 포함하는 목적물질의 검출 방법을 제공한다.

발명의 효과

본 발명에 따른 멤브레인 전극은 멤브레인의 여과 기능과 전극의 신호 측정 능력이 결합된 새로운 센서를 제공한다. 본 발명에 따르면 목적물질을 멤브레인 상에서 여과하여 측정할 수 있을 뿐만 아니라, 멤브레인 상에서 금속 이온을 환원시킴으로써 전기 전도도를 증가시켜 증폭된 전기적 신호를 이용하여 미량의 목적물질을 우수한 감도로 검출할 수 있고, 목적물질의 정량적 분석에도 유용하게 사용할 수 있다. 또한 상기 전극에 리셉터 물질을 고정화 시킨 후 시료를 멤브레인에 통과시켜 리셉터에 선택적으로 결합하는 목적물질만을...
결론 후 전기적 신호 검출에 사용할 수 있다. 또한 본 발명에 따른 센서의 신호측정은 전기 전도도, 임피던스 등 다양한 방법을 이용할 수 있다.

도면의 간단한 설명

[10] 도 1은 실크 스크린 프린팅 공정을 이용하여 만들어진 전극 간격 100 μm의 멤브레인 전극을 나타낸 그림(A)과 멤브레인 은 전극(B, 좌) 및 멤브레인 탄소 전극(B, 우)을 나타낸 사진이다.

[12] 도 3, 4는 본 발명에 따른 멤브레인 은 전극에서 효소의 유무 및 은 이온 환원 여부에 따른 전류의 변화를 나타낸 그림이다. (0.1M PB-AgGSH: 효소가 없는 대조군; STA/HRP-AgGSH: 효소가 있는 실험군)

[14] 도 6, 7은 본 발명에 따른 이-마이크로 전극에서 금 나노입자의 유무 및 금 이온 환원 여부에 따른 전류의 변화를 나타낸 그림이다. (0.1M PB-Au Enh: 금 나노입자가 없는 대조군; AuNP-Au Enh: 금 나노입자가 있는 실험군)

[16] 도 9, 10은 본 발명에 따른 멤브레인 은 전극에서 식중독균-항체-금 나노입자 복합체의 유무 및 금 이온 환원 여부에 따른 전류의 변화를 나타낸 그림이다. (Control: 항체-금 나노입자 복합체만 있는 대조군; 10 μg cell: 복합체가 있는 실험군; bare-PBS: 초기 전극에 PBS 청가; control-PBS: 금 나노입자 점가 후 PBS 청가; cell-PBS: 식중독균-항체-금 나노입자 복합체 점가 후 PBS 청가; Au enh-5min: 금 환원용액 5분 처리; Au enh 10min: 금 환원용액 10분 처리; Au enh-PBS: 금 환원용액 처리 후 PBS 세척)

[17] 도 11은 본 발명에 따른 멤브레인 은 전극에서 식중독균(Staphylococcus aureus)의 농도에 따른 농도에 따른 전류의 변화를 보여주는 그림이다. (Au enh-5min: 금 환원용액 5분 처리; Au enh 10min: 금 환원용액 10분 처리; Au enh-PBS: 금 환원용액 처리 후 PBS 세척)

[18] <부호의 설명>

1: 100 μm 크기의 간격, 11: 은 전극 또는 탄소 전극
2: 21: 여과용 멤브레인, 31: 흑유산다아세
4: 31: 은 이온 환원 침전물, 51: 금 나노입자
6: 41: 은 이온 환원 침전물, 71: 식중독균-항체-금 나노입자 복합체

발명의 실시를 위한 최선의 형태

본 발명은 여과용 멤브레인 상에 전극이 프린팅된 센서 및 상기 여과용
벤브레인에 리간드가 고정된 효소 또는 리간드가 고정된 금속 나노입자와 목적물질을 함유하는 시료가 혼합된 반응액을 통과시킴으로써 전극의 전기적 신호를 발생시키는 것을 특징으로 하는 센서를 제공한다.

[26] 본 발명에 있어서 '여과용 벤브레인'은 직경이 100 nm 내지 10 μm 크기의 세포를 갖는 여과막을 의미한다. 따라서 리간드가 고정된 효소 또는 리간드가 고정된 금속 나노입자와 목적물질을 함유하는 시료를 혼합하여 반응시킨 반응액을 여과용 벤브레인에 통과시키면, 목적물질과 결합하지 않은 리간드가 고정된 효소 또는 금속 나노입자는 벤브레인을 통과하게 되고, 목적물질과 결합된 목적물질-리간드-효소 복합체 또는 목적물질-리간드-금속 나노입자 복합체만 벤브레인에 남아 벤브레인에 형성된 전극을 통하여 신호를 발생시키는 여과기능을 수행할 수 있다.

[27] 상기 여과용 벤브레인은, 예를 들어, 나이트로셀룰로스, 폴리카보네이트, 나일론, 폴리에스터, 셜론로소스 아세테이트, 폴리술론 또는 폴리에탄솔론 여과막을 사용할 수 있으나, 이에 제한되는 것은 아니다.

[28] 본 발명의 한 구체에 따르면, 상기 전극은 스크린 프린팅 방법으로 제조할 수 있는데, 구체적으로 실크 스크린 프린팅 공정에 의하여 프린팅된 것일 수 있다. 예를 들면, 전극재료 페이스트(백금, 금, 은, 탄소 등)를 정해진 패턴의 스크린을 통해 벤브레인에 직접 프린팅하고, 고온(일반적으로 100 ℃ 이상)에서 건조시키는 과정을 반복하여 제조할 수 있다.

[30] 상기 인터디지테이터드 전극은, 예를 들어 전극간 간격이 10 내지 1000 μm, 10 내지 900 μm, 10 내지 800 μm, 10 내지 700 μm, 10 내지 600 μm, 10 내지 500 μm, 10 내지 450 μm, 10 내지 400 μm, 10 내지 350 μm, 10 내지 300 μm, 10 내지 250 μm, 10 내지 200 μm 또는 10 내지 150 μm 일 수 있으나, 이에 제한되는 것은 아니다.

[31] 본 발명에 있어서, 상기 '리간드'는 목적물질에 특이적인 결합력을 지닌 물질로서, 상기 리간드는, 예를 들어 항체, 항원, 효소, 펩타이드, 단백질, DNA,
RNA, PNA(peptide nucleic acids) 또는 알타머(aptamer)일 수 있으나, 이에 제한되는 것은 아니다. 리간드의 종류는 검출하고자 하는 목적물질의 종류에 따라 달라지며, 이해 적절히 선택될 수 있다.

리간드가 고정된 효소 또는 리간드가 고정된 금속 나노입자와 목적물질을 함유하는 시료를 혼합하여 반응시키면, 혼합된 반응액 내에서 상기 리간드에 의해 목적물질과 효소 또는 목적물질과 금속 나노입자가 결합한 '목적물질-리간드-효소 복합체' 또는 '목적물질-리간드-금속 나노입자 복합체'가 형성될 수 있다. 이 때 목적물질과 결합하지 않은 리간드가 고정된 효소 또는 리간드가 고정된 금속 나노입자는 멤브레인을 통과하게 되고, 목적물질과 결합한 목적물질-리간드-효소 복합체 또는 목적물질-리간드-금속 나노입자 복합체만 멤브레인에 남아 멤브레인에 형성된 전극을 통하여 전기적 신호를 발생시키게 되는바, 이러한 전기적 신호를 측정함으로써 목적물질을 검출할 수 있다. 특히 측정되는 전기적 신호는 멤브레인에 남은 금속 나노입자의 농도(즉 목적물질의 농도)에 비례하여 발생하는바, 목적물질의 정량적인 검출이 가능하다.

특히 목적물질이 사이즈가 큰 미생물, 세포 또는 동식물의 기관 등인 경우에는 상기 멤브레인 상에 별도의 리셉터를 구비하지 않더라도 목적물질의 검출을 용이하게 수행할 수 있다. 본 발명에 있어서 상기 '목적물질'은 미생물, 항원, 핵산, 세포 또는 동식물의 기관일 수 있으며, 이 때 상기 '미생물'은 예를 들어 바이러스, 세균 또는 진균일 수 있으나, 이에 제한되는 것은 아니다.

본 발명에 있어서 리간드가 고정된 '효소'는 예를 들어 페옥시다시아제, 알칼린 포스파타제, 갈락토시다제 또는 글루코스 산화효소일 수 있으나 이에 제한되는 것은 아니며, 리간드가 고정된 '나노입자'는 예를 들어 금, 은, 구리 또는 자기 나노입자일 수 있으나 이에 제한되는 것은 아니다.

본 발명에 있어서 '나노입자'는 직경이 약 1 내지 100 nm 범위인 극미세 입자를 말한다. 본 발명의 일시시에는 20nm 크기의 나노입자를 사용하였으나, 이에 제한되는 것은 아니며, 예를 들어 0.5 내지 100 nm, 0.5 내지 90 nm, 0.5 내지 80 nm, 0.5 내지 70 nm, 0.5 내지 70 nm, 0.5 내지 60 nm, 0.5 내지 50 nm, 0.5 내지 40 nm, 0.5 내지 30 nm, 0.5 내지 20 nm, 1 내지 20 nm의 크기를 가질 수 있다.

본 발명의 또 다른 구체에 따르면, 전극 사이의 여과용 멤브레인 상에 리셉터가 추가로 고정되어 있는 센서를 제조할 수 있다.

상기 구체에 따르면, 본 발명의 센서는 전극 사이의 여과용 멤브레인 상에 리셉터가 추가로 고정되어, 리셉터에 특이적으로 결합하는 목적물질-리간드-효소 복합체 또는 목적물질-리간드-금속 나노입자 복합체만 멤브레인에 남아 전극의 전기적 신호를 발생시키는 것을 특징으로 할 수 있다.

상기 '리셉터'는 목적물질에 특이적인 결합력을 지닌 물질로서, 목적물질을 효소 또는 금속 나노입자와 결합시켜주는 리간드와는 상이한 결합부위를 갖는 것을 특징으로 한다. 상기 리셉터는 멤브레인 상에 전극을 형성시킨 후, 전극
사이의 베퀤레인 상에 고정시킬 수 있다. 리셉터의 고정은 당업계에 공지된
방법에 의해 실시할 수 있으며, 물리적인 흡착 방법 및 화학적 방법을 모두 사용
가능하다. 구체적인 고정화 방법은 리셉터 및 베퀤레인의 종류에 따라 당업자에
의해 적절히 선택될 수 있다.

[39] 리셉터가 추가로 고정된 센서에 리간드가 고정된 효소 또는 리간드가 고정된
금속 나노입자와 목적물질을 함유하는 시료가 환원된 반응액을 청가하면, 상기
리셉터에 특이적인 목적물질이 베퀤레인 상에서 리셉터와 결합함으로써
리셉터-목적물질-리간드-효소 복합체 또는 리셉터-목적물질-리간드-금속
나노입자 복합체를 형성하면서 베퀤레인 상에 고정되고, 리셉터에 특이적인
목적물질을 전기적 신호로 검출할 수 있다.

[40] 상기 리셉터는, 예를 들어 항체, 항원, 효소, 펜타이드, 단백질, DNA, RNA,
PNA(peptide nucleic acids) 또는 탐타머/aptamer)일 수 있으나, 이에 제한되는 것은
아니다.

[41] 상기 목적물질은, 예를 들어 항체, 항원, 효소, 펜타이드, 단백질, DNA, RNA,
미생물, 세포 또는 동식물의 기관일 수 있으나, 이에 제한되는 것은 아니다.

[42] 본 발명의 또 다른 구체예에 따르면, 상기 리셉터가 없거나 또는 리셉터가
추가로 고정된 센서의 여과용 베퀤레인 상에 금속 환원용액을 청가하여 전극
표면에 금속이온을 환원시켜 침착된 센서를 제조할 수 있다.

[43] 상기 구체예에 따르면, 본 발명의 센서는 여과용 베퀤레인 상에 전극이
프린팅되어 있고, 상기 전극 표면에 금속이온이 환원되어 침착된 것을 특징으로
할 수 있다.

[44] 본 발명의 일시예에 따르면 전출한 바와 같이 금속 환원용액에 의해 금속
이온을 환원시켜 전극 표면에 침착시킬 수 있으나 이에 제한되는 것은 아니며,
당업자에 의해 적절히 선택된 방법에 의해 전극 표면에 금속이온을 환원시켜
침착시킬 수 있다. 베퀤레인 상에 녹은 목적물질-리간드-효소 복합체,
목적물질-리간드-금속 나노입자 복합체, 리셉터-목적물질-리간드-효소 복합체
또는 리셉터-목적물질-리간드-금속 나노입자 복합체에 의해 발생하는 전기적
신호는, 금속 환원용액을 청가하여 전극 표면에 금속이온을 환원시켜
침착시킴으로써 전기 전도도가 향상됨으로써 증폭될 수 있다.

[45] 여기서 '금속 환원용액'은 금속 이온 및 상기 금속 이온을 환원시킬 수 있는
환원제가 포함된 용액을 의미하며, 이러한 특성을 갖는 용액이라면 제한 없이
사용 가능하고, 구체적인 조건은 당업자에 의하여 적절히 선택 가능하다.

[46] 이 때 상기 금속 이온은, 예를 들어 금, 은 및 구리로 구성된 군에서 선택되는
하나 이상일 수 있으나, 이에 제한되지 않는다. 또한 상기 금속 이온을 환원시킬
될 수 있는 환원제는, 예를 들어 하이드록실 아민(NH₂OH), 아스코르브 산, 포도당 및
그 혼합물로부터 선택될 수 있으나, 이에 제한되는 것은 아니다.

[47] 상기 금속 환원용액에 의해 금속이온이 환원되어 베퀤레인 상의 전극 표면에
침착되면 전극의 전기 전도도가 향상됨으로써 전기적 신호가 증폭된다. 이 때
벤브레인 상에 첨가된 리간드가 고정된 효소 또는 금속 나노입자에 의해 이러한 금속이온의 환원반응이 현저히 촉진되는데, 상기 효소 또는 금속 나노입자에 의해 전기 전도도가 현저히 향상되며, 결과적으로 캡슐 감도가 매우 우수한 센서를 제조할 수 있다.

[48] 하기 실험에 따르면, 전극에 은 환원용액만을 첨가하여 은이온을 환원시킨 대조군(PB-AgGSH)에 비해 페옥시다이아제 효소의 존재하에 은 환원용액을 첨가하여 은이온을 환원시킨 경우(STA/HRP-AgGSH)에 은 환원용액 내에 포함된 은이온의 환원율이 현저히 증가하여 전기 전도도가 현저하게 향상됨을 알 수 있었다(도 3, 4 참조).

[49] 또 다른 실험에 따르면, 전극에 금 환원용액만을 처리한 대조군(PB-Au Enh)에 비해 금 나노입자의 존재하에 금 환원용액을 처리하여 금이온을 환원시킨 경우(AuNP-Au Enh)에 금 환원용액 내에 포함된 금이온의 환원율이 현저히 증가하여 전기 전도도가 현저하게 향상됨을 알 수 있었다(도 6, 7 참조).

[50] 또한, 본 발명은 (a) 여과용 벤브레인 상에 전극을 프린팅하는 단계; 및 (b) 상기 여과용 벤브레인에 리간드가 고정된 효소 또는 리간드가 고정된 금속 나노입자와 목적물질을 함유하는 시료가 혼합된 반응액을 통과시키는 단계;를 포함하는 센서의 제조 방법을 제공한다.

[51] 상기 (a) 단계 이후에 전극 사이의 여과용 벤브레인 상에 리센서가 추가로 고정되는 단계를 더 포함할 수 있다.

[52] 본 발명의 구체에 따르면, 상기 리센서가 없거나 또는 리센서가 추가로 고정된 센서의 여과용 벤브레인 상에 금속 환원용액을 첨가하여 전극 표면에 금속이온을 환원시켜 첨가하는 단계를 더 포함할 수 있다.

[53] 본 발명의 센서의 제조방법에 있어서, 전극, 리간드, 효소, 나노입자, 목적물질, 리센서, 금속 환원용액 등은 상기 센서와 동일하다.

[54] 또한, 본 발명은 (a) 리간드가 고정된 효소 또는 리간드가 고정된 금속 나노입자 및 목적물질을 함유하는 시료를 혼합하여 반응시키는 단계; (b) 상기 반응액을 전극이 형성된 여과용 벤브레인에 통과시키기 목적물질-리간드-효소 복합체 또는 목적물질-리간드-금속 나노입자 복합체만을 걸러내는 단계; 및 (c) 상기 여과용 벤브레인 상에 남은 목적물질-리간드-효소 복합체 또는 목적물질-리간드-금속 나노입자 복합체에 의해 전극에 발생하는 전기적 신호를 측정하는 단계;를 포함하는 목적물질의 검출 방법을 제공한다.

[55] 또한, 본 발명은 (a) 리간드가 고정된 효소 또는 리간드가 고정된 금속 나노입자와 목적물질을 함유하는 시료를 혼합하여 반응시키는 단계; (b) 상기 반응액을 전극 사이의 여과용 벤브레인 상에 고정된 리센서를 포함하는 여과용 벤브레인에 통과시키기 리센서에 특이적으로 결합하는 목적물질-리간드-효소
복합체 또는 복합물질-리간드-금속 나노입자 복합체만을 결합하는 단계; 및 (c) 상기 여과용 멤브레인 상에 난은 복합물질-리간드-효소 복합체 또는 복합물질-리간드-금속 나노입자 복합체에 의해 전극에 발생하는 전기적 신호를 측정하는 단계; 이를 포함하는 복합물질의 검출 방법을 제공한다.

[59] 상기 전기적 신호 측정 전에 상기 여과용 멤브레인 상에 금속 환원용액을 첨가하여 전극 표면에 금속이온을 환원시키며 점진적임을 단계를 더 포함할 수 있다.

[60] 상기 효소 또는 금속을 배로로 전기적으로 측정이 가능한 신호로 중복하고, 이를 측정할 수 있다.

[61] 본 발명의 구체예에서, 상기 신호의 측정은 멤브레인 상의 전극을 통해 측정되는 전기적 신호일 수 있으며, 예를 들어 전기 전도도 또는 염피덴스의 측정에 의한 것일 수 있으나 이에 제한되지 않는다.

[62] 본 발명의 복합물질 검출 방법은 전술한 센서를 이용하여 수행할 수 있으며, 전술한 센서의 구성 및 특성을 모두 포함하는 것으로 볼 수 있다.

[63] 이하, 본 발명의 이의를 드리기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.

[64] <실시예>

[67] 실시예 1: 멤브레인은 전극에 효소 고정 후 응이온 환원 반응

[68] 0.45 μm 공극을 가진 MMM(asymmetric super-micron membrane) 멤브레인 상에 은 페이스트를 이용하여 간격이 100 μm인 맞물린 형태의 전극을 식크 스트립 프린팅 기술을 이용하여 제작하였다.

[69] 맞물린 형태의 전극 사이에 푸옥시다아제 효소를 고정하고, 1 mM 아세테이트 은(silver acetate), 1 mM 글루타이온 (glutathione), 10 mM 하이드로 퀘이온(hydroquinone) 및 100 mM 과산화수소 (hydrogen peroxide)가 함유된 0.1 M 사이트레이트 환충액(citrate buffer, pH 8.5)은 환원용액으로 반응시켜 전극 사이에서 응이온을 환원시켰다. 여기에 적류 전압을 걸어 전류를 측정하였다.

[70] 도 2는 전술한 방법으로 제작된 멤브레인을 전극에 푸옥시다아제 효소(HRP)를 고정하고, 전술한 방법으로 제조된 은 환원용액 내의 응이온이 푸옥시다아제 효소에 의해 전극 상에서 환원되는 과정을 나타낸 그림이다.

[71] 도 3, 4는 전술한 방법으로 제작된 멤브레인을 전극에 푸옥시다아제 효소를 고정하고, 상기 효소와 전술한 방법으로 제조된 은 환원용액을 이용하여 응이온 환원시간 후, 여기에 적류전압을 걸어 전류의 변화를 측정한 결과를 보여준다. 푸옥시다아제 효소가 없는 대조군(PB-AgGSH)에 비해 푸옥시다아제 효소를 이용한 실험군(STA/HRP-AgGSH)의 경우, 은 환원용액을 처리하여 응이온을
환원시킴에 따라(5min, 10min) 전기 진도도가 현저히 향상되는 것을 확인할 수 있다.

[72] 실시에 2: 멤브레인 은 전극에 금 나노입자 고정 후 금이온 환원 반응

[73] 0.45 μm 공극을 가진 MMM(Asymmetric super-micron membrane) 멤브레인 상에 응

[74] 파이스트를 이용하여 간격이 100 μm인 맞물린 형태의 전극을 설고 스크린

[75] 프린팅 기술을 이용하여 제작하였다.

[76] 맞물린 형태의 전극 사이에 20 nm의 금 나노입자를 고정하고, 1 mM

[77] 하이드록실 아민(hydroxyl amine) 및 10 mM HAuCl₄가 함유된 10 mM

[78] 사이트레이트 완충용액 (citrate buffer, pH 3.0)(금 환원용액)으로 반응시켜 전극

[79] 사이에서 금이온을 환원시켰다. 여기에 직류전압을 걸어 전류를 측정하였다.

[80] 도 5는 전술한 방법으로 제작된 멤브레인 은 전극에 금 나노입자를 고정하고, 전술한 방법으로 조제된 금 환원용액이 금 나노입자에 의해 전극 상에서 환원되는 과정을 나타낸 그림이다.

[81] 도 6, 7은 전술한 방법으로 제작된 메르브레인 은 마이크로-전극에 금 나노입자를 고정하고, 전술한 방법으로 조제된 금 환원용액을 이용하여 금을 환원시킨 후, 여기에 직류전압을 걸어 전류의 변화를 측정한 결과를 보여준다. 금 나노입자가 없는 대조군(PB-Au Enh)에 비해 금 나노입자가 고정된 실험군의 경우(AuNP-Au Enh), 금 환원용액을 처리하여 금 이온을 환원시킴에 따라(5min, 10min) 전기 진도도가 현저히 향상되는 것을 확인할 수 있다.

[82] 실시에 3: 멤브레인 은 전극에 석주독균-항체-금 나노입자 복합체를 풍과한 후 금이온 환원 반응

[83] 실시에 3-1: 금나노입자-항체 접합체 제조

[84] 20 mM 금나노입자 용액(BB International) 1 mL에 borate 완충용액(0.1 M, pH 8.5)

[85] 0.1 mL과 Staphylococcus aureus 섹션을 가진 항체(Abcam, ab20002) 10

[86] μg을 첨가하였다. 30분 후, 1% BSA(bovine serum albumin) 용액(pH 8.5, 10 mM

[87] carbonate 완충용액에 녹인 것) 0.1 mL을 첨가하여 30분 동안 첨가시켰다. 상기

[88] 용액을 4C에서 10,000 rpm으로 20분 동안 원심분리한 후 상등액을 제거하였다.

[89] 0.1% BSA(pH 8.5, 10 mM carbonate 완충용액에 녹인 것)용액 1 mL을 첨가하여 혼합 후, 10,000 rpm으로 20분 동안 원심분리한 후 상등액을 제거하였다. 상기

[90] 과정을 한 번 더 반복 후 최종적으로 0.1% BSA (PBS 완충용액으로 녹인

[91] 것)용액을 0.5 mL 첨가하여 혼합 후 냉장고에 보관하였다.
회석하여 배양액 100 μL씩 접종하여 도발한 후, 37℃에서 16~24시간 배양하여, 형성되는 콜로니를 계수한 후 회석배수 급하여 생균수를 측정하였다. 또한, 배양중인 균의 액체 배지에서 적당량을 흡광광도계로 600 nm 파장에서 흡광도를 측정하였다.

[85] 실시 예 3-3: Staphylococcus aureus 분석

[86] 0.45 μm 공극을 가진 폴리올론 멜브레인(Pall life science) 상에 음 매스트를 이용하여 간격이 100 μm인 맞물린 형태의 전극을 실크 스트립 프린팅 기술을 이용하여 제작하였다.

[87] Staphylococcus aureus와 금 나노입자-항체 접합체를 30분간 반응시켜

Staphylococcus aureus-항체-금 나노입자 복합체를 형성한 후, 이를 전결한 방법으로 제작된 멜브레인 온 마이크로-전극에 인쇄하였다. 여기에 1 mM 하이드록실 아미네(hydroxyamine) 및 10 mM HAuCl4가 함유된 10 mM 사이트레이트 환조용액(citrate buffer, pH 3.0)(금 환조용액)을 반응시켜 전극 사이에서 금이온을 환원시켰다. 여기에 직류전압을 걸어 전류를 측정하였다.

[88] 도 8은 전결한 방법으로 제작된 멜브레인 온 마이크로-전극에 식중독균-금 나노입자 복합체를 고정하고, 전결한 방법으로 조제된 금 환조용액이 금 나노입자에 의해 전극 상에서 환원되는 과정을 나타낸 그림이다.

[89] 도 9, 10은 전결한 방법으로 제작된 멜브레인 온 마이크로-전극에 식중독균-금 나노입자 복합체를 고정하고, 전결한 방법으로 조제된 금 환조용액을 이용하여 금은 환원시킨 후, 여기에 직류전압을 걸어 전류의 변화를 측정한 결과를 보여준다.

[90] 도 11은 도 9, 10의 실험으로부터 Staphylococcus aureus 농도에 따른 0.1V에서의 전류값을 보여준다. 균의 농도에 따라 전류값이 증가하는 것으로 나타나며, 102 cfu 정도의 균농도에 대해서도 측정이 가능함을 보여주고 있다.

[91] 본 출원은 2011년도 정부(교육과학기술부)의 재원으로

한국연구재단-신기술융합형 성장동력사업의 지원을 받아 수행된

연구이다(2011K000910).

[92] 이상으로 본 발명 내용은 특정한 부분을 상세히 기술하였지만, 단계별로의

통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 보람직한

실시간 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할

것이다. 따라서, 본 발명의 실질적인 범위는 정부된 청구항들과 그것들의

등가물에 의하여 정의된다고 할 것이다.

[93] 산업상 이용가능성
본 발명에 따른 목적물질을 멤브레인 상에서 여과하여 측정할 수 있을 뿐만 아니라, 멤브레인 상에서 금속 이온을 환원시키므로써 전기 전도도를 증가시켜 증폭된 전기적 신호를 이용하여 미량의 목적물질을 유수한 감도로 검출할 수 있고, 목적물질의 정량적 분석에도 유용하게 사용할 수 있다. 또한 상기 전극에 리선택 바질을 고정화 시킨 후 시료를 멤브레인에 동시에 리선택 바질에 선택적으로 결합하는 목적물질만을 걸러낸 후 전기적 신호 검출에 사용할 수 있다. 또한 본 발명에 따른 셰어의 신호측정은 전기 전도도, 임피던스 등 다양한 방법을 이용할 수 있다.
청구범위

[청구항 1] 여과용 멤브레인 상에 전극이 프린팅된 센서; 및
상기 여과용 멤브레인에 리간드가 고정된 효소 또는 리간드가
고정된 금속 나노입자와 목적물질을 함유하는 시료가 혼합된
반응액을 통과시키므로써 전극의 전기적 신호를 발생시키는 것을
특징으로 하는 센서.

[청구항 2] 제 1항에 있어서, 상기 여과용 멤브레인은 니트로셀룰로스,
폴리카보네이트, 나일론, 폴리에스터, 섬플로스 아세테이트,
폴리펩톤 및 폴리에탄펩톤으로 이루어진 그룹으로 선택되는 것을
특징으로 하는 여과막인 센서.

[청구항 3] 제 1항에 있어서, 상기 전극은 스크린 프린팅 공정에 의해
프린팅된 것을 특징으로 하는 센서.

[청구항 4] 제 1항에 있어서, 상기 전극은 간격이 10 내지 1000μm인
인터레이스터트 전극인 것을 특징으로 하는 센서.

[청구항 5] 제 1항에 있어서, 상기 리간드는 항체, 항원, 효소, 웹타이드,
단백질, DNA, RNA, PNA 또는 암타이며를 특징으로 하는 센서.

[청구항 6] 제 1항에 있어서, 상기 효소는 피프시타세, 알칼리 포스프타세,
알락토달세 또는 글루코스 산화효소인 것을 특징으로 하는
센서.

[청구항 7] 제 1항에 있어서, 상기 나노입자는 금, 은, 구리 또는 자기
나노입자인 것을 특징으로 하는 센서.

[청구항 8] 제 1항에 있어서, 상기 목적물질은 미생물, 항원, 핵산, 세포 또는
동식물의 기관인 것을 특징으로 하는 센서.

[청구항 9] 제 1항에 있어서, 상기 전극 사이의 여과용 멤브레인 상에
리센터가 추가로 고정되어 있는 것을 특징으로 하는 센서.

[청구항 10] 제 1항에 있어서, 상기 전극 표면에 금속이온이 환원되어 침착된
것인 것을 특징으로 하는 센서.

[청구항 11] (a) 여과용 멤브레인 상에 전극을 프린팅하는 단계; 및
(b) 상기 여과용 멤브레인에 리간드가 고정된 효소 또는 리간드가
고정된 금속 나노입자와 목적물질을 함유하는 시료가 혼합된
반응액을 통과시키는 단계;
를 포함하는 센서의 제조방법.

[청구항 12] 제 1항에 있어서, 상기 (a) 단계 이후에 전극 사이의 여과용
멤브레인 상에 리센터가 추가로 고정되는 단계를 더 포함하는
것을 특징으로 하는 센서의 제조방법.

[청구항 13] 제 1항 또는 제 12항에 있어서, 상기 반응액을 통과시키기 전에
여과용 멤브레인 상에 금속 환원용액을 첨가하여 전극 표면에
금속이온을 환원시켜 첨가하는 단계를 더 포함하는 것을 특징으로 하는 센서의 제조방법.

[청구항 14]
(a) 리간드가 고정된 효소 또는 리간드가 고정된 금속 나노입자 및 목적물질을 함유하는 시료를 혼합하여 반응시키는 단계;
(b) 상기 반응액을 전극이 형성된 여과용 멤브레인과 통과시켜 목적물질-리간드-효소 복합체 또는 목적물질-리간드-금속 나노입자 복합체만을 걸러내는 단계; 및
(c) 상기 여과용 멤브레인 상에 남은 목적물질-리간드-효소 복합체 또는 목적물질-리간드-금속 나노입자 복합체에 의해 전극에 발생하는 전기적 신호를 측정하는 단계;

을 포함하는 목적물질의 검출 방법.

[청구항 15]
(a) 리간드가 고정된 효소 또는 리간드가 고정된 금속 나노입자와 목적물질을 함유하는 시료를 혼합하여 반응시키는 단계;
(b) 상기 반응액을 전극 사이의 여과용 멤브레인 상에 고정된 리셉터를 포함하는 여과용 멤브레인과 통과시켜 리셉터에 특이적으로 결합하는 목적물질-리간드-효소 복합체 또는 목적물질-리간드-금속 나노입자 복합체만을 걸러내는 단계; 및
(c) 상기 여과용 멤브레인 상에 남은 목적물질-리간드-효소 복합체 또는 목적물질-리간드-금속 나노입자 복합체에 의해 전극에 발생하는 전기적 신호를 측정하는 단계;

을 포함하는 목적물질의 검출 방법.

[청구항 16]
제 14항 또는 제15항에 있어서, 상기 전기적 신호 측정 전에 상기 여과용 멤브레인 상에 금속 환원용액을 첨가하여 전극 표면에 금속이온을 환원시켜 첨가하는 단계를 더 포함하는 것을 특징으로 하는 목적물질의 검출 방법.

[청구항 17]
제 14항 또는 제15항에 있어서, 상기 효소 또는 금속을 매개로 전기적으로 측정이 가능한 신호로 중폭하고, 이를 측정하는 것을 특징으로 하는 목적물질의 검출 방법.
[Fig. 7]

![Graph showing current vs. voltage for AuNP-Au Enh, with lines for AuNP20nm, 5min, and 10min.](image)

[Fig. 8]

![Diagram illustrating a process with labeled steps and components.](image)