a2 United States Patent

US009043362B2

(10) Patent No.: US 9,043,362 B2

Weissman et al. (45) Date of Patent: *May 26, 2015
(54) CUSTOM ENTITIES AND FIELDS IN A (56) References Cited
MULTI-TENANT DATABASE SYSTEM
U.S. PATENT DOCUMENTS
(75) Inventors: Craig Weissman, San Franciscof CA 5577188 A 11/1996 Zhu
(US); Simon Wong, Redwood City, CA 5,608,872 A 3/1997 Schwartz et al.
(as) 5,649,104 A 7/1997 Carleton et al.
5,715,450 A 2/1998 Ambrose et al.
(73) Assignee: salesforce.com, inc., San Francisco, CA 5,737,592 A 41998 Nguyen et al.
US) 5,761,419 A 6/1998 Schwartz et al.
5,794,229 A 8/1998 French et al.
5,799,310 A * 8/1998 Ands tal oo /1
(*) Notice: Subject to any disclaimer, the term of this 5,819,038 A 10/1998 Carl::(s)(r)lnef ail,
patent is extended or adjusted under 35 5,821,937 A 10/1998 Tonelli et al.
U.S.C. 154(b) by 7 days. 5,831,610 A 11/1998 Tonelli et al.
This patent is subject to a terminal dis- (Continued)
claimer. FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 13/281,607 P 2001-14329 12001
P 2004-30221 1/2004
(22) Filed: Oct. 26, 2011 WO WO 01/77787 A2 10/2001
OTHER PUBLICATIONS
(65) Prior Publication Data
US 2012/0041986 A1 Feb. 16. 2012 PCT/US05/10915, International Search Report, Apr. 20, 2007, 3
’ pages.
Primary Examiner — Hosain Alam
Related U.S. Application Data Assistant Examiner — Eliyah S Harper
(63) Continuation of application No. 12/764,780, filed on ~ (74) Attorney, Agent, or Firm — Haynes Beffel & Wolfeld
Apr. 21, 2010, now Pat. No. 8,112,445, which is a LLP; Ernest J. Beffel, Jr.
continuation of application No. 10/817,161, filed on (57) ABSTRACT
Apr. 2, 2004, Pat. No. 7,779,039. . .
PE flow rat- o Systems and methods for hosting variable schema data such
as dynamic tables and columns in a fixe sical database
(51) Int.CL dynamic tables and col in a fixed physical datab
GO6F 7/00 (2006.01) schema. Standard objects, such as tables are provided for use
GOG6F 17/30 (2006.01) by multiple tenants or organizations in a multi-tenant data-
(52) US.CL base system. Each organization may add or define custom
CPC GOGF 17/30595 (2013.01); GOGF 17/30607 fields for inclusion in a standard object. Custom fields for
e (2013.01) multiple tenants are stored in a custom data column within the
(58) Field of Classification Search ' object data structure, and this single custom data column may

USPC oo 707/999.101, 790, 791
See application file for complete search history.

contain different data types for each tenant.

20 Claims, 8 Drawing Sheets

2)0\0 210
r data 203 N N
{-account),202, A \, (-account_cfdata) (213“\' 211~ 212
201~ Cl)gg aizc name | ---.-- ValO{val1] ---- |Val248 |orgid|accid
™ | ood 1| 0od 1
ood 1] ood 2
org : data
#1 ty;)e
_ ood 1
(™ [cod 2
cod 2
data
org
#2 tyzpe
{_|ood2
org ™ | oodN data
-~ type
#N .. | codN 3

US 9,043,362 B2

Page 2
(56) References Cited 6,959,306 B2* 10/2005 Nwabuezec..cccccoovconn..n. /1
7,062,502 Bl 6/2006 Kesler
U.S. PATENT DOCUMENTS 7,069,497 Bl 6/2006 Desai
7,181,758 Bl 2/2007 Chan
5,873,096 A 2/1999 Lim etal. 7209929 g%: 1%88; E_Ominguez etal. ... 707/75}
s s 15 S S USSP PP N
S o Tomkns Taioan b 300 Co
et N : 7,340,481 Bl 3/2008 Baer etal.
6,047,291 A 4/2000 Andersonetal. 707/792
7,356,482 B2 4/2008 Frankland et al.
6,092,083 A 7/2000 Brodersen et al. 7401.094 Bl 7/2008 Kesler
6,112.209 A = 872000 Gusack 7412455 B2 82008 Dillon
6,134,542 A % 10/2000 Rustigecc.ccocevirirvreenne U1 7434257 B2 10/2008 Garg etal.
6,161,149 A 12/2000 Achacoso et al. 7,508,789 B2 3/2009 Chan
6,169,534 Bl 1/2001 Raffel et al. 7,603,483 B2 10/2009 Psounis et al.
6,173,439 Bl 1/2001 Carlson et al. 7,620,655 B2 11/2009 Larsson et al.
6,178,425 Bl 1/2001 Brodersen et al. 7,698,160 B2 4/2010 Beaven et al.
6,189,011 Bl 2/2001 Limetal. 7,779,039 B2 8/2010 Weissman et al.
6,216,135 Bl 4/2001 Brodersen et al. 8,015,495 B2 9/2011 Achacoso et al.
6,233,617 Bl 5/2001 Rothwein et al. 8,073,850 Bl 12/2011 Hubbard et al.
6,266,669 Bl 7/2001 Brodersen et al. 8,082,301 B2 12/2011 Ahlgren et al.
6,275,825 Bl 8/2001 Kobayashi et al. 8,095,413 Bl 1/2012 Beaven
6,295,530 Bl 9/2001 Ritchie et al. 8,095,594 B2 1/2012 Beaven et al.
6,324,568 Bl 11/2001 Diec et al. 8,275,836 B2 9/2012 Beaven et al.
8,457,545 B2 6/2013 Chan
6,324,693 Bl 11/2001 Brodersen et al.
6336137 Bl /2002 Leo et al 8.484,111 B2 7/2013 Frankland et al.
Sy : 2001/0044791 Al 11/2001 Richter et al.
?ggg’éig ;1 gggg% E‘;}iﬁ?gﬂi:}al 2002/0022986 Al 2/2002 Coker et al.
» » ' 2002/0029161 Al 3/2002 Brodersen et al.
6,366,921 B1* 4/2002 Hansen etal. ..o 11 2002/0029376 Al 3/2002 Ambrose et al.
ggg;,gzz E} 3@885 grodersen ett all~ 2002/0035577 Al 3/2002 Brodersen et al.
3717, artmann et al. 2002/0042264 Al 4/2002 Kim
6,393,605 Bl 5/2002 Loomans 2002/0042843 Al 4/2002 Diec
6,405,220 Bl 6/2002 Brodersen et al. 2002/0072951 Al 6/2002 Leeetal.
6,434,550 Bl 8/2002 Warner et al. 2002/0082892 Al 6/2002 Raffel
6,446,089 Bl 9/2002 Brodersen et al. 2002/0129352 Al 9/2002 Brodersen et al.
6,535,909 Bl 3/2003 Rust 2002/0133484 Al 9/2002 Chau et al.
6,549,908 Bl 4/2003 Loomans 2002/0140731 Al 10/2002 Subramaniam et al.
6,553,563 B2 4/2003 Ambrose et al. 2002/0143997 Al 10/2002 Huang et al.
6,560,461 Bl 5/2003 Fomukong et al. 2002/0162090 Al 10/2002 Parnell et al.
e ’ 2002/0174128 Al 11/2002 Govindarajan et al.
et Ml 03000071 A1 13003 o
6601087 Bl 72003 Zhuetal 2003/0018705 Al 1/2003 Chen et al.
Ce0d 117 By 89003 L.“etal' 2003/0018830 Al 1/2003 Chenetal.
OU, tm et al. 2003/0028540 Al* 2/2003 Lindbergetal. 707/100
6,604,128 B2 8/2003 Diec 2003/0066031 Al 4/2003 Laane et al.
6,609,150 B2~ 8/2003 Leeetal. 2003/0066032 Al 4/2003 Ramachandran et al.
6,611,839 B1* 82003 Nwabuezeccccovvvvirnvrnnn. 1/1 2003/0069936 Al 4/2003 Warner et al.
6,611,840 Bl 82003 Baer et al. 2003/0070000 Al 4/2003 Coker et al.
6,621,834 Bl 9/2003 Scherpbier et al. 2003/0070004 A1 4/2003 Mukundan et al.
6,654,032 Bl 11/2003 Zhu et al. 2003/0070005 Al 4/2003 Mukundan et al.
6,654,039 Bl 11/2003 Hollines et al. 2003/0074418 Al 4/2003 Coker et al.
6,665,648 B2 12/2003 Brodersen et al. 2003/0120675 Al 6/2003 Stauber et al.
6,665,655 Bl 12/2003 Warner et al. 2003/0151633 Al 8/2003 George et al.
6,684,438 B2 2/2004 Brodersen et al. 2003/0154197 Al 8/2003 Millet et al.
6,711,565 Bl 3/2004 Subramaniam et al. 2003/0159136 Al 82003 Huang et al.
6,724,399 Bl 4/2004 Katchour et al 2003/0187921 Al 10/2003 Diec et al.
€778960 Bl 49004 Loommans etal 2003/0204427 Al 10/2003 Gune et al.
e ' 2003/0206192 Al 11/2003 Chen et al.
6,732,095 BL 52004 Warshavsky et al. 2003/0225730 Al 12/2003 Warner et al
6,732,100 B1* 5/2004 Brodersen etal.cc.c...... 1 5004/0001092 Al 1/2004 Rothwein et al
6,732,111 B2 5/2004 Brodersen et al. . ’
2152, 2004/0010489 Al 1/2004 Rio etal.
6,754,681 B2 6/2004 Brodersen et al. 2004/0015981 Al 12004 Coker et al.
6,763,351 Bl 7/2004 Subramaniam et al. 2004/0027388 Al 2/2004 Berg et al.
6,763,501 B1 ~ 7/2004 Zhuetal. 2004/0128001 Al 7/2004 Levin et al.
6,768,904 B2 7/2004 Kim 2004/0139075 Al 7/2004 Brodersen et al.
6,772,229 Bl 8/2004 Achacoso et al. 2004/0186860 Al 9/2004 Lee etal.
6,782,383 B2 8/2004 Subramaniam et al. 2004/0193510 Al 9/2004 Catahan et al.
6,804,330 Bl 10/2004 Jones et al. 2004/0199489 Al 10/2004 Barnes-Leon et al.
6,804,680 B2 10/2004 Melli 2004/0199536 Al 10/2004 Barnes Leon et al.
6,823,384 Bl * 11/2004 Wilsonetal. 709/225 2004/0199543 Al 10/2004 Braud et al.
6,826,565 B2 11/2004 Ritchie et al. 2004/0249854 Al 12/2004 Barnes-Leon et al.
6,826,582 Bl 11/2004 Chatterjee et al. 2004/0260534 Al 12/2004 Pak et al.
6,826,745 B2 11/2004 Coker 2004/0260659 Al 12/2004 Chan et al.
6,829,655 Bl 12/2004 Huang et al. 2004/0268299 Al 12/2004 Lei et al.
6,842,748 Bl 1/2005 Warner et al. 2005/0050555 Al 3/2005 Exley et al.
6,850,895 B2 2/2005 Brodersen et al. 2005/0065925 Al* 3/2005 Weissmanetal. 707/4
6,850,949 B2 2/2005 Warner et al. 2005/0071345 Al 3/2005 Lin

US 9,043,362 B2

Page 3
(56) References Cited 2006/0021019 Al 1/2006 Hinton et al.
2007/0198920 Al* 82007 Lloydetal.ccoeoenenee 715/515
U.S. PATENT DOCUMENTS 2008/0249972 Al 10/2008 Dillon
2009/0063415 Al 3/2009 Chatfield et al.
2005/0091098 Al 4/2005 Brodersen et al. 2010/0205227 Al 8/2010 Weissman et al.
2005/0198048 Al* 9/2005 Barsnessetal. 707/100
2005/0203876 Al* 9/2005 Cragunetal. .. 707/3 * cited by examiner

U.S. Patent May 26, 2015 Sheet 1 of 8 US 9,043,362 B2

/16
fZ@
:22 K‘mw(zfi

{/"28

FIG. 1

U.S. Patent May 26, 2015 Sheet 2 of 8

US 9,043,362 B2

106

-

108
f”““fil -

e I L

=114
E:ﬁy““"

104

100,

FIG. 2

US 9,043,362 B2

Sheet 3 of 8

May 26, 2015

U.S. Patent

£ NPOO
adAy WM
eiep NPOO
Zpoo | |
<
oH#
adAy o
- fio
7 poo
7 poo
L poo |]
mwﬁ - M\W
Biep :
7 poo | |, poo
| POO | | POO
P Pt
prooe| prBIo| 6y 18A Lieatoleal BWEU | hoe | B0 Y07
Nwmf 1z W{mwml\ {(eyepp unosoe) N v nmcmkﬁ%mummnv
£0Z e1.p
s VAN A
Y v .
0ie 00 ¢ o

US 9,043,362 B2

Sheet 4 of 8

May 26, 2015

U.S. Patent

¥ Bid

IN#
& T Bio
Ve T 7
... — Bio
! 4
Tl et adfy | b
Bao
Blep
P! P
B [BAl mmmz omw\,m siqey | Bio | BVZIBA LIBA | O IBA 102
. @Nm..\ ‘zie Mg {erepp Aus)
S J
Y
0Le

US 9,043,362 B2

Sheet 5 of 8

May 26, 2015

U.S. Patent

: m 1N
RUSYE S TAR At] gio
N .UOO mwNNQmw /{anmv ey
L7708
gL oe Bio
9L o8
zooo| gL Loe \\zomw,\
L poo| plUgoe ™
£ :
adAy DL 0B
&MWU m mcm
L poo| g goe
> 08 é///.. |1
adby V0 g oe 0oy Bio
] g9e
2180 L pooy g 708 &\\\\v
m\ ST o6
s o boe
Z Loe
elep P R
| pOO Lo y
N 1BA L {eAl oA I8Pz BAL - Lien | ojea P! pi Ayue
. | | Bio | wosny
,/. @Nw.\\ f,m@vk E.w.m mmvk h
w/y%,w § Oid

U.S. Patent May 26, 2015 Sheet 6 of 8 US 9,043,362 B2

500
¥

Custom_field _definition

Custom fable . field .
) —10rg_ field IS column-
field : name data 1|
- id . name indexed | number
defn_id or id name

Em
(.Y
3
91!
3
L
L
w\j
-

930 | 540 558 560

FIG. 64
600
Custom_Entity Definition
Custom_entity : entity Key
defn_id Org_id name prefix
g1 20 30 40

FiG. 6B

US 9,043,362 B2

Sheet 7 of 8

May 26, 2015

U.S. Patent

L B
£ ZoBU1001 N pOo Asusi(l | 7667100 N pOO
{Lieok §._; L00 | v,.%om
[20st4) . AN
61871001 N POD
Z pool
gLE0YO0Z | g Loo Z poo iexXid | 8yL00 Z POO 4107
02206007 | 487100 Z Poo AQUSI(T | /8100 gPOsl oo
(3t ag 100)
jenuue : :
Mxmcv Gy LO0 72 BOo B
“ m : : L pcol |
1YY cooz | wosddy | (L7100 L POO Flddv | 07100 | poo
1130 LPSe | wooTiaa | 677100 L PoO ER L pool | dion
gl O8'L6 | WOONG| | 877100 L POO wgl | gLoo L POOT oy
{40 {aoud | (ss0ippe :
SUIS) | HOOIS) qem) A% ¢ oo
’ [L__Loo| | pooj]
2 2 2 P! b! Sai] DienUEIs IsUlio SRy B! P!
gepa L 1BA kw@E,, e 610 SP| mb 2pURIS oy swe aoe 610 o,
//I.fsmw.mi\\\ mwmﬁwmimﬁjomum. f. L1/ iiiiifigmmhs\ NONK WNoooE”

US 9,043,362 B2

Sheet 8 of 8

May 26, 2015

U.S. Patent

8 'Oid
Heliolp
o
ZA K
N OO LG LoBY
me,,:mwﬁumw ™ Y
WMHMM@NQQN Qw\ W\OQ m\ UQQ ﬁmggr.NQm
,(018)
m\N@G@QQN w W\OO w\ DOO ﬁm....NOm Mmmwm. Q
W\Q@Q@QON m W\OQ m\ HWUOO mm....mom an» tmor\.v
. Qmaﬂ\:
{orep usweoeds: | (Uonensidap :
19858} 1o888) {snjea 1esse) | (sweu wsse) | (p ooy} L D00 g8 z0e |
L poO} geUioe
P .”.HUOU N M\Om
L poo| | Loe)
P BA " e P p! pt Aypus
P BA £ IEA 2 BA L IEA g BA B0 WOISNT)
//il!...é!l f...!\.\..\\\\ S e 700
£08 VOB % gog

US 9,043,362 B2

1
CUSTOM ENTITIES AND FIELDS IN A
MULTI-TENANT DATABASE SYSTEM

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 12/764,780, filed Apr. 21, 2010, by Craig Weiss-
man et al., which is a continuation of U.S. patent application
Ser. No. 10/817,161, filed Apr. 2, 2004, by Craig Weissman et
al., and issued on Aug. 17, 2010 as U.S. Pat. No. 7,779,039.
Both related patent applications listed hereinabove are hereby
incorporated by reference in their entirety.

BACKGROUND OF THE INVENTION

The present invention relates generally to multi-tenant
databases, and more particularly to systems and methods for
creating custom objects, such as custom entities and fields, in
a multi-tenant database system.

In multi-tenant database systems, such as the salesforce-
.com service, a multi-tenant architecture is used wherein cus-
tomer organizations (i.e., tenants) share database resources in
one logical database. The database tables themselves are typi-
cally shared; each entity in the data model typically contains
an organization_id column that distinguishes rows for each
tenant. All queries and data manipulation in the context of a
tenant filter on this (indexed) organization_id column to
ensure proper security and the appearance of virtual private
databases. In the salesforce.com system, for example, this
strategy is used to expose standard entities such as Account,
Contact, Lead, and Opportunity entities to customers.

However, customers may wish to add their own custom
data to the database system in addition to the standard entities
and fields provided with the standard application. In a tradi-
tional client/server application, where the customer has its
own physical database, adding custom data is typically done
via DDL (data definition language) against that database to
create new physical schema—tables and columns. In an
online multi-tenant database system, such as the salesforce-
.com service, this approach may be untenable for various
reasons. For example, for a database system with a large
population of tenants (e.g., on the order of 1,000 or 10,000 or
more tenants), the union of all desired schema would over-
whelm the underlying data dictionary catalog (e.g., Oracle
dictionary). Additionally, the maintenance of all of these
schema objects would be a nearly impossible burden for
DBAs (database administrators). Further, current relational
databases do not support online DDL (in a highly concurrent
transactional system) well enough for organizations to
remain logically independent. Specifically, the creation of
schema by one organization could lock the application for all
other customers causing unacceptable delays.

Accordingly, it is desirable to provide systems and meth-
ods that offer a flexible approach to storing variable schema
data in a fixed physical schema so as to overcome the above
and other problems.

BRIEF SUMMARY OF THE INVENTION

The present invention provides novel systems and methods
for hosting variable schema data such as dynamic tables and
columns in a fixed physical database schema.

According to the present invention, standard objects, such
as tables are provided for use by multiple tenants or organi-
zations. Each organization may add or define custom fields
for inclusion in a standard object. In one aspect, custom fields

20

25

30

35

40

45

50

55

60

65

2

for multiple tenants are stored in a single field within the
object data structure, and this single field may contain difter-
ent data types for each tenant. Indexing columns are also
provided, wherein a tenant may designate a field for indexing.
Data values for designated fields are copied to an index col-
umn, and each index column may include multiple data types.
Each organization may also define custom objects including
custom fields and indexing columns. In one aspect, custom
objects for multiple tenants are stored in a single custom
object data structure. The primary key values for the single
custom object table are globally unique, but also include an
object-specific identifier which may be re-used among difter-
ent entities.

An example computer-implemented method of storing
multiple fields for multiple tenants in a single multi-tenant
data structure, according to the disclosure, includes defining
amulti-tenant data structure having a plurality of custom data
columns, and defining a first data field for a first tenant. The
first data field has a first data type. The method further
includes defining a second data field for a second tenant. The
second field has a second data type different than the first data
type. The method further includes, when records having data
values in the first and second fields are created by the first and
second tenants, respectively, storing the data values of first
and second fields to a single custom data column in the data
structure. The single custom data column includes data values
have different data types for different tenants.

The example computer-implemented method of storing
multiple fields for multiple tenants in a single multi-tenant
data structure can include one or more of the following fea-
tures. Defining a separate data structure, and for each of the
first and second fields, storing an indication of the corre-
sponding data type in the separate data structure. The separate
data structure has an organization id column, and the method
further includes determining a tenant id for each of the first
and second tenants, and for each of the first and second
tenants, storing the respective tenant id in the organization id
column of the separate data structure. Determining at least
one of the first data field or the second field has been flagged
for indexing, and storing, in the separate data structure, an
indication that the at least one of the first data field or the
second field has been flagged for indexing. Storing an indi-
cation of the data type corresponding to each of the first and
second fields in extensible markup language (XML) format.
The data values of first and second fields are stored in the
single custom data column as text in a canonical format.
Defining a separate data structure having one or more col-
umns, and in response to an indication from one of the first
tenant and the second tenant that data in the first data field or
the second data field, respectively, be unique, copying the
data values stored in the single custom data column corre-
sponding to the first data field or the second data field, respec-
tively, to a column in the separate data structure.

An example computer-readable medium storing code for
controlling a database system to store multiple fields for
multiple tenants in a single multi-tenant data structure,
according to the disclosure, includes code having instructions
to define a multi-tenant data structure having a plurality of
custom data columns, and define a first data field for a first
tenant where the first data field having a first data type. The
code further has instructions to define a second data field for
a second tenant where the second field having a second data
type. The second data type is different than the first data type.
Finally, the code further has instructions to, when records
having data values in the first and second fields are created by
the first and second tenants, respectively, store the data values
of first and second fields to a single custom data column in the

US 9,043,362 B2

3

data structure. The single custom data column includes data
values having different data types for different tenants.

The example computer-readable medium storing code for
controlling a database system to store multiple fields for
multiple tenants in a single multi-tenant data structure can
further include code that provides one or more of the follow-
ing features. Define a separate data structure, and, for each of
the first and second fields, store an indication of the corre-
sponding data type in the separate data structure. The separate
data structure has an organization id column, and the code
further has instructions to determine a tenant id for each of the
first and second tenants, and for each of the first and second
tenants, store the respective tenant id in the organization id
column of the separate data structure. Determine at least one
of the first data field or the second field has been flagged for
indexing, and store, in the separate data structure, an indica-
tion that the at least one of the first data field or the second
field has been flagged for indexing. Store an indication of the
data type corresponding to each of the first and second fields
in extensible markup language (XML) format. The data val-
ues of first and second fields are stored in the single custom
data column as text in a canonical format. Define a separate
data structure having one or more columns, and in response to
an indication from one of the first tenant and the second tenant
that data in the first data field or the second data field, respec-
tively, be unique, copy the data values stored in the single
custom data column corresponding to the first data field or the
second data field, respectively, to a column in the separate
data structure.

An example multi-tenant database system, according to the
disclosure, includes a database for storing multi-tenant data
objects, and a database management process. The database
management process is configured to define a multi-tenant
data structure having a plurality of custom data columns, and
define a first data field for a first tenant where the first data
field having a first data type. The database management pro-
cess is also configured to define a second data field for a
second tenant, where the second field having a second data
type different than the first data type. Finally, the database
management process is also configured to, when records hav-
ing data values in the first and second fields are created by the
first and second tenants, respectively, store the data values of
first and second fields to a single custom data column in the
data structure. The single custom data column includes data
values having different data types for different tenants.

The example multi-tenant database system further can
include a database management process further configured to
provide one or more of the following features. Define a sepa-
rate data structure, and for each of the first and second fields,
store an indication of the corresponding data type in the
separate data structure. The separate data structure has an
organization id column and the database management pro-
cess is further configured to determine a tenant id for each of
the first and second tenants, and for each of the first and
second tenants, store the respective tenant id in the organiza-
tion id column of the separate data structure. Determine at
least one of the first data field or the second field has been
flagged for indexing, and store, in the separate data structure,
an indication that the at least one of the first data field or the
second field has been flagged for indexing. Store an indica-
tion of the data type corresponding to each of the first and
second fields in extensible markup language (XML) format.
The data values of first and second fields are stored in the
single custom data column as text in a canonical format.

Reference to the remaining portions of the specification,
including the drawings and claims, will realize other features
and advantages of the present invention. Further features and

20

25

30

35

40

45

50

55

60

65

4

advantages of the present invention, as well as the structure
and operation of various embodiments of the present inven-
tion, are described in detail below with respect to the accom-
panying drawings. In the drawings, like reference numbers
indicate identical or functionally similar elements.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an environment wherein a multi-tenant
database system (MTS) might be used according to one
embodiment.

FIG. 2 illustrates elements of an MTS and interconnections
therein in more detail according to one embodiment.

FIG. 3 illustrates an example of objects represented as a
standard main table and an associated custom field table
according to an embodiment of the present invention.

FIG. 4 illustrates a custom object represented as a custom
field table 310 including physical index columns 320 accord-
ing to one embodiment.

FIG. 5 illustrates an example of a custom object repre-
sented as a custom entity table according to one embodiment.

FIG. 6a illustrates a custom field definition metadata table
according to an embodiment of the present invention.

FIG. 65 illustrates a metadata table used to record the name
and other information for each custom entity object defined
for each organization according to an embodiment of the
present invention.

FIG. 7 illustrates an example of a standard entity table
including standard columns and custom field columns, as
well as examples of actual data values for multiple fictitious
organizations.

FIG. 8 illustrates an example of a custom entity object
including a custom table having data values for a fictitious
organization.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 illustrates an environment wherein a multi-tenant
database system might be used. As illustrated in FIG. 1 (and
in more detail in FIG. 2) any user systems 12 might interact
via a network 14 with a multi-tenant database system (MTS)
16. The users of those user systems 12 might be users in
differing capacities and the capacity of a particular user sys-
tem 12 might be entirely determined by the current user. For
example, where a salesperson is using a particular user sys-
tem 12 to interact with MTS 16, that user system has the
capacities allotted to that salesperson. However, while an
administrator is using that user system to interact with MTS
16, that user system has the capacities allotted to that admin-
istrator.

Network 14 can be a LAN (local area network), WAN
(wide area network), wireless network, point-to-point net-
work, star network, token ring network, hub network, or other
configuration. As the most common type of network in cur-
rent use is a TCP/IP (Transfer Control Protocol and Internet
Protocol) network such as the global internetwork of net-
works often referred to as the “Internet” with a capital “I,” that
will be used in many of the examples herein, but it should be
understood that the networks that the present invention might
use are not so limited, although TCP/IP is the currently pre-
ferred protocol.

User systems 12 might communicate with MTS 16 using
TCP/IP and, at a higher network level, use other common
Internet protocols to communicate, such as HI'TP, FTP, AFS,
WAP, etc. As an example, where HTTP is used, user system
12 might include an HTTP client commonly referred to as a
“browser” for sending and receiving HT TP messages from an

US 9,043,362 B2

5

HTTP server at MTS 16. Such HTTP server might be imple-
mented as the sole network interface between MTS 16 and
network 14, but other techniques might be used as well or
instead. In some implementations, the interface between
MTS 16 and network 14 includes load sharing functionality,
such as round-robin HTTP request distributors to balance
loads and distribute incoming HTTP requests evenly over a
plurality of servers. Preferably, each ofthe plurality of servers
has access to the MTS’s data, at least as for the users that are
accessing that server.

In preferred aspects, the system shown in FIG. 1 imple-
ments a web-based customer relationship management
(CRM) system. For example, in one aspect, MTS 16 can
include application servers configured to implement and
execute CRM software applications as well as provide related
data, code, forms, web pages and other information to and
from user systems 12 and to store to, and retrieve from, a
database system related data, objects and web page content.
With a multi-tenant system, tenant data is preferably arranged
so that data of one tenant is kept separate from that of other
tenants so that one tenant does not have access to another’s
data, unless such data is expressly shared.

One arrangement for elements of MTS 16 is shown in FIG.
1, including a network interface 20, storage 22 for tenant data,
storage 24 for system data accessible to MTS 16 and possibly
multiple tenants, program code 26 for implementing various
functions of MTS 16, and a process space 28 for executing
MTS system processes and tenant-specific processes, such as
running applications as part of an application service.

Several elements in the system shown in FIG. 1 include
conventional, well-known elements that need not be
explained in detail here. For example, each user system 12
could include a desktop personal computer, workstation, lap-
top, PDA, cell phone, or any WAP-enabled device or any
other computing device capable of interfacing directly or
indirectly to the Internet or other network connection. User
system 12 typically runs an HTTP client, e.g., a browsing
program, such as Microsoft’s Internet Explorer™ browser,
Netscape’s Navigator™ browser, Opera’s browser, or a
WAP-enabled browser in the case of a cell phone, PDA or
other wireless device, or the like, allowing a user (e.g., sub-
scriber of a CRM system) of user system 12 to access, process
and view information and pages available to it from MTS 16
over network 14. Each user system 12 also typically includes
one or more user interface devices, such as a keyboard, a
mouse, touch screen, pen or the like, for interacting with a
graphical user interface (GUI) provided by the browser on a
display (e.g., monitor screen, LCD display, etc.) in conjunc-
tion with pages, forms and other information provided by
MTS 16 or other systems or servers. As discussed above, the
present invention is suitable for use with the Internet, which
refers to a specific global internetwork of networks. However,
it should be understood that other networks can be used
instead of the Internet, such as an intranet, an extranet, a
virtual private network (VPN), a non-TCP/IP based network,
any LAN or WAN or the like.

According to one embodiment, each user system 12 and all
of its components are operator configurable using applica-
tions, such as a browser, including computer code run using a
central processing unit such as an Intel Pentium processor or
the like. Similarly, MTS 16 (and additional instances of
MTS’s, where more than one is present) and all of their
components might be operator configurable using appli-
cation(s) including computer code run using a central pro-
cessing unit such as an Intel Pentium processor or the like, or
multiple processor units. Computer code for operating and
configuring MTS 16 to intercommunicate and to process web

20

25

30

35

40

45

50

55

60

65

6

pages and other data and media content as described herein is
preferably downloaded and stored on a hard disk, but the
entire program code, or portions thereof, may also be stored in
any other volatile or non-volatile memory medium or device
as is well known, such as a ROM or RAM, or provided on any
media capable of storing program code, such as a compact
disk (CD) medium, digital versatile disk (DVD) medium, a
floppy disk, and the like. Additionally, the entire program
code, or portions thereof, may be transmitted and downloaded
from a software source, e.g., over the Internet, or from another
server, as is well known, or transmitted over any other con-
ventional network connection as is well known (e.g., extranet,
VPN, LAN, etc.) using any communication medium and pro-
tocols (e.g., TCP/IP, HTTP, HTTPS, Ethernet, etc.) as are well
known. It will also be appreciated that computer code for
implementing aspects of the present invention can be imple-
mented in any programming language that can be executed on
a server or server system such as, for example, in C, C++,
HTML, Java, JavaScript, any other scripting language, such
as VBScript and many other programming languages as are
well known.

According to one embodiment, each MTS 16 is configured
to provide web pages, forms, data and media content to user
systems 12 to support the access by user systems 12 as tenants
of MTS 16. As such, MTS 16 provides security mechanisms
to keep each tenant’s data separate unless the data is shared.
If more than one MTS is used, they may be located in close
proximity to one another (e.g., in a server farm located in a
single building or campus), or they may be distributed at
locations remote from one another (e.g., one or more servers
located in city A and one or more servers located in city B). As
used herein, each MTS could include one or more logically
and/or physically connected servers distributed locally or
across one or more geographic locations. Additionally, the
term “server” is meant to include a computer system, includ-
ing processing hardware and process space(s), and an asso-
ciated storage system and database application (e.g.,
RDBMS) as is well known in the art. It should also be under-
stood that “server system” and “server” are often used inter-
changeably herein. Similarly, the databases described herein
can be implemented as single databases, a distributed data-
base, a collection of distributed databases, a database with
redundant online or offline backups or other redundancies,
etc., and might include a distributed database or storage net-
work and associated processing intelligence.

FIG. 2 illustrates elements of MTS 16 and various inter-
connections in more detail. In this example, the network
interface is implemented as one or more HTTP application
servers 100. Also shown is system process space 102 includ-
ing individual tenant process spaces 104, a system database
106, tenant database(s) 108 and a tenant management process
space 110. Tenant database 108 might be divided into indi-
vidual tenant storage areas 112, which can be either a physical
arrangement or a logical arrangement. Within each tenant
storage area 112, user storage 114 might similarly be allo-
cated for each user.

It should also be understood that each application server
100 may be communicably coupled to database systems, e.g.,
system database 106 and tenant database(s) 108, via a differ-
ent network connection. For example, one server 100, might
be coupled via the Internet 14, another server 100,, , might be
coupled via a direct network link, and another server 100,,
might be coupled by yet a different network connection.
Transfer Control Protocol and Internet Protocol (TCP/IP) are
preferred protocols for communicating between servers 100
and the database system, however, it will be apparent to one

US 9,043,362 B2

7

skilled in the art that other transport protocols may be used to
optimize the system depending on the network interconnect
used.

In preferred aspects, each application server 100 is config-
ured to handle requests for any user/organization. Because it
is desirable to be able to add and remove application servers
from the server pool at any time for any reason, there is
preferably no server affinity for a user and/or organization to
a specific application server 100. In one embodiment, there-
fore, an interface system (not shown) implementing a load
balancing function (e.g., an F5 Big-IP load balancer) is com-
municably coupled between the servers 100 and the user
systems 12 to distribute requests to the servers 100. In one
aspect, the load balancer uses a least connections algorithm to
route user requests to the servers 100. Other examples of load
balancing algorithms, such as round robin and observed
response time, also can be used. For example, in certain
aspects, three consecutive requests from the same user could
hit three different servers, and three requests from different
users could hit the same server. In this manner, MTS 16 is
multi-tenant, wherein MTS 16 handles storage of different
objects and data across disparate users and organizations.

As an example of storage, one tenant might be a company
that employs a sales force where each salesperson uses MTS
16 to manage their sales process. Thus, a user might maintain
contact data, leads data, customer follow-up data, perfor-
mance data, goals and progress data, etc., all applicable to that
user’s personal sales process (e.g., in tenant database 108). In
the preferred MTS arrangement, since all of this data and the
applications to access, view, modity, report, transmit, calcu-
late, etc., can be maintained and accessed by a user system
having nothing more than network access, the user can man-
age his or her sales efforts and cycles from any of many
different user systems. For example, if a salesperson is visit-
ing a customer and the customer has Internet access in their
lobby, the salesperson can obtain critical updates as to that
customer while waiting for the customer to arrive in the lobby.

While each user’s sales data might be separate from other
users’ sales data regardless of the employers of each user,
some data might be organization-wide data shared or acces-
sible by a plurality of users or all of the sales force for a given
organization that is a tenant. Thus, there might be some data
structures managed by MTS 16 that are allocated at the tenant
level while other data structures might be managed at the user
level. Because an MTS might support multiple tenants
including possible competitors, the MTS should have secu-
rity protocols that keep data, applications and application use
separate. Also, because many tenants will opt for access to an
MTS rather than maintain their own system, redundancy,
up-time and backup are more critical functions and need to be
implemented in the MTS.

In addition to user-specific data and tenant-specific data,
MTS 16 might also maintain system level data usable by
multiple tenants or other data. Such system level data might
include industry reports, news, postings, and the like that are
sharable among tenants.

In certain aspects, client systems 12 communicate with
application servers 100 to request and update system-level
and tenant-level data from MTS 16 that may require one or
more queries to database system 106 and/or database system
108. MTS 16 (e.g., an application server 100 in MTS 16)
generates automatically one or more SQL statements (the
SQL query) designed to access the desired information.

Each database can generally be viewed as a collection of
objects, such as a set of logical tables, containing data fitted
into predefined categories. A “table” is one representation of
a data object, and is used herein to simplify the conceptual

20

25

30

35

40

45

50

55

60

65

8

description of objects and custom objects according to the
present invention. It should be understood that “table” and
“object” may be used interchangeably herein. Each table
generally contains one or more data categories logically
arranged as columns or fields in a viewable schema. Each row
or record of a table contains an instance of data for each
category defined by the fields. For example, a CRM database
may include a table that describes a customer with fields for
basic contact information such as name, address, phone num-
ber, fax number, etc. Another table might describe a purchase
order, including fields for information such as customer,
product, sale price, date, etc. In some multi-tenant database
systems, standard entity tables might be provided. For CRM
database applications, such standard entities might include
tables for Account, Contact, [L.ead and Opportunity data, each
containing pre-defined fields.

Custom Fields

According to one embodiment, for a table such as one for
a standard entity, an additional set of one or more columns,
e.g., 10, 100, or 250 columns, of text data are defined in the
physical schema. These additional columns, also referred to
herein as custom data columns, custom field columns or
custom fields, allow a system administrator to define addi-
tional fields that are not included in the pre-defined standard
fields for that entity. These custom fields preferably have a
data-type of VARCHAR (variable length character). In one
aspect, these custom fields are preferably stored out of row
from the main entity table, although these fields may be stored
in the main table. For example, if the main table is called
“sales.account” then the custom field data might be stored in
a table called “sales.account_cfdata” where “cf” stands for
“custom field”” Both of these tables preferably contain an
organization_id column to distinguish tenant rows, as well as
the same indexed primary key (e.g., account id, in this case)
that identifies those rows throughout the database. Further-
more, both tables are preferably partitioned physically on the
DB (e.g., Oracle DB) to encourage parallelization, for
example, when necessary to act on the entire table for main-
tenance purposes and to maintain shallower indexes.

FIG. 3 illustrates an example of objects represented as a
main table 200 and an associated custom field table 210. In
the specific example shown in FIG. 3, the main table 200
(.account) represents a standard Account entity and the cus-
tom field table 210 (.account_cfdata) includes the custom
fields defined by the various organizations (tenants) using the
main table 200. As shown, main table 200 includes an orga-
nization ID (“org id”) column 201 and a table ID (e.g., “acc
id” for .account id) column 202 that acts as the primary key
for table 200. Data table 200 also includes a plurality of data
columns 203. In the specific example of FIG. 3, where the
table represents a standard entity, data columns 203 are the
predefined data columns, or standard fields, that are provided
to the various organizations that might use the table. In the
standard Account entity example, such standard fields might
include a name column, a site column, a number of employees
column and others as would be useful for storing account-
related information. Each of the data columns 203 is prefer-
ably defined to store a single data type per column. The org id
column 201 is provided to distinguish among organizations
using the multi-tenant account table 200. As shown, N differ-
ent organizations have data stored in table 200. The org ids in
column 201 are preferably Char(15), but may include other
data types. In one aspect, the first 3 characters of the org id is
set to a predefined prefix, such as “00d”, although another
subset of characters in the org id may be used to hold such a
prefix if desired.

US 9,043,362 B2

9

Custom field table 210 similarly includes an org id column
211, a table id column 212 and plurality of data columns 213.
As above, table id column 212 acts as the primary key for
table 210 and preferably includes the same values as table id
column 202 oftable 200. In the specific example shown, there
are 250 data columns 213 labeled as val0, vall . . . val249. It
is appreciated that any other number may be used as desired,
such as, for example, 10 or 100.

When an organization is created initially and associated
with database table 200, the custom field columns 213 are
empty for that organization. However, every time a record or
row is created in the main table (e.g., .account) a correspond-
ing row is created in the custom field table—all custom field
columns are Null, and therefore take up no space until used.

In one aspect, data is only allowed to enter these custom
fields when a new “column” for the organization is defined,
e.g., by the administrator for that organization. For example,
in the Account entity example, it may be desirable for a
specific organization to create one or more additional custom
fields, in addition to the standard fields 203, to store specific
types of data that may not be accounted for in the predefined
standard fields. The present invention advantageously allows
an organization to create additional custom columns for such
data. Rather than defining a physical column (in Oracle, the
definition of which would be placed in the Oracle dictionary
catalog) instead this definition is stored in metadata, e.g.,in a
metadata catalog, which may include one or more metadata
tables. The definition of a physical column could likewise be
stored in XML or some other format.

FIG. 6a illustrates an example of a custom field definition
metadata table 500 (“custom_field_definition™) according to
an embodiment of the present invention. Custom_field_defi-
nition metadata table 500 is used to record the name, datatype
and other information for each custom field column defined
for each organization and table (e.g., standard tables and
custom tables, which will be described in more detail below).
As shown, metadata table 500 includes custom_field_defini-
tion_id column 510, organization_id column 520, table name
or id column 530, field name column 540, field datatype
column 550, is_indexed column 560 and a column_number
column 570. Organization_id column 520 stores the org id of
the organization for which the custom field is created, and the
custom_field_definition_id column is the primary key for
table 500. Table name column 530 stores the names of stan-
dard entity tables, such as Account, or the id of custom entity
tables created for an organization. Field name column 540
stores the text name of the custom field, and field datatype
column 550 stores the data type for the custom field.
Examples of data types include text, number, date, picklist,
etc. A picklist data type is a text field where the value is chosen
from an enumerated list of values. A picklist is typically
displayed as a dropdown in the UI. Is_indexed column 560
stores a value indicating whether the field has been flagged for
indexing, which will be described in more detail below. In one
aspect, column 560 stores a boolean value. Column_number
column 570 stores the column number (e.g., “val0”) assigned
to a custom field in custom field table 210 (FIG. 3).

The creation of a new custom field in the application allo-
cates one of the custom field columns 213 to hold the data. In
preferred aspects, the lowest numbered columns are filled
first. For example, as shown in FIG. 3, the “val0” column is
filled first and then the “vall” column and so on for each
organization. Therefore, depending on the number of custom
columns defined by an organization, each custom field 213
may or may not contain data for an organization. Now, when
users of the application in an organization edit rows for that
table, the new custom field appears on the screen (or via the

20

25

30

35

40

45

50

55

60

65

10
API), which will appear the same as all the other standard
fields. However, when this data is persisted in the database,
the value of the custom field is stored in the designated cus-
tom field column in the separate custom field table 210,
instead of in the standard main table 200.

In one aspect, a variety of virtual data-types are allowed for
these custom fields even though the underlying physical stor-
age may be character based. When the organization’s system
administrator defines numeric or date custom field types, for
instance, then the values are stored as text in a canonical
format that allows easy conversion back to the logical data-
type. As mentioned earlier, in one aspect, a data type of
VARCHAR is preferably used. For instance, in this aspect,
dates are stored in the YYYYMMDD format—which allows
for conversion via the TO_DATE(<column>, ‘YYYYM-
MDD’) function and also allows for proper sorting without
doing any conversion. For numbers, the usual decimal format
is used, and the Oracle function TO_NUMBER() may be
used to convert back to numeric values for sorting, math-
ematical operations, and filtering, etc.

Because the database is multi-tenant, a given physical cus-
tom field column may contain data across multiple organiza-
tions. For example, because an organization is not limited to
specific data types, one organization may define one data type
such as a date and another organization may define a different
data type such as a string or a number. Therefore it is likely
that strings, numbers, and dates will all be found in one
physical custom field column. FIG. 3 illustrates an example of
a custom field column containing different data types. As
shown in the “val0” custom column, for example, the custom
column data type defined by organization 1 is data type 1, the
custom column data type defined by organization 2 is data
type 2, and the custom column data type defined by organi-
zation N is data type 3. Data types 1, 2 and 3 may be the same
orthey may be different. For example, data type 1 may be text,
data type 2 may be date, and data type 3 may be number. FIG.
7, and the related discussion below, illustrates an example
where different data types are mixed in a custom field column.
In one aspect, a separate pool of columns is provided for
custom fields of different data types, i.e., each of the custom
field columns in the separate pool contains a single data type.

In one embodiment, metadata is used to determine the data
type(s) in a given custom field column. That is, metadata is
used to track the logical data type for each organization in
each custom column. In one aspect, a mapping function is
created from the metadata. For example, when an organiza-
tion defines a custom field for a standard entity, a custom field
definition is stored in metadata table 500 including the orga-
nization id for that organization, the table name (e.g.,
.account_ctdata) and the column number assigned in the cus-
tom table (e.g., val0). In this manner, the data type(s) in any
custom column can be determined for efficient data retrieval
given the column number, table name and organization id.
Custom Field Indexing

Now consider the problem of indexing the data in these
custom field columns (e.g., columns 213) to allow for fast
retrieval. For example, users expect to filter on date values as
dates and numeric values as numbers. However, in order for
these filters to work efficiently, given the expressions above
used to convert their values, it would be necessary to place a
functional index (e.g., an Oracle DB functional index) on
each organization’s slice of the data in a given custom field
column. This is not possible from the Oracle DB perspective
because the Oracle DB does not understand that one physical
column contains data in multiple formats. For example, if one
tries to create an index on the TO_DATE or TO_NUMBER

US 9,043,362 B2

11

expressions above, an error would result since other textual
values in that physical column would not conform to the
desired format.

Similarly, when searching on string data, users expect case
insensitive searches. That is, searching for “car” should find
“CAR” or “CaR.” However, the definition of case insensitive
is language dependent, and a service (e.g., CRM service)
using such a multi-tenant database structure may be multi-
language enabled. To search properly on multi-language data
requires the use of a functional index built using various NLS
(natural language standards) functions in Oracle. Since a
given physical column could contain data in multiple lan-
guages it would be necessary to build N different indexes for
each of the languages supported which would result in a
non-scalable solution.

For the reasons listed above, such “Indexed Custom
Fields” are implemented in one embodiment by storing data
in a separate set of indexed columns. According to one
embodiment of the present invention, a plurality of additional
index columns are provided to allow for indexing custom
fields. When a custom field is flagged for indexing by a
database administrator, one of the plurality of index columns
is allocated to that flagged column. Data from the flagged
column is copied to the allocated index column. The data is
stored in the index column in a format that facilitates search-
ing, e.g., for dates and strings. For example, the YYYYM-
MDD is itself a searchable format as strings in that format can
be compared lexically using normal string comparison.

FIG. 4 illustrates an example of a custom object repre-
sented as a custom field table 310 including physical index
columns 320 according to one embodiment. In one aspect,
each custom field data table contains multiple (e.g., 10, 100,
250, etc.) physically indexed columns 320, e.g., using stan-
dard Oracle B*Tree indexes. In an example with 10 indexed
columns, an administrator can therefore designate up to 10
custom fields, of string or date types, to be indexed. When a
custom field is flagged for indexing, the data in the original
column (which is still maintained to display the un-modified
format to the user when necessary) is copied to one of these
indexed columns. For example, as shown in FIG. 4, custom
data field “val0” was flagged by the system administrator for
organization 1 as an indexed custom column. Data from this
flagged column is copied to the index column “ival0”. Simi-
larly, custom data field “vall” was flagged by the system
administrator for organization 2 as an indexed custom col-
umn, and the data from this flagged column is copied to index
column “ival0”. At some later time, the system administrator
for organization 2 may have flagged another custom field
column and the data for this column is copied to another index
column (e.g., column “val0” data copied to column “ivall” as
shown in FIG. 4). In one aspect, similar to the custom fields,
the lowest numbered index columns are preferably used or
filled first.

In one aspect, to avoid the problem with searching across
multiple languages, a “case folding” algorithm is imple-
mented (e.g., in an application server) that converts each
string custom field value to a universal case insensitive for-
mat. One such case folding algorithm is an algorithm defined
by the Unicode Consortium in the Unicode 4.0 standard,
section 3.13-Caseless Matching (http://www.unicode.org/
versions/Unicode4.0.0/ch03.pdf), hereby incorporated by
reference, which is a tabular lookup function that converts
characters to a form that is binary comparable independent of
case for all languages that have a concept of case. Whenever
values in the original custom field column are searched, the
SQL instead filters on the corresponding case-folded indexed
column after performing the same case folding operation on

20

25

30

35

40

45

50

55

60

65

12

the literal being searched. Dates need not be modified from
their YYYYMMDD format, which is also included in the
index (unmodified) as text.

Organizations that choose not to use indexed custom fields
will have null values in these fields, and Nulls do not take up
any space in the indexes. In this manner space is used up in the
database only as custom columns are actually indexed. Also,
index columns 320 are preferably stored in the corresponding
custom field table, however, they may be stored out of row, in
which case it is preferred that the org id 311 and table id 312
columns be copied to the separate indexed column table to
facilitate searching.

Custom Field Uniqueness

Another desired schema feature is the concept of a unique-
ness constraint. Again, a unique index cannot be placed on a
custom field physical column because, although the values
may be unique for one organization, they may not be unique
for some other organization that shares that physical column.
For example, it is possible that two records for two different
organizations would have the same exact data value stored in
the same custom field.

To implement this uniqueness feature, in one aspect, a
separate table is provided that contains only the data values
for customers who require uniqueness. Once the organization
administrator has enabled a custom field for uniqueness, all
values for that organization are inserted in this unique index
table, and ongoing changes to that custom field column are
updated synchronously to the unique index table (described
below). If either of these operations causes an Oracle DB
unique index violation then the error is passed back to the end
user—the administrator would need to “clean up” the data in
a field before declaring it unique.

One schema for a unique index maintenance table is as
follows:

1. organization_id

2. custom field_definition id

3. custom field value

This schema allows multiple custom fields from the same
organization (and entity) to be indexed. The first two columns
are preferably compressed in the Oracle DB unique index
since that would make the physical index smaller, and this
table could be index organized since its only purpose as a
table is to be used as a unique index.

Custom Tables

Itis also desirable to create whole new logical entity tables
(entities) for the purpose of extending a base application or
for integrating with other systems. For example, an organiza-
tion using the standard entities provided by the system may
desire that one or more new entities be created to specifically
cater to, and to facilitate data storage and retrieval for, that
organization’s particular business model. Accordingly, one
embodiment of the present invention provides the function-
ality to create custom entity tables or custom entities.

As with the approach for custom fields, all custom entity
data rows are stored in a single multi-tenant physical table
according to one embodiment. However, unlike standard cus-
tom field tables, the custom entity data table in one aspect
contains multiple logical tables per organization. It is trans-
parent to customers that their multiple “tables” are in fact
stored in one large table.

FIG. 5 illustrates an example of a custom object repre-
sented as a custom entity table 400 according to one embodi-
ment. Table 400 includes an org id column 401, a custom
entity id column 402 and a plurality of custom field columns
403 (labeled “val0”, “vall”™, ...). A plurality of optional index
columns 420 (labeled “ival0”, “ivall”, . . .) may also be
provided. The org id column is used to distinguish among the

US 9,043,362 B2

13

various organizations populating table 400. For example,
multiple organizations may create custom entities, all of
which are stored to table 400 in one aspect. Custom entity id
column 402 is used to distinguish among the various custom
entity tables stored in table 400. Custom entity id column 402
also acts as the primary key column for table 400. Custom
field columns 403 are used to store the data for the various
custom entities defined by the various organizations. Specifi-
cally, custom field columns 403 store the columns defined for
each of the various custom entities defined by the various
organizations populating table 400. Index columns 420 are
implemented similar to custom field indexed columns 320
described above with reference to FIG. 4.

According to one embodiment, the first 3 characters of the
globally unique primary key field 402 are used to identify the
specific entity type. This technique advantageously allows for
multiple custom entity types for one organization to be dis-
tinguished in this one custom entity table 400 as will be
discussed below. It will be appreciated, however, that fewer or
more than the first 3 characters of the primary key may be
used to identify entities, or that any subcombination of char-
acters of the primary key may be used.

When an organization administrator defines a new custom
entity, the definition is stored in the metadata instead of the
underlying data dictionary. FIG. 64 illustrates an example of
a custom entity definition metadata table 600 (“custom_enti-
ty_definition™) according to an embodiment of the present
invention. When a new custom entity is defined, the database
system allocates a unique (within that organization) 3-char-
acter prefix for rows of that entity type. In one aspect, the
letter “a’ is chosen as the first character of all custom entity
primary keys, e.g.,a01 .. .a02...a03...aMN...as shown
in column 402 of table 400. As shown, across all organiza-
tions the same 3-character prefix may be re-used. For
example, “a01” is reused as a prefix for multiple organiza-
tions. However, the remainder of the custom entity id ensures
global uniqueness (and that data from different organizations
is never mingled). In one aspect, these 3-character id’s are
encoded in base 62, so that each initial character allows for
62%62=3844 different custom entity types per organiza-
tion—a large enough number for virtually all uses. It should
be appreciated, however, that different encoding bases may
be used to provide a fewer or greater number of custom entity
types per organization. It should also be appreciated that the
entity id field may be a composite primary key, for example,
spanning two or more columns, one column for the prefix and
the other column(s) for the remainder of the custom entity id.
For the sake of simplicity, row partitions are not shown in
table 400, however organization partitions 450 and entity
partitions 460 are shown.

Referring to FIG. 65, custom_entity_definition metadata
table 600 is used to record the name and other information for
each custom entity object defined for each organization. As
shown, metadata table 600 includes custom_entity_defini-
tion_id column 610, organization_id column 620, enti-
ty_name column 630, and key prefix column 540. Organiza-
tion_id column 620 stores the org id of the organization for
which the custom entity is created, and the custom_
entity_definition_id column 610 is the primary key for table
600. Entity name column 630 stores the names of the custom
entity table, e.g., as a text datatype. Key prefix column 640
stores the 3-character prefix (e.g., “a01”, “a02”, etc.) allo-
cated for rows of that entity type.

When creating a custom entity table, the administrator for
an organization specifies a unique (within the organization)
developer name for the custom entity—this is the name used
to identify that particular entity for API calls and other devel-

20

25

30

35

40

45

50

55

60

65

14

oper entry points into the system. This name is stored in the
entity name column 630 of table 600. Custom fields may also
be defined for custom entities, and where desired, custom
fields may be flagged for indexing, as described above. Once
custom fields are defined for the custom entity, the organiza-
tion can begin to use that custom entity like any other standard
entity. For example, all API operations (e.g., describe, insert,
update, delete, query, search) are available and the organiza-
tion may define a user interface for editing that custom entity
in an online application. Transparent to the users and organi-
zation, however, the custom entity table is stored in a single
custom entity table 400 along with other custom entity tables
defined by that organization as well as other organizations.

One difference in terms of SQL when operating on a cus-
tom entity table is the need to filter on the custom entity id in
addition to the organization id to ensure that the data from
multiple logical entity types within one organization are not
mixed together. For example, the leading 3-character portion
of the primary key index (e.g., a01 . . . aMN) can be used for
this efficient filtering. Thus, filtering on the organization id
and the 3-character prefix provides a determination of a spe-
cific entity type for the organization. Similarly, an insert
PL/SQL call should be told which 3-character prefix to use
when inserting a new primary key value and custom entity
row.

Similar to custom field columns 213 of FIG. 3, custom field
columns 403 may contain multiple data types. For example,
when organization #1 defines custom entity table 1 (identified
by “a01” for org 1 “00d1” in table 400) a custom field column
definition having data type 1 may be allocated to the “val0”
column as shown. Similarly, a custom field column definition
for a second custom entity table (identified by “a02” for org 1)
having data type 2 may be allocated to the same “val0” col-
umn as shown. Data types 1 and 2 may be the same or
different. In this manner, it is possible that numerous data
types may be stored in any given custom field column 403 in
custom entity table 400 for the various custom entities defined
by the various organizations. Accordingly, using optional
index fields 420, an organization is able to flag one or more
columns in its custom entities for indexing as described
above. Filtering would also proceed similar to that discussed
above.

In one embodiment, foreign keys may be defined as a data
type when creating custom entities. In this manner a relation-
ship with a standard entity, or another custom entity may be
provided to facilitate data storage and retrieval (e.g., reduce
redundant data storage). For example, when defining a cus-
tom entity, a system administrator may define a custom field
as a foreign key data type to establish a relationship with one
or more other entities. The primary key for the related entity
is copied and stored in that custom field. In one aspect, a
plurality of columns is provided to store custom fields of type
foreign key. These separate columns may be indexed.
Specific Examples

FIG. 7 illustrates an example of a standard entity table 700
including standard columns 703 and custom field columns
713, as well as examples of actual data values for multiple
organizations. As shown, the standard table 700 represents an
Account entity having a standard name field and other stan-
dard fields 703. In this example, ABC Corp. (identified by
“00d1” in org id field 701) has defined a custom column for
“account web address” that has been allocated to the val0
column. The data type for this custom field is defined as text.
Additionally, ABC Corp. has defined a second custom field
for “account stock price”, which has been allocated to the vall
column, and a third custom field for “account ticker symbol”,
which has been allocated to another column. The data types

US 9,043,362 B2

15

for these columns are number and text, respectively. Simi-
larly, 123 Corp. (identified by “00d2” in org id field 701) and
XYZ Corp. (identified by “00dN” in org id field 701) have
each defined a custom field for “account next annual meeting
date” and “account fiscal year”, respectively. The data types
for these custom fields are date and picklist, respectively.
These custom fields have both been allocated to the val0
column, even though their data types are different. The defi-
nitions of these custom fields are stored to metadata, e.g.,
metadata table 500, as discussed above.

As shown, table 700 holds account data for ABC Corp.
including specific account data for “IBM”, “Dell” and
“Apple” as shown. Similarly, table 700 also holds account
data for 123 Corp. and XYZ Corp. As shown, both 123 Corp.
and XYZ Corp. each have a specific entry for an account with
the same name: “Disney”. However, these entries are distin-
guished based on the globally unique primary key 702 (or
712). For example, for XYZ Corp., the account entry for
“Disney” has a primary key value of “001 . . . 932”, whereas
the “Disney” account entry for 123 Corp. has a primary key
value of “001 . . . 87”. As above, the data values in the val0
custom column have mixed data types. For example, for ABC
Corp. the “web address™ field is text, whereas the “next
annual meeting date” field for 123 Corp. has a date data type,
and the “fiscal year” field for XYZ Corp. has a picklist data

pe.
FIG. 8 illustrates an example of a custom entity object 800
including an custom table 810 for ABC Corp. As shown, ABC
Corp. (identified by “00d1” in org id column 801) has defined
a custom object 810 to represent Assets. The definition of
Assets object 810 is stored to metadata, e.g., in table 600
(FIG. 6b). Assets object 810 has been allocated the prefix
“a02” for the custom entity id. Also, as shown, ABC Corp. has
defined another custom object, e.g., identified by prefix “a01”
in custom entity id column 802. A separate column may be
provided in table 800 to store the prefixes (e.g., “a01”) of the
various objects stored in table 800. Assets object 810 has been
defined with a custom foreign key column and various data
columns. The custom foreign key (FK) column is allocated to
the “Val0” column, whereas data fields for “asset name”,
“asset value”, “asset depreciation type” and “asset replace-
ment date” have been allocated to columns “Vall” to “Val4”,
respectively. In this example, the data types for these fields are
text, number, picklist and date, respectively.

Assets object 810 is a child custom object of Account
object 700. The custom foreign key column connects each
row in object 810 to its parent account (in these examples,
Account object 700 has been allocated a prefix of “001” for its
table id). For example, the foreign key value “001 . . . 97
connects to the row in table 700 for account name “DELL”.
Similarly, the foreign key values “001 ...8”and “001 ... 10”
connect to the rows in table 700 for account names “IBM” and
“APPLE”, respectively. Also, as shown, XYZ Corp. (identi-
fied by “00dN” in org id column 801) has defined a custom
object to suit their business needs, which custom objectis also
stored in table 800. As such, any given data column 803 may
contain mixed data types depending on the definitions of the
various custom objects stored in table 800.

Re-usable Services

One goal of custom entities is not only to support a grid of
data (e.g., rows and columns configured by organizations/
customers) but also to support the same set of application
high-level semantic services exposed for standard entities.
This provides for a system that is not only more than just an
online data provider, but also an application-building infra-
structure with rich re-usable services.

20

25

30

35

40

45

50

55

60

65

16

With reference to the salesforce.com service, several
examples of such reusable services, and how they apply to
custom entities, follow:

History Tracking

Standard entities in salesforce.com (such as Case and
Opportunity entities) support automatic auditing of data
changes to records. This auditing typically occurs at a low-
level in the application server where all data is being written
to the database. This same code path is preferably used with
custom entities.

The same generalized schema used for standard entities
works for custom entities as well—this is preferably a pivoted
schema with one field delta per row:

1. organization_id

2. custom entity data id

3. custom field definition id

4. old value

5. new value.

However, it may be a non-pivoted schema. A non-pivoted
schema has columns for each separate piece of information. It
looks like an excel spreadsheet:

D Name Phone Email address

111 Craig 555-1212 foo@bar.com

A pivoted schema uses generic column names such as:

ID Property Name Property Value
111 Name Craig

111 Phone 555-1212

111 Email Address foo@bar.com

The pivoted schema has many more rows in it, but the rows
are skinnier (imagine if there were 50 columns of data—that
would turn into 50 rows in the pivoted schema, but the pivoted
schema itself would have the same columns). So a normal
schema is short and wide, whereas a pivoted schema is tall
and skinny. A pivoted schema is useful, for example, for
auditing purposes such as for providing a case history related
list—where the user is shown every field value change as one
row in a grid. Pivoted schemas, however, are typically diffi-
cult to use for normal data display like a detail screen with all
the information for a person.

If the administrator “turns on” this property in the defini-
tion of the custom entity and custom field then this behavior
happens automatically (changes are logged to this one multi-
tenant auditing table). The data in this generic history table is
available for display in the online application or via an API
query.

As an example, consider changes made to a standard entity
such as Case. The system might record the following history
rows when edits to Case are saved:

Case
Orgld Id Field Name Old Value New Value Date
00d1 5001 Subject Problem with Problem with Mar. 4, 2004
Disc drive Disk Drive
00d1 5001 Status Open In Progress Mar. 4, 2004
00d1 5001 Priority Low Medium Mar. 4, 2004
00d1 5002 Status Open Closed Mar. 5, 2004
00d1 5002 Rep Name Frank Sally Mar. 5, 2004
(custom)

US 9,043,362 B2

17
The above data records two edit operations, one for case 5001
that occurred on Mar. 4, 2004, and another for case 5002 that
occurred on Mar. 5, 2004. Several fields were edited each
time.

As another example, consider changes made to the Assets
custom object 810 of FIG. 8. An example of history tracking
rows for a single edit operation made on Mar. 4, 2004 might
look like the following:

Cust
Org Id EntId Field Name OldValue New Value Date
00d1 a02 Asset Name LaptopX LaptopY Mar. 4, 2004
00d1 a02 Asset Value 50 45 Mar. 4, 2004
00d1 a02 Deprec. Type Linear Accelerated Mar. 4, 2004

All this information is recorded automatically by the system.
The user interface (UI) might present the information similar
to that shown above, or in any other convenient format.
Permission Based Security and Sharing Model

Administrators may wish to restrict access to particular
entity types from particular user profiles—in the same way
that standard entities have permissions such as EDIT_AC-
COUNT.

The administrator can define that a given entity type
requires an explicit READ or EDIT permission. A generic
profileCustomEntity metadata table (available for edit
through the API) allows creation of relationship rows that
associate a profile (read access) with a custom entity type and
optionally declares whether users in that profile can edit rows
in that entity type.

The common Application Server and PL/SQL code that
retrieves and edits custom entity data can then check this
metadata for the current user and reject the operation if the
user does not have the proper permission.

In one aspect, a sharing model allows even finer granularity
of access to rows—in addition to the permission checks
above. The administrator, when defining a custom entity type,
can choose whether the entity type is editable by all users
(Public Read/Write), read-only for all users (Public Read/
Only), or privately available only to the owner of a record or
to users who are granted explicit sharing access to a record
(Private).

To support the latter sharing model, in one aspect, a stan-
dard owner field is added to the custom entity data table and
becomes available in the API. The same semantics attached to
the owner field in other standard entities apply. For example,
managers in the role hierarchy gain access to all records
owned by a subordinate. Also, a generic sharing entity, e.g.,
customEntityShare, is used in one aspect for entering manual
explicit sharing access for particular custom entity rows to
users or groups—in the same way that the accountShare
entity is available in the API (and UI) to allow granting
explicit account access.

Currency Type

A standard field in custom entities is a single currency type
that controls the currency of all numeric currency custom
fields in that row. This functionality is consistent with all
standard entities and allows for the same currency translation
as elsewhere in the application.

Multiple Business Processes per Entity Type

Standard entities allow for the definition of multiple
“Record Types” or business processes. For instance, an
opportunity entity can have both telesales opportunities as
well as direct sales opportunities. Depending on the record

20

25

30

35

40

45

50

55

60

65

18

type of an individual opportunity row, the values available for
picklist fields change as configured by the organization
administrator.

Custom entities also allow for the specification of this same
metadata by the administrator. The picklist custom fields in
that entity are preferably affected in the same manner as for
standard entities.

Workflow

In one aspect, the present invention provides for the defi-
nition of trigger conditions and actions for specific entity
types. For instance, if an opportunity amount exceeds a par-
ticular value (trigger condition) then a notification, such as an
email, is sent (action) to a predesignated individual or group,
e.g., the VP of sales of that organization.

Once again the metadata used internally for defining these
rules preferably operates similarly for custom entities as for
standard entities. The code, e.g., executing in an application
server or database server, that evaluates these conditions for
each row edit occurs at a low level where both standard and
custom entities are able to take advantage of this functional-
ity.

While the invention has been described by way of example
and in terms of the specific embodiments, it is to be under-
stood that the invention is not limited to the disclosed embodi-
ments. To the contrary, it is intended to cover various modi-
fications and similar arrangements as would be apparent to
those skilled in the art. Therefore, the scope of the appended
claims should be accorded the broadest interpretation so as to
encompass all such modifications and similar arrangements.

What is claimed is:
1. A computer-implemented method of storing multiple
fields for multiple tenants in a single multi-tenant data struc-
ture, comprising:
defining a multi-tenant data structure having a plurality of
custom data columns and at least one organization iden-
tifier (ID) column that stores a tenant ID value;

defining a first data field for a first tenant, the first data field
having a first data type;

defining a second data field for a second tenant, the second

field having a second data type, wherein the second data
type is different than the first data type;

for each of the first and second fields, storing correspond-

ing data type definition in a definitional data structure;
and

when records having data values in the first and second

fields are created for the first and second tenants, respec-
tively, storing the data values of first and second fields to
a single custom data column in the multi-tenant data
structure, wherein the single custom data column
includes data values having different data types for dif-
ferent tenants as defined by the definitional data struc-
ture.

2. The method of claim 1, further comprising:

determining a location of the single custom data column in

the multi-tenant data structure; and

for each of the first and second fields, storing the location in

the definitional data structure.

3. The method of claim 1, wherein the definitional data
structure has an organization id column, the method further
comprising:

determining a tenant id for each of the first and second

tenants; and

for each of the first and second tenants, storing the respec-

tive tenant id in the organization id column of the defi-
nitional data structure.

US 9,043,362 B2

19

4. The method of claim 1, further comprising:

determining at least one of the first data field or the second

field has been flagged for indexing; and

storing, in the definitional data structure, an indication that

the at least one of the first data field or the second field
has been flagged for indexing.

5. The method of claim 1, further comprising storing an
indication of the data type corresponding to each of the first
and second fields in extensible markup language (XML) for-
mat.

6. The method of claim 1, wherein the data values of first
and second fields are stored in the single custom data column
as text in a canonical format.

7. The method of claim 1, further comprising:

defining a definitional data structure having one or more

columns; and

in response to an indication from one of the first tenant and

the second tenant that data in the first data field or the
second data field, respectively, be unique, copying the
data values stored in the single custom data column
corresponding to the first data field or the second data
field, respectively, to a column in the second definitional
data structure.

8. A non-transitory computer-readable medium storing
code for controlling a database system to store multiple fields
for multiple tenants in a single multi-tenant data structure, the
code comprising instructions to:

define a multi-tenant data structure having a plurality of

custom data columns and at least one organization iden-
tifier (ID) column that stores a tenant ID value;

define a first data field for a first tenant, the first data field

having a first data type;

define a second data field for a second tenant, the second

field having a second data type, wherein the second data
type is different than the first data type;
for each of the first and second fields, store corresponding
data type definition in a definitional data structure; and

when records having data values in the first and second
fields are created for the first and second tenants, respec-
tively, store the data values of first and second fields to a
single custom data column in the multi-tenant data struc-
ture, wherein the single custom data column includes
data values having different data types for different ten-
ants as defined by the definitional data structure.

9. The computer-readable medium of claim 8, wherein the
code further comprises instructions to:

determine a location of the single custom data column in

the multi-tenant data structure; and

for each of the first and second fields, store the location in

the definitional data structure.

10. The computer-readable medium of claim 8, wherein the
definitional data structure has an organization id column and
the code further comprising instructions to:

determine a tenant id for each of the first and second ten-

ants; and

for each of'the first and second tenants, store the respective

tenant id in the organization id column of the definitional
data structure.

11. The computer-readable medium of claim 8, the code
further comprises instructions to:

determine at least one of the first data field or the second

field has been flagged for indexing; and

store, in the definitional data structure, an indication that

the at least one of the first data field or the second field
has been flagged for indexing.

12. The computer-readable medium of claim 8, the code
further comprises instructions to store an indication of the

20

25

30

35

40

45

50

55

60

65

20

data type corresponding to each of the first and second fields
in extensible markup language (XML) format.

13. The computer-readable medium of claim 8, wherein the
data values of first and second fields are stored in the single
custom data column as text in a canonical format.

14. The computer-readable medium of claim 8, wherein the
code further comprises instructions to:

define a second definitional data structure having one or

more columns; and

in response to an indication from one of the first tenant and

the second tenant that data in the first data field or the
second data field, respectively, be unique, copy the data
values stored in the single custom data column corre-
sponding to the first data field or the second data field,
respectively, to a column in the second definitional data
structure.

15. A multi-tenant database system, comprising:

a database for storing multi-tenant data objects; and

a database management process configured to:

define a multi-tenant data structure having a plurality of
custom data columns and at least one organization
identifier (ID) column that stores a tenant ID value;
define a first data field for a first tenant, the first data field
having a first data type;
define a second data field for a second tenant, the second
field having a second data type, wherein the second
data type is different than the first data type;
for each of the first and second fields, store correspond-
ing data type definition in a definitional data structure;
and
when records having data values in the first and sec-
ond fields are created for the first and second ten-
ants, respectively, storing the data values of first
and second fields to a single custom data column in
the multi-tenant data structure, wherein the single
custom data column includes data values having
different data types for different tenants as defined
by the definitional data structure.

16. The multi-tenant database system of claim 15, wherein
the database management process is further configured to:

determine a location of the single data column in the multi-

tenant data structure; and

for each of the first and second fields, store the location in

the definitional data structure.

17. The multi-tenant database system of claim 15, wherein
the definitional data structure has an organization id column
and the database management process is further configured
to:

determine a tenant id for each of the first and second ten-

ants; and

for each of the first and second tenants, store the respective

tenant id in the organization id column of the definitional
data structure.

18. The multi-tenant database system of claim 15, wherein
the database management process is further configured to:

determine at least one of the first data field or the second

field has been flagged for indexing; and

store, in the definitional data structure, an indication that

the at least one of the first data field or the second field
has been flagged for indexing.

19. The multi-tenant database system of claim 15, wherein
the database management process is further configured to
store an indication of the data type corresponding to each of
the first and second fields in extensible markup language
(XML) format.

US 9,043,362 B2
21 22

20. The multi-tenant database system of claim 15, wherein
the data values of first and second fields are stored in the
single custom data column as text in a canonical format.

#* #* #* #* #*

