
(12) United States Patent 
Weissman et al. 

USOO9043362B2 

(10) Patent No.: US 9,043,362 B2 
(45) Date of Patent: *May 26, 2015 

(54) 

(75) 

(73) 

(*) 

(21) 

(22) 

(65) 

(63) 

(51) 

(52) 

(58) 

CUSTOMIENTITIES AND FELDS INA 
MULT-TENANT DATABASE SYSTEM 

Inventors: Craig Weissman, San Francisco, CA 
(US); Simon Wong, Redwood City, CA 
(US) 

Assignee: salesforce.com, inc., San Francisco, CA 
(US) 

Notice: Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 
U.S.C. 154(b) by 7 days. 
This patent is Subject to a terminal dis 
claimer. 

Appl. No.: 13/281,607 

Filed: Oct. 26, 2011 

Prior Publication Data 

US 2012/OO41986 A1 Feb. 16, 2012 

Related U.S. Application Data 
Continuation of application No. 12/764,780, filed on 
Apr. 21, 2010, now Pat. No. 8,112,445, which is a 
continuation of application No. 10/817,161, filed on 
Apr. 2, 2004, now Pat. No. 7,779,039. 

Int. C. 
G06F 7700 (2006.01) 
G06F 7/30 (2006.01) 
U.S. C. 
CPC. G06F 17/30595 (2013.01); G06F 17/30607 

(2013.01) 
Field of Classification Search 
USPC ................................... 707/999.101,790, 791 
See application file for complete search history. 

200 

(56) References Cited 

U.S. PATENT DOCUMENTS 

5,577,188 A 11, 1996 Zhu 
5,608,872 A 3, 1997 Schwartz et al. 
5,649,104 A 7/1997 Carleton et al. 
5,715.450 A 2f1998 Ambrose et al. 
5,737,592 A 4/1998 Nguyen et al. 
5,761419 A 6/1998 Schwartz et al. 
5,794,229 A 8, 1998 French et al. 
5,799,310 A * 8/1998 Anderson et al. ..................... 1.1 
5,819,038 A 10, 1998 Carleton et al. 
5,821,937 A 10, 1998 Tonelli et al. 
5,831,610 A 11/1998 Tonelli et al. 

(Continued) 

FOREIGN PATENT DOCUMENTS 

JP 2001-14329 1, 2001 
JP 2004-30221 1, 2004 
WO WOO1.77787 A2 10, 2001 

OTHER PUBLICATIONS 

PCT/US05/10915, International Search Report, Apr. 20, 2007, 3 
pageS. 

Primary Examiner — Hosain Alam 
Assistant Examiner — Eliyah S. Harper 
(74) Attorney, Agent, or Firm — Haynes Beffel & Wolfeld 
LLP; Ernest J. Beffel, Jr. 
(57) ABSTRACT 
Systems and methods for hosting variable schema data Such 
as dynamic tables and columns in a fixed physical database 
schema. Standard objects, such as tables are provided for use 
by multiple tenants or organizations in a multi-tenant data 
base system. Each organization may add or define custom 
fields for inclusion in a standard object. Custom fields for 
multiple tenants are stored in a custom data column within the 
object data structure, and this single custom data column may 
contain different data types for each tenant. 

20 Claims, 8 Drawing Sheets 

210 

date 203 
(..account 202-o-o- (account.cfdata) 21 3. 

name valova Iva 24 
data 
type 

ood 2 
ood 2 

data 
type 
2 

odd 2 

Og 
i 

god 1 lood 
ood 1 lood 2 

ood 1 

org 

org oocM data 
type 

#N oodN 3 

12 211 

  



US 9,043,362 B2 
Page 2 

(56) References Cited 6.959,306 B2 * 10/2005 Nwabueze ............................ 1.1 
7,062,502 B1 6/2006 Kesler 

U.S. PATENT DOCUMENTS 7,069,497 B1 6/2006 Desai 
7,181,758 B1 2, 2007 Chan 

5,873,096 A 2f1999 Lim et al. 7,209,929 B2 * 4, 2007 Dominguez et al. .......... 707/781 
5,918,159 A 6/1999 Fomukong et al. 7,313,572 B2 * 12/2007 Lin ....................................... 1.1 

7.340,411 B2 3/2008 Cook 5,963,953 A 10, 1999 Cram et al. 
ck 7.340,481 B1 3/2008 Baer et al. 

6,047.291 A 4/2000 Anderson et al. ............. 707/792 7.356.482 B2 4/2008 Frankland etal 
6,092,083. A 7/2000 Brodersen et al. 7401094 B1 7/2008 Kesler 
$229. A 29 Susack 7,412,455 B2 8/2008 Dillon 
6,134,542 A * 10/2000 Rustige ................................. 1f1 7,434.257 B2 10/2008 Garget al. 
6,161,149 A 12/2000 Achacoso et al. 7,508,789 B2 3, 2009 Chan 
6,169,534 B1 1/2001 Raffel et al. 7,603483 B2 10/2009 Psounis et al. 
6,173,439 B1 1/2001 Carlson et al. 7.620,655 B2 11/2009 Larsson et al. 
6,178.425 B1 1/2001 Brodersen et al. 7,698,160 B2 4/2010 Beaven et al. 
6,189,011 B1 2/2001 Lim et al. 7,779,039 B2 8/2010 Weissman et al. 
6,216,135 B1 4/2001 Brodersen et al. 8,015,495 B2 9/2011 Achacoso et al. 
6,233,617 B1 5, 2001 Rothwein et al. 8,073,850 B1 12/2011 Hubbard et al. 
6,266,669 B1 7/2001 Brodersen et al. 8,082,301 B2 12/2011 Ahlgren et al. 
6,275,825 B1 8/2001 Kobayashi et al. 8,095,413 B1 1/2012 Beaven 
6,295,530 B1 9, 2001 Ritchie et al. 8,095,594 B2 1/2012 Beaven et al. 
6,324,568 B1 1 1/2001 Diec et al. 8,275,836 B2 9/2012 Beaven et al. 

8.457,545 B2 6, 2013 Chan 
8.484,111 B2 7/2013 Frankland et al. 

2001/0044791 A1 11/2001 Richter et al. 

6,324,693 B1 1 1/2001 Brodersen et al. 
6,336,137 B1 1/2002 Lee et al. 
D454,139 St 3/2002 Feldcamp et al. 2002/0022986 A1 2/2002 Coker et al. 
656. B. 32.92 (hichetkins et al. 2002/0029161 A1 3/2002 Brodersen et al. 
6,366,921 B1 4/2002 Hansen et al. ........................ 1f1 2002/002937.6 A1 3/2002 Ambrose et al. 
6,367,077 B1 4/2002 Brodersen et al. 2002/0035577 A1 3/2002 Brodersen et al. 
6,377,955 B1 4/2002 Hartmann et al. 2002fOO42264 A1 4, 2002 Kim 
6,393,605 B1 5/2002 Loomans 2002fOO42843 A1 4, 2002 Diec 
6,405,220 B1 6/2002 Brodersen et al. 2002fOO72951 A1 6, 2002 Lee et al. 
6,434,550 B1 8/2002 Warner et al. 2002fOO82892 A1 6, 2002 Raffel 
6,446,089 B1 9, 2002 Brodersen et al. 2002/0129352 A1 9, 2002 Brodersen et al. 
6,535,909 B1 3/2003 Rust 2002/0133484 A1 9, 2002 Chau et al. 
6,549,908 B1 4/2003 Loomans 2002/0140731 A1 10/2002 Subramaniam et al. 
6,553,563 B2 4/2003 Ambrose et al. 2002/0143997 A1 10/2002 Huang et al. 
6,560,461 B1 5/2003 Fomukong et al. 2002/0162090 Al 10/2002 Parnell et al. 
6,574,635 B2 6/2003 Stauber et al. 2002/0165742 Al 11/2002 Robbins 
6,577,726 B1 6/2003 Huang et al. 2002/0174128 A1 1 1/2002 Govindarajan et al. 

2003,0004971 A1 1/2003 Gong 
2003, OO18705 A1 1/2003 Chen et al. 
2003, OO1883.0 A1 1/2003 Chen et al. 

6,587,854 B1 7/2003 Guthrie et al. 
6,601,087 B1 7/2003 Zhu et al. 
6,604,117 B2 8, 2003 Lim et al. 2003/0028.540 A1 2/2003 Lindberg et al. .............. 7O7/1OO 
6,604,128 B2 8/2003 Diec 5688. A 1568 El 
6,609,150 B2 8/2003 Lee et al. 2003/0066032 A1 4/2003 Ramachandran et al. 
6,611,839 B1* 8/2003 Nwabueze ............................ 1f1 2003, OO69936 A1 4, 2003 Warner et al. 
6,611,840 B1 8, 2003 Baer et al. 2003/0070000 A1 4/2003 Coker et al. 
6,621,834 B1 9/2003 Scherpbier et al. 2003/0070004 A1 4/2003 Mukundan et al. 
6,654,032 B1 11/2003 Zhu et al. 2003/0070005 A1 4/2003 Mukundan et al. 
6,654,039 B1 11/2003 Hollines et al. 2003, OO74418 A1 4/2003 Coker et al. 
6,665,648 B2 12/2003 Brodersen et al. 2003/O120675 A1 6/2003 Stauber et al. 
6,665,655 B1 12/2003 Warner et al. 2003. O151633 A1 8/2003 George et al. 
6,684,438 B2 2, 2004 Brodersen et al. 2003/O154197 A1 8, 2003 Millet et al. 
6,711,565 B1 3/2004 Subramaniam et al. 2003/0159136 A1 8/2003 Huang et al. 
6,724,399 B1 4/2004 Katchour et al. 2003. O187921 A1 10, 2003 Diec et al. 
6,728,702 B1 4, 2004 Subramaniam et al. 2003. O189600 A1 10, 2003 Guneet al. 

2003/0204427 A1 10, 2003 Guneet al. 
2003/0206192 A1 11/2003 Chen et al. 
2003,0225,730 A1 12/2003 Warner et al. 

6,728,960 B1 4/2004 Loomans et al. 
6,732,095 B1 5/2004 Warshavsky et al. 
6,732,100 B1* 5/2004 Brodersen et al. .................... 1f1 
6,732,111 B2 5/2004 Brodersen et al. 2.999; A 39 Stynet al. 
6,754,681 B2 6/2004 Brodersen et al. 2004/0015981 A1 1/2004 Coker et al. 
6,763,351 B1 7/2004 Subramaniam et al. 2004/0027388 A1 2/2004 Berg et al. 
6,763,501 B1 7/2004 Zhu et al. 2004.0128001 A1 7/2004 Levin et al. 
6,768,904 B2 7/2004 Kim 2004/O139075 A1 7/2004 Brodersen et al. 
6,772,229 B1 8/2004 Achacoso et al. 2004/0186860 A1 9, 2004 Lee et al. 
6,782,383 B2 8/2004 Subramaniam et al. 2004/019351.0 A1 9, 2004 Catahan et al. 
6,804,330 B1 10/2004 Jones et al. 2004/0199489 A1 10, 2004 Barnes-Leon et al. 
6,804,680 B2 10/2004 Melli 2004/0199536 A1 10, 2004 Barnes Leon et al. 
6,823,384 B1 * 1 1/2004 Wilson et al. ................. 709,225 2004/0199.543 A1 10, 2004 Braud et al. 
6,826,565 B2 11/2004 Ritchie et al. 2004/0249854 A1 12/2004 Barnes-Leon et al. 
6.826,582 B1 1 1/2004 Chatterjee et al. 2004/0260534 A1 12, 2004 Pak et al. 
6,826,745 B2 11/2004 Coker 2004/0260659 A1 12/2004 Chan et al. 
6.829,655 B1 12/2004 Huang et al. 2004/0268299 A1 12/2004 Lei et al. 
6,842,748 B1 1/2005 Warner et al. 2005/0050555 A1 3/2005 Exley et al. 
6,850,895 B2 2/2005 Brodersen et al. 2005/0065925 A1 3/2005 Weissman et al. ................ 7O7/4 
6,850,949 B2 2/2005 Warner et al. 2005, 0071345 A1 3, 2005 Lin 



US 9,043,362 B2 
Page 3 

(56) References Cited 2006, 0021019 A1 1/2006 Hinton et al. 
2007/0198920 A1* 8/2007 Lloyd et al. ................... 715,515 

U.S. PATENT DOCUMENTS 2008/0249.972 A1 10, 2008 Dillon 
2009 OO63415 A1 3/2009 Chatfield et al. 

2005/009 1098 A1 4/2005 Brodersen et al. 2010/0205227 A1 8/2010 Weissman et al. 
2005, 0198048 A1* 9, 2005 Barsness et al. .............. 707/100 
2005/0203876 A1* 9/2005 Cragun et al. .................... 707/3 * cited by examiner 



U.S. Patent May 26, 2015 Sheet 1 of 8 US 9,043,362 B2 

G. 

  



U.S. Patent May 26, 2015 Sheet 2 of 8 US 9,043,362 B2 

re. 

  



US 9,043,362 B2 Sheet 3 of 8 May 26, 2015 U.S. Patent 

SI?,sae 

  

  

  

  



US 9,043,362 B2 Sheet 4 of 8 May 26, 2015 U.S. Patent 

  



US 9,043,362 B2 

640 

Sheet 5 of 8 May 26, 2015 

~ 0 

U.S. Patent 

  

  



U.S. Patent May 26, 2015 Sheet 6 of 8 US 9,043,362 B2 

50 y 

Custom field definition 

S CC - 

res. A 

SO y 
Custom Entity Definition 

FG. 63 

  



US 9,043,362 B2 Sheet 7 of 8 May 26, 2015 U.S. Patent 

  



US 9,043,362 B2 Sheet 8 of 8 May 26, 2015 U.S. Patent 

„………voel | praeue | | ujosno | 
  



US 9,043,362 B2 
1. 

CUSTOMIENTITIES AND FELDS INA 
MULT-TENANT DATABASE SYSTEM 

CROSS-REFERENCES TO RELATED 
APPLICATIONS 

This application is a continuation of U.S. patent applica 
tion Ser. No. 12/764,780, filed Apr. 21, 2010, by Craig Weiss 
man et al., which is a continuation of U.S. patent application 
Ser. No. 10/817,161, filed Apr. 2, 2004, by Craig Weissman et 
al., and issued on Aug. 17, 2010 as U.S. Pat. No. 7,779,039. 
Both related patent applications listed hereinabove are hereby 
incorporated by reference in their entirety. 

BACKGROUND OF THE INVENTION 

The present invention relates generally to multi-tenant 
databases, and more particularly to systems and methods for 
creating custom objects, such as custom entities and fields, in 
a multi-tenant database system. 

In multi-tenant database systems, such as the salesforce 
.com service, a multi-tenant architecture is used wherein cus 
tomer organizations (i.e., tenants) share database resources in 
one logical database. The database tables themselves are typi 
cally shared; each entity in the data model typically contains 
an organization id column that distinguishes rows for each 
tenant. All queries and data manipulation in the context of a 
tenant filter on this (indexed) organization id column to 
ensure proper security and the appearance of virtual private 
databases. In the salesforce.com system, for example, this 
strategy is used to expose standard entities such as Account, 
Contact, Lead, and Opportunity entities to customers. 

However, customers may wish to add their own custom 
data to the database system in addition to the standard entities 
and fields provided with the standard application. In a tradi 
tional client/server application, where the customer has its 
own physical database, adding custom data is typically done 
via DDL (data definition language) against that database to 
create new physical Schema-tables and columns. In an 
online multi-tenant database system, Such as the salesforce 
.com service, this approach may be untenable for various 
reasons. For example, for a database system with a large 
population of tenants (e.g., on the order of 1,000 or 10,000 or 
more tenants), the union of all desired schema would over 
whelm the underlying data dictionary catalog (e.g., Oracle 
dictionary). Additionally, the maintenance of all of these 
schema objects would be a nearly impossible burden for 
DBAs (database administrators). Further, current relational 
databases do not support online DDL (in a highly concurrent 
transactional system) well enough for organizations to 
remain logically independent. Specifically, the creation of 
schema by one organization could lock the application for all 
other customers causing unacceptable delays. 

Accordingly, it is desirable to provide systems and meth 
ods that offer a flexible approach to storing variable schema 
data in a fixed physical schema So as to overcome the above 
and other problems. 

BRIEF SUMMARY OF THE INVENTION 

The present invention provides novel systems and methods 
for hosting variable schema data Such as dynamic tables and 
columns in a fixed physical database schema. 

According to the present invention, standard objects, such 
as tables are provided for use by multiple tenants or organi 
Zations. Each organization may add or define custom fields 
for inclusion in a standard object. In one aspect, custom fields 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
for multiple tenants are stored in a single field within the 
object data structure, and this single field may contain differ 
ent data types for each tenant. Indexing columns are also 
provided, wherein a tenant may designate a field for indexing. 
Data values for designated fields are copied to an index col 
umn, and each index column may include multiple data types. 
Each organization may also define custom objects including 
custom fields and indexing columns. In one aspect, custom 
objects for multiple tenants are stored in a single custom 
object data structure. The primary key values for the single 
custom object table are globally unique, but also include an 
object-specific identifier which may be re-used among differ 
ent entities. 
An example computer-implemented method of storing 

multiple fields for multiple tenants in a single multi-tenant 
data structure, according to the disclosure, includes defining 
a multi-tenant data structure having a plurality of custom data 
columns, and defining a first data field for a first tenant. The 
first data field has a first data type. The method further 
includes defining a second data field for a second tenant. The 
second field has a second data type different than the first data 
type. The method further includes, when records having data 
values in the first and second fields are created by the first and 
second tenants, respectively, storing the data values of first 
and second fields to a single custom data column in the data 
structure. The single custom data column includes data values 
have different data types for different tenants. 
The example computer-implemented method of storing 

multiple fields for multiple tenants in a single multi-tenant 
data structure can include one or more of the following fea 
tures. Defining a separate data structure, and for each of the 
first and second fields, storing an indication of the corre 
sponding data type in the separate data structure. The separate 
data structure has an organizationid column, and the method 
further includes determining a tenant id for each of the first 
and second tenants, and for each of the first and second 
tenants, storing the respective tenant id in the organization id 
column of the separate data structure. Determining at least 
one of the first data field or the second field has been flagged 
for indexing, and storing, in the separate data structure, an 
indication that the at least one of the first data field or the 
second field has been flagged for indexing. Storing an indi 
cation of the data type corresponding to each of the first and 
second fields in extensible markup language (XML) format. 
The data values of first and second fields are stored in the 
single custom data column as text in a canonical format. 
Defining a separate data structure having one or more col 
umns, and in response to an indication from one of the first 
tenant and the second tenant that data in the first data field or 
the second data field, respectively, be unique, copying the 
data values stored in the single custom data column corre 
sponding to the first data field or the second data field, respec 
tively, to a column in the separate data structure. 
An example computer-readable medium storing code for 

controlling a database system to store multiple fields for 
multiple tenants in a single multi-tenant data structure, 
according to the disclosure, includes code having instructions 
to define a multi-tenant data structure having a plurality of 
custom data columns, and define a first data field for a first 
tenant where the first data field having a first data type. The 
code further has instructions to define a second data field for 
a second tenant where the second field having a second data 
type. The second data type is different than the first data type. 
Finally, the code further has instructions to, when records 
having data values in the first and second fields are created by 
the first and second tenants, respectively, store the data values 
of first and second fields to a single custom data column in the 



US 9,043,362 B2 
3 

data structure. The single custom data column includes data 
values having different data types for different tenants. 
The example computer-readable medium storing code for 

controlling a database system to store multiple fields for 
multiple tenants in a single multi-tenant data structure can 
further include code that provides one or more of the follow 
ing features. Define a separate data structure, and, for each of 
the first and second fields, store an indication of the corre 
sponding data type in the separate data structure. The separate 
data structure has an organization id column, and the code 
further has instructions to determineatenantid for each of the 
first and second tenants, and for each of the first and second 
tenants, store the respective tenant id in the organization id 
column of the separate data structure. Determine at least one 
of the first data field or the second field has been flagged for 
indexing, and store, in the separate data structure, an indica 
tion that the at least one of the first data field or the second 
field has been flagged for indexing. Store an indication of the 
data type corresponding to each of the first and second fields 
in extensible markup language (XML) format. The data Val 
ues of first and second fields are stored in the single custom 
data column as text in a canonical format. Define a separate 
data structure having one or more columns, and in response to 
an indication from one of the first tenant and the second tenant 
that data in the first data field or the second data field, respec 
tively, be unique, copy the data values stored in the single 
custom data column corresponding to the first data field or the 
second data field, respectively, to a column in the separate 
data structure. 
An example multi-tenant database system, according to the 

disclosure, includes a database for storing multi-tenant data 
objects, and a database management process. The database 
management process is configured to define a multi-tenant 
data structure having a plurality of custom data columns, and 
define a first data field for a first tenant where the first data 
field having a first data type. The database management pro 
cess is also configured to define a second data field for a 
second tenant, where the second field having a second data 
type different than the first data type. Finally, the database 
management process is also configured to, when records hav 
ing data values in the first and second fields are created by the 
first and second tenants, respectively, store the data values of 
first and second fields to a single custom data column in the 
data structure. The single custom data column includes data 
values having different data types for different tenants. 
The example multi-tenant database system further can 

include a database management process further configured to 
provide one or more of the following features. Define a sepa 
rate data structure, and for each of the first and second fields, 
store an indication of the corresponding data type in the 
separate data structure. The separate data structure has an 
organization id column and the database management pro 
cess is further configured to determine a tenant id for each of 
the first and second tenants, and for each of the first and 
second tenants, store the respective tenant id in the organiza 
tion id column of the separate data structure. Determine at 
least one of the first data field or the second field has been 
flagged for indexing, and store, in the separate data structure, 
an indication that the at least one of the first data field or the 
second field has been flagged for indexing. Store an indica 
tion of the data type corresponding to each of the first and 
second fields in extensible markup language (XML) format. 
The data values of first and second fields are stored in the 
single custom data column as text in a canonical format. 

Reference to the remaining portions of the specification, 
including the drawings and claims, will realize other features 
and advantages of the present invention. Further features and 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
advantages of the present invention, as well as the structure 
and operation of various embodiments of the present inven 
tion, are described in detail below with respect to the accom 
panying drawings. In the drawings, like reference numbers 
indicate identical or functionally similar elements. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 illustrates an environment wherein a multi-tenant 
database system (MTS) might be used according to one 
embodiment. 

FIG. 2 illustrates elements of an MTS and interconnections 
therein in more detail according to one embodiment. 

FIG. 3 illustrates an example of objects represented as a 
standard main table and an associated custom field table 
according to an embodiment of the present invention. 

FIG. 4 illustrates a custom object represented as a custom 
field table 310 including physical index columns 320 accord 
ing to one embodiment. 

FIG. 5 illustrates an example of a custom object repre 
sented as a custom entity table according to one embodiment. 

FIG. 6a illustrates a custom field definition metadata table 
according to an embodiment of the present invention. 

FIG. 6b illustrates a metadata table used to record the name 
and other information for each custom entity object defined 
for each organization according to an embodiment of the 
present invention. 

FIG. 7 illustrates an example of a standard entity table 
including standard columns and custom field columns, as 
well as examples of actual data values for multiple fictitious 
organizations. 

FIG. 8 illustrates an example of a custom entity object 
including a custom table having data values for a fictitious 
organization. 

DETAILED DESCRIPTION OF THE INVENTION 

FIG. 1 illustrates an environment wherein a multi-tenant 
database system might be used. As illustrated in FIG. 1 (and 
in more detail in FIG. 2) any user systems 12 might interact 
via a network 14 with a multi-tenant database system (MTS) 
16. The users of those user systems 12 might be users in 
differing capacities and the capacity of a particular user sys 
tem 12 might be entirely determined by the current user. For 
example, where a salesperson is using a particular user sys 
tem 12 to interact with MTS 16, that user system has the 
capacities allotted to that salesperson. However, while an 
administrator is using that user system to interact with MTS 
16, that user system has the capacities allotted to that admin 
istrator. 
Network 14 can be a LAN (local area network), WAN 

(wide area network), wireless network, point-to-point net 
work, star network, token ring network, hub network, or other 
configuration. As the most common type of network in cur 
rent use is a TCP/IP (Transfer Control Protocol and Internet 
Protocol) network such as the global internetwork of net 
works often referred to as the “Internet” with a capital “I” that 
will be used in many of the examples herein, but it should be 
understood that the networks that the present invention might 
use are not so limited, although TCP/IP is the currently pre 
ferred protocol. 

User systems 12 might communicate with MTS 16 using 
TCP/IP and, at a higher network level, use other common 
Internet protocols to communicate, such as HTTP, FTP, AFS, 
WAP, etc. As an example, where HTTP is used, user system 
12 might include an HTTP client commonly referred to as a 
“browser' for sending and receiving HTTP messages from an 



US 9,043,362 B2 
5 

HTTP server at MTS 16. Such HTTP server might be imple 
mented as the sole network interface between MTS 16 and 
network 14, but other techniques might be used as well or 
instead. In some implementations, the interface between 
MTS 16 and network 14 includes load sharing functionality, 
such as round-robin HTTP request distributors to balance 
loads and distribute incoming HTTP requests evenly over a 
plurality of servers. Preferably, each of the plurality of servers 
has access to the MTS's data, at least as for the users that are 
accessing that server. 

In preferred aspects, the system shown in FIG. 1 imple 
ments a web-based customer relationship management 
(CRM) system. For example, in one aspect, MTS 16 can 
include application servers configured to implement and 
execute CRM software applications as well as provide related 
data, code, forms, web pages and other information to and 
from user systems 12 and to store to, and retrieve from, a 
database system related data, objects and web page content. 
With a multi-tenant system, tenant data is preferably arranged 
so that data of one tenant is kept separate from that of other 
tenants so that one tenant does not have access to another's 
data, unless such data is expressly shared. 
One arrangement for elements of MTS 16 is shown in FIG. 

1, including a network interface 20, storage 22 for tenant data, 
storage 24 for system data accessible to MTS 16 and possibly 
multiple tenants, program code 26 for implementing various 
functions of MTS 16, and a process space 28 for executing 
MTS system processes and tenant-specific processes, such as 
running applications as part of an application service. 

Several elements in the system shown in FIG. 1 include 
conventional, well-known elements that need not be 
explained in detail here. For example, each user system 12 
could include a desktop personal computer, workstation, lap 
top, PDA, cell phone, or any WAP-enabled device or any 
other computing device capable of interfacing directly or 
indirectly to the Internet or other network connection. User 
system 12 typically runs an HTTP client, e.g., a browsing 
program, such as Microsoft's Internet ExplorerTM browser, 
Netscape's NavigatorTM browser, Opera's browser, or a 
WAP-enabled browser in the case of a cell phone, PDA or 
other wireless device, or the like, allowing a user (e.g., Sub 
scriber of a CRM system) of user system 12 to access, process 
and view information and pages available to it from MTS 16 
over network 14. Each user system 12 also typically includes 
one or more user interface devices, such as a keyboard, a 
mouse, touch screen, pen or the like, for interacting with a 
graphical user interface (GUI) provided by the browser on a 
display (e.g., monitor Screen, LCD display, etc.) in conjunc 
tion with pages, forms and other information provided by 
MTS 16 or other systems or servers. As discussed above, the 
present invention is suitable for use with the Internet, which 
refers to a specific global internetwork of networks. However, 
it should be understood that other networks can be used 
instead of the Internet, Such as an intranet, an extranet, a 
virtual private network (VPN), a non-TCP/IP based network, 
any LAN or WAN or the like. 

According to one embodiment, each user system 12 and all 
of its components are operator configurable using applica 
tions, such as a browser, including computer code run using a 
central processing unit Such as an Intel Pentium processor or 
the like. Similarly, MTS 16 (and additional instances of 
MTS’s, where more than one is present) and all of their 
components might be operator configurable using appli 
cation(s) including computer code run using a central pro 
cessing unit Such as an Intel Pentium processor or the like, or 
multiple processor units. Computer code for operating and 
configuring MTS 16 to intercommunicate and to process web 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
pages and other data and media content as described herein is 
preferably downloaded and stored on a hard disk, but the 
entire program code, orportions thereof, may also be stored in 
any other volatile or non-volatile memory medium or device 
as is well known, such as a ROM or RAM, or provided on any 
media capable of storing program code, such as a compact 
disk (CD) medium, digital versatile disk (DVD) medium, a 
floppy disk, and the like. Additionally, the entire program 
code, orportions thereof, may be transmitted and downloaded 
from a software source, e.g., over the Internet, or from another 
server, as is well known, or transmitted over any other con 
ventional network connection as is well known (e.g., extranet, 
VPN, LAN, etc.) using any communication medium and pro 
tocols (e.g., TCP/IP, HTTP, HTTPS, Ethernet, etc.) as are well 
known. It will also be appreciated that computer code for 
implementing aspects of the present invention can be imple 
mented in any programming language that can be executed on 
a server or server system Such as, for example, in C, C++, 
HTML, Java, JavaScript, any other scripting language. Such 
as VBScript and many other programming languages as are 
well known. 

According to one embodiment, each MTS 16 is configured 
to provide web pages, forms, data and media content to user 
systems 12 to support the access by user systems 12 as tenants 
of MTS 16. As such, MTS 16 provides security mechanisms 
to keep each tenants data separate unless the data is shared. 
If more than one MTS is used, they may be located in close 
proximity to one another (e.g., in a server farm located in a 
single building or campus), or they may be distributed at 
locations remote from one another (e.g., one or more servers 
located in city A and one or more servers located in city B). As 
used herein, each MTS could include one or more logically 
and/or physically connected servers distributed locally or 
across one or more geographic locations. Additionally, the 
term 'server” is meant to include a computer system, includ 
ing processing hardware and process space(s), and an asso 
ciated storage system and database application (e.g., 
RDBMS) as is well known in the art. It should also be under 
stood that “server system’’ and “server are often used inter 
changeably herein. Similarly, the databases described herein 
can be implemented as single databases, a distributed data 
base, a collection of distributed databases, a database with 
redundant online or offline backups or other redundancies, 
etc., and might include a distributed database or storage net 
work and associated processing intelligence. 

FIG. 2 illustrates elements of MTS 16 and various inter 
connections in more detail. In this example, the network 
interface is implemented as one or more HTTP application 
servers 100. Also shown is system process space 102 includ 
ing individual tenant process spaces 104, a system database 
106, tenant database(s) 108 and a tenant management process 
space 110. Tenant database 108 might be divided into indi 
vidual tenant storage areas 112, which can be eitheraphysical 
arrangement or a logical arrangement. Within each tenant 
storage area 112, user storage 114 might similarly be allo 
cated for each user. 

It should also be understood that each application server 
100 may be communicably coupled to database systems, e.g., 
system database 106 and tenant database(s) 108, via a differ 
ent network connection. For example, one server 100 might 
be coupled via the Internet 14, another server 100 might be 
coupled via a direct network link, and another server 100 
might be coupled by yet a different network connection. 
Transfer Control Protocol and Internet Protocol (TCP/IP) are 
preferred protocols for communicating between servers 100 
and the database system, however, it will be apparent to one 



US 9,043,362 B2 
7 

skilled in the art that other transport protocols may be used to 
optimize the system depending on the network interconnect 
used. 

In preferred aspects, each application server 100 is config 
ured to handle requests for any user/organization. Because it 
is desirable to be able to add and remove application servers 
from the server pool at any time for any reason, there is 
preferably no server affinity for a user and/or organization to 
a specific application server 100. In one embodiment, there 
fore, an interface system (not shown) implementing a load 
balancing function (e.g., an F5 Big-IP load balancer) is com 
municably coupled between the servers 100 and the user 
systems 12 to distribute requests to the servers 100. In one 
aspect, the load balanceruses a least connections algorithm to 
route user requests to the servers 100. Other examples of load 
balancing algorithms, such as round robin and observed 
response time, also can be used. For example, in certain 
aspects, three consecutive requests from the same user could 
hit three different servers, and three requests from different 
users could hit the same server. In this manner, MTS 16 is 
multi-tenant, wherein MTS 16 handles storage of different 
objects and data across disparate users and organizations. 
As an example of storage, one tenant might be a company 

that employs a sales force where each salesperson uses MTS 
16 to manage their sales process. Thus, a user might maintain 
contact data, leads data, customer follow-up data, perfor 
mance data, goals and progress data, etc., all applicable to that 
user's personal sales process (e.g., intenant database 108). In 
the preferred MTS arrangement, since all of this data and the 
applications to access, view, modify, report, transmit, calcu 
late, etc., can be maintained and accessed by a user system 
having nothing more than network access, the user can man 
age his or her sales efforts and cycles from any of many 
different user systems. For example, if a salesperson is visit 
ing a customer and the customer has Internet access in their 
lobby, the salesperson can obtain critical updates as to that 
customer while waiting for the customerto arrive in the lobby. 

While each user's sales data might be separate from other 
users’ sales data regardless of the employers of each user, 
Some data might be organization-wide data shared or acces 
sible by a plurality of users or all of the sales force for a given 
organization that is a tenant. Thus, there might be some data 
structures managed by MTS 16 that are allocated at the tenant 
level while other data structures might be managed at the user 
level. Because an MTS might support multiple tenants 
including possible competitors, the MTS should have secu 
rity protocols that keep data, applications and application use 
separate. Also, because many tenants will opt for access to an 
MTS rather than maintain their own system, redundancy, 
up-time and backup are more critical functions and need to be 
implemented in the MTS. 

In addition to user-specific data and tenant-specific data, 
MTS 16 might also maintain system level data usable by 
multiple tenants or other data. Such system level data might 
include industry reports, news, postings, and the like that are 
sharable among tenants. 

In certain aspects, client systems 12 communicate with 
application servers 100 to request and update system-level 
and tenant-level data from MTS 16 that may require one or 
more queries to database system 106 and/or database system 
108. MTS 16 (e.g., an application server 100 in MTS 16) 
generates automatically one or more SQL statements (the 
SQL query) designed to access the desired information. 

Each database can generally be viewed as a collection of 
objects, such as a set of logical tables, containing data fitted 
into predefined categories. A “table' is one representation of 
a data object, and is used herein to simplify the conceptual 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

8 
description of objects and custom objects according to the 
present invention. It should be understood that “table' and 
“object” may be used interchangeably herein. Each table 
generally contains one or more data categories logically 
arranged as columns or fields in a viewable schema. Each row 
or record of a table contains an instance of data for each 
category defined by the fields. For example, a CRM database 
may include a table that describes a customer with fields for 
basic contact information Such as name, address, phone num 
ber, fax number, etc. Another table might describe a purchase 
order, including fields for information Such as customer, 
product, sale price, date, etc. In some multi-tenant database 
systems, standard entity tables might be provided. For CRM 
database applications, such standard entities might include 
tables for Account, Contact, Lead and Opportunity data, each 
containing pre-defined fields. 
Custom Fields 

According to one embodiment, for a table Such as one for 
a standard entity, an additional set of one or more columns, 
e.g., 10, 100, or 250 columns, of text data are defined in the 
physical schema. These additional columns, also referred to 
herein as custom data columns, custom field columns or 
custom fields, allow a system administrator to define addi 
tional fields that are not included in the pre-defined standard 
fields for that entity. These custom fields preferably have a 
data-type of VARCHAR (variable length character). In one 
aspect, these custom fields are preferably stored out of row 
from the main entity table, although these fields may be stored 
in the main table. For example, if the main table is called 
“sales.account then the custom field data might be stored in 
a table called "sales.account cfdata' where “cf stands for 
“custom field. Both of these tables preferably contain an 
organization idcolumn to distinguish tenant rows, as well as 
the same indexed primary key (e.g., account id, in this case) 
that identifies those rows throughout the database. Further 
more, both tables are preferably partitioned physically on the 
DB (e.g., Oracle DB) to encourage parallelization, for 
example, when necessary to act on the entire table for main 
tenance purposes and to maintain shallower indexes. 

FIG. 3 illustrates an example of objects represented as a 
main table 200 and an associated custom field table 210. In 
the specific example shown in FIG. 3, the main table 200 
(..account) represents a standard Account entity and the cus 
tom field table 210 (account cfdata) includes the custom 
fields defined by the various organizations (tenants) using the 
main table 200. As shown, main table 200 includes an orga 
nization ID (“org id') column 201 and a table ID (e.g., “acc 
id' for account id) column 202 that acts as the primary key 
for table 200. Data table 200 also includes a plurality of data 
columns 203. In the specific example of FIG. 3, where the 
table represents a standard entity, data columns 203 are the 
predefined data columns, or standard fields, that are provided 
to the various organizations that might use the table. In the 
standard Account entity example, Such standard fields might 
include a name column, a site column, a number of employees 
column and others as would be useful for storing account 
related information. Each of the data columns 203 is prefer 
ably defined to store a single data type per column. The orgid 
column 201 is provided to distinguish among organizations 
using the multi-tenant account table 200. As shown, N differ 
ent organizations have data stored in table 200. The orgids in 
column 201 are preferably Char(15), but may include other 
data types. In one aspect, the first 3 characters of the orgid is 
set to a predefined prefix, such as "00d”, although another 
Subset of characters in the orgid may be used to hold Such a 
prefix if desired. 



US 9,043,362 B2 

Custom field table 210 similarly includes an orgid column 
211, a table id column 212 and plurality of data columns 213. 
As above, table id column 212 acts as the primary key for 
table 210 and preferably includes the same values as table id 
column 202 of table 200. In the specific example shown, there 5 
are 250 data columns 213 labeled as val0, val1 ... Val249. It 
is appreciated that any other number may be used as desired, 
such as, for example, 10 or 100. 
When an organization is created initially and associated 

with database table 200, the custom field columns 213 are 10 
empty for that organization. However, every time a record or 
row is created in the main table (e.g., account) a correspond 
ing row is created in the custom field table—all custom field 
columns are Null, and therefore take up no space until used. 

In one aspect, data is only allowed to enter these custom 15 
fields when a new “column” for the organization is defined, 
e.g., by the administrator for that organization. For example, 
in the Account entity example, it may be desirable for a 
specific organization to create one or more additional custom 
fields, in addition to the standard fields 203, to store specific 20 
types of data that may not be accounted for in the predefined 
standard fields. The present invention advantageously allows 
an organization to create additional custom columns for Such 
data. Rather than defining a physical column (in Oracle, the 
definition of which would be placed in the Oracle dictionary 25 
catalog) instead this definition is stored in metadata, e.g., in a 
metadata catalog, which may include one or more metadata 
tables. The definition of a physical column could likewise be 
stored in XML or some other format. 

FIG. 6a illustrates an example of a custom field definition 30 
metadata table 500 (“custom field definition') according to 
an embodiment of the present invention. Custom field defi 
nition metadata table 500 is used to record the name, datatype 
and other information for each custom field column defined 
for each organization and table (e.g., standard tables and 35 
custom tables, which will be described in more detail below). 
As shown, metadata table 500 includes custom field defini 
tion idcolumn 510, organization idcolumn 520, table name 
or id column 530, field name column 540, field datatype 
column 550, is indexed column 560 and a column number 40 
column 570. Organization id column 520 stores the orgid of 
the organization for which the custom field is created, and the 
custom field definition id column is the primary key for 
table 500. Table name column 530 stores the names of stan 
dard entity tables, such as Account, or theid of custom entity 45 
tables created for an organization. Field name column 540 
stores the text name of the custom field, and field datatype 
column 550 stores the data type for the custom field. 
Examples of data types include text, number, date, picklist, 
etc. A picklist data type is a text field where the value is chosen 50 
from an enumerated list of values. A picklist is typically 
displayed as a dropdown in the UI. Is indexed column 560 
stores a value indicating whether the field has been flagged for 
indexing, which will be described in more detail below. In one 
aspect, column 560 stores a boolean value. Column number 55 
column 570 stores the column number (e.g., “val 0) assigned 
to a custom field in custom field table 210 (FIG. 3). 

The creation of a new custom field in the application allo 
cates one of the custom field columns 213 to hold the data. In 
preferred aspects, the lowest numbered columns are filled 60 
first. For example, as shown in FIG. 3, the “val.0’ column is 
filled first and then the “val1 column and so on for each 
organization. Therefore, depending on the number of custom 
columns defined by an organization, each custom field 213 
may or may not contain data for an organization. Now, when 65 
users of the application in an organization edit rows for that 
table, the new custom field appears on the screen (or via the 

10 
API), which will appear the same as all the other standard 
fields. However, when this data is persisted in the database, 
the value of the custom field is stored in the designated cus 
tom field column in the separate custom field table 210, 
instead of in the standard main table 200. 

In one aspect, a variety of virtual data-types are allowed for 
these custom fields even though the underlying physical Stor 
age may be character based. When the organization's system 
administrator defines numeric or date custom field types, for 
instance, then the values are stored as text in a canonical 
format that allows easy conversion back to the logical data 
type. As mentioned earlier, in one aspect, a data type of 
VARCHAR is preferably used. For instance, in this aspect, 
dates are stored in the YYYYMMDD format which allows 
for conversion via the TO DATE(<column>, YYYYM 
MDD) function and also allows for proper sorting without 
doing any conversion. For numbers, the usual decimal format 
is used, and the Oracle function TO NUMBER() may be 
used to convert back to numeric values for sorting, math 
ematical operations, and filtering, etc. 

Because the database is multi-tenant, a given physical cus 
tom field column may contain data across multiple organiza 
tions. For example, because an organization is not limited to 
specific data types, one organization may define one data type 
Such as a date and another organization may define a different 
data type such as a string or a number. Therefore it is likely 
that strings, numbers, and dates will all be found in one 
physical custom field column. FIG.3 illustrates an example of 
a custom field column containing different data types. As 
shown in the “val.0 custom column, for example, the custom 
column data type defined by organization 1 is data type 1, the 
custom column data type defined by organization 2 is data 
type 2, and the custom column data type defined by organi 
zation N is data type 3. Data types 1, 2 and 3 may be the same 
or they may be different. For example, data type 1 may be text, 
data type 2 may be date, and data type 3 may be number. FIG. 
7, and the related discussion below, illustrates an example 
where different data types are mixed in a custom field column. 
In one aspect, a separate pool of columns is provided for 
custom fields of different data types, i.e., each of the custom 
field columns in the separate pool contains a single data type. 

In one embodiment, metadata is used to determine the data 
type(s) in a given custom field column. That is, metadata is 
used to track the logical data type for each organization in 
each custom column. In one aspect, a mapping function is 
created from the metadata. For example, when an organiza 
tion defines a custom field for a standard entity, a custom field 
definition is stored in metadata table 500 including the orga 
nization id for that organization, the table name (e.g., 
..account cfdata) and the column number assigned in the cus 
tom table (e.g., val0). In this manner, the data type(s) in any 
custom column can be determined for efficient data retrieval 
given the column number, table name and organization id. 
Custom Field Indexing 
Now consider the problem of indexing the data in these 

custom field columns (e.g., columns 213) to allow for fast 
retrieval. For example, users expect to filter on date values as 
dates and numeric values as numbers. However, in order for 
these filters to work efficiently, given the expressions above 
used to convert their values, it would be necessary to place a 
functional index (e.g., an Oracle DB functional index) on 
each organization’s slice of the data in a given custom field 
column. This is not possible from the Oracle DB perspective 
because the Oracle DB does not understand that one physical 
column contains data in multiple formats. For example, if one 
tries to create an index on the TO DATE or TO NUMBER 



US 9,043,362 B2 
11 

expressions above, an error would result since other textual 
values in that physical column would not conform to the 
desired format. 

Similarly, when searching on String data, users expect case 
insensitive searches. That is, searching for “car should find 
“CAR' or “CaR. However, the definition of case insensitive 
is language dependent, and a service (e.g., CRM service) 
using such a multi-tenant database structure may be multi 
language enabled. To search properly on multi-language data 
requires the use of a functional index built using various NLS 
(natural language standards) functions in Oracle. Since a 
given physical column could contain data in multiple lan 
guages it would be necessary to build N different indexes for 
each of the languages Supported which would result in a 
non-scalable Solution. 

For the reasons listed above, such “Indexed Custom 
Fields' are implemented in one embodiment by storing data 
in a separate set of indexed columns. According to one 
embodiment of the present invention, a plurality of additional 
index columns are provided to allow for indexing custom 
fields. When a custom field is flagged for indexing by a 
database administrator, one of the plurality of index columns 
is allocated to that flagged column. Data from the flagged 
column is copied to the allocated index column. The data is 
stored in the index column in a format that facilitates search 
ing, e.g., for dates and strings. For example, the YYYYM 
MDD is itself a searchable format as strings in that format can 
be compared lexically using normal string comparison. 

FIG. 4 illustrates an example of a custom object repre 
sented as a custom field table 310 including physical index 
columns 320 according to one embodiment. In one aspect, 
each custom field data table contains multiple (e.g., 10, 100, 
250, etc.) physically indexed columns 320, e.g., using stan 
dard Oracle B*Tree indexes. In an example with 10 indexed 
columns, an administrator can therefore designate up to 10 
custom fields, of string or date types, to be indexed. When a 
custom field is flagged for indexing, the data in the original 
column (which is still maintained to display the un-modified 
format to the user when necessary) is copied to one of these 
indexed columns. For example, as shown in FIG. 4. custom 
data field “val.0 was flagged by the system administrator for 
organization 1 as an indexed custom column. Data from this 
flagged column is copied to the index column “ival.0”. Simi 
larly, custom data field “val1 was flagged by the system 
administrator for organization 2 as an indexed custom col 
umn, and the data from this flagged column is copied to index 
column “ival.0'. At some later time, the system administrator 
for organization 2 may have flagged another custom field 
column and the data for this column is copied to another index 
column (e.g., column “val.0' data copied to column “ival1 as 
shown in FIG. 4). In one aspect, similar to the custom fields, 
the lowest numbered index columns are preferably used or 
filled first. 

In one aspect, to avoid the problem with searching across 
multiple languages, a “case folding algorithm is imple 
mented (e.g., in an application server) that converts each 
string custom field value to a universal case insensitive for 
mat. One such case folding algorithm is an algorithm defined 
by the Unicode Consortium in the Unicode 4.0 standard, 
section 3.13-Caseless Matching (http://www.unicode.org/ 
versions/Unicode4.0.0/ch03.pdf), hereby incorporated by 
reference, which is a tabular lookup function that converts 
characters to a form that is binary comparable independent of 
case for all languages that have a concept of case. Whenever 
values in the original custom field column are searched, the 
SQL instead filters on the corresponding case-folded indexed 
column after performing the same case folding operation on 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

12 
the literal being searched. Dates need not be modified from 
their YYYY|MM|DD format, which is also included in the 
index (unmodified) as text. 

Organizations that choose not to use indexed custom fields 
will have null values in these fields, and Nulls do not take up 
any space in the indexes. In this manner space is used up in the 
database only as custom columns are actually indexed. Also, 
index columns 320 are preferably stored in the corresponding 
custom field table, however, they may be stored out of row, in 
which case it is preferred that the orgid 311 and table id312 
columns be copied to the separate indexed column table to 
facilitate searching. 
Custom Field Uniqueness 

Another desired schema feature is the concept of a unique 
ness constraint. Again, a unique index cannot be placed on a 
custom field physical column because, although the values 
may be unique for one organization, they may not be unique 
for some other organization that shares that physical column. 
For example, it is possible that two records for two different 
organizations would have the same exact data value stored in 
the same custom field. 
To implement this uniqueness feature, in one aspect, a 

separate table is provided that contains only the data values 
for customers who require uniqueness. Once the organization 
administrator has enabled a custom field for uniqueness, all 
values for that organization are inserted in this unique index 
table, and ongoing changes to that custom field column are 
updated synchronously to the unique index table (described 
below). If either of these operations causes an Oracle DB 
unique index violation then the erroris passed back to the end 
user the administrator would need to “clean up' the data in 
a field before declaring it unique. 
One schema for a unique index maintenance table is as 

follows: 
1. organization id 
2. custom field definition id 
3. custom field value 
This schema allows multiple custom fields from the same 

organization (and entity) to be indexed. The first two columns 
are preferably compressed in the Oracle DB unique index 
since that would make the physical index Smaller, and this 
table could be index organized since its only purpose as a 
table is to be used as a unique index. 
Custom Tables 

It is also desirable to create whole new logical entity tables 
(entities) for the purpose of extending a base application or 
for integrating with other systems. For example, an organiza 
tion using the standard entities provided by the system may 
desire that one or more new entities be created to specifically 
cater to, and to facilitate data storage and retrieval for, that 
organization’s particular business model. Accordingly, one 
embodiment of the present invention provides the function 
ality to create custom entity tables or custom entities. 
As with the approach for custom fields, all custom entity 

data rows are stored in a single multi-tenant physical table 
according to one embodiment. However, unlike standard cus 
tom field tables, the custom entity data table in one aspect 
contains multiple logical tables per organization. It is trans 
parent to customers that their multiple “tables' are in fact 
stored in one large table. 

FIG. 5 illustrates an example of a custom object repre 
sented as a custom entity table 400 according to one embodi 
ment. Table 400 includes an org id column 401, a custom 
entity id column 402 and a plurality of custom field columns 
403 (labeled “val.0”, “val1,...). A plurality of optional index 
columns 420 (labeled “ival.0”, “ival1. . . . ) may also be 
provided. The orgid column is used to distinguish among the 



US 9,043,362 B2 
13 

various organizations populating table 400. For example, 
multiple organizations may create custom entities, all of 
which are stored to table 400 in one aspect. Custom entity id 
column 402 is used to distinguish among the various custom 
entity tables stored in table 400. Custom entity idcolumn 402 
also acts as the primary key column for table 400. Custom 
field columns 403 are used to store the data for the various 
custom entities defined by the various organizations. Specifi 
cally, custom field columns 403 store the columns defined for 
each of the various custom entities defined by the various 
organizations populating table 400. Index columns 420 are 
implemented similar to custom field indexed columns 320 
described above with reference to FIG. 4. 

According to one embodiment, the first 3 characters of the 
globally unique primary key field 402 are used to identify the 
specific entity type. This technique advantageously allows for 
multiple custom entity types for one organization to be dis 
tinguished in this one custom entity table 400 as will be 
discussed below. It will be appreciated, however, that fewer or 
more than the first 3 characters of the primary key may be 
used to identify entities, or that any Subcombination of char 
acters of the primary key may be used. 
When an organization administrator defines a new custom 

entity, the definition is stored in the metadata instead of the 
underlying data dictionary. FIG. 6b illustrates an example of 
a custom entity definition metadata table 600 (“custom enti 
ty definition') according to an embodiment of the present 
invention. When a new custom entity is defined, the database 
system allocates a unique (within that organization) 3-char 
acter prefix for rows of that entity type. In one aspect, the 
letter 'a' is chosen as the first character of all custom entity 
primary keys, e.g., a01 ... a02. . . a03 ... a MN ... as shown 
in column 402 of table 400. As shown, across all organiza 
tions the same 3-character prefix may be re-used. For 
example, 'a(01 is reused as a prefix for multiple organiza 
tions. However, the remainder of the custom entity idensures 
global uniqueness (and that data from different organizations 
is never mingled). In one aspect, these 3-character id’s are 
encoded in base 62, so that each initial character allows for 
62*62=3844 different custom entity types per organiza 
tion—a large enough number for virtually all uses. It should 
be appreciated, however, that different encoding bases may 
be used to provide a fewer or greater number of custom entity 
types per organization. It should also be appreciated that the 
entity idfield may be a composite primary key, for example, 
spanning two or more columns, one column for the prefix and 
the other column(s) for the remainder of the custom entity id. 
For the sake of simplicity, row partitions are not shown in 
table 400, however organization partitions 450 and entity 
partitions 460 are shown. 

Referring to FIG. 6b, custom entity definition metadata 
table 600 is used to record the name and other information for 
each custom entity object defined for each organization. As 
shown, metadata table 600 includes custom entity defini 
tion id column 610, organization id column 620, enti 
ty name column 630, and key prefix column 540. Organiza 
tion id column 620 stores the org id of the organization for 
which the custom entity is created, and the custom 
entity definition id column 610 is the primary key for table 
600. Entity name column 630 stores the names of the custom 
entity table, e.g., as a text datatype. Key prefix column 640 
stores the 3-character prefix (e.g., “aO1”, “aO2, etc.) allo 
cated for rows of that entity type. 
When creating a custom entity table, the administrator for 

an organization specifies a unique (within the organization) 
developer name for the custom entity—this is the name used 
to identify that particular entity for API calls and other devel 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

14 
oper entry points into the system. This name is stored in the 
entity name column 630 of table 600. Custom fields may also 
be defined for custom entities, and where desired, custom 
fields may be flagged for indexing, as described above. Once 
custom fields are defined for the custom entity, the organiza 
tion can begin to use that custom entity like any other standard 
entity. For example, all API operations (e.g., describe, insert, 
update, delete, query, search) are available and the organiza 
tion may define a user interface for editing that custom entity 
in an online application. Transparent to the users and organi 
Zation, however, the custom entity table is stored in a single 
custom entity table 400 along with other custom entity tables 
defined by that organization as well as other organizations. 
One difference in terms of SQL when operating on a cus 

tom entity table is the need to filter on the custom entity id in 
addition to the organization id to ensure that the data from 
multiple logical entity types within one organization are not 
mixed together. For example, the leading 3-character portion 
of the primary key index (e.g., a01 ... amN) can be used for 
this efficient filtering. Thus, filtering on the organization id 
and the 3-character prefix provides a determination of a spe 
cific entity type for the organization. Similarly, an insert 
PL/SQL call should be told which 3-character prefix to use 
when inserting a new primary key value and custom entity 
OW. 

Similar to custom field columns 213 of FIG.3, custom field 
columns 403 may contain multiple data types. For example, 
when organization #1 defines custom entity table 1 (identified 
by “a(01' for org1“00d1” in table 400) a custom field column 
definition having data type 1 may be allocated to the “val.0 
column as shown. Similarly, a custom field column definition 
for a second customentity table (identified by “a(02” for org1) 
having data type 2 may be allocated to the same “val 0 col 
umn as shown. Data types 1 and 2 may be the same or 
different. In this manner, it is possible that numerous data 
types may be stored in any given custom field column 403 in 
custom entity table 400 for the various custom entities defined 
by the various organizations. Accordingly, using optional 
index fields 420, an organization is able to flag one or more 
columns in its custom entities for indexing as described 
above. Filtering would also proceed similar to that discussed 
above. 

In one embodiment, foreign keys may be defined as a data 
type when creating custom entities. In this manner a relation 
ship with a standard entity, or another custom entity may be 
provided to facilitate data storage and retrieval (e.g., reduce 
redundant data storage). For example, when defining a cus 
tom entity, a system administrator may define a custom field 
as a foreign key data type to establish a relationship with one 
or more other entities. The primary key for the related entity 
is copied and stored in that custom field. In one aspect, a 
plurality of columns is provided to store custom fields of type 
foreign key. These separate columns may be indexed. 
Specific Examples 

FIG. 7 illustrates an example of a standard entity table 700 
including standard columns 703 and custom field columns 
713, as well as examples of actual data values for multiple 
organizations. As shown, the standard table 700 represents an 
Account entity having a standard name field and other stan 
dard fields 703. In this example, ABC Corp. (identified by 
“00d1 in orgid field 701) has defined a custom column for 
“account web address' that has been allocated to the val0 
column. The data type for this custom field is defined as text. 
Additionally, ABC Corp. has defined a second custom field 
for “accountstock price', which has been allocated to the val1 
column, and a third custom field for “account ticker symbol'. 
which has been allocated to another column. The data types 



US 9,043,362 B2 
15 

for these columns are number and text, respectively. Simi 
larly, 123 Corp. (identified by “00d2” in orgid field 701) and 
XYZ Corp. (identified by “00dN” in org id field 701) have 
each defined a custom field for “account next annual meeting 
date' and “account fiscal year, respectively. The data types 
for these custom fields are date and picklist, respectively. 
These custom fields have both been allocated to the val0 
column, even though their data types are different. The defi 
nitions of these custom fields are stored to metadata, e.g., 
metadata table 500, as discussed above. 
As shown, table 700 holds account data for ABC Corp. 

including specific account data for “IBM, “Dell' and 
Apple' as shown. Similarly, table 700 also holds account 
data for 123 Corp. and XYZ Corp. As shown, both 123 Corp. 
and XYZ Corp. each have a specific entry for an account with 
the same name: “Disney'. However, these entries are distin 
guished based on the globally unique primary key 702 (or 
712). For example, for XYZ Corp., the account entry for 
“Disney' has a primary key value of "001 . . .932”, whereas 
the “Disney' account entry for 123 Corp. has a primary key 
value of “001 ... 87. As above, the data values in the val0 
custom column have mixed data types. For example, for ABC 
Corp. the “web address' field is text, whereas the “next 
annual meeting date' field for 123 Corp. has a date data type, 
and the “fiscal year field for XYZ Corp. has a picklist data 
type. 

FIG. 8 illustrates an example of a custom entity object 800 
including an custom table 810 for ABC Corp. As shown, ABC 
Corp. (identified by “00d1 in orgid column 801) has defined 
a custom object 810 to represent Assets. The definition of 
Assets object 810 is stored to metadata, e.g., in table 600 
(FIG. 6b). Assets object 810 has been allocated the prefix 
“a(02 for the custom entity id. Also, as shown, ABC Corp. has 
defined another custom object, e.g., identified by prefix“aO1 
in custom entity id column 802. A separate column may be 
provided in table 800 to store the prefixes (e.g., “aol) of the 
various objects stored in table 800. Assets object 810 has been 
defined with a custom foreign key column and various data 
columns. The custom foreign key (FK) column is allocated to 
the “Val0' column, whereas data fields for “asset name', 
“asset value”, “asset depreciation type' and “asset replace 
ment date' have been allocated to columns “Val1 to “Val4, 
respectively. In this example, the data types for these fields are 
text, number, picklist and date, respectively. 

Assets object 810 is a child custom object of Account 
object 700. The custom foreign key column connects each 
row in object 810 to its parent account (in these examples, 
Account object 700 has been allocated a prefix of "001” for its 
table id). For example, the foreign key value "001 . . . 9 
connects to the row in table 700 for account name "DELL’. 
Similarly, the foreign key values “001 ... 8” and “001 ... 10' 
connect to the rows intable 700 for account names "IBM and 
APPLE, respectively. Also, as shown, XYZ Corp. (identi 

fied by “00dN” in orgid column 801) has defined a custom 
object to Suit their business needs, which custom object is also 
stored in table 800. As such, any given data column 803 may 
contain mixed data types depending on the definitions of the 
various custom objects stored in table 800. 
Re-usable Services 
One goal of custom entities is not only to Support a grid of 

data (e.g., rows and columns configured by organizations/ 
customers) but also to Support the same set of application 
high-level semantic services exposed for standard entities. 
This provides for a system that is not only more than just an 
online data provider, but also an application-building infra 
structure with rich re-usable services. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

16 
With reference to the salesforce.com service, several 

examples of Such reusable services, and how they apply to 
custom entities, follow: 
History Tracking 

Standard entities in salesforce.com (such as Case and 
Opportunity entities) support automatic auditing of data 
changes to records. This auditing typically occurs at a low 
level in the application server where all data is being written 
to the database. This same code path is preferably used with 
custom entities. 
The same generalized schema used for standard entities 

works for custom entities as well—this is preferably a pivoted 
schema with one field delta per row: 

1. organization id 
2. custom entity data id 
3. custom field definition id 
4. old value 
5. new value. 

However, it may be a non-pivoted Schema. A non-pivoted 
schema has columns for each separate piece of information. It 
looks like an excel spreadsheet: 

ID Name Phone Email address 

111 Craig 555-1212 foo(a)bar.com 

A pivoted Schema uses generic column names Such as: 

ID Property Name Property Value 

111 Name Craig 
111 Phone 555-1212 
111 Email Address foo(a)bar.com 

The pivoted schema has many more rows in it, but the rows 
are skinnier (imagine if there were 50 columns of data—that 
would turn into 50 rows in the pivoted schema, but the pivoted 
schema itself would have the same columns). So a normal 
schema is short and wide, whereas a pivoted schema is tall 
and skinny. A pivoted Schema is useful, for example, for 
auditing purposes such as for providing a case history related 
list—where the user is shown every field value change as one 
row in a grid. Pivoted schemas, however, are typically diffi 
cult to use for normal data display like a detail screen with all 
the information for a person. 

If the administrator “turns on this property in the defini 
tion of the custom entity and custom field then this behavior 
happens automatically (changes are logged to this one multi 
tenant auditing table). The data in this generic history table is 
available for display in the online application or via an API 
query. 
As an example, consider changes made to a standard entity 

Such as Case. The system might record the following history 
rows when edits to Case are saved: 

Case 
Org Id Id Field Name Old Value New Value Date 

OOd1 5001 Subject Problem with Problem with Mar. 4, 2004 
Disc drive Disk Drive 

OOd1 SOO1 Status Open In Progress Mar. 4, 2004 
OOd1 5001 Priority Low Medium Mar. 4, 2004 
OOd1 SOO2 Status Open Closed Mar. 5, 2004 
OOd1 5002 Rep Name Frank Sally Mar. 5, 2004 

(custom) 



US 9,043,362 B2 
17 

The above data records two edit operations, one for case 5001 
that occurred on Mar. 4, 2004, and another for case 5002 that 
occurred on Mar. 5, 2004. Several fields were edited each 
time. 
As another example, consider changes made to the Assets 

custom object 810 of FIG.8. An example of history tracking 
rows for a single edit operation made on Mar. 4, 2004 might 
look like the following: 

Cust 
Org Id Ent Id Field Name Old Value New Value Date 

OOd1 a02 Asset Name Laptop X Laptop Y Mar. 4, 2004 
OOd1 a02 AssetValue 50 45 Mar. 4, 2004 
OOd1 a02 Deprec. Type Linear Accelerated Mar. 4, 2004 

All this information is recorded automatically by the system. 
The user interface (UI) might present the information similar 
to that shown above, or in any other convenient format. 
Permission Based Security and Sharing Model 

Administrators may wish to restrict access to particular 
entity types from particular user profiles—in the same way 
that standard entities have permissions such as EDIT AC 
COUNT. 
The administrator can define that a given entity type 

requires an explicit READ or EDIT permission. A generic 
profile(CustomEntity metadata table (available for edit 
through the API) allows creation of relationship rows that 
associate a profile (read access) with a custom entity type and 
optionally declares whether users in that profile can edit rows 
in that entity type. 
The common Application Server and PL/SQL code that 

retrieves and edits custom entity data can then check this 
metadata for the current user and reject the operation if the 
user does not have the proper permission. 

In one aspect, a sharing model allows even finer granularity 
of access to rows—in addition to the permission checks 
above. The administrator, when defining a custom entity type, 
can choose whether the entity type is editable by all users 
(Public Read/Write), read-only for all users (Public Read/ 
Only), or privately available only to the owner of a record or 
to users who are granted explicit sharing access to a record 
(Private). 
To support the latter sharing model, in one aspect, a stan 

dard owner field is added to the custom entity data table and 
becomes available in the API. The same semantics attached to 
the owner field in other standard entities apply. For example, 
managers in the role hierarchy gain access to all records 
owned by a Subordinate. Also, a generic sharing entity, e.g., 
customEntityShare, is used in one aspect for entering manual 
explicit sharing access for particular custom entity rows to 
users or groups—in the same way that the accountShare 
entity is available in the API (and UI) to allow granting 
explicit account access. 
Currency Type 
A standard field in custom entities is a single currency type 

that controls the currency of all numeric currency custom 
fields in that row. This functionality is consistent with all 
standard entities and allows for the same currency translation 
as elsewhere in the application. 
Multiple Business Processes per Entity Type 

Standard entities allow for the definition of multiple 
“Record Types” or business processes. For instance, an 
opportunity entity can have both telesales opportunities as 
well as direct sales opportunities. Depending on the record 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

18 
type of an individual opportunity row, the values available for 
picklist fields change as configured by the organization 
administrator. 
Custom entities also allow for the specification of this same 

metadata by the administrator. The picklist custom fields in 
that entity are preferably affected in the same manner as for 
standard entities. 
Workflow 

In one aspect, the present invention provides for the defi 
nition of trigger conditions and actions for specific entity 
types. For instance, if an opportunity amount exceeds a par 
ticular value (trigger condition) then a notification, Such as an 
email, is sent (action) to a predesignated individual or group, 
e.g., the VP of sales of that organization. 
Once again the metadata used internally for defining these 

rules preferably operates similarly for custom entities as for 
standard entities. The code, e.g., executing in an application 
server or database server, that evaluates these conditions for 
each row edit occurs at a low level where both standard and 
custom entities are able to take advantage of this functional 
ity. 

While the invention has been described by way of example 
and in terms of the specific embodiments, it is to be under 
stood that the invention is not limited to the disclosed embodi 
ments. To the contrary, it is intended to cover various modi 
fications and similar arrangements as would be apparent to 
those skilled in the art. Therefore, the scope of the appended 
claims should be accorded the broadest interpretation so as to 
encompass all such modifications and similar arrangements. 

What is claimed is: 
1. A computer-implemented method of storing multiple 

fields for multiple tenants in a single multi-tenant data struc 
ture, comprising: 

defining a multi-tenant data structure having a plurality of 
custom data columns and at least one organization iden 
tifier (ID) column that stores a tenant ID value; 

defining a first data field for a first tenant, the first data field 
having a first data type; 

defining a second data field for a second tenant, the second 
field having a second data type, wherein the second data 
type is different than the first data type: 

for each of the first and second fields, storing correspond 
ing data type definition in a definitional data structure; 
and 

when records having data values in the first and second 
fields are created for the first and second tenants, respec 
tively, storing the data values of first and second fields to 
a single custom data column in the multi-tenant data 
structure, wherein the single custom data column 
includes data values having different data types for dif 
ferent tenants as defined by the definitional data struc 
ture. 

2. The method of claim 1, further comprising: 
determining a location of the single custom data column in 

the multi-tenant data structure; and 
for each of the first and second fields, storing the location in 

the definitional data structure. 
3. The method of claim 1, wherein the definitional data 

structure has an organization id column, the method further 
comprising: 

determining a tenant id for each of the first and second 
tenants; and 

for each of the first and second tenants, storing the respec 
tive tenant id in the organization id column of the defi 
nitional data structure. 



US 9,043,362 B2 
19 

4. The method of claim 1, further comprising: 
determining at least one of the first data field or the second 

field has been flagged for indexing; and 
storing, in the definitional data structure, an indication that 

the at least one of the first data field or the second field 
has been flagged for indexing. 

5. The method of claim 1, further comprising storing an 
indication of the data type corresponding to each of the first 
and second fields in extensible markup language (XML) for 
mat. 

6. The method of claim 1, wherein the data values of first 
and second fields are stored in the single custom data column 
as text in a canonical format. 

7. The method of claim 1, further comprising: 
defining a definitional data structure having one or more 

columns; and 
in response to an indication from one of the first tenant and 

the second tenant that data in the first data field or the 
second data field, respectively, be unique, copying the 
data values stored in the single custom data column 
corresponding to the first data field or the second data 
field, respectively, to a column in the second definitional 
data structure. 

8. A non-transitory computer-readable medium storing 
code for controlling a database system to store multiple fields 
for multiple tenants in a single multi-tenant data structure, the 
code comprising instructions to: 

define a multi-tenant data structure having a plurality of 
custom data columns and at least one organization iden 
tifier (ID) column that stores a tenant ID value; 

define a first data field for a first tenant, the first data field 
having a first data type: 

define a second data field for a second tenant, the second 
field having a second data type, wherein the second data 
type is different than the first data type: 

for each of the first and second fields, store corresponding 
data type definition in a definitional data structure; and 

when records having data values in the first and second 
fields are created for the first and second tenants, respec 
tively, store the data values of first and second fields to a 
single custom data column in the multi-tenant data struc 
ture, wherein the single custom data column includes 
data values having different data types for different ten 
ants as defined by the definitional data structure. 

9. The computer-readable medium of claim 8, wherein the 
code further comprises instructions to: 

determine a location of the single custom data column in 
the multi-tenant data structure; and 

for each of the first and second fields, store the location in 
the definitional data structure. 

10. The computer-readable medium of claim8, wherein the 
definitional data structure has an organization id column and 
the code further comprising instructions to: 

determine a tenant id for each of the first and second ten 
ants; and 

for each of the first and second tenants, store the respective 
tenantid in the organizationid column of the definitional 
data structure. 

11. The computer-readable medium of claim 8, the code 
further comprises instructions to: 

determine at least one of the first data field or the second 
field has been flagged for indexing; and 

store, in the definitional data structure, an indication that 
the at least one of the first data field or the second field 
has been flagged for indexing. 

12. The computer-readable medium of claim 8, the code 
further comprises instructions to store an indication of the 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

20 
data type corresponding to each of the first and second fields 
in extensible markup language (XML) format. 

13. The computer-readable medium of claim8, wherein the 
data values of first and second fields are stored in the single 
custom data column as text in a canonical format. 

14. The computer-readable medium of claim8, wherein the 
code further comprises instructions to: 

define a second definitional data structure having one or 
more columns; and 

in response to an indication from one of the first tenant and 
the second tenant that data in the first data field or the 
second data field, respectively, be unique, copy the data 
values stored in the single custom data column corre 
sponding to the first data field or the second data field, 
respectively, to a column in the second definitional data 
Structure. 

15. A multi-tenant database system, comprising: 
a database for storing multi-tenant data objects; and 
a database management process configured to: 

define a multi-tenant data structure having a plurality of 
custom data columns and at least one organization 
identifier (ID) column that stores a tenant ID value: 

define a first data field for a first tenant, the first data field 
having a first data type; 

define a second data field for a second tenant, the second 
field having a second data type, wherein the second 
data type is different than the first data type: 

for each of the first and second fields, store correspond 
ing data type definitionina definitional data structure; 
and 
when records having data values in the first and sec 

ond fields are created for the first and second ten 
ants, respectively, storing the data values of first 
and second fields to a single custom data column in 
the multi-tenant data structure, wherein the single 
custom data column includes data values having 
different data types for different tenants as defined 
by the definitional data structure. 

16. The multi-tenant database system of claim 15, wherein 
the database management process is further configured to: 

determine a location of the single data column in the multi 
tenant data structure; and 

for each of the first and second fields, store the location in 
the definitional data structure. 

17. The multi-tenant database system of claim 15, wherein 
the definitional data structure has an organization id column 
and the database management process is further configured 
tO: 

determine a tenant id for each of the first and second ten 
ants; and 

for each of the first and second tenants, store the respective 
tenantid in the organizationid column of the definitional 
data structure. 

18. The multi-tenant database system of claim 15, wherein 
the database management process is further configured to: 

determine at least one of the first data field or the second 
field has been flagged for indexing; and 

store, in the definitional data structure, an indication that 
the at least one of the first data field or the second field 
has been flagged for indexing. 

19. The multi-tenant database system of claim 15, wherein 
the database management process is further configured to 
store an indication of the data type corresponding to each of 
the first and second fields in extensible markup language 
(XML) format. 



US 9,043,362 B2 
21 

20. The multi-tenant database system of claim 15, wherein 
the data values of first and second fields are stored in the 
single custom data column as text in a canonical format. 

k k k k k 

22 


