009/009555 A1 |00 000 0 0O A OO 0O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization ‘, | [.

) IO O O 0O OO

International Bureau

(43) International Publication Date
15 January 2009 (15.01.2009)

(10) International Publication Number

WO 2009/009555 Al

(51) International Patent Classification:
GOG6F 7/00 (2006.01)

(21) International Application Number:
PCT/US2008/069461

(22) International Filing Date: 9 July 2008 (09.07.2008)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

11/775,976 11 July 2007 (11.07.2007) US

(63) Related by continuation (CON) or continuation-in-part
(CIP) to earlier application:
UsS

Filed on

11/775,976 (CON)
11 July 2007 (11.07.2007)

Applicant (for all designated States except US):
CALPONT CORPORATION [US/US]; 3011 Inter-
net Boulevard, Suite 100, Frisco, Texas 75034 (US).

(1)

(72) Inventors; and

(75) Inventors/Applicants (for US only): TOMMANEY,
James, Joseph [US/US]; 807 Youpon Drive, Allen, Texas
75002 (US). DEMPSEY, Robert, J. [US/US]; 7501

(74)

(81)

(34)

Hamner Lane, Plano, Texas 75024 (US). FIGG, Phillip,R.
[US/US]; 4904 Hackney Lane, The Colony, Texas 75056
(US). LEBLANC, Patrick, M. [US/US]; 3301 Madeleine,
Mckinney, Texas 75070 (US). LOWE, Jason, B. [US/US];
9333 Ferndale Road, Dallas, Texas 75238 (US). WEBER,
John, D. [US/US]; 3332 San Simeon Way, Plano, Texas
75023 (US). ZHOU, Weidong [CN/US]; 205 Parkview
Drive, Trophy Club, Texas 76262 (US).

Agents: CROFT, Thomas, M. et al.; Cooley Godward
Kronish LLP, Attn: Patent Group, 777 6th St., NW, Suite
1100, Washington, DC 20001 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, PG, PH, PL, PT, RO,
RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

[Continued on next page]

(54) Title: METHOD AND SYSTEM FOR PROCESSING A DATABASE QUERY

==

-

L

G

320

330

I
\C User Module 1) (User Module 2 »erModulen

Concurrency

=

40

Performance
\G’erformance ModuleD Gerformance Module 9- = = (Performance Module n }

350

Size

Figure 8

o (57) Abstract: A method and system for processing a database query is described. One embodiment is a scalable, reconfigurable
database query processing system comprising one or more director, user, and performance modules in a configuration that includes
shared-nothing behavior of the modules and the distributed processing of primitives for resolving a database query in accordance

with a column-oriented database architecture.

WO 2009/009555 A1 NI DA 00 00 000100 00 00000 0

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, Published:

7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), — with international search report

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES,FI, — before the expiration of the time limit for amending the
FR, GB, GR,HR,HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, claims and to be republished in the event of receipt of
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, amendments

CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:
— as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

WO 2009/009555 PCT/US2008/069461

METHOD AND SYSTEM FOR PROCESSING A DATABASE QUERY

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation of and claims priority to U.S. Patent Application
No. 11/775,976, entitled “Method and System for Processing a Database Query,” filed July

11, 2007, the disclosure of which is hereby incorporated by reference in its entirety.

[0002] The present application is related to commonly owned and assigned Application No.
11/775,980, entitled “Method and System for Performing a Scan Operation on a Table of a

Column-Oriented Database”, filed July 11, 2007.

COPYRIGHT

[0003] A portion of the disclosure of this patent document contains material that is subject
to copyright protection. The copyright owner has no objection to the facsimile reproduction
by anyone of the patent disclosure, as it appears in the Patent and Trademark Office patent

files or records, but otherwise reserves all copyright rights whatsoever.

FIELD OF THE INVENTION

[0004] The present invention relates generally to computer databases. In particular, but not by
way of limitation, the present invention relates to methods and systems for processing database

queries.

BACKGROUND OF THE INVENTION

[0005] The ability to analyze significant amounts of data enables companies to take
advantage of better decision making and better leverage a key asset: their data. Analysis of

the data is typically provided through a data warehouse which provides On-Line Analytic

WO 2009/009555 PCT/US2008/069461

Process (OLAP), Decision Support System (DSS), Business Intelligence (BI), or analytics
behavior. The data is typically structured as tables made up of columns (fields) organized
into rows and containing up to terabytes or petabytes of data and up to billions or trillions of
rows. Request for analysis of the data is typically done through execution of a “query” or
Structured Query Language (SQL) “select” statement. Addition or modification of the data
via Data Manipulation Language (DML) or the structures containing the data via Data
Definition Language (DDL) is accomplished through statements containing keywords

including but not limited to ‘create table’ or ‘insert into’.

[0006] As data warchouses keep growing, the ability to read blocks of data from disks is not
growing quickly enough to keep up with the increase of data. It is therefore apparent that

there is a need in the art for an improved Query Processing System.

SUMMARY OF THE INVENTION

[0007] Exemplary embodiments of the present invention that are shown in the drawings are
summarized below. These and other embodiments are more fully described in the Detailed
Description section. It is to be understood, however, that there is no intention to limit the
invention to the forms described in this Summary of the Invention or in the Detailed
Description. One skilled in the art can recognize that there are numerous modifications,
equivalents, and alternative constructions that fall within the spirit and scope of the

invention as expressed in the claims.

[0008] One illustrative embodiment is a method for processing a database query in the form
of a Structured Query Language (SQL) statement, the method comprising establishing a

connection with a computer over a network; receiving a SQL statement from the computer

WO 2009/009555 PCT/US2008/069461

over the network; analyzing the SQL statement to determine a set of data objects in a
database that is required to process the SQL statement and to determine a sequence in which
the data objects in the set of data objects are to be processed, the analyzing being performed
in accordance with a column-oriented database architecture; analyzing the SQL statement
further to determine a set of job steps to be performed in processing the SQL statement and
to determine, for ecach data object in the set of data objects, at least one extent included in
that data object, the at least one extent including at least one data block; associating a
primitive with each data block in each extent; passing each primitive to one of a plurality of
processing nodes, the at least one data block in each extent being passed to the same
processing node, the primitives being distributed over a maximum number of available
processing nodes, primitives associated with independent job steps being passed to their
respective processing nodes substantially in parallel; determining, for each primitive,
whether the associated data block is already resident in a random-access memory to avoid
unnecessary accesses to secondary data storage; processing each primitive by accessing one
or more records in the associated data block to produce a result; aggregating the results of
the primitives to produce aggregated results; and returning the aggregated results to the

computer over the network.

[0009] Another illustrative embodiment is a database query processing system comprising

one or more director, user, and performance modules configured to process a database

query.

[0010] These and other illustrative embodiments are described in further detail herein.

WO 2009/009555 PCT/US2008/069461

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] Various objects, advantages, and a more complete understanding of the present
invention are apparent and more readily appreciated by reference to the following Detailed
Description and to the appended claims when taken in conjunction with the accompanying

drawings, wherein:

Figure 1 illustrates a Query Processing System in a typical query environment
consisting of a network, client computers, and in some cases a web server or application in
accordance with an illustrative embodiment of the invention;

Figure 2 illustrates a server in the Query Processing System in accordance with an
illustrative embodiment of the invention;

Figure 3 illustrates the modules used for one implementation of the present invention
where each module includes software processes running on dedicated servers or blades and
communicating with other modules via inter-process communication;

Figure 4 illustrates additional software detail for one implementation of the present
invention and describes the Director Module;

Figure 5 illustrates additional software detail for the Director Module for one
implementation of the present invention;

Figure 6 illustrates additional software detail for one implementation of the present
invention describing a User Module;

Figure 7 illustrates additional software detail for one implementation of the present
invention describing a Performance Module;

Figure 8 illustrates one implementation of the present invention with multiple client
connections connecting to one or more Director Modules, multiple User Modules, and

multiple Performance Modules connected to a single storage device;

WO 2009/009555 PCT/US2008/069461

Figure 9 illustrates one implementation of the present invention with multiple client
connections connecting to one or more Director Modules, multiple User Modules, and
multiple Performance Modules connected to multiple clustered or un-clustered storage
devices;

Figure 10 illustrates one implementation of the present invention detailing data flows
between a User Module and multiple Performance Modules;

Figure 11 describes a hardware platform to support one implementation of the
present invention consisting of redundant connectivity and modules;

Figure 12 is a flowchart describing the flow to process a Structured Query Language
(SQL) query in a Query Processing System in accordance with an illustrative embodiment of
the invention;

Figure 13 is a flowchart describing a process for adding a User Module to a Query
Processing System in accordance with an illustrative embodiment of the invention;

Figure 14 is a flow chart describing a process for removing a User Module from a
Query Processing System in accordance with an illustrative embodiment of the invention;

Figure 15 is a flowchart describing a process for adding a Performance Module to a
Query Processing System in accordance with an illustrative embodiment of the invention;

Figure 16 is a flow chart describing a process for removing a Performance Module
from a Query Processing System in accordance with an illustrative embodiment of the
invention;

Figure 17 is a flow chart describing a process for reconfiguring a User Module to a
Performance Module in accordance with an illustrative embodiment of the invention,;

Figure 18 is a flow chart describing a process for reconfiguring a Performance

Module to a User Module in accordance with an illustrative embodiment of the invention;

WO 2009/009555 PCT/US2008/069461

Figure 19 is a flowchart describing a process for automatically eliminating partitions
in accordance with an illustrative embodiment of the invention;

Figure 20 is a flowchart describing a process for maintaining current summary
information in accordance with an illustrative embodiment of the invention,;

Figure 21 is a flowchart describing a process for creating a table in accordance with
an illustrative embodiment of the invention;

Figure 22 is a flowchart describing a process for minimizing the rows of data
returned to a database management system (DBMS) front-end system in accordance with an
illustrative embodiment of the invention; and

Figure 23 illustrates a block organization for storing data in accordance with an

illustrative embodiment of the invention.

DETAILED DESCRIPTION

[0012] The present invention is related to distributed database access of large data sets,
associating that data in support of relational queries, and returning the results. In particular,
but not by way of limitation, the present invention provides the ability to execute Structured
Query Language (SQL) statements across significant data sets typically represented as

logical tables consisting of columns and rows.

[0013] Embodiments of the present invention include methods to accelerate scans of large
data sets by partitioning or splitting the data stored along field or column boundaries such
that analysis of the data requiring that field or column can be accomplished without
accessing non-required fields or columns. This embodiment includes hardware and software
modules running specialized code such that additional modules can be added to provide for

additional performance acceleration, and that software processing within the additional

WO 2009/009555 PCT/US2008/069461

modules does not require additional processing to take place as the number of modules
increases. The ability to add additional processing modules within a system without
incurring additional peer module to peer module synchronization is described as “shared-
nothing behavior.” This shared-nothing behavior of the modules allows for linear or near-
linear acceleration of processing as the number of modules executing that process increases.
Because performance modules do not store data within direct attached storage, but rather
access external storage to read the data, the number of performance modules can be changed
in a highly flexible manner without requiring redistribution of data as required by a system

with direct attached storage.

[0014] The ability to add additional processing capability in a shared-nothing mode that
offers linear or near-linear behavior allows for cost savings for database systems by allowing
for growth with commodity hardware rather than specialized systems. The cost increase for
adding additional processing nodes of the same configuration is generally linear. Increasing
from two Performance Modules to four Performance Modules basically doubles the cost.
This is in contrast to upgrading within a single server to allow for additional growth. The
cost to implement twice the number of CPUs and memory within a single server typically
results in greater than twice the price. Therefore, a shared-nothing system that allows for
scaling through more of the same servers delivers business value through lower, more

predictable costs.

[0015] The Query Processing System organizes its data on disk along column boundaries, so
that data for each column can be read without accessing other column data. This specialized
representation that stores data for each column separately also reduces the number of bytes

of data required to resolve most SQL statements that access large data sets. This capability

WO 2009/009555 PCT/US2008/069461

to reduce the bytes required accelerates processing directly for queries involving disk, but
also reduces the memory required to avoid storing the data in memory. Storing the blocks in
memory allows a query to be satisfied from memory rather than disk, dramatically

increasing performance.

[0016] The combination of a scalable, shared-nothing architecture along with specialized
storage capabilities that significantly reduce the number of data blocks required provides for
performance gains larger than possible with either technology approach alone.
Implementation of the specialized column data storage that allows for fewer data blocks
required per Structured Query Language (SQL) statement accessing large data sets reduces
the memory required per statement. The shared-nothing architecture allows for significantly
larger memory to be delivered more cost effectively. The combination of larger system
memory and smaller per-statement requirements delivers a significant performance upgrade

by resolving more queries from memory rather than disk.

[0017] The size of data warchouse implementations increases over time based on additional
data history, new data sources being included in analysis, or regulations that require a longer
retention period. Existing data warchouse solutions become more reliant on disk behavior to

access these larger and larger data sets.

[0018] Referring now to the drawings, Figure 1 illustrates the placement of the Query
Processing System 10 in an illustrative user implementation. The Query Processing System
10 is a sub-network at a user’s site and is connected to a network 20. The network 20 is
either directly connected to client computers 40 or to a web server or application 30 which is

connected to client computers 40.

WO 2009/009555 PCT/US2008/069461

[0019] Figure 2 illustrates a server in the Query Processing System in accordance with an
illustrative embodiment of the invention. The Query Processing System 10 includes multiple
servers that are running the Query Processing Software 80. In Figure 2, Query Processing
System 10 includes a server with a data bus 50, Central Processing Unit (CPU) 60, memory
70, and 1/0 ports 90. The Query Processing Software 80 resides in computer memory 70 in

this embodiment.

[0020] Figure 3 represents the module organization for one implementation of the invention
and includes one or more Director Modules 100, User Modules 110, and Performance
Modules 120. For this implementation of the invention, the Director Module 100 is
responsible for accepting connections and processing statements to support SQL, Data
Manipulation Language (DML), or Data Definition Language (DDL) statements. This
implementation includes a User Module 110 responsible for issuing requests to scan data
sources and to aggregate the results. This implementation also includes multiple
Performance Modules 120 responsible for executing scan operations against the columns
required by the SQL statement. Subsets of each file are associated with a Performance
Module 120 such that accesses to large files is distributed across all available Performance
Modules 120. There can be multiple Director, User, or Performance Modules installed and
running at any given point. A module is the combination of software and hardware running
on a given server and blade. If the server or blade is executing processes for one module and
then changes to run processes for another module, then that server can be said to become the
new module. The software supports reconfiguring modules as needed to support demand.
This function is performed by Configuration Management Module 115. In general, these

modules can be implemented in hardware, firmware, software, or any combination thereof.

WO 2009/009555 PCT/US2008/069461

[0021] Figure 4 illustrates additional software detail for one implementation of the present
invention and describes a Director Module 320. The Director Module 320 represented in
Figure 4 is responsible for accepting connections from user applications and validating
username and password combinations in order to validate the connection. SQL, DML, or
DDL statements are accepted by Director Module 320 and are processed to resolve a number
of items including the following: verify object names, verify privileges to access the objects,
rewrite the statement to optimize performance, and determine effective access patterns to
retrieve the data. This processing is handled by a connection, security, parse, optimization
layer 130. Interface code 140 provides for a standard way to communicate with the
connection, security, parse and optimization layer 130. C/C++ connector code 150 is created
to access the interface code 140. The C++ API 160 layer represents a standard method of
communicating with the underlying data access behaviors. The statements to be processed as
well as the information about the connection are serialized via the serialize/unserialize 170
and passed through interconnect messaging 180 to a User Module responsible for executing
the statement. Specialized interface software allows for the basic connection, security, parse,
and optimization 130 to be accomplished by specialized software either written especially
for this purpose, or by integration with an existing database package providing that
functionality. In addition, Director Module 320 provides connection with the other modules
of the present invention that execute additional work to support the statements. Examples of
database packages that offer connection, security, parse, and optimization functionally and

have the appropriate interface model include ORACLE, DB2, and MY SQL.

[0022] Figure 5 illustrates additional software detail for the Director Module 320 for one
implementation of the present invention. Figure 5 shows functionality including user

administration, connection services, and parsing/optimizing 130. A standard interface code

10

WO 2009/009555 PCT/US2008/069461

140 layer establishes the connection between the user/connection/parsing and the query
processing API. Code is organized such that the C/C++ connector code 150 provides the
“glue” to connect the software components and is structured such that that the code layer is
as small as possible. Note that the connection, security, parse, optimization layer 130 layer
does not store data. Customers can replace one implementation of the connection, security,

parse, optimization layer 130 with a different implementation without migrating data.

[0023] Figure 6 illustrates additional software detail for one implementation of the present
invention describing a User Module 330. User Module 330 represented in Figure 6 is
responsible for accepting the request to handle the statement and transfer the statement to
dedicated software packages to handle query SQL statements via the execution plan
manager 220, DDL statements via the DDL processor 250, or DML statements via the DML
processor 230. The SQL statements that execute queries to access the data initiate primitive
requests to the Performance Modules, which access the data sources. Statements that alter
the data sources (DDL and DML) are processed through the write engine 240 that owns

write access to the underlying data sources.

[0024] Executions of statements pass from the Director Module to the User Module through
the connection layers (interconnect messaging 190, serialize/unserialize 200, and the User
Module C++ API 210). The DDL processor makes calls to the write engine 240 to create the
initial file allocation for all file types that can include column files, dictionary files, index
tree files, or index list files as needed to support the DDL statement. Drop statements
remove all required column, dictionary, index tree, or index list files as directed by the drop

statement.

11

WO 2009/009555 PCT/US2008/069461

[0025] Figure 7 illustrates additional software detail for one implementation of the present
invention describing a Performance Module 340. Performance Module 340 represented in
Figure 7 is one implementation of the current invention that executes access to subsets of
source data based on commands issued to each Performance Module 340. The request to
provide for a filtered access to a portion of the data is herein described as a “primitive.”
Required primitives to execute a scan of source data includes, but is not limited to the
following: column, dictionary, index tree, or index list files. The primitive processor 290 is
responsible for providing access to the block or blocks of data to be referenced, reading the
data records specified, and applying any filters or aggregation that may be requested. The
block primitives 300 components are the code objects that understand the formats of the files
and apply appropriate filters to access the data. The data block cache 310 is the shared-
nothing cache containing previously or recently accessed blocks of data to be processed. A
Performance Module 340 includes software modules that execute primitive operations on
subsets of a data field either from memory via the data buffer cache or from disk. The data
buffer cache includes memory on each Performance Module 340 used to store blocks of
data. A request for a block of data is resolved from the data buffer cache where possible and
if found avoids reading the block of data from the disk. The data buffer cache is constructed
so that all operations required to store or access a block of data take place without any
coordination with other Performance Modules 340. The ability to expand by adding
additional Performance Modules 340 in a shared-nothing manner allows the performance of

the data buffer cache to scale in a linear or near-linear manner.

[0026] For this implementation of the current invention, each Performance Module 340 acts
independently from other Performance Modules 340 and does not require synchronization

activities. The primitive processor 290, block primitives 300, and data block cache 310

12

WO 2009/009555 PCT/US2008/069461

contain memory and structures not dynamically shared between Performance Modules 340.
The disk manager library 270 and block resolution library 280 share information between

the write engine 240 and each Performance Module 340 individually.

[0027] Figures 8 and 9 illustrate possible implementations of the current invention and
demonstrate the flexibility of module deployment to satisfy specific business problems. The
number of User Modules 330 can scale independently of other modules or storage to add
additional concurrency (capacity to support simultanecous queries) of other modules or
storage. The number of Performance Modules 340 can scale independently of other modules
or storage to allow for additional data block cache 310 capacity or additional processing
power. Although not illustrated, the number of Director Modules 320 can scale
independently of other modules or storage to provide for redundancy or additional capacity
for parsing or maintaining connections. In addition storage 350 can scale independently as

well.

[0028] Figure 10 illustrates process flow for one implementation of the current invention.
The primitive generator 360 components of User Module 540 issue primitives on behalf of a
query/connection to all available Performance Modules 560. The block resolution manager
380 components contains information about proper distribution of work to scan a file (source
data), as well as information required to track changes to the source data files. Issue of the
primitive is received by the primitive processing manager 410. The primitive processing
manager 410 identifies whether the portions of the file required for each primitive are
already resident within the data block cache 310 (see Figure 7) by accessing the local tag
lookup + issue queue 390. For primitive requests that require a read from disk, re-issue

queue 400 allows for rescheduling the primitive until after the required data has been read

13

WO 2009/009555 PCT/US2008/069461

from disk. The block resolution manager 430 is referenced as needed to provide for the
correct version of the block consistent with a point in time. Results are returned from all

Performance Modules 560 to the aggregate results 370 process running for that session.

[0029] Figure 11 illustrates one deployment implementation of the current invention
providing for redundant modules, redundant networking, and redundant controllers. Servers
have the installed software to execute any of these. The number of each type of module
shown in Figure 11 is merely illustrative. In other embodiments, different numbers of the
various types of modules can be deployed. Based on the ability of User and Performance
Modules to fail over for each other, three Performance/User Modules 560 allow for either
User or Performance Module behavior depending on reading of a configuration parameter.
Therefore a given User or Performance module can be removed from service as one module
and go into service as another module. Based on this ability of User and Performance
Modules to replace another module, a total of three Performance/User Modules 560 allows
for one User and two Performance Modules to be implemented while still providing for a
backup for the User Module if a failure takes place within that server. If a failure takes place
in the single User Module, then one of the two Performance Modules is redeployed as a User
Module. Components of the deployment implementation include the Director Modules 545,
Gig-E Switches 550, Performance/User Modules 560, 4G 16-Port Switch 570 (fiber channel
switches), as well as the storage array with dual fibre channel controllers and sixteen 146-

GB drives 580.

[0030] Tables 1 and 2 below detail an extent map implementation of the current invention
that provides for a configurable mapping of logical constructs (indexes, columns, or other

files) to one or more files at the extent level. Each extent is made of a configurable extent

14

WO 2009/009555 PCT/US2008/069461

size that includes possible values of 8 MB, 80 MB, or 800 MB, among other possible sizes.
Each extent includes one or more data blocks. Additional information is persisted that stores

either range, list, or hash values of the data within the extent.

Table 1: Extent Map Fields

Field Name Description

LBID_START Starting point for a range of Logical Block Identifiers.
EXTENT_SIZE Number of 1k extents in an allocation

OID Object number, identifier that maps to an index tree, index

list, dictionary, or column.

OID_Part For partitioned objects, or columns larger than the maximum
file size, the OID_Part allows for multiple files to be
associated with one OID. For OIDs larger than the max
filesize, OID_Part allows extension to multiple files.

OFFSET_START | Index to first 8k block in the extent.

HWM High Water Mark, the index of the highest block written to
within that file.

Low_ value Lowest value stored within the extent.

Lv_incl_flag Indicate whether lowest value is inclusive, i.e. whether value
in lowest_value field in included in the extent.

High_value Highest value stored within the extent.

Hv_incl_flag Indicate whether highest value is inclusive, i.e. whether
value in highest_value field in included in the extent.

Hash_value Value output from the hash operation for the data within the
extent.

List_values List of values contained within the extent. Declaration of the

list is limited based on the size of this field.

15

WO 2009/009555 PCT/US2008/069461

Table 2: Example Subset of Extent Map

Lbid_ |Extent_ |OID OID_ |Offset_ |HWM |low_ |Lv_incl |high_ [Hv_incl [hash_ [list_
Start Size Part | Start value | _flag value | flag value |values
0 10 29 0 0 2 1 Y 5

10240 (10 29 1 0 5 Y 9 N

20480 (10 29 1 10240 5 Y 9 N

30720 |10 29 1 20480 |20980 |5 Y 9 N

[0031] A token dictionary is a method by which variable-length strings can be stored, with
an indirect access path to a position via a fixed-width column. This has a number of benefits
other than potentially saving space. Fixed-width columns can be scanned more rapidly since
the start position of each value is known in advance, and a token dictionary shared across
columns is a critical performance criterion under the conditions where a join would be
performed across the tokenized values. If the two columns share a domain, the underlying
token values can be joined without requiring use of the dictionary lookup capabilities or

converting both tokens to strings before comparing them to identify a match.

[0032] Some terminology in connection with token dictionaries is provided below.

[0033] Token: An address to a variable length record stored in a dictionary block.
Addressing is sufficient to resolve to a specific file, block within the file, and position of the

variable length record in the block.

[0034] Signature: The variable length record stored in the dictionary block.

16

WO 2009/009555 PCT/US2008/069461

[0035] Token Addressing Scheme: The pointer for a record in the dictionary file structure
provides for an address that allows for accessing individual records. This token address
includes the block location identified by the Logical Block Identifier (LBID) as well as the

position within the block.

[0036] With this addressing scheme, after identifying the specific block, the OP/Ordinal
Position value (or index into the block header) is used to probe the header information
within the block to determine the starting offset within that block and the number of bytes
for that specific signature. For large allocations, including strings spanning blocks, a

continuation field contains a 6-byte pointer to a continuation block.

[0037] Tables can be partitioned either vertically or horizontally, and in both cases allow for
partition elimination under some circumstances. Partitioning a table involves storing
portions of the table separately such that part of the table can be read without reading other
portions of the table. Horizontal partitioning involves dividing the table such that different
groups of rows are stored in separate partitions. Vertical partitioning involves dividing the
logical table into multiple, separate physically contiguous allocations, one for each column.
Partition elimination describes the case where portions of the source data or file do not need

to be accessed to resolve the search.

[0038] Vertical partition elimination takes place when the list of columns is less than all of
the columns in all of the tables in the join or there are filters available using any column.
Conversely, vertical partition elimination does not take place when the statement does not

restrict the rows and the statement includes all columns (from all tables referenced).

17

WO 2009/009555 PCT/US2008/069461

[0039] Query Processing Software 80 column partitioning takes place automatically and
transparently for all tables. The syntax to create a table, or select from a table, need only
reference the table. Query Processing Software 80 decomposes the DDL, DML or SQL
statements into the corresponding column objects automatically. Query Processing System
10 vertical partition elimination takes place automatically without requiring data-modeling

expertise, build time for indices, or partition maintenance.

[0040] The primary structure mapping logical objects to files on disk is the extent map. The
extent map records an object identifier (OID) for each column or index within the Query
Processing System and maps that OID to one or more files within the disk subsystem. The
extent map is also used to provide the mapping of data blocks to Performance Modules. The
Logical Block Identifier (LBID) for the blocks in an extent is passed into a mathematical
transformation that directs each extent into one of the Performance Modules. The
transformation is deterministic based on the LBID and the number of Performance Modules
such that any additional references to a block or extent are also submitted to the same
Performance Module. This distribution is accomplished by a truncate operation on the LBID
such that all blocks within an extent are grouped, and applying a modulo operation using the

number of active Performance Modules to distribute the groups.

[0041] An implementation of the invention includes a process to update the extent map to
provide the minimum and maximum values for each extent and, in some embodiments, other
metadata associated with that extent. An implementation of the invention includes a process
to update the extent map to provide the minimum and maximum values or other metadata for
cach extent. Given that metadata about the column, a number of extents may be able to be

eliminated for a given search (partition/extent elimination). There are a number of data

18

WO 2009/009555 PCT/US2008/069461

usage models where different column data is related to other columns. Given an order date,
a delivery date, and a payment_date as columns on a table, for example, horizontal
partitioning can take place for only one of the columns. The update of the extent map stores
the minimum and maximum values and effectively allows partition elimination to take place
for related columns (delivery date and payment date) that may be highly related to the order
date. Equivalent partition elimination or performance tuning can only be accomplished in

other systems by the creation of highly specialized copies of the data.

[0042] The ability for User Modules or Performance Modules to be dynamically added into
the Query Processing System or removed from the system enables modules to take over
processing previously done by other servers. For either a User or Performance Module, there

are two software methods implemented, a take-offline method and a take-online method.

[0043] In this implementation, taking a Performance Module offline includes altering an
input variable to the mathematical function that distributes blocks or extents to modules so
that the number of modules is reduced by one. Upon altering that function, all subsequent
requests to issue primitives to Performance Modules are sent to one fewer modules. Upon
completion of any outstanding primitives, the Performance Module identified can be taken
offline. Taking a Performance Module online involves increasing the number of modules
passed into the mathematical function by one so that primitives are sent to additional

modules.

[0044] Taking a User Module offline is a two-step process. First, no additional SQL
statements or connections are sent to the User Module. Upon completion of any currently

running statements, the User Module is taken offline. Taking a User Module online involves

19

WO 2009/009555 PCT/US2008/069461

adding the module into the pool of User Modules so that a portion of queries are assigned to

that module.

[0045] The Query Processing System interfaces with functionality provided by the Director
Module that may be implemented with different software programs. The interface model
with the Director Module is table oriented, that is the Director Module software understands
a construct from which it can select, insert, update, or delete rows. The ability to execute the
select, insert, update or delete behavior is done within the Query Processing System. The
representation of a table with select, insert, update, and delete behavior is relatively common
within database systems in general. The Query Processing System uses the standard table-
oriented representation of data; however, it uses the additional filters that are present within
the SQL statement and applies all possible filters prior to returning rows. Individual table
filters are applied as well as filters on any table or tables that impact the rows returned from
any table. This capability to represent a table-oriented interface model yet apply filters from
other tables allows for reduced database operations including the number of rows that may

be required to be read or returned to the Director Module.

[0046] The ability to provide for high performance with different Director Module software
components allows for significant flexibility for customers who prefer a specific vendor. The
preference of a specific vendor may be related to customer’s familiarity with a given product
or may be related to specific features or functions implemented in the vendor software

running on the Director Module.

[0047] Figure 12 is a flowchart illustrating the execution of a query (select SQL statement)
within the Query Processing System 10 in accordance with an illustrative embodiment of the

invention. Within the Director Module 100, establish the connection at 600. Receive and

20

WO 2009/009555 PCT/US2008/069461

parse the initial query at 610. Optimize the statement at 620. Pass information through
interface code and C/C++ connector code at 630. Transform query information into Query
Processing Software structures in the C/C++ API at 640. Pass the structures in a message
through the serialize/unserialize 170 and interconnect messaging 180 to the User Module

110 for processing at 650.

[0048] Within the User Module 110, the message containing the structures passes through
interconnect messaging 180 and serialize/unserialize 170 at 650. The C++ API passes the
structures to the appropriate software module for processing. The execution plan manager
220 receives select statements and determines the steps required to process the statement at
660. The primitive generator within the execution plan manager 220 issues as many
primitives as required for one or more job steps to the Performance Module 120 at 670. The
block resolution manager is referenced to find all of the appropriate blocks for each object at
680. The LBID for each primitive is passed into a mathematical operation that determines

the appropriate Performance Module 120 at 680.

[0049] The Performance Module 120 determines whether the block of data is already in
memory within the local tag lookup + issue queue at 700. If the block is available in
memory, the primitive is sent to the primitive processing manager 410 at 730. If the block is
not available in memory, the block requested from disk and the primitive is sent to the re-
issue queue at 710. The block resolution manager determines the location of the requested
block of data within the file system at 720. The primitive processor processes the primitive
to find any requested records at 740. Results are returned to the appropriate aggregate results

within the User Module 110 at 750.

21

WO 2009/009555 PCT/US2008/069461

[0050] The User Module 110 aggregates the results at 750. The User Module 110
determines if there are more job steps to be processed at 760. If there are more job steps, the
process flow continues at step 670. If there are no more job steps, the results are returned to

the user.

[0051] Figures 13 through 18 are flowcharts illustrating different ways of reconfiguring the

Query Processing System in accordance with an illustrative embodiment of the invention.

[0052] There are multiple options possible in reconfiguring the Query Processing System:

e Add a User Module 110 to the system;
e Add a Performance Module 120 to the system;
e Remove a User Module 110 from the system; and

e Remove a Performance Module 120 from the system.

[0053] In addition there are combinations of the above steps that allow for converting a

server from one module type to another;

e Reconfigure a User Module 110 as a Performance Module 120; and

e Reconfigure a Performance Module 120 as a User Module 110.

[0054] Figure 13 illustrates the method steps involved in adding a User Module 110 in
accordance with an illustrative embodiment of the invention. At 800, physically add the
server with installed software to the Query Processing System 10 and connect to the other
modules and disk. Start the server and set a configuration parameter indicating the server
should run as a User Module 110 at 810. At 820, start the Query Processing Software 80 on

the new module. At 830, the Query Processing System 10 discovers the newly started

22

WO 2009/009555 PCT/US2008/069461

software and adds the User Module 110 into the pool of User Modules so that new

connections can be sent to the newly started User Module 110.

[0055] Figure 14 illustrates the method steps involved in adding a User Module 110 in
accordance with an illustrative embodiment of the invention. At 850, issue a command to the
Query Processing System 10 to remove a designated User Module 110 from the system. The
User Module 110 is removed from the pool of modules accepting new sessions at 860. At
870, upon completing any outstanding queries, the designated User Module 110 indicates
that it is removed from the system. At 880, the designated module is removed from the

system and can be dedicated for other purposes.

[0056] Figure 15 illustrates the method steps involved in adding a Performance Module 120
in accordance with an illustrative embodiment of the invention. At 900, physically add the
server with installed software to the Query Processing System 10 and connect appropriate
connectivity to the other modules and disk. Start the server and set a configuration parameter
indicating the server should run as a Performance Module 120 at 910. Start the Query
Processing Software on that module at 920. At 930, the system discovers the newly started
software and changes the mathematical operation within the Primitive Generator 360 so that

the primitives are distributed to one additional Performance Module 120.

[0057] Figure 16 illustrates the method steps involved in removing a Performance Module
120 in accordance with an illustrative embodiment of the invention. At 950, issue a
command to the Query Processing System 10 to remove a designated Performance Module
120 from the system. The mathematical operation within the primitive generator 360 is
modified such that the primitives are distributed to one fewer Performance Modules 120 at

960. Upon completing any outstanding primitive operations, the designated Performance

23

WO 2009/009555 PCT/US2008/069461

Module 120 indicates that it is removed from the system at 970. At 980, the designated

module is removed from the system and can be dedicated for other purposes.

[0058] Figure 17 illustrates the method steps to reconfigure a User Module 110 as a
Performance Module 120 in accordance with an illustrative embodiment of the invention. At
1000, issuec a command to the Query Processing System 10 to remove a designated User
Module 110 from the system. The User Module 110 is removed from the pool of modules
accepting new sessions at 1010. Upon completing any outstanding queries at 1020, the
designated User Module 110 indicates that it is removed from the system at 1030. At 1040,
set a configuration parameter indicating the server should run as a Performance Module 120.
Restart the Query Processing Software 80 on that module at 1050. The system discovers the
newly started software and changes the mathematical operation within the primitive
generator 360 so that the primitives are distributed to one additional Performance Module

120 at 1060.

[0059] Figure 18 illustrates the method steps to reconfigure a Performance Module 120 as a
User Module 110 in accordance with an illustrative embodiment of the invention. At 1100,
issue a command to the Query Processing System 10 to remove a designated Performance
Module 120 from the system. At 1110, the mathematical operation within the primitive
generator 360 is modified such that the primitives are distributed to one fewer Performance
Modules 120. Upon completing any outstanding primitive operations at 1120, the designated
Performance Module 120 indicates that it is removed from the system at 1130. At 1140, set a
configuration parameter indicating the server should run as a User Module 110. Restart the

Query Processing Software 80 on that module at 1150. At 1160, the system discovers the

24

WO 2009/009555 PCT/US2008/069461

newly started software and adds the User Module 110 into the pool of User Modules 110 so

that new connections can be sent to the newly started User Module 110.

[0060] Note that the methods shown in Figures 13 through 18 do not require that Query
Processing System 10 be taken out of service. Rather, Query Processing System 10 remains
capable of receiving and processing database queries throughout the various

reconfigurations described above.

[0061] There are two process flows that together enable automatic extent elimination for
multiple columns of data. One process flow is responsible for storing summary information
about the values stored within an extent into the extent map structure, including, but not
limited to, the minimum and maximum values of data in the applicable extent. This process
also identifies the case where an extent does not need to be referenced to resolve a query.
The second process flow identifies when changes have occurred to one or more data blocks
within an extent and resets the summary information for that extent in the extent map so that
the summary information can be updated during a subsequent scan operation against that

cxtent.

[0062] Recording the summary information about the values existing in an extent, including
the minimum and maximum values for an extent, occurs during an operation that scans the
blocks that make up the extent. As part of any ongoing scan operation that includes all of the
blocks within an extent, the query engine can use the existing scan operation to gather the

information. The gathered summary information is then stored within the extent map.

[0063] Figure 19 illustrates the method steps involved in recording the summary information

about the values within an extent. At 1900, identify the extent scan within the User Module

25

WO 2009/009555 PCT/US2008/069461

110. A column scan operation is identified as included to resolve a query. The column scan
operation includes one or more extents within the scan operation. At 1910, the User Modules
determines whether the summary information has been recorded for the extent. The
summary information is available to evaluate extent scan elimination. At 1950, a check
occurs whereby the values required for the query are evaluated against the extent summary
information to determine whether a scan of the blocks within an extent can be eliminated. If
the summary information about the values in an extent indicates that a scan operation is not
required for that extent, the extent is eliminated from the scan operation at 1960. If the
summary information about the values in an extent indicates that the scan operation is
required, that extent is included in the scan operation at 1970. The minimal scan operation is
submitted at 1980. If the summary information is not recorded for one or more extents at
1910, a required scan operation will also provide the summary values for those extents. A
scan operation with a predetermined flag set is submitted for each such extent at 1920. As
part of the scan operation initiated at 1920, the summary information about the values stored
in the column is identified. The summary information values are stored within the extent
map structure at 1930. At 1940, the required scan is executed and the summary information

18 recorded.

[0064] Figure 20 illustrates the method steps involved in keeping the summary information
current in accordance with an illustrative embodiment of the invention. At 2000, initiate a
DML process. The DML Processor 230 requests an insert, update, or delete operation
against one or more extents. At 2010, the summary information in the extent map associated
with the affected extents is reset. If a block of data changes within an extent, the summary
information is recorded when the extent map is cleared. The summary information is

updated when a subsequent query initiates a scan against the extent. The operation is

26

WO 2009/009555 PCT/US2008/069461

complete at 2020. The summary information has been cleared if one or more blocks within

the extent have changed.

[0065] Figure 21 describes the process to create a table in the system while establishing all
of the objects to allow for storing the data as well as providing the interface between the
systems (a table-oriented interface) in accordance with an illustrative embodiment of the
invention. The table storage consists of a plurality of files containing column data within the
disk storage that enables the table-oriented interface to interact with any of a plurality of
different front-end database management systems. At 2100, the Query Processing System
10 receives a request to create a table. The table storage is created at 2110. The process

terminates at 2120.

[0066] Figure 22 describes the process flow that allows for iterative application of
restrictions based on filters and joins in accordance with an illustrative embodiment of the
invention. The method shown in Figure 22 minimizes the number of rows returned in
response to a query, wherein the SQL statement includes a join operation joining a first table
and a second table and the SQL statement also includes a filtering operation of the first table.
At 2200, the Query Processing System 10 receives a SQL statement. The Query Processing
System 10 defines the sequence of operation to resolve the query at 2210 and accesses data
and applies filters or join conditions to minimize the number of rows at 2220. The data is
returned at 2230. If more data is needed from more tables at 2240, return the additional data
at 2230. If more data is not needed, the query is complete at 2250. Note that, in Figure 22,
the filtering operation is applied to both the first and second tables to minimize the number

of rows returned in response to the query.

27

WO 2009/009555 PCT/US2008/069461

[0067] Figure 23 illustrates the block organization for storing data in support of the column-
oriented behavior. File 2300 includes blocks of data 2310. The data is located according to
an offset record instead of a Row ID that is typical of many database systems. This
elimination of the need to store a row identifier within the table or column reduces both the
storage required and the processing required to read the records from disk. The types of data

and the entries per block are shown in Table 3.

Table 3: Records per Block by Type

Type BStorage Entries
oundary | Per Block

TINYINT, CHAR(1) 1-byte 8192
SMALLINT, CHAR(2) 2-byte 4096
MEDINT 4-byte 2048
INT, FLOAT, CHAR(34), DECIMAL(5-9) | 4-byte 2048
DATE 4-byte 2048
ST e |
DATETIME 8-byte 1024
CHAR(>8), VARCHAR(>8), 8-byte 1024
DECIMAL(>18) (Token)

CLOB, BLOB ?T'gf:n) 1024

[0068] Within the Query Processing System index structure, lists of rows associated with an
indexed value can span multiple blocks. The index list block structures can contain multiple
pointers to other blocks that continue the list of associated rows. The use of multiple
pointers allows for a scan of a large list to be parallelized by the distributed Performance

Modules 120 of the Query Processing System 10.

28

WO 2009/009555

PCT/US2008/069461

[0069] To maximize storage efficiency of the data values within the fixed length structures,

the Query Processing System 10 encodes special characters for each data type allowing for

representation of null and empty rows without requiring additional storage. Encoded values

are shown in Table 4.

Table 4: Encoded Values

Total Storage

Type Empty Bit Identifier - hex Empty Row Identifier - hex Boundary
TINYINT 80 81 1-byte
CHAR(1) FE FF 1-byte
SMALLINT 8000 8001 2-byte
CHAR(2) FFFE FFFF 2-byte
VARCHAR(1) FFFE FFFF 2-byte
DECIMAL(1-4)
(+/- 9999) 8000 8001 2-byte
MEDINT /INT 80000000 80000001 4-byte
FLOAT FFAAAAAA FFAAAAAB 4-byte
CHAR(3-4) FFFFFFFERE FFFFFFFE 4-byte
VARCHAR(2-3) FFFFFFFE FFFFFFFE
DECIMAL(5-9)
(/- 999999999) 80000000 80000001 4-byte
DATE FFFFFFFERE FFFFFFFE 4-byte
BIGINT 8000000000000000 8000000000000001 8-byte
DOUBLE FFAAAAAAAAARADAAAA FEFAAAAAAAANNANNAB 8-byte
VARCHAR(4-7) FFFFFFFFFFFEFEFEFEFR FFFFFFFFFFFFEFEFEFE
CHAR(5-8) FFFFFFFFFFFEFEFEFEFR FEFFFFFFFFFFFFFFE 8-byte
DECIMAL(10-18) 8000000000000000 8000000000000001 8-byte
DATETIME FFFFFFFFFFFEFEFEFEFR FEFFFFFFFFFFFFFFE 8-byte
CHAR(>8),
VARCHAR(>7),
DECIMAL(>18) FFFFFFFFFFFEFEFEFEFR FEFFFFFFFFFFFFFFE 8-byte (Token)

[0070] In conclusion, the present invention provides, among other things, a method and

system for processing a database query. Those skilled in the art can readily recognize that

numerous variations and substitutions may be made in the invention, its use, and its

configuration to achieve substantially the same results as achieved by the embodiments

described herein. Accordingly, there is no intention to limit the invention to the disclosed

exemplary forms. Many variations, modifications, and alternative constructions fall within

the scope and spirit of the disclosed invention as expressed in the claims.

29

WO 2009/009555 PCT/US2008/069461

WHAT IS CLAIMED IS:

1. A method for processing a database query in the form of a Structured Query
Language (SQL) statement, the method comprising:

establishing a connection with a computer over a network;

receiving a SQL statement from the computer over the network;

analyzing the SQL statement to determine a set of data objects in a database that is
required to process the SQL statement and to determine a sequence in which the data objects
in the set of data objects are to be processed, the analyzing being performed in accordance
with a column-oriented database architecture;

analyzing the SQL statement further to determine a set of job steps to be performed
in processing the SQL statement and to determine, for each data object in the set of data
objects, at least one extent included in that data object, the at least one extent including at
least one data block;

associating a primitive with each data block in each extent;

passing each primitive to one of a plurality of processing nodes, the at least one data
block in each extent being passed to the same processing node, the primitives being
distributed over a maximum number of available processing nodes, primitives associated
with independent job steps being passed to their respective processing nodes substantially in
parallel;

determining, for each primitive, whether the associated data block is already resident
in a random-access memory to avoid unnecessary accesses to secondary data storage;

processing each primitive by accessing one or more records in the associated data

block to produce a result;

30

WO 2009/009555 PCT/US2008/069461

aggregating the results of the primitives to produce aggregated results; and

returning the aggregated results to the computer over the network.

2. The method of claim 1, wherein the result of at least one primitive is passed to a

subsequent processing task in the database query processing system.

3. The method of claim 1, further comprising;:
adding additional processing resources for performing the analyzing the SQL
statement further, the associating, the passing, the aggregating, and the returning while

simultaneously maintaining a capability of processing new database queries.

4. The method of claim 1, further comprising:
reducing processing resources for performing the analyzing the SQL statement
further, the associating, the passing, the aggregating, and the returning while simultaneously

maintaining a capability of processing new database queries.

5. The method of claim 1, further comprising:
adding additional processing resources for performing the determining and the
processing while simultancously maintaining a capability of processing new database

queries.

6. The method of claim 1, further comprising;:

reducing processing resources for performing the determining and the processing

while simultaneously maintaining a capability of processing new database queries.

31

WO 2009/009555 PCT/US2008/069461

7. The method of claim 1, further comprising:

reconfiguring processing resources configured to perform the analyzing the SQL
statement further, the associating, the passing, the aggregating, and the returning to instead
perform the determining and the processing while simultancously maintaining a capability of

processing new database queries.

8. The method of claim 1, further comprising:

reconfiguring processing resources configured to perform the determining and the
processing to instead perform the analyzing the SQL statement further, the associating, the
passing, the aggregating, and the returning while simultaneously maintaining a capability of

processing new database queries.

9. The method of claim 1, wherein the database includes:

a plurality of column files corresponding to a table, each column file containing one
or more fixed-length records so as to eliminate use of a row identifier in accessing records;

a token within a particular column file in the plurality of column files, the token
pointing to a data value stored in a dictionary data structure external to the particular column
file, the dictionary data structure being capable of storing variable-length data values;

an indexing structure including a plurality of index blocks, at least one index block in
the plurality of index blocks including multiple pointers pointing to other index blocks in the
plurality of index blocks to enable parallel scanning, by the plurality of processing nodes, of
a data set associated with the at least one index block; and

for each of a plurality of fixed-length-record types, an associated predetermined code
value to indicate a null row in the table and an associated predetermined code value to

indicate an empty row in the table, each predetermined code value occupying the same

32

WO 2009/009555 PCT/US2008/069461

amount of space within a column file as a fixed-length record of the fixed-length-record type

with which that predetermined code value is associated.

10. The method of claim 9, wherein a plurality of tokens point to a single variable-length

data value in the dictionary data structure.

11. The method of claim 1, wherein the SQL statement includes a join operation joining
a first table and a second table and the SQL statement also includes a filtering operation on
the first table, each of the first and second tables including rows and columns of data, the
method further comprising:

creating, prior to receiving the SQL statement from the computer over the network, a
table-oriented interface for each of the first table and the second table using a create-table
statement;

minimizing the number of rows retrieved from each of the first and second tables by
applying the filtering operation to both the first and second tables; and

executing the join operation between the first and second tables without discarding
any rows from either table that were not already discarded as a result of applying the

filtering operation to both the first and second tables.

12. The method of claim 11, wherein the table-oriented interface is capable of interacting

with any of a plurality of different front-end database management systems.

13. A database query processing system, comprising:
a plurality of servers, each server in the plurality of servers being configured to

operate as at least one of:

33

WO 2009/009555 PCT/US2008/069461

a director module configured to:

establish a connection with a computer over a network;

receive a Structured Query Language (SQL) statement from the computer over the
network; and

analyze, in accordance with a column-oriented database architecture, the SQL
statement to determine a set of data objects in a database that is required to process the SQL
statement and to determine a sequence in which the data objects in the set of data objects are
to be processed;

a user module configured to:

analyze the SQL statement further to determine a set of job steps to be performed in
processing the SQL statement and to determine, for each data object in the set of data objects,
at least one extent included in that data object, the at least one extent including at least one
data block;

associate a primitive with each data block in each extent; and

pass each primitive to one of a plurality of performance modules, the at least one
data block in each extent being passed to the same performance module, the primitives being
distributed over a maximum number of available performance modules, primitives associated
with independent job steps being passed to their respective performance modules
substantially in parallel; and

a performance module configured to:

determine, for each primitive, whether the associated data block is already resident in
a random-access memory to avoid unnecessary accesses to secondary data storage; and

process each primitive by accessing one or more records in the associated

data block to produce a result;

34

WO 2009/009555 PCT/US2008/069461

wherein the user module is configured to aggregate the results of the primitives to
produce aggregated results and to return the aggregated results to the computer over the

network.

14. The database query processing system of claim 13, wherein the user module is
configured to pass the result of at least one primitive to a subsequent processing task in the

database query processing system.

15. The database query processing system of claim 13, further comprising:

a configuration management module to manage the configuration of each server in
the plurality of servers to operate as at least one of a director module, a user module, and a
performance module, the configuration management module being configured, without the
database query processing system being taken off-line, to perform at least one of:

adding a user module to the database query processing system;

removing a user module from the database query processing system;

adding a performance module to the database query processing system;

removing a performance module from the database query processing system;

reconfiguring a server configured to operate as a user module to operate as a
performance module; and

reconfiguring a server configured to operate as a performance module to operate as a

user module.

16. The database query processing system of claim 15, wherein, in adding a user module
to the database query processing system, the configuration management module is

configured to:

35

WO 2009/009555 PCT/US2008/069461

discover automatically that a new server has been added to the plurality of servers
and that the new server has been configured to operate as a new user module; and

integrate the new user module into a pool of user modules accepting new sessions.

17. The database query processing system of claim 15, wherein, in removing a user
module from the database query processing system, the configuration management module
is configured to:

receive a command to remove a particular user module from the database query
processing system;

remove the particular user module from a pool of user modules accepting new
sessions; and

receive, upon completion of any outstanding queries involving the particular user
module, acknowledgment from the server that had been configured to operate as the
particular user module that the particular user module has been removed from the database

query processing system.

18. The database query processing system of claim 15, wherein, in adding a performance
module to the database query processing system, the configuration management module is
configured to:
discover automatically that a new server has been added to the plurality of servers
and that the new server has been configured to operate as a performance module; and
modify, in each user module, a function by which each primitive is assigned to a
performance module to include one additional performance module in the plurality of

performance modules to which primitives are passed.

36

WO 2009/009555 PCT/US2008/069461

19. The database query processing system of claim 15, wherein, in removing a
performance module from the database query processing system, the configuration
management module is configured to:

receive a command to remove a particular performance module from the database
query processing system;

modify, in each user module, a function by which each primitive is assigned to a
performance module to include one fewer performance modules in the plurality of
performance modules to which primitives are passed; and

receive, upon completion of any outstanding primitives assigned to the particular
performance module, acknowledgment from the server that had been configured to operate
as the particular performance module that the particular performance module has been

removed from the database query processing system.

20. The database query processing system of claim 15, wherein, in reconfiguring a server
configured to operate as a user module to operate as a performance module, the
configuration management module is configured to:

receive a command to reconfigure a particular server configured to operate as a
particular user module to operate as a performance module;

remove the particular user module from a pool of user modules accepting new
sessions;

receive, upon completion of any outstanding queries involving the particular user
module, acknowledgment from the particular server that the particular user module has been
removed from the database query processing system;

reconfigure the particular server to operate as a performance module; and

37

WO 2009/009555 PCT/US2008/069461

modify, in each user module, a function by which each primitive is assigned to a
performance module to include one additional performance module in the plurality of

performance modules to which primitives are passed.

21. The database query processing system of claim 15, wherein, in reconfiguring a server
configured to operate as a performance module to operate as a user module, the
configuration management module is configured to:

receive a command to reconfigure a particular server configured to operate as a
particular performance module to operate as a user module;

modify, in each user module, a function by which each primitive is assigned to a
performance module to include one fewer performance modules in the plurality of
performance modules to which primitives are passed;

receive, upon completion of any outstanding primitives assigned to the particular
server, acknowledgment from the particular server that the particular performance module
has been removed from the database query processing system;

reconfigure the particular server to operate as a new user module; and

integrate the new user module into a pool of user modules accepting new sessions.

22. The database query processing system of claim 13, wherein the database includes:

a plurality of column files corresponding to a table, each column file containing one
or more fixed-length records so as to eliminate use of a row identifier in accessing records;

a token within a particular column file in the plurality of column files, the token
pointing to a data value stored in a dictionary data structure external to the particular column

file, the dictionary data structure being capable of storing variable-length data values;

38

WO 2009/009555 PCT/US2008/069461

an indexing structure including a plurality of index blocks, at least one index block in
the plurality of index blocks including multiple pointers pointing to other index blocks in the
plurality of index blocks to enable parallel scanning, by the plurality of processing nodes, of
a data set associated with the at least one index block; and

for each of a plurality of fixed-length-record types, an associated predetermined code
value to indicate a null row in the table and an associated predetermined code value to
indicate an empty row in the table, each predetermined code value occupying the same
amount of space within a column file as a fixed-length record of the fixed-length-record type

with which that predetermined code value is associated.

23. The database query processing system of claim 22, wherein a plurality of tokens

point to a single variable-length data value in the dictionary data structure.

24, The database query processing system of claim 13, wherein the SQL statement
includes a join operation joining a first table and a second table and the SQL statement also
includes a filtering operation on the first table, each of the first and second tables including
rows and columns of data, and the database query processing system is configured, in
processing such an SQL statement, to:

create, prior to receiving the SQL statement from the computer over the network, a
table-oriented interface for each of the first table and the second table using a create-table
statement;

minimize the number of rows retrieved from each of the first and second tables by

applying the filtering operation to both the first and second tables; and

39

WO 2009/009555 PCT/US2008/069461

execute the join operation between the first and second tables without discarding any
rows from either table that were not already discarded as a result of applying the filtering

operation to both the first and second tables.

25. The database query processing system of claim 24, wherein the table-oriented

interface is capable of interacting with any of a plurality of different front-end database

management systems.

40

WO 2009/009555

Query Processing
System

1/23

20

Figure 1

PCT/US2008/069461

Client

Web Server

\-30

Client

40

PCT/US2008/069461

WO 2009/009555

2/23

Z 9.nbi4

O/l

9IEM)OS
Buissao0id A1and | =08

Aows Nndo

sng eleq ~

WO 2009/009555 PCT/US2008/069461
3/23

10

\

100

U

Director Module
i 115

110

\

Configuration
User Module < Management Module

120

\

Performance Module

Figure 3

WO 2009/009555 PCT/US2008/069461
4/23
320 \
Director Module

130)) .

N Connection, Security, Parse, Optimization
140 Custom

\

U Interface Code Connector
150

N C/C++ Connector Code

<

160

N CIC++ AP
170 Standard

AN Serialize/Unserialize ¢ Connector

Interface

180

N\ Interconnect Messaging

J

Figure 4

PCT/US2008/069461

WO 2009/009555

5/23

G a.nbi4

Buibessay
198UU02IBYY| 081
- N
9ZI|elIosUN/AZIeUdS N
0ZL J0Jo2UU0D
< > BuIssa004d
Aianpd
10Ae7 buisied |dV ++0/0 S
obessopy pue Jofe] |4y 09l
> <
obexyoed buisied P07
/U010BUUO0D/IBSN) J0JO2UUOY) IOPUBA < 0155ULO ~_
e 0} o1J128ds 8p0o)H) 10109UUOD ++0/0 0S1
\ J0J08UU0D
> >
aa
4/] 40}08UUOD) JOPUBA < 9poD doeLdU| /oi
\ J
abexoed 0g9ao 0ddao N
10 SWdQ Aped pay g /2aanosAn/apeI0 o€l

/

0ce

WO 2009/009555

PCT/US2008/069461

6/23
330\
User Module
190 .
PN Interconnect Messaging
200
Connector AN Serialize/Unserialize
<
210
~ C++ API
.
A 240\
230
220 ; ™
N Execution Plgn - »| DML Processor [a———
Manager (Queries)
m
A (S -_E*
=
250 ®
{ DDL Processor |« >
A
Y l
260
Performance Modules

Figure 6

WO 2009/009555 PCT/US2008/069461

7/23

340

Performance Module

270 . .
Y Disk Manager Library
290
™~
280 P . .t. P
Y Block Resolution Library rimitive Processor
A
300
~_ Y
Block Primitives
310\

Data Block Cache

Figure 7

PCT/US2008/069461

WO 2009/009555

8/23

Q a.nbi4

(0151

80UBLLIOLS

@ S|NPOJ\ SOUBWIIONSY)= = m a|npop mocmc:otmnv mm_:vos_ mocm::otmnv/

ovs,

T <

-
|
\
4
N

Adoua.inouo?)

0€g

m u 8|npoy J18sn Ju m Z 8|Npo J1esn U m | 8INpoW J8sn U/

Joaig VH
(0T4%

|

=

PCT/US2008/069461

WO 2009/009555

9/23

6 2.nbi4

~

E

E

E

0rg

TN\

0G€E
ozIS
Qo_:vo_\,_ aouewJlopad v . .mm_:vo_\,_ mocm::otmnw mo_:vo_\,_ mocmEBtm@/
souBLLLIOLIS]
m u a|npoj Jasn v . m Z 9|NpolN 18sn v m L 8|npop Jasn V/
Aouaiinouo?)

0€s,

A Jojoalg

WO 2009/009555 PCT/US2008/069461

10/23
540~
360 User Module 370
~ .
Primitive Generator instance for session 001 Aggregate Results instance for session 001

Primitive Generator instance for session 002 } [Aggregate Results instance for session 002

Block Resolution Manager:
Contains local copy of complete Extent Map that covers all block ranges which | referenced
to determine:
LBID Ranges - File Block Offset — Check_Vflag
(Check_Vflag indicates whether blocks in that range require checking. Allow for skipping
version check)

560
Performance Module 1
390 420 430\
ﬁggihgaf Primitive Processor \/\ Block Resolution
it Primitive Processor
issue queue Prlmltl\{e imitiv Manager
= Processing Primitive Processorw
4 Manager (Extent Map, VBBM
& |400]| re-issue Primitive Processor) for local blocks)
Y N queue
3
E“.
3 2
Performance Module 2 Z
(O]
L r
Local Tag Primitive Processor\ Block Resolution =
lookup + Primiti Primitive Processor Manager 5
issue queue fimitive &
Processing Primitive Processorw J
Manager (Extent Map, VBBM
re-issue Primitive Processor) for local blocks)
queue
Performance Module n
ﬁggiLTig Primitive Processor \ Block Resolution
. P Primitive Primitive Processorw Manager
issue queue :
Processing Primitive Processor\ v,
Manager (Extent Map, VBBM
re-issue Primitive Processor) for local blocks)
queue

Figure 10

WO 2009/009555

545
N

Director Module

550
4

560

570
4

580

11/23

PCT/US2008/069461

Director Module

9|ded 91vO

5

GIG-E Switch (16-
port)
1U

9|ged 91vO

J
!

GIG-E Switch (16-
port)
1U

']

9[ded 91vO

9[ded 91vO

B

Performance /
User Module
1U

—

Performance /
User Module
1U

v

Performance /
User Module
1U

9|ded 04

9|ded 04

4G 16-port Switch
Y2 Rack, 1U

t

===

3[ded O

4G 16-port Switch
Y2 Rack, 1U

|

!

Storage Array with Dual Fibre
Channel Ctips and sixteen 146
GB cdrives

3uU

Figure 11

!

3[ded O

Storage Array with Dual Fibre
Channel Ctips and sixteen 146

GB cdrives
3U

WO 2009/009555 PCT/US2008/069461
12/23
(sTarT)
600 670
ESTABLISH ISSUE
N CONNECTION P PRMITVES [
680
61 0\ RECEIVE AND |
PARSE QUERY FIND BLOCKS
IN DM
620 690
OPTIMIZE
4 STATEMENT DETERMINE PM |~
+ 710
pd
630
~_ TRANSFER SEND TO
THROUGH CODE REISSUE QUEUE
720
640 TRANSFORM SEND PRIMITIVE DETERMINE
~| QUERYINTO TO PRIMITIVE BLOCK ~
QPs PROCESSING [LOCATION IN
STRUCTURES MANAGER FILE SYSTEM
TRANSFER TO 740
650 UM THROUGH PROCESS
SERIAL/ PRIMITIVE
UNSERIAL AND
IM
660 DETERMINE 750
STEPS TO AGGREGATE [~/
PROCESS RESULTS
STATEMENT
760

Figure 12

MORE JOB
STEPS?

RETURN
RESULTS TO
USER

770

WO 2009/009555 PCT/US2008/069461
13/23

START

800
\ PHYSICALLY
ADD SERVER TO
QPS

'

810 START SERVER
~_ AND SET
CONFIGURATION
PARAMETER AS
UM

l

820
N START QPS
SOFTWARE
830 l
SYSTEM

DISCOVERS UM

Figure 13

WO 2009/009555 PCT/US2008/069461
14/23

START

850 ISSUE

\ COMMAND TO

REMOVE UM

860 REMOVE UM
\ FROM POOL
ACCEPTING NEW

SESSIONS

870
~_ COMPLETE
OUTSTANDING
QUERIES
880 l
REMOVE UM
FROM QPS

Figure 14

WO 2009/009555 PCT/US2008/069461
15/23

START

900
\ PHYSICALLY
ADD SERVER TO

QPS

'

910 START SERVER
\ AND SET
CONFIGURATION
PARAMETER AS
PM

l

920
\ START QPS
SOFTWARE
930 l
SYSTEM

DISCOVERS PM

Figure 15

WO 2009/009555 PCT/US2008/069461
16/23

START

950 ISSUE

"N_| COMMANDTO

REMOVE PM

960
\ DISTRIBUTE

PRIMITIVES TO

ONE FEWER PM

970
\ COMPLETE
OUTSTANDING
PRIMITIVES
980 l
REMOVE PM
FROM QPS

Figure 16

WO 2009/009555

1010

1020

1030

1040

17/23

PCT/US2008/069461

ISSUE COMMAND
TO REMOVE UM

,

REMOVE UM
FROM POOL
ACCEPTING NEW
SESSIONS

'

COMPLETE
OUTSTANDING
QUERIES

'

REMOVE UM
FROM QPS

'

SET CONFIG
PARAMETER TO
RUN AS PM

L

RESTART QPS
SOFTWARE

DISTRIBUTE
PRIMITIVES TO
ADDITIONAL PM

Figure 17

1050

1060

WO 2009/009555 PCT/US2008/069461

18/23
< START >
1150
1100
ISSUE RESTARTQPs
"N\ COMMAND TO SOFTWARE
REMOVE PM
1o SEND NEW 1160
\ DISTRIBUTE CONNECTIONS
PRIMITIVES TO TO UM
ONE FEWER PM

'

\ COMPLETE
OUTSTANDING
PRIMITIVES

'

\ REMOVE PM
FROM QPS

'

1140 SET CONFIG
PARAMETER TO
RUN AS UM

1120

1130

Figure 18

WO 2009/009555 PCT/US2008/069461
19/23
START
1900
| IDENTIFY EXTENT
SCAN
1920 1930 1940
SUMMARY INFONNO,. | SUBMIT SCAN UPDATE EXECUTED AND
RECORDED? WITH FLAG ™ EXTENT MAP SUMMARY INFO
RECORDED
1950 1970
CAN EXTENT EXTENT SCAN ~
SCAN BE REQUIRED
ELIMINATED

1960

EXTENT SCAN
ELIMINATED

1980
MINIMAL SCAN

OPERATION
SUBMITTED

Figure 19

WO 2009/009555 PCT/US2008/069461
20/23

START

2000

\ INITIATE DML

PROCESS

2010

\ RESET

SUMMARY INFO

l

OPERATION
COMPLETE

2020

Figure 20

WO 2009/009555 PCT/US2008/069461
21/23

START

2100

\ RECEIVE
REQUEST TO

CREATE TABLE

2110

\ CREATE TABLE

STORAGE

2120 l

COMPLETE

Figure 21

WO 2009/009555 PCT/US2008/069461
22/23

START

2200

\ RECEIVE SQL
STATEMENT

l

DEFINE SEQUENCE
OF OPERATION TO
RESOLVE QUERY

l

2220 ACCESS DATA AND
APPLY FILTERS OR
JOIN CONDITIONS
TO MINIMIZE ROWS

2230 l
\

RETURN DATA
FROM ONE TABLE
FROM MINIMIZED

RESULT SET

2210

L

YES 2240

ACCESS DATA
FROM MORE
TABLES

2250

COMPLETE

Figure 22

WO 2009/009555

2300

23/23

PCT/US2008/069461

2310
r_

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Extent
r 2320

Extent
2320

FILE

Figure 23

INTERNATIONAL SEARCH REPORT

I[nternational application No.
PCT/US 08/69461

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 7/00 (2008.04)
USPC - 707/3

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

707/3

Minimum documentation searched (classification system followed by classification symbols)

707/1-3,10 | 709/203 | 711/100-102

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
PubWest(PGPB, USPT, EPAB, JPAB), USPTO, Google Scholar, Google Patent. database, search, storage, query, system,
organization, system, table, row, column, interface, SQL, processing, analyzing, optimizing, performance, system, storage,
simuitaneous, concurrent, synchronous , progressive, continuous, module, user

C. DOCUMENTS CONSIDERED TO BE RELEVANT

[0056)

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2007/0011154 A1 (Musgrove et al.) 11 January 2007 (11.01.2007), Fig. 1-3; para [0054]}- 1-2, 13-14

{0073, [0122]-{0128], [0147]-[0150] R

Y - 3-12, 15-25

Y US 2004/0098359 A1 (Bayliss et al.) 20 May 2004 (20.05.2004), Fig. 1, 3, 7-8; para [0044])- 3-8, 11-12, 24-25

[0045),{0057}-{0059),[0065)-[0067]
Y US 2002/0038300 A1 (lwata et al.) 28 March 2002 (28.03.2002), Fig. 1-2; para [0051]-[0059] 9-10, 22-23
Y US 2005/0086185 A1 (Tan et al.) 21 April 2005 (21.04.2005), Fig. 2; para {0028)-{0039], [0048)- | 15-21

D Further documents are listed in the continuation of Box C.

L]

. Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“Q” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the intemational filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

29 October 2008 (29.10.2008)

Date of mailing of the international search report

12 NOV 2008

Name and mailing address of the [SA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.0. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

Authorized officer:

Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 574-272-7774

Form PCT/ISA/210 (second sheet) (April 2007)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - wo-search-report

