TITLE: COMBINATION THERAPY FOR CHRONIC DERMAL ULCERS

Abstract: Disclosed is a method of promoting healing of a chronic dermal ulcer, such as a diabetic ulcer, in a subject. The method comprises administering to the subject a combination one or more agonists of the non-proteolytically activated thrombin receptor and one or more angiogenic growth factors.
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.
COMBINATION THERAPY FOR CHRONIC DERMAL ULCERS

RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application No. 60/922,595, filed on April 10, 2007. The entire teachings of the above application are incorporated herein by reference.

BACKGROUND OF THE INVENTION

Dermal ulcers resist healing, as they often occur in subjects who can be characterized as elderly, obese, diabetic, of limited mobility, or having impaired circulation, or having more than one of these characteristics. Examples of chronic dermal ulcers include those resulting from venous disease (venous stasis ulcers), excessive pressure (decubitus ulcers), arterial ulcers, and diabetic ulcers.

Diabetic ulcers are particularly problematic. For example, one in seven individuals with diabetes develops chronic dermal ulcers on their extremities, which are susceptible to infection. Treatment of diabetic ulcers is often prolonged, intensive and costly and treatment failures are common. Current approaches include debridement, frequent changes of wound dressing, specially fitted footwear, oral or intravenous antibiotics, complete bed rest, lengthy hospitalization, and surgical revascularization. Ulcer-related complications can in some cases require amputation. Therefore, there is a need for treatments which accelerate the rate of the healing of chronic dermal ulcers in general, and of diabetic ulcers, in particular.

SUMMARY OF THE INVENTION

It is demonstrated herein, using a system to measure the response of human coronary artery endothelial cells to angiogenic factors, that TP508 treatment more than doubles the angiogenic potential of VEGF for endothelial cells, both under normoxic and hypoxic conditions. TP508 ([the polypeptide Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Cys-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val-NH₂ (SEQ ID NO:3)]) restores the ability of VEGF to activate eNOS, thereby increasing NO required to induce angiogenesis and accelerate wound healing.
The invention is a method of promoting healing of a chronic dermal ulcer in a
subject, using a combination therapy. The method includes administering to the subject a
combination in a therapeutically effective amount, the combination comprising one or more
angiogenic growth factors, and one or more agonists of the non-proteolytically activated
thrombin receptor (NPAR agonists).

The invention is also a method of promoting healing of a chronic dermal ulcer in a
subject, said method comprising administering to the subject in need of such healing a
combination in a therapeutically effective amount, the combination consisting essentially of
one or more angiogenic growth factors, and one or more agonists of the non-proteolytically
activated thrombin receptor.

The angiogenic growth factors in any of the methods described herein can be any of
the angiogenic growth factors known to those of skill in the art, for example, those listed in
Tables 1 and 2. Preferred angiogenic growth factors are human. In some embodiments, the
angiogenic growth factors are those of the VEGF family. In other embodiments, the
angiogenic growth factor is human VEGF-A.

In some embodiments of the described methods, the NPAR agonist is a thrombin
peptide derivative disclosed herein. More specifically, one thrombin peptide derivative
comprises the amino acid sequence of Arg-Gly-Asp-Ala-Cys-X1-Gly-Asp-Ser-Gly-Gly-Pro-
X2-Val (SEQ ID NO:1), or a C-terminal truncated fragment thereof comprising at least six
amino acids. In specific embodiments, the thrombin peptide derivative comprises the amino
acid sequence of SEQ ID NO:2: Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-
Cys-Xi-Gly-Asp-Ser-Gly-Gly-Pro-X2-Val, an N-terminal truncated fragment of the thrombin
peptide derivative having at least fourteen amino acids, or a C-terminal truncated fragment
of the thrombin peptide derivative comprising at least eighteen amino acids. X1 is Glu or
Gln and X2 is Phe, Met, Leu, His or Val. In other specific embodiments, the thrombin
peptide derivative is the polypeptide SEQ ID NO:3: Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-

In further embodiments of the methods, the NPAR agonist is a modified thrombin
peptide derivative disclosed herein. In specific embodiments, the modified thrombin peptide
derivative comprises the amino acid sequence of SEQ ID NO:4: Arg-Gly-Asp-Ala-Xaa-Xp
Gly-Asp-Ser-Gly-Gly-Pro-X2-Val, or a C-terminal truncated fragment thereof having at least
six amino acids. In other specific embodiments, the modified thrombin peptide derivative
comprises the amino acid sequence of SEQ ID NO:5: Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-ATg-Gly-Asp-Ala-XaB-Xi-Gly-ASP-SeT-Gly-Gly-PrO-X2-Val, or a fragment thereof comprising amino acids 10-18 of SEQ ID NO:5.

In still other embodiments, the NPAR agonist is a thrombin peptide derivative dimer of two thrombin peptide derivatives disclosed herein. More specifically, a thrombin peptide derivative dimer comprises in one instance the amino acid sequence Arg-Gly-Asp-Ala-Cys-Xi-Gly-Asp-Ser-Gly-Gly-Pro-X2-Val (SEQ ID NO:1) or a C-terminal truncated fragment thereof having at least six amino acids. In other instances, the thrombin peptide derivative dimer comprises a polypeptide having the amino acid sequence of SEQ ID NO:2: Ala-Gly-TyT-LyS-PrO-ASP-Glu-Gly-Lys-ATg-Gly-Asp-Ala-Cys-Sx1-Gly-Asp-SeT-Gly-Gly-PrO-X2-Val, or a fragment thereof comprising amino acids 10-18 of SEQ ID NO:2. In still other instances of the invention, the thrombin peptide derivative dimer comprises the polypeptide Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Cys-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val-NH2 (SEQ ID NO:3). The thrombin peptide derivative dimer is represented by the structural formula (IV) in other instances.

In further embodiments, the NPAR agonist is an antibody or antigen-binding fragment thereof that binds to a complementary peptide, wherein the complementary peptide is encoded by the complement of a nucleotide sequence encoding a portion of thrombin.

The thrombin referred to above can be a mammalian thrombin, and in particular, a human thrombin. The portion of thrombin can be a thrombin receptor binding domain or a portion thereof. In one embodiment, the thrombin receptor binding domain or portion thereof comprises the amino acid sequence Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Cys-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val (SEQ ID NO:6). Another portion of a thrombin receptor binding domain comprises the amino acid sequence Glu-Gly-Lys-Arg-Gly-Asp-Ala-Cys-Glu-Gly (SEQ ID NO:7).

The complementary peptide to which the antibody or the antigen-binding fragment thereof binds can be encoded by the 5'-3' sequence of the antisense RNA strand or encoded by the 3'-5' sequence of the antisense RNA strand.

In specific embodiments, the complementary peptide comprises the amino acid sequence Lys-Gly-Ser-Pro-Thr-Val-Thr-Phe-Thr-Gly-Ile-Pro-Cys-Phe-Pro-Phe-Ile-Arg-Leu-Val-Thr-Ser (SEQ ID NO:8) or Thr-Phe-Thr-Gly-Ile-Pro-Ser-Phe-Pro-Phe (SEQ ID NO:9) or Arg-Pro-Met-Phe-Gly-Leu-Leu-Pro-Phe-Ala-Pro-Leu-Arg-Thr-Leu-Pro-Leu-Ser-Pro-Pro-
Gly-Lys-Gln (SEQ ID NO: 10) or Lys-Pro-Phe-Ala-Pro-Leu-Arg-Thr-Leu-Pro (SEQ ID NO: 11).

The NPAR agonist to be used in the methods of the invention can be a polyclonal antibody, or a monoclonal antibody or antigen-binding fragment thereof. In particular embodiments, these are human antibodies. Monoclonal antibodies to be used as NPAR agonists in methods of therapy can be humanized antibodies, chimeric antibodies or antigen-binding fragments of any of the foregoing, which can include Fab fragments, Fab' fragments, F(ab')₂ fragments and Fv fragments.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a graph showing densitometric analysis of a Western blot of activated endothelial nitric oxide synthase (eNOS) in HCAE cells following treatments with TP508, VEGF or a combination thereof.

Figure 2A is a diagram showing the experimental apparatus and design of experiments to measure migration of endothelial cells toward a chemoattractant.

Figure 2B is a bar graph showing the effect of TP508 treatment on migration of endothelial cells toward the angiogenic factor VEGF.

Figure 3A is a diagram showing the experimental apparatus and design of experiments to measure invasion of endothelial cells through Matrigel toward a chemoattractant.

Figure 3B is a bar graph showing the effect of TP508 treatment on invasion of endothelial cells toward the angiogenic factor VEGF.

Figure 4 depicts the encoded amino acid sequence of human pro-thrombin (SEQ ID NO: 12). Amino acids 508-530, which contain the thrombin receptor binding domain, are underlined. Thrombin consists of the C-terminal 579 amino acid residues of prothrombin. See GenBank Accession No. AJ972449.

Figure 5A is a diagram of the apparatus and design of the assay used to test the invasion of human coronary artery endothelial (HCAE) cells through a matrix in response to basic fibroblast growth factor (bFGF), as described in Example 4.

Figure 5B is a bar graph showing the extent of invasion of HCAE cells in response to medium containing bFGF (FGF)₅ or in response to medium without bFGF (CTR) as described in Example 4.
Figure 6A is a diagram of the apparatus and design of the assay used to test the migration of HCAE cells through a fibronectin insert in response to bFGF, as described in Example 4.

Figure 6B is a bar graph showing the extent of migration of HCAE cells in response to medium containing bFGF (FGF), or in response to medium without bFGF (CTR), as described in Example 4.

Figure 7A is a diagram of the apparatus and design of the assay used to test the invasion of human coronary artery endothelial (HCAE) cells through a matrix in response to platelet derived growth factor (PDGF), as described in Example 5.

Figure 7B is a bar graph showing the extent of invasion of HCAE cells in response to medium containing PDGF (PDGF), or in response to medium without PDGF (CTR), as described in Example 5.

Figure 8A is a diagram of the apparatus and design of the assay used to test the migration of HCAE cells through a fibronectin insert in response to PDGF, as described in Example 5.

Figure 8B is a bar graph showing the extent of migration of HCAE cells in response to medium containing PDGF (PDGF), or in response to medium without PDGF (CTR), as described in Example 5.

DETAILED DESCRIPTION OF THE INVENTION

The invention encompasses methods of combination therapy, wherein an angiogenic factor and an NPAR agonist are both administered to a patient suffering from a chronic dermal wound (also, "chronic dermal ulcer" or "dermal ulcer"), in an amount and for a duration effective to promote healing of the wound. The combination can be any combination of angiogenic factor and NPAR agonist except the combination of TP508 and VEGF-A (including any isoform of human VEGF-A and recombinant human VEGF-A, and naturally occurring allelic and post-translationally processed forms of any of the isoforms of human VEGF-A). Also excluded from the invention are methods using the combination of transforming growth factor-beta3 (TGF- beta3) and TP508.

Previously, methods of therapy have been described in which NPAR agonists have been used to treat chronic dermal ulcers. See US 7,049,294, which is hereby incorporated by reference in its entirety.
Angiogenic Growth Factors

An "angiogenic growth factor" is a polypeptide which stimulates the development of blood vessels, e.g., promotes angiogenesis, endothelial cell growth, stability of blood vessels, and/or vasculogenesis. For example, angiogenic factors, include, but are not limited to, e.g., VEGF-A and members of the VEGF family, PI GF, PDGF family, fibroblast growth factor family (FGFs), TIE ligands (Angiopoietins), ephrins, ANGPTL3, ANGPTL4, etc. Angiogenic factors also include polypeptides, such as growth hormone, insulin-like growth factor-I (IGF-I), VIGF, epidermal growth factor (EGF), CTGF and members of its family, and TGF-α and TGF-β. See, e.g., Klagsbrun and D'Amore, Annu. Rev. Physiol., 53:217-39 (1991); Streit and Detmar, Oncogene, 22:3172-3179 (2003); Ferrara & Alitalo, Nature Medicine 5(12):1359-1364 (1999); Tonini et al., Oncogene, 22:6549-6556 (2003); and, Sato Int. J. Clin. Oncol., 8:200-206 (2003).

The term "VEGF" (also referred to as "VEGF-A") as used herein refers to vascular endothelial cell growth factor protein. The term "human VEGF" (also referred to as "human VEGF-A") as used herein refers to any of the isoforms of human vascular endothelial cell growth factor A. Described isoforms (arising by differential mRNA splicing) include 121, 145, 148, 165, 165b, 183, 189 and 206. See, for example, Table 1 and Leung et al., Science 246:1306 (1989), and Houck et al., Mol. Endocrin. 5:1806 (1991). "Human VEGF" also includes naturally occurring allelic variants of human VEGF-A and variants arising by variations in post-translational modifications.

Table 1 is not intended to be comprehensive or limiting. Angiogenic growth factors in Table 1 are human unless otherwise indicated.
TABLE 1 Examples of Angiogenic Growth Factors of VEGF Family

<table>
<thead>
<tr>
<th>Angiogenic Growth Factor</th>
<th>Receptor</th>
<th>Chromosome Location</th>
<th>GenBank No.</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human VEGF-A</td>
<td>VEGFR1</td>
<td>6p12</td>
<td>NM_003376</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VEGFR2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoforms:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>148</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>183</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>189</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>206</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human VEGF-B</td>
<td>VEGFR1</td>
<td>11q13</td>
<td>NM_003377</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VEGFR2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human VEGF-C</td>
<td>VEGFR3</td>
<td>4q34.1-q34.3</td>
<td>NM_005429</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VEGFR2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human VEGF-D</td>
<td>VEGFR3</td>
<td>Xp22.31</td>
<td>NM_004469</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VEGFR2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEGF-E [Orf virus (D1701)]</td>
<td>VEGFR2</td>
<td></td>
<td>AF106020</td>
<td></td>
</tr>
<tr>
<td>VEGF-E [Orf virus (NZl)]</td>
<td>VEGFR2</td>
<td></td>
<td>S67520</td>
<td></td>
</tr>
<tr>
<td>VEGF-E [Orf virus (NZ7)]</td>
<td>VEGFR2</td>
<td></td>
<td>S67522</td>
<td></td>
</tr>
<tr>
<td>VEGF-E_{N27/P1GF} (chimeric)</td>
<td>VEGFR2</td>
<td></td>
<td>1, 2</td>
<td></td>
</tr>
<tr>
<td>VEGF-E/P1GF (chimeric)</td>
<td>VEGFR2</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PlGF</td>
<td>FLT1</td>
<td>14q22-q24.3</td>
<td>NM_002632</td>
<td></td>
</tr>
<tr>
<td>Isoforms:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PlGFl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1GF2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1GF3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1GF4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEGF-F (viper)</td>
<td>VEGFR2</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>D. melanogaster PVFl</td>
<td></td>
<td>NM_078683</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Human VEGF-A exists as a number of isoforms that arise from alternative splicing of mRNA of a single gene organized into 8 exons located on chromosome 6 (see, e.g., Ferrara N, Davis Smyth T. Endocr Rev 18:1-22 (1997); and, Henry and Abraham, Review of Preclinical and Clinical Results with Vascular Endothelial Growth Factors for Therapeutic Angiogenesis, Current Interventional Cardiology Reports, 2:228-241 (2000)). See also, U.S. Pat. Nos. 5,332,671 and 6,899,882. In one embodiment, VEGFi65 is administered in the methods of the invention (e.g., recombinant human VEGFi65). VEGFi65, the most abundant isoform, is a basic, heparin binding, dimeric covalent glycoprotein with a molecular mass of about 45,000 Daltons (Id). VEGFi65 homodimer consists of two 165 amino acid chains. The protein has two distinct domains: a receptor binding domain (residues 1-110) and a heparin
binding domain (residues 110-165). The domains are stabilized by seven intramolecular disulfide bonds, and the monomers are linked by two interchain disulfide bonds to form the native homodimer. VEGF₁₂₁ lacks the heparin binding domain (see, e.g., U.S. Pat. No. 5,194,596), whereas VEGF₈₉ (see, e.g., U.S. Pat. Nos. 5,008,196; 5,036,003; and 5,240,848) and VEGF₂₀₆ are sequestered in the extracellular matrix.

The term "angiogenic growth factor" also includes those below in Table 2. The list in Table 2 is not intended to be comprehensive or limiting.

<table>
<thead>
<tr>
<th>Examples of Other Angiogenic Growth Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

TABLE 2
<table>
<thead>
<tr>
<th>Angiogenic Growth Factor</th>
<th>Receptor</th>
<th>Chromosome Location</th>
<th>GenBank No.</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDGFD</td>
<td>PDGFR-α</td>
<td>1q22.3</td>
<td>NM_025208</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PDGFR-β</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDGF-α</td>
<td>7p22</td>
<td></td>
<td>NM_002607</td>
<td></td>
</tr>
<tr>
<td>PDGF2</td>
<td>22q12.3-2q13.1</td>
<td></td>
<td>NM_002608</td>
<td></td>
</tr>
<tr>
<td></td>
<td>isoforms:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 (241 amino acids)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 (226 amino acids)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDGFC</td>
<td>PDGF-α</td>
<td>4q32</td>
<td>NM_016205</td>
<td></td>
</tr>
</tbody>
</table>

References

A "native" polypeptide (e.g., a native angiogenic growth factor) is a polypeptide having the same amino acid sequence as a polypeptide isolated from a natural source. Thus, a native polypeptide can have the amino acid sequence of naturally occurring polypeptide from any mammal, e.g., a human. Such native polypeptides can be isolated from nature or can be produced by recombinant or synthetic means. The term native polypeptide encompasses naturally occurring truncated or secreted forms of the polypeptide (e.g., an extracellular domain sequence), allelic forms designated as wild type, naturally occurring variant forms (e.g., alternatively spliced isoforms) and naturally occurring allelic variants of the polypeptide.
A "polypeptide variant" (e.g., a polypeptide variant of an angiogenic growth factor) means a biologically active polypeptide having at least about 80% amino acid sequence identity with the native polypeptide. Such "polypeptide variants" include, for instance, polypeptides wherein one or more amino acid residues are added, or deleted, at the N- and/or C-terminus of the polypeptide relative to a native polypeptide. Ordinarily, a polypeptide variant will have at least about 80% amino acid sequence identity, or at least about 90% amino acid sequence identity, or at least about 95% or more amino acid sequence identity with the native polypeptide. Polypeptide variants include polypeptides that comprise one or more amino acid substitutions, additions or deletions, or combinations of any of these differences from the native polypeptide. Polypeptide variants can have, for instance, several, such as 5 to 10, 1 to 5, or 4, 3, 2 or 1 amino acids substituted, deleted, or added, in any combination, compared to native polypeptides. In one embodiment, variants have silent substitutions, additions and/or deletions that do not significantly alter the properties and activities of the polypeptide compared to the native polypeptide. Polypeptide variants can also be modified polypeptides in which one or more amino acid residues are modified. Polypeptide variants can be prepared by a variety of methods well known in the art. Polypeptide variants differing by amino acid sequence from a native polypeptide can be prepared by mutations in the encoding DNA. Polypeptide variants also include polypeptides that differ from native polypeptides in glycosylation or other post-translational modification.

A polypeptide variant can be prepared, for instance, by site-directed mutagenesis of nucleotides in the DNA encoding the native polypeptide or by phage display techniques, thereby producing DNA encoding the variant, and thereafter expressing the DNA in recombinant cell culture.

Amino acid deletions generally range from about 1 to 30 residues, optionally 1 to 10 residues, optionally 1 to 5 or less, and typically are contiguous.

Amino acid sequence additions include amino- and/or carboxyl-terminal fusions of from one residue to polypeptides of essentially unrestricted length as well as intrasequence insertions of single or multiple amino acid residues. Intrasequence additions (i.e., additions within a native polypeptide sequence) may range generally from about 1 to 10 residues, optionally 1 to 5, or optionally 1 to 3. An example of a terminal insertion includes a fusion of a signal sequence, whether heterologous or homologous to the host cell, to the ///-terminus to facilitate the secretion from recombinant hosts.
Additional polypeptide variants are those in which at least one amino acid residue in the native polypeptide has been removed and a different amino acid residue inserted in its place (substitution). Conservative substitutions in polypeptide variants of an angiogenic growth factor may be made in accordance with those shown in Table 3, wherein both exemplary and preferred substitutions are conservative substitutions in polypeptide variants of an angiogenic growth factor. Polypeptide variants can also comprise unnatural amino acids as described herein.

Amino acids may be grouped according to similarities in the properties of their side chains (A. L. Lehninger, *Biochemistry*, second ed., pp. 73-75, Worth Publishers, New York (1975)):

1. non-polar: Ala (A), Val (V), Leu (L), Ile (I), Pro (P), Phe (F), Trp (W), Met (M)
2. uncharged polar: Gly (G), Ser (S), Thr (T), Cys (C), Tyr (Y), Asn (N), Gln (Q)
3. acidic: Asp (D), Glu (E)
4. basic: Lys (K), Arg (R), His (H)

Alternatively, naturally occurring amino acids may be divided into groups based on common side-chain properties:

1. hydrophobic: Norleucine, Met, Ala, Val, Leu, He;
2. neutral hydrophilic: Cys, Ser, Thr, Asn, Gln;
3. acidic: Asp, Glu;
4. basic: His, Lys, Arg;
5. residues that influence chain orientation: Gly, Pro;
6. aromatic: Trp, Tyr, Phe.
"Naturally occurring amino acid residues" (i.e. amino acid residues encoded by the genetic code) may be selected from the group consisting of: alanine (Ala); arginine (Arg); asparagine (Asn); aspartic acid (Asp); cysteine (Cys); glutamine (Gln); glutamic acid (Glu); glycine (Gly); histidine (His); isoleucine (He); leucine (Leu); lysine (Lys); methionine (Met); phenylalanine (Phe); proline (Pro); serine (Ser); threonine (Thr); tryptophan (Trp); tyrosine (Tyr); and valine (Val). A "non-naturally occurring amino acid residue" refers to an amino acid residue, other than those naturally occurring amino acid residues listed above, which
can be bound to adjacent amino acid residues(s) in a polypeptide chain through peptide bonds. Examples of non-naturally occurring amino acid residues include, e.g., norleucine, ornithine, norvaline, homoserine and other amino acid residue analogues such as those described in Ellman et al. Meth. Enzym. 202:301-336 (1991) and US Patent application publications 20030108885 and 20030082575.

Percent (%) amino acid sequence identity” herein is defined as the percentage of amino acid residues in a candidate sequence of an angiogenic growth factor that are identical with the amino acid residues in a selected sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN, ALIGN-2 or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared.

For purposes herein, the % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B (which can alternatively be phrased as a given amino acid sequence A that has or comprises a certain % amino acid sequence identity to, with, or against a given amino acid sequence B) is calculated as follows: 100 times the fraction X/Y where X is the number of amino acid residues scored as identical matches by alignment of A and B, and where Y is the total number of amino acid residues in B. It will be appreciated that where the length of amino acid sequence A is not equal to the length of amino acid sequence B, the % amino acid sequence identity of A to B will not equal the % amino acid sequence identity of B to A.

Portions of an angiogenic growth factor include polypeptides that are shorter than a corresponding native polypeptide, and comprise at least 20 contiguous amino acid residues of the corresponding native polypeptide, that share 75% to 100% amino-acid sequence identity with the native polypeptide. In particular embodiments, the portion shares at least 90% or 95% amino acid sequence identity with the native polypeptide. Portions of an angiogenic growth factor can be synthesized, and can have an A-terminal amino group and a C-terminal carboxyl group as they occur in proteins isolated from natural sources, or can
have a modified iV-terminus (e.g., acylated) and/or a modified C-terminus (e.g., amidated). Portions of an angiogenic growth factor can be generated through the expression of genes constructed for the purpose of producing the portion. Portions may be cyclic or linear. In all cases, portions of an angiogenic growth factor have at least 50% of the biological activity of the corresponding native polypeptide, as measured by an assay appropriate to measuring the angiogenic activity of the corresponding native polypeptide.

A number of assays have been used previously to measure angiogenic activity and have been described. An angiogenic growth factor, whether it is a native polypeptide, polypeptide variant, portion of an angiogenic growth factor, or fusion protein of an angiogenic growth factor, can be tested by an in vitro or in vivo assay to assess its activity, using one or more of the assays described herein, or other suitable assay such as those known to persons of ordinary skill in the art. Not all assays are appropriate to measure the angiogenic activity of a given angiogenic growth factor.

A rabbit corneal assay has been described, in which angiogenic growth factor implanted into cornea stimulates the growth of new capillaries. See Ziche et al., Lab. Invest. 61:629-634 (1989). An in vitro angiogenesis assay system allows for observation of morphological changes in endothelial cells stimulated by angiogenic growth factor. See Montesano et al., J. Cell Biol. 97:1648-1652 (1983). Angiogenic growth activity can also be measured by an assay for cell growth [Marconcini et al., Proc. Natl. Acad. Sci. USA 96:9671-9676 (1999)] in response to the angiogenic growth factor, or by invasion and migration assays such as those described in Examples 2-5.

Endothelial cells are activated by and migrate toward angiogenic factors. In the early stages of the angiogenesis process, the activated endothelial cells express significant levels of matrix degrading enzymes, matrix metalloproteinases (MMPs), that digest the capillary basement membrane and allow the cells to move toward an angiogenic stimulus. Invasion and migration assays are *in vitro* techniques designed to investigate this process. Migration (or chemotaxis) is the directional movement of cells in response to a concentration gradient of a soluble attractant. Invasion differs from migration in that, in addition to the migratory response, the cells must express significant quantities of MMPs that degrade the matrix barrier. This allows cell movement into and through the extracellular matrix.

A fusion protein of an angiogenic growth factor comprises a biologically active native polypeptide or biologically active portion thereof (as described above) as a first
moiety, linked to second moiety not occurring in the native polypeptide. Thus, the second
moiety can be an amino acid or polypeptide. The first moiety can be in an N-terminal
location, C-terminal location or internal to the fusion protein. In one embodiment, the fusion
protein comprises a biologically active polypeptide that consists of the amino acid sequence
of a naturally occurring angiogenic growth factor or biologically active portion thereof as the
first moiety, and a second moiety comprising a linker sequence and an affinity ligand.

A fusion protein of an angiogenic growth factor can be produced by a variety of
methods. For example, a fusion protein can be produced by the insertion of gene encoding
an angiogenic growth factor or portion thereof into a suitable expression vector. The
resulting construct can be introduced into a suitable host cell for expression. Upon
expression, fusion protein can be purified from a cell lysate by means of a suitable affinity
matrix, for example (see e.g., Current Protocols in Molecular Biology, Ausubel, F. M. et al.,
edts., pp. 16.4.1-16.7.8, containing supplements up through Supplement 28, 1994). See, for

99-105.

Angiogenic growth factors can be human origin or of non-human (preferably
mammalian) origin. Human angiogenic growth factors as well as non-human species
homologs are angiogenic growth factors and can be used in the combination therapies of the
invention. A homolog preferably has at least 70% amino acid sequence identity, more
preferably, at least 80% sequence identity and, even more preferably, at least 90% sequence
identity with a human angiogenic growth factor.

"Angiogenic growth factors" encompass native angiogenic growth factors,
polypeptide variants of angiogenic growth factors, portions of angiogenic growth factors,
and fusion proteins of angiogenic growth factors as described above.

NPAR Agonists

Compounds which stimulate NPAR are said to be NP AR agonists. NPAR is a high-
affinity thrombin receptor present on the surface of most cells. This NPAR component is
largely responsible for high-affinity binding of thrombin, proteolytically inactivated
thrombin, and thrombin derived peptides to cells. NPAR appears to mediate a number of
 cellular signals that are initiated by thrombin independent of its proteolytic activity. An
example of one such signal is the upregulation of annexin V and other molecules identified by subtractive hybridization (see Sower, et. al, Experimental Cell Research 247:422 (1999)). NPAR is therefore characterized by its high affinity interaction with thrombin at cell surfaces and its activation by proteolytically inactive derivatives of thrombin and thrombin derived peptide agonists as described below. NPAR activation can be assayed based on the ability of molecules to stimulate cell proliferation when added to fibroblasts in the presence of subunitogenic concentrations of thrombin or molecules that activate protein kinase C, as disclosed in U.S. Patent Nos. 5,352,664 and 5,500,412. The entire teachings of these patents are incorporated herein by reference. NPAR agonists can be identified by this activation or by their ability to compete with 125I-thrombin binding to cells.

A thrombin receptor binding domain is defined as a polypeptide or portion of a polypeptide which directly binds to the thrombin receptor and/or competitively inhibits binding between high-affinity thrombin receptors and alpha-thrombin.

NPAR agonists of the present invention include thrombin derivative peptides, modified thrombin derivative peptides, thrombin derivative peptide dimers and NPAR agonist antibodies to complementary peptides of thrombin as disclosed herein.

Thrombin Derivative Peptides

Among NPAR agonists are thrombin peptide derivatives (also: "thrombin derivative peptides"), which are analogs of thrombin that have an amino acid sequence derived at least in part from that of thrombin and are active at the non-proteolytically activated thrombin receptor. Thrombin peptide derivatives include, for example, peptides that are produced by recombinant DNA methods, peptides produced by enzymatic digestion of thrombin, and peptides produced synthetically, which can comprise amino acid substitutions compared to thrombin and/or modified amino acids, especially at the termini.

NPAR agonists of the present invention include thrombin derivative peptides described in U.S. Patent Nos. 5,352,664 and 5,500,412. In one embodiment, the NPAR agonist of the present invention is a thrombin peptide derivative or a physiologically functional equivalent, i.e., a polypeptide with no more than about fifty amino acids, preferably no more than about thirty amino acids and having sufficient homology to the fragment of human thrombin corresponding to thrombin amino acids 508-530 (Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Cys-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val;
SEQ ID NO: 6) that the polypeptide activates NPAR. In one instance, the thrombin peptide derivative is a 23-amino acid polypeptide comprising the amino acid sequence SEQ ID NO: 6. The thrombin peptide derivatives or modified thrombin peptide derivatives described herein preferably have from about 12 to about 23 amino acid residues, more preferably from about 19 to about 23 amino acid residues.

In another embodiment, the NPAR agonist of the present invention is a thrombin peptide derivative comprising a moiety represented by Structural Formula (I):

\[
\text{Asp-Ala-R} \quad (I).
\]

R is a serine esterase conserved domain. Serine esterases, e.g., trypsin, thrombin, chymotrypsin and the like, have a region that is highly conserved. "Serine esterase conserved domain" refers to a polypeptide having the amino acid sequence of one of these conserved regions or is sufficiently homologous to one of these conserved regions such that the thrombin peptide derivative retains NPAR activating ability.

A physiologically functional equivalent of a thrombin derivative encompasses molecules which differ from thrombin derivatives in particulars which do not affect the function of the thrombin receptor binding domain or the serine esterase conserved amino acid sequence. Such particulars may include, but are not limited to, conservative amino acid substitutions as defined below for NPAR agonists, and modifications, for example, amidation of the carboxyl terminus, acylation (e.g., acetylation) of the amino terminus, conjugation of the polypeptide to a physiologically inert carrier molecule, or sequence alterations in accordance with the serine esterase conserved sequences.

A domain having a serine esterase conserved sequence can comprise a polypeptide sequence containing at least 4-12 of the N-terminal amino acids of the dodecapeptide previously shown to be highly conserved among serine proteases (Asp-Xi-Cys-X2-Gly-Asp-Ser-Gly-Gly-Pro-X3-Val; SEQ ID NO: 13); wherein X1 is either Ala or Ser; X2 is either Glu or Gln; and X3 is Phe, Met, Leu, His, or Val).

In one embodiment, the serine esterase conserved sequence comprises the amino acid sequence of SEQ ID NO: 14 (Cys-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val) or a C-terminal truncated fragment of a polypeptide having the amino acid sequence of SEQ ID NO: 14. It is understood, however, that zero, one, two or three amino acids in the serine esterase conserved sequence can differ from the corresponding amino acid in SEQ ID NO: 14.
Preferably, the amino acids in the serine esterase conserved sequence which differ from the corresponding amino acid in SEQ ID NO: 14 are conservative substitutions as defined below for NPAR agonists, and are more preferably highly conservative substitutions. A "C-terminal truncated fragment" refers to a fragment remaining after removing an amino acid or block of amino acids from the C-terminus, said fragment having at least six and more preferably at least nine amino acids.

In another embodiment, the serine esterase conserved sequence comprises the amino acid sequence of SEQ ID NO: 15 (Cys-Xi-Gly-Asp-Ser-Gly-Pro-X2-Val; X1 is Glu or Gln and X2 is Phe, Met, Leu, His or Val) or a C-terminal truncated fragment thereof having at least six amino acids, preferably at least nine amino acids.

In a preferred embodiment, the thrombin peptide derivative comprises a serine esterase conserved sequence and a polypeptide having a more specific thrombin amino acid sequence Arg-Gly-Asp-Ala (SEQ ID NO: 16). One example of a thrombin peptide derivative of this type comprises Arg-Gly-Asp-Ala-Cys-Xi-Gly-Asp-Ser-Gly-Gly-Pro-XrVal (SEQ ID NO:1). Xi and Xr are as defined above. The thrombin peptide derivative can comprise the amino acid sequence of SEQ ID NO: 6 (Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Cys-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val) or an JV-terminal truncated fragment thereof, provided that zero, one, two or three amino acids at positions 1-9 in the thrombin peptide derivative differ from the amino acid at the corresponding position of SEQ ID NO:6.

Preferably, the amino acid residues in the thrombin peptide derivative which differ from the corresponding amino acid residues in SEQ ID NO: 6 are conservative substitutions, and are more preferably highly conservative substitutions. An "JV-terminal truncated fragment" refers to a fragment remaining after removing an amino acid or block of amino acids from the JV-terminus, preferably a block of no more than six amino acids, more preferably a block of no more than three amino acids.

Optionally, the thrombin peptide derivatives described herein can be amidated at the C-terminus and/or acylated at the JV-terminus. In a specific embodiment, the thrombin peptide derivatives comprise a C-terminal amide and optionally comprise an acetylated JV-terminus, wherein said C-terminal amide is represented by -C(O)NRaRb, wherein Ra and Rb are independently hydrogen, a CiCi0 substituted or unsubstituted aliphatic group, or Ra and Rb, taken together with the nitrogen to which they are bonded, form a CpCi onon-aromatic heterocyclic group, and said JV-terminal acyl group is represented by RfC(O)-, wherein Rf is
hydrogen, a \(\text{Ci-Ci}_0 \) substituted or unsubstituted aliphatic group, or a \(\text{Ci-Ci}_0 \) substituted or unsubstituted aromatic group. In another specific embodiment, the \(N \)-terminus of the thrombin peptide derivative is free (i.e., unsubstituted) and the \(C \)-terminus is free (i.e., unsubstituted) or amidated, preferably as a carboxamide (i.e., -\(\text{C(O)NH}_2 \)). In a specific embodiment, the thrombin peptide derivative comprises the following amino acid sequence: Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Cys-Glu-Gly-Asp-Ser-Gly-Gly-Gly-Pro-Phe-Val (SEQ ID NO:6). In another specific embodiment, the thrombin peptide derivative comprises the amino sequence of Arg-Gly-Asp-Ala-Cys-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val (SEQ ID NO:17). Alternatively, the thrombin peptide derivative comprises the amino acid sequence of SEQ ID NO:18: Asp-Asn-Met-Phe-Cys-Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Cys-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val-Met-Lys-Ser-Pro-Phe. The thrombin peptide derivatives comprising the amino acids of SEQ ID NO: 6, 17, or 18 can optionally be amidated at the \(C \)-terminus and/or acylated at the \(JV \)-terminus. Preferably, the \(JV \)-terminus is free (i.e., unsubstituted) and the \(C \)-terminus is free (i.e., unsubstituted) or amidated, preferably as a carboxamide (i.e., -\(\text{C(O)NH}_2 \)). It is understood, however, that zero, one, two or three amino acids at positions 1-9 and 14-23 in the thrombin peptide derivative can differ from the corresponding amino acid in SEQ ID NO:6. It is also understood that zero, one, two or three amino acids at positions 1-14 and 19-33 in the thrombin peptide derivative can differ from the corresponding amino acid in SEQ ID NO:18. Preferably, the amino acids in the thrombin peptide derivative which differ from the corresponding amino acid in SEQ ID NO:6 or SEQ ID NO:18 are conservative substitutions as defined for NPAR agonists, and are more preferably highly conservative substitutions. Alternatively, an \(JV \)-terminal truncated fragment of the thrombin peptide derivative having at least fourteen amino acids or a \(C \)-terminal truncated fragment of the thrombin peptide derivative having at least eighteen amino acids is a thrombin peptide derivative to be used as an NPAR agonist.

A "\(C \)-terminal truncated fragment" refers to a fragment remaining after removing an amino acid or block of amino acids from the \(C \)-terminus. An "\(JV \)-terminal truncated fragment" refers to a fragment remaining after removing an amino acid or block of amino acids from the \(JV \)-terminus. It is to be understood that the terms "\(C \)-terminal truncated fragment" and "\(JV \)-terminal truncated fragment" encompass acylation at the \(JV \)-terminus and/or amidation at the \(C \)-terminus, as described above.
A preferred thrombin peptide derivative for use in the disclosed method comprises the amino acid sequence SEQ ID NO:2: Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Cys-Xi-Gly-Asp-Ser-Gly-Gly-ProO^-Val. Another preferred thrombin peptide derivative for use in the disclosed method comprises the amino acid sequence of SEQ ID NO:2: Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Cys-Xi-Gly-Asp-Ser-Gly-Gly-ProO^-Val. X, is Glu or Gln; X_2 is Phe, Met, Leu, His or Val. The thrombin peptide derivatives of SEQ ID NO:2 and SEQ ID NO:19 can optionally comprise a C-terminal amide and/or acylated iV-terminus, as defined above. Preferably, the N-terminus is free (i.e., unsubstituted) and the C-terminus is free (i.e., unsubstituted) or amidated, preferably as a carboxamide (i.e., -C(O)NH$_2$). Alternatively, N-terminal truncated fragments of these preferred thrombin peptide derivatives, the N-terminal truncated fragments having at least fourteen amino acids, or C-terminal truncated fragments of these preferred thrombin peptide derivatives, the C-terminal truncated fragments having at least eighteen amino acids, can also be used in the disclosed method.

TP508 is an example of a thrombin peptide derivative and is 23 amino acid residues long, wherein the N-terminal amino acid residue Ala is unsubstituted and the COOH of the C-terminal amino acid Val is modified to an amide represented by -C(O)NH$_2$ (SEQ ID NO:3). Another example of a thrombin peptide derivative comprises the amino acid sequence of SEQ ID NO:6, wherein both N- and C-termini are unsubstituted ("deamide TP508"). Other examples of thrombin peptide derivatives which can be used in the disclosed method include N-terminal truncated fragments of TP508 (or deamide TP508), the N-terminal truncated fragments having at least fourteen amino acids, or C-terminal truncated fragments of TP508 (or deamide TP508), the C-terminal truncated fragments having at least eighteen amino acids.

As used herein, a "conservative amino acid substitution" or "conservative substitution" in an NPARI agonist is the replacement of an amino acid with another amino acid that has the same net electronic charge and approximately the same size and shape. Amino acids with aliphatic or substituted aliphatic amino acid side chains have approximately the same size when the total number of carbon and heteroatoms in their side chains differs by no more than about four. They have approximately the same shape when the number of branches in their side chains differs by no more than one. Amino acids with phenyl or substituted phenyl groups in their side chains are considered to have about the
same size and shape. Listed below are five groups of amino acids. Replacing an amino acid in a polypeptide with another amino acid from the same group results in a conservative substitution:

Group I: glycine, alanine, valine, leucine, isoleucine, serine, threonine, cysteine, and non-naturally occurring amino acids with C1-C4 aliphatic or C1-C4 hydroxyl substituted aliphatic side chains (straight chained or monobranched).

Group II: glutamic acid, aspartic acid and non-naturally occurring amino acids with carboxylic acid substituted C1-C4 aliphatic side chains (unbranched or one branch point).

Group III: lysine, ornithine, arginine and non-naturally occurring amino acids with amine or guanidino substituted C1-C4 aliphatic side chains (unbranched or one branch point).

Group IV: glutamine, asparagine and non-naturally occurring amino acids with amide substituted C1-C4 aliphatic side chains (unbranched or one branch point).

Group V: phenylalanine, phenylglycine, tyrosine and tryptophan.

As used herein, a "highly conservative substitution" in a polypeptide is the replacement of an amino acid with another amino acid that has the same functional group in the side chain and nearly the same size and shape. Amino acids with aliphatic or substituted aliphatic amino acid side chains have nearly the same size when the total number of carbon and heteroatoms in their side chains differs by no more than two. They have nearly the same shape when they have the same number of branches in the their side chains. Examples of highly conservative substitutions include valine for leucine, threonine for serine, aspartic acid for glutamic acid and phenylglycine for phenylalanine. Examples of substitutions which are not highly conservative include alanine for valine, alanine for serine and aspartic acid for serine.

Thrombin peptide derivatives retain their monomeric form essentially free of dimers in the presence of a dimerization inhibitor such as a chelating agent or a thiol-containing compound, e.g., greater than 90% free by weight over a two-month time period and preferably greater than 95% free by weight over a two-month time period. The chelating
agent and the thiol-containing compound can be used together or separately to prevent or reduce dimerization of thrombin peptide derivatives. An antioxidant optionally can be used in combination with the chelating agent and/or the thiol-containing compound. See Publication No. US 2005/0203017 A1, which is hereby incorporated by reference in its entirety.

Modified Thrombin Peptide Derivatives

In one embodiment of the invention, the NPAR agonists are modified relative to the thrombin peptide derivatives described above, wherein cysteine residues of aforementioned thrombin peptide derivatives are replaced with amino acids having similar size and charge properties to minimize dimerization of the peptides. Examples of suitable amino acids include alanine, glycine, serine, or an 5-protected cysteine. Preferably, cysteine is replaced with alanine. The modified thrombin peptide derivatives have about the same biological activity as the unmodified thrombin peptide derivatives. See Publication No. US 2005/0158301 A1, which is hereby incorporated by reference.

It will be understood that the modified thrombin peptide derivatives disclosed herein can optionally comprise C-terminal amides and/or iV-terminal acyl groups, as described above. Preferably, the iV-terminus of a thrombin peptide derivative is free (i.e., unsubstituted) and the C-terminus is free (i.e., unsubstituted) or amidated, preferably as a carboxamide (i.e., -C(O)NH₂).

In a specific embodiment, the modified thrombin peptide derivative comprises a polypeptide having the amino acid sequence of SEQ ID NO:4: Arg-Gly-Asp-Ala-Xaa-Xp Gly-Asp-Ser-Gly-Gly-Pro-X₂-Val, or a C-terminal truncated fragment thereof having at least six amino acids. More specifically, the thrombin peptide derivative comprises the amino acid sequence of SEQ ID NO:20: Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Xaa-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val or a fragment thereof comprising amino acids 10-18 of SEQ ID NO:20. Even more specifically, the thrombin peptide derivative comprises the amino acid sequence SEQ ID NO:5: Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Xaa-Xi-Gly-Asp-Ser-Gly-Gly-Pro-X₂-Val, or a fragment thereof comprising amino acids 10-18 of SEQ ID NO:5. Xaa is alanine, glycine, serine or an S-protected cysteine. Xi is Glu or Gln and X₂ is Phe, Met, Leu, His or Val. Preferably Xi is Glu, X₂ is Phe, and Xaa is alanine. One example of a thrombin peptide derivative of this
type is a polypeptide having the amino acid sequence Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Ala-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val (SEQ ID NO:21). A further example of a thrombin peptide derivative of this type is the polypeptide Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Ala-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val-NH₂ (SEQ ID NO:22). Zero, one, two or three amino acids in the thrombin peptide derivative differ from the amino acid at the corresponding position of SEQ ID NO:4, 20, 5, 21 or 22, provided that Xaa is alanine, glycine, serine or an 5-protected cysteine. Preferably, the difference is conservative, as defined for conservative substitutions in an NPAR agonist.

In another specific embodiment, the thrombin peptide derivative comprises a polypeptide having the amino acid sequence SEQ ID NO:23: Asp-Asn-Met-Phe-Xbb-Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Xaa-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val-Met-Lys-Ser-Ser-Pro-Phe, or a fragment thereof comprising amino acids 6-28. More preferably, the thrombin peptide derivative comprises a polypeptide having the amino acid sequence SEQ ID NO:24: Asp-Asn-Met-Phe-Xbb-Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Xaa-X i-Gly-Asp-Ser-Gly-Gly-Pro-Xbb-Val-Met-Lys-Ser-Ser-Pro-Phe, or a fragment thereof comprising amino acids 6-28. Xaa and Xbb are independently alanine, glycine, serine or an 5-protected cysteine. X i is Glu or Gln and Xbb is Phe, Met, Leu, His or Val. Preferably X₁ is Glu, X₂ is Phe, and Xaa and Xbb are alanine. One example of a thrombin peptide derivative of this type is a polypeptide comprising the amino acid sequence Asp-Asn-Met-Phe-Ala-Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Ala-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val-Met-Lys-Ser-Ser-Pro-Phe (SEQ ID NO:25). A further example of a thrombin peptide derivative of this type is the polypeptide Asp-Asn-Met-Phe-Ala-Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Ala-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val-Met-Lys-Ser-Ser-Pro-Phe-NH₂ (SEQ ID NO:26). Zero, one, two or three amino acids in the thrombin peptide derivative can differ from the amino acid at the corresponding position of SEQ ID NO:23, 24, 25 or 26. Xaa and Xbb are independently alanine, glycine, serine or an 5^-protected cysteine. Preferably, the difference is conservative, as conservative substitutions of NPAR agonists are defined.

An "^-protected cysteine" is a cysteine residue in which the reactivity of the thiol moiety, -SH, is blocked with a protecting group. Suitable protecting groups are known in the art and are disclosed, for example, in T. W. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, 3rd Edition, John Wiley & Sons, (1999), pp. 454-493, the
teachings of which are incorporated herein by reference in their entirety. Suitable protecting groups should be non-toxic, stable in pharmaceutical formulations and have minimum additional functionality to maintain the activity of the thrombin peptide derivative. A free thiol can be protected as a thioether, a thioester, or can be oxidized to an unsymmetrical disulfide. Preferably the thiol is protected as a thioether. Suitable thioethers include, but are not limited to, 5-alkyl thioethers (e.g., C₁-C₅ alkyl), and S-benzyl thioethers (e.g., cysteine-S-S-f-Bu). Preferably the protective group is an alkyl thioether. More preferably, the S-protected cysteine is an S-methyl cysteine. Alternatively, the protecting group can be: 1) a cysteine or a cysteine-containing peptide (the "protecting peptide") attached to the cysteine thiol group of the thrombin peptide derivative by a disulfide bond; or 2) an amino acid or peptide ("protecting peptide") attached by a thioamide bond between the cysteine thiol group of the thrombin peptide derivative and a carboxylic acid in the protecting peptide (e.g., at the C-terminus or side chain of aspartic acid or glutamic acid). The protecting peptide can be physiologically inert (e.g., a polyglycine or polyalanine of no more than about fifty amino acids optionally interrupted by a cysteine), or can have a desirable biological activity.

Thrombin Peptide Derivative Dimers

In some aspects of the present invention, the NPAR agonists of the methods are thrombin peptide derivative dimers. See publication No. US 2005/0153893, which is hereby incorporated by reference. The dimers essentially do not revert to monomers and still have about the same biological activity as the thrombin peptide derivatives monomer described above. A "thrombin peptide derivative dimer" is a molecule comprising two thrombin peptide derivatives linked by a covalent bond, preferably a disulfide bond between cysteine residues. Thrombin peptide derivative dimers are typically essentially free of the corresponding monomer, e.g., greater than 95% free by weight and preferably greater than 99% free by weight. Preferably the polypeptides are the same and covalently linked through a disulfide bond.

The thrombin peptide derivative dimers of the present invention comprise the thrombin peptide derivatives described above. Specifically, thrombin peptide derivatives have less than about fifty amino acids, preferably less than about thirty-three amino acids. Thrombin peptide derivatives also have sufficient homology to the fragment of human thrombin corresponding to thrombin amino acid residues 508-530: Ala-Gly-Tyr-Lys-Pro-
Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Cys-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val (SEQ ID NO: 6) so that the polypeptide activates NPAR. The thrombin peptide derivative dimers described herein are formed from polypeptides typically having at least six amino acids and preferably from about 12 to about 33 amino acid residues, and more preferably from about 12 to about 23 amino acid residues.

In a specific embodiment, each thrombin peptide derivative comprising a dimer comprises a polypeptide having the amino acid sequence SEQ ID NO: 1: Arg-Gly-Asp-Ala-Cys-Xi-Gly-Asp-Gly-Pro-Xi-Val, or a C-terminal truncated fragment thereof comprising at least six amino acids. More specifically, each thrombin peptide derivative comprises the amino acid sequence of SEQ ID NO: 6: Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Cys-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val, or a fragment thereof comprising amino acids 10-18 of SEQ ID NO: 5. Even more specifically, the thrombin peptide derivative comprises the amino acid sequence SEQ ID NO: 2: Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Cys-Xi-Gly-Asp-Ser-Gly-Gly-Pro-Xi-Val, or a fragment thereof comprising amino acids 10-18 of SEQ ID NO: 2. Xi is Glu or Gln and X₂ is Phe, Met, Leu, His or Val. Preferably Xi is Glu, and X₂ is Phe. One example of a thrombin peptide derivative of this type is a polypeptide comprising the amino acid sequence Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Cys-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val (SEQ ID NO: 6). A further example of a thrombin peptide derivative of this type is a polypeptide having the amino acid sequence Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Cys-S-Glu-Gly-Asp-Sbr-Gly-Gly-Pro-Phe-Val NH₂ (SEQ ID NO: 3). Zero, one, two or three amino acids in the thrombin peptide derivative differ from the amino acid at the corresponding position of SEQ ID NO: 6, 1, 2, or 3. Preferably, the difference is conservative, as conservative substitutions of NPAR agonists are defined.

One example of a thrombin peptide derivative dimer of the present invention is represented by Formula (IV):

![Formula (IV)](image-url)
In another specific embodiment, each thrombin peptide derivative comprising a
dimer comprises a polypeptide comprising the amino acid sequence SEQ ID NO:27: Ala-
Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Cys-Glu-Gly-Asp-Ser-Gly-Gly-Pro-
Phe-Val-Met-Lys-Ser-Pro-Phe-Asn-Asn-Arg-Trp-Tyr, or a C-terminal truncated fragment
thereof having at least twenty-three amino acids. More preferably, each thrombin peptide
derivative comprises the amino acid sequence SEQ ID NO:28: Ala-Gly-Tyr-Lys-Pro-Asp-
Glu-Gly-Lys-Arg-Gly-Asp-Ala-Cys-Xi-Gly-Asp-Ser-Gly-Gly-Pro-X^Val-Met-Lys-Ser-
Pro-Phe-Asn-Asn-Arg-Trp-Tyr, or a C-terminal truncated fragment thereof comprising at
least twenty-three amino acids. X₁ is Glu or Gln and X₂ is Phe, Met, Leu, His or Val.

Preferably Xi is Glu, and X₂ is Phe. One example of a thrombin peptide derivative of this
type is a polypeptide comprising the amino acid sequence Ala-Gly-Tyr-Lys-Pro-Asp-Glu-
Gly-Lys-Arg-Gly-Asp-Ala-Cys-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val-Met-Lys-Ser-Pro-
Phe-Asn-Asn-Arg-Trp-Tyr (SEQ ID NO:27). A further example of a thrombin peptide
derivative of this type is a polypeptide comprising the amino acid sequence Ala-Gly-Tyr-
Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Cys-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val-
Met-Lys-Ser-Pro-Phe-Asn-Asn-Arg-Trp-Tyr-NH₂ (SEQ ID NO:29). Zero, one, two or three
amino acids in the thrombin peptide derivative differ from the amino acid at the

corresponding position of SEQ ID NO.27, 28 or 29. Preferably, the difference is

conservative, as conservative substitutions of NPAR agonists are defined.

NPAR Agonist Antibodies

A particular class of NPAR agonists includes antibodies and antigen-binding
fragments that can both bind to and activate the non-proteolytically activated thrombin
receptor (NPAR), and can bind to one or more complementary peptides as described below.

Agonist antibodies that bind to thrombin receptors have been described in the art. For

example, Frost et al. teach that a monoclonal antibody, TR-9, can mimic the effects of

thrombin's high affinity interaction with the high affinity thrombin receptor (Frost, G.H., et

Antibodies or antigen-binding fragments thereof that are NPAR agonists can be

found by their binding to a complementary peptide that is encoded by the complement of a

nucleotide sequence encoding a portion of thrombin. See Molecular Recognition Theory

below. The NPAR agonist antibody or antigen-binding fragment binds to a complementary
peptide that is encoded by the complement of a nucleotide sequence encoding a portion of thrombin. The NPAR agonist antibody or antigen-binding fragment can be found by its binding to a complementary peptide that is encoded by the complement of a nucleotide sequence encoding a portion of thrombin. In one embodiment, the thrombin or portion thereof (which is encoded by the sense or +RNA strand and is the complement of the RNA strand encoding the complementary peptide to which the antibody or antigen-binding fragment binds) is a mammalian thrombin or a portion of a mammalian thrombin. In another embodiment, the thrombin or portion thereof is a human thrombin or a portion of a human thrombin.

Antibodies or antigen-binding fragments thereof that bind to a complementary peptide, wherein the complementary peptide is encoded by the complement of a nucleotide sequence encoding thrombin or a portion thereof, can be NPAR agonists. In one embodiment, the portion of thrombin (which is encoded by the sense or +RNA strand and is the complement of the RNA strand encoding the complementary peptide to which the antibody or antigen-binding fragment binds) is a thrombin receptor binding domain or a portion thereof. As used herein, a thrombin receptor binding domain or a portion thereof is a segment of thrombin that is capable of selectively binding to the high-affinity non-proteolytically activated thrombin receptor (NPAR). Such thrombin receptor binding domains contain a portion of a domain (represented by amino acid residues 517-520 of human thrombin; see the amino acid sequence of human prothrombin (SEQ ID NO: 12; Figure 4) with a sequence homologous to the tripeptide cell binding domain of fibronectin, Arg-Gly-Asp. In a particular embodiment, the thrombin receptor binding domain or portion thereof comprises the amino acid sequence AGYPDEGKRGDACEGDSGGPFPV (i.e., amino acids 508-530 of human thrombin (SEQ ID NO.6)). In another embodiment, the thrombin receptor binding domain or portion thereof is a portion of the thrombin receptor binding domain and comprises the amino acid sequence EGKRGDACEG (SEQ ID NO:7).

As described herein, complementary peptides of domains of thrombin that are encoded by both the 5’-3’ sequence of the antisense RNA strand and the 3’-5’ sequence of the antisense RNA strand can be used to produce the NPAR agonist antibodies and antigen-binding domains of the invention. Therefore, in one embodiment, the complementary peptide (to which the antibodies and antigen-binding fragments bind) is encoded by the 5’-3’
sequence of the antisense RNA strand. In another embodiment, the complementary peptide is encoded by the 3'-5' sequence of the antisense RNA strand.

In one example, a complementary peptide (to which the NPAR agonist antibodies and antigen-binding fragments of the invention bind) comprises the amino acid sequence

\[\text{KGSPTVFTGIPSFPFIRLVTS} \quad (\text{AC-ZS; SEQ ID NO:30).} \]

In another example, the complementary peptide comprises the amino acid sequence \(\text{KGSPTVFTGIPSFPFIRLVTS} \) (23C53; SEQ ID NO:31). In yet another example, the complementary peptide comprises the amino acid sequence \(\text{TFTGIPSFPF} \) (C1053; SEQ ID NO:32). In still another example, the complementary peptide comprises the amino acid sequence

\[\text{RPMFGLLPFAPLRTLPLSPPGKQ} \quad [\text{AC-23rev (SEQ ID NO:33), which is the complementary 5'-3' peptide corresponding to AC-23].} \]

In still a further example, the complementary peptide comprises the amino acid sequence \(\text{LPFAPLRTL} \) [C1053rev (SEQ ID NO:34), which is the complementary 5'-3' peptide corresponding to C1053].

One example of an NPAR agonist antibody or an antigen-binding fragment thereof binds to a cysteine-altering complementary peptide comprising the amino acid sequence

\[\text{KGSPTVFTGIPSFPFIRLVTS} \quad (\text{23C53; SEQ ID NO:31).} \]

23C53, which differs from AC-23 by a single amino acid, is the complementary peptide of TP508, except that it possesses a single amino acid alteration from Cys to Ser.

In binding experiments using biotin-conjugated thrombin, thrombin was found to bind specifically to AC23 and 23C53. Half maximal binding of biotin-labeled thrombin to AC-23 was 4.8 ± 0.2 nM (n=2 ± SD).

Addition of TP508 inhibited specific binding of biotin-labeled thrombin to AC-23. Up to 60% of the binding of thrombin to AC-23 can be inhibited by the addition of TP508. Therefore, both thrombin and TP508 bind to the complementary peptide, AC-23. This suggests that AC-23 has a three-dimensional structure that is similar to the thrombin-TP508 receptor on cells. Antibodies to AC-23 and other complementary peptides of thrombin can therefore be used to characterize the thrombin binding site that is activated by TP508, and can be used in the therapeutic and other methods described herein.

In addition to the thrombin receptor binding domain, the stimulatory (agonistic) thrombin polypeptide derivatives possess a domain (represented by amino acid residues 519-530 of human thrombin) with a high degree of homology to a number of serine esterases.
However, the inhibitory (antagonistic) thrombin polypeptide derivatives do not include the serine esterase domain.

Thrombin peptide derivatives from amino acid residues 508-530 of human thrombin have been described for promoting thrombin receptor mediated cell stimulation. In addition, stimulatory (agonistic) thrombin polypeptide derivatives containing both fibronectin- and serine protease-homologous domains (residues 508 to 530 of human thrombin) bind to thrombin receptors with high-affinity and substitute for DIP-alpha-thrombin as an initiator of receptor occupancy-related mitogenic signals. (DIP-alpha-thrombin is a proteolytically inactive derivative of thrombin that retains receptor binding activity.) In contrast, inhibitory (antagonistic) thrombin polypeptide derivatives containing only the fibronectin-homologous domain (p517-520) (but not the serine protease-homologous domain) bind to the thrombin receptor without inducing mitogenesis. An intermediate thrombin peptide derivative (p519-530) retains the ability to mediate mitogenesis but to a much lesser degree than p508-530.

Molecular Recognition Theory

Blalock and Smith (1984) observed that the hydrophatic character of an amino acid residue is related to the identity of the middle letter of the triplet codon from which it is transcribed (Blalock, J.E., and Smith, E.M., Biochem. Biophys. Res. Commun. 12: 203-07 (1984)). Specifically, a triplet codon with thymine (T) as its middle base codes for a hydrophobic residue while adenine (A) codes for a hydrophilic residue. A triplet codon with middle bases cytosine (C) or guanine (G) encode residues that are relatively neutral and with similar hydropathy scores. Hydropathy is an index of the affinity of an amino acid for a polar environment; hydrophilic residues yielding a more negative score, while hydrophobic residues exhibit more positive scores. Kyte and Doolittle (1982) conceived a hydropathy scale that is widely used (Kyte, J., and Doolittle, R.F., J. Mol. Biol. 5:105-32 (1982)). The observed relationship between the middle base of a triplet codon and residue hydropathy entails that peptides encoded by complementary DNA will exhibit complementary, or inverted, hydrophatic profiles. It was proposed that because two peptide sequences encoded in complementary DNA strands display inverted hydropathic profiles, they may form amphipathic secondary structures, and bind to one another (Bost, K.L., et al., Proc. Natl. Acad. Sci. USA 82:1372-75 (1985)). Complementary peptides have been reported to form binding complexes with their "sense" peptide counterparts for a number of different systems.

The scope of this analysis for explaining the interactions between proteins was further developed by Blalock to propose a Molecular Recognition Theory (MRT) (Bost, K.L., et al., Proc. Natl. Acad. Sci. USA 82:1372-75 (1985); Blalock, J.E., Nature Med. 1:876-78 (1995)). This theory suggests that a "molecular recognition" code of interaction exists between peptides that are encoded by complementary strands of DNA, based on the observation that such peptides will exhibit inverted hydropathic profiles. MRT has proved successful for predicting particular binding interactors.

Blalock suggested that it is the linear pattern of amino acid hydropathy scores in a sequence (rather than the combination of specific residue identities), that defines the secondary structure environment. Furthermore, he suggested that sequences with inverted hydropathic profiles are complementary in shape by virtue of inverse forces that determine their steric relationships.

Deriving a Complementary Peptide in the 3′-5′ Reading Frame

As a corollary to his original work, Blalock contended that as well as reading a complementary codon in the usual 5′-3′ direction, reading a complementary codon in the 3′-5′ direction would also yield amino acid sequences that displayed opposite hydropathic profiles (Bost, K.L., et al., Proc. Natl. Acad. Sci. USA 82:1372-75 (1985)). This follows from the observation that the middle base of a triplet codon determines the hydropathy index of the residue it codes for, and therefore reading a codon in the reverse direction may change the identity, but not the hydropathic nature of the coded amino acid (Table 4).
TABLE 4: The relationships between amino acids and the residues encoded in the complementary strand

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>Complementary Codon</th>
<th>Complementary Amino Acid</th>
<th>Amino Acid</th>
<th>Complementary Codon</th>
<th>Complementary Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine</td>
<td>GCA</td>
<td>CGU</td>
<td>Arginine</td>
<td>UCA</td>
<td>AGU</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Serine</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GCG</td>
<td>GCC</td>
<td>Serine</td>
<td>UCUC</td>
<td>AGQ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Serine</td>
<td>UCUC</td>
<td>AGQ</td>
</tr>
<tr>
<td>Arginine</td>
<td>CGG</td>
<td>GCC</td>
<td>Alanine</td>
<td>CAA</td>
<td>GUU</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Glutamine</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CAG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspartic</td>
<td>GAC</td>
<td>GUC</td>
<td>Valine</td>
<td>GGA</td>
<td>CCU</td>
</tr>
<tr>
<td>Acid</td>
<td></td>
<td></td>
<td>Isoleucine</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Valine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asparagine</td>
<td>AAC</td>
<td>UUG</td>
<td>Leucine</td>
<td>CAC</td>
<td>GUG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Histidine</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CAA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cysteine</td>
<td>UGU</td>
<td>ACA</td>
<td>Threonine</td>
<td>AUA</td>
<td>UAU</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Isoleucine</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AUC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glutamic</td>
<td>GAA</td>
<td>CUU</td>
<td>Leucine</td>
<td>CGU</td>
<td>GAC</td>
</tr>
<tr>
<td>Acid</td>
<td></td>
<td></td>
<td>Leucine</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CUC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lysine</td>
<td>AAA</td>
<td>UUU</td>
<td>Phenylalanine</td>
<td>ACA</td>
<td>UGU</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phenylalanine</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phenylalanine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methionine</td>
<td>AUG</td>
<td>UAC</td>
<td>Tyrosine</td>
<td>UGG</td>
<td>ACC</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proline</td>
<td>CCA</td>
<td>GGU</td>
<td>Glycine</td>
<td>GUA</td>
<td>CAU</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Valine</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCC</td>
<td>GGG</td>
<td>Glycine</td>
<td>GUG</td>
<td>CAC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Glutamine</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CUU</td>
<td>GGA</td>
<td>Glycine</td>
<td>GUC</td>
<td>CAG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Glutamine</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCG</td>
<td>GCC</td>
<td>Glycine</td>
<td>GGU</td>
<td>CAA</td>
</tr>
</tbody>
</table>
Antibodies and Antibody Producing Cells

NPAR agonists as referred to herein encompass antibodies and antigen-binding fragments thereof that bind to the complementary peptides described herein and activate the non-proteolytically activated thrombin receptor. The antibodies as referred to herein can be polyclonal or monoclonal, and the term "antibody" is intended to encompass both polyclonal and monoclonal antibodies. The terms polyclonal and monoclonal refer to the degree of homogeneity of an antibody preparation, and are not intended to be limited to particular methods of production. In one embodiment, the antibody or antigen-binding fragment is a monoclonal antibody or antigen-binding fragment thereof. The term "monoclonal antibody" or "monoclonal antibody composition" as used herein, refers to a population of antibody molecules that contain only one species of an antigen binding site capable of immunoreacting with a particular epitope of a polypeptide of the invention. A monoclonal antibody composition thus typically displays a single binding affinity for a particular polypeptide of the invention with which it immunoreacts.

The term "antibody" as used herein also encompasses functional fragments of antibodies, including fragments of chimeric, humanized, primatized, veneered or single chain antibodies. Functional fragments include antigen-binding fragments of antibodies that bind to the complementary peptides, wherein complementary peptides are encoded by the complement of a nucleotide sequence encoding thrombin or a portion thereof. For example, antibody fragments capable of binding to a complementary peptide, include, but are not limited to Fv, Fab, Fab' and F(ab')2 fragments. Such fragments can be produced by enzymatic cleavage or by recombinant techniques. For example, papain or pepsin cleavage can generate Fab or F(ab')2 fragments, respectively. Other proteases with the requisite substrate specificity can also be used to generate Fab or F(ab')2 fragments. Antibodies can also be produced in a variety of truncated forms using antibody genes in which one or more stop codons have been introduced upstream of the natural stop site. For example, a chimeric gene encoding a F(ab')2 heavy chain portion can be designed to include DNA sequences encoding the CHi domain and hinge region of the heavy chain.

Single chain antibodies, and chimeric, humanized or primatized (CDR-grafted), or veneered antibodies, as well as chimeric, CDR-grafted or veneered single chain antibodies, comprising portions derived from different species, are also encompassed by the term
antibody. The various portions of these antibodies can be joined together chemically by conventional techniques, or can be prepared as a contiguous protein using genetic engineering techniques. For example, nucleic acids encoding a chimeric or humanized chain can be expressed to produce a contiguous protein. See, e.g., Cabilly et al., U.S. Patent No. 4,816,567; Cabilly et al., European Patent No. 0,125,023 Bl; Boss et al., U.S. Patent No. 4,816,397; Boss et al., European Patent No. 0,120,694 Bl; Neuberger, M.S. et al., WO 86/01533; Neuberger, M.S. et al., European Patent No. 0,194,276 Bl; Winter, U.S. Patent No. 5,225,539; Winter, European Patent No. 0,239,400 Bl; Queen et al., European Patent No. 0 451 216 Bl; and Padlan, E.A. et al., EP 0 519 596 Al. See also, Newman, R. et al., BioTechnology, 10: 1455-1460 (1992), regarding primatized antibody, and Ladner et al., U.S. Patent No. 4,946,778 and Bird, R.E. et al., Science, 242: 423-426 (1988)) regarding single chain antibodies.

Humanized antibodies can be produced using synthetic or recombinant DNA technology using standard methods or other suitable techniques. Nucleic acid (e.g., cDNA) sequences coding for humanized variable regions can also be constructed using PCR mutagenesis methods to alter DNA sequences encoding a human or humanized chain, such as a DNA template from a previously humanized variable region (see e.g., Kamman, M., et al., Nucl. Acids Res., 17: 5404 (1989)); Sato, K., et al., Cancer Research, 53: 851-856 (1993); Daugherty, B.L. et al., Nucleic Acids Res., 19(9): 2471-2476 (1991); and Lewis, A.P. and J.S. Crowe, Gene, 101: 297-302 (1991)). Using these or other suitable methods, variants can also be readily produced. In one embodiment, cloned variable regions can be mutated, and sequences encoding variants with the desired specificity can be selected (e.g., from a phage library; see e.g., Krebber et al., U.S. 5,514,548; Hoogenboom et al., WO 93/06213).

The antibody can be a humanized antibody comprising one or more immunoglobulin chains [e.g., an antibody comprising a complementarity-determining region (CDR) of nonhuman origin (e.g., one or more CDRs derived from an antibody of nonhuman origin)] and a framework region derived from a light and/or heavy chain of human origin (e.g., CDR-grafted antibodies with or without framework changes). In one embodiment, the antibody or antigen-binding fragment thereof comprises the light chain CDRs (CDR1, CDR2 and CDR3) and heavy chain CDRs (CDR1, CDR2 and CDR3) of a particular immunoglobulin.
In another embodiment, the antibody or antigen-binding fragment further comprises a human framework region.

Antibodies that are specific for a complementary peptide, wherein the complementary peptide is encoded by the complement of a nucleotide sequence encoding thrombin or a portion thereof, can be raised against an appropriate immunogen, such as a synthetic or recombinant complementary peptide or a portion thereof. Antibodies can also be raised by immunizing a suitable host (e.g., mouse) with transfected cells that express a complementary peptide. Such cells can also be used in a screen for an antibody that binds thereto (See e.g., Chuntharapai et al., J. Immunol., 152: 1783-1789 (1994); Chuntharapai et al., U.S. Patent No. 5,440,021).

Preparation of immunizing antigen, and polyclonal and monoclonal antibody production can be performed using any suitable technique (e.g., as exemplified herein). A variety of methods have been described (see e.g., Kohler et al., Nature, 256: 495-497 (1975) and Eur. J. Immunol. 6: 511-519 (1976); Milstein et al., Nature 266: 550-552 (1977); Koprowski et al., U.S. Patent No. 4,172,124; Harlow, E. and D. Lane, 1988, Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory: Cold Spring Harbor, NY); Current Protocols In Molecular Biology, Vol. 2 (Supplement 27, Summer '94), Ausubel, F.M. et al., Eds., (John Wiley & Sons: New York, NY), Chapter 11. (1991)). Generally, a hybridoma is produced by fusing a suitable immortal cell line (e.g., a myeloma cell line, such as SP2/0, P3X63Ag8.653 or a heteromyeloma) with antibody-producing cells. Antibody-producing cells can be obtained from the peripheral blood or, preferably the spleen or lymph nodes, of humans or other suitable animals immunized with a complementary peptide. The fused cells (hybridomas) can be isolated using selective culture conditions, and cloned by limiting dilution. Cells that produce antibodies with the desired specificity can be selected by a suitable assay (e.g., ELISA).

Other suitable methods of producing or isolating antibodies of the requisite specificity (e.g., human antibodies or antigen-binding fragments) can be used, including, for example, methods that select recombinant antibody from a library (e.g., a phage display library). Transgenic animals capable of producing a repertoire of human antibodies (e.g., Xenomouse® (Abgenix, Fremont, CA)) can be produced using suitable methods (see e.g., Jakobovits et al., Proc. Natl. Acad. Sci. USA, 90: 2551-2555 (1993); Jakobovits et al., Nature, 362: 255-258 (1993)). Additional methods that are suitable for production of
transgenic animals capable of producing a repertoire of human antibodies have been described (e.g., Lonberg et al., U.S. Patent No. 5,545,806; Surani et al., U.S. Patent No. 5,545,807; Lonberg et al., WO 97/13852).

Bispecific antibodies, or functional fragments thereof (e.g., F(ab')2), can bind to a complementary peptide as described herein and at least one other antigen (e.g., a tumor antigen, a viral antigen). Bispecific antibodies can be secreted by triomas and hybrid hybridomas. Generally, triomas are formed by fusion of a hybridoma and a lymphocyte (e.g., antibody-secreting B cell) and hybrid hybridomas are formed by fusion of two hybridomas. Each of the fused cells (i.e., hybridomas, lymphocytes) produces a monospecific antibody. However, triomas and hybrid hybridomas can produce an antibody containing antigen-binding sites that recognize different antigens. The supernatants of triomas and hybrid hybridomas can be assayed for bispecific antibody using a suitable assay (e.g., ELISA), and bispecific antibodies can be purified using conventional methods, (see, e.g., U.S. Patent No. 5,959,084 (Ring et al.), U.S. Patent No. 5,141,736 (Iwasa et al.), U.S. Patent Nos. 4,444,878, 5,292,668, 5,523,210 (all to Paulus et al.) and U.S. Patent No. 5,496,549 (Yamazaki et al.)).

Methods of Promoting Healing of a Chronic Dermal Ulcer

Administration of a combination comprising therapeutic agents (e.g., NPAR agonist and angiogenic growth factor) includes simultaneous (concurrent) administration as well as consecutive administration in any order. The agents in the combination therapy can be administered together in one composition or can be administered in separate compositions over a period of time of treatment. Separate compositions can be administered by the same or by different routes of administration. The therapeutic agents can have the same or different administration schedules.

A "chronic dermal wound" (also, "chronic dermal ulcer" or "dermal ulcer") refers to a wound in the skin, often penetrating to tissues below the skin, that does not heal or heals only very slowly and often, only incompletely, when treated regularly with good wound care. See, e.g., Lazarus et al., Definitions and guidelines for assessment of wounds and evaluation of healing, Arch. Dermatol. 130:489-93 (1994). Chronic dermal wounds include, but are not limited to, e.g., arterial ulcers, diabetic ulcers, pressure ulcers, venous ulcers, etc.
Chronic dermal wounds have loss of superficial tissue. They fail to heal normally due to defects in healing processes, vascular insufficiency or pressure. Dermal ulcers which can be treated by the method of the present invention include decubitus ulcers, diabetic ulcers, venous stasis ulcers and arterial ulcers. Decubitus wounds refer to chronic ulcers that result from pressure applied to areas of the skin for extended periods of time. Wounds of this type are often called bedsores or pressure sores. Venous stasis ulcers result from the stagnation of blood or other fluids from defective veins. Arterial ulcers refer to necrotic skin in the area around arteries having poor blood flow.

An acute wound to the skin can develop into a chronic dermal wound. Acute wounds include, but are not limited to, wounds caused by, e.g., thermal injury, trauma, surgery, excision of extensive skin cancer, deep fungal and bacterial infections, vasculitis, scleroderma, pemphigus, toxic epidermal necrolysis, etc. The methods for promoting healing of chronic dermal wounds described herein can also be applied for the healing of acute wounds to the skin in a subject. A "normal wound" refers a wound that undergoes normal wound healing repair.

"Good wound care" (GWC) refers to the steps to take care of a chronic dermal wound. For example, good wound care practices include, but are not limited to, one or more of the following, debridement (e.g., surgical/sharp, mechanical, autolytic or chemical/enzymatic), cleaning (e.g., routine wound cleansing with, e.g., saline), dressings, pressure relief (e.g., off-loading pressure to the foot), maintenance of moist wound environment, and/or infection control (e.g., antibiotic ointment or pills). Other steps optionally include fitting subject with comfortable, cushioned footwear, nutritional support, maintaining blood glucose control, management of other risk factors (e.g., weight, smoking), etc. GWC can include one or more of the practices.

Provided herein are methods for promoting (i.e., accelerating and/or improving) healing of chronic dermal wounds, by administering effective amounts of angiogenic growth factor and NPAR agonist in combination, with the exception of the combination of both human VEGF-A and TP508 and with the exception of the combination of both human transforming growth factor-beta_3 (TGF- beta_3) and TP508. For example, a method comprises administering an effective amount of the combination to a wound of a subject, where the administration of the combination accelerates wound healing. Methods also include a method of promoting wound healing in a population of subjects. For example, a
The method comprises administering an effective amount of the combination to a wound of a subject of the population, wherein the administration of the effective amount of the combination results in at least 10% (or at least 12%, or 14%, or 15%, or 17%, or 20%, or 25%, or 30%, or 33%, or 35%, or 40%, or 45%, or 50%) reduction in healing time (wherein healing time is the time from the beginning of treatment to 50%, 80% or 100% reduction in the area of the wound) in the population compared to a placebo-treated control population.

In particular embodiments, the invention is a method for promoting healing of chronic dermal wounds in a subject by administering to the subject bFGF or platelet derived growth factor (PDGF) in combination with an NPAR agonist such as TP508.

Methods are also applicable to subjects who are undergoing or have undergone a treatment, where the treatment delays or provides ineffective wound healing. Treatments can include, but are not limited to, medications, radiation, treatments that result in suppression of the immune systems, etc. In some embodiments, a subject of the invention has a secondary condition, wherein the secondary conditions delays or provides ineffective wound healing. Secondary conditions, include, but are not limited to, e.g., diabetes, peripheral vascular disease, infection, autoimmune or collagen vascular disorders, disease states that result in a suppressed immune system, etc.

Subjects of the invention have at least one chronic dermal wound. A wound of the invention can optionally include an infection or ischemia, or include both an infection and ischemia. In one embodiment, the wound is a diabetic foot ulcer. In one embodiment, the wound is present on the subject for about 4 weeks or more, or about 6 weeks or more before administering the combination.

A "subject" is preferably a human, but can also be an animal in need of treatment, e.g., companion animals (e.g., dogs, cats, and the like), farm animals (e.g., cows, pigs, horses and the like) and laboratory animals (e.g., rats, mice, rabbits, guinea pigs and the like).

The compositions used in the present invention to promote healing of chronic dermal ulcers can additionally comprise a pharmaceutical carrier suitable for local topical administration in which the NPAR agonist and/or angiogenic factor is dissolved or suspended. Standard pharmaceutical formulation techniques can be employed, such as those described in Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, PA. Examples of pharmaceutically acceptable carriers include, for example, saline, aerosols, commercially available inert gels, or liquids supplemented with albumin, methyl cellulose or
a collagen matrix. Typical of such formulations are ointments, creams and gels. Ointments are typically prepared using an oleaginous base, e.g., containing fixed oils or hydrocarbons, such as white petrolatum or mineral oil, or an absorbent base, e.g., consisting of an absorbent anhydrous substance or substances, for example anhydrous lanolin. Following formation of the base, the active ingredients are added in the desired concentration. Creams generally comprise an oil phase (internal phase) containing typically fixed oils, hydrocarbons, and the like, such as waxes, petrolatum, mineral oil, and the like, and an aqueous phase (continuous phase), comprising water and any water-soluble substances, such as added salts. The two phases are stabilized by use of an emulsifying agent, for example, a surface active agent, such as sodium lauryl sulfate; hydrophilic colloids, such as acacia colloidal clays, beegum, and the like. Upon formation of the emulsion, the active ingredients are added in the desired concentration. Gels are comprised of a base selected from an oleaginous base, water, or an emulsion-suspension base, as previously described. To the base is added a gelling agent which forms a matrix in the base, increasing its viscosity to a semisolid consistency.

Examples of gelling agents are hydroxypropyl cellulose, acrylic acid polymers, and the like. The active ingredients are added to the formulation at the desired concentration at a point preceding addition of the gelling agent or can be mixed after the gelation process. In one embodiment, the NPAR agonist and/or angiogenic factor are administered in a sustained release formulation. Polymers are often used to form sustained release formulations. Examples of these polymers include poly α-hydroxy esters such as polylactic acid/polyglycolic acid homopolymers and copolymers, polyphosphazenes (PPHOS), polyanhydrides and poly(propylene fumarates).

Polylactic acid/polyglycolic acid (PLGA) homo and copolymers are well known in the art as sustained release vehicles. The rate of release can be adjusted by the skilled artisan by variation of polylactic acid to polyglycolic acid ratio and the molecular weight of the polymer (see Anderson, et al., Adv. Drug Deliv. Rev. 28:5 (1997), the entire teachings of which are incorporated herein by reference). The incorporation of poly(ethylene glycol) into the polymer as a blend to form microparticle carriers allows further alteration of the release profile of the active ingredient (see Cleek et al., J. Control Release 48:259 (1997), the entire teachings of which are incorporated herein by reference).

As described herein, one or more NPAR agonists and one or more angiogenic growth factors can be combined with one or more additional therapeutic agents or procedures, and in
particular, one or more angiogenic growth factors. The combined administration includes 1) co-administration, using separate formulations or a single pharmaceutical formulation, and 2) consecutive administration in any order. Use of multiple agents is also included in the invention. For example, the NPAR agonist may precede, follow, alternate with administration of the additional therapeutic agent, or may be given simultaneously therewith.

In one embodiment, there is a time period while both (or all) active agents simultaneously exert their biological activities. In a combination therapy regimen, the NPAR agonist and angiogenic growth factor are administered in a therapeutically effective amount. As used herein, a therapeutically effective amount is such that co-administration of NPAR agonist and one or more other therapeutic agents promotes healing of a chronic dermal ulcer.

The present invention is directed to promoting healing of chronic dermal ulcers. A method of treatment "promotes healing" when that the chronic dermal ulcer heals more rapidly with the treatment than in the absence of treatment. That is, a treatment promotes healing when a reduction in time until complete closure occurs or a reduction in time until a reduction in wound area of 50% or 80% occurs. Alternatively, a method of treatment "promotes healing" when chronic dermal ulcers completely heal with a greater frequency than chronic dermal ulcers not given the treatment.

Quantitative analysis can be used to assess wound healing, e.g., determining the % reduction in the wound area, or complete wound closure (e.g., measured by skin closure without drainage or dressing requirements). Wound area is assessed before, during, and after treatment by methods known to those in the art. For example, assessment can be determined by, e.g., quantitative planimetry (see, e.g., Robson et al., Arch. Surg. 135:773-77 (2000)), photographs, physical examinations, etc. The wound area can be determined before, during and after treatment. In one embodiment, the wound area can be estimated by measuring the length, L, of the wound, the longest edge-to-edge length in, e.g., cm, and the width, W, the longest edge-to-edge width perpendicular to L in, e.g., cm, and multiplying the length times width to get the estimated surface area (cm²). In another embodiment, the wound area can be determined by laying a sheet of transparent or semi-transparent material of uniform thickness on the wound and tracing the edges of the wound. The outline can be used to cut out a piece of the material. The piece can be weighed, and the area of the wound can be determined by comparison of the weight of the piece to known standards. The size of the wound for treatment can vary. In one embodiment of the invention, the wound area before
treatment is about 0.4 cm² or more, or about 1.0 cm² or more, or between about 0.4 cm² and about 10 cm², or between about 1 cm² and about 10 cm², or between about 1 cm² and about 6.5 cm², or between about 1 cm² and about 5 cm², or more than 4.0 cm². The area can be measured before or after debridement.

A linear wound healing rate (WHR, expressed in mm of edge closure per day) can be calculated by measuring both the wound area and the wound perimeter, and using the formula:

\[
\text{WHR} = \frac{([\text{Area } T_0 - \text{Area } T_x])}{(\text{Perimeter } T_0 + \text{Perimeter } T_x/2)/\text{days} (T_x)}.
\]

The primary efficacy endpoint is the proportion of patients that achieve full wound closure. Full wound closure requires 100% epithelialization, with no drainage and no infection, as determined by visual inspection by the clinician. Secondary endpoints include the time to 100% closure of the study wound, the time to 80% and 50% wound closure, and the amount of wound closure (as a percentage change from baseline wound size) at 3, 5, 10, 15, and 20 weeks.

A "therapeutically effective amount" of a combination is the quantity of NPAR agonist and the quantity of angiogenic growth factor which results in greater wound healing and increased growth and proliferation of endothelial cells, keratinocytes and fibroblasts than in the absence of administration of the combination. This is manifested in a shorter period of time (a reduction in the time of at least 10% or at least 12%, or 14%, or 15%, or 17%, or 20%, or 25%, or 30%, or 33%, or 35%, or 40%, or 45%, or 50%) until 50%, 80% or 100% reduction in the area of the wound is observed. Alternatively, a "therapeutically effective
amount" of a combination refers to the quantity of NPAR agonist and the quantity of angiogenic growth factor which results in a greater frequency of complete healing than occurs in the absence of the treatment with the combination of agents. The combination of agents is administered for a sufficient period of time to achieve the desired therapeutic effect. The amounts administered will depend on the amount of dermal growth that is desired, the health, size, weight, age and sex of the subject, the nature of the chronic dermal ulcer (e.g., the type of dermal ulcer and severity). Typically, between about 0.1 µg per day and about 1 mg per day of NPAR agonist or thrombin peptide derivative (preferably between about 1 µg per day and about 100 µg per day) is administered by direct application to the chronic dermal ulcer. In specific embodiments, doses of 1 µg or 10 µg of NPAR agonist (e.g., TP508) are administered twice weekly to the chronic dermal ulcer. For methods in which a combination of NPAR agonist and angiogenic growth factor are administered to a subject, the angiogenic growth factor can be administered in a dosage which can be determined by one of ordinary skill in the art, according to the nature of the disease or disorder, the site of treatment, the age, gender, weight and other conditions of the subject. Appropriate dosages of angiogenic growth factor (e.g., VEGF-A) are 1 µg/kg to 50 mg/kg (e.g., 0.1 - 20 mg/kg). Generally, enough pharmaceutical carrier or inert solvent is used to cover the dermal ulcer in a topical application.

In certain instances where chronic dermal ulcers are being treated, it may be advantageous to co-administer one or more pharmacologically active agents to the chronic dermal ulcer in addition to an angiogenic growth factor and NPAR agonist. For example, infection is a threat with any chronic dermal ulcer. One aspect of the present invention is to co-administer to the chronic dermal ulcer an antimicrobial, a disinfectant or an antibiotic. Managing pain and inflammation are also important aspects of treating chronic dermal ulcers. A pain-relieving agent such as an analgesic or an anti-inflammatory agent can also be administered concurrently with the combination of two agents.

The invention, in some embodiments, is a method of promoting healing of a chronic dermal ulcer in a subject, using a combination therapy. The method includes administering to the subject in need of healing of a chronic dermal ulcer a combination in a therapeutically effective amount, the combination comprising one or more angiogenic growth factors, and one or more agonists of the non-proteolytically activated thrombin receptor (NPAR agonists); provided that the combination does not comprise both human vascular endothelial
growth factor A (VEGF-A) and the polypeptide Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Cys-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe- Val-NH₂ (SEQ ID NO:3) (given the name "TP508"); and provided that the combination does not comprise both human transforming growth factor-beta₃ (TGF- beta₃) and TP508.

The invention, in other embodiments, is a method of promoting healing of a chronic dermal ulcer in a subject in need of such healing, said method comprising administering to the subject a combination in a therapeutically effective amount, the combination consisting essentially of one or more angiogenic growth factors, and one or more agonists of the non-proteolytically activated thrombin receptor; provided that the combination does not comprise both human vascular endothelial growth factor A (VEGF-A) and the polypeptide Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Cys-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val-NH₂ (SEQ ID NO:3) (TP508); and provided that the combination does not comprise both human transforming growth factor-beta₃ (TGF- beta₃) and TP508. In this method the combination contains an angiogenic growth factor and an agonist of the non-proteolytically activated thrombin receptor (NPAR agonist) as the only therapeutically active agents.

Thrombin peptide derivative dimers can be prepared by oxidation of the monomer. Thrombin peptide derivative dimers can be prepared by reacting the thrombin peptide derivative with an excess of oxidizing agent. A well-known suitable oxidizing agent is iodine.
"TGF-beta\textsubscript{3}" or "transforming growth factor beta\textsubscript{3}" includes native human TGF-beta\textsubscript{3}, biologically active fragments, biologically active variants, and modified forms thereof (WO 2007/007098).

A "non-aromatic heterocyclic group" as used herein, is a non-aromatic carbocyclic ring system that has 3 to 10 atoms and includes at least one heteroatom, such as nitrogen, oxygen, or sulfur. Examples of non-aromatic heterocyclic groups include piperazinyl, piperidinyl, pyrrolidinyl, morpholinyl, thiomorpholinyl.

The term "aryl group" includes both carbocyclic and heterocyclic aromatic ring systems. Examples of aryl groups include phenyl, indolyl, furanyl and imidazolyl.

An "aliphatic group" is a straight chain, branched or cyclic non-aromatic hydrocarbon. An aliphatic group can be completely saturated or contain one or more units of unsaturation (e.g., double and/or triple bonds), but is preferably saturated, i.e., an alkyl group. Typically, a straight chained or branched aliphatic group has from 1 to about 10 carbon atoms, preferably from 1 to about 4, and a cyclic aliphatic group has from 3 to about 10 carbon atoms, preferably from 3 to about 8. Aliphatic groups include, for example, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, tert-butyl, pentyl, cyclopentyl, hexyl, cyclohexyl, octyl and cyclooctyl.

Suitable substituents for an aliphatic group, an aryl group or a non-aromatic heterocyclic group are those which do not significantly lower therapeutic activity of the NPAR agonist, for example, those found on naturally occurring amino acids. Examples include -OH, a halogen (-Br, -Cl, -I and -F), -0(R-), -0-CO-(R\textsubscript{e}), -CN, -NO\textsubscript{2}, -COOH, =0, -NH\textsubscript{2}, -NH(R\textsubscript{e}), -N(R\textsubscript{e})\textsubscript{2}, -COO(R\textsubscript{e}), -CONH\textsubscript{2}, -CONH(R\textsubscript{e}), -CON(R\textsubscript{e})\textsubscript{2}, -SH, -S(R\textsubscript{e}), an aliphatic group, an aryl group and a non-aromatic heterocyclic group. Each R\textsubscript{e} is independently an alkyl group or an aryl group. A substituted aliphatic group can have more than one substituent.

As used in this specification and the appended claims, the singular forms a, an and the include plural referents unless the content clearly dictates otherwise.

The teachings of the publications cited herein are hereby incorporated by reference.

The invention is illustrated by the following examples which are not intended to be limiting in any way.
EXAMPLES

EXAMPLE 1: TP508 Potentiates the Ability of VEGF to Signal eNOS Phosphorylation

Human coronary artery endothelial (HCAE) cells (Lonza Walkersville, Inc., Walkersville, MD) were cultured in the presence or absence of TP508 [50 µg/ml] in normoxic and hypoxic [1% O₂] conditions for 24 h and then stimulated with the angiogenic growth factor, human VEGF [50 ng/ml] for 1 or 5 min. Human VEGF-induced eNOS activation was determined by Western blotting using an antibody recognizing the activated form of eNOS (phosphorylated at S1177) (Cell Signaling, Danvers, MA). The membrane was re-probed with anti-GAPDH (glyceraldehyde-3-phosphate dehydrogenase) antibody to show equal protein loading. A bar graph representing densitometric analysis of the activated eNOS Western blot after different treatments is shown in Figure 1.

As shown in Figure 1, in normoxic cells, human VEGF induces transient phosphorylation of eNOS on serine 1177 to activate the enzyme which is maximum at 1 minute (2-fold) and has declined after 5 minutes stimulation. If cells were pretreated with TP508 prior to human VEGF stimulation, the phosphorylation of eNOS was prolonged and remained near maximum stimulation for 5 minutes. Thus, TP508 potentiates the ability of human VEGF to signal eNOS phosphorylation by extending the period of maximal stimulation.

In hypoxic cells (cultured in 1% O₂ for 24 hours), the level of human VEGF-stimulated eNOS phosphorylation is decreased ~4 fold at 1 min treatment compared to normoxic cells. Thus, hypoxia significantly reduces human VEGF-stimulated activation of eNOS. However, hypoxic cells pretreated with TP508 showed human VEGF-induced activation of eNOS at levels equivalent to that seen in normoxic cells. Thus, TP508 treatment of hypoxic cells restores the ability of human VEGF to stimulate eNOS activation to the level observed in normoxic cells.

EXAMPLE 2: TP508 Enhances Endothelial Cell Migration Towards VEGF

The ability of a test substance to attract endothelial cells and stimulate their migration through pores in the membrane is one of several tests to determine the angiogenic potential of test substances. Figure 2A shows the design of experiments to measure migration of
endothelial cells toward a chemoattractant. Prior to migration assay, cells were cultured with or without TP508 to determine the effect of TP508 on endothelial migration.

Human coronary artery endothelial (HCAE) cells (Lonza Walkersville, Inc., Walkersville, MD) were cultured in the absence (control) or presence of TP508 [50 µg/ml] ("TP pret" in Figure 2A and Figure 2B) for 24 hours. Transmembrane cell migration assays were performed using BD FluoroBlok inserts (BD Bioscience, Bedford, MA) as described by the vendor. Control or TP508 pretreated cells were added into the top of the inserts. Human VEGF [10 ng/ml] (V) or medium alone (C) was added to the lower chamber of the insert plate as a chemoattractant. Endothelial migration was performed in normoxic or 1% hypoxic conditions. After a 22-hour incubation, cells were labeled post-migration with Calcein AM and measured by detecting the fluorescence of the cells that migrated to the underside of the insert membrane.

Figure 2B shows the effect of TP508 treatment on migration of endothelial cells toward the angiogenic factor human VEGF (human recombinant VEGF-A 165, R&D System, Minneapolis, MN).

The results show that human VEGF stimulates normal control endothelial cell migration by ~2 fold relative to media control cells when assayed in normoxic conditions (180%) and slightly less (~ 150%) under hypoxic conditions relative to media control cells. Endothelial cells that were pretreated with TP508 showed cell migration toward human VEGF ~5-fold and ~4 fold relative to media controls when cells were assayed under normoxic and hypoxic conditions, respectively. TP508 pretreatment, thus, enhances endothelial migration toward human VEGF 2- to 3-fold relative to untreated control cells. Since this cell migration assay is one measure of the angiogenic potential of cells, these results demonstrate that TP508 treatment more than doubles the angiogenic potential of human VEGF for endothelial cells under normoxic conditions as well as under hypoxic conditions where angiogenic responses to human VEGF are diminished.

EXAMPLE 3: TP508 Increases Angiogenic Response of Endothelial Cells Toward Human VEGF

Invasion of endothelial cells through a Matrigel matrix is one of many assays used to determine the angiogenic potential of test substances and is thought to be more predictive of angiogenesis in vivo than a simple chemotactic assay through open membrane pores since the cells must degrade and invade the matrix to move into and through the pores in the
membrane. Figure 3A shows the design of experiments to measure invasion of endothelial cells through Matrigel toward a chemoattractant.

Human coronary artery endothelial (HCAE) cells (Lonza Walkersville, Inc., Walkersville, MD) were cultured in the absence (control) or presence of TP508 [50 µg/ml] (TP pret) for 24 hours. Endothelial cell invasion assays were performed using BD BioCoat™ Angiogenesis System (BD Bioscience, Bedford, MA) which utilizes FluoroBlok inserts coated with BD Matrigel Matrix (BD Bioscience, Bedford, MA). Control or TP508 pretreated cells were added into the top of the inserts. Medium containing human VEGF [10 ng/ml human recombinant VEGF-A 165aa, R&D System, Minneapolis, MN] (V) or medium alone (C) was added to the lower chamber of the insert plate as a chemoattractant to determine angiogenic response to human VEGF. Endothelial cell invasion was performed in normoxic or hypoxic (1% O₂) conditions. After 22 hours of incubation, cells were labeled post-invasion with Calcein AM and measured by detecting the fluorescence of the cells that migrated to the underside of insert membrane.

Figure 3B shows the effect of TP508 treatment on invasion of endothelial cells toward human VEGF. The results show that control endothelial cells assayed in normoxic conditions or under hypoxic conditions are not stimulated by human VEGF to degrade Matrigel and migrate through the membrane toward human VEGF. In contrast, endothelial cells that were pre-incubated with TP508 show increased invasive properties over control cells that were not pretreated with TP508. In addition, these cells now respond to human VEGF (~50% more invasion than observed in TP508 pretreated cells without human VEGF and nearly twice as much invasion as control cells toward VEGF). These results demonstrate the ability of TP508 treatment to increase the ability of endothelial cells to respond angiogenically to human VEGF under conditions where non-TP508 treated control cells do not respond at all to human VEGF treatment.

EXAMPLE 4: Effects of TP508 Treatment on Endothelial Cell Invasion and Migration in Response to bFGF

The design of experiments to measure invasion and migration of endothelial cells toward the angiogenic factor bFGF (basic fibroblast growth factor) is shown in Figures 5A and 6A, respectively. The standard assay used 5x10⁴ cells added to the top of the insert in 250 µl of medium. The lower portion of the apparatus contained 750 µl of medium, plus or minus bFGF.
Human coronary artery endothelial (HCAE) cells (Lonza Walkersville, Inc., Walkersville, MD) were cultured in the absence (control cells) or presence of TP508 [50 µg/ml] (TP508 pretreated cells) for 24 hours. Transmembrane cell invasion and migration assays were performed using BD FluoroBlok (BD Bioscience, Bedford, MA) inserts coated with BD Matrigel Matrix (a biologically active basement membrane preparation) or with fibronectin, respectively. Control or TP508 pretreated cells were added into the top of the inserts. bFGF [10 ng/ml] (R&D System, Minneapolis, MN) (FGF) or medium alone (CTR) were added to the lower chamber of the insert plate as a chemoattractant. The cells were allowed to invade or migrate for 22 hours. Cells were labeled post invasion or post migration with Calcein AM (4 µg/ml) and the fluorescence of the cells that invaded through the BD Matrigel Matrix or migrated to the underside of the insert membrane was measured using a plate reader at 485 nm (excitation) and 530 nm (emission).

The results (Figure 5B) showed that bFGF-induced endothelial cell invasion was -170% of the cell invasion observed with control medium (CTR). TP508 pretreated cells showed an increase of bFGF-induced invasion of -100% compared to TP508 pretreated cells exposed to control medium (CTR) without bFGF and by -125% compared to untreated control cells. Thus, TP508 pretreatment enhanced endothelial invasion toward bFGF relative to untreated control cells.

The results (Figure 6B) showed that bFGF increased endothelial cell migration through the fibronectin-coated insert by -40% compared to control medium not containing bFGF (CTR). TP508 pretreatment increased the basal level of migration towards bFGF by -40% compared to the basal level of migration of untreated control cells towards medium without bFGF. Cells pretreated with TP508 showed increased endothelial cell migration toward bFGF by -50% compared to control untreated cells. Thus, TP508 enhanced both the basal and bFGF-induced migration in these cells.

EXAMPLE 5: Effects of TP508 Treatment on Endothelial Cell Invasion and Migration in Response to PDGF

The design of experiments to measure invasion and migration of endothelial cells toward the angiogenic factor PDGF (platelet-derived growth factor-BB) is shown in Figures 7A and 8A respectively. The standard assay used 5x10^4 cells added to the top of the insert in 250 µl of medium. The lower portion of the apparatus contained 750 µl of medium, plus or minus PDGF.
Human coronary artery endothelial (HCAE) cells (Lonza Walkersville, Inc., Walkersville, MD) were cultured in the absence (control cells) or presence of TP508 [50 µg/ml] (TP508 pretreated cells) for 24 hours. Transmembrane cell invasion and migration assays were performed using BD FluoroBlok inserts coated with BD Matrigel Matrix (a biologically active basement membrane preparation) or with fibronectin (BD Bioscience, Bedford, MA), respectively. Control or TP508 pretreated cells were added to the inserts. PDGF [10 ng/ml] (R&D System, Minneapolis, MN (PDGF) or medium alone (CTR) were added to the lower chamber of the insert plate as a chemoattractant. The cells were allowed to invade or migrate for 22 hours. Cells were labeled post invasion or post migration with Calcein AM (4 µg/ml) and the fluorescence of the cells that invaded through the BD Matrigel Matrix or migrated to the underside of the insert membrane was measured using a plate reader at 485 run (excitation) and 530 nm (emission).

The results (Figure 7B) showed that PDGF had no effect on endothelial cell invasion compared to control medium without added PDGF (CTR). However, TP508 pretreated cells showed increased invasion by -75% compared to control (CTR). Thus, TP508 pretreatment enhanced endothelial invasion toward PDGF relative to untreated control cells.

The results (Figure 8B) showed that PDGF had no effect on endothelial cell migration through the fibronectin-coated insert compared to control (CTR). TP508 pretreatment caused increased endothelial cell migration to PDGF by —50% compared to the basal level of migration to PDGF of TP508 pretreated cells. Cells pretreated with TP508 showed 2-fold migration toward PDGF compared to control untreated cells. Thus, TP508 enhanced the basal and PDGF-induced migration in these cells.
What is claimed is:

1. A method of promoting healing of a chronic dermal ulcer in a subject in need thereof, said method comprising administering to the subject a combination in a therapeutically effective amount, the combination comprising one or more angiogenic growth factors, and one or more agonists of the non-proteolytically activated thrombin receptor.

2. The method of Claim 1, wherein the angiogenic growth factor is selected from the group consisting of: angiogenin, angiopoietin-1, DeI-I, acidic fibroblast growth factor (aFGF), basic fibroblast growth factor (bFGF), follistatin, granulocyte colony-stimulating factor (G-CSF), hepatocyte growth factor (HGF), interleukin-8 (IL-8), leptin, midkine, placental growth factor, platelet-derived endothelial cell growth factor (PD-ECGF), platelet-derived growth factor-BB (PDGF-BB), pleiotrophin (PTN), progranulin, proliferin, transforming growth factor-alpha (TGF-alpha), transforming growth factor-beta (TGF-beta), tumor necrosis factor-alpha (TNF-alpha), thymosin beta 4 (Tβ4), connective tissue growth factor, osteopontin, insulin growth factor (IGF-I), human platelet derived growth factor D (PDGFD), human platelet derived growth factor alpha (PDGF-α), human platelet derived growth factor 2 (PDGF2), and human platelet derived growth factor C (PDGFC).

3. The method of Claim 1 wherein an antimicrobial, a disinfectant, an antibiotic, an analgesic or an anti-inflammatory is additionally administered to the subject.

4. The method of Claim 1 wherein the chronic dermal ulcer is a diabetic ulcer.

5. The method of Claim 1 wherein the chronic dermal ulcer is a decubitus ulcer.

6. The method of Claim 1 wherein the chronic dermal ulcer is a venous stasis ulcer or an arterial ulcer.

7. The method of Claim 1 wherein the subject is a companion animal, a farm animal or a laboratory animal.
8. The method of Claim 1 wherein the angiogenic growth factor is selected from the group consisting of: human VEGF-A, human VEGF-B, human VEGF-C, human VEGF-D, VEGF-E [Orf virus (D1701)], VEGF-E [Orf virus (NZ2)], VEGF-E_N27P1GF, VEGF-E/P1GF, and human placental growth factor (PlGF).

9. A method of promoting healing of a chronic dermal ulcer in a subject in need thereof, said method comprising administering to the subject a combination in a therapeutically effective amount, the combination consisting essentially of one or more angiogenic growth factors and one or more agonists of the non-proteolytically activated thrombin receptor.

10. The method of Claim 9 wherein the angiogenic growth factor is an angiogenic growth factor of the VEGF family.

11. The method of Claim 1, wherein the agonist is a thrombin peptide derivative comprising the amino acid sequence Asp-Ala-R, wherein R is a serine esterase conserved sequence.

12. The method of Claim 11, wherein the thrombin peptide derivative comprises from about 12 to about 23 amino acids.

13. The method of Claim 12, wherein the serine conserved sequence comprises the amino acid sequence of Cys-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val (SEQ ID NO: 14), or a C-terminal truncated fragment thereof having at least six amino acids, provided that zero, one, two or three amino acids in the serine esterase conserved sequence differ from the corresponding position of SEQ ID NO: 14.

14. The method of Claim 12, wherein the serine esterase conserved sequence comprises the amino acid sequence of Cys-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val (SEQ ID NO: 14), or a C-terminal truncated fragment thereof having at least nine amino acids, provided that zero, one or two of the amino acids in the serine esterase conserved region are conservative substitutions of the corresponding amino acid in SEQ ID NO: 14.
15. The method of Claim 12, wherein the serine esterase conserved sequence comprises the amino acid sequence of Cys-Xi-Gly-Asp-Ser-Gly-Gly-Pro-X₂-Val (SEQ ID NO: 15), or a C-terminus truncated fragment of SEQ ID NO: 15 having at least six amino acids, wherein X₁ is Glu or Gln and X₂ is Phe, Met, Leu, His or Val.

16. The method of Claim 15, wherein the thrombin peptide derivative comprises the amino acid sequence Arg-Gly-Asp-Ala (SEQ ID NO: 16).

17. The method of Claim 12, wherein the thrombin peptide derivative comprises the amino acid sequence of Arg-Gly-Asp-Ala-Cys-Glu-Gly-Asp-Ser-Gly-Gly-Pro- Phe-Val (SEQ ID NO: 17), or a C-terminal truncated fragment thereof having at least six amino acids, wherein zero, one, two, or three amino acids in the peptide differ from the corresponding position of SEQ ID NO: 17.

18. The method of Claim 17, wherein the thrombin derivative comprises a C-terminal amide and optionally comprises an acylated iV-terminus, wherein said C-terminal amide is represented by -C(O)NRₐRₐ, wherein Rₐ and Rₐ are independently hydrogen, a Ci-Cₙ substituted or unsubstituted aliphatic group, or Rₐ and Rₐ taken together with the nitrogen to which they are bonded, form a Ci-Cₙ non-aromatic heterocyclic group, and said N-terminal acyl group is represented by RₐC(O)-, where Rₐ is hydrogen, a Ci-Cₙ substituted or unsubstituted aliphatic group, or a Ci-Cₙ substituted or unsubstituted aromatic group.

19. The method of Claim 17, wherein the thrombin peptide derivative comprises an N-terminus which is unsubstituted and a C-terminus which is unsubstituted or a C-terminal amide represented by -C(O)NH₂.

20. The method of Claim 19, wherein the thrombin peptide derivative comprises a polypeptide comprising the amino acid sequence of Arg-Gly-Asp-Ala-Cys-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val (SEQ ID NO: 17), or a C-terminal truncated fragment thereof having at least six amino acids, wherein zero, one, or two of the amino acids in the peptide are conservative substitutions of the corresponding amino acid in SEQ ID NO: 17.
21. The method of Claim 20, wherein the thrombin peptide derivative comprises a polypeptide having the amino sequence of Arg-Gly-Asp-Ala-Cys-Xi-Gly-Asp-Ser-Gly-Gly-Pro-X₂-Val (SEQ ID NO:1), wherein Xi is Glu or Gln and X₂ is Phe, Met, Leu, His or Val.

22. The method of Claim 21, wherein Xi is Glu and X₂ is Phe.

23. The method of Claim 19, wherein the thrombin peptide derivative comprises the amino acid sequence of Ala-Gly-Tyr-Lys-Pro-Asp-Gly-Gly-Lys-Arg-Gly-Asp-Ala-Cys-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val (SEQ ID NO:6), an N-terminal truncated fragment of the thrombin peptide derivative having at least fourteen amino acids, or a C-terminal truncated fragment of the thrombin peptide derivative having at least eighteen amino acids, provided that zero, one, two or three amino acids at positions 1-9 and 14-23 in the thrombin derivative differ from the amino acid at the corresponding position of SEQ ID NO:6.

24. The method of Claim 19, wherein the thrombin peptide derivative comprises the amino acid sequence of Ala-Gly-Tyr-Lys-Pro-Asp-Gly-Gly-Lys-Arg-Gly-Asp-Ala-Cys-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val (SEQ ID NO:6), an N-terminal truncated fragment of the thrombin peptide derivative having at least fourteen amino acids, or a C-terminal truncated fragment of the thrombin peptide derivative having at least eighteen amino acids, provided that zero, one, or two of the amino acids at positions 1-9 and 14-23 in the thrombin derivative are conservative substitutions of the amino acid at the corresponding position of SEQ ID NO:6.

25. The method of Claim 24, wherein the thrombin peptide derivative comprises the amino acid sequence of Ala-Gly-Tyr-Lys-Pro-Asp-Gly-Gly-Lys-Arg-Gly-Asp-Ala-Cys-Xi-Gly-Asp-Ser-Gly-Gly-Pro-X₂-Val (SEQ ID NO:2), an N-terminal truncated fragment of the thrombin peptide derivative having at least fourteen amino acids, or a C-terminal truncated fragment of the thrombin peptide derivative having at least eighteen amino acids, wherein Xi is Glu or Gln and X₂ is Phe, Met, Leu, His or Val.
26. The method of Claim 1, wherein the thrombin peptide derivative is the polypeptide Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Cys-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val-NH₂ (SEQ ID NO:4), wherein X₁ is Glu or Gln and X₂ is Phe, Met, Leu, His or Val.

27. The method of Claim 12, wherein the thrombin peptide derivative comprises the amino acid sequence of Arg-Gly-Asp-Ala-Xaa-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val (SEQ ID NO:35), or a C-terminal truncated fragment thereof having at least six amino acids, wherein zero, one, two, or three amino acids in the peptide differ from the corresponding position of SEQ ID NO:35, provided that Xaa is alanine, glycine, serine, or an S-protected cysteine.

28. The method of Claim 27, wherein the thrombin peptide derivative comprises a C-terminal amide and optionally comprises an acylated N-terminus, wherein said C-terminal amide is represented by -C(O)NR₈R₉, wherein R₈ and R₉ are independently hydrogen, a Ci-C₁₀ substituted or unsubstituted aliphatic group, or R₃ and R₉, taken together with the nitrogen to which they are bonded, form a Ci-C₁₀ non-aromatic heterocyclic group, and said N-terminal acyl group is represented by R₀C(O)-, where R₀ is hydrogen, a Ci-C₈ substituted or unsubstituted aliphatic group, or a Ci-Cio substituted or unsubstituted aromatic group.

29. The method of Claim 27, wherein the thrombin peptide derivative comprises an N-terminus which is unsubstituted and a C-terminus which is unsubstituted or a C-terminal amide represented by -C(O)NH₂.

30. The method of Claim 29, wherein the thrombin peptide derivative comprises the amino acid sequence of Arg-Gly-Asp-Ala-Xaa-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val (SEQ ID NO:35), or a C-terminal truncated fragment thereof having at least six amino acids, provided that zero, one or two of the amino acids in the polypeptide are conservative substitutions of the corresponding amino acid in SEQ ID NO:35.

31. The method of Claim 30, wherein Xaa is alanine.

32. The method of Claim 29, wherein the thrombin peptide derivative comprises the amino acid sequence of Arg-Gly-Asp-Ala-Xaa-Xi -Gly-Asp-Ser-Gly-Gly-PrO-X₂-Val (SEQ ID NO:4), wherein Xi is Glu or Gln and X₂ is Phe, Met, Leu, His or Val.
33. The method of Claim 29, wherein the thrombin peptide derivative comprises the amino acid sequence Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Xaa-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val (SEQ ID NO:20), or a fragment thereof comprising amino acids 10-18 of SEQ ID NO:20, provided that zero, one or two amino acids in the thrombin peptide derivative differ from the amino acid at the corresponding position of SEQ ID NO:20.

34. The method of Claim 29, the thrombin peptide derivative comprises the amino acid sequence Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Xaa-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val (SEQ ID NO:20), or a fragment thereof comprising amino acids 10-18 of SEQ ID NO:20, provided that zero, one or two amino acids in the thrombin peptide derivative are conservative substitutions of the amino acid at the corresponding position of SEQ ID NO:20.

35. The method of Claim 34, wherein the thrombin peptide derivative comprises the amino acid sequence of Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Xaa-Xi-Gly-Asp-Ser-Gly-Gly-Pro-X2-Val (SEQ ID NO:5) or a fragment thereof comprising amino acids 10-18 of SEQ ID NO:5, wherein Xi is Glu or Gln and X2 is Phe, Met, Leu, His or Val.

36. The method of Claim 35, wherein Xaa is alanine.

37. The method of Claim 29, wherein the thrombin peptide derivative comprises the amino acid sequence of Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Xaa-Xi-Gly-Asp-Ser-Gly-Gly-Pro-XrVal (SEQ ID NO:5), wherein Xi is Glu or Gln and X2 is Phe, Met, Leu, His or Val.

38. The method of Claim 37, wherein Xaa is alanine.

39. The method of Claim 37, wherein Xi is Glu and X2 is Phe.

41. The method of Claim 1, wherein the agonist is a peptide dimer comprising two thrombin peptide derivatives which, independently, comprise the amino acid sequence of SEQ ID NO: 17 (Arg-Gly-Asp-Ala-Cys-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val) or a C-terminal truncated fragment thereof having at least six amino acids, provided that zero, one, two, or three amino acids in the polypeptide differ from the corresponding position of SEQ ID NO: 17; said thrombin peptide derivatives optionally comprising a C-terminal amide; and said thrombin peptide derivatives optionally comprising an acylated N-terminus.

42. The method of Claim 41, wherein the dimer is essentially free of monomer.

43. The method of Claim 42, wherein the thrombin peptide derivatives are the same.

44. The method of Claim 43, wherein the thrombin peptide derivatives are covalently linked through a disulfide bond.

45. The method of Claim 44, wherein the thrombin peptide derivatives consist of from about 12 to about 23 amino acids.

46. The method of Claim 45, wherein the thrombin peptide derivatives comprise a C-terminal amide and optionally comprise an acylated N-terminus, wherein said C-terminal amide is represented by -C(O)NR_aR_b, R_a and R_b are independently hydrogen, a C_1-C_10 substituted or unsubstituted aliphatic group, or R_a and R_b, taken together with the nitrogen to which they are bonded, form a C_1-C_10 non-aromatic heterocyclic group, and said N-terminal acyl group is represented by R_cC(O)-, wherein R_c is hydrogen, a C_1-C_10 substituted or unsubstituted aliphatic group, or a C_1-Cio substituted or unsubstituted aromatic group.

47. The method of Claim 45, wherein the thrombin peptide derivatives each comprise an N-terminus which is unsubstituted; and a C-terminus which is unsubstituted or a C-terminal amide represented by -C(O)NH_2.

48. The method of Claim 47, wherein the thrombin peptide derivatives comprise the amino acid sequence of Arg-Gly-Asp-Ala-Cys-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val (SEQ ID NO: 17) or a C-terminal truncated fragment thereof having at least six
amino acids, provided that zero, one or two of the amino acids in the thrombin peptide derivatives are conservative substitutions of the corresponding amino acid in SEQ ID NO: 17.

49. The method of Claim 47, wherein the thrombin peptide derivatives comprise the amino acid sequence of Arg-Gly-Asp-Ala-Cys-XpGly-Asp-Ser-Gly-Gly-Pro-X^Val (SEQ ID NO:1), wherein Xi is Glu or Gln and X2 is Phe, Met, Leu, His or Val.

50. The method of Claim 47, wherein the thrombin peptide derivatives comprise the amino acid sequence Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Cys-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val (SEQ ID NO:6), or a fragment thereof comprising amino acids 10-18 of SEQ ID NO:6, provided that zero, one, two or three amino acids in the thrombin peptide derivatives differ from the amino acid at the corresponding position of SEQ ID NO:6.

51. The method of Claim 47, wherein the thrombin peptide derivatives comprise the amino acid sequence Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Cys-Glu-Gly-Asp-Ser-Gly-Gly-Pro-X1-Gly-Asp-Ser-Gly-Gly-Pro-X2-Val (SEQ ID NO:2), wherein Xi is Glu or Gln and X2 is Phe, Met, Leu, His or Val or a fragment thereof comprising amino acids 10-18 of SEQ ID NO:2.

52. The method of Claim 47, wherein the thrombin peptide derivatives comprise the amino acid sequence Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Cys-X1-Gly-Asp-Ser-Gly-Gly-Pro-X2-Val (SEQ ID NO:2), wherein Xi is Glu or Gln and X2 is Phe, Met, Leu, His or Val.

53. The method of Claim 53, wherein Xi is Glu and X2 is Phe.

54. The method of Claim 53, wherein Xi is Glu and X2 is Phe.
55. The method of Claim 46, the thrombin peptide derivatives comprise the amino acid sequence Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Cys-Xi-Gly-Asp-Ser-Gly-Gly-Pro-X₂-Val-NH₂ (SEQ ID NO:40), wherein Xi is Glu or Gln and X₂ is Phe, Met, Leu, His or Val.

56. The method of Claim 55, wherein Xi is Glu and X₂ is Phe.

57. The method of Claim 1, wherein the agonist is a peptide dimer comprising two thrombin derivatives, each with the amino acid sequence Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-ATg-Gly-ASp-Ala-CyS-Glu-Gly-ASp-SCr-Gly-Gly-PrO-PhC-Val(SEQ ID NO:6), wherein the thrombin peptide derivatives are covalently linked by a disulfide bond.

58. The method of Claim 1, wherein the agonist is a peptide dimer represented by the following structural formula:

\[
\]

59. The method of Claim 1, wherein the agonist is an antibody or antigen-binding fragment thereof that binds to a complementary peptide, wherein said complementary peptide is encoded by the complement of a nucleotide sequence encoding a portion of thrombin.

60. The method of Claim 59, wherein said portion of thrombin is a portion of a mammalian thrombin.

61. The method of Claim 59, wherein said portion of thrombin is a portion of a human thrombin.

62. The method of Claim 59, wherein said portion of thrombin is a thrombin receptor binding domain or a portion thereof.
63. The method of Claim 62, wherein said thrombin receptor binding domain or portion thereof is a thrombin receptor binding domain comprising the amino acid sequence Ala-Gly-Tyr-Lys-Pro-Asp-Glu-Gly-Lys-Arg-Gly-Asp-Ala-Cys-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val (SEQ ID NO:6).

64. The method of Claim 62, wherein said thrombin receptor binding domain or portion thereof is a portion of a thrombin receptor binding domain.

65. The method of Claim 64, wherein said portion of a thrombin receptor binding domain comprises the amino acid sequence Glu-Gly-Lys-Arg-Gly-Asp-Ala-Cys-Glu-Gly (SEQ ID NO:7).

66. The method of Claim 59, wherein said complementary peptide is encoded by the 5'-3' sequence of the antisense RNA strand.

67. The method of Claim 59, wherein said complementary peptide is encoded by the 3'-5' sequence of the antisense RNA strand.

68. The method of Claim 59, wherein said complementary peptide comprises the amino acid sequence Lys-Gly-Ser-Pro-Thr-Val-Thr-Phe-Thr-Gly-Ile-Pro-Cys-Phe-Pro-Phe-Ile-Arg-Leu-Val-Thr-Ser (SEQ ID NO:30).

69. The method Claim 59, wherein said complementary peptide comprises the amino acid sequence Thr-Phe-Thr-Gly-Ile-Pro-Ser-Phe-Pro-Phe (SEQ ID NO:32).

70. The method of Claim 59, wherein said complementary peptide comprises the amino acid sequence Arg-Pro-Met-Phe-Gly-Leu-Leu-Pro-Phe-Ala-Pro-Leu-Arg-Thr-Leu-Pro-Leu-Ser-Pro-Pro-Gly-Lys-Gln (SEQ ID NO:33).

71. The method of Claim 59, wherein said complementary peptide comprises the amino acid sequence Leu-Pro-Phe-Ala-Pro-Leu-Arg-Thr-Leu-Pro (SEQ ID NO:34).

72. The method of Claim 59, wherein said antibody or antigen-binding fragment is an antibody.

73. The method of Claim 59, wherein said antibody is a polyclonal antibody.
74. The method of Claim 59, wherein said antibody or antigen-binding fragment is a monoclonal antibody or an antigen-binding fragment thereof.

75. The method of Claim 59, wherein said antibody or antigen-binding fragment is selected from the group consisting of a human antibody, a humanized antibody, a chimeric antibody and an antigen-binding fragment of any of the foregoing.

76. The method of Claim 59, wherein said antibody or antigen-binding fragment is an antigen-binding fragment.

77. The method of Claim 76, wherein said antigen-binding fragment is selected from the group consisting of an Fab fragment, an Fab' fragment, an F(ab')₂ fragment and an Fv fragment.
FIG. 4
FIG. 5A

FIG. 5B
FIG. 6A

FIG. 6B
FIG. 8A

- **Control cell**: Fibronectin
- **Control medium (CTR)**: PDGF (PDGF)
- **TP508 pretreated cells**: Fibronectin

FIG. 8B

- **Migration (Fibronectin) [FU]**:
 - CTR: 0, 5500, 15000
 - PDGF: 0, 10000, 25000
- **Control cells**
- **TP508 pretreated cells**
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. A61K38/18 A61K38/48 A61P17/02

According to International Patent Classification (IPC) and both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practical, search terms used)
EPO-Internal, CHEMABS Data, MEDLINE, EMBASE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
</table>

X Further documents are listed in the continuation of Box C

X See patent family annex

1* document defining the general state of the art which is not considered to be of particular relevance

2* document which may throw doubts on the novelty claim(s) or which is cited to establish the publication date of another invention

3* document referring to an oral disclosure, use, exhibition or other means

4* document published prior to the international filing date but later than the priority date claimed

5* document published after the international filing date or priority date and not in conflict with the invention but cited to understand the principle or theory underlying the invention

6* document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

7* document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents

8* document member of the same patent family

Date of the actual completion of the International search
30 July 2008

Date of mailing of the International search report
06/08/2008

Name and mailing address of the ISA
Si atou, Evangelia

European Patent Office, P B 5818 Patentlaan 2
NL- 2280 HV Rijswijk
Tel (+31-70) 340-2040, Tx 31 651 epo nl
Fax (+31-70) 340-3016

Authorized officer
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>wo 2006138468</td>
<td>28-12-2006</td>
<td>AU 2006259408 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2612233 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1904094 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 0080017362 A</td>
</tr>
<tr>
<td>wo 03013569</td>
<td>20-02-2003</td>
<td>AT 328606 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2002236768 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2455756 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1556711 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60212143 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 1414487 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1414487 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2271216 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1065719 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004538320 T</td>
</tr>
<tr>
<td>wo 2004014937</td>
<td>19-02-2004</td>
<td>AU 2003256343 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2491052 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1539214 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2006514822 T</td>
</tr>
<tr>
<td>US 2005158301</td>
<td>21-07-2005</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2003247848 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2491135 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60313982 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1539800 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2006507229 T</td>
</tr>
<tr>
<td>US 2005153893</td>
<td>14-07-2005</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 8239987 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3789870 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3789870 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0538552 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2501028 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5500412 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5352664 A</td>
</tr>
</tbody>
</table>